
Daniel Aarno

TRITA-NA-E04006

Autonomous Path Planning and Real-Time Control
– a Solution to the Narrow Passage Problem

for Path Planners and an Evaluation of Real-Time
Linux Derivatives for Use in Robotic Control

NADA

Numerisk analys och datalogi Department of Numerical Analysis
KTH and Computer Science
100 44 Stockholm Royal Institute of Technology

SE-100 44 Stockholm, Sweden

Daniel Aarno

TRITA-NA-E04006

Master’s Thesis in Computer Science (20 credits)
at the School of Electrical Engineering,
Royal Institute of Technology year 2004

Supervisor at Nada was Henrik Christensen
Examiner was Henrik Christensen

Autonomous Path Planning and Real-Time Control
– a Solution to the Narrow Passage Problem

for Path Planners and an Evaluation of Real-Time
Linux Derivatives for Use in Robotic Control

Abstract

This thesis consists of two parts. The first part is concerned with the narrow passage
problem of path planners and the second part is concerned with the evaluation of
real-time Linux derivatives in the context of robotic control.

The first part presents a new variation of the probabilistic roadmap method
(PRM). The new planner is called artificial potential biased PRM (APBPRM) and
uses an artificial potential function to bias the distribution of nodes in order to in-
crease the node density in difficult regions of the configuration space. Further the
planner presented in this thesis uses a lazy evaluation scheme that makes it suitable
for single query path planning problems.

The second part presents a study and comparison of three real-time Linux deriva-
tives, RT-Linux, RTAI and KURT. The operating systems are evaluated for their
suitability as a robotic control system in an academic environment. The evaluation
considers real-time performance (scheduling jitter), ease of installation and use, and
the richness of the associated API. Finally some preliminary results of a control
system implemented on RTAI and used to control a Puma 560 robotic manipulator
are presented.

Autonom vägplanering och realtidsstyrning

En lösning till problemet med trånga passager för vägplanerare

och en studie av realtidsoperativsystem, som bygger på Linux, för

realtidsstyrning

Sammanfattning

Den första delen behandlar de problem som uppstår då en automatisk vägplane-
rare (eng. path planner) ska ta sig igenom trånga passager. Den andra delen utvär-
derar lämpligheten för styrning av robotar hos realtidsoperativsystem som bygger
på Linux.

Den första delen handlar om en ny variant av den sk probabilistic roadmap met-
hod (PRM), en vanlig metod som används för automatisk vägplannering. Denna
nya variant kallas för artificial potential biased PRM (APBPRM) och använder en
artificiell potentialfunktion för att vikta distributionen av noder så att nodtätheten
ökar i svåra områden av konfigurationsrymden. Planeraren som beskrivs i den här
rapporten använder en precis-i-tid (eng. just in time, lazy) metod för att kontrollera
kollisioner längs vägarna, vilket gör den lämplig för enstaka vägplaneringsproblem,
dvs problem där omgivningen ofta ändras.

Den andra delen är en studie av, och jämförelse mellan tre realtidsoperativsy-
stem som bygger på Linux, RT-Linux, RTAI och KURT. Operativsystemen utvär-
deras för deras lämplighet att användas för att styra robotar i en universitetsmiljö.
Utvärderingen inehåller aspekter så som realtidsprestanda (schemaläggningsfluktu-
ationer), installations- och användarvänlighet, samt innehållet i medföljande API.
Slutligen ges några preliminära resultat för ett reglersystem implementerat under
RTAI. Reglersystemet används för att styra en Puma 560 robotarm.

Foreword

This thesis is part of a M. Sc. project in computer science at the school of Electrical
Engineering, Royal Institute of Technology. The M. Sc. project was carried out at
the Center for Autonomous Systems (CAS) during 2002-2003. CAS is a research
center that is a part of NADA at the Royal Institute of Technology (KTH) in Stock-
holm, Sweden. The center does research in (semi-) autonomous systems including
mobile robot systems for manufacturing and domestic applications.

The original goal of this project was to evaluate real-time Linux derivatives
for use in robotic control and investigate the possibility of using the reinforcement
learning (RL) paradigm to perform path planning. While doing research on path
planning I was intrigued by the apparent success of the Lazy PRM planner described
in the excellent work done by Robert Bohlin [1], which I can recommend anyone
interested in the subject to read. Also I realized that PRM planners, such as that
described by Bohlin, would experience difficulties if the configuration space contained
narrow passages. Feeling that helping to solve the narrow passage problem of PRM
planners would be a better contribution to the field of robotics than a new way of
doing path planning, I modified the topic of the project to include a study of the
narrow passage problem with PRM planners. Because of the time limits associated
with this project I had to abandon the investigation of using the RL paradigm to
do path planning.

i

ii

Contents

1 Introduction and Motivation 1

1.1 Robot Path Planning . 1
1.1.1 Planner Requirements . 2

1.2 Real-Time Control . 2
1.3 Outline of This Thesis . 3

I Artificial Potential Biased Probabilistic Roadmap Method

- APBPRM 5

2 Introduction to Robot Path Planning 7

2.1 The Path Planning Problem . 7
2.1.1 Mathematical Description of the Path Planning Problem 8

2.2 Robot Path Planning . 12
2.3 Roadmap Planners . 12

2.3.1 The Probabilistic Roadmap Method - PRM 12
2.3.2 Enhancing the Roadmap . 13
2.3.3 The Narrow Passage Problem with PRM 13

2.4 Artificial Potential Functions . 15
2.4.1 Artificial Potential Fields for Path Planning 16
2.4.2 The Narrow Passage Problem with Artificial Potential Fields 17

3 Artificial Potential Biased PRM 18

3.1 Theory Behind APBPRM . 18
3.1.1 Probabilistic Completeness . 19

3.2 Benefits of APBPRM . 20
3.2.1 Other Schemes for Dealing with the Narrow Passage Problem 21
3.2.2 Computational Benefits . 22

3.3 Drawbacks of APBPRM . 23

4 Implementation 25

5 Experimental Evaluation 28

5.1 Results for a Point Shaped Agent . 28
5.2 Preliminary Results for a 5 dof Planar Link Agent 31
5.3 Summary and Analysis . 32

6 Results and Conclusions - APBPRM 33

6.1 Future Work . 34

iii

II Real-Time Linux 35

7 Introduction to Real-Time Operating Systems 37

7.1 Real-Time Operating System Evaluation . 37
7.2 Real-Time Operating Systems . 38
7.3 Real-Time Issues . 38

7.3.1 Time-Sharing vs Real-Time . 39
7.3.2 More Real-Time Issues . 39

7.4 Scheduling Jitter . 40
7.5 Usability . 41

8 The Different Operating Systems 43

8.1 RT-Linux . 43
8.2 RTAI . 46
8.3 KURT . 49
8.4 Summary . 51

9 Implementation 54

9.1 Measuring Scheduling Jitter . 54
9.2 Evaluating the Usability . 58

9.2.1 RT-Linux . 58
9.2.2 RTAI . 60
9.2.3 KURT . 62

9.3 Summary . 63
9.4 Choosing an OS and Implementing the Control System 65

9.4.1 Control System Overview . 65

10 Results and Conclusions - RTOS 69

References I

III Appendix V

A Code listings VII

A.1 RT-Linux implementation of algorithm 2 . VII
A.2 RTAI implementation of algorithm 2 . IX

B System Specification XII

C Detailed Simulation Results XIII

Index XXII

iv

List of Figures

2.1 A simple 2 dof manipulator. 9
2.2 Left image shows the configuration space of the manipulator in figure 2.1.

Right image shows the workspace of the manipulator in figure 2.1 10
2.3 Two different configurations that place FT (the gripper) in the same position

with the same orientation relative FW . 10
2.4 Example of a PRM planning task . 14

3.1 A point shaped agent planning a path from S to T in an environment con-
taining a narrow passage. APBPRM yields the solid line path and standard
PRM yields the dashed line path. 21

3.2 A situation where the use of dilated free space would fail because of thin
obstacles. The agent must move from S to T and no expansion of Cfree is
possible. 23

5.1 The different worlds used to evaluate the performance of APBPRM. 29
5.2 Two tests with a 5 dof planar arm. The start and goal locations are shown

(solid lines) as well as some intermediate positions. 31

8.1 Architecture of the standard Linux kernel. 43
8.2 Architecture of the RT-Linux kernel. 45
8.3 Architecture of the RTAI/HAL Linux kernel. 46
8.4 Architecture of the KURT Linux kernel. 49

9.1 Scheduling jitter histogram for RT-Linux. 56
9.2 Scheduling jitter histogram for RTAI. 57
9.3 Control system block diagram. 66
9.4 Internals of pumaCtrl.o. 67

C.1 The different worlds used to evaluate the performance of APBPRM. XIII
C.2 Gray scale hight map of the partial solution to Laplace’s equation (φ100) for

the worlds in figure C.1. Brighter color indicates higher potential. XIV
C.3 Distribution density of 5000 nodes for APBPRM. XV
C.4 Distribution density of 5000 nodes for uniformly sampled PRM. XVI
C.5 Example paths generated by the APBPRM planner. XVII

v

vi

Chapter 1

Introduction and Motivation

Robotic appliances are gradually becoming a part of our everyday lives. It can be
envisaged that, besides providing services such as assistance to elderly and disabled
people, there will come a time when robotic appliances are a general utility to
humans both at the workplace and in their homes. If these systems are to operate
in a complex and unpredictable environment, such as a domestic or office one, it
is crucial that they can perform motion planning in these environments. In order
to perform motion planning it is important to have a robust an reliable underlying
control system as well as a capable path planner. This project includes a study
of real-time Linux derivatives for use as a manipulator control system, as well as
the construction of a path planner targeted at working in complex environments
containing narrow passages.

1.1 Robot Path Planning

Autonomous path planning addresses the problem of finding collision-free paths for
moving objects (robots) among obstacles [1]. The path planning problem has been
proved to be a hard one and although complete algorithms exists their high com-
plexity precludes any useful applications [2]. This result has led to the development
of heuristic algorithms.

Probabilistic roadmap methods1 (PRMs) have been successfully used to solve
difficult path planning problems, but their efficiency is disappointing when the free
space contains narrow passages [3]. This thesis presents a new sampling scheme, that
aims to increase the probability of finding paths through narrow passages. This new
scheme could be useful for planning in both industrial environments and for service
robots operating in a domestic environment.

1See section 2.3.1

1

1.1.1 Planner Requirements

The time required for planning should be related to the difficulty of the planning
task, i.e. a simple path in an uncluttered environment should be found quickly while
a difficult path in an more complicated environment may require more time [1].

Likewise, the planning time should be related to the desired quality of the solu-
tion. The quality of the solution is difficult to quantify (see [1] for further discussion),
but in general short paths in configuration space are preferred.

There is an obvious trade-off between planning time and solution quality, and
ideally the planner should be easily tuned to a “goodness” measure allowing it to
function in different situations where the planning requirements are different. Con-
sider a welding robot that will perform the same operation over and over again for
say a year. It is clear that the quality of the solution is the most important thing
here since the same solution will be repeated many times. However, if the task is for
a robotic arm to help a disabled person pick up an object in a changing environment
the planning time is most important. This is because it is not necessary to find the
best solution as long as the problem is solved the planner has performed well.

1.2 Real-Time Control

Control of a robot manipulator requires real-time capabilities of the underlying op-
erating system to ensure adequate control performance in terms of safety and trajec-
tory tracking. This is typically achieved using proprietary operating systems such
as QNX, OS9 or VxWorks. A disadvantage of such operating systems is that the
underlying code in general is not publicly distributed which is a significant obstacle
for academic research. Consequently, it is of interest to determine if open-source2

operating systems available under open-source licenses, such as GPL or LGPL, can
be used for the control of a manipulator.

This project contains a study of the characteristics of real-time Linux derivatives
for control of a robot manipulator. The evaluation of potential systems considers
real-time performance, ease of installation and use, and the richness of the associated
API.

1.3 Outline of This Thesis

This thesis consists of two parts, that can be read independently. The first part
deals with the narrow passage problem of some path planners (PRMs in particular)
and the second part deals with the evaluation of real-time Linux derivatives for the
purpose of manipulator control.

Chapter 2 defines the path planning problem and introduces two well known
heuristic methods, the probabilistic roadmap method (PRM) (section 2.3), and a
method that uses gradient descent on artificial potential functions (section 2.4).

2Open Source Initiative (OSI) http://www.opensource.org

2

Chapter 3 introduces a new probabilistic roadmap method, using a biased
sampling scheme to deal with the narrow passage problem.

Chapters 4 and 5 deal with the implementation and evaluation of the planner
described in chapter 3.

Chapter 6 provides a summary of results and conclusions for the first part of
this thesis as well as some suggestions for future work.

Chapter 7 describes the fundamental differences between real-time operating
systems and “normal” time-sharing operating systems (such as UNIX and Linux).
Further it discusses methods for evaluating a real-time operating system.

Chapter 8 describes the architectures of the three operating systems that are
evaluated (RT-Linux, RTAI and KURT).

Chapter 9 describes the implementation of the tests performed as well as a
discussion about the suitability of the three different real-time Linux derivatives.
Finally a brief description of the control system used to control a PUMA 560 robotic
arm is given.

Chapter 10 provides a summary of results and conclusions for the second part
of this thesis.

3

4

Part I

Artificial Potential Biased Probabilistic

Roadmap Method - APBPRM

5

6

Chapter 2

Introduction to Robot Path Planning

Probabilistic roadmap methods (PRMs) (section 2.3.1) have been successfully used
to solve difficult path planning problems, but their efficiency is disappointing when
the free space contains narrow passages [3]. This thesis presents a new sampling
scheme, that aim to increase the probability of finding paths through narrow pas-
sages. A biased sampling scheme is used to increase the distribution of nodes (mile-
stones) in narrow regions of the free space. A partial computation of the artificial
potential field (section 2.4) is used to bias the distribution of milestones.

2.1 The Path Planning Problem

This section will introduce the reader to the path planning problem and define some
basic concepts, for a more in depth introduction to path planning see [4].

Consider a robot that is some kind of versatile mechanical device - for example,
a wheeled or legged vehicle, a robotic (manipulator) arm or a robotic hand. This
robot operates in (a subset of) the physical world. The subset of the physical world
that some point on the robot can reach is known as the robot’s workspace. This
workspace may be populated by physical objects, such as chairs or automobiles, and
is subject to the laws of physics. The robot can perform tasks by executing motions
in the workspace and (possibly) interact with other objects.

Next consider a robot platform that can move freely in a closed space, e.g. a
room, and is equipped with a manipulator (e.g. a robotic arm) that has the ability
to pick up and release objects. One use for this robot could be a retrieve/deliver
task, i.e. the robot is given a command to go somewhere, pickup an object and
deliver it somewhere else. To accomplish this task the robot has to execute the
following subtasks:

• Move from the initial location a to a location b where the object o is reachable
by the manipulator’s grasping device. While moving from a to b the robot
may not collide with any obstacles present in the room.

7

• Once location b is reached the robot must change the configuration of the
manipulator in order to place the gripper in suitable position for grasping o.
While the manipulator is moving to the correct configuration no part of the
manipulator must collide with any obstacles in the room.

• Now the object o must be grasped and held by the manipulator.

• Next the robot must move from b to a position c in the vicinity of where o
should be delivered. This must also occur without hitting any obstacles.

• Now the manipulator must move to a new configuration in order to place o at
c and finally the gripper can release o.

