
TTHHEE TTEECCHHNNIICCAALL UUNNIIVVEERRSSIITTYY OOFF CCLLUUJJ--NNAAPPOOCCAA

TTHHEE FFAACCUULLTTYY OOFF EELLEECCTTRROONNIICCSS,, TTEELLEECCOOMMMMUUNNIICCAATTIIOONNSS AANNDD

IINNFFOORRMMAATTIIOONN TTEECCHHNNOOLLOOGGYY

TTHHEE MMAANNAAGGEEMMEENNTT IINNFFRRAASSTTRRUUCCTTUURREE OOFF

AA NNEETTWWOORRKK MMEEAASSUURREEMMEENNTT SSYYSSTTEEMM

AAuutthhoorr:: AAlleexxaannddrruu IIoossiiff BBiikkffaallvvii

SSuuppeerrvviissoorrss:: DDrr.. VViirrggiill DDoobbrroottaa,, DDrr.. JJoorrddii DDoommiinnggoo--PPaassccuuaall

22000066

1

AABBSSTTRRAACCTT

The goal of this project was to develop a C/C++ management console application for

GNU/Linux platforms that enables one to perform QoS measurement sessions by using a set of

distributed measurement agents within a SNMP management framework. The console features a

graphical user interface and a group of services that handle the management information. There

are services used to communicate with the computer’s socket interface, to perform SNMP

encapsulation and decoding, a measurement session manager that has the intelligence of

interpreting the measurement results.

A queuing service solves the issue of asynchronous communication, by implementing a set of

eight (half-inbound and half-outbound) message-waiting queues. Four priority levels exist

complemented by a Round-Robin servicing policy to ensure that management messages are

preferentially handled in the following order: notifications, control messages, results request and

results replies.

The advantages of the proposed measurement solution versus the existing tools are the

possibility of managing many test scenarios through the control of a large set of agents, no user

attendance required during the experiments, customizable sessions and availability of results

(numeric or plotted) both during and after the measurement is completed.

2

CCOONNTTEENNTTSS

Abstract ... 1

Contents ... 2
State of the Art .. 5

1.1 Overview ... 5
1.1.1 Why Need for a Network Measurement System? .. 5

1.2 Testing Network Interface Cards .. 8

1.2.1 Framework ... 8
1.2.2 Disadvantage of the Approach ... 10

Theoretical Fundamentals ... 15
2.1 Overview of QoS Measurement .. 15

2.1.1 Principle of QoS ... 15
2.1.2 Providing Quality-of-Service ... 16
2.1.3 DiffServ QoS .. 16

2.1.4 IntServ QoS .. 19
2.1.5 IP Measurements Framework ... 20

2.1.6 Connectivity ... 21
2.1.7 Delay .. 22

2.1.8 Packet Loss ... 22
2.1.9 QoS Software Tools ... 23

2.2 Overview of Network Management .. 25

2.2.1 What is Network Management? ... 25
2.2.2 ISO Management Functional Areas ... 26

2.2.3 Perspectives of Management .. 28

2.2.3.1 Management in Telecom Industry ... 29

2.2.3.2 Management in Datacom Industry .. 29
2.2.3.3 Management in Computer Industry... 30

2.2.3.4 Multi-service Management ... 30
2.2.4 Management Architecture .. 31

2.2.4.1 Managers ... 31
2.2.4.2 Agents .. 32
2.2.4.3 Manager – Agent Communication .. 32

2.2.5 Management Information ... 34
2.3 Simple Network Management Protocol .. 36

2.3.1 Overview .. 36
2.3.1.1 IETF Standardization .. 36

2.3.1.2 Versions of SNMP .. 37
2.3.2 Basic Components .. 38

2.3.2.1 Community Names .. 38

2.3.2.2 Manager Configuration ... 39
2.3.2.3 Agent Configuration .. 40

2.3.3 Management Information ... 41
2.3.3.1 Management Information Base ... 41
2.3.3.2 Managed Objects ... 42

2.3.4 Structure of Management Information ... 44
2.3.4.1 SMI Data Types .. 44

2.3.5 Protocol Specifications ... 45

3

2.3.5.1 Protocol Operation .. 46
2.3.5.2 SNMPv1 Message Formats ... 47

2.3.5.3 SNMPv2 Message Formats ... 49
2.3.5.4 Security in SNMPv1 and SNMPv2 ... 50
2.3.5.5 Interoperability SNMPv1 – SNMPv2 ... 51
2.3.5.6 SNMP Version 3 Framework .. 51
2.3.5.7 SNMP Version 3 Entities .. 52

2.3.5.8 SNMP Version 3 Message Format .. 54
2.3.5.9 SNMP Version 3 Security ... 55

Design and Experimental Results ... 56
3.1 Network Measurement System Foundation .. 56

3.1.1 System Architecture ... 56

3.1.2 Features of the Network Measurement System.. 58
3.1.3 Other Features of the Management Infrastructure ... 60
3.1.4 The Administrative Management Console ... 65

3.1.5 Application Files and Setup Requirements .. 67
3.2 The Architecture of the Management Infrastructure ... 71

3.2.1 Generalities ... 71
3.2.2 Internal Structure .. 71

3.2.3 The Layered Architecture ... 75
3.3 The Management Service .. 78

3.3.1 Service Objectives .. 78
3.3.2 Service Structure .. 78

3.3.3 Service Control Thread .. 79
3.3.4 Socket Control Thread ... 87

3.3.5 Socket Data Thread .. 90
3.3.6 Management Service Summary ... 95

3.4 The SNMP Service .. 98

3.4.1 Service Objectives .. 98

3.4.2 Encoding SNMP Messages .. 98
3.4.3 Encoding SNMP Traps... 105
3.4.4 Decoding SNMP Messages .. 106

3.4.5 Decoding SNMP Traps .. 111
3.4.6 Managed Objects Data and Usage Requirements .. 111
3.4.7 SNMP Summary .. 115

3.5 The Queuing Service ... 116
3.5.1 Service Objectives .. 116

3.5.2 Implementing the Message Queue ... 117
3.5.3 Implementing Message Retransmission ... 126
3.5.4 Discarding Inbound Duplicate Messages ... 128

3.5.5 Implementing Priorities .. 129

3.5.6 Environmental Variables and Summary .. 130

3.6 The Session Manager .. 131
3.6.1 Purpose and Objectives .. 131

3.6.2 Sessions and Session Groups ... 131
3.6.3 Traffic Generation Sessions ... 135
3.6.4 Traffic Analysis Sessions ... 138
3.6.5 Traffic Generation and Analysis Sessions ... 138

3.6.6 Analyzing Traffic with Endace Cards .. 140
3.6.7 Implementing Sessions, Groups and Tasks .. 141

3.6.8 Implementing the Session Manager ... 144
3.6.8.1 Starting the Session Based Tasks .. 147

4

3.6.8.2 Running the Session Based Tasks ... 149
3.6.8.3 Starting and Running Session Groups ... 154

3.6.9 The SNMP Wrapper ... 155
3.6.9.1 The Connection Class.. 156
3.6.9.2 The System Class .. 157
3.6.9.3 The Traffic Class ... 159
3.6.9.4 The Advanced Analysis Class ... 161

3.6.10 Session Results ... 163
3.7 Other Services ... 166

3.7.1 The Local Message Dispatcher .. 166
3.7.2 The Service Control Manager .. 167
3.7.3 The Configuration Service ... 167

3.7.4 The Hardware Manager .. 168
3.8 Using the Management Console ... 170

3.8.1 Console Setup ... 170

3.8.2 Configuring Services .. 173
3.8.3 Registering Agents ... 174
3.8.4 Creating Measurement Sessions and Groups ... 176
3.8.5 Scheduling Tasks and Collecting Results .. 177

3.8.6 Using the Event Log ... 181
Conclusions ... 182

4.1 Measurement Scenario Recreated ... 182
4.2 Advantages and Disadvantages of the Proposed Solution .. 187

4.3 Future Work .. 188
References ... 189

5

11
SSTTAATTEE OOFF TTHHEE AARRTT
11..11 OOVVEERRVVIIEEWW

This chapter describes the reasons that led to the primary objective of this project: developing a

management platform that is integrated along with a set of distributed measurement agents

within unitary QoS measurement software – the Network Measurement System, or NMS for

short. It is presented what is the disadvantage of existent measurement tools, both hardware and

software and what is required to improve performance, easiness of use and availability of results.

The goal of this project is to present half of the technologies that make up the Network

Measurement System, i.e. the half related to management, processing and presentation of results.

11..11..11 WWHHYY NNEEEEDD FFOORR AA NNEETTWWOORRKK MMEEAASSUURREEMMEENNTT SSYYSSTTEEMM??

The main goal of the Network Measurement System software was to overcome some of the

limitations of regular measurement applications available today. These limitations refer to the

fact that some of the well-known and most used tools do not cope well with complex, repetitive

task, especially from the results processing point-of-view.

For example, in the next chapter MGEN will be described as one of the most used free traffic

generating applications. However, the use of MGEN in a real test scenario poses many problems

especially when attempting to perform the same operation several times. Even though you can

program MGEN with the scripting file presented earlier, the problem occurs when you want to

collect the results, because the final data usually needs additional, time-consuming post-

processing, in order to make it usable.

The figure 1.1 shows a typical scenario that involves the usage of MGEN.

Figure 1.1 Scenario of a measurement experiment using MGEN

In the scenario presented before in order to perform a measurement task, you had to:

Install MGEN on the machine that generated the traffic for the active measurement test.

Install a proper analysis tool, such as DREC on the machine analyzing the traffic.

Traffic Generation
Station

Traffic Analysis
Station

Network under test

Generation
Software

Analysis Software

6

Create a script to instruct MGEN what operations to perform.

Running the test and awaiting for results at the analyzing station.

Collecting the results data and processing it according to needs.

 Notes

 The MGEN traffic generation tool can be used by specifying the traffic options at

console as command line parameters, instead of using a script file. Therefore, the step

3 in the above enumeration is optional.

From the steps presented above only one, namely the last one raises difficulties when performing

a particular measurement task. Let us say that the objective is to measure the link behavior (in

particular the packet one-way delay and packet delay variation) for a set of values for packets per

second parameter. The simplest way to do this using MGEN is to define a script that successively

tells the program to start generating traffic with an increasing number of packets per second.

Therefore, after this step is completed the traffic is generated automatically without the user’s

attention.

At the receiving part a software analysis tool such as MGEN, DREC or tcpdump records the

information about the incoming traffic. In theory this can be done, either by creating a dump of

the incoming traffic and save it for processing after the capturing session is complete, or

computing the required parameters in real time. The first approach has the advantage of having

enough data after the dump is completed to compute offline a large number of parameters.

Theoretically, every destination-dependent on each packet that successfully arrived is known.

The disadvantage of the dump method is that it does not cope well with traffic analysis on high

bit-rate flows, since the dump speed is usually limited by the performance of the hard-disk unit.

The alternative is, of course, to compute in real time, as packets arrive, the parameters of interest

and to discard all non-essential information. It will take much processing time but it can be

successfully used for high-rates experiments, where the dump solution is not a viable choice(in

the case of regular IDE hard drives, the access rate rarely exceeds 50 Mbytes per second

corresponding to a bit rate of only 400 Mbps).

The tools such as MGEN (or DREC for older versions) perform logging of incoming traffic

allowing both online and offline analysis. They are flow oriented, meaning that you can specify

several different flows running simultaneously, and the program is able to make the difference

between the packets belonging to different flows.

Tcpdump however does not have almost any measurement capabilities at all. It simply can be

used to log or dump all incoming traffic on a given network interface (some filtering options are

though available) and later, after the online dumping operation has been completed a third party

software can be used to extract the necessary information.

 Notes

 As stated before, even though MGEN is an application oriented on traffic generation,

since version 4.0 it contains traffic analysis functionality as well, by logging

incoming traffic and allowing real time analysis and plotting. For MGEN version 3.x

family, the functionality was split between the traffic generating application, namely

MGEN and the analysis tool DREC.

Nevertheless, the overall scenario has some main disadvantages that cannot be overcome by

changing the generating software, the analyzer software or tuning their parameters:

7

 The most important one is the lack of centralized control of the applications both end-

points. You cannot sit at single machine using a single software interface and

performing all the measurements you need.

 Second, the data availability for a single flow using available analysis software is

very good. Nevertheless, what can be done about combing the data from different

successive flows? In a hypothetical experiment where you want to measure the

average throughput over a test of 60 seconds length versus the packet rate in series of

10 consecutive tests, the number of tools that can do this job is very scarce. At most,

you end up with a pile of raw data needs to be processed manually, consuming time

and effort that could be better redirected elsewhere.

 At last, there are possible scenarios in which the usage of the available tools is either

impossible or it needs supplementary tricks to make it work. Such a scenario is to be

presented in the following paragraph.

8

11..22 TTEESSTTIINNGG NNEETTWWOORRKK IINNTTEERRFFAACCEE CCAARRDDSS

11..22..11 FFRRAAMMEEWWOORRKK

The starting point of the development of the Network Measurement System was a scenario that

involved the testing of several ordinary Gigabit Ethernet/IEEE 802.3 network interface cards

(NICs) using a dedicated measurement card manufactured by the New Zeeland company, Endace

Ltd.

The card and its features were thoroughly presented in the previous chapter. However, as a short

reminder, the card is able to generated and analyze in hardware various types of Ethernet/IEEE

802.3 traffic. It has its own specific toolset provided by the manufacturer. The objective of the

original experiment was to determine the working-limit and performance for a set of regular

Gigabit Ethernet NICs. Since processing of the Endace DAG card is entirely hardware based, the

experiment intended to measure various traffic parameters, total throughput, delay, delay

variation, packet loss ratio and out of order packets being some of them.

The original experiment setup is presented in figure 1.2.

Figure 1.2 Experiment setup for testing network interface cards

The experiment involved three machines, namely Mazuela, Enologa and Macabeu. A brief

description of each one is presented in the following table.

Table 1.1 Devices used in the network interface tests

Device Interfaces Description

Macabeu

Endace DAG 4.3 GE Card, used to analyze
traffic

This computer was used to analyze the
traffic generated by the NIC under test
installed on computer Enologa.

100 Base TX Mbps Ethernet NIC (IP Address:
147.83.130.21/25) used for remote connection

management

Enologa

Intel 1000 Base SX Ethernet NIC – the
interface card under test

This computer was used to generate
the traffic for the active measurement
test.

100 Base TX Ethernet NIC (IP Address:
10.198.0.10/29)

Enologa

Interface card
under test

Endace DAG interface card

Macabeu

Mazuela

LAN

IP: 147.83.130.21
Mask: 255.255.255.128

IP: 147.83.130.29
Mask:
255.255.255.128

IP: 10.198.0.10
Mask:
255.255.255.248

IP 1: 147.83.130.175/25
IP 2: 10.198.0.2/29

Celler

Color Key

Point-to-point fiber optic link

Remote access connection

9

Some explanations about the test topology are required:

 The access to computer Enologa was made via a NAT server (that also acted as a

router). This was due to the constraints to have two machine equipped with a PCI-X

bus required by the 1000 Base SX cards used for testing. The first machine was

Macabeu used as host for the DAG interface. The second machine was Enologa that

was already installed in a second private network, and therefore the reasons of

selecting such a topology depended only on the hardware availability.

 Even it is not shown in the figure; both networks (i.e. 10.198.0.0/29 and

147.83.130.0/25) were constituted as two VLANs, connected physically to a single

Cisco switch.

 All involved machines run Debian GNI/Linux, kernel version 2.6.15-1.486 or 2.6.8-

1-386. The remote access was made via ssh.

The test procedure implied the following steps:

1. Connect from Mazuela to Celler using a ssh remote connection.

2. From Celler console, connect via ssh to Mazuela.

3. On Enologa, create the script required by MGEN in order to generate traffic.

Mazuela
100 Base TX Ethernet NIC (IP Address:
147.83.130.29/25) used for remote connection

management

This computer was used to connect
remotely via ssh to Enologa and

Macabeu computers.

Celler

100 Base TX Ethernet NIC (IP Address:
147.83.130.175/25)

This computer acted as a NAT server,
in order to connect to computer
Enologa that is installed in the
10.198.0.0 network from computer
Mazuela.

100 Base TX Ethernet NIC (IP Address:
10.198.0.2/29)

mazuela:~# ssh 147.83.130.175

login as: root

Using keyboard-interactive authentication.

Password:

Last login: Mon May 15 10:54:40 2006

celler:~#

celler:~# ssh 10.198.0.10

Password:

Last login: Sat May 13 17:31:11 2006

Linux enologa 2.6.8-1-386 #1 Thu Nov 11 12:18:43 EST 2004 i686 GNU/Linux

The programs included with the Debian GNU/Linux system are free software;

the exact distribution terms for each program are described in the

individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

permitted by applicable law.

0.0 ON 1 UDP DST 172.16.0.2/5000 PERIODIC [1000.0 512]

15.0 OFF 1

10

 Notes

 This example calls for a generation of UDP packets for 15 seconds (from time index

0.0 to time index 15.0) to destination 172.16.0.2 port 5000 following a periodic

distribution with 1000 datagrams per second, 512 bytes of payload.

4. Connect from Mazuela to Macabeu using ssh.

5. At the remote connection to Macabeu, start a data capturing session using the DAG

interface card.

6. At the remote connection to Enologa, start the traffic generation with MGEN.

 Notes

 The previous command means that the card will dump all incoming traffic to the file

capture.erf. The device to be used is DAG card number 0, the output during the

execution of the command is in verbose mode and the capture session duration is 20

seconds (i.e. 5 seconds more than the generation to allow some slack). For more

information about the functionality and the commands of the DAG card, review the

previous chapter.

11..22..22 DDIISSAADDVVAANNTTAAGGEE OOFF TTHHEE AAPPPPRROOAACCHH

Despite of the logic succession of these experimental steps the measurement session presented

has some serious flaws and some overall drawbacks.

First, one may ask about the destination IP address in the MGEN script file (i.e. 172.16.0.2). That

is a private address corresponding to the network created by the fiber optic link between the

tested NIC and the DAG card. However, no such address was presented on the scenario from the

figure 1.2. Second, from the description of the DAG card presented in the previous chapter, on

knows the DAG card supports several data-link layer protocols such as Ethernet 2, IEEE

mazuela:~# ssh 147.83.130.21

login as: root

root@147.83.130.21's password:

Last login: Mon May 15 14:38:48 2006 from dhcp3.ccaba.upc.edu

Linux macabeu 2.6.15-1-486 #1 Tue Feb 21 20:16:13 UTC 2006 i686

The programs included with the Debian GNU/Linux system are free software;

the exact distribution terms for each program are described in the

individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

permitted by applicable law.

macabeu:~#

dagsnap –v –d dag0 –o capture.erf –s 20

mgen input script.gen

11

802.3/IEEE 802.2 and ATM. Nevertheless, the card and its software driver have no support for

any network layer protocols such as IP.

The explanation is the DAG card actually captures any data-link traffic that is received at one of

its ports and only if instructed so specifically by the user. Further, the DAG card does not

generate any type of traffic without user’s consents, so even if the card had supported a layer

three protocol, like IP, it would never reply to an ARP request for example. It turns out that the

DAG card does not actually support IP because it does not have to. In addition, because the DAG

supports multiple data-link layer protocols it cannot be identified with an address belonging to a

specific protocol. Briefly, the DAG card captures any bits it receives on the physical layer,

interprets them as Ethernet or ATM traffic, depending on which protocol is configured and saves

them into a ERF type file.

On the other hand, the available version of MGEN generates only UDP traffic, and therefore

requires an IP address, both locally (assigned on the interface where the traffic is being

generated) and as a destination address. Even if an IP address would have been assigned to the

tested interface card, the implementation of TCP/IP stack in almost every operating system

requires the data-link layer address of the next hop device (in this case of the destination device),

before the IP packet is actually transmitted. Usually the hardware address resolution would have

been the task of ARP, but in this situation, ARP is not available. The following figure depicts the

status of the two interface cards involved in the test.

Figure 1.3 Test network interface cards original status

The solution to this problem was:

 To configure the Intel card on Enologa with an IP private address. This was required

since MGEN is based on IP protocols and it cannot use interfaces that do not have IP

addresses assigned. Since the first NIC already had in use a class A private IP

address, the first IP address from the class B of private addresses was chosen for

simplicity, i.e. 172.16.0.1 with the default subnet mask: 255.255.0.0.

 Statically modify the ARP table on Enologa, such that no ARP queries would be

required by the TCP/IP stack in order to send an IP datagram. The destination of the

packet was chosen as a hypothetical computer with an IP address in the same network

segment (in this case 172.16.0.2/16) and having any hardware address (for simplicity

the broadcast Ethernet address was selected). Remember, that when instructed so by

the user, the DAG card would capture any packets that arrive on one of its interfaces,

so the trick described here was merely intended to instruct the Enologa operating

system to send the packets that contain the IP address 172.16.0.2 as destination to the

connection of the Intel interface. Since the connection between Enologa and Macabeu

is a point-to-point fiber optic link, the packets sent on the Intel will arrive at their

Intel Pro 1000 VE NIC
Layer 1: 1000 Base SX
Layer 2: IEEE 802.3/IEEE 802.2
Layer 3: not configured

MAC: 00:04:23:A1:37:AA

Endace DAG 4.3 GE
Layer 1: 1000 Base SX
Layer 2: multiple protocols
Layer 3: not supported

Enologa

Macabeu

MAC: N/A

12

intended destination, regardless of their MAC and IP destination fields. The figure 1.4

outlines the concept.

Figure 1.4 Configuring IP stack on Enologa for use with MGEN and DAG card

With the changes described here, the experiment worked well, however this example was

intended to show the challenges and the extra work required for such a simple measurement

scenario. Actually, the problem presented here would never have existed if the generation

software could have generated only Ethernet/IEEE 802.3 traffic without any network and

transport layer encapsulation. Further more, the extra work performed by the TCP/IP stack when

sending an UDP datagram implies more delays due to packet queuing in the software’s buffers

and processing latency, thus resulting in additional errors, if one wants, for example to test the

performance of the NIC at layer 2 level.

One of the key features of the Network Management System is that gives you several options on

the type of traffic to generate, thus allowing to test the performance at different layers of the

networking implementation. What this means will be further presented on the paragraph entitled

―Network Measurement System Features‖.

The second major drawback that should be outlined using the experimental setup presented here

is about data collecting and processing. Since the traffic is generated using MGEN, while the

captured data is analyzed using the software that comes with the DAG card, the parameter that

could be at most measured using the DAG tools is the throughput. The dagsnap command

presented before creates a dump of the received data, without computing any QoS related

parameters. Therefore, additional software tools are required to analyze the available dumps and

to extract the parameters of interest.

To make the things even worse, remember that when performing a dump, the speed of the dump

is generally limited by the working speed of the storage device, and that for regular hard drives is

well under the gigabit limit. The DAG hardware and software contain some features that allow

for reasonable high speeds, such as for half a gigabit per second and beyond no loss of incoming

data occurs due to the latency of the storage unit. However, the shortcoming of this approach can

easily be seen:

 The dumping mechanism introduces additional delays, which are recorded as errors in

the one-way delay and packet delay variation. Especially the packet delay variation

has variations up to the hundreds of milliseconds due to this effect of saturation of the

dump buffers. This is one of the major disadvantages of using the capturing features

of the DAG card. A possible solution is to use an option that allows you to record

only partial packets, for instance the first 64 bytes. However, with this approach

MAC: 00:04:23:A1:37:AA

Endace DAG 4.3 GE
Layer 1: 1000 Base SX
Layer 2: multiple protocols
Layer 3: not supported

Enologa

Macabeu

MAC: N/A

Enologa ARP Table

172.16.0.2 – FF:FF:FF:FF:FF:FF

Intel Pro 1000 VE NIC
Layer 1: 1000 Base SX
Layer 2: IEEE 802.3/IEEE 802.2
Layer 3: 172.16.0.1/16

13

would not have been possible to make an accurate estimation of the throughput at the

packet level.

 The overall effort required in configuring, performing, and collecting the data from

such a test is increased, in part due to the addition of several extra steps, such as the

set-up of an IP address and ARP table for the interface under test, when such action

would not have been required.

 Then is the requirement of an extra piece of software able to analyze the dump

created by the DAG card (the ERF file that contains an instance of each packet

received with some extra information added about it). With this program (which

already has been created) only an offline analysis is possible, thus having no real time

data during the test, and extending the test duration up to several minutes after the

test, especially at higher data rates for which the size of the dump files reached almost

ten gigabytes for a 60 seconds test.

 At last, the test methodology presented here requires complete human attention at all

times. Remember that in spite of additional configuration required, which is only a

one time operation, at any point one would have had two simultaneously connections

to Enologa and Macabeu computers (not to say to have two different persons

handling those computers independently). Test by test you should start a capturing

session on Macabeu, then starting a generation session on Enologa, awaiting at least

1 minute for the test to be completed and then run the custom software to analyze the

dump created by the experiment. In the end, the data from the custom analysis

software would have been collected by hand, thus that a session group with 15

measurement points, and two operators supervising the experiment, could last up to

several hours.

 Notes

 In the last item form the previous list, the number of measurement points refers to a

group of tests, which have only the value of a parameter as a difference between

them. For example, one of the objectives was to determine the QoS parameter for

different packet rates. Hence, a session group with 15 measurement points means 15

consecutive experiments, in which the packet rate is modified (by hand) and the result

is to obtain the dependency of these parameters versus the packet rate.

The idea of a Network Measurement System came actually from the necessity of improving the

analysis application for the DAG card. In its original design, this application was accessible in

command line only (to make it accessible over a ssh connection) and therefore could display

results only in text like format. A regular output of the application is presented below.

The application, which has been called erf by the way, features an additional mode in which per

packet data could be obtained. However, since the data collection is done entirely by hand,

macabeu:~/tests# ./erf cap.erf verbose noshow

Reading file: cap.erf

Statistics

Total captured packets: 7681

Average delay variation: -0.00000138022005558014 s

Maximum delay variation: 0.01013439893722534180 s

Minimum delay variation: -0.01006840169429779053 s

Average throughput: 94208.4790287216 bps

Maximum throughput: 205800516.2666666667 bps

14

would not have been feasible to use this mode to number of packets larger than several tens. One

may see in the previous example, the total number of packets received was 7681 for a 60 seconds

test at only 94 kbps.

The essence of the Network Measurement System was to smooth the performance of such tests,

both from the user operation and data availability point of view. As you will see, measurement

experiments using the Network Measurement System are based on the same concepts. However,

a regular user essentially will care just about setting up the experimental stage, schedule the

experiment to run now or at some time in the future and then, collecting the data which is already

available in different formats by the test is done. In the meanwhile, he or she can focus on some

other things, such as interpreting the results and drawing conclusions from experiments already

finished.

The next chapter will start presenting some theoretical aspects, needed to understand the

foundation of this work related to QoS measurements.

The third chapter contains the foundation of the Network Measurement System architecture, how

you could setup the experiment described before but this time using NMS. Then, this

presentation approaches the management related technologies involved in the operation of NMS,

such as the SNMP management, the session and scheduling mechanism, the results collections

and much more.

15

22
TTHHEEOORREETTIICCAALL FFUUNNDDAAMMEENNTTAALLSS
22..11 OOVVEERRVVIIEEWW OOFF QQOOSS MMEEAASSUURREEMMEENNTT

22..11..11 PPRRIINNCCIIPPLLEE OOFF QQOOSS

According to [3] the denomination of quality-of-service or QoS for short means the ability of the

network ―to provide better service to selected network traffic‖. For a given network

infrastructure establishing and maintaining a quality-of-service policy implies at least some of

the following:

 Establishing priorities for dedicated traffic

 Bandwidth provisioning

 Controlled delay and jitter

 Improved loss characteristic

Each of these requirements of QoS comes with a set of prerequisites that shall be explained.

First, establishing priorities for specially selected traffic needs a set of rules according to which

one can make distinction between different traffic flows. Imagine that in network with multiple

nodes, the essence of having priorities is that the router from each node must know how it should

treat the incoming packets on all its interfaces. Which have the highest priority and if priorities

are set per flow rather per network basis, how to identify packets belonging to a specific flow?

These prerequisite of QoS implementation seems to be also the toughest to implement, especially

when packets travel between networks belonging to different administrative authorities. Later in

this introduction, there will be some examples about some solution that implement either local or

end-to-end QoS.

Second, in order to ensure some strict characteristics of the network parameters and behavior

there is the need of having QoS capable devices. Bandwidth provisioning, controlled delay, low

probability of out-of-order packets implies having a network build up with intelligent routers and

switches that can be instructed to give priority to the packets that need it at most. That is true not

only for packets from a single client that pays for a higher service quality but also for packets

coming from different applications of the same client. Between a file transfer and a real time

streaming application, the latter should always have a higher priority. In addition to identifying

traffic, the devices also must implement priority based service and queuing.

At last, end-to-end QoS is not possible whether the different ISPs do not have common QoS

policies. This requires shared management, accounting and administration of QoS issues,

otherwise the gold traffic from one ISP will be the bronze traffic of the next one and the overall

outcome will be almost bronze as well.

The figure 2.1 suggests the key issues of QoS implementation.

16

Figure 2.1 Key issues of QoS implementation

22..11..22 PPRROOVVIIDDIINNGG QQUUAALLIITTYY--OOFF--SSEERRVVIICCEE

In TCP/IP heterogeneous networks there are three basic way for providing QoS. Current

developing projects attempt to find new ways in reaching the goal of having end-to-end QoS in

networks that do not belong to a single provider, and which are made up of a wide variety of

equipments. However, since this introduction is just intended to create a glimpse on QoS only

the classical methods shall be discussed.

The first possibility of QoS is not having QoS at all. The lack of QoS in an IP-based network is

regarded as the old best-effort service, in which the packets rely on fortune in reaching the

destination. Most of the networks today follow this approach, since not implementing a QoS

policy is cost-free at the expense of poor performance for some customers and applications.

However, the lack of QoS and connectivity without guarantees may be of good quality if the

service assurance can be improved by providing enough resources to meet the peak demands.

One of the most popular QoS implementation methods, which implement some QoS, is

differentiated services. This policy gives priority to certain traffic, which is classified according

to a given criterion.

The last method of ensuring QoS is guaranteed service that reserves the requested resources for

traffic originating from a specific application.

The next topics will a few examples on DiffServ and IntServ QoS policies, what are their

advantages and disadvantages when implementing them in a heterogeneous network.

