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Abstract  
 

Many scientific applications suffer from the lack of a 
unified approach to support the management in execution 
and inefficiency in processing large-scale data. Twister 
MapReduce Framework, which not only supports 
traditional MapReduce programming model but also 
extends it with iterations, tries to address these problems. 
This paper describes how Twister is applied to several 
kinds of scientific applications such as BLAST, MDS 
Interpolation and GTM Interpolation in non-iterative 
style and MDS without interpolation in iterative style. The 
results show the applicability of Twister to data parallel 
and EM algorithms with small overhead and increased 
efficiency. 
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1. Introduction  
 

Scientific applications are required to process large 
amount of data. The volumes of Input data grow from 
gigabytes to terabytes, even petabytes scale now. This 
already far exceeds the computing capability of one 
computer. Although the computing tasks can be 
parallelized on several computers, the execution may still 
take days or weeks long.  

This situation demands better parallel algorithms and 
the distributed computing technologies which can manage 
the scientific applications efficiently. MapReduce 
Framework [1] is a kind of technology which becomes 
popular in recent years. KeyValue pairs make the input be 
distributed and parallel processed at a fine granularity. 
The combination of Map tasks and Reduce tasks satisfies 
the task flow of most kind of applications. And these 
tasks are also well managed under the runtime platform. 

This paper introduces Twister MapReduce Framework 
[2], an expansion of traditional MapReduce Framework. 
The main characteristic of it is that it does not only 
support non-iterative MapReduce applications but also 
iterative MapReduce programming model efficiently to 
support Expectation-maximization (EM) algorithms with 
communication complications, which is common in 

scientific applications but is not allowed by other former 
MapReduce implementations such as Hadoop [3]. 

Twister uses publish/subscribe messaging middleware 
system for command communication and data transfers. It 
supports MapReduce in manner of “configure once, and 
run many time” [2]. Data can be easily scattered from 
client node to compute nodes and combined back into 
client node by APIs. With these features, Twister can 
support iterative MapReduce computations efficiently 
when compared to other MapReduce runtimes. Twister is 
also compatible with Cloud architecture. Now it has been 
successfully deployed on Amazon EC2 platform [4].   

In this paper, the applicability of Twister is mainly 
discussed. Through implementation of several scientific 
applications, this paper shows how these applications are 
well supported by Twister. In the following sections, the 
overview of Twister is firstly presented with introducing 
its programming model and architecture. Then four 
Twister scientific applications are discussed. Three of 
them are non-iterative programs which are Twister 
BLAST, Twister GTM Interpolation, and Twister MDS 
Interpolation. The final one is Twister MDS which is an 
iterative application. Workflow and parallel mechanism 
supported by Twister are presented within this section. 
The conclusion is drawn in the final section.  
 

2. Twister Overview  
 
This section gives an overview to Twister MapReduce 

Framework. The first part illustrates how non-iterative 
and iterative MapReduce programming model are 
supported in Twister. The second part describes the 
architecture of Twister. 
 

2.1. Non-Iterative and Iterative MapReduce 
Support 

 
Many parallel applications are only required to do Map 

and Reduce once, such as WordCount [1]. However, 
some other applications are inevitable to be in an iterative 
pattern such as Kmeans [5] and PageRank [6]. Their 
parallel algorithms require the program to do Map and 
Reduce in iterations in order to get the final result. 

The basic idea of Twister is to let MapReduce jobs 
only be configured once, then let it run in one turn or 



several turns according to the client’s request. If there is 
only one turn execution, it is exactly the same as non-
iterative MapReduce. The result is produced from Reduce 
method directly. For iterative MapReduce, the output 
from “Reduce” is collected by “Combine” method at the 
end of each iteration. A client will send intermediate 
results back to compute nodes as new input of KeyValue 
pairs in next iteration of MapReduce tasks (See Figure 
1.). 

Another important characteristic of many iterative 
algorithms is that some sets of input data are kept static 
between iterations. In Twister, these static data are 
allowed to be configured with partition file, loaded into 
Map or Reduce tasks, and then being reused through 
iterations. This mechanism significantly improves the 
performance of Twister on iterative MapReduce 
computing and makes it different from those methods, 
which mimic iterative MapReduce by simply re-executing 
MapReduce tasks without caching and reusing data and 
job configuration. In addition, because the data cached 
inside of Map and Reduce tasks is static, Twister still 
keeps “side-effect-free” nature [2].  

In this workflow, Twister also provides fault tolerance 
solution for iterative MapReduce programming model. 
Twister can save the execution state between iterations. If 
Twister detects faults in execution, it can be rolled back 
few iterations and restart computing. 

 
Figure 1. Twister MapReduce Workflow [2] 

 

2.2. Architecture 
 
Twister has several components. Client side is to drive 

MapReduce jobs. Daemons and workers which live on 
compute nodes manage MapReduce tasks. Connection 
between components are based on SSH and messaging 
software. 

