Buffer Automata: A Ul Architecture Prioritising
HCI Concerns for Interactive Devices

Harold Thimbleby
FIT Lab
Swansea University

ABSTRACT

We introduce an architectural software formalism, buffer au-
tomata, for the specification, implementation and analysis of
a particular class of discrete interactive systems and devices.
The approach defines a layer between the physical user inter-
face and the application (if any) and provides a clear frame-
work for highlighting a number of interaction design issues,
in particular around modes and undo.

Author Keywords
Buffer automata; modes; undo; interaction programming;
structural usability.

ACM Classification Keywords
H.5.2(D.2.2,H.1.2, 1.36) User Interfaces: Theory and meth-
ods

General Terms
Design, Theory

1. INTRODUCTION

General purpose programming languages can implement any
interactive system, but such systems are not easy to analyse
for their interaction properties. Conversely, finite state ma-
chines can in principle also describe any interactive system—
typically as enormous FSMs—but for non-trivial systems
they are impractically large and have no clear structure to
support insights into human computer interaction issues. In
this paper we introduce an extension to FSMs which aims to
address this state explosion issue, at least for some systems.

Consider something as simple as a handheld calculator: it
has a few basic modes (off, adding, subtracting. . .) but track-
ing its states means also tracking (say) 10® possible numbers
for its display, 10® for its memory, 10 for the working num-
ber, and perhaps 108 for any constant (when pressing [<] just
adds the current number to the constant). Its full state space
thus has at least 1032 states; this simple device is at the lim-
its of what can conveniently be handled by current model

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

EICS’11, June 1316, 2011, Pisa, Italy.

Copyright 2011 ACM 978-1-4503-0670-6/11/06...$10.00.

Andy Gimblett
FIT Lab
Swansea University
h.thimbleby @swansea.ac.uk a.m.gimblett@swansea.ac.uk

73

Abigail Cauchi
FIT Lab
Swansea University
csabi@swansea.ac.uk

checking technology (e.g., by exploiting its symmetries), but
human users obviously do not conceptualise a state space of
this size. Rather (we suggest) users do think about interac-
tive systems a bit like FSMs, but only in terms of their mode
space, and the exact number values handled by the calcula-
tor are abstracted away in the user’s mental model—indeed,
such abstraction is much of the purpose of the device.

We propose that many simple (but non-trivial) interactive
systems can be thought of like this, that is as a manageable
space of a few explicit modes combined with a collection
of abstracted data values, and that this captures the struc-
ture users are aware of and can manage, and abstracts away
the structure users ignore details of. There remain many
complex interactive systems beyond the reach of such an
approach, at least as proposed here (but see section 6); we
are particularly concerned at this time with the many de-
vices, from calculators to medical infusion pumps, that we
can handle clearly and rigorously. Such ‘simple’ systems
still have non-trivial interaction issues, and the approach pro-
posed here exposes and makes explicit some of these issues—
and even where it does not resolve them, it provides a frame-
work to support clearer arguments about design choices.

This paper makes the following contributions: we introduce
and define buffer automata, a new formalism for structuring
and thinking about user interfaces; we provide abstract and
concrete examples of buffer automata in use; we show that
buffer automata provide a new perspective on several issues
of interaction design and programming, including modes and
undo, and in particular we describe how to automatically
compute modes within the formalism. It is our hope that
this paper will direct and stimulate further discussion and
exploration of some of the issues raised.

We present a review of potentially alternative and contrast-
ing approaches in Section 5; for a short paper, the back-
ground literature is perhaps best presented after we first em-
phasise and examine the focus of our contribution.

2. BUFFER AUTOMATA

As discussed in Section 1, many interactive systems may
be thought of as a relatively simple abstract mode space to-
gether with various data values which the user may alter.
Thinking of the mode space as a ‘classic’ FSM or automa-
ton, and the data values as being held in buffers where they
are manipulated then leads to the idea of a buffer automaton.

Buffers are data values the system keeps track of, such as
phone number, radio station, CD track, time now, alarm time,
drug infusion rate. Modes are significant states of the sys-
tem, such as on, off, playing, infusing, not infusing, standby.
Among other things, modes dictate which buffers are re-
ceiving user input, and which are exposed as output. Thus,
user actions give rise to input events which are distributed to
buffers according to the current mode, modifying buffer val-
ues and potentially triggering mode changes. (This mecha-
nism, and the exact relationship between buffers and modes,
is explored in Section 2.1.)