22..11..33 DDIIFFFFSSEERRVV QQOOSS

Differentiated service or DiffServ ensures the same service for all packets coming from a given

source. DiffServ always treats all packets coming from the same source as having the same QoS

policy applied. The details of the QoS policy are usually negotiated as an agreement between the

service provider and the customer that requests the QoS. This negotiation is often called a

Service Level Agreement or SLA. The service provider ay have different SLAs with different

customers of its networking service, meaning the customers that pays the most gets the highest

service quality: his data packets are preferred in being served when the network or a node

becomes congested.

The figure 2.2 illustrates the DiffServ applied to a small network. The service provider in that

case sells three QoS policies, a platinum, gold and silver. It is obvious in this way, which is the

best and most expensive service policy.

QoS?

Priority for dedicated traffic

Bandwidth provisioning

Controlled delay and jitter

Improved loss characteristic

Traffic identification

Devices with QoS capabilities

QoS base inter-management

17

Figure 2.2 Applying differentiated service

When applying differentiated service the traffic is classified according to its source. For the

previous example, the ISP router has a way of identifying which packets are from customer 1,

which are from customer 2 and so forth. Because one of the conditions of implementing QoS

requires the ISP router to be QoS capable when packets from both customer 1 and customer 2

reach the router at the same time, the first will be preferred. If the router link is congested, only

the packets arriving from customers with the best SLA will get through, others will be discarded.

Figure 2.3 Internet Protocol version 4 header

Figure 2.4 Internet Protocol version 6 header

Customer 1

Customer 2

Customer 3
DiffServ
Domain

ISP Router

Service
Provider

Service Agreements

Platinum SLA

Customer 1:

Customer 2:

Gold SLA

Customer 3:

Silver SLA

Ver IHL Total Length

Identification Flags Fragment Offset

TTL Protocol Header Checksum

Source Address

Destination Address

32 bits

TOS

Type of Service

Precedence

Delay

Throughput

Reliability

7 6 5 4 3 2 1 0

Payload Length Next Header Hop Limit

Source Address

Destination Address

32 bits

Flow Label Ver Traffic Class

18

How DiffServ is implemented in IP-based networks? The answer is very simple: using the fields

already existing in both IPv4 and IPv6 packet headers. Look at the figures 2.3 and 2.4 to review

the structure of IP headers. The IPv4 implementation uses the 8-bit type-of-service (TOS) field.

The original intention was to use it to specify the service preference level, as the IP datagram

travels through the network.

The initial structure of TOS given in [1] was the one from figure 2.3 in which different bits

specified whether low delay, high throughput and high reliability are required. Nevertheless, in

current implementations, this field is rather used with DiffServ and Explicit Congestion

Notification (ECN) defined in [5].

In IPv6, the flow label is used to set-up priorities on a packet-basis while the flow label is

intended for distinguishing between packets belonging to different flows (coming from different

applications with different QoS needs) in order to implement the next section QoS type, IntServ.

Therefore, the structures of both IPv4 and IPv6 at least have support for QoS DiffServ

implementation. However, some disadvantages prevented DiffServ of being implemented on a

larger scale. The problem with differentiated service is the scalability and the fact it provides no

support for end-to-end QoS.

In the previous example imagine the service provide of customers 1, 2 and 3 is also the customer

to even a larger ISP. However, our service bought only the silver SLA of the larger ISP to which

it is connected, while other ISPs paid for gold and platinum. Figure 2.5 depicts the scenario.

Figure 2.5 Disadvantages of differentiated services

The customer 1 (which is a platinum client for ISP 1) will always have priority in sending traffic

through the network cloud (or DiffServ cloud) administered by its service provider.

Nevertheless, if the destination of the packets sent by customer 1 is outside the scope of the

network of ISP 1, i.e. the packets need to go through the network administered by the larger ISP

they will have only silver priority and hence QoS level, because the ISP 1 is a silver customer of

the larger ISP.

Customer 1

Customer 2

Customer 3

ISP 1

Service Agreements

Silver SLA

ISP 1:

ISP 2:

Gold SLA

ISP 3:

Platinum SLA

ISP 2

ISP 3

Larger ISP

19

The advantage of using DiffServ is the simplicity in implementation and management since

Traffic classification done at boundaries of the DiffServ domains. However, DiffServ cannot

solve the issue of having end-to-end QoS. In most situations, overprovisioning along with best

effort service is usually a better solution than applying DiffServ. This disadvantage attempts to

be solved by the second approach, IntServ.

22..11..44 IINNTTSSEERRVV QQOOSS

IntServ implies reservation of resources in each hop for each flow. In this way, end-to-end

quality of service can be achieved, since the same packet, when travels through an IntServ

network will have the same service priority in each node it passes through.

The resources reservations are usually made using a specific reservation protocol. The Resource

Reservation Protocol defined in [6] is one of the most popular. Look to the figure 2.6 for an

IntServ scenario.

Figure 2.6 Applying integrated services

Prior the customer’s computer sends any messages; resources are reserved in each node until the

destination. RSVP or any other similar protocol can be used to achieve this. Each router along

the path informs the source host whether the required resources were available. If not, the

transmission may be canceled since at least one node in the network is not able to provide the

degree of QoS that would have been necessary.

In figure 2.6, a resource meter at the top of each router indicates the percentage of resources that

are in use and that are available. Assuming the host of the customer requires a lot of bandwidth

for a real time transmission approximately half of the maximum resources from each router need

to be reserved for the customer’s application. In our example, this is not possible since the router

2 no longer has sufficient resources to cope with the desired QoS level. RSVP will inform the

sender that the QoS level requested is not available and the transmission will probably be

canceled.

Nevertheless, for most applications this mechanism is successful in ensuring the deemed levels

of service. Other advantage of the IntServ scheme is that implements a fine-grained QoS system

in which applications can make their own reservations. This means that packets leaving the

customer’s host will no longer be treated as a whole, but will rather have different QoS priorities

depending on application, or on the flow otherwise said.

Customer

IntServ

IntServ

Used Resources

Available Resources
QoS Resource Meter

Required QoS

Router 1
Router 2

Router 3 Router 4

20

Unfortunately, flow-based QoS is also one of the major disadvantages of IntServ. Since each

flow makes reservations on each hop on its path, the routers must keep a lot of information about

each flow and resources reserved. In the case of IPv6, each datagram could be identified as

belonging to a flow based on the 20-bit flow label. For very large networks, backbone routers

may have difficulties in keeping data on very large number of flows, allocating resources

according to each flow and serving the packets (i.e. perform routing) in this way. In conclusion,

IntServ does not scale easily to large networks.

Current research in the field attempt to find different hybrid solutions to the end-to-end QoS

problem since both of the classical DiffServ and IntServ are only partial successful:

 DiffServ ensures good end-to-end QoS as long as both communicating host are

within the same DiffServ domain

 IntServ works across different administrative networks, but imposes problems at

implementation on very large networks

Some other QoS related technologies, either open standards or proprietary are:

 Using the IP precedence bits in the way they are presented in figure 2.3 – this is the

original usage method of the IPv4 TOS field

 Implementing routing access control lists (ACLs)

 Policy-based routing

 Committed access rate

 Network-based application recognition

 Notes

 The last three technologies are implemented on Cisco routers.

This section was intended to provide a general picture about the quality-of-service subject. The

next topic will get us closer the objective of this project, i.e. performing QoS-based

measurements.

22..11..55 IIPP MMEEAASSUURREEMMEENNTTSS FFRRAAMMEEWWOORRKK

The reasons of measuring the QoS parameters is that only after knowledge about the link and

service quality is obtained, the QoS-implementing device can take the appropriate traffic shaping

actions. For instance, to appreciate the level of delay, packet delay variation, packet loss in order

to determine whether the performance of the network is acceptable, there is the need of

measuring these values.

For this purpose, IETF defined the Framework for IP Performance Metrics in RFC 2330 [7].

The Internet standard contains definitions and equations for determination any QoS related

parameter. In additions are presented issues related to measurement methodology, errors and

approximations, timing, synchronization and metrics. There are rules in sampling incoming

stream of packets, how to determine the goodness of a link, even security considerations related

to the interaction with normal Internet traffic.

The measurement framework sets up the basics of IP-based measurement. Since the objective of

this project is to build a reliable management infrastructure for a distributed measurement

application, rather than implementing the measurement software, the presentation of RFC 2330

21

will stop here. However, for additional information on this topic you may consult the technical

reference of the measurement agent in [2] or check the RFC at the Web link given in [7].

The following paragraphs will explain shortly some QoS parameters that are standardized by

IETF.

22..11..66 CCOONNNNEECCTTIIVVIITTYY

The metrics for connectivity are defined in the standard RFC 2678 [8]. This provides a series of

definitions regarding the following terminology:

 One-way connectivity

 Two-way connectivity

 Instantaneous one-way connectivity

 Instantaneous two-way connectivity

 Two-way temporal connectivity

The properties of the connectivity metrics are given in table 2.1.

Table 2.1 IPPM connectivity metrics

 Notes

 IPPM stands for Internet Protocol Performance Metrics as defined in RFC 2330 [7].

Metric Parameters Unit Description

One-way
connectivity

The IP address of first host

The IP address of second host

Time

Delta time

Boolean It is true if in the interval of time

plus delta time there is a
moment in which the source has
instantaneous one-way
connectivity

Two-way
connectivity

The IP address of first host

The IP address of second host

Time

Delta time

Boolean It is true if in the interval of time
plus delta time first host has
one-way connectivity with
second host and the second host
has one-way connectivity with
the first

Instantaneous one-
way connectivity

The IP address of first host

The IP address of second host

Time

Boolean It is true if a packet transmitted
at time moment arrives at the
second host

Instantaneous two-
way connectivity

The IP address of first host

The IP address of second host

Time

Boolean It is true if at the time moment
the first host has instantaneous

one-way connectivity with the
second and the second has
instantaneous one-way
connectivity with the first

Two-way temporal
connectivity

The IP address of first host

The IP address of second host

Time

Delta time

Boolean It is true if within the time plus
delta time the first host has
instantaneous connectivity with
the second and after that the
second has instantaneous

connectivity with the first

22

22..11..77 DDEELLAAYY

The metrics for the measurement of delay is specified in:

 RFC 2679 [9]: the one way delay

 RFC 2681 [10]: the round trip delay

The standard defined several delay metrics, from which the following are the most important:

 One-way delay

 One-way delay for Poisson stream

 Round-trip delay

 Round-trip delay for Poisson stream

In addition to these measurement metrics, the RFC documents specify additional statistic

parameters for delay, such as the one-way delay percentile, median, minimum and inverse-

percentile. Issues about timing, synchronization and calibration are also discussed with respect to

their performance impact. The table 2.2 contains detailed information about the most important

delay metrics.

Table 2.2 IPPM delay metrics (selection)

22..11..88 PPAACCKKEETT LLOOSSSS

The one-way packet loss is defined in RFC 2680 [11]. The types of packet loss are:

Metric Parameters Unit Description

One-way delay

The IP address of first host

The IP address of second host

Time

Real
number
-
seconds

It is the time interval between
the transmission of the first bit
at first host and reception of the
last bit from the wire on the
second host

One-way delay for
Poisson stream

The IP address of first host

The IP address of second host

Time zero

Time F

Rate

Pair of
real

numbers

It is the pair time and delay
where time is one of the

moments of a Poisson process
starting at time zero, finishing at
time F with given arrival rate,
and the delay is the value of the
one-way delay obtained at the
previous instances

Round-trip delay

The IP address of first host

The IP address of second host

Time

Real
number
-

seconds

It is the time interval between
the transmission of the first bit
at first host and reception of the

last bit from the wire of the
message transmitted by the
second host, when it received
the last bit from the initial
message

Round-trip delay

for Poisson stream

The IP address of first host

The IP address of second host

Time zero

Time F

Rate

Pair of
real
numbers

It is the pair time and delay
where time is one of the
moments of a Poisson process
starting at time zero, finishing at

time F with given arrival rate,
and the delay is the value of the
round-trip delay obtained at the
previous instances

23

 One-way packet loss

 One-way packet loss for Poisson stream

Their parameter and description is given in table 2.3.

Table 2.3 IPPM one-way packet loss

In addition to the QoS parameters so far, there are other parameters defined in both the RFC

standards and other QoS related documents such as:

 Bulk transfer capacity

 Packet delay variation

 Out-of-order delivery

 Congestion avoidance capacity

 Error probability and dropped packets

The study of these parameters is outside the scope of this project. For more details on some of

them, consult the documentation of the measurement agent [2], since several are implemented at

the measurement agent software. For a complete reference, consult the references from the end

of this document.

The following section will present several popular tools for traffic generation and computation of

QoS parameters. These tools were also used for performance comparison when determining the

accuracy of the NMS software.

22..11..99 QQOOSS SSOOFFTTWWAARREE TTOOOOLLSS

This discussion should start with the presentation of the MGEN traffic generation software. Since

many details are also given in [2], we shall try to keep the explanations as simple as possible.

MGEN is a versatile multi-purpose traffic generation tool created by the U.S. Naval Research

Laboratory. The latest version of the tool is designed to generate UDP datagrams in a various set

of distributions. The input data could be given either in a command-like format or as a text-file

script, the latter being much easier to use when performing multiple-flow tests. The network

layer protocol used can be either IPv4 or IPv6. Currently, a TCP version of the application is

under development.

Metric Parameters Unit Description

One-way packet
loss

The IP address of first host

The IP address of second host

Time

Binary It is one if the packet stared to
be transmitted at time moment
was received at the other host,
zero otherwise

One-way packet
loss for Poisson
stream

The IP address of first host

The IP address of second host

Time zero

Time F

Rate

Pair of
time and

binary

It is the pair time and binary
value where time is one of the

moments of a Poisson process
starting at time zero, finishing at
time F with given arrival rate,
and the binary number is the
value of the one-way packet loss
obtained at the previous
instances

24

The script file supports the specification of the same parameters and has the advantage of

enabling to save it on magnetic media. One example of MGEN script file was already presented

in the previous chapter when the initial measurement scenario was presented.

The traffic MGEN generates is of the following types:

 Periodic, meaning that packets are equally distanced in time

 Poisson distributed, meaning the time interval between the packets obey a Poisson

distribution

 Burst, that generates bursts of other MGEN pattern types at a specified average

interval.

MGEN allows the creation of complex traffic patterns by using a compound of multiple "flows"

with the same source/destination and with different pattern types and parameters [12].

The script file for MGEN is event-based: you can specify traffic related events to occur at

different moments in time, such as starting generating traffic for a flow, ending a flow, capturing

a flow and so forth. In addition, at allows setup of various layer 3 protocol fields, supports

multicasting and for analysis, it creates a custom log file from which the desired results can be

obtained.

 Notes

 Since version 4, MGEN uses the same executable for both traffic generation and

analysis. Either depending on the command line options or on the contents of the

script file you can use the same application for both purposes. The latest version of

MGEN software is 4.2.

 The version 3.x distribution is made up of two different applications for traffic

generation and analysis: MGEN and DREC (dynamic receiver). Versions 4.x and 3.x

are not interoperable. Additional modules such as a real-time trace plotter and a GPS

utility are available for use with MGEN.

This thoroughly description, because as presented in the first chapter, MGEN was one of the

tools used in the preparation for this project. In reality, the failure to combine smoothly the

operation of MGEN and the software utilities of the Endace DAG card was one of the reasons for

development of our Network Measurement System.

25

22..22 OOVVEERRVVIIEEWW OOFF NNEETTWWOORRKK MMAANNAAGGEEMMEENNTT

The section will guide you through some of the main concepts behind network management such

as what management is, what involves and why it should be implemented. Then the question of

what is to be managed will receive an answer in the description of the ISO management areas,

which similar to the seven layers of the OSI reference model an networking, act as a guideline in

both learning an design.

The introduction would not be complete without a historical perspective of the three main

industry approaches that set the foundation for the management technologies of the present and

that still have a great influence on the development of the management technologies of the

future.

In the end we will try to show you the key components (i.e. managers, agents and structure of

management information) of a management infrastructure, that will act that a startup when

talking about the management technologies that have already been developed.

22..22..11 WWHHAATT IISS NNEETTWWOORRKK MMAANNAAGGEEMMEENNTT??

The network management is the process of monitoring (supervision) and controlling large

complex distributed systems, in which usually the failures are common and resources scarce.

The network management consists of:

 network control

 network supervision

The terms, usually associated with control and supervision (or monitoring), are operation and

maintenance.

The network management can also be defined as a service that employs a variety of tools,

applications and devices in order to assist human network managers in monitoring and

maintaining networks.

The computer and telecommunications networks are playing an increasing role in business

world. The general trend towards globalization means larger and more complex networks,

required to support many applications and to provide services to large number of users. On the

other hand, this means that networked systems are becoming more and more sensitive to

malfunctions, making proper management of communications an absolute necessity.

However, such management actions cannot be done by human effort alone due the slow response

time, high costs and low efficiency. Automated tools are needed that enable network operators to

provide the customers with the services they demand, in a way that creates the greatest possible

customer satisfaction, while having these services provided at the lowest possible cost. Efficient

network management can give a company a key competitive advantage.

While the benefits of efficient communication management can bring a key competitive

advantage, its development is based on the following demands:

 New management tools for automated management. These tools may include any

communications protocols, software and hardware components.

26

 Infrastructures based on equipments from different vendors, using different and

sometimes proprietary technologies make more difficult to manage an entire network

as whole.

 Further more having a management solution open to new possibilities of extension or

upgrade, while on the same time it is required to work on the technology available

today might seem even impossible.

Following these demands, it is obvious that for both current communication networks built with

different vendor devices, but that up to a point still behave like isolated silos, and for the future

multi-service networks, the development of standards widely accepted by the industry is

mandatory.

Before implementing a management strategy it is important, what the objectives must be

accomplished and what requirements are to be taken into account in order to ensure the viability

of the solution chosen.

 Complexity: In this case, the management solution, or more proper said the

management standard must be designed with the future in mind. Considering the

rapid growth of worldwide telecommunication systems and of the Internet followed

by a fast-changing industry is only reasonable to assume that the network

management has to be built to change rather than built to last.

 Service: To improve service when the resources of the organization grow and

redistribute.

 Dependable: Management must provide a high level of reliability, low downtime,

while keeping the required level of performance, availability and security.

 Economics: Management must be focused on obtaining both the required payback

from the investment made in the network resources and a high level of customer

satisfaction for the offered service.

22..22..22 IISSOO MMAANNAAGGEEMMEENNTT FFUUNNCCTTIIOONNAALL AARREEAASS

When talking about a management strategy it is important to understand what is to be managed,

i.e. having a model of the employed operations. One of the most known models is the one

created by International Organization for Standardization (ISO). ISO has contributed a great deal

to network standardization and in this field, it is best known of creating conceptual models used

for both design and learning.

The network management model created by ISO is a framework with the primary means for

understanding the major functions of a management system. It consists of five conceptual areas

to act as a guideline in practice:

 Fault

 Accounting

 Performance

 Configuration

 Security

Fault management is to detect, log, notify users and up to the possible extent automatically fix

the problems that might occur. Faults can cause disruption in service, downtime and performance

27

degradation so the purpose of fault management is to maximize the reliability and availability as

much as possible.

Fault management involves first determining the symptoms and isolating the problem. This may

be done either by the end users or management personnel or by the telecommunications network

itself. In the last situation the signaling of errors, when they occur, is made either by the elements

that experience a problem (event) or by the management center through the interrogation of the

network components (polling). Then the problem is fixed and the solution is tested on all the

affected components. Finally, the detection and resolution of the problem is recorded.

Accounting management enables operators to set up charges for the use of the

telecommunications network resources. It measures network utilization according to some

indicators and regulates the service offered to both individual users and groups of users,

minimizing possible problems by ensuring the operation at the designed capacity and

maximizing the fairness access for all users.

The steps involved in the process are the collection of data from the network itself, analyzing the

results obtained and calculating the costs based on the provider policy. This information will

finally yield billing information and information that can be used to measure the fair and optimal

use of the resources available.

Performance management is monitoring or tracking the network activities and controlling or

adjusting its parameters in order to improve performance or to maintain it at an acceptable level.

It requires data collection from the state variables that represent various aspects of the network

performance, analyzing this data to determine whether the network functionality is within the

allowed predefined limits. Examples of performance variables include network utilization, user

response times or line utilization. If the thresholds are exceeded, an alert is generated and sent to

the network management system and an action is usually taken to compensate. This action can

be either reactive, which means that the system responds automatically or proactive, that means

predicting through simulations of the future behavior of the network and finding a solution or

workaround before the actually problem occurs.

A subset of performance management is the management of Quality of Service (QoS). This is

the key factor of the provider’s ability to ensure proper customer satisfaction and to fulfill its

Service Level Agreements (SLAs).

Configuration management means to monitor the network and system configuration. It involves

activities like initializing a component and shutting it down, adding, maintaining or updating

relationships between these components.

Because each component may have a lot of configuration information associated with it, usually

this information is organized in databases, inventories or directories, which in case of problems

may be searched for clues to determine what has happened.

The management of configuration implies first the collection of already set configuration

parameters from the equipments on the network. This can be done either manually (by technical

personnel using application specific consoles) or automatically (by an automated management

systems). Then the system must accept changes of those parameters. This requires the update of

both the component behavior and of the configuration records. This is done locally on that

equipment or remote with a management protocol.

28

Security management means to control the access to the network resources according to a certain

policy and in such a way, these resources cannot be accessed without the proper authorization.

The key elements of the security management can be viewed from a physical security and an

application security perspective. The first one means having all the equipment locked in secured

areas and does not have too much to do with the actual network management itself. The second

one involves having an environment security management that will provide information

protection and access control. In order for the right information or resources to be accessed only

by the right users, concepts such as authorization, authentication, secure data storage and

communication were introduced. Because these measures are usually based on encrypted related

security, the security management must often take into account the creation and distribution of

encryption keys, sometimes with the help of a Certification Authority (CA) that will issue

certificates for several purposes.

The general approach of implementing security management is based on the following:

 To define a security policy (having the users classified in groups with different access

levels).

 To identify the different areas or access points of the network (such as gateways,

consoles, terminals, wireless access points or even local or distributed services like

remote control) that need to bee secured and assigning the proper permissions onto

these devices.

 The final step is of applying, maintaining these security settings through the use of

regular policies updates, encryption keys distribution for both issuance and revocation

operations, while monitoring the network with the use of security audits to ensure that

no unauthorized attempt occurs.

22..22..33 PPEERRSSPPEECCTTIIVVEESS OOFF MMAANNAAGGEEMMEENNTT

The three perspectives of management are closely related to the beginnings and evolution of the

network industries.

The first one was the telecommunications industry, which for a long time was in many countries

dominated by a state-owned or semi-public operator that offered telecommunication services

within the whole country. The technological development in the telecom industry was driven by

goals such as very high reliability, quality of service and within the last few decades, it is

concerned with mobile communications. The standardization within the telecom sector is made

through the effort of international standardization bodies that will issue standards for the vendors

to adhere. The best-known example of such developed standard is Telecommunication

Management Network (TMN) developed by International Telecommunications Union (ITU,

formerly known as CCITT).

The growth of datacom industry, which has begun in the environment of universities or

governmental projects, has been catalyzed by the expansion of the Internet and the wide spread

of inexpensive personal computers. Compared with the telecommunications industry, which

exists from near a century, the datacom one is young and has its roots in the 70’s. The most

known stack of protocols that is associated with the datacom networks is TCP/IP. Within this

family, the Simple Network Management Protocol (SNMP) was developed for management

purposes.

The computer industry focuses on the following aspects of management in computing:

29

 simplifying the user environment

 streamlining available configurations

 maintaining server operations

22..22..33..11 MMAANNAAGGEEMMEENNTT IINN TTEELLEECCOOMM IINNDDUUSSTTRRYY

The telecom industry started with widespread of the public switched telephony networks

throughout the world. In many countries, the telephone operator was initially a public institution,

acting as a national operator, which had the advantage of a physical infrastructure that covered

wide areas and that was designed to provide services to large numbers of subscribers.

The infrastructure and the equipment used were costly, but provided high quality service.

Because usually the operator within each country was like an isolated island, different types of

equipments from different vendors were deployed with less compatibility or interoperability

problems.

With the born of multinational companies or of the telecommunication networks that had to

concern equipments or technologies from different vendors or of different types it was clear that

especially for management there should by a single direction able to accommodate all needs. To

ensure multi-vendor management there was the need of an international management standard to

which the equipment designers must adhere. The most well known standard that tried to

accomplish this goal was Telecommunication Management Network (TMN) developed by

International Telecommunications Union – Telecommunications Standardization Sector (ITU-T)

in 1989. However, because the standards lacks of several key specifications and because its

development (in order to ensure the high reliability specific to telecom networks) took too long

there is still a debate regarding its wide acceptance in practice.

22..22..33..22 MMAANNAAGGEEMMEENNTT IINN DDAATTAACCOOMM IINNDDUUSSTTRRYY

The management in datacom industry came with the growth of local area networks (LANs) and

with the expansion of internetworking towards what was to become wide area networks (WANs)

the Internet.

By the time automated management of these networks was a need in the beginning of the 80’s,

the protocol suite that succeeded in data networks was TCP/IP. The development of a managing

standard was greatly influenced on one hand by the fact that at that time computer networks were

common only in universities and science laboratories and the expansion towards the consumer

market was still at its beginnings. On the other hand, at that time there was no international

standardization body that handled the development of standards for TCP/IP networks and most

of the TCP/IP technologies were even in the research phase.

The common approach of datacom industry was to have simple, robust standards available when

needed. Following this approach the Simple Network Management Protocol was born. Its

advantage of the minimal design, that leaved room for vendor specific extensions, encouraged

simple implementations and soon this protocol was adopted throughout the industry.

However more than a decade later, the drawbacks of this simple approach and the lack of

advanced management concepts, security, efficiency and reliability, tribute to its original design,

became problems.

30

22..22..33..33 MMAANNAAGGEEMMEENNTT IINN CCOOMMPPUUTTEERR IINNDDUUSSTTRRYY

The computer management exists since the beginning of computers commercial success. In the

beginning were the large corporate mainframes and with the evolution of the computer

technologies and the popularity of personal computers it became the management of server

software, user environments and applications.

The standards employed were in the beginning hardware vendor specific and nowadays are

usually software specific, but in either case, the management platforms are very different and it

is difficult to find a common point to all of them. The major manufacturers dictate the criteria for

managing their environments and the smaller designers of applications or tools that will have to

work to the existing platforms follow the rules that have already been set.

However, in the last 10 years the industry made some major steps towards improving the

interoperability in compatibility between their platforms. Starting with the creation of the

Distributed Management Task Force – with the major objective to develop standards for desktop,

network, enterprise and Internet – and the development of some distributed technologies there

are strong signs that at least efforts are being made. From these distributed technologies, we can

mention Remote Procedure Call (RPC), Common Object Request Broker Architecture

(CORBA), Common Information Model (CIM), Common Object Model (COM) and Directory

Enabled Networks, that overall try to smooth the interoperation between different systems.

22..22..33..44 MMUULLTTII--SSEERRVVIICCEE MMAANNAAGGEEMMEENNTT

The movement towards multi-service networks comes from the demand by the market of

communications tools and services that enhance performance and minimize costs. Therefore

both telecom and datacom service provides have extended their service area toward each other in

the attempt to anticipate the customer demand, while increasing the profit, enhancing

performance and minimizing the costs both for the service provided and for the customer, which

is not required to contact that service from another provider.

The telecom industry begins more and more to include data services in their portfolios, relying

not only on their infrastructure used for backbone traffic (like ATM, Frame Relay, PDH, SDH or

Sonet) but also expanding it towards the end-user with services like ISDN or different versions

of DSL that benefit on both current cabling and the undergo enhancements. Unfortunately, the

level of quality and performance regarding data traffic is still low compared to one in a datacom

infrastructure (such as Ethernet over a LAN). In mobile communication, the matter is even

worse: technologies like GSM (which was not even designed for transport of data) and

CDMA2000 being well behind the performance achieved even within a Wireless LAN (WLAN)

network.

The datacom providers are taking advantage of the new technologies developed like voice over

IP to enable support for voice and video streaming and with these services like telephony, fax

and video conferencing. However, these networks are usually TCP/IP based and this stack of

protocols still lacks in functionality and quality. Packet switching versus circuit switching is, of

course, the major factor in performance penalty, but beyond that, the protocol suite did not offer

so far parameters that could control successfully the quality of service or traffic/subscription

class. This comes especially when establishing of priorities for packets transported within

aggregated flows over a backbone connection is required.

31

To make things more complex, these facts are related to service provisioning only. When it

comes to management, the entire spectrum of applications, devices, vendors and even standards

along with the whole set of parameters, states and variables that can be changed, configured or

worth monitoring, make it undoubtedly complex.

22..22..44 MMAANNAAGGEEMMEENNTT AARRCCHHIITTEECCTTUURREE

The management architecture is the collection of managing and managed devices and of the

communication of management information between them.

When talking about the management architecture it is important to understand that, it should be

related to a specific management technology. For example, there is the so-called Directory

Enabled Network (DEN) that keeps track of their resources by using a central repository called

directory. The management applications running in such environment and are DEN enabled must

identify each resource based on its information from the directory. However, in what follows it

will be presented the simple, classical management architecture, which can be found in some of

the most used management technologies such as the Simple Network Management Protocol

(SNMP) developed initially for IP networks and Telecommunications Management Network

(TMN) designed to comprehend a wide spectrum of telecommunication networks.

Figure 2.7 The general architecture of a management system

The information presented here will act as a basis for the future understanding of any other

management technology, even if some of the terms described here could be changed or the main

components or the interaction between them might by altered.

22..22..44..11 MMAANNAAGGEERRSS

The managers are the nerve center of a management infrastructure that collect information about

the state of the network and send configuration messages to the network elements.

Their key functions are to receive notification data for the managed devices, also known as traps,

to request information from these devices or to send parameters. A manager must also allow a

configuration to be set up o specify number of retries, timeout duration or polling intervals that

will be used as thresholds in order to determine that a device is not responding. The messages

transmitted between a managed device or network element, on one side, and a manager on the

Manager
Station

Managed Devices

Management
Protocol

32

other side, is related to any aspect regarding fault, configuration, accounting, performance and

security.