To drive MapReduce jobs, firstly client needs to 
configure the job. It configures MapReduce methods to 
the job, prepares KeyValue pairs and configures static 
data to MapReduce tasks through partition file if required. 

Once the job is configured, client can run the MapReduce 
job and monitor it to completion. Between the iterations, 
it receives the results collected by Combine method.  
When the job is done, it terminates the job. 

Messages including control messages and KeyValue 
pair data are transmitted through a network of message 
brokers with publish/subscribe mechanism. With a set of 
predefined interfaces, Twister can be assembled with 
different messaging software. Currently Twister supports 
two kinds of software. One is NaradaBrokering [7], 
another is ActiveMQ [8].  

Daemons operate on compute nodes. They load Map 
Class and Reduce Class and start them as Map and 
Reduce workers which can be also called Mapper and 
Reducer. In initialization, Map and Reduce workers load 
static data from local disk according to records in 
partition file and cache the data into memory, and then 
they execute Map or Reduce function defined by users. 
Twister uses static scheduling for workers in order to let 
the local data cache be beneficial to computing [2]. So 
this is a hybrid computing model. Inside one node, 
workers are threads and managed by daemon processes. 
Between nodes, daemons communicate with the client 
through messages. 

Twister uses scripts to operate static input data and 
some output data on local disks in order to simulate some 
characteristics of distributed file systems. In scripts, 
Twister uses “scp” command to distribute static data to 
compute nodes and create partition file by invoking Java 
classes. For data which are output to the local disks, 
Twister uses scripts to collect data from all compute 
nodes to a node specified by the user. 
 

3. Twister Non-Iterative Applications  
 

Twister can support non-iterative applications which 
are in style of “Map and then Reduce” or “Map only”. 
“Map and then Reduce” is a normal case in traditional 
MapReduce programming model. A classical scenario to 
use this model is WordCount. Every Map task calculates 
the word count in local partial text, and sends the 
intermediate results to Reduce tasks with the word as 
Key, the count as Value. Then Reduce tasks collect the 
partial result and get the total count of one word. 
Meanwhile, “Map only” means data are processed by 
parallel Map tasks and then output directly.  This 
parallelism method is also frequently used.  

In “Map only” style applications, a common way to do 
computing parallel is to invoke the execution binary of a 
stand-alone version program, usually called binary 
invoking mode.  This method is often used in parallel 
applications for several reasons. Nowadays many stand-
alone scientific programs are complex and updated 
frequently with new features. In this situation, rewriting 
the parallel version of original stand-alone program may 



take much effort and cannot catch up with stand-alone 
version in new features. Due to these reasons, binary 
invoking becomes a considerable solution. MapReduce 
framework makes this solution applicable because it can 
well handle input data split and manage the parallel task 
execution.  

Here three new non-iterative MapReduce applications, 
including Twister BLAST, Twister MDS Interpolation, 
and Twister GTM Interpolation, are introduced in the 
following sections. 
 

3.1. Twister BLAST 
 
Twister BLAST is a parallel BLAST application based 

on Twister MapReduce framework. Here this section will 
introduce the nature of BLAST software, related other 
parallel BLAST applications, and the characteristics of 
Twister BLAST. Finally, a performance comparison is 
given between Twister BLAST and Hadoop BLAST with 
detailed analysis. 

 
3.1.1. BLAST Software 

 
BLAST [9] is a stand-alone local gene search tool. It 

has two versions. One is BLAST which is written in C. 
Another is BLAST+ which is written in C++. BLAST+ is 
the latest version of BLAST and is recommended by 
NCBI. Because of this, the term BLAST used below 
mainly points to BLAST+. The version used here is 
2.2.23. 

BLAST is a command line tool which accepts input 
parameters and output the result to screen or file after its 
execution. There are two important inputs [10]. One is 
query location, another is database location. BLAST 
query is a file which contains FASTA-format gene 
sequences which will be searched through the whole 
database. BLAST database is a set of formatted files 
which contain gene data and organized with indices. The 
total size of the database is usually large, which can be 
gigabytes level. Once BLAST receives database path and 
query path, it will do BLAST search. BLAST search has 
three phases [11]. The first phase is “Setup”. The query is 
read into the memory and a “lookup” table is built.  The 
next phase is “Scanning”, each subject sequence in 
database is scanned for the words matching the query in 
“lookup” table. The final phase is “Trace-back”. 
Improved score and insertions/deletions are calculated for 
query sequences. 

BLAST is a system resources demanding application.  
On a IU PolarGrid [12] node with two 4-core CPUs (Intel 
Xeon CPU E5410 2.33GHz) and 16 GB memory, 
searching hundreds of gene sequences with 37 gene letters 
each through a 10 GB NR database [13], BLAST 
consumes one core’s 100% CPU and 20% memory of the 
total under one-thread mode. It can exhaust all memory 

on a machine if the input is too large or if there are too 
many hits to the database [10]. 