In principle a user is generally aware of the current mode(s)
of the system and the available actions to change modes;
conversely, users do not track exact buffer values, but may
know in principle whether they are ‘right,” ‘wrong,” ‘nearly
right,” etc. Users rely on systems to keep track of buffer de-
tails unless actually interacting with a particular buffer. For
example, consider a nurse on a hospital ward with patients
connected to drug infusion pumps, asked “is this patient get-
ting an infusion?”; the nurse knows the answer is yes, be-
cause earlier they put the device into the infusing mode;
when asked “how fast is the patient being infused?” the
nurse will probably check the device. Here ‘infusing’ is a
mode, but ‘infusion rate’ is a buffer.

Another example: a radio can be on or off, and can be tuned
in to FM or MW bands; it has 100 possible volume levels
and 100 possible tuning frequencies; it responds to events
[ON], [OFF], [MW], [FM], [VoLUP], [VOLDN], [TUNUP], [TUNDN]. Mod-
elling this as a 40,000 state FSM (2 x 2 x 100 x 100) cer-
tainly obscures its structure; modelled as a buffer automaton
we have a space of four modes (off/MW, oft/FM, on/MW,
on/FM) and some independent buffers with simple, well un-
derstood behaviour (e.g., for the volume level). Events are
cleanly distributed to the various buffers according to mode
(when off, everything but is ignored, say), and there is
no interaction between the buffers in this highly orthogonal
device. Variants are possible and explored later in the paper.

Tasks on many systems require a pair of activities: set up
one or more buffers (such as the rate of infusion), and make
the system do the action with a buffer value (such as perform
an infusion). Such systems are well suited to modelling as
buffer automata. Of course, any sufficiently complex com-
ponent could model or even implement an entire system—
nothing needs to be partitioned into independent modes and
buffers. Our proposition is that buffer automata can pro-
vide clear descriptions of interactive systems of a particular
class, amenable to particular kinds of analysis: the utility of
the formalism is its exposure of certain HCI issues such as
modes and undo, and as an attempt to model systems closely
in terms of how users think of them.

2.1 Buffers and modes

As described above, a buffer automaton is an FSM-like mode
space accompanied with a set of buffers (whose structure we
define shortly). In fact, while it is possible and may be use-
ful to model the mode space explicitly, we see modes rather
as an emergent implicit feature, arising from how inputs are

74

distributed to buffers—thus, the mode space is to be com-
puted, not specified directly. Let us explore this subtlety.

Consider the radio example above. There are on/off and
MW/FM ‘modes,” combining orthogonally to form a mode
space with 4 states; it is precisely the states of this space
that we refer to when we say mode. On/off and MW/FM
are not themselves modes: like volume and tuning, they are
buffers—data values the user can manipulate—but they are
special buffers (only) in that they introduce mode behaviour:
they influence how input events are interpreted. This inter-
pretation of the word ‘mode’ is well-founded: according to
[6], a mode is a “context that changes the interpretation of
commands”; similarly, [11] says “for any given gesture, the
interface is in a particular mode if the interpretation of that
gesture is constant”. Our notion of focus formally captures
this concept—see Section 2.3.

So on/off and MW/FM are just buffers; they happen to have
very simple structure, and we can easily model them as 2-
state FSMs, but in general this need not be the case: buffers
can have rich structure, and even rich buffers may influence
mode. Suppose the radio also has a button (another
2-state buffer), which is ignored if the volume is O—then the
volume buffer (modelled as a 100-state FSM, perhaps, cor-
responding to a physical slider or knob) also contributes to
the radio’s mode. Every buffer we’ve seen so far is easy to
model as an FSM, but this need not be so (a text entry box is
a good counterexample: it can be modelled as an FSM, but
not naturally), so our definition of buffer, below, is necessar-
ily quite general; ‘rich’ buffers such as text entry boxes can
still influence the system’s mode, but perhaps with a greater
risk of confusion for the user.