The managers must be aware of the structure and format of management information used by the

managed devices. This is true regardless of the protocol or the technology involved. To keep

their products competitive and to fulfill at their best the objectives of management vendors

enhance their products with information and manageable parameters that were not even

conceived when the standards used were designed. Therefore, the specifications of the products

must contain any new feature added to the management information and the managers must be

configured to recognize and interpret this information (if the management protocol is flexible

enough to allow that).

The managers should also allow the administrators to define some action templates based on

rules to be executed automatically, without user or technical support personnel intervention, in

the case of certain events.

22..22..44..22 AAGGEENNTTSS

Agents are pieces of software or hardware implemented functions that run on the managed

devices. The first duty of an agent, which is the hardware or software routines within the

managed device that are management aware, is responding to the inquiries of the manager.

It should be able, to the extend offered by either the device itself or to any security policy in

place, to allow inspection and changing of any device parameters managed at a given time

including configuration of the management structure or information. Then it should detect any

abnormal condition and report it to the manager without any other intervention.

Examples of agents include a specific service of a Windows® based computer, a daemon

running on a Linux machine or software routing from the Cisco’s IOS® operating system used

on Cisco devices.

The agent requires minimal configuration before use like system information, the manager

location (if the agent uses the notification method of communication with the manager) and

access rights, such that only management messages received from the trusted managing stations

to be allowed.

22..22..44..33 MMAANNAAGGEERR –– AAGGEENNTT CCOOMMMMUUNNIICCAATTIIOONN

In the previous paragraphs, we have discussed about the main components of a management

system, i.e. manager and managed devices (or more appropriate agents). Now is time to talk

about the manager-agent communication process. This is the way of the agent informing about

the status of the managed device or of the manager requesting some information. The

communication is usually based on the transport provided by a management protocol specific to

both the platform and managing technologies. Regardless of the implementation, two transported

major types of messages carry management information.

The first one is polling based, meaning that managers request information periodically from the

network elements. The advantage of this approach is that the complexity of the agents is very

low: they will simply have to wait for a request from the manager to be received and then to

return the result. A debate is made on what should be an appropriate polling interval. A too small

value will result on having the most up-to-date information regarding the network, but wasting

33

valuable bandwidth. By having a too low value, this results in saving the bandwidth and

improving the performance but the probability of missing key events or being aware of them too

late increases.

Figure 2.8 Polling based communication mechanism

The communication between the manager and agent of the managed device in the example above

proceeds in the following fashion:

1. The manager forms a query message that contains an information request and the

destination of the message — the address of the managed device on the network.

2. The manager sends the information request to the managed device by using the

management service running on the physical machine.

3. When the managed device receives the message, it verifies that the current machine is the

destination of the query; it checks the authenticity of the message and evaluates the

request against the agent’s list of access permissions.

4. If the authentication data or access permission is incorrect, the agent might send a

notification to a certain management station, if any has been configured.

5. The agent component of the managed device calls the appropriate local service to retrieve

the requested information.

6. The managed device sends the response to the manager station.

 Notes

 From the list of operations performed by the managed device and the agent at the step

3, the actual activity depends on the management technology involved.

The second method is event-driven, which means that the network elements have the managing

intelligence of informing the manager that something has happened. This overcomes the problem

of bandwidth from the polling approach but requires the network element to be still operational

in order to report a problem and increases the processing and resource usage at the managed

device in order to evaluate each operation parameter to determine if a message should be sent to

the manager.

Figure 2.9 Event driven communication mechanism

The communication between the manager and agent of the managed device in the example above

proceeds in the following fashion:

The manager creates and sends a query message
to the agent from the managed device

The agent processes the request, generates and
returns a reply

Manager

Agent on
Managed Device

1
5

2 3

4

The agent sends a notification to the manager,
informing it about the asynchronous event

The manager confirms the receiving of the
notification, by replying with an acknowledgement

Manager
Agent on

Managed Device

2

4

Event
1

3

34

1. An event – a situation that can be identified through some triggering parameters – occurs

on the managed device. The events are usually programmed by the manufacturer of the

device, the vendor of the management software or by the management staff responsible

for running the network. Examples include a device starting up or shutting down, an

interface going online or offline, a malfunction or the exceeding of a system parameter of

a preset threshold.

2. The agent from the managed device creates a notification message to be sent to the

manager. Message information contains data about the event, security information to

enable the manager to receive and process the notification and the address of the

manager, previously configured on the agent.

3. The manager receives the notification message, verifies the authentication information

and interprets the notification data, taking an appropriate action. This action is

programmed into the manager. It could be a visual or audio alarm reported to

management staff or by performing a predefined or determined – according to its level of

intelligence – operation on the managed device, using a polling-based mechanism.

4. Regardless of the taken action, the manager station can return an acknowledgment

message confirming the successful receiving of the notification message.

The most used option is however the mixed one. In this case, event-driven messages could be

sent in the case of extraordinary events, while polling can be used at larger intervals, during

normal operation.

There is even the possibility that a message from the agent triggered by a certain event to

generate some polls from the manager in order to obtain more information. Some devices may

send a message to the manager to inform about the passing from a bad state to a good one and

the resuming of normal operation. There is no restriction on when each type of messages could

be sent.

22..22..55 MMAANNAAGGEEMMEENNTT IINNFFOORRMMAATTIIOONN

The management information is the information about the managed nodes and devices. It most of

the management implementations it is regarded as a collection of physical or logical resources

that can be managed, named managed objects. This abstraction is useful in hiding from the

management system the specific details of that resource, others than the ones that have

management importance, such as implementation, vendor or device specific extensions, access

methods. For example, the implementation of counters that keep the amount of information

transferred over an interface of a networking device depends on the type of the device, the

technology used and vendor. From the management point of view, however, this should be

regarded as the same resource despite of the actual physical entity that keeps track of this

information.

On the other hand, due to the wide variety of manufacturers, equipments, applications and

parameters that could be managed a repository of the possible manageable information is

needed, such that both agents and managers understand each other.

35

Figure 2.10 Management Information Base characteristics

A management information base is a repository of the managed objects. It is defined using some

rules, which define its structure and the objects representation such that this information could be

exchange between the network elements. An analogy with an information base is a dictionary

that both managers and agents use to localize and identify resources based on a code that is

transmitted over the network.

Management Information Base

 contains the managed objects and their relationships

 provides a base of identifying those objects

 is build using widely accepted rules (standards)

36

22..33 SSIIMMPPLLEE NNEETTWWOORRKK MMAANNAAGGEEMMEENNTT PPRROOTTOOCCOOLL

22..33..11 OOVVEERRVVIIEEWW

The development of SNMP came as a solution to the need of managing and troubleshooting

more and more complex TCP/IP based networks. Before SNMP, maintaining these networks was

done exclusively by human effort alone with the help of some simplistic tools like ping,

traceroute or telnet used for both troubleshooting and configuration purposes.

As the infrastructure grew not only the effort but the costs grew consequently while the

efficiency of human intervention became lower and lower. It was obvious that to meet the

growing demand of networking by the industry (and nowadays by the consumer market as well)

automated management technologies were required to help both in monitoring faults and setting

up configurations as inexpensive and well as possible.

22..33..11..11 IIEETTFF SSTTAANNDDAARRDDIIZZAATTIIOONN

In the field of management, the result of IETF efforts was Internet Standard Management

Framework (ISMF), most commonly known as SNMP management, even if SNMP itself is only

a part of the framework. The ISMF is composed of several key elements:

 The managed nodes (i.e. the network elements) each of them having a management

aware entity usual called an agent, that performs the management specific functions

such as monitoring the operation of the managed node and sending that data, or

receiving control data and performing configuration related tasks.

 The manager is a station or device that has a SNMP enabled management application

that communicates with the agent from the managed devices by receiving status

information and sending control messages.

 The management protocol itself: Simple Network Management Protocol. It is

responsible for management information transport over the TCP/IP network.

(According to RFC 1449, SNMP supports transport not only over TCP/IP based-

networks but also over OSI, DDP and IPX/SPX.)

 The management information which is divided into the variables, more commonly

referred to as objects, which track the monitored parameters of the managed devices

that constitute the Management Information Base (MIB) and the rules for defining

these objects and their behavior: the Structure for Management Information (SMI).

 A set of management operations that enable managers and agents to perform some

functions on the managed data

 The initial SNMP standard was far from complete when initially released in 1990. It

lacked in features like security that were not required or a priority at that time. Since

then two more versions of SNMP were released along with other technologies like

Remote Monitoring (RMON).

The following figure represents the IETF management framework.

37

Figure 2.11 Internet Standard Management Framework

22..33..11..22 VVEERRSSIIOONNSS OOFF SSNNMMPP

The predecessor of SNMP was Simple Gateway Management Protocol (SGMP) developed for

managing IP routers. Based on it, IETF created SNMP, which is able to manage any networking

device that is SNMP aware, either having a hardware component designed for SNMP

management or more commonly running SNMP management software.

SNMP is the central piece of the Internet Standard Management Framework (ISMF) that consists

in two types of SNMP entities (a manager and a managed one – referred to as an agent), the

protocol itself and the management information.

SNMP consists in a set of a few simple operations along with the management information these

operations gather. This allows collection of information from any device that has SNMP support

and monitoring its state or enables an administrator to perform remote configuration operations.

This is true both for hardware but also for software, i.e. applications such as services and

databases.

IETF developed so far three versions of the protocol. They are presented in table 2.4.

Table 2.4 Versions of SNMP

Version Description

SNMPv1

It is intended as a simple, robust protocol for management of IP-based networks,

particularly for fault and configuration. The result was a protocol widely accepted by the
industry and therefore, almost any device today has support for SNMP. The
disadvantages: has support only for IP (and more recently for IPX) networks, is
inefficient in transferring larges amount of management data and virtually no security
mechanism.

SNMPv2
This version tried to eliminate these disadvantages. However, it was difficult to agree on
the solutions to those problems and several versions of the protocol appeared.
Therefore, the industry was reticent in implementing them and SNMPv2 never caught on.

SNMPv2p
SNMPv2p updated the protocol itself: operations, data types and only some security
improvements.

Agent program

Management
Information Base

Manager program

Management
Information Base

Replies or notifications
from the agent

Request messages sent
by the manager

Network Management
System

Managed Device

Structure of
Management
Information

SNMP over TCP/IP or
IPX/SPX

38

22..33..22 BBAASSIICC CCOOMMPPOONNEENNTTSS

Managers and managed devices are the two end-points of the management process. While it is

obvious that the manager is a SNMP enabled entity, usually even a dedicated machine with

management applications that handles the network management process, the tasks of the

managed device focus on its main operating functions – that is why the device was built. The

fact that is manageable and SNMP aware is an advantage for it, but is not compulsory. That is

why the SNMP entity within the managed device, sometimes referred as network elements, must

be distinguished somehow and it is called an agent.

Managed devices are networking equipments such as workstations, servers, routers or printers.

Agents are software routines, services or applications that reside and run on these equipments

and are able to communicate to the manager.

The manager – usually called a Network Management System (NMS) – is the management

platform at an operations centers used by network operators to monitor network status. Simple to

complex management applications enable some or all of the management functional areas to be

performed.

The communication initiative can be held by any of managers and agents. Managers send or

request management data to or from agents through queries called polls. Polling is used to check

the status of a device or change its operation. On the other hand, agents might need to notify

managers of some exceptional events that occurred. Event-driven messages, which in SNMP

language are called traps, are sent to the NMS in case of a fault or some other important event

filtered on rules that depend on the abilities of each agent instance. Some devices will send a

corresponding "all clear" trap when there is a transition from a bad state to a good state. This can

be useful for the manager in determining when a problem situation has been resolved.

22..33..22..11 CCOOMMMMUUNNIITTYY NNAAMMEESS

SNMPv1 and SNMPv2 (more precisely SNMPv2c) use the notion of community names to

establish trust relationships between managers and agents. These names are used like password.

They give to a SNMP entity the ability to access management information on another one.

The main disadvantage of using community names as a method of authentication is that these

names are sent through the network in clear text and no encryption is performed on either them

or the transported data. The security method developed with SNMPv1 is insufficient in

nowadays networks and the next versions of SNMP tried to improve it.

There are three types of community names (see table 2.5). These types define the access level,

i.e. a SNMP message carrying an operation to be performed on some variable from a managed

SNMPv2c
This version was called community string-based SNMPv2. It uses the same

authentication method like in SNMPv1 based on community names.

SNMPv2u
It is the same like v2c but has an improved user-based security system that uses an
encrypted authentication mechanism.

SNMPv3
The version 3 brought wide changes not only on the protocol itself but also on the
concepts of the management framework. It provides cryptographic based security,
allowing authentication and privacy protection.

39

device is restricted by the community name. If the message carries the wrong community name,

no access is allowed at all.

Table 2.5 Types of community strings

Traditional names for READ-ONLY and READ-WRITE community are public and private

respectively. A proper method of securing the network implies changing the community names

such that intruders cannot inspect or, worse, take control of it. However, as it was stated before,

this security method is only a superficial one. Analyzing management traffic reveals instantly

both community names and management data, and this is way community based security virtual

lacks in any authentication mechanism.

22..33..22..22 MMAANNAAGGEERR CCOONNFFIIGGUURRAATTIIOONN

The manager is the location from where managed devices are monitored and controlled. Its key

functions are:

 To receive and to interpret the traps received from the agents, to take the

corresponding action, if necessary

 To upload the management information from the managed device

 To download the parameter values to the managed devices – the last two operations

being realized through polls

Managers usually consist in a set of applications that provide a user interface – technical staff

can use to configure thoroughly its options, databases that keep the management configuration

for the entire network, event logs with various alerting features to notify when something is

wrong.

Managers use most of the processing and memory resources between the SNMP entities (for

large network or management infrastructures entire computing equipments are assigned only for

this purpose) and require detailed configuration before use.

This management-specific configuration can be split as follows:

1. Access Configuration – implies setting up the community names (for SNMPv1 and v2) in

order for managers to be able to receive traps and to send requests. (For SNMPv3 things

are more complex, depending on the security method used.)

2. Polling Configuration – the manager must be configured with the kind of information it

must request from the managed devices, what kind of command to give or what

parameters to setup. For frequent operations, such as checking the operational status of a

Community Type Description

READ-ONLY
It allows reading the parameters from an agent (e.g. reading the number of
packets transferred through an interface) but does not allow changes to be
performed (e.g. for the same interfaces the counters cannot be reset).

READ-WRITE

It allows both reading and writing operations on the variables held by the agent.
This type of community is used for setting up configurations and a manager that
uses this community can gain complete control of a managed device in the limits
allowed by SNMP.

TRAP
It enables the manager to receive traps – asynchronous notifications from the
agent. An agent sending a trap must use this community in order for the
manager to accept the message.

40

device or component of it, the polling frequency needs to be specified. In order to execute

operations that are more complex, once a week or one time only, advanced managers set

up schedules for each activity.

3. SNMP Configuration – involves setting-up the transmission control parameters. SNMP

relies on User Datagram Protocol (UDP) from TCP/IP stack at the transport layer, SNMP

itself being an application protocol. UDP is connectionless and unreliable, so SNMP

must handle reliability issues. This is done through retransmissions after waiting a given

duration for a reply. Most managers allow the configuration of this timeout period and

the number of retries.

22..33..22..33 AAGGEENNTT CCOONNFFIIGGUURRAATTIIOONN

An agent is the process executing management tasks inside the managed device (network

element). The actual implementation is vendor specific, but regardless, the major functions that

have to be performed are the following:

 To send a reply to a query received from the manager, after it validates the incoming

message (using the community name or by some other method for SNMPv3) and

processes the request.

 To detect exceptions based on the configured policy and send traps to the NMS.

 The agent controls the access of the manager to each variable from the management

information base, usually using the community name and type.

To complete these functions the following minimal SNMP specific setup needs to be performed

prior to agent’s use:

1. System Information – system and contact information (e.g. the device name, description,

location, administrative area) or any other kind that might be useful in troubleshooting.

This is required primarily to identify the device if something goes wrong.

2. Trap Destination – the address of the manager station has to be known by the agent in

order to send traps.

3. Access Control – implies setting up the community names, specifying their types such

that both traps can be sent and polls received.

This minimal configuration is required for any agent regardless its simplicity such as built-in

agents for various equipments that already have all other parameters configured by the

manufacturer. More complex agents may allow refining management or adding additional

features through the configuration of trap policies (i.e. in which cases a trap should be sent and

what it should contain as data) or objects access control (i.e. what information from the MIB

should be made available).

The configuration requirements described here for both managers and agents is only the

prerequisite. Vendors usually add their own options to make their products more flexible and

competitive.

However, in this paper we shall resume only to the management specific. SNMP entities must be

prior configured to work over a TCP/IP (or IPX/SPX if the implementation supports) network

and depending on the situation additional settings are required.

41

22..33..33 MMAANNAAGGEEMMEENNTT IINNFFOORRMMAATTIIOONN

The management information is the information about the managed nodes and devices. This

information can be organized in information elements or variables, each tracking a certain aspect

or property of the network element.

Each information element is thought to as an abstraction using the notion of managed object.

These objects represent physical or logical resources that are being managed and the object’s

properties represent the actual information. Because these objects are no more than a simple

convention used between managers and agents some rules are required.

First, they must have a limited, known number of possible data types. This requirement is

obvious: a certain data type implies a known amount of data and some specific processing.

Regardless of the object that depends on the device involved, and though there are more to be

created, using standardized types means that the entities not only use the same language, i.e.

SNMP, but speak in the same terms as well. Having few data types possible simplifies things and

implementations, while having more types, it means additional information on what that object is

and what to do with it.

Second, each object needs to be identified somehow. The identification solution must be open to

new member objects and must be adopted as a standard. Remember that there are a lot of

network elements, each with specific parameters that worth monitoring or configured and some

are vendor specific – so the solution adopted must allow these parameters to be managed as well,

even if they were not invented when the protocol was designed. The actual meaning of each

object based on its identifier – or object ID – should be recognized by both manager and agent.

Traditionally the collection of all manageable objects is called by the standard the Management

Information Base (MIB). Any sort of status or statistical information that can be accessed by the

NMS is defined in a MIB. The rules of defining these objects, their behavior as well as the rule

for defining the MIB itself are called the Structure of Management Information (SMI). For every

new state variable of configuration parameter of a device, a MIB must be defined containing the

definition of an object for that variable or parameter. The MIB and the object definition must be

done according to SMI.

22..33..33..11 MMAANNAAGGEEMMEENNTT IINNFFOORRMMAATTIIOONN BBAASSEE

The Management Information Base is a virtual store, which comprises all management

information from the managed network. The MIB defines the managed objects that an SNMP

manager monitors (or sometimes configures) on an SNMP agent. Each system in a network

(workstation, server, router, bridge, and so forth) maintains a MIB that reflects the status of the

managed resources on that system, such as the version of the software running on the device, the

IP address assigned to a port or interface, the amount of free hard drive space, or the number of

open files. The MIB does not contain static data, but is instead an object-oriented, dynamic

database that provides a logical collection of managed object definitions. The MIB defines the

data type of each managed object and describes the object.

The structure of the MIB is of a tree-like hierarchy were the tree nodes representing the managed

objects. The structure itself is described by the Structure of Management Information (SMI) that

specifies which object is found in some of the root nodes and how the entire tree architecture is

organized. The part of the tree that concerns with Internet SNMP management is defined as

follows (see figure 2.12): immediately beneath the root of the MIB tree, International

42

Organization for Standardization (iso) is the Organization (org) branch, followed by Department

of Defense (dod), and then Internet (internet). All objects that concern Internet technologies can

be found under this node.

Figure 2.12 The path to Internet MIB

The SNMP-related branches of the MIB tree are located in the internet branch, which contains

two main types of branches:

 Public branches (mgmt=2), which are defined by the Internet Engineering Task Force

(IETF) RFCs, are the same for all SNMP-managed devices.

 Private branches (private=4), which are assigned by the Internet Assigned Numbers

Authority (IANA), are defined by the companies and organizations to which these

branches are assigned.

Other branches like directory=1 and experimental=4 are not used or reserved for testing

purposes. There are no limits on the width and depth of the MIB tree.

Management (mgmt), the main public branch, defines network management parameters common

to devices from all vendors. Underneath the Management branch is MIB-II (mib-2) – a special

MIB that must be implemented by any SNMP-enabled device and beneath this are branches for

common management functions such as system management, printers, host resources and

interfaces.

The private branch of the MIB tree contains branches for large organizations, organized under

the enterprises branch. Each organization has a root branch node under this object. Each

organization creates its own subset of MIB branches and objects, which must comply with the

Structure of Management Information.

22..33..33..22 MMAANNAAGGEEDD OOBBJJEECCTTSS

At the programmatic level, the definition of each MIB object that an SNMP agent manages

includes the following elements:

 The object name and object identifier (also known as an OID)

 A text description of the object

Root

iso = 1 ccitt = 0 joint = 2

org = 3

dod = 6

internet = 1

mgmt = 2 experimental = 3 private = 4 directory = 1

mib-2 = 1

43

 The object’s data-type definition (such as counter, string, gauge, or address) The level

of access to the object (such as read or read/write) that is allowed

 Size restrictions

 Range information

SNMP references each MIB variable by using its unique object identifier, which identifies the

location of a given managed object within the MIB namespace. The object identifier reflects the

object’s position within the hierarchy of the MIB tree, containing a sequence of subidentifiers

that begin at the root of the MIB tree and end at the object (leaf node). Subidentifiers are

separated with a period.

Let us look at the situation from figure 2.13. To reference the MIB object at the bottom (showed

in yellow), either numeric or text subidentifiers can be used. For example, the following text-

based object identifier is interchangeable with its numeric counterpart, shown beneath it. The

value of this object identifier, in either format, identifies the current operational state of a

network adapter.

Figure 2.13 Using managed objects

The description of this object in the MIB file, following SMI syntax rules, would be:

Where the parent nodes, i.e. system and so on are specified as follows:

Corresponding to each object identifier is a value that represents the current state of the object.

SNMP, which accesses only the leaf nodes in the MIB tree, references a MIB variable by the

iso = 1

org = 3

dod = 6

internet = 1

mgmt = 2 private = 3

mib-2 = 1

system = 1

sysDescr = 1
1.3.6.1.2.1.1.1
iso.org.dod.internet.mgmt.mib-2.system.sysDescr

sysDescr OBJECT-TYPE ::= {system 1}

internet OBJECT IDENTIFIER ::= {iso org(3) dod(6) 1}

mgmt OBJECT IDENTIFIER ::= {internet 2}

mib-2 OBJECT IDENTIFIER ::= {mgmt 1}

system OBJECT IDENTIFIER ::= {mib-2 1

44

dotted numeric string that represents its object identifier in order to retrieve the current value of

the variable.

22..33..44 SSTTRRUUCCTTUURREE OOFF MMAANNAAGGEEMMEENNTT IINNFFOORRMMAATTIIOONN

Along with the definition of Management Information Base and with the standard that describes

the SNMP architecture, the SMI is one of the three pieces that define a simple, workable

management framework for TCP/IP networks. The SMI handles with rules and conventions of

the management data that is defined in MIBs and transported by the protocol. The first version of

SMI (RFC 1155) focused on the following main objectives:

 To specify the path-to-root structure of the MIB tree with precise rules where the

management objects are located, and where new or vendor-specific ones can be

added, i.e. the MIB extensions. The schema of the MIB has been created using ASN.1

convention.

 Set up the definition format for the managed objects. This involves the syntax,

semantics, data types, attributes, encoding and guidelines for definitions to be

precisely formulated. The textual definition of each object that is found in a MIB is

called a macro. The definition of sysDescr object from the example was presented

using the macro notation. Because it defines an object and it starts always with the

same keyword is referred to as a macro of OBJECT-TYPE.

The SMI version 2 (RFC 2578) brought several enhancements. It increased the number of

defined types to better meet developers needs (more data types on 32 and 64 bits, conceptual

tables) and the number of object types (tree new more object macros were provided, each having

specific functionality and attributes, including trap object that replace the protocol specific

messages from SNMPv1 and give more flexibility to trap mechanism implementation).

22..33..44..11 SSMMII DDAATTAA TTYYPPEESS

Data types are used in the SYNTAX clause of an object definition macro.

SMI version 1 (published in RFC 1155) defines the following data types:

 Primitive types (or non-aggregate types) are subset of ASN.1 in table 2.6.

 Constructor types that can be lists defined with SEQUENCE key word or tables

defined with SEQUENCE OF.

 Defined types based on the primitive ones, in table 2.7.

Table 2.6 SMIv1 primitive data types

Data Type Description

INTEGER
Is a 32-bit number used both for numeric data and enumerated values (such as

up, down or testing as a status of an interface)

OCTET STRING A sequence of zero or more bytes

OBJECT IDENTIFIER A dotted decimal string represents the managed object within the MIB tree

NULL It is a legacy type inherited from ASN.1. It is not currently used in SNMP.

45

Table 2.7 SMIv1 defined data types

SMI version 2 adds these types:

Table 2.8 Data types added by SMIv2

 Notes

 Neither SMIv1 nor SMIv2 have a corresponding type for IP version 6, 128-bit

addresses.

22..33..55 PPRROOTTOOCCOOLL SSPPEECCIIFFIICCAATTIIOONNSS

The SNMP is an application layer protocol from the TCP/IP stack. SNMP uses the

connectionless User Datagram Protocol (UDP) service to transmit SNMP messages. SNMP uses

the simple UDP transport service. That does not guarantee either delivery or correct sequencing

of delivered packets, so that SNMP can continue functioning after many other network services

have failed. By default, UDP port 161 is used for sending and receiving requests and port 162 is

used to listen for SNMP traps.

The advantage in using UDP consists in having a low overhead and therefore minimum

performance degradation due to management traffic. In the mean time the bandwidth of the

network can be more appropriately used for the purpose it was meant.

Data Type Description

NetworkAddress A generic network address from any protocol family

IpAddress A 4 byte IP version 4 address

Counter
A 32-bit unsigned integer that monotonically increases until it reaches a
maximum value, when it wraps around and starts increasing again from zero

Gauge
A 32-bit integer similar to Counter, but unlike it the maximum value cannot be

exceeded

TimeTicks A 32-bit integer that measures time in hundredths of a second

Opaque Allows any other ASN.1 encoding to be stuffed into an OCTET STRING

Data Type Description

Integer32 Same as INTEGER type from SMIv1

Counter32 Same as Counter type from SMIv1

Gauge32 Same as Gauge type from SMIv1

Unsigned32 An unsigned integer value on 32 bits

Counter64 A 64-bit unsigned integer similar to Counter32 type

46

The main disadvantage is, of course, the unreliable nature of UDP. This means the SNMP itself

must handle any lost messages through time-outs and retransmissions. Usually this is not such a

big problem since SNMP is expected to encounter networks with problems, otherwise at least

fault management would not be necessary.

More recently, Internetwork Packet Exchange (IPX)-based networks have added support for

SNMP.

22..33..55..11 PPRROOTTOOCCOOLL OOPPEERRAATTIIOONN

SNMP sends operation requests and responses as SNMP messages. An SNMP message consists

of an SNMP protocol data unit (PDU) plus additional message header elements defined by the

relevant RFC. An SNMP agent sends information in known two situations:

 When it responds to a request from an SNMP manager

 When a trap event occurs

SNMP version1 specifies the following message types:

Table 2.9 SNMPv1 Operations

 Notes

 The object ID (OID) parameters that are sent through the SNMP messages are

referred to as variable bindings. These are pairs (OID, values) meaning that the object

specified by the OID has the value next to it. In the case of get and set-next

commands, the value field is left empty.

Message From/To Description

Get Manager/ Agent
Accesses and retrieves the current value of one or more
MIB objects on an SNMP agent.

Get-Next Manager/ Agent

It browses the entire tree of MIB objects, reading the
values of variables in the MIB sequentially. Typically, you

use Get-Next to obtain information from selected columns
from one or more rows of a table. Get-Next is especially
useful for browsing dynamic tables, such as an internal IP
route table or an ARP table, reading the table one row at
a time.

Set

Manager/ Agent

It changes the current value of a MIB object. In order to
update a MIB value on the SNMP agent, the SNMP
manager must have write access to the object. Set is
used infrequently, because most MIB objects are read-

only by default, so that unauthorized changes cannot be
made.

Get-Response Agent/ Manager It replies to a Get, Get-Next, or Set operation.

Trap Agent/ Manager

Notifies the specified SNMP manager (the trap
destination) when an unexpected event occurs locally on
the managed host. You can use traps for limited security
checking (such as notifying the trap destination if the

agent receives an information request from an SNMP
manager that it does not recognize) or for
troubleshooting (such as notifying the trap destination if
the WINS service fails).

47

SNMP version 2 added the following new message types:

Table 2.10 SNMPv2 operations added to the already existing ones in SNMPv1

22..33..55..22 SSNNMMPPVV11 MMEESSSSAAGGEE FFOORRMMAATTSS

SNMP version 1 messages contain two main parts:

 A message header, which is common to all messages and independent of the message

type

 A Protocol Data Unit (PDU) that contains command specific parameters

Figure 2.14 SNMPv1 message format

Table 2.11 SNMPv1 message header fields

Message From/To Description

Get-Bulk Manager/ Agent

It retrieves data in units as large as possible within the
given constraints on the message size. Get-Bulk, which
accesses multiple values at one time without using a Get-
Next message, minimizes the number of protocol
exchanges required to retrieve a large amount of
information.

To avoid fragmentation, restrict the maximum message
size to a size smaller than the path maximum
transmission unit (MTU), the largest frame size allowed
for a single frame on your network. Typically, when it is
not known how many rows are in a table, Get-Bulk is

used (rather than Get-Next) to browse all rows in the
table.

Notification Agent/ Manager

The message type is the same with Get and Set
messages; SNMPv2 no more uses a special message type
to send trap (notifications) but instead has a new object
type that used with ordinary messages.

Inform Manager/ Manager
It is used for manager-to-manager communication when
in a network with many NMS; it can be also used to send
traps.

Report N/A
The operation was never implemented; now is part of
SNMPv3 specifications for communication between SNMP
engines.

Field Description

Version Specifies the version of SNMP used. For SNMPv1 the value is 0.

PDU Type Request ID Error Status Error Index Variable Bindings

Version Community Name

Message Header

Protocol Data Unit

48

Table 2.12 SNMPv1 message PDU fields

SNMP version 1 makes distinction between manager polling messages and agent traps by

providing a unique message format for trap messages. Therefore, the message type presented so

far is used for get, get-response, set and get-next operations. The message type used for trap

operations is shown in figure 2.15.