BLAST can also be executed under multi-thread mode. 
Under this mode, it can utilize multi-core but still uses 
20% memory. However, it won’t utilize eight cores fully 
at all the time. For example, on the node with settings 
mentioned above, executing BLAST with 8 threads, CPU 
usage is not always 800% but occasionally dragged down. 
The reasons is that BLAST is only multi-threaded in its 
“Scanning” stage. The chart below shows the execution 
time comparison and the speedup of using 8-thread mode 
under different input size. The speedup value is greatly 
affected by database loading time when the input size is 
small and then become stable as the input size growing 
larger than 100 sequences. However, all the values are 
below than 7.8, which is still lower than 8. This means 
using multi-thread mode will not be as efficient as multi-
process mode in the case that the node can provide 
enough memory for multi BLAST processes execution 
(See Figure 2.).  

 
Figure 2. Execution Time and Speedup between 1 Thread 

and 8 Threads on One Node under Various Input Size 

 
3.1.2. BLAST Parallelism Method 

 
Several kinds of parallel BLAST applications are 

already implemented, including MPI BLAST [14], Cloud 
BLAST [15], and Azure BLAST [16]. This section will 
introduce these technologies through timeline. 

MPI BLAST uses MPI library [17] to support parallel 
BLAST. It modifies original BLAST program through 
combining NCBI toolkit [18] and MPI library together. 
Query and database are both partitioned. Once MPI 
BLAST starts, it distributes database partitions to all 
compute nodes, and then uses one process to dynamically 
schedule query chunks to different workers. Because of 
database segmentation, every worker cannot produce a 
complete output. As a result, one process is use to merge 
the result and output to a shared directory. The reason 
why database is segmented is that MPI BLAST designers 



believe that the database is too large so that they cannot 
be put into memory or even hold on local disk [19]. 
However, database segmentation also generates lots of 
communication work and nowadays modern clusters have 
large memory and disks which can easily hold 10-
gigabytes level database volumes. Besides, the latest 
version only supports an old BLAST version which lacks 
new features and slow in performance. Recent experiment 
which has the same data and node settings as above shows 
that, by using MPI BLAST 1.6.0 Beta1, 100 gene 
sequences on one node with 10 MPI processes (8 workers 
+ 1 scheduler + 1 merger) consumes near 400 seconds 
while using the latest BLAST+2.2.23 only needs about 60 
seconds in 8-thread execution mode. Furthermore, MPI 
BLAST doesn’t have fault tolerance support, which is 
fatal because BLAST jobs usually require long execution 
time. Based on these reasons, it can be concluded that 
MPI BLAST is outdated and obsolete.  

Cloud BLAST uses Hadoop MapReduce Framework 
to support parallel BLAST on cloud platform. Hadoop is 
used here for resolving issues like data splitting, worker 
finding, load balancing, and fault tolerance [15]. 
MapReduce computing is used in “Map only” style. 
Original data are split into small chunks and distributed to 
workers. On each node, input data chunk are processed by 
invoking BLAST binary and searching through a local 
database copy. The outputs are stored in HDFS [20]. With 
this computing style, Cloud BLAST has less cost in 
communication. It has been proved that this kind of 
architecture has better performance than MPI BLAST, 
and is even scalable, maintainable and fault tolerable [15]. 

Azure BLAST is nearly the same as Cloud BLAST in 
computing style. But it is directly supported by Azure 
Cloud Platform [21] rather than a MapReduce framework. 
However, compared with Hadoop, Azure platform still 
provides similar functionalities such as data splitting, 
worker finding, load balancing, and fault tolerance. 
 
3.1.3. Twister BLAST Solution 

 
Twister BLAST is a parallel BLAST application which 

is supported by Twister. Based on the analysis about three 
parallel BLAST applications above, Twister BLAST also 
uses binary invoking parallelism in order to keep Twister 
BLAST in state of art. As what already analyzed, this 
style brings scalability and simplicity to program and 
database maintenance. The flexibility of Twister 
framework allows this program to run on a single 
machine, a cluster, or Amazon EC2 cloud platform.  

Before Twister BLAST execution, query chunks are 
distributed to all compute nodes through Twister scripts 
because the gene query could be large in size and not be 
able to be loaded into client’s memory together and then 
be sent as KeyValue pairs. Later on, a partition file will 
be created to record the location of these query chunks. It 

will replace KeyValue pairs and be configured to Map 
tasks as input information.  

BLAST Database is also replicated to all the compute 
nodes. Though moving entire database among network 
may cost much, however, it is easy to manage database 
versions and brings efficiency for later BLAST execution. 
In order to replicate the database through network 
quickly, compression techniques is used here. BLAST 
Database, such as 10 GB NR database, will be 
compressed into 3 GB and then be distributed. Once they 
arrive at compute nodes, they will be parallel extracted 
through a set of Map tasks. This will significantly reduce 
the time needed by replication to one third of the original 
time. 