2.2 Definition: Buffers

A buffer is essentially an object for some data along with
several functions for manipulating and accessing that object.
In order to support undo (see Section 2.5), we structure the
object as a history rather than a single value, formed from an
initial value and a sequence of modifications (perhaps, but
not necessarily, corresponding to input events); it is easy to
ignore this history if desired, as we shall show by example.

Let FinSeq(X) be the set of finite sequences of elements of
X. Given two sets X and Y, the set of histories over X
and Y, Hx y is the set X x FinSeq(Y"). That is, a history
has an initial value in X, followed by a sequence of values
in Y. Notionally, the Y values modify the initial X value
in some sense, although various interpretations are possible
(including where X = Y and ‘modify’ means ‘replace’).

A buffer is a tuple (H, §, \, ¢), with:

o H: H¢ ; is the buffer’s history, where C' is the buffer’s
contents alphabet, and I is the buffer’s input alphabet.

e §: He ; x I — Hc, g is the buffer’s input function, which
modifies the buffer’s history in response to the buffer re-
ceiving input events.

We argue that there are a small number of ‘off the shelf’
components which can be combined to form all reason-

able input functions. For example: append to the history;
delete the history’s last element; reset by clearing the his-
tory; forget by replacing the initial value with the result
of A\ and then performing a reset. Additionally, functions
like number, date, name, currencyValue, etc, provide con-
sistent ways of handling application values.

e \: He; — C is the buffer’s access function, mapping
the buffer’s history to some value in C|, such as a floating
point number. This might perform a fold over the history,
or perhaps access its last value, etc; again, a small number
of standard functionalities could conceivably cover most
real buffers.

e ¢: C — H¢ s is the buffer’s update function, through
which the application in which the buffer is embedded
may modify its history and thus its value (see Section 2.6).

FSMs can easily be modelled using this mechanism, but
many other structures are possible.

Example: Numerical buffer with direct manipulation.
Our radio’s volume and tuning buffers might be represented
as follows; let C = {n € N |0 <n <99}, = C. Then:
Va,z € C oYy € FinSeq(C):

(5(($, y)7 Z) = (Zvy)

That is, the initial value is simply overwritten with new in-
puts, and the history is never used: whatever number is se-
lected is entered directly, overwriting any previous value.

Example: String buffer with clear and delete. Let C' =
FinSeq({a, b}), the set of finite sequences of a’s and b’s. I =
{a,b, clear,delete}. Let 6: Ho p x I — He g be:

Vz,z € C oy € FinSeq({a,b})

6((z,y),a) = (z,y ~a)

6((z,9),0) = (z,y ~0b)
6((z,y),clear) = (z,())
6((@, (), delete) = (z,())
0((xz,y —~ z),delete) = (z,y)

(Where — is concatenation.) That is, a and b are appended
to the history sequence, whereas clear and delete modify
that sequence. Thus, the buffer’s history consists of some
initial value in C (the empty string, say), followed by a finite
sequence of further values in C. Then, let \: C' x I — C
be the concatenation of the buffer’s history sequence onto
its history initial value. This version of the buffer has no
maximum length.

2.3 Definitions: Buffer automata, focus and modes
A buffer automaton is a tuple (S, L, £, so, 2, F, A, V), with:

e S is a tuple of buffers. Labels € L serve as unique names
of buffers, and the naming L is a bijection from labels to
buffers. The state of the BA is the state of its buffers; sg
is the BA’s initial state.

e X is the BA’s input alphabet, the union of each of its
buffers input alphabets (which need not be disjoint).

75

o F: S — ¥ — P(L) is the BA’s focus function, which,
given the current state of the BA’s buffers, tells us for each
input the names of buffers that should receive that input.
From F we derive our formal notion of mode—see below.

e A is the BA’s derived input function, A: § — ¥ — S,
which distributes inputs to the BA’s various buffers in ac-
cordance with F. The definition is omitted here, but is
simple: an input is distributed to every buffer which is
currently in focus for that input.

e V is the BA’s visibility function, V: S — P(L), and de-
termines the names of the visible buffers (and thus what is
visible to the user may be computed from their values).

As discussed in Section 2.1, we see mode as a context de-
termining the interpretation of user inputs; assuming (rea-
sonably, for any sane device) that a given buffer’s interpre-
tation of its input is always consistent, mode is thus defined
solely by the distribution of inputs to buffers—which we can
compute trivially given the focus function F. The current
mode of a BA is essentially a lookup table telling us, for
each buffer (identified by name), which inputs it can receive
right now. Thus, we have mode: S — L — P(X).