Figure 2.15 SNMPv1 trap format

For trap messages, the PDU contains the following fields:

Table 2.13 SNMPv1 PDU fields for trap messages

Community Name
Defines the access environment for a group of NMSs. NMSs within the
community are said to exist within the same administrative domain.

Field Description

PDU Type Specifies the type of PDU the message contains.

Request ID

It is used to distinguish among outstanding requests. This value is used to

correlate outgoing requests with incoming replies, and because SNMP is used
over UDP, can be used to track duplicate message.

Error Status
It indicates one of a number of errors and error types. Only the get-response
operation sets this field. The other messages do not use it and set its value in
zero.

Error Index
Ti associates an error with a particular object instance. Only the get-response
operation sets this field. The other messages do not use it and set its value in
zero.

Variable Bindings
Represent the data field of the SNMP message and contains the OID, value pairs
described in the previous note.

Field Description

Enterprise It identifies the type of managed object generating the trap.

Agent Address It is the address of the managed object generating the trap.

Generic Trap Type It indicates one of a number of generic trap types.

Enterprise
Agent

Address
Generic

Trap Type
Specific

Trap Code
Variable
Bindings

Version Community Name

Message Header

Protocol Data Unit

Time
Stamp

49

22..33..55..33 SSNNMMPPVV22 MMEESSSSAAGGEE FFOORRMMAATTSS

The structure of the SNMPv2 message is similar to SNMPv1. In this case, too, the message is

composed of two parts: the message header and the PDU.

The SNMPv2 message header has the same two fields Version Number and Community Name

with the same role, except the Version Number now contains the value 1 for SNMP v2c and the

value 2 for SNMP v2p and v2u.

The SNMPv2 PDU is of two types, depending on the transmitted message.

For get, get-next, set, get-response, notification and inform operations we have:

Table 2.14 SNMPv2 PDU fields

The protocol structure is shown in figure 2.16.

Figure 2.16 SNMPv2 message format

Specific Trap Code It indicates one of a number of specific trap codes.

Time Stamp
It is the amount of time elapsed between the last network initialization and the
generation of the trap.

Variable Bindings Has the same significance as for the other SNMPv1 messages.

Field Description

PDU Type Identifies the PDU transmitted.

Request ID Has the same role as for SNMPv1.

Error Status Has the same role as for SNMPv1.

Error Index Has the same role as for SNMPv1.

Variable Bindings Has the same role as for SNMPv1.

PDU Type Request ID Error Status Error Index Variable Bindings

Version Community Name

Message Header

Protocol Data Unit

50

The operation in the second version of SNMP that has a new message format is get-bulk. The

fields from the PDU are:

Table 2.15 SNMPv2 PDU fields for get-bulk message

The protocol structure is presented in figure 2.17.

Figure 2.17 SNMPv2 message format for get-bulk operation

22..33..55..44 SSEECCUURRIITTYY IINN SSNNMMPPVV11 AANNDD SSNNMMPPVV22

In both SNMPv1 and SNMPv2, the (most implemented) security method is the one based on

communities. While there is a version of SNMPv2 that brings user-based authentication, there

was not widely implemented.

Community names are simply unencrypted text strings used as access mechanism for the SNMP

messages and are only used to verify that the agent that is pending the request can be trusted. The

disadvantage is that anyone who gets access to the community string can send configuration

messages or requests for information, as just the messages would originate from a valid manager.

That is why is said that SNMPv1 and v2 offers virtual no authentication methods at all, being

vulnerable to a wide variety of security threats.

These threats may include:

 Masquerading – consists in an unauthorized entity attempting to perform management

operations by assuming the identity of an authorized manager.

Field Description

PDU Type It identifies the message as a get-bulk operation.

Request ID Has the same role as for SNMPv1.

Non Repeaters
It specifies the number of objects that should not be retrieved more than once
from the beginning of the operation.

Max Repetitions
It specifies the number of additional objects to the ones already specified by Non

Repeaters that should be retrieved.

Variable Bindings Has the same role as for SNMPv1.

Version Community Name

Message Header

Protocol Data Unit

PDU Type Request ID
Non

Repeaters
Max

Repetitions
Variable Bindings

51

 Modification of information – consists in the attempt of an unauthorized entity of

altering a management message sent by an authorized manager in order to perform an

unauthorized operation.

 Message and timing modification – occurs whenever an unauthorized entity reorders,

delays, or copies and later replies a message sent by an authorized entity.

 Disclosure – is the attempt of an unauthorized entity of extracting values from the

managed objects or learning of management events by monitoring the

communication.

The greatest weakness of SNMP has long forced vendors to support only monitoring capabilities

on their devices, leaving the controlling operations to be performed via direct logon to that

particular device. However, solutions can be still found yet. On more advanced and configurable

machines such as servers and workstations, to help prevent interception of SNMP messages one

may configure the use of Internet Protocol Security (IPSec) policies – doing so will encrypt all

SNMP data. The operation must be done on both agents and managers.

The entire security problem has been solved completely by SNMP version 3, which includes

support for encryption, advanced authentication, authorization and time stamping in order to

prevent capture, reading, forgery and delay of SNMP traffic.

22..33..55..55 IINNTTEERROOPPEERRAABBIILLIITTYY SSNNMMPPVV11 –– SSNNMMPPVV22

The SNMP interoperability issues were discussed previously in this paper, when the introductory

notions about proxy agents were presented. Therefore, this paragraph only tries to emphasize the

tasks of a proxy agent in order to solve the incompatibility problems between the two versions of

SNMP.

As presently specified, SNMPv2 is incompatible with SNMPv1 in two key areas:

 Message formats – SNMPv2 uses different headers and protocol data units (PDUs).

 Protocol operations – SNMPv2 standard defines four new protocol operations (from

which three are implemented and only two are different) that did not existed in

SNMPv1.

A common scenario is the one where in the already existent infrastructure with many devices

that support only SNMPv1, the network is extended with SNMPv2 devices while the NMSs are

upgraded as well. In such a case, the role of the proxy agents is the following:

 To forward get, get-next and set messaged unchanged between the NMS and the

SNMPv1 agent.

 The get-bulk messages are converted into a sequence of get-next messages and sent to

the SNMPv1 agent.

 SNMPv1 traps are simply mapped to SNMPv2 traps. This is done with the

corresponding change in message format and object type.

22..33..55..66 SSNNMMPP VVEERRSSIIOONN 33 FFRRAAMMEEWWOORRKK

The SNMPv3 specifications were approved by the Internet Engineering Steering Group (IESG)

as full Internet standard in March 2002. The SNMPv3 specifications were previously approved

by the IESG as draft standard in March 1999.

52

The SNMPv3 primarily adds security and remote configuration capabilities to SNMP. However,

its developers have managed to make things look much different by introducing new textual

conventions, concepts, and terminology. The standard now describes the overall management

architecture going in deeper detail on how SNMP-enabled devices should be implemented.

In the new management framework the concepts of agents and managers no longer exists.

Instead, the term of SNMP entity is introduced, which could be an agent a manger or both. A

SNMP entity consists of a SNMP engine and several SNMP applications. More about the

structure of an SNMP entity and the engine and application concepts will be presented in the

following section. These concepts are important because they define architecture, rather than

simply defining a set of messages. In addition, the architecture helps to separate different pieces

of the SNMP system in a way that makes a secure implementation possible.

Figure 2.18 SNMPv3 framework

22..33..55..77 SSNNMMPP VVEERRSSIIOONN 33 EENNTTIITTIIEESS

The structure of a SNMPv3 entity is presented in figure 2.19.

Figure 2.19 The structure of a SNMP entity in the SNMP v3 framework

SNMP managers and agents in the traditional way have the same SNMP engine used for SNMP

communication, while the applications are specific for the purpose of each of them, like depicted

in figure 2.20.

SNMP Application

SNMP Engine

TCP/IP

SNMP Application

SNMP Engine

TCP/IP

SNMP Entity

SNMP Entity

Dispatcher

SNMP Engine

Message
Processing
Subsystem

Security
Subsystem

Access
Control

Subsystem

Command
Generator

SNMP Application

Command
Responder

Notification
Originator

Notification
Receiver

Proxy Forwarder

Other

53

Figure 2.20 SNMPv3 applications for traditional managers and agents

The SNMP engine has the role of sending and receiving SNMP messages, similar to any

manager or agent from the old conceptual framework. It provides services like authentication,

encryption and access control. It consists of four main components:

Table 2.16 Components of the SNMPv3 engine

SNMP applications use the SNMP engine services, and give the already known functionality of

SNMP. We have:

Table 2.17 Components of a SNMPv3 application

Component Description

Dispatcher
Has the role of sending and receiving SNMP messages. It determines the version
of the protocol used, and if the version is supported it sends the message to the
Message Processing Subsystem (MPS).

Message Processing
Subsystem

Prepares the message in order to be sent or extracts data from the received
ones. It consists of several processing modules, one for each supported version
of SNMP. This gives flexibility, separates the different methods of solving the
same tasks and makes the architecture open to some other modules, yet to be
defined.

Security Subsystem

It handles the authentication and privacy of SNMP data. It may be as well of
different types, implementation dependant. For example, SNMPv3 specifications
already have support for community string-based security (the one from
SNMPv1 and v2) but also for the SNMPv3 specific user-based authentication.

Access Control
Subsystem

Controls access to the MIB objects. The Access Control Subsystem the
authorization method based on communities that already existed. Different
permission settings (like read-only, read-write) can be enabled on different

objects or parts of the MIB tree.

Component Description

Command Generator
Generates get, get-next, get-bulk, and set requests and processes the
responses. Its functionality is manager specific.

Command Responder
It responds to get, get-next, get-bulk, and set requests. This application is
implemented by the traditional agent.

Notification Originator It generates SNMP traps and notifications. Its behavior is agent specific.

Notification Receiver
It receives asynchronous messages. It is usually implemented by traditional
managers.

Proxy Forwarder
It facilitates message passing between entities and provides functionality similar

to the old proxy agents.

Manager

Command
Generator

Notification
Receiver Agent

Command
Responder

Notification
Originator

Proxy
Forwarder

54

22..33..55..88 SSNNMMPP VVEERRSSIIOONN 33 MMEESSSSAAGGEE FFOORRMMAATT

The SNMPv3 message has, like the previous two versions, two parts: a message header and a

protocol data unit. The thing that has not changed is the PDU, which is the same like in

SNMPv2, but it is subject to the encryption security features of SNMPv3.

However in the message header, SNMPv3 comes with 13 (11 new) fields important for

identification, authorization and privacy protection.

Figure 2.21 SNMPv3 message format

Table 2.18 Fields of the SNMPv3 message header

Field Name Description

Version Has the same significance and has the value 3.

ID
It is a unique identifier used between two SNMP entities to coordinate request
and response messages (similar to Request ID from SNMPv1 and SNMPv2).

Max Size
It is the maximum size of a message in bytes supported by the sender of the
message.

Flags
A byte that specifies whether a report PDU is to be sent and whether privacy,
authentication or both is used.

Security Model
It specifies the security model to be used. Up to date three security models are
supported: SNMPv1 and SNMPv2c, based on community strings and SNMPv3
with the user-based security.

Authoritative Engine ID
It is the ID of the SNMP authoritative engine involved in the exchange of the
message. This value refers to the source of trap, inform and report messages
and to the destination of get, get-next, get-bulk, set, or inform.

Authoritative Engine
Boots

The number of reboots the authoritative engine has performed.

Version ID

Message Header

Protocol Data Unit

Same PDU as for SNMPv2

Max Size Flags Security Model

Authoritative Engine ID Authoritative Engine Boots

Authoritative Engine Time User Name

Authentication Parameters Privacy Parameters

Context Engine ID Context Name

Message Processing
Module

User Security
Module

Scope of encryption

55

The first five parameters are generated by the Message Processing module, the next six by the

User Security module, while the last two define the scope of encryption.

22..33..55..99 SSNNMMPP VVEERRSSIIOONN 33 SSEECCUURRIITTYY

The role of the security framework in the SNMPv3 is meant to meet the following requirements:

 To determine if a message reached the destination unaltered and in a timely fashion

way.

 Whether the requested operation can be performed with the user credentials, it came.

 To identify the objects those are accessed by the pending operation.

 To determine the permissions appropriate to the incoming message based on its

origin.

The responsibility of the two requirements is taken by the Security module, while the Access

Control module handles the last two.

SNMPv3 has support many security models, now available or yet to be developed. Further more

the specifications allow the use of several models at one time, since the SNMPv3 messages carry

in their header the security model they use. However to maintain interoperability one security

model must be implemented by any SNMPv3 compliant device: the User-based Security Model

(USM).

It provides support for the following security-related operations to be performed:

1. Authentication - user-based authentication uses MD5 and SHA algorithms to authenticate

users without sending a password in the clear.

2. Timeliness – protects against message stream modification or delays by time stamping

each SNMP message.

3. Privacy - the privacy service uses the DES algorithm to encrypt and decrypt SNMP

messages. Currently, DES is the only algorithm used, though others may be added in the

future.

This topic closes our discussion in theoretical fundamentals. The next chapter will explain how

some of the basic concepts presented here are used by the software implementation of the

Network Measurement System management interface.

Authoritative Engine

Time

It is the number of seconds since the entity last reboot.

User Name The message is being exchanged on behalf of the user.

Authentication
Parameters

It indicates which of the authentication method is used.

Privacy Parameters Depend on the privacy module that has been selected.

Context Engine ID It is the object ID of the SNMP engine generating the message.

Context Name
The context name in the view-based access method to which the message
refers.

56

33
DDEESSIIGGNN AANNDD EEXXPPEERRIIMMEENNTTAALL

RREESSUULLTTSS

33..11 NNEETTWWOORRKK MMEEAASSUURREEMMEENNTT SSYYSSTTEEMM FFOOUUNNDDAATTIIOONN

33..11..11 SSYYSSTTEEMM AARRCCHHIITTEECCTTUURREE

The Network Measurement System allows one to perform a various number of QoS

measurements while bringing some additional new features to improve the overall efficiency. If

referring, to the type of networking tests described in the previous paragraph, one could see that

the need for a remote connection to every machine involved in the test is gone. The data is

available automatically, online or offline, depending on users’ choice, though maximizing either

the quality or the number of obtained results.

Several numbers of enhancements of the classical approach makes possible for the network

engineer to focus on the core concepts of the measurements he has to perform, rather to find

solutions without he could not have made any tests at all.

While the next paragraph will present some of the general features of the software, in the

sections that follow, it will be presented what is the concept of the NMS.

The Network Measurement System tries to combine network measurement software and network

management software in order to perform network measurement. Though the concept is simple,

you will see that allows for much greater flexibility than a regular approach with the tools

already available. The Network Measurement System (or NMS in short terms) is made up of two

pieces of software:

 A software agent - the terms was actually borrowed from the management field to be

consistent to the fact that it is not a stand-alone application. The agent is the core part

of the measurement infrastructure. All traffic related measurements start and end at

the agents.

 Managing software – this would be part on which this document is focusing on. The

managing software is its essence the part of NMS that puts the agents on working

together. In addition, the software that has the most interaction with the user – using

the management software a user can schedule up tests, run them and wait for data to

come back. It also features an advance management platform to make any operation

performed as smoothly as possible.

The basic topological architecture of NMS implies one or more agents installed on the machines

where the measurement tests are being performed, and regular one (but can be many) managers

installed on the machine from where the network engineer supervises the entire experiment.

57

Referring to the experimental setup made up of Enologa, Macabeu and Mazuela from the

previous example, the new approach using NMS will look like in figure 3.1.

Looking at the figure one may see two major differences comparing to the figure 1.2. First, there

remote connection link has been replaced by a management connection. Nevertheless, as you

will see this connection works in a very different way than ssh being dedicated only to

measurement related tasks, rather to be used for a remote console access. The second difference

is that now Mazuela has two IP addresses, one in each subnet of Enologa and Macabeu. No

intermediate routing machine is required or allowed for this experimental setup. Remember, that

on the previous experiment one would have connected remotely to the router, than called Celler

and form that remote connection would have made the final connection to Enologa.

Figure 3.1 Experiment setup for testing network interface card using NMS

 Important

 One should not make the confusion that for a given number of agents installed on

several subnets; the management station requires a separate interface card in each

subnet. In the example above, this step is necessary since the management station

needs to access an agent installed in a private network. If the Enologa agent were

installed in a subnet with routable IP addresses, the second interface on Mazuela

would not have been required.

The tests themselves follow the next outline:

Install and configure two NMS agents, one on Enologa and one on Macabeu.

Install and configure the NMS management software on Mazuela.

Enable the management software to use both interfaces to subnetworks 147.83.130.0 and

10.198.0.0.

Enable from the management user interface to use both agents from Macabeu and Enologa.

Define test sessions on the management application to be performed.

Schedule the sessions and expect the results.

Even though the overall process does not look much simpler that in the previous situation, until

the end of this document you will see that using the Network Management System is a more

straightforward process. Now, just for the beginning the next topic outlines some of the features

of the NMS management application.

Enologa

Interface card
under test

Endace DAG interface card

Macabeu

Mazuela

LAN

IP: 147.83.130.21
Mask: 255.255.255.128

IP 1: 147.83.130.29/25
IP 2: 10.198.0.12/29

IP: 10.198.0.10
Mask:
255.255.255.248

Color Key

Point-to-point fiber optic link

Management connection

58

33..11..22 FFEEAATTUURREESS OOFF TTHHEE NNEETTWWOORRKK MMEEAASSUURREEMMEENNTT SSYYSSTTEEMM

The Network Measurement System has been designed to provide a user friendly way to perform

QoS related measurements. After several agents have been installed in the points of interest and

a management station has been designated, the basic setup for get one started is already

completed.

The advantages that come with the use of the NMS are presented in the next table.

Table 3.1 Features of the Network Measurement System

Feature Description

User Interface The Network Measurement System features an accessible user interface on both the
manager and the agent part. The manager is built under an administrative console that
enables the user to perform almost all operations, either local or remote. Little effort is
required to configure each agent alone, and this is done mainly one time only.

Session-based
Operation

From the end-user concern, the NMS is session oriented, meaning that the entire
experimental activity could be organized as individual sessions. In addition, one may
combine several sessions in a session-group, the session-group containing several either

independent or related sessions.

The session group for independent session was designed for easy management. The IT
engineer would no longer care about multiple tests that need to be performed in a
specific order. Instead, he can organize the entire testing activity as sessions and group
them together into a session group.

Creating a group with a series of related sessions can overcome, however, the
disadvantages of the existent measurement tools. One could create a group in which the
same session is executed several times almost, the same, except for a user specified
parameter that receives values in a user-defined range and it updated at each time with
a user-specified increment.

Task
Scheduling

Task scheduling means greater flexibility in the performed work. Using task scheduling
the user could schedule a given session or session group at a specified date and time,
without constantly looking after the program. This option can be used especially when
measurements need to be performed at specific intervals, without requiring an operator
to supervise the program at all times.

Automatic
Data Collection

Combined with the previous feature of task scheduling the automatic data collection
provides a powerful way in which the NMS software can do its job automatically.
Automatic data collection is enabled by default. It means that for every experiment you

run, depending on the collection policies you selected, results are retrieved from the
agents without user interaction.

Performance-
based Policies

When a session is defined, depending on its type (traffic generation, traffic analysis or
both), the user may specify the level of detail in the information obtained about the
measurement test, during and after the test is completed. This means that for the same
session, different data could be available at the end.

This approach could cope very well for test, at which the user might need high accuracy,
rather than a high level of detail during the test. This is because the measurement agent
does not have to perform additional work to provide results that are not required, and

instead could be oriented on a higher precision in obtaining the final data.

Traffic
Generation
Diversity

This feature means that for the experiment from figure 1.1 no ARP tables and no IP
addresses must be set-up in order for the experiment to work.

The NMS agents provide 3 levels of traffic generation, each being suitable for different
kind tests:

Ethernet / IEEE 802.3 option allows you to generate data-link layer traffic with a
compatible network interface card. For a single generation session, the user has
full control over the destination address and protocol/type (depending on

whether the Ethernet II or IEEE 802.3 is chosen) fields. This option is

59

Table 3.1 summarized the overall features of the Network Measurement System. Some of the

features presented there hold on the management infrastructure of NMS, others are related to the

traffic engine implemented on the NMS agents, while some of them can be found in the

implementation of both the management console and the distributed agents. The following figure

depicts the distribution of the NMS features throughout its major components.

Figure 3.2 Distribution of major features throughout the NMS components

From the features above, the ones that correspond to the measurement agents will not be covered

in this document. For more information regarding those features, including additional attributes

and technologies that are specific to NMS agents refer to [2].

The list of features presented before covers the most important aspects of NMS in the light of the

final objective of the NMS software, i.e. enabling users performing their network measurement

tasks, faster, easier with an improved response time and a lot of burden relief from the post-

processing task that would have been normally required. However, in addition to those features

there are several other topics, specific to the management infrastructure. These topics refine on

one hand the level of detail in understanding what NMS management offers you, and what are

the background technologies involved in having the work done.

The next paragraph covers these additional features in more detail.

recommended for tests between equipments in the same network segment.

Internet Protocol (IP version 4) traffic enables generation of network layer packets.
The following fields are user controlled: the destination IPv4 address, the Time-
to-Live (TTL) field, the Type-of-Service (TOS) field and the next layer protocol
field. This traffic is recommended for tests across multiple hops. In combination
with the layer 2 traffic option, one could also test the performance of hardware
devices rather than the performance of the operating system, since the
encapsulation of this type of traffic has been optimized and is done entirely by
the measurement agent.

User Datagram Protocol (UDP) traffic is recommended to be used in tests in which
the performance of the TCP/IP stack from the operating system up to the
interface between the application and transport layers (considering the TCP/IP
networking model) is an issue.

Standardized
Management

The Network Management System uses Simple Network Management Protocol (SNMP)
for management purposes. This, to a certain extent, allows for interworking with other
applications that might follow the NMS operation procedure. In addition, using a
standardized protocol means the application is ready and open to any changes, allows
easy, quick debugging and provides the foundation for future improvements.

Network
Measurement

System

Session-based Operation

Task Scheduling

Graphical User Interface

Automatic Data Collection

Standardized Management

Performance-based Policies

Traffic Generation Diversity

Management
Console

Measurement
Agent

60

33..11..33 OOTTHHEERR FFEEAATTUURREESS OOFF TTHHEE MMAANNAAGGEEMMEENNTT IINNFFRRAASSTTRRUUCCTTUURREE

Although the list of features described in this topic could not be interesting from the end-user

point of view, they make a good starting point in understanding how NMS management actually

works. Furthermore, starting with the next topic this document will start presenting the internal

architecture of the NMS management starting from this list of features. Therefore, discussing

them here makes a good opportunity to end this introductory part.

The next table summarized the features of NMS management and afterwards they will be

covered in more detail.

Table 3.2 Features specific the NMS management

 Notes

 Since the management infrastructure through its services is implemented both at the

management console and at the measurement agent sides, some of the features in

table 3.2 can be found on a measurement agent. However, since those features are

Feature Description

Client-Server Architecture Provides the foundation on which the entire management infrastructure
is created, both at the management console and at the agent parts.

Configuration Service Provides services to store and retrieve user defined configuration data.
The service runs at all times and cannot be disabled.

Simple Network Management

Protocol version 1

The management service uses SNMPv1. SNMP provides transport of

management related data and commands between the management
console and the agent applications.

Measurements Specific
Management Information Base

The management infrastructure defined a custom management
information base (MIB) that provides a larger flexibility in the
commands available between the NMS components, reduced overhead
and quicker response.

Priority-based Message Queuing The management service relies on an advanced, double-bounded
message queuing mechanism.

User-controlled Services The NMS management console features a user-controlled Service
Control Manager (SCM) able to start, stop, pause or resume during the
run-time some of the management related services. This is extremely
useful if a configuration change requires a restart of the management
service, since it enables the user to keep the console running at all
times, thus keeping some data that cannot be saved.

Event Log The built-in event log is the most useful tool that could be used for
troubleshooting and debugging. If something goes wrong, if a test fails
or an agents stops responding, check the event log. Several hundred
errors, warnings or information messages can help you in most every
scenario to determine what has happened and act appropriately.

Plug-and-play Hardware

Interface

The PnP interface enables the user to collect as much information as

possible on the status of the hardware equipped either locally or on the
remote agents. This interface is available for all network interfaces
providing you with detailed information about the manufacturer, model,
serial number and status data for physical, data-link and network layer
protocols.

Identification Protocol Within the NMS applications, an identification protocol is transmitted
over SNMP such that any NMS application that requests a management
connection to another NMS application is automatically identified.

61

always a subset of the features available on the management console, even when

discussing about some specific feature as belonging to the manager, one should

consider that the same feature could be encountered on the agent application. In this

document, it will be specified as much as possible the features that are available on

both the management console and the measurement agents.

Regarding the list from the table 3.2, one may find some additional comments useful.

First, regarding the client-server architecture, one should not make the confusion to the

networking client-server terminology. The client-server architecture of NMS management

simply means that on the same computer where the management service is running, either under

the process of the management console or of a measurement agent, the tasks are divided between

different independent services. Some of these services provide a service directly to the user,

which is always considered the client. Instead, these services could be clients for other services

that perform even lower level tasks. All these services are linked between interfaces that enable

the exchange of data across them.

The next major topic that will discuss the architecture of the management console should provide

a better insight on what the client-server approach of the NMS management means. For now, just

as an example, imagine that a user wants to perform a measurement. The following enumeration

appoints some of the steps that are performed in the background.

1. Usually measurement related tasks are handled by a service called Session Manager

that keeps track of all measurements the user performs in order to dispatch properly

the results, when they become available.

2. However, the Session Manager relies on another service, namely the Scheduling

service, which takes the user command from the Session Manager, and decides

whether the command should be executed.

3. When the Scheduling service decides that it should do so, sends the command to

another service called SNMP Wrapper service. According to its name, this service

finally interprets the command of the user and generates the appropriate parameters

for a SNMP message to be created. The SNMP parameters are then placed in a queue

in order to be transmitted on the network interface.

4. The mentioned queue is handled by the obviously called Queuing service. Its main

job is to make sure that if two transmission requests come simultaneously (i.e. one

from the user and one from some other task that executed in the background; for

instance), both of them have the chance to be transmitted. As you will see later in this

paper, the queuing service relies on many other components. For example, a priority

mechanism ensures that some of the messages are transmitted first even if they

arrived last, while others that are not so important are transmitted whenever there is a

moment available. Another important issue is the synchronization of queue

operations, since you may wonder what if both the message from the user and the

message from the background tasks are placed in the queue simultaneously. All these

along with other interesting topics shall be discussed later in this text.

5. For now, once the message is inside the queue, we suppose that at some time it

should be transmitted. Before the message is encapsulated in datagrams, frames made

up of bits sent over the wire, someone must take the SNMP message parameters from

the queue and create the SNMP message as defined by the standard. The SNMP

service (obvious name again) takes care of that.

6. After the SNMP PDU (protocol data unit) has been created, a networking service

takes the message and sends it to the TCP/IP implementation from the operating

62

system. From now on, it is up to operating system to handle its transmission further

on.

The short scenario presented here was intended to explain the concept of client-server used by

NMS management.

 Important

 In computer-science literature, some other terms can be found that describe the

concept presented here, such as skeleton and stub. For additional information that

explain the concept but more in detail search for terms related to distributed

computing, Local Procedure Call (LPC) and Remote Procedure Call (RPC). Just as a

remark, the client-server management architecture uses a modified type of LPC,

where the internal transport protocol varies between different types of services.

 Caution

 One should never make the confusion between the networking client-server term and

the computing client-server terminology used in this document. From the networking

point-of-view, even though the two main applications of the Network Measurement

System are called manager and agent, both use almost identical networking software.

In addition, since the networking transport is provided by the User Datagram Protocol

(UDP), both implementations act simultaneously a server and client, and therefore

can be considered as peer-to-peer. Manager-to-manager, manager-to-agent and agent-

to-agent communication modes are supported, except the first and last one are not

regularly used.

The management infrastructure uses the Simple Network Management Protocol version 1.

SNMPv1 has been chosen on behalf of several reasons, from which the following were the most

important.

 SNMPv1 is considered a relative stable standard compared to SNMPv2 for which

several sub-versions exist.

 Even if it lacks the security features of SNMPv3, since most of the usage of NMS is

done in a test environment, the security issues were not considered too critical. For

more information please read the paragraph about the security issues of SNMPv1

implementation.

 Using SNMPv1 means less overhead in management transmissions over the network.

Compared with SNMPv3 it also means less processing time, since no data is ever

encrypted. This is extremely important on the agent software, where the traffic

generating modules must be scheduled in real time as much as possible.

 The configuration of SNMPv1 is also much easier, a community name (essentially a

password) and a community right is all that is required. For additional info, follow the

introductory part on SNMP presented earlier in this paper.

The theoretical fundamentals explained that one might not discuss about SNMP without also

taking into consideration the Management Information Bases. This is because the most important

part of the SNMP management is represented by the management data, data that is a collection

of objects, where each object represents a status variable on the managed software that is

controlled remotely. Since it was already explained that the RFC standard that define the SNMP

and management information structure that comes along (essentially, is about the Management

Information Bases and the Structure of Management Information) use ASN.1-like object

definition, with managed-objects referred to as nodes of a management tree.

63

The root of the management tree is defined by the Structure of Management Information (the

first version of SMI was published in RFC 1155, SMI version 2 in RFC 2578). For a detailed

description of SMI and the root of SNMP management tree, review the first chapter of this

document.

Because the managed objects used by the Network Measurement System are used with SNMP, it

means the application also relies on the structure given by SMI into defining the objects

identifiers for each object used in a measurement operation. Since the current version of the

Network Measurement System is under experimental status, it would make sense not to register a

private class of managed objects under the enterprise node.

The implications of using the experimental branch of the SMI tree have two consequences:

 The objects identifiers used by NMS are neither standardized nor unique. This means

that the latest version of NMS is intended only for experimental and research reasons,

and does not support a production environment deployment.

 If one intends to use NMS in a real environment measurement, it has to register an

object identifier class number (see note below) and afterwards upgrade the managing

software such that the root of the managed tree used internally by NMS is changed to

the private registered class.