To accomplish the subtasks mentioned above the robot has to be able to, among
other things, plan collision free paths for both the mobile platform and the manip-
ulator in order to position the grasping device. Constructing such paths is the job
of a path planner. Throughout the rest of this thesis it is assumed that the world
accessible to the robot is completely known, thus greatly simplifying the problem of
planning a path in a real environment (i.e. the world).

2.1.1 Mathematical Description of the Path Planning Problem

Let A denote an arbitrary robot, called an agent , consisting of one or more rigid
bodies resulting in N degrees of freedom (dof) with a frame (coordinate-system) FT

attached to some specific point of A. The frame FT , known as the tool-frame, is
a local coordinate-system and it is fixed with respect to some point of A. Denote
the workspace of A by W ⊂ R

3, A is then said to operate in W . Further, attach to
W a coordinate-system, or frame, FW known as the world frame. The frame FW is
considered to be a fixed global reference frame.

One way of representing a configuration of A is by specifying a closed and
bounded region Ω ⊂ W that contains A. Another way of representing a configura-
tion of an agent with N dof is by assigning a scalar value to each dof (for instance
the angle of a joint), resulting in a point q ∈ R

N . The subset of the N -fold product
space R

N for which all kinematic (and other) constraints on the agent are met is
called the configuration space of the agent [1].

Examine the simple manipulator in figure 2.1, it has two dof, the direction and
the length of the manipulator. A specific configuration of the manipulator can be
described in W by a closed and bounded region Ω ⊂ W that contains the manip-
ulator, i.e. the image of the manipulator in W . An other way of representing a
configuration of the manipulator is as a point qc in the manipulators configuration
space, or C-space. The configuration space C and workspace W of the manipulator
in figure 2.1 are shown in figure 2.2.

If the geometry of the rigid bodies that make up A is known it is usually quite
easy to calculate the image of A in W given a point qc ∈ C, this is denoted by
qc

y Ω ⊂ W . A mapping from an image Ω ∈ W to a point in C is usually much
more cumbersome. Thus from here on the configuration of A is considered to be

8

θ
l

FW
F T

Figure 2.1. A simple 2 dof manipulator.

1

FW

W

The world

l

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

0

l

θπ

l 0

C

Figure 2.2. Left image shows the configuration space of the manipulator in figure
2.1. Right image shows the workspace of the manipulator in figure 2.1

9

T

W

W

TF

FW

W

F

F

Figure 2.3. Two different configurations that place FT (the gripper) in the same
position with the same orientation relative FW .

represented by a point in C. From here on it is assumed that a goal configuration
of A is given by the location and orientation of FT relative FW , ignoring the actual
configuration of the rigid bodies that make up A. Why this assumption is valid will
be described later.

For every point qc ∈ C there exists a unique mapping qc → qw ∈ R
6 that

gives the location and orientation of FT relative to FW . This mapping is called the
forward-kinematics (FK) of A and there exists a unique solution for all points in C
for any physical agent. The inverse mapping qw → qc ∈ C is called the inverse-
kinematics (IK) and is in general not trivial. In general, unique solutions to the IK
mapping do not exist and the solutions may give rise to singularities. From here on
it is assumed that the FK of A is known and the IK is not.

Consider the manipulator in figure 2.3 and note that the gripper is positioned
in the same way in both the left and right figures. If the manipulator’s task was
to pick up an object located at the origin of the coordinate-system denoted by FT

both configurations would be acceptable. This is often the case in path planning, a
frame FT is attached to some specific point on the agent and the task of the path
planner is to put FT at a specific location and in a specific orientation relative to
the a fixed frame FW in the world. Figure 2.3 shows the relation between FT and
FW . Throughout this thesis a goal configuration in W , denoted qw

goal, is a vector
specifying the position and orientation of FT relative to FW , thus dim(qw

goal) ≤ 6.
For an agent consisting of a single rigid body a configuration qw in W completely
specifies the closed and bounded region occupied by the agent in the workspace W .

Let Wfree ⊂ W denote the subset of W in which the agent may place a part of
its body, i.e. the part of W not occupied by obstacles. The task of the path planner
is to find a feasible and unobstructed path in C such that agent moves from a given

10

configuration qc
start in C to a goal configuration qc

goal → qw
goal ∈ W . With the

definition of configuration space given above the whole of C may not be connected.
Since the agent can only move between points in C that are connected the agent is
limited to the subset Ccon ⊂ C that is the connected component containing qc

start

(see [5] for a definition of connected and connected component). Finally let Cfree

be the subset of Ccon that maps all of its interior to Wfree, that is Cfree ⊂ Ccon and
qi y Ωi ⊂Wfree for all qi ∈ Cfree.

Thus using the notation in this section the path planning problem is defined as
follows:

Definition: The path planning problem is to connect, by a continuous path, a
point qc

start ∈ Cfree to any point qc
goal ∈ Cfree that satisfies the condition:

qc
goal → qw

goal ∈Wfree under the constraints of the FK of A.

2.2 Robot Path Planning

Several methods exists that can be used for automated path planning. The rest of
this chapter describes two methods that have been successfully used to solve difficult
path planning problems. The probabilistic roadmap method and gradient descent on
an artificial potential function. Both methods have been successful in solving path
planning problems and are directly related to the theory behind the biased sampling
scheme presented in this thesis.

2.3 Roadmap Planners

Because the complexity of the path planning problem grows rapidly with the dimen-
sionality of the configuration space, complete methods rapidly becomes useless in
practice [2]. A set of planners, usually referred to as roadmap planners [1, 3, 6, 7, 8],
overcomes this problem by distributing a set of nodes (milestones) in Ccon and then
connect them with the help of a simple local planner to form a roadmap (graph) in
Ccon. The planner then searches this roadmap for feasible paths from qc

start to qc
goal.

2.3.1 The Probabilistic Roadmap Method - PRM

The probabilistic roadmap method (PRM) begins by randomly distributing a set of
nodes, Q = {q1 , ...,qn}, in C. Some planners keep only those nodes that are in
Cfree, some keep all nodes or one could even use some other scheme for selecting
which nodes to keep [3]. Next the planner connects all adjacent1 nodes in Q, using
the local planner. Two nodes qi and qj are said to be adjacent if the (weighted)
distance ‖qi − qj‖w is smaller than a given threshold δ.

1Some PRM planners instead connects the k nearest nodes, giving each node a fixed number of
edges.

11

Definition: Two nodes qi and qj that belongs to C are said to be adjacent if
the weighted distance ‖qi − qj‖w < δ, for a given δ. Where ‖qi − qj‖w =
dim(C)
∑

k=1

√

(

(

qi
k − qj

k

)2
· wk

)

. Where wk ∈ R is a weight that biases the impor-

tance of movement along a specific dimension of C.

The local planner should be simple and fast, usually a straight line in C is used [1].
Such line connecting two points in the roadmap is known as an edge.

Once the roadmap is constructed it needs to be searched for valid paths from
qc

start to qc
goal. There exists two different approaches when searching the roadmap

for a feasible path. The first approach begins by removing all the nodes and edges
that are illegal. A node or an edge is illegal if it contains any point that is not in
Cfree. When all illegal nodes and edges have been removed the planner searches
the remainder of the roadmap for the shortest path. The other approach begins by
searching the roadmap for the shortest path, assuming all edges are legal, and when
a path is found checks to see if it is a legal path. If the path was legal the planner
is done, if not it removes the edge found to be illegal from the roadmap and tries
again. This later approach is called Lazy PRM and was introduced in [1].

Figure 2.4 shows an illustration of how the PRM planner works. A point shaped
agent must move from S to T without hitting any of the obstacles (marked in gray).

2.3.2 Enhancing the Roadmap

If the search for a path in C fails, i.e. the start and goal configurations becomes
disconnected, the planner can enter an enhancement step. In this enhancement step
more nodes are added to the roadmap according to some policy. The simplest form
of enhancement simply distributes new nodes at random but better schemes exists.
One common way is to distribute new nodes close to some number of nodes randomly
selected among all existing nodes in Q according to some probability depending on
the difficulty of connecting a node. For instance in [7] the probability of a node
being selected is 1

1+e
, where e is the number of edges connected to that node.

2.3.3 The Narrow Passage Problem with PRM

One problem with PRM methods is that they often fail to solve fairly simple prob-
lems when the agent must pass through a narrow passage [9, 3]. This is because
most sampling strategies distributes nodes uniformly in C and thus narrow regions
will contain few or no nodes which the local planner might not be able to connect to
the rest of the roadmap. To overcome this problem one might distribute more nodes
to increase the probability of nodes ending up in a narrow region. This approach has
one major drawback, it increases the size of the roadmap. Having too many nodes
in “open” areas of C is a waste of computational resources. The enhancement step
described in section 2.3.2 can be used, especially with a good resampling strategy,
to overcome this problem. As it will be described in section 3.2, relying on the

12

T

S

(a) The initial roadmap con-
structed by a simple PRM planner
that uses uniform sampling and
keeps all nodes.

T

S

(b) The planner in this thesis does
not keep points that are not valid.
It is clear that this can reduce the
size of the roadmap significantly.
The significance of this depends
strongly on the ratio between free
C-space and C-space occupied by
obstacles.

Illegal edge

S

T

(c) Once the roadmap is con-
structed it is searched for the
shortest path. In this case the path
is not valid since it contains an il-
legal edge.

T

S

(d) The illegal edge is removed
and the roadmap is searched again.
This time the planner finds a path
connecting S and T.

Figure 2.4. Example of a PRM planning task

13

enhancement step has several drawbacks and methods that have a lower probability
to enter an enhancement step is preferable.

2.4 Artificial Potential Functions

The use of artificial potential functions as a way of solving the path planning problem
of section 2.1 is described in [10, 11, 12]. The key idea is to compute the solution of
Laplace’s equation (2.1) in a domain Ψ ⊂ R

N .

∇2φ(x) =
N

∑

i=1

∂2φ

∂x2
i

= 0 (2.1)

Laplace’s equation is one of the most important equations in applied mathe-
matics. It can be used to describe phenomena such as steady-state heat conductiv-
ity problems and the electric potential in dielectric mediums containing no electric
charges [13]. More importantly Laplace’s equation can be used to describe the po-
tential of a particle in free space acted on only by gravitational forces [13], this is
the property artificial potential methods try to mimic. Because of this property
Laplace’s equation is often referred to as the potential equation.

Since Laplace’s equation describes a steady-state, no initial conditions must be
satisfied. However, boundary value conditions must be met on the bounding surface
∂Ψ of the region in which (2.1) is to be solved. To obtain a solution to (2.1) it is
sufficient to express a boundary condition on every point on the boundary ∂Ψ [13].

The Dirichlet and Neumann boundary conditions are the most commonly used
boundary conditions when solving Laplace’s equation. With the Dirichlet boundary
condition all points on the boundary ∂Ψ are held at a fixed value. Equation (2.2)
shows a Dirichlet boundary condition with the potential held fixed at a constant c on
every point on the boundary. Throughout this thesis a Dirichlet boundary condition
will mean that (2.2) is satisfied.

φ |∂Ψ= c, c ∈ R (2.2)

With the Neumann boundary condition the derivative of φ in the direction of the
normal of the boundary ∂Ψ is given on every point on the boundary ∂Ψ. Throughout
this thesis a Neumann boundary condition will mean that (2.3) is satisfied.

∂φ

∂n
|∂Ψ= 0, where n is the vector normal on the boundary ∂Ψ. (2.3)

2.4.1 Artificial Potential Fields for Path Planning

Solving (2.1) in Ccon, with the potential φ held fixed at 1 (equation (2.2) with c = 1)
on all points qc /∈ Cfree and at −1 on all points qc → qw

goal, will result in an artificial
potential field φc in Ccon. Performing gradient descent on φc will result in a path
from the starting point qc

start to a minima qc
min. If qc

min → qw
goal (a solution has

14

been found) the planner is done, however if qc
min 9 qw

goal (a solution has not been
found) qc

min is a local minima that must be escaped from. The escape from a local
minima can be achieved by means of a random walk or a local search. When the
local minima has been escaped from, a new gradient descent may be performed and
a new minima is located. This process can then be repeated until a solution has
been found.

One drawback of the potential field approach is the creation of local minima
that does not correspond to a goal configuration. If the world in which the agent
operates is complicated, containing many objects or objects of complex shape, the
agent may get stuck moving from one local minima to another not reaching the goal
in acceptable time. Another problem is that as the dimensionality of C increases the
time required to compute φ grows rapidly. The problem with high dimensional C
may be circumvented by computing φ in W . Since 1 ≤ dim(W) ≤ 3, φ may always
be computed in W in a relatively short time (compared to C that may have 10s
of dimensions). Once the potential φw(x) is known in W the potential φc(q) for a
specific location in C may be computed by summing the potential for all points in
the region Ω ⊂ W occupied by A [12]. This relation is shown for the discrete case
in (2.4).

φc (q) =
∑

∀x∈Ω

φw (x) (2.4)

Equation (2.4) makes it possible to use potential fields for higher dimensions of
C than would otherwise be feasible, however in order to perform gradient descent
not only the potential of the current configuration must be known but rather the
potential of all neighboring configurations. The time required to compute all those
potentials will eventually grow to unacceptable values, still it is usually much better
then computing φ in C explicitly.

The potential function can be computed numerically using standard finite differ-
ence methods (FDM) such as Gauss-Seidel iteration, Jacobi iteration or the Newton-
Rhapson method [10]. Since Laplace’s equation (2.1) can be used to describe voltages
in a resistive grid, a resistive grid can be used to obtain an analog solution to φ in
a matter of microseconds [10].

2.4.2 The Narrow Passage Problem with Artificial Potential Fields

Artificial potential field planners work well in relatively uncluttered workspaces,
however if the agent has to move through a narrow passage artificial potential field
planners, just as PRM planners, experience problems. This is because often the
potential in a narrow passage will be high. If a local minima exists near the entrance
of a narrow passage it is unlikely that the planner will be able to escape this minima
through (or actually over) the high potential ridge in the narrow passage.

15

Chapter 3

Artificial Potential Biased PRM

Both PRM and artificial potential functions have been successfully used to solve
numerous path planning problems, however both these methods often fail to solve
problems when the agent has to pass through a narrow passage in C (section 2.3.3
and 2.4.2). In this section, a new method is proposed, artificial potential biased PRM
(APBPRM). This method combines PRM and artificial potential functions into a
new roadmap planner that is better in dealing with the narrow passage problem.
This method uses a (partial) computation of the artificial potential field to bias the
sampling of nodes in C, increasing the probability of distributing nodes in narrow
regions of C.

3.1 Theory Behind APBPRM

When solving Laplace’s equation (2.1) numerically, finite difference methods (FDM)
[14] can be used. There exists some commonly used iterative FDMs, such as Ja-
cobi iteration, Gauss-Seidel iteration, Crank-Nicolsons method or Successive Over-
Relaxation (SOR) which can be used to solve Laplace’s equation [10, 14]. For (2.1)
these methods essentially replace each grid point’s value with a weighted average of
its neighbors. This is then repeated iteratively until a stable solution is found.

Instead of computing the solution of Laplace’s equation, APBPRM uses the idea
that while solving for the potential φ, iterative methods will in general cause the
potential to rise more rapidly in narrow regions. An intuitive way to realize this
is that a grid point that has a Manhattan distance of n to the closest boundary
point will remain at (the initial) zero potential for the first n steps of the iterative
computation. Grid points close to the boundary of Ψ can on the other hand be
updated many times during the first n iterations and thus rise to a high potential.
This is especially true for grid points surrounded by boundary points, such as grid
points in narrow or concave regions of Ψ.

