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Abstract

Many scientific applications suffer from the lack of a
unified approach to support the management in execution
and inefficiency in processing large-scale data. Twister
MapReduce Framework, which not only supports
traditional MapReduce programming model but also
extends it with iterations, tries to address these problems.
This paper describes how Twister is applied to several
kinds of scientific applications such as BLAST, MDS
Interpolation and GTM Interpolation in non-iterative
style and MDS without interpolation in iterative style. The
results show the applicability of Twister to data parallel
and EM algorithms with small overhead and increased
efficiency.
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1. Introduction

Scientific applications are required to process large
amount of data. The volumes of Input data grow from
gigabytes to terabytes, even petabytes scale now. This
already far exceeds the computing capability of one
computer. Although the computing tasks can be
parallelized on several computers, the execution may still
take days or weeks long.

This situation demands better parallel algorithms and
the distributed computing technologies which can manage
the scientific applications efficiently. MapReduce
Framework [1] is a kind of technology which becomes
popular in recent years. KeyValue pairs make the input be
distributed and parallel processed at a fine granularity.
The combination of Map tasks and Reduce tasks satisfies
the task flow of most kind of applications. And these
tasks are also well managed under the runtime platform.

This paper introduces Twister MapReduce Framework
[2], an expansion of traditional MapReduce Framework.
The main characteristic of it is that it does not only
support non-iterative MapReduce applications but also
iterative MapReduce programming model efficiently to
support Expectation-maximization (EM) algorithms with
communication complications, which is common in

scientific applications but is not allowed by other former
MapReduce implementations such as Hadoop [3].

Twister uses publish/subscribe messaging middleware
system for command communication and data transfers. It
supports MapReduce in manner of “configure once, and
run many time” [2]. Data can be easily scattered from
client node to compute nodes and combined back into
client node by APIs. With these features, Twister can
support iterative MapReduce computations efficiently
when compared to other MapReduce runtimes. Twister is
also compatible with Cloud architecture. Now it has been
successfully deployed on Amazon EC2 platform [4].

In this paper, the applicability of Twister is mainly
discussed. Through implementation of several scientific
applications, this paper shows how these applications are
well supported by Twister. In the following sections, the
overview of Twister is firstly presented with introducing
its programming model and architecture. Then four
Twister scientific applications are discussed. Three of
them are non-iterative programs which are Twister
BLAST, Twister GTM Interpolation, and Twister MDS
Interpolation. The final one is Twister MDS which is an
iterative application. Workflow and parallel mechanism
supported by Twister are presented within this section.
The conclusion is drawn in the final section.

2. Twister Overview

This section gives an overview to Twister MapReduce
Framework. The first part illustrates how non-iterative
and iterative MapReduce programming model are
supported in Twister. The second part describes the
architecture of Twister.

2.1.Non-Iterative and Iterative MapReduce
Support

Many parallel applications are only required to do Map
and Reduce once, such as WordCount [1]. However,
some other applications are inevitable to be in an iterative
pattern such as Kmeans [5] and PageRank [6]. Their
parallel algorithms require the program to do Map and
Reduce in iterations in order to get the final result.

The basic idea of Twister is to let MapReduce jobs
only be configured once, then let it run in one turn or



several turns according to the client’s request. If there is
only one turn execution, it is exactly the same as non-
iterative MapReduce. The result is produced from Reduce
method directly. For iterative MapReduce, the output
from “Reduce” is collected by “Combine” method at the
end of each iteration. A client will send intermediate
results back to compute nodes as new input of KeyValue
pairs in next iteration of MapReduce tasks (See Figure
1).

Another important characteristic of many iterative
algorithms is that some sets of input data are kept static
between iterations. In Twister, these static data are
allowed to be configured with partition file, loaded into
Map or Reduce tasks, and then being reused through
iterations. This mechanism significantly improves the
performance of Twister on iterative MapReduce
computing and makes it different from those methods,
which mimic iterative MapReduce by simply re-executing
MapReduce tasks without caching and reusing data and
job configuration. In addition, because the data cached
inside of Map and Reduce tasks is static, Twister still
keeps “side-effect-free” nature [2].