Twister BLAST also uses Map tasks to parallelize 
BLAST jobs. Twister BLAST client sends job property 
messages through a set of message brokers to drive Map 
tasks. Then Twister will start Map tasks according to the 
partition file. Each Map task will invoke BLAST program 
with query file location and other input command 
variables defined by user. Once jobs are done, Twister 
will report the status to the client program. Outputs can be 
collected to one node by Twister scripts (See Figure 3.). 

 
Figure 3. Twister-BLAST Workflow and Architecture  

In addition, another important fact observed by domain 
experts may give us a chance to extend Twister BLAST 
solution. Gene queries generated by Bioinformatics 
researchers can easily contain duplicates. There are 
already several tools to remove the duplication [22-26]. 
However, there is no scalable solution to handle large 
inputs. Here Twister can be used to solve this problem by 
using a WordCount like MapReduce job before doing 
parallel BLAST job. Once the original query are 
partitioned and distributed to all nodes, Map tasks can 
remove local duplicates, then send KeyValue pairs, with 
each of which uses a gene sequence as Key and a tag as 
Value. After receiving these KeyValue pairs, Reduce 
tasks can generate non-duplicate gene sequences with a 
unique tag. If assuming this result can be much less than 
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the original data size, we can use Twister Combine 
method to collect these gene sequences back to the client 
and then re-assign them to KeyValue pairs and send them 
back to Map tasks to do parallel BLAST. Depending on 
the quality of the inputs, Twister BLAST can probably 
save quite amount of time. 
 
3.1.4. Performance Tests and Comparison between 

Hadoop BLAST 
 
A set of performance tests is also done on Indiana 

University Polar Grid Cluster by using 32 nodes. Each of 
them has two 4-core CPUs (Intel Xeon CPU E5410 
2.33GHz) and 16 GB memory, and a Gigabit Ethernet 
network interface. Here Twister BLAST is compared with 
Hadoop BLAST implementation.   

Hadoop BLAST basically has the same style as the 
implementation mentioned in Cloud BLAST paper. It 
uses HDFS to hold compressed BLAST program and 
database, and then uses distributed cache to allocate them 
to local disk. Then it equally splits the query file into 
sequence chunks, and copies them to HDFS. Once 
program and data are prepared, they are downloaded, 
extracted and taken as input by assigned Map task. 

Query sequences are selected from the data provided 
by Center for Genomics and Bioinformatics [27]. It 
consists of 115 million sequences and each of them has a 
uniform length of 37 DNA letters. For fairness, removing 
duplicates are not considered in the experiment. The 
BLAST job is parallelized by using 256 map tasks. By 
changing input size, the time trend shows how time grows 
with the input size. 

 
Figure 4. Performance Comparison with Twister BLAST 

and Hadoop BLAST on 32 PG nodes 

For preparing data, in Twister BLAST, NR database 
replication and query distribution took 1006 seconds for 
transferring 2.9 GB compressed data and extracting them, 
while Hadoop BLAST uses 693 seconds. For BLAST 
execution stage, the result, as drawn in the following 
figure, shows that the execution time is proportional to the 

number of gene sequences. Compared with Hadoop 
BLAST, Twister BLAST has little overhead to 
computation and is also slightly faster than Hadoop 
BLAST (See Figure 4.). 

However, because of Twister’s static scheduler, it 
cannot dynamically schedule queries to Map tasks. In the 
experiment, due to the characteristics of queries, the result 
shows Map tasks have different execution times and the 
final execution time is decided by the longest Map task 
execution time. By randomizing the input data, this issue 
can be eased but not solved.  
 

3.2. Twister MDS Interpolation 
 
Twister MDS Interpolation is a parallel method for 

MDS Interpolation by using the Twister Framework. We 
have implemented this program and test it. 
 
3.2.1. MDS Interpolation 
 

The multidimensional scaling (MDS) [28] is known as 
a dimension reduction algorithm which is widely used in 
statistics analysis. It is usually used in investigating large 
data points which may arrive 100k in quantity. However, 
if this algorithm is computed directly, its time complexity 
arrives at ܱሺܰଶሻ  level, where ܰ  is the total number of 
points. And because holding and calculating matrix needs 
large memory, this algorithm is also memory-bound. As a 
result, it is very difficult to run MDS over 1 million data 
points. Now, with MDS interpolation, the problem of this 
algorithm can be solved by processing full dataset based 
on the result from a subset of it. 

MDS interpolation is an out-of-sample problem [29]. 
The subset which has result from MDS is the sample, and 
the rest of the dataset is out-of-sample points. The time 
complexity of MDS interpolation is ܱሺܯܭሻ, where ܭ is 
the number of sample points and ܯ is the number of out-
of-sample points. This greatly reduces the time required 
to do dimension reduction of MDS and makes processing 
millions of points be possible. 