APBPRM computes φN , the first N steps of a solution to φ using FDM, and use
it to bias the distribution of nodes in the roadmap. The node distribution scheme
used by APBPRM works as follows:

16

First a set of nodes, Qrnd, is distributed at random uniformly throughout C, keeping
only nodes that satisfy q ∈ Cfree until Qrnd contains M nodes. Then more nodes are
randomly distributed in the same way but keeping only nodes that satisfy q ∈ Cfree

with a probability P given by equation (3.1) until the set of nodes Qapb contains K
nodes.

P = kφφN + kr, where kφ and kr are aribitrary constants kφ, kr ∈ R (3.1)

Using the probability in (3.1) all nodes are kept with at least the probability kr
1,

and the probability of keeping a node is increased proportionally to φN . The set of
nodes in the roadmap is finally constructed by combining the two sets of nodes to
a new set Q = Qapb ∪Qrnd that form the nodes of the roadmap. This will result in
denser sampling of the C-space close to obstacle boundaries and especially in narrow
and concave regions. The idea that a denser distribution of nodes along C-space
surfaces helps to guide the agent through narrow passages is also supported by [8].

3.1.1 Probabilistic Completeness

In this section the probabilistic completeness of APBPRM is discussed. A proof of
the probabilistic completeness of PRM planners is given in [1].

Definition: A path planner is called probabilistically complete if the probability
of solving any given problem approaches 1 as the planning time approaches
∞, provided a solution exists.

Because APBPRM is a simple extension to normal PRM it has the same probabilistic
completeness as other PRM planners. This means that APBPRM will be able
to solve any given problem for any given agent for which a solution exists, given
sufficient running-time and that the agent is locally controllable [15]. The property
of local controllability is further discussed in [15] and essentially means that an agent
A always can move in a neighborhood of q for any given q ∈ Cfree. The definition
of local controllability used in [15] is given below.

Definition: Given a robot A, let
∑

Abe its control system. That is,
∑

A describes
the velocities that A can attain in C-space. For a configuration q of a robot
A, the set of configurations that A can reach within time T is denoted by
AP

A
(≤ T,q). A is defined to be locally controllable if for any configuration

q ∈ Cfree, AP

A
(≤ T,q) contains a neighborhood of q for all T > 0.

3.2 Benefits of APBPRM

In this section some of the benefits of APBPRM over standard PRM, as well as
some PRMs that have been modified to deal with the narrow passage problem, are
described.

1Unless kr < 0 which might be interesting to investigate in some high dimensional cases.

17

Because of the probabilistic completeness of PRM (section 3.1.1), it can solve
any problem given that a sufficiently large number of enhancements are made to the
roadmap. This fact implies that a biased sampling scheme might not be necessary,
however this is not entirely true. One obvious reason to prefer a biased sampling
scheme is that graph search time is reduced since the roadmap has to be rebuilt and
searched again for every enhancement step. Also, the enhancement steps often tend
to oversample the “open” regions of C, creating a roadmap with more nodes than
are actually required to solve the problem (increasing search time). Another issue
arises when there are two (or more) ways to reach the target and one way is shorter
than the other but contains a narrow passage (figure 3.1) .

A normal PRM planner could probably find the “long way around” (dashed line
in figure 3.1) fairly easy, given a suitable number of initial nodes in the roadmap.
Since the planner found a solution to the path planning problem it will be satisfied
and not go into an enhancement step. While this behavior might be acceptable under
some circumstances it would be better if the planner would find its way through the
narrow passage, taking the shorter path. There is, of course, a trade-off here. A real
agent could probably travel with a higher speed if it decided to take the “long way
around” because it would have to be less concerned with bumping in to the walls,
thus the time required is not directly related to the length of the path. An agent
choosing the short path might have to go very slowly to navigate the narrow passage
while an agent taking the “long way around” could go at a much higher speed. If
such considerations are taken in to aspect the function that measures the “goodness”
of a path in C-space might have to be changed to penalize paths that are too close
to obstacle borders. The graph searching algorithm should then optimize on this
“goodness” function rather than the C-space distance.

From the planner’s perspective it is better to find both paths and then choose
the best, according to some metric, than to only find one path and not have the
possibility of choosing the other path. The APBPRM would have a much higher
probability of finding the narrow passage path (solid line in figure 3.1), given the
same number of initial nodes, as the normal PRM for the same problem.

3.2.1 Other Schemes for Dealing with the Narrow Passage Problem

Other schemes already exists that deal with the narrow passage problem of PRM
[3, 6, 8]. These usually work by first distributing nodes uniformly throughout C and
then, using information attained from this sampling of C, enhance the roadmap.
This enhancement is done in different ways.

In [6], if the roadmap is disconnected in a place where Cfree is not, this place
is considered to correspond to some narrow passage, and hence difficult region of
Cfree. Nodes in such regions are then expanded. Expanding a node q corresponds
to adding more nodes in the neighborhood of q. All nodes in the roadmap are given
a positive weight w (q) which is a heuristic measurement of the “difficulty” of the
neighborhood of q. Thus, w (q) is larger whenever q is considered to be in a difficult
region of Cfree. With w normalized (

∑

∀q w (q) = 1), nodes are repeatedly selected

18

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

S

T

Figure 3.1. A point shaped agent planning a path from S to T in an environment
containing a narrow passage. APBPRM yields the solid line path and standard PRM
yields the dashed line path.

from the roadmap with probability P (q is selected) = w (q) and then expanded.
Several ways to define the heuristic w (q) are given in [6]. One of these is similar to
the method discussed in section 2.3.2, using a w (q) that is inversely proportional
to the number of neighbors. This method has the drawback that collision detection,
roadmap construction and roadmap search have to be carried out several times.

In [8] an obstacle-based PRM (OBPRM) planner is considered. This planner tries
to add sample points close to or on C-space obstacle surfaces, similar to APBPRM.
The OBPRM described in [8] works in three steps. First there is the node generation
step, in which nodes are distributed in C in a way that increases the node density at
C-obstacle surfaces. This is accomplished by finding configurations qi that intersect
with C-obstacles (i.e. qi /∈ Cfree). From these configurations, “rays” are shot
out in random directions and the bounding surface of the C-obstacle is located by
means of binary search. The second step is the roadmap connection where several
more powerful local planners are used. First, the simple straight line planner is
used to connect the nodes in C, and then, in regions found to be difficult, more
advanced (and hence slower) planners are used. In the third step, the more powerful
planners may also add new nodes to the roadmap, increasing the connectivity of the
roadmap. This OBPRM actually deals with a quite general path planning problem
with obstacles and APBPRM could easily be incorporated into this general planner
in the node distribution step, possibly reducing the amount of work that has to be
done by the more advanced planners.

The planner in [3] uses the notion of dilated free space to increase the density of
nodes near the boundary of Cfree. This means that Cfree is expanded, allowing the
agent to “penetrate” some distance into obstacles. Nodes are then distributed in this
dilated free space and nodes found to lie outside Cfree is then “pushed” into Cfree

by a local resampling operation. This method would presumably fail given a task

19

Thin obstacle

free

S T

C

Figure 3.2. A situation where the use of dilated free space would fail because of thin
obstacles. The agent must move from S to T and no expansion of Cfree is possible.

where very thin objects are present, making it impossible to expand Cfree (figure
3.2).

3.2.2 Computational Benefits

Using the potential function to bias sampling in a PRM planner could provide some
computational benefits. First of all, since the APBPRM planner is less likely to
go into the enhancement step, roadmap connection time and search time could
be reduced. Since node distribution time usually requires a few percent of the
total computation time and roadmap connection and search makes up the rest, it
would be preferable to minimize the number of connections and searches made.
Although APBPRM adds somewhat to the time required for distributing nodes it
is presumably better than doing one or more extra connect/search steps.

Since APBPRM uses a partial solution of Laplace’s equation to bias the search,
one could easily imagine a scheme where a more accurate solution of Laplace’s
equation is computed (more steps in the FDM solution). This solution could then
be used for gross motion planning or to guide the search algorithm when searching
the roadmap, i.e. search “down-hill” first. Using this scheme would minimize the
time “wasted” when computing the partial solution to Laplace’s equation, however
it is beyond the scope of this thesis to consider this.

3.3 Drawbacks of APBPRM

So, is APBPRM the “perfect” technique that will rid the world of the narrow passage
problem? No, of course not. As often is the case with heuristic methods it is often
quite easy to find problems where they do not work or produce strange results. What

20

APBPRM provides is (yet) another way of handling the narrow passage problem,
increasing the set of “tools” available for people who construct motion planners to
use in real world applications. As most other schemes for dealing with the narrow
passage problem, APBPRM has some drawbacks.

Because the potential function is usually quite steep near obstacles the planner
will tend to “crawl” near the edges of obstacles. While this is not an issue while
planning for a massless agent in a completely known environment, it is when planning
motions for real physical agents in an approximation of the real world. In the real
world the agent should probably have some minimum clearance to the obstacles.
Also the agent probably has to go more slowly when close to obstacle boundaries to
avoid collisions. Often APBPRM generates paths where the agent crawls along the
edges of obstacles.

Also the computation of the solution to Laplace’s equation in R
3 is quite ex-

pensive, limiting the usefulness of APBPRM in environments with many moving
obstacles.

21

Chapter 4

Implementation

To test the theoretical foundation of APBPRM a sample PRM planner with support
for artificial potential biased sampling was implemented using C++. Due to the
time limitations associated with this work and the fact that the main purpose of the
planner was to test the theory behind APBPRM some key features of the planner
arose:

• The testing should occur in a simulated environment with virtual agents.

• To fully understand the impact of the biased sampling scheme a complete (and
hence slower) graph searching algorithm should be used.

• The planning time can be allowed to be greater than what would be acceptable
on a real system, however it must still be relatively efficient to allow simulations
to complete in reasonable time (hours).

• The planner should be extensible. This means that it should be simple to
adapt to new types of agents and it should be possible to continue developing
the planner to the point where it can be used in a real system.

The extensibility of the planner is easily achieved by using the object oriented (OO)
paradigm. The planner consists of three principal classes:

1. The World class contains information about a normalized 2D or 3D world.
This information include obstacles, the goal and the partial solution to the
potential function.

2. The RoadMap class maintains the roadmap graph, implements the local planner
and provides means for searching and checking the roadmap.

3. The abstract Agent class specifies an interface for which each type of agent
should have its own implementation. The Agent class provides agent specific
knowledge, such as FK, collision checking and retrieval of the C-space poten-
tial.

22

The world is modeled as a uniform, variable resolution grid with the world coordi-
nates normalized, i.e. x, y, z ∈ [0, 1]. A World object begins by loading a bitmap
image representation of the world where the obstacles are marked by a 1 and the free
space is marked by a 0. Once the world representation is loaded the World object
computes and stores φN . The World class provides access to the partial potential
for points in W (truncated to the nearest grid point) and a boolean function that
tests if a point in W lies in Wfree.

A RoadMap object is provided with a list of nodes and a start and goal con-
figuration. A RoadMap object begins by building the roadmap graph. All nodes,
including the start and goal nodes, are inserted in an array and are provided with a
unique hash key for efficient reference. All nodes are provided with pointers to their
adjacent nodes. The operation of building the graph is O (n log (n)), where n is the
number of nodes in the roadmap. However building the roadmap is a parallel process
and can thus take advantage of MP (Multi Processor) machines. Once the graph is
built the RoadMap object can be queried for a solution to the path planning problem.
The graph is now searched for the shortest possible solution path using Dijkstra’s
algorithm [16]. Dijkstra’s algorithm is O ((n + e) log (n)) where e is the number of
edges and n is the number of nodes in the roadmap [16]. Better algorithms that use
a heuristic to guide the search, such as A* search [17], exists [1] but was not used
because the behavior of a complete algorithm is easier to understand and analyze.
Once a path is found it is checked to see if it is valid or not. The collision checking in
[1] is used for high efficiency. If the path is valid the planner is done, if not the edges
and nodes found to be illegal are removed and the graph is searched again. This is
repeated until either a solution path is found or the goal and start configurations
becomes disconnected. If the goal and start configurations becomes disconnected
the planner reports failure. No enhancement step is implemented. The algorithm
used by the path planner is shown in pseudo code in algorithm 1.

23

Algorithm 1 A single path planning query.

world←Load world from file
if(qstart or qqoal is not valid)

return FAILURE

Compute potential for world
nodes ←Distribute nodes according to policy
Add nodes to roadmap

Build graph in roadmap

while(qstart and qqoal are connected)
path←Shortest path from qstart to qqoal in roadmap

if(path is collision free)
return path

remove illegal edge and/or node in path from roadmap

end while

return FAILURE

24

Chapter 5

Experimental Evaluation

To evaluate the performance of APBPRM six different path planning tasks were
simulated. The worlds (W -space) in which the simulations took place are shown in
figure 5.1. Due to time limitations all tasks involve a point shaped agent moving in
the world (C = W). At the end of this chapter some preliminary results for a 5 dof
planar arm are given.

5.1 Results for a Point Shaped Agent

To measure the performance of APBPRM vs PRM each path planning task was
carried out 100 times with each method and the probability of reaching the goal
without requiring an enhancement step was calculated. Also the average number of
paths that where tested for collision was calculated. More detailed results, including
graph build and search time can be found in appendix C.1. Each planning task was
carried out with a different number of nodes in the roadmap. The results of these
simulations can be seen in table 5.1-5.6 and in more detail in appendix C.1. In all
simulations φ100 was used and nodes where kept with a probability P = φ100 + 0.1
(equation (3.1)). The world was modeled as a 180×180 grid and the C-space distance
was computed with the same weight in all dimensions. Nodes in the roadmap where
considered adjacent if their C-space distance was less than 1√

20
and the number of

neighbors where limited to a maximum of 100.

25

A) Circular world B) Object world C) Short narrow world

D) Worm world E) Long narrow world F) Thin world

Figure 5.1. The different worlds used to evaluate the performance of APBPRM.

Nodes Goal reached (%) Paths tested

100 96 188

250 100 1197

500 100 3945

750 100 5764

Nodes Goal reached (%) Paths tested

100 73 45

250 99 330

500 100 1268

750 100 2606

Table 5.1. Simulation statistics for world A, qstart = (0.5, 0.0) and qgoal =
(0.5, 0.35). Average values over 100 trials. Left with APB sampling and right with
uniform sampling.

Nodes Goal reached (%) Paths tested

100 71 21

250 100 51

500 100 100

750 100 125

Nodes Goal reached (%) Paths tested

100 91 9

250 100 16

500 100 37

750 100 53

Table 5.2. Simulation statistics for world B, qstart = (0, 0) and qgoal = (1, 1).
Average values over 100 trials. Left with APB sampling and right with uniform
sampling.

26

Nodes Goal reached (%) Paths tested

100 69 21

250 97 146

500 100 440

750 100 597

Nodes Goal reached (%) Paths tested

100 41 5

250 81 18

500 97 59

750 100 115

Table 5.3. Simulation statistics for world C, qstart = (0, 0) and qgoal = (1, 1).
Average values over 100 trials. Left with APB sampling and right with uniform
sampling.

Nodes Goal reached (%) Paths tested

100 10 86

250 84 865

500 99 3352

750 100 5887

Nodes Goal reached (%) Paths tested

100 0 20

250 43 287

500 92 1357

750 100 2647

Table 5.4. Simulation statistics for world D, qstart = (0, 0) and qgoal = (0.95, 0.45).
Average values over 100 trials. Left with APB sampling and right with uniform
sampling.