In this workflow, Twister also provides fault tolerance
solution for iterative MapReduce programming model.
Twister can save the execution state between iterations. If
Twister detects faults in execution, it can be rolled back
few iterations and restart computing.
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Figure 1. Twister MapReduce Workflow [2]

2.2. Architecture

Twister has several components. Client side is to drive
MapReduce jobs. Daemons and workers which live on
compute nodes manage MapReduce tasks. Connection
between components are based on SSH and messaging
software.

To drive MapReduce jobs, firstly client needs to
configure the job. It configures MapReduce methods to
the job, prepares KeyValue pairs and configures static
data to MapReduce tasks through partition file if required.

Once the job is configured, client can run the MapReduce
job and monitor it to completion. Between the iterations,
it receives the results collected by Combine method.
When the job is done, it terminates the job.

Messages including control messages and KeyValue
pair data are transmitted through a network of message
brokers with publish/subscribe mechanism. With a set of
predefined interfaces, Twister can be assembled with
different messaging software. Currently Twister supports
two kinds of software. One is NaradaBrokering [7],
another is ActiveMQ [8].

Daemons operate on compute nodes. They load Map
Class and Reduce Class and start them as Map and
Reduce workers which can be also called Mapper and
Reducer. In initialization, Map and Reduce workers load
static data from local disk according to records in
partition file and cache the data into memory, and then
they execute Map or Reduce function defined by users.
Twister uses static scheduling for workers in order to let
the local data cache be beneficial to computing [2]. So
this is a hybrid computing model. Inside one node,
workers are threads and managed by daemon processes.
Between nodes, daemons communicate with the client
through messages.

Twister uses scripts to operate static input data and
some output data on local disks in order to simulate some
characteristics of distributed file systems. In scripts,
Twister uses “scp” command to distribute static data to
compute nodes and create partition file by invoking Java
classes. For data which are output to the local disks,
Twister uses scripts to collect data from all compute
nodes to a node specified by the user.

3. Twister Non-Iterative Applications

Twister can support non-iterative applications which
are in style of “Map and then Reduce” or “Map only”.
“Map and then Reduce” is a normal case in traditional
MapReduce programming model. A classical scenario to
use this model is WordCount. Every Map task calculates
the word count in local partial text, and sends the
intermediate results to Reduce tasks with the word as
Key, the count as Value. Then Reduce tasks collect the
partial result and get the total count of one word.
Meanwhile, “Map only” means data are processed by
parallel Map tasks and then output directly. This
parallelism method is also frequently used.

In “Map only” style applications, a common way to do
computing parallel is to invoke the execution binary of a
stand-alone version program, usually called binary
invoking mode. This method is often used in parallel
applications for several reasons. Nowadays many stand-
alone scientific programs are complex and updated
frequently with new features. In this situation, rewriting
the parallel version of original stand-alone program may



take much effort and cannot catch up with stand-alone
version in new features. Due to these reasons, binary
invoking becomes a considerable solution. MapReduce
framework makes this solution applicable because it can
well handle input data split and manage the parallel task
execution.

Here three new non-iterative MapReduce applications,
including Twister BLAST, Twister MDS Interpolation,
and Twister GTM Interpolation, are introduced in the
following sections.

3.1. Twister BLAST

Twister BLAST is a parallel BLAST application based
on Twister MapReduce framework. Here this section will
introduce the nature of BLAST software, related other
parallel BLAST applications, and the characteristics of
Twister BLAST. Finally, a performance comparison is
given between Twister BLAST and Hadoop BLAST with
detailed analysis.

3.1.1. BLAST Software

BLAST [9] is a stand-alone local gene search tool. It
has two versions. One is BLAST which is written in C.
Another is BLAST+ which is written in C++. BLAST+ is
the latest version of BLAST and is recommended by
NCBI. Because of this, the term BLAST used below
mainly points to BLAST+. The version used here is
2.2.23.