In order to find a new mapping position for an out-of-
sample point, we first do normal MDS on selected ݊ 
points as sample points from the full dataset to reduce the 
dimension to ܮ , and then select ݇  nearest neighbors 
⋯,ଵ݌ , -from the out-of ݔ ௞ from the sample points for an݌
sample points. By using this information, we can 
construct a STRESS function and minimize it. This 
method which is similar to a MDS algorithm is known as 
SMACOF [30]. Since only one point is movable among 
the sample points, we set weight to 1 to do simplification. 
The STRESS function is 

ሺܺሻߪ ൌ ෍ ൫݀௜௝ሺܺሻ െ ௜௝൯ߜ
ଶ

௜ழ௝ஸே

ൌ ܥ ൅෍݀௜௫

௞

௜ୀଵ

െ 2෍ߜ௜௫݀௜௫

௞

௜ୀଵ

 



Here ߜ௜௝ is the original dissimilarity value between ݌௜ 
and ݔ , ݀௜௫  is the Euclidean distance in ܮ  dimension 
between ݌௜ and ݔ, and ܥ is a constant. 

According to Seung-Hee Bae’s method [31], we can 
minimize this STRESS function by the following 
equation. 

ሾ௧ሿݔ ൌ ݌ ൅
1
݇
෍

௜௫ߜ
݀௜௭

ሺݔሾ௧ିଵሿ െ ௜ሻ݌

௞

௜ୀଵ

 

Here ݀௜௭ ൌ ฮ݌௜ െ ሾ௧ିଵሿฮݔ  and  ݌  is the average of ݇ 
sample points’ mapping results. The stopping criteria for 
this algorithm would be 

൫ܵሾ௧ሿ൯ߪ∆ ൌ ൫ܵሾ௧ିଵሿ൯ߪ െ ൫ܵሾ௧ሿ൯ߪ ൏  ߠ
Here ܵ ൌ ܲ ∪ ሼݔሽ and ߠ  is the given threshold value. 

Then we take this ݔሾ௧ሿ as our result. 
 

3.2.2. Parallel MDS Interpolation Approach 
 

There are already some types of parallel MDS 
interpolation methods [32], such as the applications under 
MPI.net [33] and Dryad [34]. But this time we are going 
to show how to use Twister to do it. Even though MDS 
interpolation can dramatically reduce the time required 
doing the dimension reduction computation, the memory 
issue cannot be solved by the algorithm itself because 1 
million distance matrix file could be up to 6 TB and it is 
very costly to move this distance file around compute 
nodes. As a result, in Twister MDS interpolation, an 
algorithm as vector-based algorithm is implemented, 
where raw dataset but not Euclidean distance dataset is 
read. The raw-data file is split into equally sized files and 
distributed over compute nodes. Twister will use partition 
file to locate of the raw data chunks. Then Twister MDS 
Interpolation will create map tasks on each node. Then 
Twister will use “Map only” mode to start map tasks 
according to the data locations in the partition file. Data 
are processed by functions encapsulating MDS 
interpolation algorithm in each map task and output can 
be collected by Twister Script. 

 
3.2.3. Performance Test 
 

Performance tests are done for Twister MDS 
Interpolation on Indiana University PolarGrid which is 
mentioned in Section 3.1. The numbers of nodes used in 
tests are 8 nodes, 16 nodes and 32 nodes. Accordingly 
they are 64 cores, 128 cores and 256 cores. The data is 
from PubChem [35]. Its original size is 18 million data 
points. In the experiment, we take 4 million and 8 million 
data points from it (See Figure 5.). 

In Figure 5, parallel efficiency is used as right y-axis 
and computation time is used as left y-axis. The x-axis is 
core number. The efficiency of computing is calculated as 
following: 

௜ሻߟሺݕ݂݂ܿ݊݁݅ܿ݅ܧ݈݈݈݁ܽݎܽܲ ൌ
ܶሺ݌ଵሻ
.ߙ ܶሺ݌௜ሻ

 

Here ܶሺ݌௜ሻ is the execution time on ݅ nodes, ݌ଵ is the 
smallest nodes running the program, and ߙ ൌ ௜݌ ⁄ଵ݌ . 

 
Figure 5. Twister MDS Interpolation Execution Time and 

Parallel Efficiency 

The parallel efficiency is around 1 even when the 
number of cores is increasing; this is because there is no 
communication between nodes when we run the MDS 
Interpolation in parallel. So, with increasing number of 
cores, Twister MDS interpolation performs better. 
 

3.3. Twister GTM Interpolation  
 
Twister GTM Interpolation is a new application of 

parallelizing GTM Interpolation. We use the binary GTM 
program and information from the results of running the 
GTM to design the new program. 
 
3.3.1. GTM Interpolation 
 

Generative Topographic Mapping (GTM) algorithm is 
to find an optimal representation of data from high 
dimensional space to low dimensional space. It seeks a 
non-linear mapping of user-defined ܭ points in the low 
dimensional space for ܰ data points in a way that these ܭ 
points can represent the ܰ data points in the original high 
dimensional space [36]. So the time complexity of this 
problem is ܱሺܰܭሻ. Although this algorithm is faster than 
MDS since ܭ ൏ ܰ, it is still a challenge to compute large 
dataset, such as 8 million data points. 