Nodes Goal reached (%) Paths tested

100 1 362

250 68 2643

500 100 7505

750 100 11684

Nodes Goal reached (%) Paths tested

100 0 36

250 2 277

500 22 1305

750 61 2953

Table 5.5. Simulation statistics for world E, qstart = (0.2, 0.5) and qgoal =
(0.8, 0.5). Average values over 100 trials. Left with APB sampling and right with
uniform sampling.

Nodes Goal reached (%) Paths tested

100 55 262

250 96 866

500 99 1739

750 100 2381

Nodes Goal reached (%) Paths tested

100 0 82

250 45 351

500 90 789

750 98 1069

Table 5.6. Simulation statistics for world F, qstart = (0.2, 0.5) and qgoal =
(0.8, 0.5). Average values over 100 trials. Left with APB sampling and right with
uniform sampling.

27

5.2 Preliminary Results for a 5 dof Planar Link Agent

This section shows some preliminary results of APBPRM when applied to a 5 dof
planar arm. Because the planner uses a complete algorithm it is not possible to
use the amount of nodes needed1 to provide sufficient resolution in C-space, thus
giving poor results. Also no investigation of the effect of the parameters kφ and kr

in equation (3.1) has been done. Two different task where tested, the W -spaces of
the tasks are shown in figure 5.2. The results of the tests are shown i table 5.2.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 5.2. Two tests with a 5 dof planar arm. The start and goal locations are
shown (solid lines) as well as some intermediate positions.

A

Planner Goal reached (%) Paths tested

APBPRM 78 14.9
PRM 69 5.0

B

Planner Goal reached (%) Paths tested

APBPRM 30 18.0
PRM 23 3.3

Table 5.7. Planning results for a 5 dof planar arm in the two worlds from figure 5.2.
Average results over 100 trials.

5.3 Summary and Analysis

The path planning problem is indeed a difficult one to which there is currently no
single solution that is capable of efficiently dealing with all aspects of the problem.
Rather an efficient path planner has to be built using a combination of various
methods. Which methods to include in the path planner depends on the tasks the
agent is to perform, as well as the environment in which it operates. Sometimes the

1Because the planning time would be too long

28

planner is in dire need of a good scheme for finding paths through narrow passages
and sometimes the narrow passage problem is completely irrelevant to the planner.

Because APBPRM is an extension and combination of two existing methods
it could easily be incorporated into existing schemes. Also there is a code base
available, providing methods for computing Laplace’s equation and performing graph
search which can be utilized to quickly build an APBPRM planner.

The results given in chapter 5 shows that the APBPRM planner performs differ-
ent under different circumstances. In relatively open regions, such as world A and
B in figure 5.1, the use of the biased sampling scheme provides little or no improve-
ment over a random sampling scheme. It can actually perform slightly worse than
the random sampling scheme (world B) under some circumstances. This result is
not very strange, consider a situation where the world is vast and contains a sin-
gle relatively small object. Planning in such environment does not require special
consideration of the narrow passage problem and thus a random scheme works well.
In this case APBPRM will only “waste” nodes by putting them near the obstacle
surface, where there is no actual use for a denser sampling. This, of course, is not
the type of planning tasks the APBPRM planner was intended for. In complex
planning tasks, especially those containing a single long narrow passage as well as a
an extensive amount of open space, the APBPRM outperforms the standard PRM
planner (world E).

The APBPRM method will (hopefully) provide a useful tool for dealing with
the narrow passage problem. The method has both advantages and disadvantages
compared to other methods that deal with the narrow passage problem. Which
methods, or combination of methods, to use depends on the requirements of the
agent and the environment in which it will operate.

29

Chapter 6

Results and Conclusions - APBPRM

It is clear from the results in chapter 5 that APBPRM can be used to increase the
probability of finding passages through narrow passages for a point shaped agent.
The success of APBPRM indicates that denser sampling around C-space obstacles
surfaces aid the planner in narrow and cluttered regions.

No effort to incorporate the gradient of the potential function into the roadmap
search has been done, however this is an interesting idea that deserves further in-
vestigation. The preliminary results for a 5 dof planar arm indicate that the success
of APBPRM declines some with increased dimensionality of the C-space. This does
not have to be true and also deserves further investigation. For instance the rela-
tively poor performance reported in section 5.2 could be due to a bad selection of
parameters in equation (3.1). If kr is too high the sampling of the C-space will be
too gross, i.e. nodes are kept too easy. Combined with a uniform random sampling
it might even be interesting to evaluate the performance with kr < 0.

It might be interesting to investigate other “potential functions” altogether, for
instance it is possible do a simple search in the neighborhood of each point in W to
determine the average distance to nearby objects and store such information as the
“potential” of that point. Perhaps it is possible to find equations that will not be as
steep near obstacles as the potential function is, such as a Gaussian or some type
of linear function. All of this is beyond the scope of this thesis to consider. The
artificial potential seems to work as expected by biasing the sampling of points near
obstacle boundaries and in particular in narrow and concave regions.

6.1 Future Work

Some of the ideas presented in chapter 3 have not been implemented or tested.
Among interesting future work would be to investigate the performance gained when
adding biased sampling to existing PRM planners, using their more efficient search
algorithms. Also the possibility to use the potential function as a heuristic in search
algorithms such as A*-search would require further investigation. Finally the effect
of the parameters kφ and kr in (3.1) needs to be evaluated. Perhaps the probability

30

given by equation (3.1) needs to be changed, it is probably not optimal to use
a probability proportional to the potential function, rather some other relation,
such as the power of the potential, could give better results. For instance using
P = kφ

√
φ + kr would, on average, distribute nodes farther away from C-space

obstacle surfaces and thus lessen the tendency an agent has to “crawl” along the
edges of C-space obstacles.

31

32

Part II

Real-Time Linux

33

34

Chapter 7

Introduction to Real-Time Operating

Systems

Control of a robot manipulator requires real-time capabilities of the underlying op-
erating system to ensure adequate control performance in terms of safety and trajec-
tory tracking. This is typically achieved using proprietary operating systems such
as QNX, OS9 or VxWorks. A disadvantage of such operating systems is that the
underlying code in general is not publicly distributed which is a significant obstacle
for academic research. Consequently, it is of interest to determine if open-source1

operating systems (available under GPL or LGPL) can be used for the control of a
manipulator. A typical example of such an operating system is GNU/Linux with
real-time extensions. This project is a study of the characteristics of real-time UNIX
derivatives for control of a robot manipulator. The study was carried out in the con-
text of control of a PUMA 560 robotic arm, one of the most widely used manipula-
tors for academic research. The evaluation of potential systems considered real-time
performance, ease of installation and use, and the richness of the associated API.

To control the PUMA 560 manipulator a PID controller was implemented in a
parallel M. Sc. project.

7.1 Real-Time Operating System Evaluation

In order to successfully chose an operating system suitable for implementing a PID
(Proportional, Integral, Derivative) controller [18] there are basically two main as-
pects to consider. First there is performance. If the OS is not capable of handling
the timing constraints that are needed to successfully execute the control task it is
of little or no use. The second aspect to consider is “usability”. The OS should be
easy to understand, with a clear and simple API.

Evaluation of the performance is quite simple since it can be measured in terms
of the scheduling jitter (section 7.4). The scheduling jitter gives a direct, numeric,
measurement of the real-time performance of an OS.

1Open Source Initiative (OSI) http://www.opensource.org

35

The “usability” part presents more problems since there is no way to perform
precise measurements that will show which OS is best suited. Rather feelings and
impressions will have to do as the guide here. To improve the validity of the “usabil-
ity” evaluation a table of pro et contra was constructed to have something to base
the decision on.

7.2 Real-Time Operating Systems

A real-time system is a system that must guarantee a response to an external event
within a given time [19]. Thus a real-time operating system (RTOS) must pro-
vide facilities to run a task to completion within a given time (usually micro- or
milliseconds) after an external event was generated.

Real-time systems are usually divided in two groups, hard and soft real-time
systems. Hard real-time systems are systems where deadlines must be met, or else!
An example of such system could be an emergency shut-down procedure of a nuclear
power-plant. In soft real-time systems the requirements are usually statistically
defined. These requirements means the system is allowed to miss some (small)
fraction of its deadlines. An example of such system could be a DV-player.

7.3 Real-Time Issues

Linux is a free UNIX [20] like operating system developed by Linus Torvalds and
other developers around the world. As the number of features in Linux has grown
since its initial release in 1991 its popularity as an alternative to UNIX has grown
as well. Today Linux is used in numerous production systems around the world.
Linux is basically a UNIX clone and UNIX was originally designed as a time-sharing
OS [21, 20]. Linux retains the time-sharing nature of UNIX and, unfortunately, this
clashes with that of the real-time system.

7.3.1 Time-Sharing vs Real-Time

The goal of a time-sharing OS is to allow several users to run several tasks concur-
rently on one processor, or in parallel on many processors [19]. If there is only one
user at any time using the OS it is usually said to be multitasking . Multitasking is
a special case of time-sharing and from now on the term time-sharing will be used
to represent the feature where the OS allows several processes, belonging to one or
more users, to appear to execute concurrently on a single (uni or multi processor)
machine.

There are two different approaches to time-sharing, cooperative and preemptive.
In systems using cooperative time-sharing the running process has complete control
over the CPU and must voluntarily release the CPU to let other processes run. While
this approach would make it quite easy to write real-time applications it has many
drawbacks regarding time-sharing for which it was actually intended. Most modern
OSs belong to the preemptive type and Linux is one of them. In a preemptive OS

36

a special task, called the scheduler is responsible for making the processes on the
system appear to execute concurrently [20, 21]. The scheduler has the power to
suspend any process at any time. For a more in-depth discussion about scheduling
in UNIX and Linux see [21, 20]. Typically Linux runs its scheduler at fixed time
intervals, however since each time the scheduler is run it introduces overhead, wasting
the systems resources, the interval, or the time-slice, can not be too small. Typically
the time-slice is in the order of 10 ms, however it is not uncommon for real-time
systems to require scheduling accuracy down to a few µs. The standard Linux
scheduler can not provide such fine resolution and is therefor useless for most real-
time applications. Fortunately there are ways to overcome this problem, as will be
shown when discussing the different real-time Linux derivatives in chapter 8.

7.3.2 More Real-Time Issues

When scheduling real-time process it is important to have a high timer resolution. If
the scheduler is unable to determine, with enough resolution, the elapsed time since
a periodic process was last invoked it will not be able to do a good job scheduling
it. Assume a periodic task is set to run at a period of 1 ms, if the scheduler is
only able to determine the time since the task was last executed at a resolution
of 1 ms the actual period could be as large as 2 ms, twice the reference period.
Another issue that makes Linux perform bad as a real-time OS is the fact that the
Linux kernel itself is, in general, not preemptable. This is because the Linux kernel
often disables interrupts as a mean of synchronization [21]. Disabling interrupts
incur unpredictability in the system and makes it difficult, if not impossible, to
understand exactly how and when the scheduler will actually run.

Some other issues to consider when making a real-time OS include virtual mem-
ory and cache problems. Virtual memory introduce unpredictability and compar-
atively large delays. Cache effects are not as severe but very hard to overcome
[22]. See [22] for a more in-depth discussion about these real-time issues and how to
measure the real-time performance.

7.4 Scheduling Jitter

When an external event is received it is common that a hardware interrupt is gener-
ated. This interrupt switches the CPU to protected mode and executes an interrupt-
handler. Consider the special case when this external event is a signal from a timer
used by the real-time scheduler to schedule a periodic process. Initially the timer is
set to produce interrupts at a specific period P . An interrupt-handler is installed
that runs the scheduler every time this interrupt is generated. Since the timer has
a limited resolution the actual period between timer events will differ from P with
some quantity δ1. When the scheduler is invoked it has to do some work. This work
may include storing the state of the CPU and saving the memory map among other
things [21]. All this takes some amount of time δ2 and contributes to the fact that

37

the actual period Ptrue will differ from P . Now take the difference between Ptrue

and P and call this difference ∆P . This difference is known as the scheduling jitter.

Definition: Let ∆P = P −Ptrue, where P is the theoretical periods reference value
and Ptrue is the actual period. The time ∆P is then known as the scheduling
jitter.

Measuring

One way to measure the scheduling jitter is to run a periodic task and print out a
time-stamp every time the task i actually run [22]. Pseudo code for such applica-
tion is given in algorithm 2. The GetTime() function reads the current time at a
high precession, Print() prints a variable to screen and the variable period is the
reference value for the scheduling period.

Algorithm 2 Measuring scheduling jitter. This algorithm can be used to print out
the scheduling jitter of a periodic process.

wait for next period
oldTime ← GetTime()

while(still testing)
wait for next period
time ← GetTime()
jitter ← period - (time - oldTime)
oldTime ← time

Print(jitter)
end while

This method of measuring the scheduling jitter has the drawback that it may
report an incorrect value if GetTime() returns a result with too low accuracy. How-
ever, if the accuracy of GetTime() is high enough this method is very attractive
since it does not require any external hardware and is easy to implement.

7.5 Usability

One important issue when selecting a real-time OS for use in academic research is
that it should be easy to learn and master. Since UNIX and Linux is widely spread
in academia a real-time UNIX derivative should be able to provide an advantage
over other real-time operating-systems. Some of the key features that influences an
operating systems usability for academic research are shown in table 7.1.

38

• Ease of installation - The system must install without requiring too many
manual changes and tuning.

• Documentation - Poorly documented software is harder to learn and much
more difficult to master. If a function is not documented well it might not
perform the action the user intended. The function name is not always
enough do determine the actions of that function.

• API - Not only must the API be well documented, as stated above, it is also
an advantage if it is subject to some form of standard. The preferred
standard in this case would be the POSIX (Portable Operation System
Interface) standard for real-time features in UNIX [21] defined by IEEE.

• Interaction with Linux - The advantage of being able to use normal Linux
libraries and system calls when developing real-time software is obvious. It is
also vital that good communications primitives exist between real-time tasks
and the rest of the system.

• Development and debugging tools - The easier it is to develop and
debug real-time software the more time the researcher can spend working on
things actually related to the research topic.

• Hardware support - It is considered a good thing if the system is able to
run on a variety of platforms. Embedded systems often use processors from
other families than the Intel x86 such as the PowerPC or m68k. Since the
evaluation has its base in real-time robotic control it might be advantageous
to be able to implement a controller on low-power embedded controller
instead of a desktop PC. Many ports of the source code may also imply that
the code is well written and thoroughly investigated.

Table 7.1. Important usability issues of a real-time OS.

39

Chapter 8

The Different Operating Systems

This section describes the system architecture of the three different RTOSs tested.
Comparisons with standard Linux will be made, key features will be dissected and
the issues in section 7.3 will be addressed. The architecture of the standard Linux
kernel is shown in figure 8.1. Note that interrupts are delivered directly to the kernel
and loaded device drivers, also the user processes are restricted from hardware access
in order to guarantee the stability of the system.

Application level

Device Drivers

System Libraries

Hardware
Interrupts

PID PIDPIDprocesses
User

Linux kernel

I/O

Hardware level
Hardware

OS level

Figure 8.1. Architecture of the standard Linux kernel.