2.3.1 Radio example
Let our radio have the following four buffers:

e OnOff, an FSM with states {on, off}, actions {On, Off }.
e Band, an FSM with states {mw, fm}, actions {MW, FM}.

o Volume, with C = {0,...,99}, I = {v4,v,}, volume
values modified with up/down actions, under some sensi-
ble interpretation of the buffer’s history (e.g. perhaps with
wraparound, depending on the physical mechanism used).

o Tuning, with C' = {0,...,99}, I = {#1,1, } (similarly).

Sensible initial BA values might be (off, mw, 0, 50), say. ¥
is {On, Off , MW, FM, v+, v, t4,1,}. F is simple: all events
go their respective buffers, unless OnOff’s value is off, when
On goes to OnOff and all other events are ignored.

Unlike our earlier conception of the radio, this device actu-
ally has only 2 modes: on and off. Band has no influence
on interpretation of inputs: in effect, we have modelled an
old style tuner with a single tuning control for both bands.
Instead, let’s replace Tuning with separate tuning values for
MW/FM, better reflecting the operation of a modern radio:

MWTune with C ={0,...,99}, 1 = {ty,t,}
FMTune with C ={0,...,99},1 = {t,1,}

Note that MWTune and FMTune have identical input alpha-
bets; we modify F so {r4,7,} events are delivered to the
appropriate buffer according to the value of Band, which is
thus now mode-relevant. We still don’t have 4 modes how-
ever, only 3: off, on/MW, and on/FM. Perhaps that’s fine—
or perhaps it’s possible to turn the volume and tuning knobs
while the device is off; a variety of approaches are possi-
ble. Even with this simple example we see that thinking
concretely about focus and modes brings to light some inter-
esting design questions we might otherwise have ignored.

2.4 Mode space discovery

A buffer automaton’s mode space may be discovered using
model discovery [7] to dynamically explore the state space
of all mode-relevant buffers, producing a graph whose nodes
are (BA state, focus) pairs; the mode space is then obtained
by collapsing together states with identical focus, produc-
ing a graph whose nodes are distinct focus values (modes)
and whose edges are events which change the mode. Note
that the set of mode-relevant buffers must be specified ex-
plicitly, otherwise a full exploration of the BA’s complete
state space would be required just to learn which buffers are
mode-relevant.

Alternatively, given a suitable representation of F, the mode
space can in principle be computed statically. However, as
the application may in general modify any buffer freely (see
Section 2.6), the statically computed mode space for a given
system may be inaccurate, and dynamic discovery is proba-
bly safer; at the least, comparing static and dynamic mode
spaces tells us something about the BA and application’s in-
teraction with each other.

2.5 Undo and history

Common wisdom is that user interfaces should support undo
[12]; but, actually, it is more important that they support the
user achieving their goals in the face of error. Undo is just
one way of recovering from (recognised) error, but often it
is not the best strategy. In particular, we argue, undo is of-
ten not the right strategy—or not even meaningful—when
dealing with mode-changing events. If a nurse accidentally
starts an infusion before they intend to, and they notice the
error, they wouldn’t expect to hit to fix the problem:
they’d hit [SToP], triggering another mode change—and that
would just be the first step in fixing the error. prob-
ably couldn’t restore the device to its previous state, due to
the physical effect of starting the infusion. Conversely, if
the nurse makes a keying error while entering the desired in-
fusion rate, is a perfectly reasonable approach. This
points to another distinction between mode-relevant and non-
mode-relevant buffers: the latter can in general use their his-
tories to support undo, whereas the former need not (and of-
ten should not); in some cases a mode change represents an
action which can’t easily be undone: that is useful informa-
tion for designers. This is a rather sweeping generalisation
of course, and there will be exceptions; for example, in many
simple buffers (such as in our radio), all events have inverses
so an explicit shared between buffers is pointless.