BLAST is a command line tool which accepts input
parameters and output the result to screen or file after its
execution. There are two important inputs [10]. One is
query location, another is database location. BLAST
query is a file which contains FASTA-format gene
sequences which will be searched through the whole
database. BLAST database is a set of formatted files
which contain gene data and organized with indices. The
total size of the database is usually large, which can be
gigabytes level. Once BLAST receives database path and
query path, it will do BLAST search. BLAST search has
three phases [11]. The first phase is “Setup”. The query is
read into the memory and a “lookup” table is built. The
next phase is “Scanning”, each subject sequence in
database is scanned for the words matching the query in
“lookup” table. The final phase is “Trace-back”.
Improved score and insertions/deletions are calculated for
query sequences.

BLAST is a system resources demanding application.
On a 1U PolarGrid [12] node with two 4-core CPUs (Intel
Xeon CPU E5410 2.33GHz) and 16 GB memory,
searching hundreds of gene sequences with 37 gene letters
each through a 10 GB NR database [13], BLAST
consumes one core’s 100% CPU and 20% memory of the
total under one-thread mode. It can exhaust all memory

on a machine if the input is too large or if there are too
many hits to the database [10].

BLAST can also be executed under multi-thread mode.
Under this mode, it can utilize multi-core but still uses
20% memory. However, it won’t utilize eight cores fully
at all the time. For example, on the node with settings
mentioned above, executing BLAST with 8 threads, CPU
usage is not always 800% but occasionally dragged down.
The reasons is that BLAST is only multi-threaded in its
“Scanning” stage. The chart below shows the execution
time comparison and the speedup of using 8-thread mode
under different input size. The speedup value is greatly
affected by database loading time when the input size is
small and then become stable as the input size growing
larger than 100 sequences. However, all the values are
below than 7.8, which is still lower than 8. This means
using multi-thread mode will not be as efficient as multi-
process mode in the case that the node can provide
enough memory for multi BLAST processes execution
(See Figure 2.).
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Figure 2. Execution Time and Speedup between 1 Thread
and 8 Threads on One Node under Various Input Size

3.1.2. BLAST Parallelism Method

Several kinds of parallel BLAST applications are
already implemented, including MPI BLAST [14], Cloud
BLAST [15], and Azure BLAST [16]. This section will
introduce these technologies through timeline.

MPI BLAST uses MPI library [17] to support parallel
BLAST. It modifies original BLAST program through
combining NCBI toolkit [18] and MPI library together.
Query and database are both partitioned. Once MPI
BLAST starts, it distributes database partitions to all
compute nodes, and then uses one process to dynamically
schedule query chunks to different workers. Because of
database segmentation, every worker cannot produce a
complete output. As a result, one process is use to merge
the result and output to a shared directory. The reason
why database is segmented is that MP1 BLAST designers



believe that the database is too large so that they cannot
be put into memory or even hold on local disk [19].
However, database segmentation also generates lots of
communication work and nowadays modern clusters have
large memory and disks which can easily hold 10-
gigabytes level database volumes. Besides, the latest
version only supports an old BLAST version which lacks
new features and slow in performance. Recent experiment
which has the same data and node settings as above shows
that, by using MPI BLAST 1.6.0 Betal, 100 gene
sequences on one node with 10 MPI processes (8 workers
+ 1 scheduler + 1 merger) consumes near 400 seconds
while using the latest BLAST+2.2.23 only needs about 60
seconds in 8-thread execution mode. Furthermore, MPI
BLAST doesn’t have fault tolerance support, which is
fatal because BLAST jobs usually require long execution
time. Based on these reasons, it can be concluded that
MPI BLAST is outdated and obsolete.

Cloud BLAST uses Hadoop MapReduce Framework
to support parallel BLAST on cloud platform. Hadoop is
used here for resolving issues like data splitting, worker
finding, load balancing, and fault tolerance [15].
MapReduce computing is used in “Map only” style.
Original data are split into small chunks and distributed to
workers. On each node, input data chunk are processed by
invoking BLAST binary and searching through a local
database copy. The outputs are stored in HDFS [20]. With
this computing style, Cloud BLAST has less cost in
communication. It has been proved that this kind of
architecture has better performance than MPI BLAST,
and is even scalable, maintainable and fault tolerable [15].