8.1 RT-Linux

RT-Linux was created and is maintained by Finite State Machine, Inc1. RT-Linux
works by patching the standard Linux kernel with the real-time plug-in shown in fig-
ure 8.2. The real-time plug-in is in itself a small predictable operating system, with
its own (real-time) scheduler and interrupt handlers. RT-Linux uses a slightly ex-
tended POSIX 1003.13 API and supports SMP machines. It is available for the x86,
PowerPC and Alpha architectures and supports kernel level periodic and sporadic
real-time tasks. RT-Linux also provides status information via the /proc portion

1Finite State Machine, Inc. http://www.fsmlabs.com

40

of the file system. Interprocess communication (IPC) is supported through either
shared memory or FIFO (f irst-in-f irst-out) buffers.

Interrupt Handling

Apart from installing the real-time plug-in, the RT-Linux patch also replaces all
the calls in the Linux kernel that disables and enables interrupts as well as the
return from interrupt instructions (the cli, sti and iret operations on the x86
architecture) by macros (S_CLI, S_STI and S_IRET). These macros call functions in
the plug-in layer that emulates the interrupt controller hardware, they are described
in [23]. Instead of disabling interrupts the plug-in layer resets a variable. When
an interrupt occurs it is delivered to the plug-in (which is the actual OS kernel).
If Linux has interrupts enabled (the variable is set) the interrupt is forwarded to
the Linux kernel, however if the Linux kernel has interrupts disabled the interrupt is
stored in a queue and not delivered to Linux until Linux re-enables interrupts. When
Linux re-enables interrupts all interrupts in the queue are delivered to Linux. Since
these interrupts do not originate directly from the hardware, but from a intermediate
software emulation layer (the plug-in), they are known as software interrupts [23].
The reason for using software interrupts is that the developers of RT-Linux thought
that it would not be feasible to change the Linux kernel to the extent required to
eliminate any unpredictability originating from disabling interrupts [24].

PIDPIDprocesses
User

RTID RTID RTID

Interrupts
Software

Hardware
Interrupts

plugin

PID

Application level

Real−time

Hardware

I/O

RT−Scheduler

I/O

Real−time tasks

RT−Linux kernel

Standard Linux executed as a low−priority RT task

Linux kernel

System libraries

Device drivers

Interrupt
BufferI/O

Hardware level

OS level

Figure 8.2. Architecture of the RT-Linux kernel.

Real-Time Tasks

A real-time task in RT-Linux is created as a loadable Linux kernel module (a piece
of code that can be dynamically linked with the kernel code). All kernel modules
provide an init_module() function that is invoked when the module is loaded and

41

a cleanup_module() function that is invoked when the module is removed from the
kernel. The init_module() function initializes the real-time task and notifies the
scheduler in the real-time plug-in that it wishes to be scheduled as a real-time task.
Since real-time tasks runs in the Linux kernel address space it is not possible to call
standard C-library functions (such as printf() or malloc()), however it is possible
to use Linux system-calls (such as printk()) but it is not safe and it may incur
unpredictability in the system!

Scheduling

Two different modes of scheduling are provided by RT-Linux. Periodic mode is used
for tasks that need to be run at a specific interval and sporadic mode is used for
tasks that are activated by an external interrupt. Every real-time task is provided
with a priority and Linux is assigned the lowest priority. This makes Linux act like
an idle-task, running only when there are no real real-time tasks ready.

The reason for running real-time tasks in one address space (i.e. the kernel
address space) is mainly due to performance issues. When switching between tasks
in different address spaces penalties such as TLB-invalidations (Translation Look-
aside Buffer) and protection level changes occur, this is discussed further in [24].
RT-Linux provides two schedulers, one priority based scheduler that always runs
the task with highest priority, automatically preempting all lower priority tasks.
The other scheduler uses the earliest deadline first [21] (EDF) algorithm. RT-Linux
also provides easy means of extending the real-time plug-in with custom schedulers.
Custom schedulers can be implemented as Linux kernel modules. This is discussed
further in [25].

Interprocess Communication

RT-Linux provides two basic mechanisms for IPC. The first is a shared memory
mechanism that can be used to communicate efficiently between different real-time
tasks (as well as the Linux kernel). The second is a FIFO mechanism providing IPC
between real-time tasks and user-level applications (standard Linux software). The
RT-Linux API provides real-time tasks with functions for creating and destroying
FIFOs as well as non-blocking read and write functions. To Linux applications these
FIFOs appear to be ordinary character devices located in the /dev portion of the
file system.

8.2 RTAI

RTAI (Realtime Application Interface) is the product of an open-source effort be-
gun at the DIAPM (Dipartimento di Ingegneria Aerospaziale del Politecnico di
Milano). Very similar to RT-Linux (section 8.1) RTAI also provides real-time sup-
port by patching the Linux kernel, introducing a new intermediate layer. This layer,
known as a hardware abstraction layer (HAL), is depicted in figure 8.3. RTAI has a

42

cleaner design than RT-Linux, consisting of two parts. First there is the HAL acting
basically as an interrupt dispatcher (similar to that described in section 8.1), then
there is the RTAI real-time kernel which is responsible for running real-time tasks
as well as the Linux kernel as a low priority task. In order to avoid confusion, RTAI
is the name of both the project (consisting of the HAL and a real-time kernel) and
the real-time kernel provided with the project.

dispatcher

RTIDRTID RTID
Real−time
tasks RTID

PID PIDPIDprocesses
User

Interrupts

Interrupts

Hardware

Interrupt

Hardware

HAL

Real−time kernel (RTAI)

Scheduler

I/O

I/O

Standard Linux executed as a low−priority RT task

System libraries

Linux kernelDevice drivers

Hardware abstraction level

Application level

OS level

Hardware level

I/O

I/O

Hardware
Interrupts

Software

Figure 8.3. Architecture of the RTAI/HAL Linux kernel.

Interrupt Handling

The HAL (along with a few modifications to the Linux kernel itself) is responsible
for uncertainty related to hardware, i.e. interrupts. The HAL basically supplies
three functions: [26]

• Gather all the pointers to the required internal data and functions into a single
structure, rthal, to allow easy trapping of all the kernel functionalities that are
important for real time applications, mainly related to the hardware, so that
they can be dynamically switched to appropriate software emulation functions
by RTAI when hard real-time is needed.

• Makes available the substitutes of the above grabbed functions and sets rthal
pointers to point to them.

• Substitutes the original function calls with calls to the rthal pointers in all the
kernel functions using them.

To deal with the fact that Linux often disables interrupts RTAI patches the Linux
kernel to call function pointers instead of in-lined code. Wherever Linux issues
either one of the instructions used to enable or disable interrupts (the cli and sti

instructions on the x86 architecture) RTAI patches the code and inserts a call to

43

the functions pointed to by the linux_cli or linux_sti pointers in the HAL data-
structure. These function pointers are updated (changed) when switching between
real-time and normal mode, thus when no real-time tasks are running interrupt
disabling/enabling works as usually. For a more in depth explanation of the HAL
see [26].

Real-Time Tasks

As in RT-Linux, RTAI runs real-time tasks in the same address space as the kernel.
Real-time tasks are created as loadable Linux kernel modules and are responsible
for setting up the real-time scheduling needs in the init_module() function. This
usually comes down to starting a timer, creating and starting a task (thread), as
well as setting up any resources required by the real-time thread.

Scheduling

Because of the highly modular design of RTAI it is quite simple to write custom
scheduler modules available for insertion in the system “on the fly”. RTAI comes
with a priority based one-shot and periodic mode scheduler. The modular design
of RTAI makes it possible to easily change, not only the scheduler, but the whole
real-time kernel to a kernel different than the RTAI-kernel.

Interprocess Communication

Similar to RT-Linux, RTAI supplies shared-memory and FIFOs for interprocess
communication. RTAI also has support for mailboxes that allows messages between
processes to be automatically stored and retrieved as needed in a priority queue.
The mailbox service is very flexible [27].

• It can be explicitly set up to accept messages of custom sizes.

• Multiple receivers and senders can be connected to the same mailbox where
the order in which messages are taken depends on the priority of the receivers.

• When large messages need to be sent, the service provides functions to allow
the process to send only the portion of the message that can be stored, return-
ing the number of unsent bytes, or to continue to send the message until all of
it has been accepted.

LXRT

One of the most interesting features of RTAI is the LXRT (Linux Real-Time) mod-
ule that allows symmetric access to RTAI services and schedulers in both user space
and kernel-space. LXRT makes it possible to develop soft and hard real-time sys-
tems in user space through the “buddy system”. The (user space) application mates
(i.e. forms a connection) with a small real-time task, known as the buddy, who is

44

responsible for waking up and running the application. Thus the buddy is a small
real-time task with capabilities to carry out RTAI services on behalf of its user space
counterpart.

When developing hard real-time applications some restrictions are imposed. It
is not possible to (safely) use Linux standard libraries or kernel services and the
memory-pages of the process must be locked into physical RAM with a call to
mlockall() to avoid virtual memory delays [28]. When using LXRT for soft real-
time applications such restrictions do not apply. Often (and especially in academia)
people who use or will use a real-time system often do not have much experience with
real-time systems or kernel programming. For these people LXRT will be invaluable
in getting started, quickly developing and testing the real-time software. For a good
introduction to LXRT see [28].

8.3 KURT

KURT Linux, or Kansas University Real-Time Linux, was first developed in 1998
at the Information and telecommunication technology center at the University of
Kansas. KURT is not a hard real-time OS but rather firm according to the people
behind it. KURT was first developed to meet the need of real-time applications
residing somewhere between the soft real-time applications that standard Linux
provides and hard real-time applications provided by operating systems such as
QNX [25].

Linux kernel

Device Drivers

Hardware
Interrupts

Scheduler
KURT

PID

RTID RTID RTID

PID

processes
User

PIDPID

processes
Real−time

I/O

Hardware

System Libraries KURT Libraries

Real−time tasks

Process RTMod

Hardware level

OS level

Application level

UTIME

Figure 8.4. Architecture of the KURT Linux kernel.

Interrupt Handling

The architecture of KURT, which is shown in figure 8.4, is quite different from
RT-Linux and RTAI. It does not introduce an intermediate layer underneath the

45

Linux kernel, but rather modifies the kernel itself to provide microsecond resolution
scheduling, accurate time keeping, and the ability to specify a real-time schedule
[29]. As such KURT does not deal with the fact that Linux disables interrupts
and thus can not be considered a hard real-time system, however there exists a
special mode to which KURT may be switched called focused real-time mode where
this problem may be somewhat circumvented. The focused real-time mode will be
described later.

UTIME

UTIME is a package that patch the Linux kernel to provide high resolution timers
(timers with microsecond resolution, hence the name). A naive approach to increase
the resolution of the timers in Linux would be to decrease the time-slice alloted
to different processes, however this would result in unacceptable overhead. Instead
UTIME uses the fact that there is a difference between the temporal resolution
and the frequency of events [30]. This difference leads to the implementation of
dynamic time-slices. To implement dynamic time-slices UTIME reprograms the
timer-chip to interrupt the CPU when the next event is scheduled, instead of after
a fixed time. This method is similar to those used by RT-Linux and RTAI to
schedule periodic processes. This is accomplished by patching the Linux kernel
itself, making modifications to the scheduler and the Linux timer data structure.
UTIME uses the high resolution TSC (time stamp counter, see section 9.1) to keep
track of the absolute time that has elapsed. UTIME even provides a mechanism
for synchronizing the TSC using the Network Time Protocol (NTP), effectively
removing the clock drift over time. The overhead of UTIME to Linux is reported to
be about 0.15% [31], however the overhead is probably less on systems with on-dye
timers. The implementation details of UTIME can be found in [31, 30].

Real-Time Tasks

Real-time tasks in KURT are called RTMods (real-time modules) and run as threads
in the kernel space. Real-time tasks are created as loadable Linux kernel modules.
There exists one built-in real-time module, called the “Process RTMod”, this module
is responsible for running a user space process when invoked. The Process RTMod
allows for user space real-time processes and is similar to the “buddy” used in LXRT
(section 8.2).

Scheduling

The KURT scheduler is an explicit plan scheduler, and as such the real-time task
must specify explicitly the times at which it needs to be invoked. A real-time
task specifies the schedule via a schedule file. KURT also supports periodic mode
scheduling for one real-time task. To minimize jitter KURT programs the timer to
interrupt the processor 50 µs before a deadline is to be met. The interrupt handler
then busy-waits until the actual time expires and then invokes the real-time task.

46

Since KURT resides inside the kernel instead of underneath as RTAI and RT-
Linux, it suffers from unpredictability due to the fact that the Linux kernel disables
interrupts as a mean of synchronization. To overcome this drawback KURT allows
the user to switch the system between three different modes. These modes are:
normal mode, mixed mode and focused mode. In normal mode a KURT Linux
system behaves as a normal Linux system except that microsecond resolution timers
are available through the UTIME package. In mixed mode, which are the most
commonly used for “desktop” computers, both standard Linux processes and real
time processes are allowed to run. Thus in mixed mode it is possible for standard
Linux processes to incur timing distortions to the real-time system by using system
services that disables interrupts, such as disk access2. In focused mode only processes
that are marked as real-time are allowed to run. When running in focused mode
Linux is basically disabled and only the set of real-time processes, which often are
known to the developer, are allowed to run. Thus the developer can take care that
none of the real-time tasks use any system services that disables interrupts. Since
focused mode does not allow Linux processes to run it is most commonly used on
embedded or dedicated real-time systems.

8.4 Summary

From chapter 8 it is clear that the designs of RT-Linux and RTAI are very similar,
the RT plugin in figure 8.2 roughly corresponds to the HAL and RTAI kernel in figure
8.3. However KURT uses a completely different approach and try to provide real-
time capabilities from inside the Linux kernel rather than underneath as RT-Linux
and RTAI do. KURT also uses an explicit schedule, constructed from a schedule
file instead of the priority based scheduler with support for one-shot and periodic
tasks. Below is given a brief summary of some key features in the different operating
systems.

• Implementation

– RT-Linux - A small predictable (real-time) OS and interrupt buffer is
introduced underneath the normal Linux kernel, which is run as a low
priority task.

– RTAI - A HAL is introduced to handle uncertainty related to hardware.
A small predictable (real-time) OS runs on top of the HAL. Linux runs
as a low priority task. The real-time OS module is separated from the
HAL and can easily be changed.

– KURT - The Linux kernel is patched to provide microsecond timer reso-
lution and dynamic time slices. An explicit real-time scheduler is intro-
duced in the Linux kernel.

2The file system code and the device driver code for the disk drive may block interrupts for up
to 250 µs [31].

47

• Available architectures

– RT-Linux - x86, PowerPC, MIPS, AMD Elan NetSC520 and Alpha.

– RTAI - x86, PowerPC, MIPS, m68k and ARM.

– KURT - All platforms supported by Linux that have the same TSC fea-
ture as the Pentium processor.

• IPC

– RT-Linux - Shared memory for communication between RT tasks and
user space applications. FIFOs for communication between RT tasks and
user space applications via a character device in the /dev portion of the
file system.

– RTAI - Shared memory for communication between RT tasks and user
space applications. FIFOs for communication between RT tasks and
user space applications via a character device in the /dev portion of the
file system. Mailboxes (advanced FIFOs) provides advanced messaging
capabilities with custom sized messages, priorities and multiple listeners.
When using LXRT in soft real-time mode normal Linux communication
primitives can be used.

– KURT - In soft real-time mode normal Linux communication primitives
can be used.