2.6 Buffer automata in context

Conceptually, we see buffer automata as an interpretive and
structure-imparting layer between the Ul/presentation of an
interactive device and its underlying application; after each
buffer in focus performs its transition, control is passed to
the application to perform access then update operations.
The BA is then ready for its next input event. How exactly
this is structured is left generic in order to accommodate a
wide range of approaches. A typical setting is illustrated in
Figure 1. User input is received from the UI and passed to
the BA as members of X, where it is distributed to various
buffers’ input functions § as dictated by F; the application

76

User level

A feedback

user actions :

Figure 1. Buffer automata in context. User actions translate to BA
inputs in X, distributed by F to each buffer’s ¢ input function; the
application reads buffer values via \s and updates via ¢s if necessary;
values for feedback are projected by V, filtered according to .

then has the opportunity to read and update buffer values
via each buffer’s A and ¢ functions (as well as dealing with
other events, such as non-UI I/O, alarms, etc); buffer values
are then exposed, subject to V), as views in the Ul using some
function V': He ; — V from the buffer’s state to the view
domain V. How to handle the display of buffer contents,
and the role of the function VV—the converse of F—and its
relationship with modes remains future work to be explored;
we note that ‘visibility’ might in fact involve non-graphical
elements such as sound or vibration.

3. EXAMPLE: PULSE MUSIC SYNTHESIZER

The Waldorf Pulse is a 1990s-era electronic musical instru-
ment, controlled remotely for performance via the MIDI pro-
tocol, but which may also be programmed via a front-panel
interface consisting of 6 knobs, 4 buttons, a 3-character dis-
play and 7 LEDs (see Figure 2). There are 69 parameters that
control the sound being produced by the instrument (e.g.,
‘Volume,” ‘Arpeggiator Tempo’), where such a collection of
parameters is called a patch; the Pulse has a memory of 99
patch slots. Patch parameters are edited via the matrix ar-
rangement on the right of the panel: the 69 parameters are
arranged in a 66 matrix (with some doubling-up—see be-
low), and each of the 6 knobs is dedicated to one column of
this matrix. Only one row of the matrix is active at once,
as indicated by a red LED to its left and advanced by press-
ing the large oval button. Finally, the blue button
under toggles between parameters where they are dou-
bled up (the red LED flashes when ‘shifted’). For example,
if the second LED down is flashing, and we rotate the third
knob from the left, we modify the ‘OSC2 Keytrack’ (what-
ever that means) parameter.

We have simulated the Pulse’s patch editing interface using
a buffer automaton in Haskell (connected to a web GUI in
JavaScript/HTMLS5 Canvas). Every patch parameter has an
associated buffer, and each buffer responds to the events 1,
and J,, for some column number 1 < n < 6. There are
also simple buffers for four values associated with modes—
see below. We only modelled a single patch, and have not
considered the Pulse’s memory and related functionality.

MOD SOURCES DESTINATIONS

g® T

® © @ @ @ @

Semitons / Tone sup.,fn:ml Samitons | Tums vm.,.’rw\ Semitons Tomm Shaps m
1F0) Spood /Shope 1RO Spo /Dy | Sy / ey el] 3 /e

[ooy s tioss Vo Tigge
PdMed Sosms Poremenn /Mode [see o Anoen Destination | MoD |
[/ enpo/ock wede JELTH rodbod e 618
[[Confi/ Reprok 1 Som/VoloSers__ G Mod/Sown__ Rsonancs m\vﬂm/wh;m Fooring

Figure 2. Screenshot from running simulation of Waldorf Pulse control panel. Patch control knobs at bottom right. (Images reproduced from

Waldorf Pulse user manual with permission.)

row—8&C
shift row row oW
on shift
C shift ﬂ}, wn wn
hift @ O i oR i] Q0
o R ?F offon shm 5h|fl shift
> .
ro / row
W 5. 0"0" off Qifoﬂ?f)wshlft oy ot on shift shift
on off hds o 3 0! whn,
shiftrow Off O%g -3 .up% QPO
or2ff oin row
i = OOV OWioWgy
Shifton) row shift_gnift ow
@ shift | on
row shift
. row

Figure 3. Mode space of Pulse buffer automaton; row and shift form
a regular structure of two concentric hexagons, with off in the centre;
Mod Select introduces six more modes to the right of the hexagons. Note
that this graph is nondeterministic (multiple row edges at top-right).