Azure BLAST is nearly the same as Cloud BLAST in
computing style. But it is directly supported by Azure
Cloud Platform [21] rather than a MapReduce framework.
However, compared with Hadoop, Azure platform still
provides similar functionalities such as data splitting,
worker finding, load balancing, and fault tolerance.

3.1.3.  Twister BLAST Solution

Twister BLAST is a parallel BLAST application which
is supported by Twister. Based on the analysis about three
parallel BLAST applications above, Twister BLAST also
uses binary invoking parallelism in order to keep Twister
BLAST in state of art. As what already analyzed, this
style brings scalability and simplicity to program and
database maintenance. The flexibility of Twister
framework allows this program to run on a single
machine, a cluster, or Amazon EC2 cloud platform.

Before Twister BLAST execution, query chunks are
distributed to all compute nodes through Twister scripts
because the gene query could be large in size and not be
able to be loaded into client’s memory together and then
be sent as KeyValue pairs. Later on, a partition file will
be created to record the location of these query chunks. It

will replace KeyValue pairs and be configured to Map
tasks as input information.

BLAST Database is also replicated to all the compute
nodes. Though moving entire database among network
may cost much, however, it is easy to manage database
versions and brings efficiency for later BLAST execution.
In order to replicate the database through network
quickly, compression techniques is used here. BLAST
Database, such as 10 GB NR database, will be
compressed into 3 GB and then be distributed. Once they
arrive at compute nodes, they will be parallel extracted
through a set of Map tasks. This will significantly reduce
the time needed by replication to one third of the original
time.

Twister BLAST also uses Map tasks to parallelize
BLAST jobs. Twister BLAST client sends job property
messages through a set of message brokers to drive Map
tasks. Then Twister will start Map tasks according to the
partition file. Each Map task will invoke BLAST program
with query file location and other input command
variables defined by user. Once jobs are done, Twister
will report the status to the client program. Outputs can be
collected to one node by Twister scripts (See Figure 3.).
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Figure 3. Twister-BLAST Workflow and Architecture

In addition, another important fact observed by domain
experts may give us a chance to extend Twister BLAST
solution. Gene queries generated by Bioinformatics
researchers can easily contain duplicates. There are
already several tools to remove the duplication [22-26].
However, there is no scalable solution to handle large
inputs. Here Twister can be used to solve this problem by
using a WordCount like MapReduce job before doing
parallel BLAST job. Once the original query are
partitioned and distributed to all nodes, Map tasks can
remove local duplicates, then send KeyValue pairs, with
each of which uses a gene sequence as Key and a tag as
Value. After receiving these KeyValue pairs, Reduce
tasks can generate non-duplicate gene sequences with a
unique tag. If assuming this result can be much less than




the original data size, we can use Twister Combine
method to collect these gene sequences back to the client
and then re-assign them to KeyValue pairs and send them
back to Map tasks to do parallel BLAST. Depending on
the quality of the inputs, Twister BLAST can probably
save quite amount of time.

3.1.4.  Performance Tests and Comparison between
Hadoop BLAST

A set of performance tests is also done on Indiana
University Polar Grid Cluster by using 32 nodes. Each of
them has two 4-core CPUs (Intel Xeon CPU E5410
2.33GHz) and 16 GB memory, and a Gigabit Ethernet
network interface. Here Twister BLAST is compared with
Hadoop BLAST implementation.

Hadoop BLAST basically has the same style as the
implementation mentioned in Cloud BLAST paper. It
uses HDFS to hold compressed BLAST program and
database, and then uses distributed cache to allocate them
to local disk. Then it equally splits the query file into
sequence chunks, and copies them to HDFS. Once
program and data are prepared, they are downloaded,
extracted and taken as input by assigned Map task.

Query sequences are selected from the data provided
by Center for Genomics and Bioinformatics [27]. It
consists of 115 million sequences and each of them has a
uniform length of 37 DNA letters. For fairness, removing
duplicates are not considered in the experiment. The
BLAST job is parallelized by using 256 map tasks. By
changing input size, the time trend shows how time grows
with the input size.