 Notes

 The enterprise object identifier numbers are currently managed by the Internet

Assigned Numbers Authority (IANA). Any private corporation can register free of

charge a private OID number. The assignment rule is first come first served. In order

to register a private enterprise number one could visit the IANA web site at

http://www.iana.org or visit directly the online registration form at

http://www.iana.org/cgi-bin/enterprise.pl. The denominated and numbered prefix of

the private enterprise numbers is iso.org.dod.internet.private.enterprise and

1.3.6.1.4.1 respectively.

 The NMS development project had at no time the goal of registering a special class of

managed objects for use with the software. The registration of such a class in order to

make NMS usable over large networks such as the Internet is the responsibility of the

user. The NMS is designed to support the change of its managed object identifiers

with little changes made to the software.

The figure 3.3 depicts the prefix path for the managed objects used by NMS. This path prefix is

iso.org.dod.internet.experimental or 1.3.6.1.3.

The managed objects defined for use with NMS were divided in several sub-classes. Briefly,

they provide basic management options (such as identification, general information and

networking information), traffic control options, traffic engineering settings and results. All

classes of managed objects in the experimental branch will be covered later. For now, the

important issues regarding NMS MIB remains that an experimental set of managed objects is

used, for a production environment deployment the assignment of private enterprise prefix

number is highly recommended, since the migration is very easy to implement.

The priority-based message queuing service is one of the core pieces of NMS management, not

as logical part but rather as an operational part. The basic services are message queuing and

multiplexing, message flow control – meaning that simultaneously incoming sending requests

are processed one by one. In addition, priority queuing ensures that critical messages are

processed first. The basic and advanced concepts on the queuing service will be thoroughly

described further on in this paper.

http://www.iana.org/
http://www.iana.org/cgi-bin/enterprise.pl

64

Figure 3.3 Management tree path of the managed objects identifiers used by the experimental version of

NMS.

User controlled services ensures that the engineer that handles the NMS management console

has control upon the execution of some background services. The most important reference in

this case is the management service, which incorporates all management related processing such

as sending and receiving SNMP PDUs. When this service is stopped, the management console is

restricted in either sending or receiving such messages. The user has the possibility in starting

and stopping such service, this being especially useful in either preventing the console to receive

SNMP data from unwanted SNMP applications, when the measurement system is not used or to

make possible a restart in the situation a configuration that requires a restart is performed,

without the need of restarting the entire application. The NMS console does not save all the data

regarding the tests it performs so having some of the services restarted while keeping the

software running is an obvious advantage.

The event log and PnP interface will be covered in a special paragraph dedicated to these topics.

Shortly, the information contained in the event log can be used debugging whenever a problem

occurs. The plug-and-play interface is used to provide detailed information about the networking

hardware installed both on local and remote machines. Information such as the equipment name,

manufacturer, capabilities and configuration is available to the user.

The identification protocol is an extension of the measurement MIB used by NMS management

that helps identifying a NMS application as a management console or a measurement agent.

Since it was stated earlier that the management infrastructure does not make any difference

whether the application is a manager or an agent (the internal processing is identical) the

identification protocol uses a set of managed objects that are used by NMS applications to learn

more on each other and their capabilities. For example, while using the Add New Agent Wizard if

the remote application is a NMS manager or no NMS application at all, the wizard will simply

ignore it and inform the condition to the user.

The next topic outlines the basic piece of NMS management from the users’ perspective, the

administrative management console.

Root

iso = 1

org = 3

dod = 6

ccitt = 1 joint = 2

directory = 1 mgmt = 2 experimental = 3 private = 4

internet = 1

65

33..11..44 TTHHEE AADDMMIINNIISSTTRRAATTIIVVEE MMAANNAAGGEEMMEENNTT CCOONNSSOOLLEE

Despite the technologies used, the number of services, queuing mechanisms, task scheduling and

management protocols use, the administrative management console or the management console

on short, is the central piece of the NMS management. However many agents one will deploy the

management console is the software that puts them together. From the users’ point of view, their

work with NMS will be most of the time focused on the use of the management console. Figure

3.4 depicts a general view of the NMS management console.

Figure 3.4 The management console

The intention of this paragraph is not to be a complete user guide of the management console. A

chapter dedicated entirely to the usage of the NMS console and how measurements are

performed follows later in this document. For now, it is important to outline the role of the

management console and some of its more important features.

The management console is used to manage the set of NMS distributed agents with the objective

to perform a set of measurement tests, collect the measured data and display the results back to

the user. However, the NMS management console has several additional roles, from which the

most important are setting up the configuration of the management service, installing agents, i.e.

the console acknowledges that a remote agent exists and it is running and could display to the

user information about that agent. In fact, the figure 3.4 shows the agents pane view open, where

one could identify an agent (called Chenin) in the list by its address, port, name, status and other

additional information. The process of installing an agent is called registration and will be

discussed later.

66

Other roles of the management console are, of course, the creation of measurement sessions and

session groups as well as using these to create tasks. Tasks can be scheduled and only when a

task starts executing the agents involved are contacted by the console and the operation request

along with the parameters is transmitted. During the execution of a task and at the end of it, the

console may collect online and offline data from the agents that perform it, processing the data

into results and make them available to the user.

At last, the results availability and mode of presentation is what one appreciates the most. The

management console features different ways to present the results of a measurement. Beginning

with an inspection of up to date information received from the agents, one may select to view a

summary of a session (results displayed here are obviously more reliable only after a test was

completed), detailed results in time domain or parametric results for a parametric session group.

A specially designed trace plotting window is available to either inspect the date or save it for

publication. Along with the option that any data available can always be saved in a csv (or

comma separated values) format, this makes it great for later processing using supplementary

tools.

Some key-point features of the management console are:

 Object-oriented user interface

 Linked tree-view pane-view display format

 Wizard guided assistance

 Dynamic shortcuts toolbar

Each of these features will be thoroughly examined in the chapter dedicated to the usage of

NMS.

Figure 3.5 The manager’s properties dialog

67

The last three features of the console are intuitive and for a basic understating, do not need

additional information. Therefore, only the object-oriented user interface concept will be

explained briefly. The term of object-oriented implies that most items in the console’s interface

are regarded to as objects with which can interact. Such objects are the items from a list or from

a tree for example. In the view of the console from the figure 3.4 both the items form the agents

list at the right or the contents of the tree from the left are regarded as objects. The advantage of

the object-oriented approach comes from the fact that most users are used in manipulating

pictograms or items as an abstract representation of a real entity. The most important, most of us

associate such user interface objects with a set of parameters that can be displayed or even

modified.

The management console follows this belief. The most common thing that comes along with an

object, is (what most of us get used to) the object’s properties dialog. Because each item from the

management console is an object, it means that it always have an associated properties dialog

where the user can found more. The figure 3.5 shows the manager’s properties dialog. The

manager as concept is the entirely management software, the management console included.

However, because the manager software has a name, one or more associated IP addresses and

other information, it should be treated like an object. Actually, it also has an associated item in

the console’s tree view from the right: the second item from the top. In the context of the figure

3.4, the name of the manager is displayed, My Manager.

One can click the Properties option from the View menu (or use the toolbar shortcut instead) to

open the properties dialog seen in figure 3.5. There much more information about the manager is

displayed, usually organized by topic in successive tabs. Since some of the object properties

from the properties dialog can be edited, means that the user can change those properties and the

new values will be applied as soon as the user hits the OK or Apply button.

33..11..55 AAPPPPLLIICCAATTIIOONN FFIILLEESS AANNDD SSEETTUUPP RREEQQUUIIRREEMMEENNTTSS

This is the last introductory topic on the management of Network Measurement System with

some information about the binary and configuration files required for NMS management

console operation.

The following table summarizes the setup files of NMS management console.

Table 3.3 Files of the management console

The files in the table 3.3 make up the minimal configuration required to run the administrative

console. Any configuration other file that might be used can be created automatically if missing.

Those file are presented in table 3.4.

The first file, mmc represents the executable binary of the NMS management console. The

console GUI and the management related services run under the same user process. By starting

mmc the console itself along with some basic services are automatically started with other

services starting on demand. The default configuration of NMS (i.e. without having NMS

File Name Size Timestamp Description

mmc 2,922,158 bytes
Wednesday, May 17, 2006,

3:59:24 PM

The executable of NMS

management console

config/global.cfg 299 bytes
Wednesday, May 17, 2006,
3:59:25 PM

Startup configuration of NMS
management console

68

configured at all) does not start the management service. After the manager has been configured,

the default policy is to start the management service automatically, but only after the application

is restarted.

 Notes

 The default configuration settings will be presented in the chapter about using the

NMS management console. The services of the management console will be covered

later in this chapter, in the topic entitled The Architecture of the Management

Console.

 The required restart of the application in order to start the management service when

the management console is configured is because the startup parameters of each

service, including the startup type, which could be automatic, manual or disabled, are

applied only at application startup or service startup. Therefore, if you configure the

management console, the application needs to be restarted to start the management

service, even if the startup type is automatic by default.

Table 3.4 Other configuration files used by the management console

All configuration files, except the global configuration file, are binary files. The user can make

changes directly to those files (i.e. without using the management console) only if he/she has

enough knowledge on the structure of each file. The binary structure of the configuration files

will be presented in the paragraph dedicated to the Configuration Manager.

 Caution

 It is highly recommended to use only the management console in the update of the

binary configuration files whenever possible. An editing mistake in those files may

have serious effects and in some cases could even render your computer useless. Use

manual editing of the binary configuration files with appropriate caution, and only

when necessary.

The global configuration is the only file required to exist in order to run the NMS console. The

default values from all other files are known automatically by the application even though the

files may be missing. The contents of the global configuration file and how to appropriate edit its

contents can be found in the section devoted to the Configuration Manager.

File Purpose Description

Toolbar Configuration
It contains the user-defined configuration of the console’s toolbars. This
file is updated whenever the user changes the toolbar settings.

Manager Configuration
It contains the configuration of the manager, such as name, interfaces
used, UDP ports assigned, SNMP-related information and security.

Queuing Configuration It contains the configuration parameters specific to the queuing service.

Management Configuration
It contains the configuration parameters specific to the management
service.

SNMP Configuration It contains the configuration parameters specific to the SNMP service.

Session Manager Configuration
It contains the configuration parameters specific to the session
manager.

69

In conclusion, the number of files required to run the NMS management console is extremely

low, only two. Some additional folders may be required but that is it. Any other file needed can

be created at runtime without adverse effects to the user.

 Important

 In the case of missing configuration files, which is the case when the application is

first used, or when the configuration files have been deleted the application’s event

log may report a missing configuration file error. The user should concern these types

of errors only if the management console has been already configured. Otherwise, one

may simply reconfigure the console, or use it as it is while ignoring the error

message.

The following table summarizes other files that can be created at run-time by the management

console. Some of these files are temporary and are created for the internal use of the application

alone, while others may keep database information, such as the event log.

Table 3.5 Other files used by the management console

The following table summarizes the file paths that are used by the management console. These

paths are usually created at installation time.

Table 3.6 Paths used by the management console

File Purpose Location Extension Description

System Event Log ./data EVT

It records informational, warning and error
events when they occur. The data from this
file is made available through the Event Log
service.

Session Group Data ./data/session LST
It contains information about the flows that
were associated with the sessions from a
session group.

Session Flow Data ./data/session/flow DAT
It contains flow-based session data. This data
is used to compute the results for a
measurement session.

Session Files Not specified SES
Contains session parameters saved by the
user. Using session files, one may save a
session and reuse it at its convenience.

Spreadsheet Not specified CSV
It enables user to save session results in a
format that is easy to be imported in other
spreadsheet applications, like Microsoft Excel.

Path Mandatory Description

./config Yes
By default, it contains all configuration files. At least the global
configuration file must be present at this location.

./data Yes
By default, it contains the system event log. However, the user
may specify other location.

./data/session Yes It contains the session group files. This location is always used.

./data/session/flows Yes It contains the session flow files. This location is always used.

70

The directory paths that are specified as mandatory should always be created before any attempt

to run the management console.

The current version of the management console is intended to run on GNU/Linux based

operating systems (the kernel version used was 2.6.15-1-486). However, the application can be

compiled for other platforms or versions. In this case, additional libraries may be required. The

core of the management console is built by following the POSIX standards. The user interface,

which is platform specific, may have difficulties across platforms. The next table contains the

environment recommended settings in which the current version of NMS was thoroughly tested.

Table 3.7 Recommended platform settings for NMS management console

The next section will introduce the architecture of the management infrastructure, emphasizing

the extra features that are added by the management console as well as how the management

interface is used on the agent software.

./sessions No It is the default location where users save their session files.

Resource Recommended Settings

Operating system Debian GNU/Linux

Kernel version 2.6.15-1-486

Networking IP version 4

Graphical user interface X Window and K Desktop Environment version 3.5

71

33..22 TTHHEE AARRCCHHIITTEECCTTUURREE OOFF TTHHEE MMAANNAAGGEEMMEENNTT

IINNFFRRAASSTTRRUUCCTTUURREE

33..22..11 GGEENNEERRAALLIITTIIEESS

The management infrastructure of the Network Measurement System provides the entire set of

management services in order to allow remote control of the NMS agents from a single

management console. Some features of the management infrastructure such as client-server

modularity were already discussed in the previous paragraphs. Therefore, this section will focus

on presenting the internal structure of the management infrastructure and how different

technologies are being put together to yield the final application.

It was already shown that the management infrastructure is placed at the foundation of both the

management console and the distributed set of agents. Therefore, first we shall focus on

presenting the underlying technologies that are found in both management modules, while in the

end emphasizing some of the key differences: what are the features that are found in the

management console (which is obviously oriented on management alone) are missing from the

agent implementation.

The next paragraph presents the internal structure of the management software and in the

sections that follow each module will be presented in detail.

33..22..22 IINNTTEERRNNAALL SSTTRRUUCCTTUURREE

The goal of the management infrastructure is to provide two things: an interpretation of the

user’s commands and the reliable transport of those commands to the proper agent where they

will be interpreted and the appropriate agent software agent will act accordingly.

The interpretation of user’s commands is done only at the management console and it means

more than just reading the user input and generating immediately a corresponding output. The

agent also features two user interfaces, one graphical based and the other command-line base,

but both lack the functionality of what the management infrastructure does for the management

console. The user-interactive part of the management software is designed to allow the users to

setup in minimal steps a measurement test into a session or session group, schedule it, and care

nothing more about it. A special service within the management infrastructure will perform the

task and even collect the results and make them available for display when the test is over.

Nevertheless, most view as most important objective of the management infrastructure the one of

creating management messages and sending them reliably over the network. These messages

contain control, status or informational data. A complex mechanism was designed in order to

ensure the transmission of those messages with a high degree of reliability. The management

message encapsulation and transmission will be covered shortly.

The functionality of the management infrastructure is divided in several operation units called

services. As explained, these services interact with each other, hence the client-server

architecture. The figure 3.6 shows the coarse splitting of functionality of the management

infrastructure between different components. Later, that diagram will be refined, meaning that

some components will be analyzed in more detailed, including the algorithms that lay at the

foundation.

72

Figure 3.6 The architecture of NMS management infrastructure

In the figure above, the two components of the management infrastructure that are exclusively

found in the management console are depicted yellow. All other components are found on both

manager and agent platforms, concluding that the overall management structure is symmetrical,

and peer-to-peer from the networking point of view. This means, that at the basic level, it does

not matter that functionality the application has (either management purposes or measurement

purposes).

From the figure above a key service is also missing: the Event Log service. The Event Log

service runs all the time and ensures that error; warning and informational messages are recorded

for troubleshooting and recovery procedures. The Event Log is accessible via a series of library

functions that allow writing and reading of event messages, plus the inspection of some event log

parameters. Since, the Event Log service is outside the scope of the management infrastructure

and is provided for other reasons it should be treated separately. A section dedicated to this topic

will cover later in more depth the Event Log.

Coming back to the figure, starting from low level of functionality, a short description of each

service might be necessary.

The management service handles networking functions, encapsulation of management messages.

Although the job of the management service might seem a little simple at the first glimpse, one

should take into account that the management service has to provide networking operations for

any selected local interface. Usually the management messages are encoded in a single stream up

to the management service level and only there the decision upon which message is transmitted

on each interface is taken. This decision is based on a destination address and port pair that

travels along with message, and which is originally set-up by the session manager (which knows

which agents are used with each test). However, since for the blocks in between the destination

is rather transparent, i.e. the queuing service does not care which the destination of the message

is for example, it could be said that the management service performs message de-multiplexing.

The process is also made the other way around and in both directions so one could say that the

management service performs bi-directional multiplexing of messages.

The management service also implements security functions by filtering the IP addresses of

inbound messages, according to user-defined list. The management service relies on another

Configuration Service

Hardware

Manager

Management

Service

Queuing

Service

Session

Manager

SNMP

Service

Service Control Manager

73

service, i.e. the SNMP service in performing message encapsulation. The following list

summarizes some of the characteristics of the management service:

 It provides UDP-based networking services.

 The local interfaces and ports to be used are selected via the Configuration Service.

 It relies on the SNMP Service for message encapsulation.

 It uses the Queuing Service in order to send and receive messages to the upper

processing layers of the management console.

 It provides security through IP-based filtering and SNMP community checking.

 It is user-controlled via the Service Control Manager (SCM).

The SNMP Service handles the SNMP message capsulation. Its two main functions are to create

a brand new SNMP message, given the SNMP parameters, and to identify an incoming message

as SNMP extract the SNMP parameters from it. The management service extracts messages from

the outbound queue, uses the SNMP service to create the protocol data units and sends them via

UDP. On the other hand, the management service listens for incoming UDP data; it sends the

data to identify it as SNMP PDUs and if so to return the SNMP message parameters.

The processing algorithm performed by both the management service and the SNMP service will

be described in the sections that follow.

By SNMP parameters, one should understand the values of most of the fields from a SNMP

message. If you remember the SNMP structure presented in the first chapter, the community

name, PDU type, request ID and all other fields are possible candidates as SNMP parameters.

The paragraphs that presents the SNMP service in more depth, explain which are the actually

parameters returned.

By summarizing, the SNMP Service performs the following.

 It creates SNMPv1 messages, given the data to be put in the packets.

 It verifies that a received data stream is a SNMPv1 PDU.

 If a valid SNMP PDU is received, it parses it and returns the data from the message.

 It performs the ASN.1 encapsulation of each SNMP PDU field.

The job of the Queuing service is to ensure that multiple simultaneous incoming or outgoing

management messages can be processed. Actually, the queuing in any system is a way in which

the limited resources can be used in order to satisfy all service requests. Since it may happen that

at the same time the Session Manager might send two management messages, how the software

that implements the lower functions ensures that both messages are transmitted, having a limited

bit rate on the physical network link. The answer is to send on of the message first, and put the

other one on hold until the first is successfully transmitted. If more messages happen to be sent at

the same instance, one is transmitted, while the others wait in the queue.

The Queuing service implements a more robust and reliable method to ensure message queuing.

First of all some messages might be more important and should be sent the first, or otherwise

said should be placed in the front of the ―queuing line‖. For this purpose, the queuing service has

up to usable queues in each direction, each of them having a different priority level. When the

management service waits for messages, it first checks the queue with the highest priority, then

the queue with the second priority level and so on. Only after the most important messages were

transmitted the not-so-important messages have the chance of being transmitted and only at the

end, the non-important messages are transmitted.

74

Other function of the queuing service is to handle message retransmissions and discarding the

duplicated messages. This process is however more complex in order to be described here on

short, and will be covered completely in the section devoted to the presentation of the Queuing

service.

Briefly, the roles of the queuing service are the following:

 It provides message multiplexing, on both inbound and outbound directions.

 It establishes priorities on the messages placed in the queue.

 It handles retransmission for messages requiring an acknowledgment from the other

SNMP entity.

 It ensures that duplicate messages that arrive within a specific interval, called the

duplicate discarding interval are thrown away.

 It performs queue recycling, meaning that the messages that stay in the queue for a

duration larger than the queue-recycling interval are removed from the queue,

because most probably there is no higher-level software to read and process the

messages.

The Session Manager is the highest-level software routine from the management infrastructure.

It is implemented only at the management console and it performs measurement related

management functions. For the user, the interaction with the software means setting up test by

creating sessions, session groups and scheduled tasks. However, the application sees these as

creating corresponding management messages and processing the answering management

messages that most likely contain the results.

Therefore, the role of the Session Manager is to make this translation from user session view of

test to the management view of the tests, i.e. SNMP based PDUs. It has several mechanisms in

order to make the proper translation not only for the messages that are sent, but also for results

that are received to ensure that the proper results go to the proper session result sheet.

Shortly, the roles of the Session Manager would be:

 To execute the measurement tasks scheduled by the user by translating those tasks

into the appropriate management messages.

 To use the services provided by the Queuing service on order to transmit messages to

the appropriate agent.

 To expect replies for the agent to which the messages are sent for a specific task.

When the first reply from such an agent is received, it is said that a session was

created.

 To redirect the replies to the task that awaits for them in order to process the results.

 To save the results for each task, in order to make them available for later inspection.

The operation of the management infrastructure is done in the framework of two other software

components, the Configuration Service and the Service Control Manager.

The role of the Configuration Service is to keep the configuration data for all other service

components of the management infrastructure. Not only user-configured data but also machine

specific data such as the networking devices that are present in the hardware configuration is

obtained also via the Configuration Service. Most of the data kept by the Configuration Service

is stored onto magnetic media, such that would be available after the console is restarted.

75

The final architecture block, which is implemented only at the management console, is the

Service Control Manager or SCM. The SCM handles all services operation. For each service it

maintains the status, such as running or stopped, and for some of them allows the user to change

their status, i.e. either stopping or starting a specific service. The SCM also handles service

recovery in the situation of a service failure, with several recovery actions being possible to

define.

33..22..33 TTHHEE LLAAYYEERREEDD AARRCCHHIITTEECCTTUURREE

This paragraph explains how the services that were briefly presented so far are organized into a

layered architecture design. Even from the networking point of view, all services perform

application and application layer functions, some of them provide higher-level services, more

closely to the user concepts of measurements. Others, on the other hand, have low-level services,

such as basic UDP connectivity, encapsulation security. The figure 3.7 organizes the basic

services of the NMS management (including those that are found exclusively on the management

console) from the user-layer point of view. At the top are found the services that interact more

with the user, while at the bottom there are the services more closely related to networking

functions. In addition, this layered approach implies the flow of information.

Figure 3.7 The layered structure of NMS management architecture

The agent does not implement the Service Control Manager, meaning that the default behavior of

the settings from SCM is used by default. However, without the SCM some features like the

service recovery mechanism will not be available. Instead of the Session Manager, the agent

software contains other software modules, globally named as measurement engine. The

configuration service also exists but it is differently implemented and is provided as a library

with a set of global-accessible functions. For detailed information on the architecture of the NMS

agent software, you should consult the agent documentation in [2].

Session Manager

Queuing Service

SNMP Service

Management Service

C
o
n
fi
g
u
ra

ti
o
n
 S

e
rv

ic
e

S
e
rv

ic
e
 C

o
n
tro

l M
a
n
a
g
e
r

User Interface

Application

Application Layer

Transport Layer

OS Socket Interface

76

The figure 3.8 contains the implementation of the management infrastructure at the agent

software. Some details such as the agent’s user interface are not covered in that picture.

 Important

 You should also keep in mind that the agent’s measurement engine implements also

lower layers from the OSI networking model, so the drawing the measurement engine

block at the top of OSI stack is accurate only from the management point of view.

The two applications, the management console and the measurement agent implement

application and application layer functions. The communication at the application layer is

realized via SNMP messages and the communication at the application itself is done through

session-related information. The figure 3.9 outlines the concept. You can see that the basic

informational unit at the application level (and not layer), similar to the concept of PDU, is the

measurement session. The section from this document that describes the Session Manager

explains thoroughly the sessions, how they are identified based on flow identifiers and how they

are correlated to the collected results.

Figure 3.8 The layer structure of the NMS management implemented at the agent

Figure 3.9 Communication layers between the management console and the measurement agent

A few additional remarks about the figure 3.9 are needed. First, the management infrastructure

does not specify any physical or data-link specifications, so any layer one and layer two

technologies that can be used with IP and UDP is therefore supported (hence, the italic font used

Measurement Engine

Queuing Service

SNMP Service

Management Service

C
o
n
fi
g
u
ra

ti
o
n
 S

e
rv

ic
e

Application

Application Layer

Transport Layer

OS Socket Interface

Session Manager

Queuing Service

SNMP Service

Management Service

Socket Interface

Network Driver Interface

Measurement Engine

Queuing Service

SNMP Service

Management Service

Socket Interface

Network Drive Interface

Physical Connectivity Physical Connectivity

A

7

6

5

4

3

2

1

Session Messages

SNMP

User Datagram Protocol

Internet Protocol v4

Data-link specification

Physical specification

77

for the layer that do not have specifications). Second, on the left side the figure also contains the

distribution of OSI layers over different software interfaces. It can be seen that the management

infrastructure implements the layers 5 through 7, i.e. session up to application layer. The digits

inside the rectangular blue cases indicate the OSI layer number. The character A inside the top

case means that level deals with application-to-application communication.

 Notes

 If you want to refer to the TCP/IP networking model, instead to the OSI, especially

since the SNMP is a TCP/IP hierarchy application protocol, than the changes from

figure 3.9 are the following: layers five through seven implemented by the

management service, SNMP service and queuing service are defined as the TCP/IP

model application layer. Layer 4 could be referred to in this case as transport layer,

the layer three as the internetworking layer while the two layers at the bottom are

usually considered as the host-to-network layer.

The management infrastructure uses the User Datagram Protocol (UDP) because this is the most

used transport option for SNMP. Even though some TCP implementations for SNMP are known

to exist, it is not recommended to use TCP for the following reasons:

 The traffic overhead will be too high, especially for a lot of small management

messages.

 The SNMP protocol as a management option is usually associated to failures. In

networks that work just fine and never fail, there is no need for management. One the

other hand, TCP itself cannot overcome network problems like failures, so flooding a

link with TCP retransmissions would not be of much help either.

Therefore, UDP usage for SNMP follows the philosophy that if the network works just fine the

messages will arrive at the destination anyway. If the network experiences problems to the point

where the connectivity between the NMS entities no longer exists, TCP would not be a better

choice either.

Using UDP, however, means that the applications must care about messages that could be lost in

transit, not just due to a network failure, by means of retransmissions. Nevertheless, if

retransmissions are used that implies that it is possible that two identical messages to reach the

destination. In this case, the application must properly filter out duplicate messages. In the NMS

management infrastructure, the Queuing Service is responsible for message retransmissions and

duplicate messages discarding.

As a network layer option, the only one available until this moment is the Internet Protocol

version 4 (RFC 791). The IPv6 may be supported on future versions of Network Measurement

System.

This paragraph ends the general discussion about the architecture of the management

infrastructure. Starting with the next topic, the services of the NMS management console (i.e.

including the services of the management infrastructure) shall be examined more thoroughly,

including algorithm diagrams, key library functions and configuration parameters. The services

will be presented in the logical order, in which they are linked with each other.

78

33..33 TTHHEE MMAANNAAGGEEMMEENNTT SSEERRVVIICCEE

33..33..11 SSEERRVVIICCEE OOBBJJEECCTTIIVVEESS

The purpose of the management service is to provide four major things:

 Basic networking connectivity using UDP transport

 Message encapsulation, by relying on the data sent by the SNMP service

 Distribution of messages, by relying on the features of the queuing service

 Security functions, by filtering the incoming management messages using two criteria

From this short enumeration of management service functions one may determine that the

layered presentation is not entirely accurate, since not the above layer relies on services provided

by the layer below. Actually, in this case, things seem to happen the other way around.

The explanation is that the layered presentation from previous paragraphs was made entirely

from the layer functionality point-of-view as defined by OSI. Also to this extent, one may argue

that the queuing service is based on services of the management service, since the queuing

service waits for management messages to be transmitted and received by the management

service, even though, at the programming level the management service calls specific functions

of the queuing mechanism. This is also the case with the SNMP service.

Nevertheless, if you look at the sequence in which the data is processed: first, it travels through

the queuing mechanism, and then it is encapsulated by the SNMP service and then is transmitted

by the management service.

33..33..22 SSEERRVVIICCEE SSTTRRUUCCTTUURREE

The implementation of the Management service and by extension the implementation of several

other services must take into account the following requirements:

 The execution of the service code must be made independently, meaning that its

instructions should execute asynchronously related to other services or user

procedures.

 The service flow must be linked with the control procedure of the Service Control

Manager, which enables the service to start or stop at the user’s discretion.

 Notes

 There are services implemented in the management console that do not obey either or

both of the two requirements. However, this is because the must perform a

synchronous or a requested service, and asynchronous execution it is not possible.

Nevertheless, for now, the Management service must obey them, and in what follows

we shall describe how the implementation made that possible.

The core of the Management Service is made up of three functions that run independently in

three execution threads:

 A control thread that supervises the execution of the whole service, creates and closes

the other threads

 A socket control thread that performs basic socket services such as socket opening

and closing

79

 A socket data thread that performs reading and writing of networking data

The figure 3.10 suggests the communication process between the three types of threads.

Figure 3.10 Basic communications between the Management service threads

The Management service features a single Service Control thread but multiple Socket Control

and Socket Data threads. This is because the service requires an additional set of threads for each

local interface on which the management service is used. After the setup of the management

console, at the first configuration the user usually specifies the local interfaces to be used with

the management service. In addition, at the measurement agent, the user may choose to use the

management over multiple network interfaces, to cope with connectivity with multiple managers

in different networks.

At the Service Control thread startup, the service reads the current configuration and creates a

number of Socket Control threads to match the number of local interfaces used. Each thread will

bind only to the interface to which it is assigned, so management traffic can be sent and received

only to and from that interface.

 Important

 Because the interface assignment to different threads is done only at the Management

service startup, when changing the local interface setting you must restart the

Management service for the changes to take effect.

33..33..33 SSEERRVVIICCEE CCOONNTTRROOLL TTHHRREEAADD

The Management service starts by receiving a start control from the Service Control Manager or

SCM. The start control means that the start function of the Management service is called by the

SCM and the service control thread is created.

However, prior to the service creation several control variables are set to indicate the execution

status in both directions. What this means, it will be explained shortly. After these variables have

been properly set, the service control thread can be created. Then it is up to the code inside the

thread to indicate that the service has successfully started.