To solve this issue, GTM Interpolation chose to do 
normal GTM on a subset of the full dataset, known as 
samples at first. The remaining out-of-sample data can be 
learnt from previous samples. Since the out-of-sample 
data doesn’t involve in the computing intensive learning 
process, GTM Interpolation can be very fast. However, 
for more complicated data, there are some complexes 
ways to interpolate GTM [37-39]. 



According to Jong Choi’s work, a simple interpolation 
approach can be done by the following method. For 
example, to process 26 million data points, firstly 100k 
data is sampled from the original dataset. Then GTM is 
performed on this sample data to find an optimal ܭ cluster 
center and a coefficient ߚ  for this sample set. This 
information is stored in several files. After that, for the 
remaining out-of-sample data ܯ , a ܭ ൈܯ  pairwise 
distance matrix ܦ  is computed with ݀௜௝  which is a 
Gaussian probability between the sample data and out-of-
sample data. So the responsibility matrix ܴ  can by 
compute as 

ܴ ൌ  ሻܦሺ݁݁௧∅ܦ
Here ݁ ൌ ሺ1,⋯ ,1ሻ௧ܴ߳௞ and ∅ represents element wise 

division. 
With this information, finally we can construct a GTM 

map ܼ ൌ ܴ௧ܼ as ܼ is the matrix represents of the sample 
points. 
 
3.3.2. Parallel GTM Interpolation Approach 
 

GTM Interpolation has also been paralleled by using 
Dryad, Hadoop and Amazon EC2 [32], this time we are 
going to use Twister to parallel this program. The Twister 
GTM Interpolation can divide the raw data file from the 
out-of-sample data file. And each partition will have a 
mapper created to process that chunk. Once this is done, 
Twister will invoke each GTM Interpolation with each 
chunk to process the data. The mappers will process each 
block individually, however, we can collect the results by 
using a different script. 
 
3.3.3. Performance Test 
 

The performance test is also done on Indiana 
University PolarGrid. 4 million and 8 million data points 
from the PubChem data [35] are selected, and the sample 
data size is 100k.  

 
Figure 6. Twister GTM Interpolation Execution Time and 

Parallel Efficiency 

As can be seen in figure 6, GTM-Interpolation run 
very fast on PolarGrid, it takes 76 seconds to run on 4 
nodes, 32 cores, and twister’s parallel efficiency remains 
above 0.85, which is fairly high for parallel program. And 
we anticipate that with increasing number of cores, even 
above 256 cores, the parallel efficiency will remain above 
0.8 and become more stable. 

 

4. Twister Iterative Applications  
 
The unique feature of Twister is to support iterative 

MapReduce programming model. Client can drive 
Twister to finish MapReduce job in iterations. The 
performance is optimized by caching static data in 
computation and using message infrastructure in 
communication. Faults are handled between iterations. 
Here Twister MDS is introduced to illustrate how iterative 
MapReduce works in Twister. 

 

4.1. Twister MDS 
 
Multidimensional scaling (MDS) is a set of algorithms 

which can map high dimensional data to low dimensional 
data with respect to the pairwise proximity information. 
In this algorithm, the pairwise Euclidean distance within 
the target dimension of each pair is approximated to the 
corresponding original proximity value. This procedure is 
called STRESS [40]. It is a non-linear optimization 
algorithm to find low-dimensional dataset which 
minimizes the objective function. 

Because a large high dimension distance matrix is 
involved in, MDS is mainly a kind of data intensive 
computing.  The following part will show how iterative 
MapReduce programming model can be applied to this 
algorithm to facilitate its execution. Here Twister MDS 
application is implemented and its performance and 
scalability is evaluated.  

To reduce the memory requirement on single node, the 
original distance matrix is partitioned into chunks by 
rows. These chunks are distributed to all compute nodes, 
and the partition information is recorded in a partition file. 
These data chunks are assigned to Map tasks in one to one 
mapping. Once they are configured to Map tasks, they 
will be held in memory and used through iterations.  

Twister MDS shows how the concept “configure once 
and run several times” works. After initialization, it 
configures three jobs to Twister. Two of them are matrix-
vector multiplications and the other is STRESS value 
calculation. Once these jobs are configured, client begins 
to do iterations. In each loop, it will invoke these three 
jobs sequentially. The matrix result obtained from the 
previous job is collected by the client and used as 
KeyValue pairs input in the following job. Since the 
intermediate matrix result is required by all Map tasks of 
the next job according to the algorithm, they are sent 



through runMapReduceBCast method which can 
broadcast the data value to all nodes with different keys. 
Once a loop is done, the mapping matrix result and 
STRESS values are used as input for next loop. Client can 
control the number of iterations. Once the max iteration 
arrives, the client stops computing. 