B8 Twister Blast
V-V Hadoop Blast

7001

6001

5001

Execution Time (Seconds)

0 5000 10000 15000 20000 25000 30000 35000 40000 45000
Number of Queries

Figure 4. Performance Comparison with Twister BLAST
and Hadoop BLAST on 32 PG nodes

For preparing data, in Twister BLAST, NR database
replication and query distribution took 1006 seconds for
transferring 2.9 GB compressed data and extracting them,
while Hadoop BLAST uses 693 seconds. For BLAST
execution stage, the result, as drawn in the following
figure, shows that the execution time is proportional to the

number of gene sequences. Compared with Hadoop
BLAST, Twister BLAST has little overhead to
computation and is also slightly faster than Hadoop
BLAST (See Figure 4.).

However, because of Twister’s static scheduler, it
cannot dynamically schedule queries to Map tasks. In the
experiment, due to the characteristics of queries, the result
shows Map tasks have different execution times and the
final execution time is decided by the longest Map task
execution time. By randomizing the input data, this issue
can be eased but not solved.

3.2. Twister MDS Interpolation

Twister MDS Interpolation is a parallel method for
MDS Interpolation by using the Twister Framework. We
have implemented this program and test it.

3.2.1. MDS Interpolation

The multidimensional scaling (MDS) [28] is known as
a dimension reduction algorithm which is widely used in
statistics analysis. It is usually used in investigating large
data points which may arrive 100k in quantity. However,
if this algorithm is computed directly, its time complexity
arrives at O(N?) level, where N is the total number of
points. And because holding and calculating matrix needs
large memory, this algorithm is also memory-bound. As a
result, it is very difficult to run MDS over 1 million data
points. Now, with MDS interpolation, the problem of this
algorithm can be solved by processing full dataset based
on the result from a subset of it.

MDS interpolation is an out-of-sample problem [29].
The subset which has result from MDS is the sample, and
the rest of the dataset is out-of-sample points. The time
complexity of MDS interpolation is O(KM), where K is
the number of sample points and M is the number of out-
of-sample points. This greatly reduces the time required
to do dimension reduction of MDS and makes processing
millions of points be possible.

In order to find a new mapping position for an out-of-
sample point, we first do normal MDS on selected n
points as sample points from the full dataset to reduce the
dimension to L, and then select k nearest neighbors
P1, -+, Px from the sample points for an x from the out-of-
sample points. By using this information, we can
construct a STRESS function and minimize it. This
method which is similar to a MDS algorithm is known as
SMACOF [30]. Since only one point is movable among
the sample points, we set weight to 1 to do simplification.
The STRESS function is

k k
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Here &;; is the original dissimilarity value between p;
and x, d;, is the Euclidean distance in L dimension
between p; and x, and C is a constant.

According to Seung-Hee Bae’s method [31], we can
minimize this STRESS function by the following
equation.

k
Kl =2 ) O el )
=1 2
Here d;, = ||p; — x[*"|| and P is the average of k
sample points’ mapping results. The stopping criteria for
this algorithm would be
Ag(S1) = g(stt=1) — (S < 0
Here S = P U {x} and @ is the given threshold value.
Then we take this x*! as our result.

3.2.2. Parallel MDS Interpolation Approach

There are already some types of parallel MDS
interpolation methods [32], such as the applications under
MPIl.net [33] and Dryad [34]. But this time we are going
to show how to use Twister to do it. Even though MDS
interpolation can dramatically reduce the time required
doing the dimension reduction computation, the memory
issue cannot be solved by the algorithm itself because 1
million distance matrix file could be up to 6 TB and it is
very costly to move this distance file around compute
nodes. As a result, in Twister MDS interpolation, an
algorithm as vector-based algorithm is implemented,
where raw dataset but not Euclidean distance dataset is
read. The raw-data file is split into equally sized files and
distributed over compute nodes. Twister will use partition
file to locate of the raw data chunks. Then Twister MDS
Interpolation will create map tasks on each node. Then
Twister will use “Map only” mode to start map tasks
according to the data locations in the partition file. Data
are processed by functions encapsulating MDS
interpolation algorithm in each map task and output can
be collected by Twister Script.