Service Control
Manager

Service Control Thread

Start / Stop Controls
op Controls

Socket Control Thread Socket Control Thread Socket Control Thread

Start / Stop Controls

Socket Data Thread Socket Data Thread Socket Data Thread

Start / Stop Controls Start / Stop Controls Start / Stop Controls

80

Understating now how the services control is achieved is very important, because on all service

that receive controls from the SCM use the same mechanism. This is also true for secondary

threads, such as in this situation of the Socket Data threads, that are started in their turn by the

Socket Control threads.

Any service thread software uses at least two variables with global access to indicate the

execution status and to control the execution flow:

 The control variable is simply used to indicate whether the service thread is allowed

to run or it should stop. This variable is always set by the superior instance (or the

parent) that controls the thread execution. An example will follow to explain the

concept.

 The status or flag variable indicates to parent the status of the service thread, i.e.

whether it is running or it is stopped.

For the Management Service two additional variable types are used:

 A global status variable, which indicates more precisely the condition of the service,

as a whole entity

 A thread-associated variable that indicates whether the service is in paused state

The algorithm on which the execution flow is based is explained in what follows. The logic

diagram is also depicted in figure 3.12. Before continuing, the table 3.8 summarizes the control

and status variables used by the Management service.

Table 3.8 Control and status variables used by the Management service

When the SCM sends the start control, by calling the service function mentioned before it first

must check the global status thread variable to see whether the service supports the start

command. The table 3.9 contains the possible Management service global states.

Table 3.9 Global states of the Management service

Variable Name Description

Thread control variable
Indicates from the parent whether the service thread should run or should
stop

Thread status variable Indicates to the parent the current running state of the service thread

Thread extended-status
variable

Indicates from the parent whether the service thread should pause its
execution (but without stopping)

Global status thread
Indicates to the parent the global status of the service (not of individual
threads)

Status Value Description

Stopped 0
The service threads are not running and all control thread variables indicate the

treads as stopped.

Started 1
The service threads are running (all or some of them) and the main control thread is
in running state.

Paused 2
The service threads are in the running state, but are placed into a pausing loop in
which no operations are performed.

81

The service accepts the start control only if it is currently in the stopped (0) state. In addition, the

startup type should not be disabled (2).

 Notes

 Since the Service Control Manager is not implemented at the agent, the default

startup type will be used in that case, which is always automatic (0).

 The following startup types are implemented by the Service Control Manager:

automatic (code 0), manual (code 1) and disabled (code 2). More information about

the service startup types will be found in the paragraphs about the Service Control

Manager.

If the service does not accept the start control due to either of the mentioned reasons, it ignores

the control and returns an error. At the management console, the SCM uses this error to report an

event in the event log.

If the service accepts the start control, it changes the global state to starting (code 4). The startup

procedure it then changes the control thread status and control variables:

 The running control variable is set to true meaning the control thread is allowed to

run.

 The status variable is set to false meaning the control thread was not yet started.

After this final variable, the service control thread is created. The startup procedure verifies that

the thread was created without any errors, and at the end, it waits for the control thread to

indicate that it successfully started. The waiting procedure is actually a loop in which the startup

procedure holds until the global control thread variable is set for the running (or started – code 1)

condition.

The startup procedure performs a synchronous start of the Management service threads. This

means that the start function could not block indefinitely the caller thread, if the service threads

do not indicate that they started within a limited amount of time. An operation timeout check is

used in this case to prevent the caller to hang if something goes wrong. The timeout check code

simply adds a countdown counter to the final waiting loop (the one in which the startup

procedure expects the service control thread to indicate that it started). The counter is initialized

to a value, called thread operation check countdown and is decreased by one at any iteration.

The iteration duration is not less a parameter called thread operation check timeout expressed in

microsecond. The status of the service is checked each iteration, to see whether it started.

Stopping 3

The service already received a stop control, but the main control thread is still
running and is waiting for all child threads, i.e. the socket control and socket data

threads, to stop.

At the end of the stopping state, the service enters automatically in the stopped
state (0) and the control thread exits.

Starting 4

The service received a start control, the main control thread already started
executing but it is in the process of initialization and starting the descendent
threads, i.e. the socket control and socket data threads.

If no errors occur, at the end of the starting state, the service enters automatically
in the started (or running) state.

82

The conclusions of what was presented so means that the after the control thread was created the

startup procedure waits until indicates that it started but no longer than the time of thread

operation check countdown multiplied by thread operation check timeout. The default values are

given in table 3.10 and can be changed by the user. In the table, other variables are mentioned,

whose role will be explained a little further.

Table 3.10 Default values for environmental variables of Management Service

Therefore, the default maximum waiting time for the startup procedure to end is 10000

microseconds multiplied by 255, yielding 2550000 microseconds or 2.55 seconds. Usually, if the

service startup procedure exits, without having the service in the started state, it is said that the

service hanged, i.e. it remained suspended into an intermediary state and it is not known if a

stable state should ever be reached.

Referring to the startup procedure discussed here, if the service control thread takes more than

2.55 (or other value if configured by the user) seconds to start (i.e. to execute up to the point

where the service status variable is set to started) the startup procedure exits leaving the service

in the starting state. Usually if this happens an event is logged to warn the user, but there is no

recovery procedure available, since the service threads can no longer be controlled (because they

refuse to change their status).

It is a rare occurrence for something like this to happen due to lock of the service threads to some

point, but it cannot be excluded. However, in most cases the service could not start within the

timeout duration (of 2.55 seconds, default) because the time duration from its creation until it

changing the status, announcing that the initialization completed and it is started, took slightly

longer. In such situations, the service will eventually start and all subsequent operation will work

just fine. The figure 3.11 outlines the logic of the startup process.

Now, let us look at the execution of service control thread. On one hand, the control thread is

responsible of performing some initialization routines prior of setting up its status as running. As

promised, the figure 3.12 it is presented the logic diagram of the service threads operation.

Nevertheless, before a few explanations are necessary.

After the control thread start it immediately puts its associated status flag to started, so any other

function it is aware that the thread started execution.

Variable Name Default Value Unit Description

Thread Operation
Check Timeout

10000 microseconds
The duration of loop iteration, that waits
for a thread operation to complete

Thread Operation
Check Countdown

255 iterations
The maximum number of loop iterations,
in which a caller waits for a thread
operation to complete

Thread Operation Finish

Timeout
500000 microseconds

The interval duration in which the

descended threads are expected to stop,
when a service stop control was received

Thread Sleep Timeout 10000 microseconds
The minimum duration of an execution
loop for a control thread

Thread Read Sleep
Timeout

5000 microseconds
The minimum duration of an execution
loop for a data thread

83

Figure 3.11 The management service startup procedure

The thread initialization process has several stages:

 To start the dispatcher service thread – this thread will process the management

specific requests that are addressed to the management console.

 To allocate the resources required by the socket threads.

 For each local network interface that is selected by the user, to create and start socket

control thread.

The dispatcher service thread processes SNMP messages that are received by the management

service. However, the dispatcher performs message the operations indirectly, using the queuing

service and SNMP service. To make a good picture of what is actually happening, you need to

remember that: the management control thread starts a separate thread for each local interface.

The role of these threads is to bind to the local interface in order to intercept the incoming

management messages. In turn, each also has to create a secondary thread that will perform

reading and writing socket operations, hence the socket data thread name.

These final threads will get the data from the network, and interpret it using the SNMP service,

to ensure that the received stream of bytes is a valid SNMP message. If the checking is okay, the

message parameters will be placed in the queue waiting for processing.

Start Control

Service State Valid

Report Error

Set Service Status to STARTING

Set Thread Control to RUN

Service State Invalid

Set Thread Status to NOT STARTED

Set Thread Pause to NOT PAUSED

 Start Control Thread

Cannot create the thread?

Initialize Timeout Counter

Thread created

 Is Timeout Counter 0?

Is Control Thread STARTED?

Else

Decrease Counter

Wait Operation Timeout

 Return

84

Figure 3.12 The logic diagram of the Management Service

The above figure illustrates in a detail what is the execution flow of the Management service

main control thread. One may identify three different stages:

 The initialization stage, in which several set of resources are allocated and descendent

threads are created and started.

 After the initialization is complete, follows the second stage or the stationary stage, in

which the control thread performs cyclic operations in a thread loop.

 The loop finishes when a stop control is received (i.e. the thread control variable is set

to stopped). After the thread loop has stopped, the descended threads are stopped and

the allocated resources are released.

Some additional information about these execution stages of the main control thread might be

needed. First, the creation and stopping of descendent threads is done in the same way the SCM

performs the start and stop of the main control thread. I.e. any thread is started, by setting up a

thread’s control variable to running and a status variable to stopped, after which the thread is

created. When the descendent thread starts, it sets the associated status variable to started and it

runs as long as the control variable is set to running.

Main Control Start

No

Set Status: RUNNING

Create Dispatcher Thread

Setup Resources for Socket Threads

Create Socket Control Threads

Is Stop
Received?

Service Keep Alive

Update Outbound Queue

Recycle Queue

Run Scheduled Task

Is Service Paused?

No Yes

Yes

Stop Socket Control Threads

Release Resources for Socket Threads

Stop Dispatcher Thread

Set Status: STOPPED

Main Control Stop

85

The parent thread waits for the newly created thread to start until the status variable is started or

until a timeout period expires. The timeout is measured in the same way it was explained before,

see figure 3.13 for more information. If a timeout occurs, the control thread decides to abort.

Each descendent thread has a loop similar to the one of the main thread, in which it performs its

tasks. The execution flow stays in this loop while the control variable is running. If during the

execution the pause control variable is set, the thread enters into a secondary pause loop, without

exiting the primary running loop. The execution exits the pause loop either when the pause

control is set to resume or when the thread control variable is set stopped.

Figure 3.13 Thread start control procedure

The stop procedure is done in a similar way. First, the thread control variable is set to stop value.

After the stop control has been send, the caller thread (or parent thread) expects in a waiting loop

for the descendent thread to finish. This is done by checking during the iterations whether the

status variable is set stopped or the timeout counter reached zero. In the first case, the parent

thread continues normally, while in the second a failure policy is used.

The figure 3.14 contains the algorithm diagram used for the stop procedure.

 Notes

 The failure policy, in the case a created thread cannot be stopped, mostly because a

blocking event occurred consists in logging an event in which the user is informed

upon the situation and an automatic release of resources.

Start Thread

Stop

Set Thread Control to RUN

Set Thread Status to NOT STARTED

Set Thread Pause to NOT PAUSED

 Start Descendent Thread

Cannot create the thread?

Initialize Timeout Counter

Thread created

Is Timeout
Counter 0?

Is Control
Thread
STARTED?

Else

Decrease Counter

Wait Operation Timeout

 Continue

86

 Caution

 In the situation a descendent thread hangs, and you are warned that the ―resources are

released automatically and an undefined behavior may occur‖ you might want to

restart the application because data or application memory corruption may happen in

the future. Although it is extremely unlikely for a service thread to hang, if this

happens, save your data and restart the application. The control threads and especially

the Service Control Manager are required to release any resources when a stop

control has been issued, even if the service or part of the service stopped responding.

Therefore, having threads still in execution, which did not respond to the stop control

and maybe are still using resources that have already been released, eventually will

lead to an undefined behavior.

Figure 3.14 Thread stop control procedure

One may observe from the previous algorithm that the descendent thread or threads status is not

affected even if they fail to stop within the allowed timeout interval. Actually, when discussing

the thread implementation in the management infrastructure the golden rules are:

 Only the parent thread is allowed to change the control variable for a descendent

thread

 Only the descendent thread is allowed to change its corresponding status variable, the

parent only inspects the value of these variables in order to determine the status of the

descendent threads.

 Notes

 However, the parent thread is allowed to initialize the status variable of a descendent

thread prior to its startup. This exception is presented in figure 3.13 where the thread

status is set to not started after the control has been set to run.

Stop Thread

Stop

Set Thread Control to STOP

Release Thread Resources

Write Warning
Message to Event Log

Thread status is STOPPED

Initialize Timeout Counter

Set Thread Status to STOPPED

Is Timeout Counter 0?

Else

Decrease Counter

Wait Operation Timeout

87

33..33..44 SSOOCCKKEETT CCOONNTTRROOLL TTHHRREEAADD

The socket control concept refers to the operations that make possible the transmission and

reception of network data using the operating system’s socket interface. The socket control

operations contain procedures such as socket initialization and release.

In addition, because the management service supports connection through multiple network

interfaces or through a multihomed interface (a network interface having multiple IP addresses

assigned), the socket control ensures that a socket reference is opened on all interfaces that have

been previously selected by the user.

After the socket procedures are completed, the socket control thread is also responsible of

starting the socket data threads that will handle the data transfer socket operations. There are two

reasons for which the socket operations i.e. socket open/close and socket read/write have been

separated in two threads:

 A failure or a block is more probable to occur during data transfer procedures, and

therefore if such an event happens the control of the thread is still maintained.

Shortly, if a read/write procedure blocks the socket data thread it would never affect

the socket control thread. The advantages of this approach will be explained

immediately.

 The second issue is robustness. By keeping socket and data operations running in two

functions and having two separate stacks prevents even the smallest corruption event

such as the case of buffer overflow and the socket operation can be recovered.

Furthermore, a prolonged data operation cannot affect the ability of the threads in

receiving controls from parent threads and finally, it isolated user management data

from other internal data structures.

 Notes

 In implementation, the probability that a socket operation to fail or block is prevented

through several methods such as data availability checking and received data size

checking. Even so, because the implementation of the service relies on operating

system code, such events were not excluded and the occurrence was taken into

account.

In understanding the reasons why the socket control should be implemented separately from the

socket data operations, try to imagine what if a socket operations takes too long or simply blocks

the thread operation. The most basic operation that would block the thread would be a read

operation from an empty buffer or a write operation onto a full buffer. In the first situation, the

operation would block indefinitely if management data would never arrive on the computer.

The management service has been designed to prevent recovery from such events, in the case

that their occurrence cannot be prevented. This is done by using a thread in which the socket

control operations are performed. If the socket data operation blocks for instance, it would only

block the socket data thread.

Now imagine that the SCM sends a stop control to the management service. The stop control is

received by the main service control thread in the form of a control variable change from

running to stop. As it was explained in the previous section, the main control thread would exit

the thread loop and start sending stop control to its descendent threads, i.e. the socket control

threads. The socket control threads also have a thread loop in which they wait for a stop control

to arrive.

88

When the socket control thread receives the stop control it exits the loop immediately and like its

parent sends stop control to its only descendant, the socket data thread – see figure 3.10 to see

the threads dependencies. Nevertheless, at this point, the socket data thread is blocked in a socket

data operation and it cannot stop, meaning that associated status variable does not change –

remember that only the thread could modify its status variable.

The socket control thread implement the stop procedure described before, meaning that it waits a

finite amount for the descendant thread to modify its status. If this does not happen, it would

immediately attempt to release the resources allocated for the data thread, in this case by close

the socket. Usually in most socket interface implementations when a blocking socket operation is

performed onto an invalid socket, the calling functions exits immediately by returning an error

code.

This is what really is performed when the data thread becomes locked on a socket operation. If

the parent thread, i.e. the socket control thread does not receive the status change within the

timeout it closes the socket anyway causing any blocking the function to return immediately with

an error. You will see that the socket data thread is created in such a way that these types of error

are recognized and the thread is stopped.

As mentioned, there are two main objectives for the socket control:

 To perform socket data operations to terminate, by closing the working socket

regardless on whether the data thread stopped or not

 To handle socket opening and closing

Since the first objective was already discussed, here is some info on the last one.

When the socket control thread is started, the first operations are to gather the socket specific

information from the parent and to open a new socket. The socket is opened on the local IP

address received as parameter from the main control thread, and if successful, a valid socket

handle is obtained.

Figure 3.15 Receiving local IP information by the socket control threads

The main control thread is responsible for starting a socket control thread for each IP address

selected by the user, so by the time the socket control thread function starts, the local IP

information is already available as parameters. The figure 3.15 illustrates the concept.

Main Control
Thread

Local

IP 1, Port 1

IP 2, Port 2

IP 3, Port 3

IP 4, Port 4

Using: IP 1, Port 1

Using: IP 2, Port 2

Using: IP 3, Port 3

Using: IP 4, Port 4

Socket Control Thread 1

Socket Control Thread 2

Socket Control Thread 3

Socket Control Thread 4

89

The steps performed by the socket control thread in order to create a socket viable for SNMP

communication are the following:

 Create a new socket, referenced by a socket handle. Since SNMP uses UDP as

transport protocol, the type of socket is of UDP type.

 If the socket is created without errors, the socket is bind to the local IP address and

port received as parameters. Usually this IP address corresponds to a specific local

network interface but could you may also have two IP addresses assigned to the same

interface. The default port for SNMP is 161, but it can be changed by the user either

from the configuration wizard, manager properties dialog (for the management

console) or from management tab (for the measurement agent).

 If the bind yields no errors, the socket control thread starts the socket data thread and

then enters in the thread loop waiting for the stop control.

 When a stop was received, it sends a stop control to the data socket, it waits to finish

a timeout duration after which the socket is closed, and its status is set stopped.

If an error occurs during either operation the socket control thread enters in suspend state, i.e. it

enters directly into the thread loop without starting the socket data thread. The algorithm flow is

presented in figure 3.16.

Figure 3.16 Socket control thread flow control

Start

Stop

Read Socket Parameters

Send Stop Control to Socket Data Thread

Are Any Errors?

Create UDP Datagram Socket

Is Stop Control Received?

Yes

Bind Socket to Address and Port

Create Socket Data Thread

No

Yes

No

Are Any Errors?

Yes

No

No

Is Socket Data Thread
Stopped or Is Timeout?

Close Socket

90

The algorithm schematic from figure 3.16 contains only the important steps performed. In

addition, there are of course the usual thread control procedures such as setting up at the

beginning and at the end the thread status variables, which are no longer presented in the figure.

A small difference regarding the socket control thread from the thread control point of view it is

the lack of activity while the service is running. Otherwise said, the socket control thread is

responsible only of closing its associated socket when the service stops, in the meanwhile it does

not do anything more. The main thread loop, from the socket control thread, checks if a stop

control is received, in which case it exits. Since there is no activity during the execution of the

loop this thread is not concerned whether the service is paused or not.

This paragraph ends the discussion on the socket control in the management service. The next

section presents the last topic of this service, i.e. the socket data thread that actually handles the

transmission and reception of management messages, cares of security issues and performs

application layer encapsulation upon the management data.

33..33..55 SSOOCCKKEETT DDAATTAA TTHHRREEAADD

The socket data thread is almost as every other service thread presented in this section. That

means that it contains a thread control part, in which the thread must check for controls received

from his parent (the socket control thread) and a notification part in which the thread informs its

parent whenever a change in its status (i.e. running, stopped or paused) occurs.

What makes this service thread important is that at its core in the service loop, this thread

performs all management related operations that are essential for the main goal of the

management console and the measurement agent. The architecture presented so far was indented

to increase the reliability and availability of the service provided by the software, but one must

take into account that to some implementations this could be expendable. On the other hand,

what the socket data thread does needs to be done.

The aim of this thread is very simple, the simplicity coming from the modular structure of the

management service. So far, the main service thread was responsible of creating a new socket

control thread for each local network interface selected by the user. The socket control threads

just open and close the socket; creates the socket data thread and that is it. Finally, the socket

data thread is responsible of reading and writing from and onto the socket and delivering data to

the upper layer from the networking point of view.

I.e. the socket data thread does not deliver the data to its parent (the socket control thread) but

rather to the upstream entity in the flow of management information. According to the figures

3.7 and 3.8, these are the SNMP and the queuing service.

In addition to reading and writing streams of bytes, the socket data thread has several other

features; all of them are enumerated on the following list:

 Reading bytes from the network interface, whenever an UDP/IP packet having the

destination address the address assigned to the network interface and a port number

equal to the one configured, is received.

 Applying both types of security policy on the incoming data: the IP filtering policy

allows or discards incoming packets, based on whether their source IP address is

found either in allow or deny list. The SNMP security policy is based on the

standardized community names (this is because the NMS uses SNMP version 1).

91

 If the packet is not discarded, the thread passes the data to the SNMP service in order

to verify if the stream is a valid SNMP message and if so to extract the management

information (i.e. the values of the managed objects) from it.

 It performs the role of an intermediary in passing the data returned by the SNMP

service to the queuing service, which carries it to the user interface.

 It ensures through various mechanisms that no receiving buffer overflows and any

error that might occur is handled appropriately, usually by discarding the data that

caused the error.

 When sending data, it receives the values of the managed objects (including with

additional information such as the agent to which the data is send, the community

name to be used, and the PDU type and so on) and sends it to the SNMP service.

 Receives encapsulated data from the SNMP service for which it allocates a buffer,

and afterwards it writes the data to the socket.

As one may remark, the role of the management service is in fact of basic raw UDP data

transmission, and does not care of the meaning of data. Regarding the encapsulation, it relies on

the SNMP service. When it comes to flow and error control, the queuing service is the one

dealing with that matter. Finally, the meaning of the management data is known only by the

Session Manager.

This however, does not mean that the job of the data socket thread is easy. Here are some of the

factors that care the most when it comes to reliability and performance. Also for performance

reasons alone, the management service also cares about security. The idea is there makes no

sense on interpreting, queuing and allocating resources for a message that will obviously be

discarded from one reasons or another. This implies that at least for some of the performed tasks

the socket data thread of the management service looks to some parameters of the incoming and

outgoing data. The following paragraphs will explain each topic in detail.

As usual, figure 3.17 shows the logic schematic of the algorithm employed. Already known

pieces such as the thread control and status are obviously missing. What is important is the flow

of execution inside the thread loop, where the bulk of the work is performed.

What is obviously from the beginning is that both the reading and writing operations are

executed in same thread and in the same loop. The decision in doing so was based on the fact,

that if the management service would not care of synchronizing duplex data, the job would have

been carried out by the operating system. Therefore, instead of using two threads, one for

reading and one for writing, only one is use at the expense of a little more complicated

implementation.

The basic idea of the thread loop is the following. At each cycle, the thread verifies if a reading

or writing can be performed. The socket data thread makes first the check for reading and then

for writing, but the selection to do so was purely arbitrary, so it could have been the other way

around.

The check for inbound data (i.e. data coming from the network) is made using a socket specific

function. If data exists, the thread prepares an incoming buffer in which the data to be put. The

initial size of the buffer is of recv buffer size and the default value is 4096 bytes or four Kbytes.

The data is then inspected to see whether it would fit into the allocated buffer. The test is made

by performing a peek reading into the buffer. Since the read function of the socket interface, (i.e.

recvfrom) receives the size of the buffer as parameter ensures that no buffer overrun occurs.

92

Instead, the function returns an error if the buffer was too small and so the program knows that

the data was only partly read and the buffer needs some adjustments. In addition to make the

implementation even easier, a flag can be specified to the read function in order to return the

actual number of bytes available for reading.

Figure 3.17 Socket data thread flow control

Start

Stop

Read Socket Parameters

Is Stop Control Received?

Allocate Transmitter Buffer at Default Size

Discard Packet

Yes

Check Socket for Incoming Data

Pseudo-read the Received Data

No

No

Yes

Is Incoming Data Present?

Outbound Message Exists

Allocate Receiver Buffer at Default Size

Is Buffer Overflow?

Yes

No

Reallocate Receiver Buffer

Read the Received Data

Check Source IP Address

Allow Packet

Send Packet to SNMP Service for Decoding

Receive Decoded Data from SNMP Service

Check SNMP Community Name

Add Decoded Message to Inbound Queue

 Check Outbound Queue

No Outbound Message

Read Message from the Outbound Queue

Receive Encoded Data from SNMP Service

Write the Data

Is Incoming Data Present?

No

Yes

93

In this way, the socket data thread is able to adjust the size of the buffer on the fly in order to

avoid the loss of any packets. Even so, the initial large size of the buffer (4096 bytes) prevents

this process of occurring to often, such that the performance degradation seldom ever happens.

Of what the implementation is concerned there is no such big difference in inspecting the data

and actually reading it, the following piece of code shows how this is done in reality.

If the buffer is of appropriate dimensions, the reading is performed and the incoming data is

removed from the socket buffer calling the same function but without the two-bolded flags.

The significance of the two flags, which are used when inspecting the data, is presented in the

following table.

Table 3.11 Flags used when inspecting the socket for input data

In addition, in the figure above the interaction of the management service with the upper layer

services is showed with bold characters. From the entire management service, only the socket

data thread interacts directly with the queuing service by calling functions specific to each of

them. Later in this document, a flow chart will explain the servicing layer of each part of the

management service.

For now, if the data was successfully read, it is the time to check whether it is of any good. This

is done at the beginning by checking if the source IP address of the datagram that just arrived is

allowed to pass. You will see in the next chapter that the IP-based security configuration can be

done by either creating a list of denied IP addresses or a list of allowed IP addresses. The thread

simply looks what kind of list is it about and takes the appropriate action: i.e. allowing the packet

of the source address is not found in a deny list or discarding the packet if the source address is

not found in an allow list.

Flag Name Meaning

MSG_PEEK
Peek at the incoming data. The data is copied into the buffer but is not removed
from the socket input queue.

MSG_TRUNC
The function returns the size of the data waiting in the socket input queue
rather than the size of the data copied into the allocated buffer.

iRet = recvfrom (

 hSocket,

 lpRecvBuffer,

 dwRecvBufferSize,

 MSG_PEEK | MSG_TRUNC,

 (struct sockaddr*)&saiRemoteAddress,

 &iRemoteAddressLength

);

iRet = recvfrom (

 hSocket,

 lpRecvBuffer,

 dwRecvBufferSize,

 0,

 (struct sockaddr*)&saiRemoteAddress,

 &iRemoteAddressLength

);

94

If the message passes the IP filter check, the data is passed to the SNMP service. In the next

major section, it will be presented how the SNMP service works. For now, you might keep in

mind that the socket data thread sends the buffer with the received bytes to the SNMP service,

and the service returns a structure that contains the data from all the fields of the SNMPv1

message, as presented in the theoretical introduction.

The SNMP service also reports any errors. Remember that the encoding of the SNMP PDUs is

rather complex, following the ASN.1 rules each filed having three parts that indicate its data

type, length and value. If one of these is wrong, the SNMP service tells the socket data thread

what happened. If this would be the case, any future reference to that data is simply ignored and

the message is lost.

Nevertheless, if the message is correctly decoded the socket data thread will receive at the end

the values of all the parameters from the message. However, most of them make no sense for the

management service, but some can be used for a second verification. This is, as expected the

community name and the PDU type.

Remember that there are several types of SNMP messages; each of them indicate the operation

that is performed. For example, the field called PDU type from the message tells whether the

purpose of the message is to read the value of a managed object or to set its value. For a review

of the SNMP notions, review the previous chapter. Now, since each community name – the

security mechanism of SNMP has some associated rights that come hand in hand to the type of

the message and the type of the object that is handled by the message.

In the figure 3.6, 3.7 and 3.8, one may see that almost all of the management services rely on a

configuration service that provide the necessary user configured data. In this case, the

configuration service provides access to the user configured community names and their set of

permissions.

If the message passes the community check, it will be transmitted to the upper layers by placing

it into the appropriate inbound queue. From now on, it is the responsibility of the queuing service

of delivering the message to the application – remember that the SNMP and the management

service implement the application layer of the OSI stack and not the application itself.

After the received message was sent to the queuing service, the data socket thread will handle the

transmission part, again if a message is waiting for transmission.

 Important

 Before the outbound queue is checked for messages to be transmitted, the software

always verifies if any other messages are waiting to be read. The next section on

management service conclusions will explain the reasons of this approach.

The transmission of a management messages starts, obviously with a check of the outbound

queues. If the queues are empty, the transmission is canceled and the thread loop is repeated. If

the queues are not empty, the queue check function provided by the queuing service will return

the index of the queue in which the next message is found, and locks the queue for further

operations.

 Notes

 The previous paragraph may not say too much for the moment, since the queuing

service was not yet explained. Later in this chapter, an analysis of the queuing service

will explain how the priority based mechanism is implemented using several different

95

queues for inbound and outbound messages, and what are the queuing lock

fundamentals. For now, just keep in mind that several queues exits, each having a

different priority, and always the queue with the highest priority is checked first. The

queue lock means that a queue operation has begun or it is in progress and the queue

is currently inaccessible. However, the services that rely on the queuing service

functions do not care on these details, which are performed automatically when a

queuing service function is called. Nevertheless, in this case the management service

requires the index of the queue in which the message was found for transmission.

Next, the socket data thread reads the message from the known queue, the message remaining in

the queue.

 Important

 No mechanism exits to delete an outbound message from a queue. Instead, the

queuing service is responsible of doing this using a principle that will be explained

later in this document.

The read message – or more appropriately the parameters of the read messages – is afterwards

passed to the SNMP service that handles the encapsulation into a brand new SNMP PDU. The

PDU is saved in the transmission buffer that is usually of the same size as the receiving buffer,

4096 bytes by default. If the size of the transmission buffer is exceeded, an error is returned by

the SNMP service and the size of the buffer is reallocated. The steps involved in the transmission

buffer adjustment are not presented in figure 3.17 to keep the figure as simple as possible, but

you should remember that the management service always checks and increase if required the

size of both transmission and reception buffers.

 Notes

 The default size of the buffer cannot by changed by the user in the current version of

the Network Measurement System.

33..33..66 MMAANNAAGGEEMMEENNTT SSEERRVVIICCEE SSUUMMMMAARRYY

The management service implements the low-level functions of SNMP communication.

However, this is only partial true since the management service takes care only of the SNMP

polling mechanism. The NMS console and agent provide support at the application on the SNMP

trap messages but they are not implemented at the lower layers because are not used.

Regarding priorities, the reality is that the management service does not care at all of them, i.e.

the management service does not implement priority-based service. You will see later in this

document that this approach is taken care of in the implementation of the queuing service. The

management service makes however, a distinction between incoming and outgoing messages in

the way they are treated if more are present at a moment.

If simultaneously, several messages are present in the queue for transmission and several are

waiting in the buffer of the socket interface for reception, the latter always have priority. This is

to ensure that the limited buffer size of the socket interface that is dependent on the operating

system implementation does not become full causing loss of packets. Instead, it is much more

preferred to let the outbound queue fill up, since each queue is able to hold by default up 8192

management messages, totaling up 32768 messages (not SNMP PDUs) in each direction.

96

The last issue of the management service would be the one of duplicate messages and

retransmissions. Again, this issue will be solved by the upper layers.

As a final remark, the implementation of the management service resides in the scm.cpp and

scm.h files.