Turning a knob should obviously not modify all 6 (or more)
parameters in that knob’s column. The Pulse’s interface is
thus very modeful: how turning a given knob is interpreted
depends (at least) on which row of the matrix is active, and
(in some cases) whether shift is engaged. The mode-relevant
buffers on the Pulse are ‘OnOff,;” ‘Row, ‘Shift’ and ‘Mod
Select’ (on row 4, knob 3 controls which ‘sub-row’ knobs 4,
5, 6 are focussed on)—all of which can be modelled as small
FSMs.

We used mode space discovery to compute the Pulse BA’s
mode space (see Figure 3), which is seen to be quite regular.
Our Pulse’s focus function is hand-written; we plan to de-
vise a domain specific language (DSL) for describing focus,
from which the mode space may be computed directly via
abstract interpretation, rather than dynamically by discov-
ery; the dynamic version may however remain useful as a
correctness check for comparison against the statically com-
puted version.

4. EXAMPLE: ALARIS INFUSION PUMP

The Cardinal Health Alaris GP volumetric infusion pump [2]
is an interactive medical device with 14 buttons, designed to
provide patients with controlled delivery of drugs. We mod-
elled the device thoroughly using an interactive Mathemat-
ica program with a realistic graphical animation that allows
user testing to confirm the program is an accurate interac-
tion simulation. The simulation has a transition graph model
with 4.8 x 10'® states; such a model is unwieldy and com-
putationally costly to analyse.

77

clear

Figure 4. Alaris infusion pump mode space computed from the focus
function of our BA model. Mode names are implicit, and have been
chosen to reflect each mode’s role. Some actions (Opt1, etc) correspond
to soft buttons; a model using displayed names (e.g., ‘VTBI’) would
have a different, possibly more meaningful, mode structure.

We recently recast this model as a buffer automaton, with 10
buffers: 3 are for numbers in the range 0-999; 6 are inter-
related mode-relevant switches: on/off, running/not running,
infusing/not infusing, VTBI Mode on/off, clear mode on/off,
and alarm silent, beeping or muted. This multiplies up to
25 x 3 = 96, but (for instance) when the GP is off, it cannot
be infusing or alarming, so in fact only 22 combinations are
possible, which may be further reduced to just 6 modes with
distinct input behaviour; mode space discovery finds exactly
these modes—see Figure 4.

5. RELATED WORK

A large number of formalisms take an automata-based ap-
proach to modelling systems, though most are more gen-
eral than buffer automata and do not emphasise interaction
and HCI concerns as we aim to. A key example is Stat-
echarts [8, 9] (see also the closely-related UML state dia-
grams), an automata-based visual formalism with a variety
of features enabling the representation of many complex sys-
tems using structured diagrams with nesting, composition,
abstraction, guarded broadcast messaging and history—all
of which yield a rich semantics. In contrast, buffer automata
try to be a simple formalism that bridges certain user and de-
vice perspectives as cleanly as possible, by refusing to rep-
resent some controversial features. Very similar comments
might be made for very many related formalisms (Petri nets,
CSP, ATNS . ..): each provides a well-defined generalisation
that makes the formalism appropriate for some domain (pro-

cess control, say) but none specifically address human fac-
tors or HCI concerns, as is the intention for buffer automata
as introduced here. Modechart [10], for example, is a spec-
ification language for real-time systems built upon a real-
time logic (specifically, RTL). Like BAs, modecharts ex-
pose mode explicitly, and aim to aid reasoning about mode-
rich systems; Modechart is quite low-level, however, and
strongly concerned with timing issues.

Model checking [4] is a well-established technique for au-
tomatically verifying a state space model against a logical
specification. We have recently seen how this can be applied
to interactive systems [1] but this general approach still suf-
fers from the state explosion problem. The BA approach to
separating buffers from modes may be compared with the
technique of data abstraction in model checking. Composi-
tional model checking [3] tries to overcome state explosion
by breaking up the model into smaller components; simi-
larly a working theory of hierarchy for buffer automata (see
Section 6) would be useful.

6. CONCLUSION

In this paper we have introduced buffer automata, a formal-
ism for describing interactive systems which explicitly sep-
arates data entry interactions from mode-changing interac-
tions; we have described how modes emerge from the inter-
action of buffers via the notion of focus, and thus how to
compute a BA’s mode space. The formalism introduces a
new perspective on the role of undo, and when it is appropri-
ate or not. Imagined and real-world examples demonstrate
that BAs are a viable tool for modelling devices of a certain
kind in a straightforward and comprehensible manner.