3.2.3.  Performance Test

Performance tests are done for Twister MDS
Interpolation on Indiana University PolarGrid which is
mentioned in Section 3.1. The numbers of nodes used in
tests are 8 nodes, 16 nodes and 32 nodes. Accordingly
they are 64 cores, 128 cores and 256 cores. The data is
from PubChem [35]. Its original size is 18 million data
points. In the experiment, we take 4 million and 8 million
data points from it (See Figure 5.).

In Figure 5, parallel efficiency is used as right y-axis
and computation time is used as left y-axis. The x-axis is
core number. The efficiency of computing is calculated as
following:

T(p1)

a.T(p:)
Here T'(p;) is the execution time on i nodes, p; is the

smallest nodes running the program, and a = p;/p;.
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Figure 5. Twister MDS Interpolation Execution Time and
Parallel Efficiency

The parallel efficiency is around 1 even when the
number of cores is increasing; this is because there is no
communication between nodes when we run the MDS
Interpolation in parallel. So, with increasing number of
cores, Twister MDS interpolation performs better.

3.3. Twister GTM Interpolation

Twister GTM Interpolation is a new application of
parallelizing GTM Interpolation. We use the binary GTM
program and information from the results of running the
GTM to design the new program.

3.3.1. GTM Interpolation

Generative Topographic Mapping (GTM) algorithm is
to find an optimal representation of data from high
dimensional space to low dimensional space. It seeks a
non-linear mapping of user-defined K points in the low
dimensional space for N data points in a way that these K
points can represent the N data points in the original high
dimensional space [36]. So the time complexity of this
problem is O(KN). Although this algorithm is faster than
MDS since K < N, it is still a challenge to compute large
dataset, such as 8 million data points.

To solve this issue, GTM Interpolation chose to do
normal GTM on a subset of the full dataset, known as
samples at first. The remaining out-of-sample data can be
learnt from previous samples. Since the out-of-sample
data doesn’t involve in the computing intensive learning
process, GTM Interpolation can be very fast. However,
for more complicated data, there are some complexes
ways to interpolate GTM [37-39].



According to Jong Choi’s work, a simple interpolation
approach can be done by the following method. For
example, to process 26 million data points, firstly 100k
data is sampled from the original dataset. Then GTM is
performed on this sample data to find an optimal K cluster
center and a coefficient g for this sample set. This
information is stored in several files. After that, for the
remaining out-of-sample data M, a K X M pairwise
distance matrix D is computed with d;; which is a
Gaussian probability between the sample data and out-of-
sample data. So the responsibility matrix R can by
compute as

R = D@(eeD)

Here e = (1,---,1)!eR* and @ represents element wise
division.

With this information, finally we can construct a GTM
map Z = R'Z as Z is the matrix represents of the sample
points.

3.3.2. Parallel GTM Interpolation Approach

GTM Interpolation has also been paralleled by using
Dryad, Hadoop and Amazon EC2 [32], this time we are
going to use Twister to parallel this program. The Twister
GTM Interpolation can divide the raw data file from the
out-of-sample data file. And each partition will have a
mapper created to process that chunk. Once this is done,
Twister will invoke each GTM Interpolation with each
chunk to process the data. The mappers will process each
block individually, however, we can collect the results by
using a different script.

3.3.3. Performance Test

The performance test is also done on Indiana
University PolarGrid. 4 million and 8 million data points
from the PubChem data [35] are selected, and the sample
data size is 100k.
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Figure 6. Twister GTM Interpolation Execution Time and
Parallel Efficiency

As can be seen in figure 6, GTM-Interpolation run
very fast on PolarGrid, it takes 76 seconds to run on 4
nodes, 32 cores, and twister’s parallel efficiency remains
above 0.85, which is fairly high for parallel program. And
we anticipate that with increasing number of cores, even
above 256 cores, the parallel efficiency will remain above
0.8 and become more stable.