To evaluate performance of Twister MDS, a Twister 
environment with one ActiveMQ message broker 
established. Twister MDS runs with 100 iterations. A 
metagenomics dataset comprising of 30000 data points 
with near 1 billion pair-wise distances is tested here. 
Because the data of this large size cannot be handled on 
single machine, the method for calculating parallel 
efficiency used in sections above is applied again; this 
means parallel efficiency is calculated with respect to the 
minimum number of CPU cores used in the experiment.  

 
Figure 7. Twister MDS Execution Time and Parallel 

Efficiency  

However, the parallel efficiency drops greatly once the 
number of cores increases (See Figure 7.). Besides, the 
execution time even grows at some point. The reason is 
that the cost of data broadcasting increases as the number 
of cores grows. For example, in the case that 288 cores 
are used, more than half of the execution time is used in 
data transmission. Though the communication burden of 
broadcasting data is due to the algorithm requirement and 
the problem can be eased by using more than one broker, 
this shows the limitation of one message broker and 
broadcasting data through broker should be carefully used 
in Twister iterative application design. 

 

5. Conclusions and Future Work 
 
In this paper, we present four parallel applications: 

Twister BLAST, Twister MDS Interpolation, Twister 
GTM Interpolation, and Twister MDS, with their 
implementations and performance measurement. We 
show that Twister can be applied not only on applications 
with non-iterative MapReduce programming model, but 
also on iterative MapReduce programming model. New 

applications extend the scope of applications using 
Twister. With iterative MapReduce functions, data 
partitioning, caching and reusable configuration, Twister 
can solve problems in a flexible and efficient fashion.  

As a runtime of iterative MapReduce, Twister aims to 
provide functionalities to accelerate the computation of 
iterative algorithms. However, it is limited by the 
availability of messaging middleware. Though having 
open interface to messaging software is a good property, 
its performance largely depends on the performance of 
messaging middleware adopted. For instance, according 
to MDS iterative algorithm, the amount of broadcasting 
messages of temporary results between iterations is so 
large that certainly influences the messaging performance. 
This brings an interesting research issue of balancing the 
requirement of iterative algorithm and the capability of 
messaging middleware. Twister scripts can simulate some 
functions of distributed file systems but needs further 
optimization. In future work, we will integrate Twister 
with a customized messaging middleware and a 
distributed file system. 

 

6. References 
 
[1] J. Dean and S. Ghemawat, MapReduce: simplified data 

processing on large clusters. Commun. ACM, 2008. 
51(1): p. 107-113.  

[2] J.Ekanayake, H.Li, B.Zhang, T.Gunarathne, S.Bae, J.Qiu, 
and G.Fox., Twister: A Runtime for iterative MapReduce, 
in Proceedings of the First International Workshop on 
MapReduce and its Applications of ACM HPDC 2010 
conference June 20-25, 2010. 2010, ACM: Chicago,  
Illinois. 

[3] Apache, Apache Hadoop, Retrieved April 20, 2010, from 
ASF: http://hadoop.apache.org/core/. 

[4] Amazon, Amazon Web Services.http://aws.amazon.com/. 

[5] J. B. MacQueen. Some Methods for classification and 
Analysis of Multivariate Observations. in 5-th Berkeley 
Symposium on Mathematical Statistics and Probability: 
University of California Press. 

[6] S. Brin and L. Page. The Anatomy of a Large-Scale 
Hypertextual Web Search Engine; Available from: 
http://infolab.stanford.edu/~backrub/google.html. 

[7] NaradaBrokering. Scalable Publish Subscribe System,  
2010  [accessed 2010 May]; Available from: 
http://www.naradabrokering.org/. 

[8] Apache, "ActiveMQ," http://activemq.apache.org/, 2009. 

[9] NCBI. BLAST,  2010; Available from: 
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAG
E_TYPE=BlastNews#1. 

[10] NCBI. BLAST Command Line Applications User Manual,  
2010; Available from: 
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=help
blast&part=CmdLineAppsManual. 



[11] George Coulouris Christiam Camacho, Vahram Avagyan, 
Ning Ma, Jason Papadopoulos, Kevin Bealer and Thomas 
L Madden, BLAST+: architecture and applications. BMC 
Bioinformatics 2009, 10:421, 2009.  

[12] PolarGrid. Cyberinfrastructure for Polar Expeditions,  
2010  [accessed 2010 January]; Available from: 
http://www.polargrid.org/polargrid/index.php/Main_Page. 

[13] NCBI. Databases available for BLAST search; Available 
from: 
http://www.ncbi.nlm.nih.gov/blast/blast_databases.shtml. 

[14] Darling A, Carey L, and Feng WC, The Design, 
Implementation, and Evaluation of mpiBLAST. In: Proc 
ClusterWorld, 2003. 2003.  

[15] A. Matsunaga, M. Tsugawa, and J. Fortes. CloudBLAST: 
Combining MapReduce and Virtualization on Distributed 
Resources for Bioinformatics Applications. in IEEE 
Fourth International Conference on eScience (eScience 
'08). 2008. Indianapolis, IN. 