Table 3.12 Source files of the management service implementation (version 1.0.0.605)

 Notes

 In the table 3.12, and wherever file dates are to be expressed, they are presented in the

month/day/year format.

The content of those files is found in appendix A.

The figures 3.18 and 3.19 show a summary of the flow of data inside the management service.

Figure 3.18 The flow of inbound data inside the management service

In the previous figure, you see that the flow of data and control links are exactly as explained so

far. The user controls the whole service by using the Service Control Manager, which starts and

stops the main service thread of the service. The main thread creates a new socket thread for

each configured and selected IP address responsible of opening a socket handle and which in

turn creates a secondary data thread. This thread handles the reading and writing (see next

figure), sends the read data to the SNMP service for identification and decoding, and takes the

result and place in into one of the inbound queues.

When sending messages the outbound queues are checked, if any messages are available it is

taken from the queue (only read, not removed – the queuing service handles that), send to the

SNMP service for encapsulation and then is written to the socket.

See the next figure for the data flow of outbound messages.

File Name Size (bytes) Timestamp Comments

scm.cpp 38001 05/10/2006 01:58 C++ source code file

scm.h 1522 06/04/2006 16:42 C++ header file

Service

Control

Queuing Service

Manager

Socket Data Thread

SNMP

Service

Socket Control Thread

Service
Control
Manager

Color Key

Data Flow

Control Connection

97

Figure 3.19 The flow of outbound data inside the management service

This is on short, the description of the management service. Next, we shall focus on the

presentation of its closest ―relative‖, i.e. the SNMP service.

Service

Control

Queuing Service

Manager

Socket Data Thread

SNMP

Service

Socket Control Thread

Service
Control
Manager

Color Key

Data Flow

Control Connection

98

33..44 TTHHEE SSNNMMPP SSEERRVVIICCEE

33..44..11 SSEERRVVIICCEE OOBBJJEECCTTIIVVEESS

The SNMP service is used only by the management service (the socket data thread, if

considering the previous paragraphs) and provides:

 SNMP message encapsulation services

 SNMP/ASN.1 related data encoding and decoding

 Message verification

By comparison with the management service, the SNMP service does not run in its own threads,

but rather is a set of functions that are executed in the context of the calling threads, in this case

the socket data thread of the management service.

Two major functions are exported by the SNMP service as a provided service: a function that

performs message encoding and one that handles message verification and decoding. In addition

to these, there is also a large number of small functions that handle the encoding and decoding of

almost each ASN.1 type used with SNMP.

The next paragraphs will explain shortly how the SNMP encoding and decoding is performed.

Keep in mind that the functions of the SNMP service are very simple, and therefore the idea

presented here is not so complicated.

33..44..22 EENNCCOODDIINNGG SSNNMMPP MMEESSSSAAGGEESS

To start, one should remember the structure of SNMP version 1 messages, already presented in

first chapter of this document.

Figure 3.20 Review of the SNMPv1 message format

Even if the management service does not use SNMP traps, the SNMP service features functions

for trap message encoding and decoding for use with future needs and upgrades of the NMS

software. Trap handling will be presented later in this sub-chapter.

If one remembers the theoretical aspects regarding SNMP encoding from the first chapter,

should know the binary representation does not resemble with the one presented in the figure

above. It is not like in an Ethernet frame or IP datagram where a field in a schematic

representation contains a fixed or variable number of bits that contain the binary information of

that field.

PDU Type Request ID Error Status Error Index Variable Bindings

Version Community Name

Message Header

Protocol Data Unit

99

In case of SNMP, each field is encoded following the ASN.1 rules. It contains three parts:

 The type of the field

 The length of the field

 The data of the field

 Notes

 The encoding rules of ASN.1 data (including the encoding of the type and length) are

found in the ITU-T Recommendation X.690 [13]. In the following, some basic rules

about ASN.1 encoding will be explained as we look on the SNMP service

implementation.

The encoding of any SNMP message starts by calculating the total length (in bytes) of the final

header and PDU. To calculate the length it is important to present now the encoding of type and

length fields, considering that the length of data to be encoded is already known.

The encoding function receives as parameters:

 The buffer in which to place the SNMP data as a pointer to bytes

 The original buffer size as an unsigned number

 The community name as a string

 The PDU type, request ID, error status and error index as numbers

 The managed objects as an array of structures where each structure contains the

object ID (OID) and data

The encoding function returns the data into the passed buffer and the size of the buffer if it was

increased.

The computation of the final message size starts by assuming a start value of zero. Then the

function follows the algorithm in the figure 3.22, by adding the size of each type, length and data

component of each of the fields from figure 3.20. In the figure 3.21, a refined structure of a

SNMP message is provided for reference.

Figure 3.21 The refined SNMPv1 message format

Sequence Code Sequence Length

S
e
q

u
e
n

c
e

Version Code Version Length Version

Community Code Community Length Community

PDU Code PDU Length

P
r
o

to
c
o

l
D

a
ta

 U
n

it

Request ID Code Request ID Length Request ID

Error Status Code Error Status Length Error Status

Error Index Code Error Index Length Error Index

Sequence Code Sequence Length

S
e
q

u
e
n

c
e

Sequence Code Sequence Length

S
e
q

u
e
n

c
e
 Object Identifier Code Object Identifier Length

Object Identifier

Object Data Type Code Object Data Length

Object Data

Other managed objects defined as the previous sequence pattern

100

Figure 3.22 Computing the SNMP message size

Start

Set Length to Zero

Is Length For All Managed Objects Computed?

Add Length of Code of OID

Add Length of OID Length

Add Length of Length of Objects

Sequence

No

Yes

Stop

Add Length of Code of Object Data

Add Length of OID

 Add Length of Object Data Length

 Add Length of Object Data

 Add Length of Object Length

 Add Length of Object

Add Length of Objects Sequence

 Add Length of Request ID Code

 Add Length of Request ID Length

Add Length of Request ID

Add Length of Error Status Code

Add Length of Error Status Length

Add Length of Error Status

Add Length of Error Index Code

Add Length of Error Index Length

Add Length of Error Index

Add Length of Protocol Data Unit Code

Add Length of Protocol Data Unit Length

Add Length of Community Code

Add Length of Community Length

Add Length of Community

Add Length of Version Code

Add Length of Version Length

Add Length of Version

Add Length of Sequence Code

Add Length of Sequence Length

101

One may remark that the computation of the message length starts from the end of the message.

This is because, if you look at the figure 3.21, there are some length fields that contain the length

of the data that follows them. Therefore, the length of those length fields is not known prior to

the computation of length of the data that is in their continuation.

The first length field is the sequence length placed in the top row of the message format. This

field contains the value of the next number of bytes that follow. In order to compute the content

of its field, such that its length could be determined, one should know the number of bytes that

follow, or otherwise said the length of the following data. By continuing this judgment, you may

found that for the computation of the length of the sequence length field from the ninth row you

need to know the size of all managed objects.

At the very bottom, to know the length of the message means to know the length of each

managed objects such that the length of the variable bindings sequence is computed. Then the

sequence length parameter from the eighth row is known so its length can be determined and so

on. In the end, all lengths will be known and the length in bytes of the entire message will be the

available.

Regarding the pictures from figures 3.21 and 3.22, some remarks may be required. First, there is

no version code or community code or anything like similar. Those denominations are use just to

understand the principle. For each field inside the SNMP there is an associated standard ASN.1

type, and its code is actually used. For example, the version is of integer type and therefore in the

place of the version code the code of the integer ASN.1 type shall be used. The same is the case

of the community name, which is an octet string, and the code of the octet string type is used

instead of community code.

Second, the computation of the length is not done exactly like the algorithm flow chart. That

should be used again only to understand the basics. In reality, intermediary results such as the

lengths of each managed object and of each sequence are important because in addition the

function does not only computes the length of the message but it also needs these results to

assemble the packet.

The length of each field is computed by respecting the encoding ASN.1 rules as they are

presented in [13]. The SNMP service features functions to compute the length of standard

numeric types, of length values and of object identifiers, since the latter follow rules that are

more complex. Table 3.13 summarizes the lengths SNMP service computes.

Table 3.13 Lengths computed by the SNMP service

Type Expressed In How Is It Done?

Numeric Bytes
By counting all bytes starting from the least significant one,
until the most significant bytes encountered are all zero

Numeric Bits
By counting all bits starting from the least significant one, until
the most significant bits encountered are all zero

Length Bytes

By computing the length of a length field takes into account
that if the number from the field is represented on more that 7
bits that the length filed contains a first byte containing the
number of bytes that follow and contain the binary
representation of the length number

Object Identifier Bytes
By computing the length of each OID number taking into
account the flowing exceptions:

102

The following pieces of code are more suggestive in explaining how the computation for each

different data type is performed.

Computing the length in bytes for a numeric type:

Computing the length in bits for a numeric type:

Computing the length in bytes for a length field:

Computing the length for an object identifier:

The first two OID numbers are encoded following the rules
from the theoretical introduction

If the size of one OID number is larger that 7 bits, then 1
bit is added to each group of 7 bits

BYTE GetNumberBytes(DWORD dwNumber)

{

 BYTE bBytes = 0;

 do

 {

 bBytes += 1;

 dwNumber = dwNumber >> 8;

 }

 while(dwNumber);

 return bBytes;

}

WORD GetNumberBits(DWORD dwNumber)

{

 WORD wBits = 0;

 do

 {

 wBits += 1;

 dwNumber = dwNumber >> 1;

 }

 while(dwNumber);

 return wBits;

}

BYTE GetLengthNumberBytes(DWORD dwLength)

{

 WORD wBits = GetNumberBits(dwLength);

 BYTE bBytes = ((wBits / 8) + ((wBits % 8 == 0)?0:1));

 if(wBits > 7)

 return bBytes + 1;

 return 1;

}

DWORD GetOidNumberBytes(LPSNMPOBJECT lpObject)

{

 DWORD dwBytes = 0;

 DWORD dwCnt = 0;

 WORD wBits;

 if(lpObject->dwObjectIdLength >= 2)

 {

 wBits = GetNumberBits(40*lpObject->lpObjectId[0] + lpObject->

 lpObjectId[1]);

 dwBytes += ((wBits / 7) + ((wBits % 7 == 0)?0:1));

103

The last function may look strange because the type used for the objects is undefined yet. That

type will be explained shortly. For now you just need to remember that it defines a single

managed object along with its object identifiers, data, object identifiers length – the number of

digits in the OID, data length (in bytes) and data type. In the code above, the OID length is used

to determine how many digits the OID has and whether the special encoding of the two first

digits is applied or not.

The length of the packet must be known before the packet encapsulation begins, since the buffer

length must be checked to see whether the buffer size needs to be adjusted. If this is the case the

SNMP service functions returns with an error code that tells the caller, in this case the

management service, that the buffer should be increased and to try again. The previous sub-

chapter explained that this is actually the case for the management service.

If the buffer size checks just fine, the message encapsulation should begin. The process is very

straightforward since functions for encoding each data type are available. The difference, by

comparison with the calculation of the length, is the fields are written to the buffer sequentially,

starting with the first.

The prototypes of the functions used to write data to the message buffer are given here.

The following table contains a small description of each function used to write data to a simple

SNMP message buffer.

 dwCnt = 2;

 }

 for(; dwCnt<lpObject->dwObjectIdLength; dwCnt++)

 {

 wBits = GetNumberBits(lpObject->lpObjectId[dwCnt]);

 dwBytes += ((wBits / 7) + ((wBits % 7 == 0)?0:1));

 }

 return dwBytes;

}

void WriteLengthToBuffer(LPBYTE lpBuffer, DWORD dwLength,

 LPDWORD lpdwIndex);

void WriteByteToBuffer(LPBYTE lpBuffer, BYTE bNumber, LPDWORD lpdwIndex);

void WriteNumberToBuffer(LPBYTE lpBuffer, DWORD dwNumber,

 LPDWORD lpdwIndex);

void WriteStringToBuffer(LPBYTE lpBuffer, LPCTSTR szString,

 LPDWORD lpdwIndex);

void WriteIpAddressToBuffer(LPBYTE lpBuffer, DWORD dwIpAddress,

 LPDWORD lpdwIndex);

void WriteObjectIdentifierToBuffer(LPBYTE lpBuffer, LPSNMPOBJECT lpObject,

 LPDWORD lpdwIndex);

void WriteObjectDataToBuffer(LPBYTE lpBuffer, LPSNMPOBJECT lpObject,

 LPDWORD lpdwIndex);

void WriteTimeticksToBuffer(LPBYTE lpBuffer, DWORD dwNumber,

 LPDWORD lpdwIndex);

104

Table 3.14 Functions used to write data to SNMP message buffer

 Notes

 The SNMP service does not need to compute the length of the data for composed or

structured data types such as character strings or user passed data. In the case of

character strings the C/C++ convention of defining the length of the string is applied,

i.e. the end of the string is marked by the null character. The data passed by the user,

is usually accompanied by a numeric variable that specify its size.

 Each function from table 3.14 also writes to the message buffer the type and length of

the parameter that follows, implying that the calling procedure does not have to

perform these operations.

 The complete list of SMIv2 data types is found in tables 2.6, 2.7 and 2.8.

The flow chart of creating the message is presented in figure 3.23.

Figure 3.23 Creating the SNMP message

Function Name Description

WriteLengthToBuffer

It writes to the message buffer a number taking into account the
ASN.1 rules of writing lengths, i.e. if the length number is
represented on more than 7 bits a prefix with MSB in 1 is used to
indicate its length in bytes.

WriteByteToBuffer It writes to the message buffer a number represented on 1 byte.

WriteNumberToBuffer
It writes to the message buffer a number represented on up to 4
bytes.

WriteStringToBuffer It writes to the message buffer a null-ended character string.

WriteIpAddressToBuffer
It writes to the message buffer an IPv4 address in network byte-
order.

WriteObjectIdentifierToBuffer It writes to the message buffer the value of an object identifier.

WriteObjectDataToBuffer
It writes to the message buffer user defined data. The type and
length of the data must be supplied. If the length of the data is zero,
the type of the object is set to NULL.

WriteTimeticksToBuffer
It writes to the message buffer an extended time tick value
represented on up to 8 bytes.

Start

Write Sequence Type to Buffer (0x30)

Write Message Length to Buffer

Write Version (0x00) to Buffer

Write Community String to Buffer

Write PDU Type to Buffer

105

Figure 3.23 Creating the SNMP message (continued)

Each SNMP message field uses the encoding specific to its type, and hence the specific function

of writing data. The only exception is the version field that uses the write byte function since it is

always represented on one byte – all other numbers use the up to 4 bytes number

implementation. For a review of the types of each SNMP v1 field, consult the tables 2.11 and

2.12 in the theoretical introduction.

33..44..33 EENNCCOODDIINNGG SSNNMMPP TTRRAAPPSS

The structure of a SNMP version 1 trap was already presented in figure 2.15, so it will not

presented once more time as in the previous case.

The current version of Network Measurement System management does not implement traps.

However, the SNMP service contains the corresponding functions in order to cope well with

possible future upgrades. For this reason, the SNMP service features full SNMP version 1

support even if it is not used entirely.

The encoding process of each field of the SNMP trap resembles so well with encoding of the

normal polling message that many of the implementation aspects that were discussed will be

skipped in this case. In this category can be included the length determination process, and the

functions that write the message data to the passed buffer.

The flow charts are as well very similar, the only difference being at the points were different

data is written. In this situation the PDU Type, Request ID, Error Status and Error Index fields

are replaced by Enterprise, Agent Address, Generic Trap Type, Specific Trap Code and Time

Stamp.

The following implementation aspects change:

 The parameters the trap generation function receives

 The length determination of the SNMP PDU

Write Request ID to Buffer

Write Error Status to Buffer

Write Error Index to Buffer

Are All Objects Written?

No

Write Sequence Type to Buffer (0x30)

Write Object Length to Buffer

Write Object Identifier to Buffer

Write Object Data to Buffer

Stop

106

 The message assembly

In the figure 3.22, the additions of the length of the four replaced objects are changed by their

substitute fields. This is also true in the case of the figure 3.23. Besides that, there is no such big

difference between composing SNMP polling messages and SNMP traps. On what this project is

concerned the SNMP trap features are fairly used, so this topic will end here. For more

information about creating SNMP traps, consult either the theoretical introduction, reference

paper or the source code of the SNMP service from appendix B.

33..44..44 DDEECCOODDIINNGG SSNNMMPP MMEESSSSAAGGEESS

When decoding the SNMPv1 messages the key issue is to check at each field if the following are

true:

 The length of the parameter field in addition to the fields already decoded does not

exceed the number specified in the last length field and of the number from the last

length sequence, if it exists.

 The type of parameter is the correct one, if the field is of fixed type.

 The field data fulfills the ASN.1 encoding rules.

The first criterion means that at any decoded parameter the length of the message or the length of

the last sequence is not exceeded. To understand the principle, look at the figure 3.21. You can

see that the SNMP message starts with a sequence code, a sequence length and so on. The length

verification implies prior to check the value of the sequence code the software should check if

the size of that field in addition to the size of fields decoded so far is less than the last length

field. In this case, we have no fields decoded so far, their number is zero. There is again no

previous length field, so the length of the entire message is assumed.

In the case of the second field, which is a length filed two checks are performed: too see whether

the field is not outside of the received buffer, i.e. the sequence field length added to the sequence

code length is less than the last available length – the size of the buffer. The second one is to see

whether the value stored in sequence field is accurate, i.e. the binary number represented in that

field is equal to the length of sequence structure that follows, which in this case is the size of the

buffer minus the length of the two fields we already talked about.

Figure 3.24 Principle of checking the length when decoding SNMP messages

Is length of the field plus the previous fields less or
equal than the last computed length?

Does the field content check?

Yes

Set New Length

Start

No

Is this a length field?
Yes

Does the length
value check?

Yes

No

Error

Continue Decoding

No

Yes

107

If no errors are encountered so far, in the next steps the last length value becomes the one from

sequence length. Of course, one may wonder how this is implemented since it seems to be a lot

of variable to be kept in mind when checking the length. The NMS implementation of the SNMP

service does exactly as described in the previous steps except that it uses a shortcut method in

doing it.

The shortcut is that the program does not computes that last lengths, storing them in some

variables and then at each new filed its length is added to the previous ones and then compared

to those lengths. You have already seen that the encoding of the SNMP message is done in a

hierarchical manner, so especially when it comes to encoding the objects there will be too many

lengths to be taken into account. Instead, the following axioms are applied to simplify the

problem:

 Once the length of a field has been verified to be correct, it is no longer required to

check the length of the data that follows against the value of that field.

 Nevertheless, at each new field it is necessary to check its length versus the end of

buffer, to see whether the length (either specified in a length field or determined for a

standard field) is not to large.

The problem is therefore reduced from checking many lengths with the current SNMP field to

checking only against the end of the buffer. This is done by keeping the index of the last byte

from the buffer successfully decoded. If a new field follows, it is checked only if the length of

the new filed is less or equal to the size of the buffer minus the index of the last byte successfully

decoded. The figure 3.25 shows the algorithm.

Figure 3.25 Implementing length checking for new decoded fields

In implementation, a series of functions perform the length and contents check for any field from

the message. The prototypes of these functions are presented in the next paragraph.

Is the length of the new filed less than or equal to the size
of the buffer minus the index of the last byte decoded?

Does the field content check?

Yes

Set new last byte index

Previous Field

No

Is this a length field?

Yes

Does the length
value check?

Yes

No

Error

Next Field

No

Yes

108

The next table contains the description of each function used in decoding SNMP message fields.

Table 3.15 Functions used in decoding of SNMP messages

 Notes

 The parameters required to all functions are the message buffer, in which the received

buffer is stored, a pointer to a memory area where the results shall be stored, the

current index in the buffer, and the message size.

 All functions perform automatic detection and check of length and type fields so no

additional processing regarding those fields is required. If the check fails, because the

length is incorrect or the value of the type code is invalid for that specific function

Function Name Description

ReadLengthFromBuffer

It is used to read the length field, which is the prefix of any data type
represented in ASN.1 format. This function is usually called by the

following ones since they perform both length and type reading and
verification.

ReadNumberFromBuffer
It is used to read a numeric value from the SNMP buffer at the
specified index.

ReadIpAddressFromBuffer
It is used to read an IPv4 address value from the buffer at the
specified index.

ReadStringFromBuffer
It is used to read an octet string from the buffer at the specified
index.

ReadOidFromBuffer
It is used to read an object identifier from the buffer at the specified
index.

ReadTimeticksFromBuffer
It is used to read an extended 8-byte time tick from the buffer at the
specified index.

ReadObjectDataFromBuffer
It is used to read any type of data from the passed buffer at the
specified index.

int ReadLengthFromBuffer(LPBYTE lpBuffer, LPDWORD lpdwLength,

 LPDWORD lpdwIndex, DWORD dwMessageSize);

int ReadNumberFromBuffer(LPBYTE lpBuffer, LPDWORD lpdwNumber,

 LPDWORD lpdwIndex, DWORD dwMessageSize);

int ReadIpAddressFromBuffer(LPBYTE lpBuffer, LPDWORD lpdwNumber,

 LPDWORD lpdwIndex, DWORD dwMessageSize);

int ReadStringFromBuffer(LPBYTE lpBuffer, LPCTSTR *lpszString,

 LPDWORD lpdwIndex, DWORD dwMessageSize);

int ReadOidFromBuffer(LPBYTE lpBuffer, LPSNMPOBJECT lpObject,

 LPDWORD lpdwIndex, DWORD dwMessageSize,

 DWORD dwObjectSize);

int ReadTimeticksFromBuffer(LPBYTE lpBuffer, LPDWORD lpdwNumber,

 LPDWORD lpdwIndex, DWORD dwMessageSize);

int ReadObjectDataFromBuffer(LPBYTE lpBuffer, LPSNMPOBJECT lpObject,

 LPDWORD lpdwIndex, DWORD dwMessageSize);

109

(e.g. an octet string variable with type 4 is found when reading a number), an error

code is returned and the reading is aborted. The result returned in these cases is

undefined.

 All functions – except the ones for reading managed object values – receive a pointer

to an allocated variable in which the results are returned. The functions that perform

reading of objects, i.e. ReadOidFromBuffer and ReadObjectDataFromBuffer receive

a pointer to a managed object structure, and the necessary memory is allocated by the

function. In this case will be the job of the receiver of the message to free the

allocated memory. See the important notice that follows.

Figure 3.26 Reading the SNMP message

Is Message Length Zero?

Read Length from Buffer

Read Version from Buffer

Yes

Start

No

Is First Byte Code for Sequence (0x30)?
No

Yes

Is It Okay?
No

Is It Okay?
No

Read Community String from Buffer

Is It Okay?
No

Read PDU Type from Buffer

Is It Okay?
No

Read Request ID from Buffer

Is It Okay?
No

Read Error Status from Buffer

Is It Okay?
No

Read Error Index from Buffer

Is It Okay?
No

Read Variable Bindings Length from Buffer

Is It Okay?
No

110

Figure 3.26 Reading the SNMP message (continued)

 Important

 This notice is about memory management across the services of the management

infrastructure of the Network Measurement System. There are situations, like the

functions from the last note, in which a function receives a pointer to a variable and

the function allocates the necessary memory space. This is true for functions that

create managed objects structures. These structures will be covered shortly. In this

case, it is the duty of the functions from the other point of the data flow to release that

memory space. Therefore, for functions that read SNMP messages from the network

and create the SNMP message structure (a structure that contains in a set of variables

all the fields of the message) the destination, which is usually either the Session

Manager or the Message Dispatcher, releases the necessary memory. For messages

that were created by the Message Dispatcher or the Session Manager, will be written

to socket by the SNMP PDU creation function from the previous sections, the

memory release is usually performed by the management service. The previous

subchapter about the management service did not mention this detail, because would

have been hard to understand at that time. For now, you should take into account that

the management service is responsible to free any memory that was allocated by other

service related to SNMP messages data structures. When the SNMP message

structures will be presented later in this section, the fields that need to be released

when the message is no longer used shall be pointed out.

Figure 3.26 contains the algorithm used in reading of SNMP polling messages. Because all the

functions already exist, each step is performed by calling the functions for the type of each

message parameter. Objects data are read as unknown types and stored into memory areas of the

appropriate sizes. Pointers to these areas are regularly returned as results.

After each filed read operation the reading function verifies whether the last operation completed

successfully, i.e. the portion of the SNMP PDU already read is free of errors. Otherwise, the

reading halts and an error is returned, informing the calling thread, usually the socket data

Is End of Buffer?

No

Read Object Type and Length from Buffer

Is It Okay?
No

Read Object Identifier from Buffer

Is It Okay?
No

Read Object Data from Buffer

Yes

Is It Okay?
No

Error

Stop

111

thread, that either the SNMP message is corrupted or it is not a SNMP message – the message

will be discarded.

33..44..55 DDEECCOODDIINNGG SSNNMMPP TTRRAAPPSS

The discussion about decoding the SNMP traps will be very short for the following reasons: first,

the difference between a polling message and a trap for SNMPv1 means that four of the fields

are replaced with five. In implementation, it implies the substitution of four of reading operations

with other five – remember that the functions that implement the reading of each type of file

already exists so no additional code is necessary.

Second, the SNMPv1 trap messages are not important from the point of view of our project

because they are not used. The reasons, why the SNMP service however implements them were

already presented.

The figure 3.21 contained the detailed structure of a SNMP polling message. For your reference

alone, the figure 3.27 contains the detailed structure of a SNMP trap message. For additional

information, refer to the introduction or to the list of references from the end of this paper.

Figure 3.27 The detailed structure of a SNMP trap message

33..44..66 MMAANNAAGGEEDD OOBBJJEECCTTSS DDAATTAA AANNDD UUSSAAGGEE RREEQQUUIIRREEMMEENNTTSS

Even the encoding and decoding functions of the SNMP service require each message filed to be

separately specified the service library features several data types to help handle the SNMP

information more easily. These is also one type which is required as parameter for the SNMP

service encoding/decoding functions, the array of managed objects to be filled in the variable

bindings.

Sequence Code Sequence Length

S
e
q

u
e
n

c
e

Version Length Version Code Version

Community Length Community Code Community

PDU Code PDU Length

P
r
o

to
c
o

l
D

a
ta

 U
n

it

Enterprise Code Enterprise Length Enterprise

Agent Address Code Agent Address Length Agent Address

Trap Type Code Trap Type Length Trap Type

Sequence Length

S
e
q

u
e
n

c
e

Sequence Code

Sequence Length

S
e
q

u
e
n

c
e
 Object Identifier Code Object Identifier Length

Object Identifier

Object Data Type Code Object Data Length

Object Data

Other managed objects defined as the previous sequence pattern

Specific Trap Code Specific Trap Length Specific Trap

Sequence Code

112

Table 3.16 contains the types defined by the SNMP service library. The first one contains the

structure of a SNMP managed object, while the latter has the structure of a SNMP managed

objects array.

Table 3.16 SNMP data structures available in the SNMP service library

The C/C++ definition of the first two types is:

The C/C++ definition of the last two types is:

Some instructions about the two data types and their usage in conjunction with the SNMP

service are required. The SNMP object type is used to define a single managed object, and

therefore it contains the records needed for such a definition:

 A pointer to a 16-bit numeric array to store the object identifier (OID)

 A numeric variable to store the length of the OID

 A pointer to a byte array to store the object data – the data for each object is saved to

such a memory area, regardless of its original format (e.g. for a numeric variable

represented on 3 bytes this pointer will reference a 3-byte array that will contain in

network order the value of the number)

 A variable that indicated the type of object data – this is useful to interpret the bytes

stored in the object data byte array

 The object data length in number of bytes (e.g. in the previous example the value of

this number is 3)

 Notes

 The type used to define SNMP data types, i.e. SNMP_DATA_TYPE encountered in

the definition of SNMP object type is presented in the source code of the SNMP

service from appendix B.

Type Name Description

SNMPOBJECT
It is a record-like type, which contains data regarding a single
managed object.

LPSNMPOBJECT It is a pointer to the previous type.

SNMPOBJECTLIST
It is a record-like type, which contains data regarding a set of
managed objects.

LPSNMPOBJECTLIST It is a pointer to the previous type.

typedef struct {

 LPWORD lpObjectId;

 DWORD dwObjectIdLength;

 LPBYTE lpObjectData;

 SNMP_DATA_TYPE sdtDataType;

 DWORD dwObjectDataLength;

} SNMPOBJECT, *LPSNMPOBJECT;

typedef struct {

 DWORD dwObjectCount;

 LPSNMPOBJECT lpObjects;

} SNMPOBJECTLIST, *LPSNMPOBJECTLIST;

113

The SNMP object list type features the following properties:

 A 4-byte value to indicate the number of managed objects, hence up to 4,294,967,296

objects can be stored into a single SNMP message. In reality, this number is limited

by the computing system available resources.

 A variable of type pointer to a SNMP object type. This will reference a memory area

that will contain consecutive SNMP object records. The size of the allocated memory

space equals the value of the object count field multiplied by the size of a single

object (i.e. 26 bytes: 4 bytes for both pointers to OID and object data, 4 bytes for both

their lengths and 2 bytes for the data type).

When using these data types with the SNMP service the following considerations need to be

taken into account.

 For data arrays which have unknown size prior to the SNMP read operation, the

required memory will be allocated by the SNMP service function. Consequently, it is

the duty of the application to release that memory. For the management console, the

Session Manager is responsible for that. In the case of the measurement agent, the

release of resources is done by the message dispatcher if it is the case.

 In the case of SNMP encapsulation operation, which receives pointers to allocated

memory, the SNMP service does not release the memory. The management service

handles that release if the message is not to be retransmitted. Since the queuing

service handles the retransmissions, a status variable tells whether the data from the

SNMP message is no longer used and the memory could be free.

The figure 3.28 indicates which fields from a SNMP message are dynamically allocated, and

require a release when they are no longer in use.

Figure 3.28 SNMP message resources

The algorithms for allocating and releasing memory resources for SNMP messages are presented

in figures 3.29 and 3.30.

PDU Type

Request ID

Error Status

Error Index

O
b
je

c
t

L
is

t

O
b
je

c
ts

 C
o
u
n
t

Object ID Length

Object Data Length

Object Data Type

Object Identifier

Object Data

Community Name SNMP Read: allocated

by the SNMP service,
released by the Session
Manager

SNMP Write: allocated
by the Session Manager,
released by the
Management Service

Color Key

Static Data

Dynamic Data

114

 Important

 If you plan to implement the NMS management infrastructure in your own

application, keep in mind that the memory allocated to an incoming message is

always done for you by the SNMP message, and therefore is your responsibility of

releasing the memory only after the message is read and deleted from the message

queue.