• Uncertainty related to hardware (interrupts)

– RT-Linux - Instructions for disabling/enabling interrupts in Linux is re-
placed by calls to the RT plugin which maintains a variable that keeps
track of the interruptible state of Linux. When interrupts are disabled
by Linux they are queued by the RT plugin and delivered when Linux
re-enables interrupts.

– RTAI - Instructions for disabling/enabling interrupts in Linux is replaced
by calls to function using function pointers maintained in the HAL. When
no RT tasks are running interrupts work as usual. When one or more
RT tasks are running the HAL dispatches interrupts to the appropriate
place, queuing them if necessary.

– KURT - Not handled, when run in focused mode it is up to the program-
mer to make sure no such uncertainty occurs.

• Real-time processes

– RT-Linux - RT tasks are run in the kernel address space.

– RTAI - RT tasks are run in the kernel address space or user space via the
LXRT package.

48

– KURT - RT tasks can run in the kernel address space, but more common
is that they run in user space via the Process RTMod.

• Schedulers

– RT-Linux - Priority based and EDF schedulers are provided. It is possible
to write custom scheduler modules. Support for periodic and sporadic
scheduling.

– RTAI - A priority based scheduler is provided. The scheduler or the
complete RT kernel can be changed to a custom one. Support for periodic
and sporadic scheduling.

– KURT - Explicit scheduling via a schedule file.

49

Chapter 9

Implementation

To select an OS on which to implement the control system of the PUMA 560 ma-
nipulator the real-time performance of the three RT Linux derivatives was measured
and their usability was evaluated.

9.1 Measuring Scheduling Jitter

Implementing algorithm 2 (page 41) on RT-Linux and RTAI proved to be quite easy
since they both support periodic mode. KURT also claims to have a periodic mode,
but as will be described later, it has some serious issues.

One crucial part of algorithm 2 is the GetTime() function. The accuracy of the
results will be limited by the resolution and correctness of the GetTime() function,
and it is therefore important to implement this with as high accuracy as possible.
The platform on which these tests were carried out is described in appendix B.
Note that the processor is an Intel Pentium II. Most modern processors, including
the Pentium II, have something called a time stamp counter , or TSC for short. On
the Pentium II the TSC is implemented as an 8-byte integer that is incremented
by one on each clock cycle [22]. The system on which the tests were performed
runs at 400 MHz, thus the TSC was incremented by one every 2.5 ns. A temporal
resolution of 2.5 ns is more than enough to accurately measure the scheduling jitter
of a periodic process with a period of 500 µs. For a better understanding of jitter
and the effects of deviations in the CPU frequency see [22].

The periodic mode of KURT is broken and will possibly be removed from future
releases of KURT [32]. There is also an issue with the UTIME package that makes it
unreliable [33]. Finally I was unable to reliably create and run an explicit repeatable
schedule. Most of the time the scheduling stopped after repeating itself a few times.
It is my opinion that, until the problems with KURT mentioned above have been
resolved, it is not possible to reliably measure the scheduling jitter of KURT.

The code that implements algorithm 2 for RT-Linux and RTAI can be found
in appendix A. Common for both these algorithms is that they store the results
to a file rather than print them on the screen, this allows for later analysis of the

50

scheduling performance.
Figure 9.1 and 9.2 shows the scheduling jitter of RT-Linux and RTAI. All tests

where run on the system described in appendix B. The real-time task that measured
the jitter was run at a frequency of 2 kHz, for a total of 100 000 periods. The jitter
was measured when the rest of the system was idle as well as very stressed (i.e. high
CPU and I/O load). The following four commands where used to stress the CPU
and I/O and gave near constant 100% CPU usage.

sudo ping -f 192.168.218.32

while "true"; do ls -aR; sync; done

while "true"; do cp /home/shared/kernel/linux-2.4.18.tar.bz2 \

/tmp/tmpkern; sync; rm /tmp/tmpkern; sync; done

top -d 0.05

These commands do much of their work in the Linux kernel (file system I/O and
network I/O) and should put a lot of stress on the system, in fact the system
appeared very sluggish. Histograms showing the distribution of the scheduling jitter
is shown in figure 9.1 and 9.2. Because RT-Linux has a few periods (3% and 0.05%
respectively for stressed and idle system) with large scheduling jitter figure 9.1 (c)
and 9.1 (d) show the histogram with the values above and below ±10 µs cut off and
ignored.

51

0

25

50

75

100

-46
4
-18
2 100 382 664 946 122

8
151
0
179
2
207
4
235
6
263
8
292
0
320
2
348
4
376
6
404
8
433
0
461
2
489
4

µs

%

(a) Stressed CPU and I/O.

0

15

30

45

60

-50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 44
µs

%

(b) No stress to CPU or I/O.

0

5

10

-9,
9
-8,
9
-7,
9
-6,
9
-5,
9
-4,
9
-3,
9
-2,
9
-1,
9
-0,
9 0,2 1,2 2,2 3,2 4,2 5,2 6,2 7,2 8,2 9,2

µs

%

(c) Stressed CPU and I/O with the 1597
highest and the 1595 lowest values cut
off.

0

10

20

30

-9,
9
-8,
9
-7,
9
-6,
9
-5,
9
-4,
9
-3,
9
-2,
9
-1,
9
-0,
9 0,2 1,2 2,2 3,2 4,2 5,2 6,2 7,2 8,2 9,2

µs

%

(d) No stress to CPU or I/O with the
25 highest and the 23 lowest values cut
off.

Figure 9.1. Scheduling jitter histogram for RT-Linux.

52

Max (µs) Min (µs) Mean (ns) Median (ns) Std. deviation (µs)

RTAI 6.686 -6.207 -1 225 0.7217
RTAI * 9.562 -9.859 -1 -11 1.073

RT-Linux 48.90 -50.24 0 32 0.9292
RT-Linux * 5148.0 -492.6 1024 -32 53.51

Table 9.1. Scheduling jitter properties for 100 000 periods running at 2 kHz. A *
denotes stressed CPU and I/O. The table shows the maximum, minimum, mean and
median deviation from the reference period (500 µs) as well as the standard deviation.

0

5

10

-9,
8
-8,
8
-7,
8
-6,
8
-5,
9
-4,
9
-3,
9
-2,
9
-2,
0
-1,
0 0,0 1,0 1,9 2,9 3,9 4,9 5,8 6,8 7,8 8,8

µs

%

(a) Stressed CPU and I/O.

0

5

10

15

20

25

-6,
1
-5,
5
-4,
9
-4,
2
-3,
6
-2,
9
-2,
3
-1,
6
-1,
0
-0,
3 0,3 1,0 1,6 2,2 2,9 3,5 4,2 4,8 5,5 6,1

µs

%

(b) No stress to CPU or I/O

Figure 9.2. Scheduling jitter histogram for RTAI.

The data presented in this section show some interesting results. The perfor-
mance of RTAI is very good with a scheduling jitter of less than 10 µs even on a
stressed system. Noticeable is that the performance is relatively unchanged weather
the system is idle or stressed, this indicates that the preemption of Linux works
well. On average RT-Linux performs well, however for some reason a fraction of of
the deadlines are missed by a (relatively) large time. For instance on an idle sys-
tem RT-Linux performs almost as well as RTAI 99% of the time but the worst case
scheduling jitter is 10 times greater than that of RTAI. Most noticeable in table 9.1
is that the worst case scheduling jitter of RT-Linux on a stressed system is as large
as 5 ms - a very long time when the period is only 0.5 ms!

Since the scheduling jitter is measured relative to the previous execution of the
real-time code one would expect to find the distribution of the scheduling jitter in
figure 9.1 and 9.2 to be approximately symmetric around 0 s, this is also the case.

To summarize, RTAI schedules its events within 10 µs from the deadline and
RT-Linux schedules its events within 10 µs from the deadline 97% of the time but
as a worst case scenario can miss up to 10 events at 2 kHz.

53

9.2 Evaluating the Usability

This section provides a summary of my experience when using the three different
operating systems. The system running the different kernels was Redhat Linux 7.0
which was installed on the hardware described in appendix B. Since Redhat Linux
7.0 is distributed with the 2.4.18 version of the Linux kernel it was decided that the
same version (2.4.18) should be used for the real-time kernels as well. A table of pro
et contra for each operating system is given in table 9.2, 9.3 and 9.4 at the end of
each section.

9.2.1 RT-Linux

At the time the systems were evaluated1 the most recent stable release of RT-Linux
was 3.1. The 3.1 version did not officially support the 2.4.18 kernel, fortunately
there was a contribution patch for the x86 architecture available on FSM Labs’ ftp
server2. This patch was successfully applied to the Linux 2.4.18 kernel available at
ftp.kernel.org. The process of patching, configuring, compiling and installing the
RT-Linux kernel and modules was well documented and was executed flawlessly
except that the compilations produced a lot of warnings, however this did not seem
to effect the system.

The RT-Linux distribution comes with some examples, most notable the hel-
loworld example which is a very clear and simple example. The helloworld example
shows, in less than thirty lines of code, how to create and schedule a periodic real-
time task.

RT-Linux supports the POSIX 1003.13 “single process/minimal real-time sys-
tem” interface [25]. The API is documented as Linux manual pages and on-line on
FSM Labs’ web-page.

Since RT-Linux runs at the same level as the Linux kernel it cannot use any
standard Linux libraries, however it is possible, but dangerous, to call functions in
the Linux kernel itself. RT-Linux supports both FIFOs and shared memory to allow
communication between real-time tasks and Linux processes. Since all real-time
processes are actually threads running in the same address space shared memory
can also be used to communicate between different real-time tasks (and in fact also
Linux kernel threads).

1September 2002
2RT-Linux 2.4.18 contribution patch ftp.fsmlabs.com:/pub/rtlinux/contrib/gearheart/

rt-patch-2.4.18-rtl3.1.tgz

54

Pro

• Supports the POSIX 1003.13 interface.

• Small and simple API documented as manual pages.

• Support for custom schedulers.

• Installation process is simple and well documented.

• Very good example to get started.

• “Getting started” documentation that covers all basic and important features
of RT-Linux.

• Supports the x86, PowerPC, MIPS, AMD Elan NetSC520 and Alpha
platforms.

Contra

• No support for real-time in user-space.

• Impossible to call Linux libraries and dangerous to call Linux kernel
functions.

• The amount of warnings generated during compilation is disturbing.

Table 9.2. Pro et contra for RT-Linux.

9.2.2 RTAI

The most recent stable version of RTAI that was available at the time of evaluation
was 24.1.9, however during this project a new version of RTAI was released (24.1.10).
The 24.1.10 release include NEWLXRT which is an improved version of the LXRT
system described in section 8.2. Other things of interest in the new release was
support for writing interrupt-handlers in user space and that the process of making
a bootable RTAI floppy is simplified.

Installing RTAI was a breeze, except for one major drawback. RTAI is unable to
compile with gcc version 3.0 or newer, version 2.96 is not supported either. However
this is documented in the accompanying text file GCC-WARNINGS which states that:
”This is mainly due to bad RTAI inline asm code that needs to be cleaned up”.
After downgrading gcc to the recommended version 2.95.3 the installation proceeded
perfectly.

RTAI comes with almost the same set of examples as RT-Linux, unfortunately
the excellent helloworld example is missing.

55

The documentation for RTAI is what really makes it stand out, there is well
written and useful documentation available both for those who are getting started
and for those who really are interested in using the full capabilities of the system.

Real-time tasks running under RTAI are Linux kernel threads and hence do not
have access to Linux libraries or, at least not safely, Linux system calls. However
there is an interesting addition to RTAI called LXRT (described in section 8.2) that
allows kernel modules written for RTAI to be recompiled into user space. Especially
the NEWLXRT provided in version 24.1.10 have a symmetric API that may be used
to run hard real-time tasks in both kernel space and user space. LXRT/NEWLXRT
provides means to call standard Linux library functions in real-time tasks, however
this makes the task soft real-time. The advantage of being able to move between
user space and kernel space can help shorten development times by doing most of the
development in user space and only moving to the kernel for maximum performance.

Pro

• Powerful and well documented API.

• POSIX 1003.1c support, limited POSIX 1003.1b support.

• Support for different real-time kernels.

• Support for custom schedulers.

• Dynamic memory allocation using memory pools.

• Installation process is easy and well documented.

• Supports the x86, PowerPC, MIPS, m68k and ARM platform.

• LXRT/NEWLXRT allows development of real-time processes in a uniform
environment inside and outside of the kernel.

• Easy to debug when developing in LXRT since gdb is available.

• When soft real-time is required Linux libraries can be accessed when using
LXRT.

Contra

• Unable to compile with more recent versions of gcc.

Table 9.3. Pro et contra for RTAI.

56

9.2.3 KURT

The KURT distribution is divided in two separate parts, first there is the patch
used to add UTIME and KURT support to the Linux kernel and secondly there
is the KURT user space library that provides the real-time programmer with the
KURT API. Unfortunately I have been unable to locate any version information
in the KURT API package and thus can not tell which version was used3. The
latest kernel patch at the time was version 2.4.18-beta. Both packages comes with
a README file that explains the installation process in a satisfactory manner and
both packages were also installed successfully without any problems.

The KURT API package comes with a number of examples, these examples differ
from those of RT-Linux and RTAI and are, in general, more complex. Unfortunately
there is no documentation describing the examples included in the package. Some
of the examples print out a description of their use when run and thus it is possible
to determine what they are supposed to do. Several of the examples appear to be
broken and even tough they run they produce strange or incorrect results. Some
of the more striking and annoying bugs in the examples are the disability to run a
periodic task using the KURT periodic mode (which was discovered to be broken,
see section 9.1) as well as the bug in the make_binary_sched example that does not
allow a schedule to be repeated, thus making it difficult to run an infinite periodic
task.

The main documentation for KURT is in the form of a user-manual4. The manual
in itself is not bad, on the contrary, it is an extensive document that covers many
aspects of KURT. The design of KURT with its explicit schedule policy, numerous
operation modes, awkward API and some weird special cases still makes it hard to
get started with KURT. The manual suffers from some of the same problems as the
examples i.e. many code listings contain errors. I can only guess that this is because
the manual and examples are not in sync with the KURT release.

Overall my experience with KURT was not a pleasant one. I never got anything
to work exactly the way I wanted or expected. In my opinion KURT is not finished
and to me KURT seams like a painting made by hundreds of artists each using his
own bush and not caring to much about the others. During the evaluation of KURT
these issues where briefly discussed on the KURT mailing-list. In this discussion it
was stated that “This is not finished work. It seems as if it gets worked on when some
grad student needs to get his thesis finished and is left to rot in the in betweens.”
[22], this remark was confirmed by Dr. Niehaus (one of the lead developers behind
KURT) and is pretty much aligned with my own conclusion about KURT.

3The KURT API package was downloaded from the KURT web-site http:///www.ittc.ku.edu/
kurt/ on September 11 2002

4KURT user manual http://www.ittc.ku.edu/kurt/papers/user-manual-DRAFT.pdf

57

Pro

• A promising user-manual.

• Installation process is easy and well documented.

• Real-time processes run above the Linux kernel and thus have access to all
the standard features of Linux, including libraries (but are also soft
real-time).

• Easy to debug since the real-time process runs above the kernel and allows
the use of standard debugging tools such as gdb.

• Support for dedicated, kernel level, real-time tasks using the focused mode.

• Supports all architectures that have a the same kind of TSC as the Pentium
processor.

Contra

• Broken periodic mode.

• Errors in examples and documentation.

• Not POSIX compliant.