[16] Wei Lu, Jared Jackson, and Roger Barga, AzureBlast: A 
Case Study of Developing Science Applications on the 
Cloud, in ScienceCloud: 1st Workshop on Scientific Cloud 
Computing co-located with HPDC 2010 (High 
Performance Distributed Computing). 2010, ACM: 
Chicago, IL. 

[17] "MPI," Message Passing Interface, http://www-
unix.mcs.anl.gov/mpi/, 2009. 

[18] NCBI, NCBI 
Toolkit.http://www.ncbi.nlm.nih.gov/BLAST/developer.sh
tml 

[19] Pavan Balaji Heshan Lin, Ruth Poole, Carlos Sosa, 
Xiaosong Ma and Wu-chun Feng, Massively Parallel 
Genomic Sequence Search on the Blue Gene/P 
Architecture, in SC2008. 2008. 

[20] Hadoop Distributed File System HDFS,  2009  [accessed 
2009 December]; Available from: 
http://hadoop.apache.org/hdfs/. 

[21] Windows Azure Platform, Retrieved April 20, 2010, from 
Microsoft: 
http://www.microsoft.com/windowsazure/.http://www.mic
rosoft.com/windowsazure/. 

[22] ElimDupes; Available from: 
http://hcv.lanl.gov/content/sequence/ELIMDUPES/elimdu
pes.html. 

[23] geneious; Available from: 
http://www.geneious.com/default,1266,new_features.sm. 

[24] Victor Seguritan and Forest Rohwer, FastGroup: A 
program to dereplicate libraries of 16S rDNA sequences. 
BMC Bioinformatics, 2001. 
2:9.http://www.ncbi.nlm.nih.gov/pmc/articles/PMC59723/ 

[25] Joshua Bulgrien David Kerk, Douglas W. Smith, Brooke 
Barsam, Stella Veretnik, and Michael Gribskov, The 
Complement of Protein Phosphatase Catalytic Subunits 
Encoded in the Genome of Arabidopsis. Plant Physiology, 
2002. 129: p. 908–925.  

[26] Doris M. Kupfer Scott D. Drabenstot, James D. White, 
David W. Dyer, Bruce A. Roe, Kent L. Buchanan and 

Juneann W. Murphy, FELINES: a utility for extracting 
and examining EST-defined introns and exons. Nucleic 
Acids Research, 2003. 31.  

[27] Center for Genomics and Bioinformatics; Available from: 
http://cgb.indiana.edu/. 

[28] J. B. Kruskal and M. Wish, Multidimensional Scaling. 
1978: Sage Publications Inc. 

[29] Michael W. Trosset and Carey E. Priebe, The Out-of-
Sample Problem for Classical Multidimensional Scaling. 
2006, Bloomington, IN: Indiana University. 

[30] Ingwer Borg and Patrick J Groenen, Modern 
Multidimensional Scaling: Theory and Applications. 2005: 
Springer. 

[31] Jong Youl Choi Seung-Hee Bae, Judy Qiu, Geoffrey C. 
Fox, Dimension Reduction and Visualization of Large 
High-dimensional Data via Interpolation, in HPDC'10 
2010: Chicago, Illinois USA. 

[32] Thilina Gunarathne, Tak-Lon Wu, Judy Qiu, and Geoffrey 
Fox, Cloud Computing Paradigms for Pleasingly Parallel 
Biomedical Applications, in Proceedings of the Emerging 
Computational Methods for the Life Sciences Workshop of 
ACM HPDC 2010 conference. 2010: Chicago, Illinois. 

[33] Indiana University Bloomington Open Sysem Lab. 
MPI.NET,  2008; Available from: 
http://osl.iu.edu/research/mpi.net/. 

[34] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, 
Dryad: Distributed data-parallel programs from 
sequential building blocks, in ACM SIGOPS Operating 
Systems Review. 2007, ACM Press. p. 59-72. 

[35] NCBI. PubChem; Available from: 
http://pubchem.ncbi.nlm.nih.gov/. 

[36] Christopher M. Bishop, Markus Svensén, and Christopher 
K. I. Williams, GTM: The generative topographic 
mapping. Neural computation, 1998. 10: p. 215--234.  

[37] M. Carreira-Perpinan and Z. Lu. The Laplacian eigenmaps 
latent variable model. in 11th Int. Workshop on Artifical 
Intelligence and Statistics. 2007. 

[38] A. Kaban. A scalable generative topographic mapping for 
sparse data sequences. in the International Conference on 
Information Technology: Coding and Computing. 2005. 

[39] F. Nie S. Xiang, Y. Song, C. Zhang and C. Zhang, 
Embedding new data points for manifold learning via 
coordinate propagation. Knowledge and Information 
Systems, 2009. 19(2): p. 159-184.  

[40] J. Kruskal, Multidimensional scaling by optimizing 
goodness of fit to a nonmetric hypothesis. Psychometrika, 
1964. 29: p. 1-27.  

 
 