Designers make decisions about UI behaviour, and a BA
makes some important decisions explicit. In a conventional
program, the UI’s structure doesn’t relate directly to the user
experience; there may be an event loop and UI code sensible
to a programmer, but improving the code doesn’t necessarily
improve the UI or engage with HCI concerns. In contrast,
a BA has explicit structures such as the § function which
are supposed to be simple. We would argue that a program-
mer making some § code simpler improves the user interface
design; conversely, programming a Turing Machine inside
a ¢ (which is possible) defeats the object of clarity for the
user. By extension, mode-relevant buffers should probably
be small and FSM-like to keep the mode space comprehen-
sible.

Future work on buffer automata must explore a number of
open issues. The relationship we describe between undo,
modes and buffers is convincing but none of the examples
in this paper use undo; they are based on real devices, but
we should model some other devices which offer undo and
check our hypotheses there. Currently, buffer automata have
no hierarchical structure; thus, we can’t build complex UI
elements from simpler ones (as buffer automata), or, realis-
tically, re-use BAs between contexts. One interesting possi-
ble line of enquiry here involves positioning BAs as Control
components within PAC [5] triads. Similarly, in our current
arrangement buffers cannot modify each others’ contents or

78

state except via the (analytically opaque) application layer; a
working theory of hierarchical buffer automata could possi-
bly overcome this—though we also argue that this is often in
fact a desirable feature. Timeouts and other external events
could warrant similar treatment. As mentioned in Section
3, we plan for a DSL describing focus and allowing mode
space to be computed statically rather than discovered dy-
namically. Finally, visibility/output of buffer contents re-
mains a relatively unexplored issue, but clearly an important
one.

Source code for our BA simulations is available from the
authors.

6.1 Acknowledgements

We are grateful to Michael Harrison and our reviewers for
many helpful comments; we were funded by EPSRC Grants
EP/F020031/1 and EP/G059063/1.

7. REFERENCES
1. J. Campos and M. Harrison. Interaction engineering
using the IVY tool. In Proceedings of the 1st ACM
SIGCHI symposium on Engineering interactive
computing systems, 2009.

2. Cardinal Health Inc. Alaris GP volumetric pump:
directions for use. Technical report, Cardinal Health,
1180 Rolle, Switzerland, 2006.

3. E. Clarke, D. Long, and K. McMillan. Compositional
model checking. In Proceedings of the 4th Annual
Symposium on Logic in computer science, 1989.

4. E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. MIT Press, 1999.

5. J. Coutaz. PAC, an object oriented model for dialog
design. INTERACT’87: Proceedings of the 2nd IFIP
Conference on Human-Computer Interaction, 1987.

6. A. Dix, J. Finlay, G. D. Abowd, and R. Beale.
Human-Computer Interaction. Pearson, 3rd edition,
2004.

7. A. Gimblett and H. Thimbleby. User interface model
discovery: towards a generic approach. In EICS ’10:
Proceedings of the 2nd ACM SIGCHI symposium on
Engineering interactive computing systems, 2010.

8. D. Harel. Statecharts: a visual formalism for complex
systems. Science of Computer Programming, 8(3),
1987.

9. D. Harel and A. Naamad. The statemate semantics of
statecharts. ACM Trans. Softw. Eng. Methodol., 5, 1996.

F. Jahanian and A. Mok. Modechart: A specification
language for real-time systems. IEEE Transactions on
Software Engineering, 20, 1994.

10.

11. J. Raskin. The Humane Interface. Addison Wesley,
2000.
12. B. Shneiderman and C. Plaisant. Designing the User

Interface: Strategies for Effective Human-Computer
Interaction. Pearson, 5th edition, 2009.

	1 Introduction
	2 Buffer Automata
	2.1 Buffers and modes
	2.2 Definition: Buffers
	2.3 Definitions: Buffer automata, focus and modes
	2.3.1 Radio example

	2.4 Mode space discovery
	2.5 Undo and history
	2.6 Buffer automata in context

	3 Example: Pulse music synthesizer
	4 Example: Alaris infusion pump
	5 Related Work
	6 Conclusion
	6.1 Acknowledgements

	7 REFERENCES