• Many different modes of operation makes it hard to get started.

• Explicit scheduling makes it harder to get started.

• When run as a firm RTOS in focused mode no Linux applications are allowed
to run, practically disabling Linux.

• Not stable.

Table 9.4. Pro et contra for KURT.

9.3 Summary

Below the topics of table 7.1 are repeated and each topic is provided with a comment
for each operating system tested.

• Ease of installation

– RT-Linux - Compiles without modifications but with a lot of warnings.
Installation process is well documented.

58

– RTAI - Compiles without modifications with the right compiler, unable to
compile with gcc 3.x compilers. Installation process is well documented.

– KURT - Compiles without modifications and the installation process is
well documented. No version information in the KURT API package.

• Documentation

– RT-Linux - Good documentation of functions in HTML or man-page
format. Good set of examples that makes it easy to get started.

– RTAI - Well documented API.

– KURT - Well documented but documentation contains errors. Many
broken and/or unexplained examples.

• API

– RT-Linux - The API is kept small for simplicity, but nothing is really
missing. Conforms to the POSIX 1003.13 standard.

– RTAI - Good consistent API contains more functions than RT-Linux. If
this is good or bad depends on the use. POSIX.1c compliant, limited
POSIX.1b compatibility.

– KURT - Large non standard API provides a lot of functionality.

• Interaction with Linux

– RT-Linux - RT tasks run in the Linux kernel address space and can
not safely use kernel functions. Linux libraries are unreachable. Shared
memory and FIFOs are available for IPC.

– RTAI - RT tasks run in the Linux kernel address space and can not
safely use kernel functions. If the LXRT package is used, user space real-
time applications is possible. With LXRT Linux libraries are reachable if
only soft real-time requirements are needed. Shared memory, FIFOs and
mailboxes are available for IPC.

– KURT - When only soft real-time is required all Linux libraries are reach-
able, when in focused mode the programmer can not safely use any Linux
services.

• Development and debugging tools

– RT-Linux - Standard Linux kernel development and debugging tools.

– RTAI - Standard Linux kernel development and debugging tools, gdb is
available when LXRT is used.

– KURT - Standard Linux development and debugging tools such as gcc
and gdb are available.

59

• Hardware support

– RT-Linux - Supports the x86, PowerPC, MIPS, AMD Elan NetSC520
and Alpha platforms.

– RTAI - Supports the x86, PowerPC, MIPS, m68k and ARM platform.

– KURT - Supports all architectures that have a the same kind of TSC as
the Pentium processor.

9.4 Choosing an OS and Implementing the Control Sys-

tem

The OS that was chosen to implement the PUMA 560 control system was RTAI.
KURT was out of the question because it was not reliable enough. RT-Linux and
RTAI have roughly the same performance when it comes to scheduling jitter. What
made RTAI the winner was the fact that it supports real-time applications in user
space with the LXRT package, it has a more modular and extensible design with
support for custom kernels and dynamic memory allocation. The implementation of
the control system is described in further detail in another (not yet finished) master
thesis, however section 9.4.1 provides an overview of the control system.

9.4.1 Control System Overview

To control the PUMA 560 a ServoToGo5 card was used. This card provides analog-
to-digital (AD) and digital-to-analog (DA) converters that are connected to the
PUMA 560 and its power amplifier (PA). Thus the lowest level of the control system
is a Linux driver for the ServoToGo card (stg.o in figure 9.3). This driver provides
basic functionality such as setting joint torque and reading encoders and poten-
tiometers. On top of this is the actual real-time module (pumaCtrl.o in figure 9.3)
that runs two threads. One thread is the PID (Proportional, Integral, Derivative)
controller and the other thread is a communication thread used to communicate
with the user level application throughout the interface defined by the PumaClient

class (PumaClient in figure 9.3). The details of pumaCtrl.o can be seen in figure
9.4. This control system has been implemented on the system described in appendix
B and works well. The PID controller runs at a frequency of 1 kHz.

The stg.o module provides the following low-level interactions (along with some
additional convenience functions) with the PUMA 560 and its PA:

• Toggle breaks.

• Toggle power.

• Set joint torque.

5Servo To Go, Inc http://www.servotogo.com

60

• Set encoder values.

• Read potentiometer and encoder values.

ServoToGo Card

stg.o

FIFO MBX

PumaClient

IK APBPRM

Hardware Level

Kernel
Level

Com
Level

User Level

pumaCtrl.o

PUMA 560

Figure 9.3. Control system block diagram.

The real-time module pumaCtrl.o consists of two parts, running in separate
threads (figure 9.4). First there is the actual PID controller that uses the services
provided by stg.o to retrieve information about the state of the PUMA and, after
calculating a suitable torque according to the control law used, set the joint torques.
The other thread is the communications thread that handles requests from user
space applications. The communications thread works in the following way:

• If there are no messages available the thread may block for up to 10 ms.

• If there is one or more messages available in the message queue, they are
received and handled in turn.

• When a message is received the communications thread locks access to the
reference values by entering a mutex region. While in the mutex region, the
communications thread may change the reference values of the PID controller
or interact directly with the stg.o module (which is made thread safe in-
ternally) for operations such as turning power of or brakes on. Next, the
communications thread leaves the mutex region.

61

• If the message requires a response, the response is put into a FIFO buffer
which is connected to the user space application. Finally the communications
thread returns to its original state, waiting for a new message.

Wait Message

Set Values

PID Message

Requires Response

Serve Message

Return Values

Suspend

Values Changed

Do PID Control

Copy Values

YES
NO

NO
YES

YESNO

Mutex Region Mutex
Region

Got mutex
NO YES Blocks for mutex

PID controller thread Communications thread

Figure 9.4. Internals of pumaCtrl.o.

The PumaClient module in figure 9.3 is the interface provided to user space
applications. It is implemented as a C++ class and provides (among others) the
following functions:

• Set and read the encoder values.

• Read the potentiometers.

• Set the reference value for each joint (i.e. move a joint to a specific angle).

• Read the current angles, angular velocities and angular acceleration of each
joint.

• Toggle brakes and power.

• Calibrate the arm to provide absolute joint angles (instead of relative which
occurs when the arm is not calibrated).

62

Chapter 10

Results and Conclusions - RTOS

Of the three real-time operating-systems evaluated in this thesis it is clear that
RT-Linux and RTAI can perform the task of a manipulator controller well, however
KURT is not finished work. The scheduling performances of RT-Linux and RTAI
are similar, however RTAI appears to perform better on a stressed system with a
maximum deviation of 10 µs (opposed to 5 ms on RT-Linux) from the reference
period of 500 µs on the test system.

RTAI has the advantage of being a “true” open-source effort, begun at a university
and currently developed by a relatively large number of people around the world.
RT-Linux on the other hand is mainly developed by FSM Labs, that offers support,
which can be good for corporate users. RTAI also offers the LXRT module which
could potentially be a great advantage since it allows users to write both soft and
hard real-time applications in both user space and kernel space using a symmetric
API, eliminating the need for real-time “inside” of Linux (such as KURT). And of
course having one OS and API for all your real-time needs is advantageous.

KURT was a bit of a disappointment, however the idea behind KURT is not
actually that bad, and I could actually imagine the benefits of the UTIME package
(microsecond timer resolution) in the “real” Linux kernel itself. What KURT would
need is some serious clean up. Features that do not work should be stripped out
and reimplemented. One way to accomplish this would be to try to gather a larger
number of developers from outside KU, building a strong open-source community
around KURT. This is what the RTAI project has done recently and it has taken
on a more constant development pace, reducing the sporadic behavior that is still
apparent with KURT.

63

64

References

[1] R. Bohlin, Robot Path Planning. PhD thesis, Chalmers university of technology,
Göteborg university, 2002.

[2] J. Barraquand, L. Kavraki, J. Latombe, T. Li, R. Motwani, and P. Raghavan,
A random sampling scheme for path planning in Robotics Research (G. Giralt
and G. Hirzinger, eds.), pp. 249–264, Springer, 1996. URL http://citeseer.nj.
nec.com/barraquand96random.html.

[3] D. Hsu, L. Kavraki, J. Latombe, R. Motwani, and S. Sorkin, On finding nar-
row passages with probabilistic roadmap planners in Robotics: The algorithmic
perspective (L. E. K. P. K. Agrawal and M. Mason, eds.), (Natick, MA), pp. 141–
153, A.K. Peters, 1998. URL http://citeseer.nj.nec.com/article/hsu98finding.
html.

[4] J.-C. Latombe, Robot Motion Planning. Kluwer Academic Publishers, 1991.

[5] R. C. Gonzalez and R. E. Woods, Digital Image Processing. Prentice-Hall, Inc.,
2001.

[6] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, Proba-
bilistic Roadmaps for Path Planning in High-Dimensional Configuration
Spaces Tech. Rep. CS-TR-94-1519, 1994. URL http://citeseer.nj.nec.com/
kavraki96probabilistic.html.

[7] L. Kavraki and J. Latombe, Randomized preprocessing of configuraton space for
fast path planning in IEEE Int. Conf. on Robotics and Automation, 1994.

[8] Overmars and Svestka, A Probabilistic Learning Approach to Motion Planning
in Algorithmic Foundations of Robotics, The 1994 Workshop on the Algorithmic
Foundations of Robotics, A. K. Peters (Goldberg, Halperin, Latombe, and Wil-
son, eds.), 1995. URL http://citeseer.nj.nec.com/overmars94probabilistic.html.

[9] S. A. Wilmarth, N. M. Amato, and P. F. Stiller, Motion Planning for a
Rigid Body Using Random Networks on the Medial Axis of the Free Space
in Symposium on Computational Geometry, pp. 173–180, 1999. URL http:
//citeseer.nj.nec.com/wilmarth99motion.html.

I

[10] C. I. Connolly and R. A. Grupen, Applications of Harmonic Func-
tions to Robotics Tech. Rep. UM-CS-1992-012, Computer and Informa-
tion Science Department, 1992. URL http://citeseer.nj.nec.com/article/
connolly93applications.html.

[11] E. Rimon and D. E. Koditschek, Exact Robot Navigation Using Artificial Poten-
tial Functions IEEE on Robotics and Automation, vol. 8, pp. 501–518, October
1992.

[12] Y. K. Hwang and N. Ahuja, Gross Motion Planning - A Survey ACM Computing
Survey, vol. 24, pp. 219 – 291, September 1992.

[13] W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and Bound-
ary Value Problems. John Wiley & Sons, Inc, sixth ed., 1997.

[14] T. Erikson, H. Christiansson, E. Lindahl, J. Linde, L. Sandberg, and M. Wallin,
Fysikens Matematiska Metoder. Teoretisk Fysik, KTH, third ed., 2001.

[15] P. Svestka, On probabilistic completeness and expected complexity of probabilis-
tic path planning tech. rep., Utrecht University: Information and Computing
Sciences., 1996. URL http://citeseer.nj.nec.com/article/svestka96probabilistic.
html.

[16] A. M. Tenenbaum, Y. Langsam, and M. J. Augenstein, Data Structures Using
C. Prentice-Hall, Inc, 1990.

[17] S. Russell and P. Norvig, Artificial Inteligence: A Modern Approach. Prentice-
Hall, Inc, 1995.

[18] T. Glad and L. Ljung, Reglerteknik - Grundläggande Teori. Studentlitteratur,
Lund, 1989.

[19] Free On-Line Dictionary Of Computing URL http://wombat.doc.ic.ac.uk/
foldoc/.

[20] M. J. Bach, The Design of the UNIX Operating System. Prentice-Hall, Inc,
1986.

[21] A. S. Tanenbaum, Modern Operating Systems. Prentice-Hall, Inc, 2nd ed., 2001.

[22] F. M. Proctor, Meassuring Performance in Real-Time Linux tech. rep.,
National Institute of Standards and Technology, 2001. URL ftp://ftp.
realtimelinuxfoundation.org/pub/events/rtlws-2001/proc/ko3-proctor.pdf.

[23] M. Barabanov, A Linux-based Real-Time Operating System Master’s thesis,
New Mexico Institute of Mining and Technology, 1997.

[24] FSM Labs, Inc., Getting Started with RTLinux, 04 2001.

II

[25] J. Nilsson and D. Rytterlund, Modular Scheduling in Real-Time Linux Master’s
thesis, MdH, Mälardalen University, 2000.

[26] P. Mantegazza, Dissecting DIAPM RTHAL-RTAI URL http://www.aero.
polimi.it/~rtai/documentation/articles/paolo-dissecting.html.

[27] RTAI Programming Guide 1.0 2000. URL http://www.aero.polimi.it/~rtai/
documentation/reference/rtai_prog_guide.pdf.

[28] Some Experiences in fast hard-real time control in user space with RTAI-LXRT
(!), 2000. URL http://www.aero.polimi.it/~rtai/documentation/conferences/
App_Orlando00.pdf.

[29] D. Niehaus, W. Dinkel, and S. B. House, Effective Real-Time System Imple-
mentation with KURT Linux tech. rep., Information and Telecommunication
Technology Center, Electrical Engineering and Computer Science Department,
Univerisy of Kansas.

[30] R. Hill, B. Srinivasan, S. Pather, and D. Niehaus, Temporal Resolution and
Real-Time Extensions to Linux tech. rep., Information and Telecommunication
Technology Center, Electrical Engineering and Computer Science Department,
June 1998.

[31] S. Balaji, A Firm Real-Time System Implementation using Commercial Off-
The-Shelf Hardware and Free Software Master’s thesis, University of Kansas,
1998.

[32] Kurt mailing list archive Oct 2002 URL http://www.ittc.ku.edu/~majord/
linux-kurt/200210/.

[33] Kurt mailing list archive May 2002 URL http://www.ittc.ku.edu/~majord/
linux-kurt/200205.

III

IV

Part III

Appendix

V

VI

Appendix A

Code listings

A.1 RT-Linux implementation of algorithm 2

/**************************************80**************************************/

/* Use tab width = 5, indent level width = 5, and a fixed-font in a >= 80

* character wide window to view this file.

*/

/* Tests the performance of RT-Linux in periodic mode.

*/

/*

* rtl.c

* RT_Eval

*

* Created by Daniel Aarno on Sep 23 2002.

* Copyright (c) 2002 Daniel Aarno, Andreas Ragnerstam.

*

* This program is free software; you can redistribute it and/or modify

* it under the terms of the GNU General Public License as published by

* the Free Software Foundation; either version 2 of the License, or

* (at your option) any later version.

*

* This program is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General Public License for more details.

*

* You should have received a copy of the GNU General Public License

* along with this program; if not, write to the Free Software

* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

*/

//Usuall kernel/module stuff

#include <linux/kernel.h>

#include <linux/module.h>

//So we can use RT-Linux

#include <rtl.h>

#include <time.h>

#include <pthread.h>

#include <rtl_fifo.h>

//We’re doing this for everyone

MODULE_LICENSE("GPL");

//No one should call us

EXPORT_NO_SYMBOLS;

//The number of fifos to allocate and deallocate at startup

#define kNrFifos 1

//The default fifo buffer size (500k)

//This will fit the entire test, so there is no risk of cat beeing too slow

//under heavy load

#define kDefaultFifoSize (1 < < 19)

//The period at which to run (500 us)

VII

#define kPeriod 500000

//The number of times to run (100000 * 500 us = 50s)

#define kLoops 100000

///The fifo type ID

enum {

kDataOut = 0,

kDataIn,

kCtrl

};

///Pointer to the RT-task to schedule

pthread_t thread;

///The number of fifos actually allocated (0 means 1 fifo allocated)

static int nrFifos = -1;

/**

* Meassure the relative (to previous run) error of the RT-scheduler.