4. Twister Iterative Applications

The unique feature of Twister is to support iterative
MapReduce programming model. Client can drive
Twister to finish MapReduce job in iterations. The
performance is optimized by caching static data in
computation and using message infrastructure in
communication. Faults are handled between iterations.
Here Twister MDS is introduced to illustrate how iterative
MapReduce works in Twister.

4.1. Twister MDS

Multidimensional scaling (MDS) is a set of algorithms
which can map high dimensional data to low dimensional
data with respect to the pairwise proximity information.
In this algorithm, the pairwise Euclidean distance within
the target dimension of each pair is approximated to the
corresponding original proximity value. This procedure is
called STRESS [40]. It is a non-linear optimization
algorithm to find low-dimensional dataset which
minimizes the objective function.

Because a large high dimension distance matrix is
involved in, MDS is mainly a kind of data intensive
computing. The following part will show how iterative
MapReduce programming model can be applied to this
algorithm to facilitate its execution. Here Twister MDS
application is implemented and its performance and
scalability is evaluated.

To reduce the memory requirement on single node, the
original distance matrix is partitioned into chunks by
rows. These chunks are distributed to all compute nodes,
and the partition information is recorded in a partition file.
These data chunks are assigned to Map tasks in one to one
mapping. Once they are configured to Map tasks, they
will be held in memory and used through iterations.

Twister MDS shows how the concept “configure once
and run several times” works. After initialization, it
configures three jobs to Twister. Two of them are matrix-
vector multiplications and the other is STRESS value
calculation. Once these jobs are configured, client begins
to do iterations. In each loop, it will invoke these three
jobs sequentially. The matrix result obtained from the
previous job is collected by the client and used as
KeyValue pairs input in the following job. Since the
intermediate matrix result is required by all Map tasks of
the next job according to the algorithm, they are sent



through runMapReduceBCast method which can
broadcast the data value to all nodes with different keys.
Once a loop is done, the mapping matrix result and
STRESS values are used as input for next loop. Client can
control the number of iterations. Once the max iteration
arrives, the client stops computing.

To evaluate performance of Twister MDS, a Twister
environment with one ActiveMQ message broker
established. Twister MDS runs with 100 iterations. A
metagenomics dataset comprising of 30000 data points
with near 1 billion pair-wise distances is tested here.
Because the data of this large size cannot be handled on
single machine, the method for calculating parallel
efficiency used in sections above is applied again; this
means parallel efficiency is calculated with respect to the
minimum number of CPU cores used in the experiment.
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Figure 7. Twister MDS Execution Time and Parallel
Efficiency

However, the parallel efficiency drops greatly once the
number of cores increases (See Figure 7.). Besides, the
execution time even grows at some point. The reason is
that the cost of data broadcasting increases as the number
of cores grows. For example, in the case that 288 cores
are used, more than half of the execution time is used in
data transmission. Though the communication burden of
broadcasting data is due to the algorithm requirement and
the problem can be eased by using more than one broker,
this shows the limitation of one message broker and
broadcasting data through broker should be carefully used
in Twister iterative application design.

5. Conclusions and Future Work

In this paper, we present four parallel applications:
Twister BLAST, Twister MDS Interpolation, Twister
GTM Interpolation, and Twister MDS, with their
implementations and performance measurement. We
show that Twister can be applied not only on applications
with non-iterative MapReduce programming model, but
also on iterative MapReduce programming model. New

applications extend the scope of applications using
Twister. With iterative MapReduce functions, data
partitioning, caching and reusable configuration, Twister
can solve problems in a flexible and efficient fashion.

As a runtime of iterative MapReduce, Twister aims to
provide functionalities to accelerate the computation of
iterative algorithms. However, it is limited by the
availability of messaging middleware. Though having
open interface to messaging software is a good property,
its performance largely depends on the performance of
messaging middleware adopted. For instance, according
to MDS iterative algorithm, the amount of broadcasting
messages of temporary results between iterations is so
large that certainly influences the messaging performance.
This brings an interesting research issue of balancing the
requirement of iterative algorithm and the capability of
messaging middleware. Twister scripts can simulate some
functions of distributed file systems but needs further
optimization. In future work, we will integrate Twister
with a customized messaging middleware and a
distributed file system.
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