* This function tries to get scheduled kLoops times at the periodic

* rate specified by kPeriod. It then meassures the difference between

* the current time and the time it was supposed to run acording to the

* last run. It finally puts this value (that should be close to zero) in the

* FIFO coresponding to kDataOut.

* @param n Ignored

*/

static void Measure(int n)

{

long long t, prev=0;

long dt, i;

rtl_printf("Starting RT-Linux meassurement...\n");

for(i = 0; i < kLoops; i++) {

pthread_wait_np(); //Wait to be scheduled

t = gethrtime(); //Get the time when we are switched in

if(!prev) { //If it’s the first time, assume no fault

prev=t-kPeriod;

}

//Calc. the error with respect from LAST run and put it in the FIFO

//Note this is different from the cumulative error from

//t - start + i*kPeriod

dt=t - prev - kPeriod;

rtf_put(0,&dt,sizeof(dt));

prev=t; //Store current switched-in time as the previous time

}

rtl_printf("RT-Linux meassurement completed");

while(1) { //wait here here until someone kills us

pthread_wait_np();

}

}

void * start_routine(void *arg)

{

struct sched_param p;

//We’re really interested in good performance

p.sched_priority = sched_get_priority_max(SCHED_FIFO);

//Set the scheduing for our RT-thread

pthread_setschedparam (pthread_self(), SCHED_FIFO, &p);

//Set the RT-thread to be awoken at a periodic rate

pthread_make_periodic_np (pthread_self(), gethrtime() + 1000000000, kPeriod);

//Call the Meassurement function (in this thread of execution)

Measure(1);

return 0;

}

int init_module(void)

{

long i=0;

long size;

//Create fifos

for(i = 0; i < kNrFifos; i++) {

size = rtf_create(i, kDefaultFifoSize);

if(size < 0) {

rtl_printf("Error opening fifo\n");

return size;

VIII

}

nrFifos = i;

}

//Create a new thread of execution (start_routine)

return pthread_create (&thread, NULL, start_routine, 0);

}

void cleanup_module(void)

{

//Return the FIFOs we allocated

for(;nrFifos >= 0; nrFifos--)

{

rtf_destroy(nrFifos);

}

//Delete our thread in a safe way

pthread_delete_np (thread);

}

A.2 RTAI implementation of algorithm 2

/**************************************80**************************************/

/* Use tab width = 5, indent level width = 5, and a fixed-font in a >= 80

* character wide window to view this file.

*/

/* Tests the performance of RTAI real-time Linux in periodic mode.

*/

/*

* rtai.c

* RT_Eval

*

* Created by Daniel Aarno on Sep 18 2002.

* Copyright (c) 2002 Daniel Aarno, Andreas Ragnerstam.

*

* This program is free software; you can redistribute it and/or modify

* it under the terms of the GNU General Public License as published by

* the Free Software Foundation; either version 2 of the License, or

* (at your option) any later version.

*

* This program is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General Public License for more details.

*

* You should have received a copy of the GNU General Public License

* along with this program; if not, write to the Free Software

* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

*/

//Usuall kernel/module stuff

#include <linux/kernel.h>

#include <linux/module.h>

//So we can use RTAI

#include <rtai.h>

#include <rtai_sched.h>

//We’re doing this for everyone

MODULE_LICENSE("GPL");

//No one should call us

EXPORT_NO_SYMBOLS;

//The number of fifos to allocate and deallocate at startup

#define kNrFifos 1

//The default fifo buffer size (500k)

//This will fit the entire test, so there is no risk of cat beeing too slow

//under heavy load

#define kDefaultFifoSize (1 < < 19)

//The period at which to run (500 us)

#define kPeriod 500000

//The number of times to run (100000 * 500 us = 50s)

#define kLoops 100000

IX

///The fifo type ID

enum {

kDataOut = 0,

kDataIn,

kCtrl

} FifoType;

///Pointer to the RT-task to schedule

static RT_TASK theTask;

///The number of fifos actually allocated (0 means 1 fifo allocated)

static int nrFifos = -1;

/**

* Meassure the relative (to previous run) error of the RT-scheduler.

* This function tries to get scheduled kLoops times at the periodic

* rate specified by kPeriod. It then meassures the difference between

* the current time and the time it was supposed to run acording to the

* last run. It finally puts this value (that should be close to zero) in the

* FIFO coresponding to kDataOut.

* @param n Ignored

*/

static void Meassure(int n)

{

long long t, prev = 0;

long dt, i;

printk("Starting RTAI meassurement...\n");

for(i = 0; i < kLoops; i++) {

//Wait to be scheduled

rt_task_wait_period();

//Get the time when we are switched in

t = count2nano(rdtsc());

//If it’s the first time, assume no fault

if(!prev) {

prev = t - kPeriod;

}

//Calc. the error with respect from LAST run and put it in the FIFO

//Note this is different from the cumulative error from

//t - start + i*kPeriod

dt = t - prev - kPeriod;

rtf_put(kDataOut, &dt, sizeof(dt));

//Store current switched-in time as the previous time

prev = t;

}

printk("RTAI meassurement completed!\n");

while(1) { //wait here here until someone kills us

rt_task_wait_period();

}

}

/**

* This function currently does nothing, it is called before the RT-Task

* resumes its execution after a call to rt_task_wait_period();

*/

void sig(void)

{

}

int init_module(void)

{

int i, size;

RTIME tick_period;

//Create fifos

for(i = 0; i < kNrFifos; i++) {

size = rtf_create(i, kDefaultFifoSize);

if(size < 0) {

printk("Error opening fifo\n");

return size;

}

nrFifos = i;

}

printk("%d fifos allocated", nrFifos + 1);

//Set the timer mode

rt_set_oneshot_mode();

//Initialize the RT-task

rt_task_init(&theTask, Meassure, 0, 1 < < 12, 0, 0, sig);

//Start the timer at our specified period

tick_period = start_rt_timer(nano2count(kPeriod));

//Make our task obey the periodic scheduling, and start it in one second

X

rt_task_make_periodic(&theTask,

rt_get_time() + nano2count(1000000000), tick_period);

}

void cleanup_module(void)

{

//Return the FIFOs we allocated

for(;nrFifos >= 0; nrFifos--) {

rtf_destroy(nrFifos);

}

//Stop the timer

stop_rt_timer();

//Kill our RT-task

rt_task_delete(&theTask);

}

XI

Appendix B

System Specification

• CPU: Pentium II (Deschutes) @ 400.917 MHz

• Bogomips : 801.17

• Chipset: Intel Corp. 82443BX/ZX/DX Host bridge/controller1 (rev 03).

• STGII-8: 8 Axis Model II ISA Card (ServoToGo)

1Datasheet available at http://www.intel.com/design/chipsets/datashts/29063301.pdf

XII

Appendix C

Detailed Simulation Results

A) Circular world B) Object world C) Short narrow world

D) Worm world E) Long narrow world F) Thin world

Figure C.1. The different worlds used to evaluate the performance of APBPRM.

XIII

(a) Circular world (b) Object world (c) Short narrow
world

(d) Worm world (e) Long narrow
world

(f) Thin world

Figure C.2. Gray scale hight map of the partial solution to Laplace’s equation (φ100)
for the worlds in figure C.1. Brighter color indicates higher potential.

XIV

(a) Circular world (b) Object world (c) Narrow world

(d) Worm world (e) Long narrow
world

(f) Thin world

Figure C.3. Distribution density of 5000 nodes for APBPRM.

XV

(a) Circular world (b) Object world (c) Narrow world

(d) Worm world (e) Long narrow
world

(f) Thin world

Figure C.4. Distribution density of 5000 nodes for uniformly sampled PRM.

XVI

(a) Circular world (b) Object world (c) Narrow world

(d) Worm world (e) Long narrow
world

(f) Thin world

Figure C.5. Example paths generated by the APBPRM planner.

XVII

of nodes in roadmap 100 250 500 750

Graph build time (ms) 2 17 103 373

Graph search time (ms) 32 1319 22030 104879

Collision check time (ms) 4 14 64 183

Path Length (C-space) 1418 1380 1420 1504

of edges in roadmap 1219 7702 30768 64370

of collision checks 45.4 331 1268 2606

of points checked 1450 3983 10416 19309

Probability of failure (%) 27 1 0 0

of nodes in roadmap 100 250 500 750

Graph build time (ms) 3 25 165 431

Graph search time (ms) 141 5668 76776 239039

Collision check time (ms) 11 46 240 435

Path Length (C-space) 1394 1487 1664 1699

of edges in roadmap 1735 10908 38513 64076

of collision checks 188 1197 3945 5764

of points checked 3054 11146 31582 48066

Probability of failure (%) 4 0 0 0

Table C.1. Detailed simulation results for world A. Top with uniform sampling,
bottom with biased sampling.

of nodes in roadmap 100 250 500 750

Graph build time (ms) 3 18 106 360

Graph search time (ms) 11 82 779 2648

Collision check time (ms) 4 4 5 10

Path Length (C-space) 1212 1154 1152 1190

of edges in roadmap 1292 7789 31382 61620

of collision checks 9 16 37 53

of points checked 1190 1495 1941 2409

Probability of failure (%) 9 0 0 0

of nodes in roadmap 100 250 500 750

Graph build time (ms) 3 24 144 393

Graph search time (ms) 21 295 2252 6178

Collision check time (ms) 4 8 12 18

Path Length (C-space) 1218 1180 1180 1176

of edges in roadmap 1630 10229 35287 62142

of collision checks 21 51 100 125

of points checked 1195 2129 3329 3758

Probability of failure (%) 29 0 0 0

Table C.2. Detailed simulation results for world B. Top with uniform sampling,
bottom with biased sampling.

XVIII

of nodes in roadmap 100 250 500 750

Graph build time (ms) 3 18 117 392

Graph search time (ms) 6 95 1296 5611

Collision check time (ms) 1 4 7 18

Path Length (C-space) 1241 1259 1241 1238

of edges in roadmap 1349 8233 33261 63013

of collision checks 5 18 59 115

of points checked 597 1504 2589 4175

Probability of failure (%) 59 19 3 0

of nodes in roadmap 100 250 500 750

Graph build time (ms) 2 21 147 392

Graph search time (ms) 21 788 10067 28741

Collision check time (ms) 5 10 49 61

Path Length (C-space) 1270 1243 1255 1295

of edges in roadmap 1519 9567 36335 6159

of collision checks 21 146 440 597

of points checked 1333 3964 9011 11395

Probability of failure (%) 31 3 0 0

Table C.3. Detailed simulation results for world C. Top with uniform sampling,
bottom with biased sampling.

of nodes in roadmap 100 250 500 750

Graph build time (ms) 3 19 118 381

Graph search time (ms) 15 1267 26918 118428

Collision check time (ms) 1 22 121 300

Path Length (C-space) N/A 2899 2927 3061

of edges in roadmap 1351 8373 33425 61610

of collision checks 20 287 1358 2647

of points checked 119 6094 25539 48697

Probability of failure (%) 100 57 8 0

of nodes in roadmap 100 250 500 750

Graph build time (ms) 2 19 115 389

Graph search time (ms) 67 3936 67022 267786

Collision check time (ms) 5 58 296 666

Path Length (C-space) 2916 2876 3090 3226

of edges in roadmap 1360 8481 33035 63625

of collision checks 86 865 3353 5887

of points checked 1502 17902 58271 96387

Probability of failure (%) 90 16 1 0

Table C.4. Detailed simulation results for world D. Top with uniform sampling,
bottom with biased sampling.

XIX

of nodes in roadmap 100 250 500 750

Graph build time (ms) 2 19 120 382

Graph search time (ms) 27 1278 27020 131846

Collision check time (ms) 1 13 108 255

Path Length (C-space) N/A 2194 2065 2109

of edges in roadmap 1344 8337 32924 63290

of collision checks 36 277 1306 2953

of points checked 350 3322 20224 53629

Probability of failure (%) 100 98 78 39

of nodes in roadmap 100 250 500 750

Graph build time (ms) 3 30 177 419

Graph search time (ms) 321 14372 153949 522347

Collision check time (ms) 13 133 584 967

Path Length (C-space) 2065 2105 2209 2275

of edges in roadmap 1940 12046 37561 62180

of collision checks 362 2643 7505 11684

of points checked 3893 35441 109327 168093

Probability of failure (%) 99 32 0 0

Table C.5. Detailed simulation results for world E. Top with uniform sampling,
bottom with biased sampling.

XX

of nodes in roadmap 100 250 500 750

Graph build time (ms) 2 18 112 391

Graph search time (ms) 73 1635 15797 48250

Collision check time (ms) 12 58 134 196

Path Length (C-space) N/A 5422 5593 5597

of edges in roadmap 1326 8107 32199 62993

of collision checks 83 351 789 1069

of points checked 7218 30722 56935 73172

Probability of failure (%) 100 55 10 2

of nodes in roadmap 100 250 500 750

Graph build time (ms) 4 34 187 443

Graph search time (ms) 274 5287 39499 114100

Collision check time (ms) 39 105 245 380

Path Length (C-space) 5666 5446 5550 5618

of edges in roadmap 2124 13175 38673 62731

of collision checks 262 866 1739 2381

of points checked 19798 48825 93429 136142

Probability of failure (%) 45 4 1 0

Table C.6. Detailed simulation results for world F. Top with uniform sampling,
bottom with biased sampling.

(Note: these tests where performed with a 10 times higher resolution than other tests because

otherwise the agent could sometimes penetrate the thin wall because values where truncated rather

than rounded.)

XXI

Index

abstraction layer, 42
adjacent, 11, 12

agent, 8
APBPRM, 16
artificial potential biased PRM, 16

artificial potential function, 11, 14

configuration space, 8
connected, 11

connected component, 11
cooperative multitasking, 36
Crank-Nicolsons method, 16

Dirichlet boundary condition, 14
dof, 8

edge, 12
enhancement step, 12

FDM, 16

finite difference methods, 16
FK, 10

forward-kinematics, 10

Gauss-Seidel iteration, 15, 16
gradient descent, 11, 14

HAL, 42, 43, 47

hard real-time, 36
hardware abstraction layer, 42

IK, 10
inverse-kinematics, 10

Jacobi iteration, 15, 16
jitter, 35, 37, 50, 51

KURT, 45, 57

laplace equation, 14
Lazy PRM, 12
Linux, 36
locally controllable, 17
LXRT, 44, 46, 55, 56, 60

mailbox, 44
multitasking, 36

narrow passage, 12
Neumann boundary condition, 14
NEWLXRT, 55
Newton-Rhapson method, 15

OS9, 2, 35

path planner, 10
potential equation, 14
preemptive multitasking, 36
PRM, 11
probabilistic completeness, 17
probabilistic roadmap method, 11
PUMA 560, 35, 60

QNX, 2, 35

random walk, 15
real-time, 36
real-time operating systems, 36
roadmap, 11
roadmap planners, 11
RT-Linux, 40, 54
RTAI, 42, 55

scheduler, 37
scheduling jitter, 35, 37, 38, 50, 51
soft interrupts, 41
soft real-time, 36

XXII

software interrupts, 41
SOR, 16
successive over-relaxation, 16

time stamp counter, 50
time-sharing, 36
time-slice, 37
timer resolution, 37
TSC, 46, 50

UNIX, 36
usability, 38

VxWorks, 2, 35

XXIII