 In the case of outbound messages (messages you send using the management service)

you must always allocate the memory required for SNMP data, following the

algorithm below, and the management service will automatically free that memory

when the message is deleted from the message queue.

 Caution

 Failure to follow the recommendation from the previous important notice may other

cause an application failure (due to access in invalid memory) if the required memory

space was not properly allocated or going out of system resources if the allocated

memory is systematically not released.

Figure 3.29 Algorithm of memory allocation for SNMP messages

Figure 3.30 Algorithm of memory release for SNMP messages

No

Allocate memory for community string
Size: length of community name plus one

Was memory allocated for all objects?
Yes

Allocate memory for objects array
Size: number of objects times size of SNMPOBJECT

Start

Stop

Allocate memory for object identifier
Size: double the length of OID

Allocate memory for object data
Size: user-defined, to be specified in the message

No

Free memory for community string
Size: length of community name plus one

Was memory released for all objects?
Yes

Free memory for objects array
Size: number of objects times size of SNMPOBJECT

Start

Stop

Free memory for object identifier
Size: double the length of OID

Free memory for object data
Size: specified by the message

115

33..44..77 SSNNMMPP SSUUMMMMAARRYY

This section makes also the greatest opportunity in discussing why SNMP version 1 has been

selected as management protocol. When decision to implement SNMP version 1 was made the

next aspects were considered:

 SNMP is an IETF standard, so the platform, code and protocols are opened to other

implementations extension or future upgrades. If one tries to use some of existing

management services in their own application, the management notions can be

learned not only from this documentation but also from other and more detailed

sources.

 Version 1 was chosen since it still widely implemented in many applications: you

may download free management software from the Web with SNMPv1 support.

 By comparison, version 2 of SNMP is represented by a couple of different standards

and it is not as popular.

 Version 1 also has the advantage of easy configuration process; no advanced

knowledge is required.

 The major disadvantage of SNMPv1 is the lack of strong authentication and security.

Nevertheless, several security measures like the community-name defaults that come

with SNMPv1 along with IP-based filtering implemented at the core of NMS

management are though to be robust enough for the purposes of this software.

Especially, since the machines on which the agents are installed are usually under

control of the person that handles the measurements, the simple IP filtering could

mitigate almost all threat factors. For the remaining ones, such as denial-of-service

attacks or IP-spoofing the possible damage level is very small. Even if such events

should occur, one should remember, that the from the management console software

is always under control of the user tasks. Unwanted incoming SNMP data will be

ignored by the application. Advanced operations parameters such as inbound queue

size and inbound queue recycling help preventing such unwanted messages to

accumulate and are automatically discarded.

 The final reason of selecting the SNMPv1 for the management of the Network

Measurement System was the limited available time for developing of the

management infrastructure. The delivery of management messages is at the boundary

of the primary scope of NMS – the main goal is to perform quickly reliable

measurements and to have the results available as soon as possible. Therefore, the

selection of SNMP was made just to provide a standardized framework.

Future work and upgrades to the Network Measurement System may include also an upgrade to

the SNMP implementation possible of using SNMPv3.

The last topic of this sub-chapter is the SNMP service environmental variables or environmental

variable since only one exists. Table 3.17 contains this variable, description and its default value.

Table 3.17 Environmental variables of the SNMP service

Variable Name Default Value Unit Description

Maximum Object

Identifier Length
512 numbers

It represents the maximum numbers that
can be used in the dotted ASN.1 format of

object identifiers (OID).

116

The value of SNMP service environmental variables can be changed by the user via the SNMP

service properties dialog box in the Services view of the management console. On the agent, this

value is fixed and cannot be modified.

33..55 TTHHEE QQUUEEUUIINNGG SSEERRVVIICCEE

33..55..11 SSEERRVVIICCEE OOBBJJEECCTTIIVVEESS

Imagine that you have a management console installed on a computer with two network

interfaces, each interface connected to a different IP network. In each network, you have several

measurement agents, and you are performing a test with two agents, one in each network. This

simple scenario is enough to point out that there is the possibility for the management console to

receive two management messages at the same time instance or at least very close to one

another.

When the architecture of the management console was presented, it was said that the final

destination of incoming management messages is the Session Manager, the only software entity

that is aware of the meaning of management data from each message. However, you will see in

the next chapter that the Session Manager not only processes sequentially the management

messages for a single measurement test, but rather for all tests. This means if you have ten test

sessions running, end you receive simultaneously management messages for each, the Session

Manager processes the first received message, after it finishes the second and so forth.

In addition, if SNMP messages cannot arrive simultaneously on one network interface, for sure

they can arrive simultaneously on two. The solution seems very simple: to send the first received

message to the Session Manager for processing (if they arrive at the same time, one can be

selected arbitrarily) and save the second until the first one is processed. If more messages arrive

at once, send one and save all the other. After each message is processed, send another one the

Session Manager until all messages are processed.

The things happen in the same way if more messages arrive, when one message is already in

processing and others are already waiting.

The issue presented here can also be thought of in reverse. If two or more test sessions are

executed, and many management messages need to be send at very close intervals (closer than

the duration of sending a single message) a mechanism should ensure that the first message is

sent to the management service for encapsulation and transmission while others are waiting. If

more messages are coming in the meanwhile they will be added to the messages waiting in the

message queue.

The little story presented above means only one thing. Between the processing and transmission

of messages, a queue-like memory buffer should exist in which the extra management messages

could wait until the server – either the Session Manager or the management service for the

management console and either the message dispatcher or the management service for the

measurement agent – is available to receive another message.

The role of the management service is to implement a set of queues in which the messages could

wait their processing turn. In addition to this primary goal, some additional features of the

queuing service bring management transmission reliability and performance:

 Implementing message retransmission for acknowledgeable messages

117

 Implementing a discarding mechanism for duplicate messages

 Implementing queue recycling to eliminate messages that stayed in the queue too long

 Establishing priorities for different classes of messages: the messages with the highest

priority always will be processed first

 Implementing a queue lock mechanism which prevents for two different threads

accessing simultaneously the queuing system: the thread that began the operation

with the queuing service always gets to finish its task, and only afterwards other

threads may be granted access

The following sections present how each of the objectives presented before is implemented by

the software.

33..55..22 IIMMPPLLEEMMEENNTTIINNGG TTHHEE MMEESSSSAAGGEE QQUUEEUUEE

The queuing service features different queues for inbound and outbound messages. Actually,

there are four queues in each direction in order to implement priorities, but for now, the

operation of a single queue is enough to understand the principle.

Each queue is created as a dynamically allocated double-linked list. Each node in the list

contains information about the management message (i.e. the values of each parameter from the

SNMP PDU including the managed object list), the source and destination IP addresses, the

remote host port. Other parameters include flags on whether the transmission of the message

requires acknowledgement, whether a message has been received a timestamp indicating how

many times a message should cycle through the queue before is being retransmitted and a

retransmission counter.

The C/C++ definition of a queue node is given next:

Table 3.18 Node parameters of the message queue

Parameter Name Description

lpNextMessage
It contains a pointer to the next node in the queue list. If this is the last node in
the queue, the value of this parameter is null.

typedef struct __SNMPMESSAGE{

 __SNMPMESSAGE *lpNextMessage;

 __SNMPMESSAGE *lpPrevMessage;

 DWORD dwLocalIpAddress;

 DWORD dwRemoteIpAddress;

 WORD wRemotePort;

 LPCTSTR szCommunity;

 SNMP_OPERATION_TYPE sotPduType;

 DWORD dwRequestId;

 SNMP_ERROR_CODE secErrorStatus;

 DWORD dwErrorIndex;

 SNMPOBJECTLIST solObjects;

 BOOL bAckReply;

 BOOL bAck;

 BYTE bTimeoutRetry;

 WORD wTimeoutCount;

} MESSAGEQUEUE, *LPMESSAGEQUEUE;

118

Some meaning of the parameters may still be confusing, but as the presentation of the queuing

service goes along, they will become more meaningful.

The operation of the queuing service starts by initializing all eight queues (four in each

direction). Initializing a queue is to empty it. Therefore, at the starting point all queues are

empty. The software representation of each queue is made through two pointers that keep the

beginning and the end of each queue. This means that when the queues are empty both pointers

have null values. Figure 3.31 depicts the initial status of a queue.

Figure 3.31 The initial queue

lpPrevMessage
It contains a pointer to the previous node in the queue list. If this is the first
node in the queue, the value of this parameter is null.

dwLocalIpAddress

This parameter represents the IP address assigned to the interface to which the
message is transmitted or on which the message was received. This value is the
source destination IP address for outgoing messages and the destination IP
address for incoming messages (from the management console point of view).

dwRemoteIpAddress

This parameter represents the IP address of the measurement agent. For

outgoing messages, this value will be the destination IP address, for incoming
messages it is the source IP address (from the management console point of
view).

wRemotePort
It is the value of the UDP port used on the peer station. This value is important
only for outgoing messages because the management service requires the
remote UDP port in order to encapsulate the SNMP data.

szCommunity It contains the SNMP community string.

sotPduType
It contains the type of the SNMP PDU. The types used by NMS are get, set and
response. Check table 2.9 for additional SNMPv1 PDU types.

secErrorStatus It contains the value of the error status.

dwErrorIndex It contains the index of the error, if any.

solObjects
It is a structure of object list type, as previously presented in the sub-chapter
about the SNMP service.

bAckReply
It is a flag set to true if acknowledge has been received for the current
message.

bAck
This flag specifies whether this message is retransmitted until an acknowledge
message is received.

bTimeoutRetry
It specifies the number of times a message is to be retransmitted if

acknowledge is not received.

wTimeoutCount
It specifies the start value of a countdown counter that controls the message
retransmission.

NULL

0

Queue Input: NULL Queue Output: NULL

119

When a message is added to a queue, either inbound or outbound the following set of steps are

performed:

 If the queue is empty, a new node is created (by allocating the required memory for

it) and the input and output will reference the same node. For this node, there are no

next or previous nodes, these values being null.

 Otherwise, if the queue is not empty a new node will be created and the input pointer

will reference it. Since this is the input node in the queue now the input pointer will

reference it. The node’s previous pointer is set to null, while the node’s next node

pointer takes the address of the old input node.

Figure 3.32 show how the queue looks like if a node is added to an empty queue, while figure

3.33 presents the same process with a non-empty queue.

Figure 3.32 Adding a node to an empty queue

Figure 3.33 Adding consecutively two nodes to the queue from figure 3.31

The algorithm used when adding a new node to the queue is presented in figure 3.34.

Figure 3.34 Algorithm for adding a new node to a queue

Node

1

Queue Input: 1 Queue Output: 1

NULL NULL

Node

Queue Input: 2 Queue Output: 1

Node

1 2
NULL NULL

Queue Input: 3 Queue Output: 1

NULL NULL Node Node Node

2 1 3

No

Is the queue empty?

Yes

Start

Stop

Allocate memory and write data to new node

Queue input is the new node

Queue output is the new node

New node next is null

New node previous is null

Queue input is the new node

New node next is old input node

Old input node previous is new node

New node previous is null

120

Retrieving a message from the queue implies two stages:

 A search in the queue to find the message most closely to the output node that fulfills

a set of criteria.

 The extraction of the message from the queue

Practically, the implementation of the management infrastructure from the Network

Measurement System uses two different approaches, depending on whether the queue is inbound

or outbound.

For inbound queues that hold the messages that came from the network and were placed in the

queue by the management service the application needs to perform a test on the queue to find a

message according to a set of filtering parameters. At the maximum extent, no filter can be

specified and the message closest to the output of the queue with the highest priority is returned.

If a filter is used the table 3.19 contains the possible filtering parameters and the filtering type.

Table 3.19 Filtering parameters when searching a message in the inbound queue

The table 3.19 pointed out that two filtering types are available: namely operation filtering and

flow filtering. The first filtering method can be applied to regular management messages that do

not contain any measurement data. In this case, the message can be filter according to IP (source

and destination address), UDP (remote port) or SNMP (request ID filed and operation type).

The flow-based filtering comes into use when the management messages containing

measurement commands or results. The purpose of this filtering is to select between messages

that are simultaneously found in the message queue. If several measurement tests are performed

on the same agent either the Session Manager or the message dispatcher on the agent need to

differentiate between them on a larger basis than just IP addresses, ports and/or request IDs. The

next sub-chapter that presents the Session Manager will explain that the basic unit of a traffic

generation or analysis is a flow identified through the suggestive name of flow ID.

The flow IDs are unique to a management console and a set of agents and are used to identify

more precisely each management message. However, if the IP addresses, UDP port, request IDs

or operation types are fields in IP, UDP headers or SNMP PDUs, what about the flow ID, where

Filter Type Description

SNMP Request ID Operation/Flow
The function should return the queue with the message
that has the SNMP Request ID equal to the one specified.

Local IP Address Operation/Flow
The function should return the queue with the message
that has the local IP address equal to the one specified.

Remote IP Address Operation/Flow
The function should return the queue with the message
that has the remote IP address equal to the one specified.

Remote UDP Port Operation/Flow
The function should return the queue with the message
that has the remote UDP port equal to the one specified.

Operation Type Operation/Flow

The function should return the queue with the message

that has the SNMP operation type equal to the one
specified.

Flow ID Flow
The function should return the queue with the message
that has the flow ID equal to the one specified.

121

is it stored? The flow ID it is represented as a managed object inside the SNMP PDU. The

current version of NMS assigned the 1.3.6.1.3.3.14.0 OID to the flow ID.

To summarize the inbound queue message filtering keep in mind that:

 Two filtering types are possible: for messages not involved with measurement tests,

and messages carrying measurement data

 The first type of messages must not contain the flow ID (1.3.6.1.3.3.14.0) managed

object and can be filtered according IP addresses, remote port, request ID or operation

type

 The messages that contain the flow ID object (1.3.6.1.3.3.14.0) are always

measurement related messages and in addition must be filtered according to the flow

ID value

The functions that perform the filtering in the queuing service are the following:

Obviously, the first function performs operation-based filtering while the latter is in charge of

flow-based filtering. Both functions return true if at least one message matching the given

parameters is found. There is no need in explaining the role of each parameter, except the filter

parameter, bFilter. The filter parameter is a binary mask that specifies according to which values

is the search to be filtered. Only the five least significant bits are used (the parameter is byte,

hence in 8 bits) and their meaning is given in the next figure.

Figure 3.35 The structure of the inbound queue filter mask

BOOL TestOperationInboundMessageQueue(

 LPBYTE lpbPriority,

 BYTE bFilter,

 DWORD dwRequestId,

 DWORD dwLocalIpAddress,

 DWORD dwRemoteIpAddress,

 WORD wRemotePort,

 SNMP_OPERATION_TYPE sotType

);

BOOL TestFlowInboundMessageQueue(

 LPBYTE lpbPriority,

 BYTE bFilter,

 DWORD dwRequestId,

 DWORD dwLocalIpAddress,

 DWORD dwRemoteIpAddress,

 WORD wRemotePort,

 SNMP_OPERATION_TYPE sotType,

 WORD wFlowId

);

7 6 5 4 3 2 1 0

Filter on SNMP operation type

Filter on remote UDP port

Filter on remote IP address

Filter on local IP address

Filter on SNMP request ID

MSB LSB

122

 Notes

 If the message contains the flow ID managed object and the first function is used, the

message will always be filtered. If the second function is used the message will be

filtered according to the specified flow ID value regardless of the value of the filter

parameter mask.

 The usage of the filter mask is done by putting a one on the positions of the

parameters that will be filtered and a zero on the other ones. The three most

significant bits are always ignored. For example, if you want to search the inbound

queue on the operation type and SNMP request ID you have to set the 5 LSB to

10001 in binary or 17 in decimal.

The filtered search operation when calling either of the function is done by checking the message

node from the output position. If the filter checks out the function returns true. Otherwise, if the

queue has at least one more node, it moves the message from the output position to the input

position and checks again the message from the output position. The messages are being cycled

when either a match is found or the original message is on the output position.

If the inbound queue is empty, the search function always returns false.

The following three figures illustrate the concept.

Figure 3.36 Searching an empty inbound message queue

Figure 3.37 Searching a three nodes message queue, searched message exists

NULL

0

Queue Input: NULL Queue Output: NULL

Search on: Request ID = 2

FALSE

NULL

NULL

NULL

Queue Input: 3 Queue Output: 1

NULL Request ID: 1 Request ID: 0 Request ID: 2

2 1 3

Search on: Request ID = 2

FALSE

Queue Input: 1 Queue Output: 2

NULL Request ID: 2 Request ID: 1 Request ID: 0

3 2 1

FALSE

Queue Input: 2 Queue Output: 3

NULL Request ID: 0 Request ID: 2 Request ID: 1

1 3 2

TRUE

123

Figure 3.38 Searching a three nodes message queue, searched message does not exist

You can see in from the previous figures that if the searched message is not found in the output

position, the message from the output is moved on the input position until a match is found. The

search stops when on the output position is the original message (the one with request ID 4 in

figure 3.38) and the result of the search is false.

The search mechanism presented do far is available in the case of inbound messages. The search

is usually performed by the Session Manager but it is not always the case – nevertheless the

management console upper application is taking care of inbound messages.

After an inbound message search has been performed if the result of the search is true, the queue

is automatically locked, meaning that no other queue operations are possible. The queue needs to

be locked in order to prevent other threads that might be using the queue of modifying the order

of the messages. Imagine, for example, that another thread might perform a search on the

inbound queues with another filter parameter. If at least one message exists that fulfills the

search conditions, that message will be placed at the end of queue, when the search function

returns true.

The locking of the queue prevents the change in position of the search result message. This is

because the next function that should be called is the function of reading a message from the

inbound queue. The reading of an inbound message is the only operation allowed after the

inbound queue has been locked, and after the message has been read the queue will be

automatically unlocked.

Queue Input: 3 Queue Output: 1

NULL Request ID: 5 Request ID: 4 Request ID: 6

2 1 3

Search on: Request ID = 2

FALSE

Queue Input: 1 Queue Output: 2

NULL Request ID: 6 Request ID: 5 Request ID: 4

3 2 1

FALSE

Queue Input: 2 Queue Output: 3

NULL Request ID: 4 Request ID: 6 Request ID: 5

1 3 2

FALSE

Queue Input: 3 Queue Output: 1

NULL Request ID: 5 Request ID: 4 Request ID: 6

2 1 3

FALSE

124

 Notes

 Whenever a queue operation is performed, the queue is automatically locked to

prevent other conflicting operations. If another thread starts a new queue operation,

that thread will be forced to wait until the first queue operation is finished and the

queue unlocked. From this perspective, the queuing service means not only the

waiting of the management messages in the queuing buffer, but also the waiting of

the application threads before they are granted access to the message queuing system.

 The message queues are in general of FIFO type. However, exception occurs, one of

them being the search in the list. For this reason, priorities are implemented.

 The access to the queuing service is done on the first-come exclusive basis, meaning

that the first thread that begins the operation and locks the queue will be granted

exclusive access. When the operation is finished the thread that happens to lock the

queue next will also be granted exclusive access and so forth.

 Caution

 If you use the existing implementation of the queuing service, when searching for

inbound messages, if the search function returns true you must always read the

message next. Failure to do so will keep the queuing system locked indefinitely.

The search queue not only returns true or false if the searched message was found but also the

number of the queue in which it was found. Remember, that there are four inbound queues with

different priorities, and the search function looks in all of them, starting of course with the queue

having the highest priority. The read operation that must follow, always retrieve the message

from the output position: this is why the queue number needs to be specified and the queuing

system locked until the searched message is read (otherwise, the message could have been

moved from the output position).

The read function of inbound messages is very simple:

It receives a parameter having the number of the queue (the first argument) and returns in the

second parameter a pointer to a SNMP message structure, which contains the information of the

message found on the output position of the specified queue. The SNMP queue message type is

very similar to the structure of a SNMP message having in addition just the local and remote IP

addresses and the remote UDP port. The complete structure definition can be found in the source

codes from appendix C or table 3.18.

A particular property of the function that reads messages from the inbound queues is that

messages are automatically deleted once they are read, because it is assumed that the message

reached their destination.

The outbound queues are managed in simpler manner. The messages from outbound queues are

read usually only by the management service which does not care about the content of the

message. Either message that is found on the output position (i.e. the outbound queue is not

empty) can be read and transmitted. However, by comparison with the inbound queue reading

mechanism, the messages are not automatically deleted if they require an acknowledgment.

int RetreiveInboundMessageFromQueue(

 BYTE bPri,

 LPSNMPQUEUEMESSAGE lpsqmMessage

);

125

It was presented earlier that four of the flags of each message node inside the queue hold whether

the message requires an acknowledgment, the number of retransmission and the waiting period

between retransmissions expressed as an integer number of cycles. There are the following cases

when a message is deleted from an outbound queue:

 The message does not require an acknowledgement; in this case, it is deleted at the

first read operation.

 The message requires an acknowledgment, an acknowledgment has been received in

a form of an inbound message and the upper layer application (usually the Session

Manager) deleted the message from the outbound queue (i.e. the message is deleted

by the same entity that originally created the message and which received the

acknowledgment).

 The message requires an acknowledgment and the number of retransmissions left is

zero; this means that a timeout occurred and the peer application did not respond. In

this situation, a function is available to inform the upper layer application in order to

notify the user.

The cases of deleting messages from the outbound queue are illustrated in figure 3.39, 3.40 and

3.41.

Figure 3.39 Deleting outbound messages when acknowledgment is not required

Figure 3.40 Deleting outbound messages when acknowledgement is required and received

S
e
s
s
io

n
 M

a
n
a
g
e
r

M
a
n
a
g
e
m

e
n
t S

e
rv

ic
e

1
Add message to queue, no
acknowledgment

2
Read and delete message from

queue

Queuing Service

S
e
s
s
io

n
 M

a
n
a
g
e
r

M
a
n
a
g
e
m

e
n
t S

e
rv

ic
e

1
Add message to queue,
acknowledgment required

2
Read message from queue

(transmission)

Queuing Service

3
Read message from queue

(retransmission)

4 Reply received on inbound queue

5 Reply read from the inbound queue

6
Delete message from the outbound
queue

126

Figure 3.41 Deleting outbound messages when acknowledgment is required but not received

The queuing service notifies the upper application layer whenever a message timeout occurs

through a function that should be regularly called.

33..55..33 IIMMPPLLEEMMEENNTTIINNGG MMEESSSSAAGGEE RREETTRRAANNSSMMIISSSSIIOONN

If outbound messages have the acknowledgement required attribute set, the messages are not

deleted from the queue as they are read for the first time. Instead, they will be kept for a future

retransmission, unless a reply is received in the meanwhile and are deleted from the queue by the

upper layer – the Session Manager for the management console.

Two parameters are important when regarding message retransmissions: the number of

retransmissions and the time duration between two of them, hence the two parameters that are

used for this purpose. This section tries to explain how message retransmission is accomplished.

 Notes

 There is no retransmission mechanism for the inbound queues.

Suppose that a message was queued to for transmission. If the queue is not empty after the

messages from the output side of the queue are transmitted, our message is finally read by the

management service from the queue (remember that the output queue is of FIFO type). Because

the message has the acknowledgement attribute set, the queuing service checks the number of

retransmissions left and the timeout counter. By default, the initial value of these parameters

when the message is added to the queue is five retransmissions and zero for the counter. If the

number of retransmissions left is not zero, the service does not delete the message; instead, it

S
e
s
s
io

n
 M

a
n
a
g
e
r

M
a
n
a
g
e
m

e
n
t S

e
rv

ic
e

1
Add message to queue,
acknowledgment required

2
Read message from queue

(transmission)

Queuing Service

3
Read message from queue

(retransmission #1)

6
Message timeout: delete the
message from the outbound queue

7 Inform the user

4
Read message from queue

(retransmission #2)

5
Read message from queue

(retransmission #3)

int GetTimeoutMessage(DWORD dwRequestId, LPBOOL lpbFound);

127

moves it to the input of the queue. In addition, it resets the timeout counter (the default value is

100).

After a while our messages reaches again the output of the outbound queue. However, the

message is no longer read this time by the management service to be transmitted because the

timeout counter is not zero as in the first case, so the message it would just be moved to the input

of the queue again. Relying on what it was explained so far it seems that our message will never

have the chance of being transmitted again, unless the value of the timeout counter is decreased.

This is done by an update function of the outbound queues that is executed in the context of the

main service thread of the management service. Remember that each thread of the management

service has a thread loop. One of the things the main service loop of the management service

does in its thread loop is to execute at every cycle the update procedure of the outbound queues.

This update function decreases the timeout counter of all messages from the outbound queues

until zero is reached.

A cycle of the main service thread last by default approximately 10 milliseconds. Because at

each cycle the timeout counter is decreased by one, it takes approximately 1 second until the

counter is zero. Because from the outbound queue only messages having a zero timeout counter

can be read, means that the next time the messages reaches the output of the queue it will be

transmitted again and its retransmission left counter decremented.

The following figure illustrates the retransmission principle, however to keep the figure as

simple as possible, was assume that only our message is inside the queue, and a value of 2 for

retransmissions and 2 for timeout counter.

Figure 3.42 Messages retransmission principle for a single message in the queue

Message

Retransmissions: 2
Timeout Counter: 2

2
Message added to queue

T
im

e
li
n
e

0

Message

Message transmitted
(counter reset,
retransmission
decremented)

1 2

Message

1 1

Message

1 0

Message

0 2
Message retransmitted
(counter reset,
retransmission
decremented)

Message

0 1

Message

0 0

Message

X X Message retransmitted
and deleted

0

1

2

3

4

5

6

128

In the example above it is assumed that no reply is received. In this case:

 The message is deleted from the queue by the queuing service

 The management service is informed that the message was deleted and the message

dynamic allocated data can be released

 The upper layer is informed that the message was deleted due to a retransmission

timeout

If an acknowledgment reply had received, then the message would have been deleted from the

outbound queue by the upper layer at some point between the zero and six time instances on the

timeline.

It is not very hard to imagine the retransmission algorithm applied when more messages exist in

the queue. What is added is that at any moment the message reaches the output of the queue it is

automatically moved at the input unless is deleted and regardless on whether it was retransmitted

or not.

33..55..44 DDIISSCCAARRDDIINNGG IINNBBOOUUNNDD DDUUPPLLIICCAATTEE MMEESSSSAAGGEESS

When a retransmission mechanism exits the chances of duplicate messages to occur is very high.

Imagine that the time duration between sending a message for the first time and sending s

retransmission of it is smaller than the duration between the first transmission and the receiving

of the reply. In this case, a reply will finally be received but at least two identical messages were

already sent.

The other software on the other machine needs to identify the second message as a duplicate of

the one received first and to ignore it. Since the queuing service implements the retransmission

mechanism, it is also responsible of detecting and discarding duplicate messages.

From the beginning, before passing to implementation issues it must to be decided what a

duplicate message means. In the context of the management infrastructure of the Network

Measurement System a duplicate message is a message having the same IP source address, UDP

source port and SNMP request ID, and that arrives within a fixed interval after the previous

identical message was received.

This interval is usually selected to be higher than the retransmission interval in order to be sure

that a retransmission is identified as a duplicate. It also should not be very large for two reasons:

first, because some data about each received message is kept until this interval expires (in order

to identify duplicates received during this period) resources will be allocated. Second, because

after a while numbers such as the SNMP request ID start repeating so non-duplicate messages

could be discarding by confusing those messages to the ones received previously. Since the

request ID is a 4-byte number, means that messages received from the same IP address and UDP

port will start repeating the request ID after 4,294,967,296 messages. Therefore, the duplicate

message timeout interval should be less than the time required to transmit the previous number

of messages. The same could also happen if one application is restarted and the request ID start

repeating some of the old values.

The default value for duplicate message identification interval is around 30 seconds. This

interval is made up of two counters and the duration of a cycle of the main service thread of the

management service, since the recycle procedure of the duplicate messages it is also executed

129

within its frame. The first counter is 30 and the second is 100 and by multiplying those two

values with 10 milliseconds 30 seconds is obtained.

When a message is received by the management received and it is written to the inbound queue,

a record with the information needed to identify duplicate messages is automatically created into

additional list containing only information to identify duplicates. Each newly added node in this

list receives a timestamp similar to the one used for retransmissions. A recycling procedure is

executed within the main service thread once at every 100 (by default) cycles – by default

meaning once at every second. Within this recycling procedure, the timestamp of each duplicate

record from the list is decreased from the default value of 30.

When the timestamp of a record reaches zero, the duplicate record is removed from the list.

Since the timestamp is decremented by default at every second after 30 seconds the record about

each received message is deleted and a new message having the same identification parameters

(i.e. source IP address, UDP port and SNMP request ID) can be received.

33..55..55 IIMMPPLLEEMMEENNTTIINNGG PPRRIIOORRIITTIIEESS

The implementation of queuing priorities is very simple and it does not affect what it was

presented so far about the other queuing service features. This is done by having multiple

inbound and outbound queues, each corresponding to a different priority level. The messages are

placed in either queue based on a priority policy. When extracting messages from the queue, the

queue with the highest priority is checked first and so on. If a message is found in a queue with

higher priority that fulfills the criteria, the less priority queues are not check.

The queuing service has four inbound and four outbound queues. For outbound messages, the

decision in which queue to place the message is taken by the upper layers of the application. The

default policy for inbound messages in selecting the priority for each message is made depending

on the message PDU type. The next table contains the default mapping of each PDU type to each

priority level.

Table 3.20 Mapping of inbound PDU types to priority levels

According to their implicit priority, inbound messages are automatically added to the proper

queue, when the management service performs the queue operation. For outbound messages, the

decision on the priority level is done according to the same basis; however, this could not always

be the case.

PDU Type Priority Level Description

TRAP 0

This is the message with the highest priority level. Trap

messages are not used within the Network Measurement
System.

SET 1
The set messages are the messages with the highest
priority that are used by the NMS management.

GET 2 These are medium-priority messages.

GET-NEXT 2 These are medium-priority messages.

RESPONSE 3 These are the lowest priority messages.

Any Other 3 These are the lowest priority messages.

130

33..55..66 EENNVVIIRROONNMMEENNTTAALL VVAARRIIAABBLLEESS AANNDD SSUUMMMMAARRYY

The queuing service features also a set of environmental variables accessible via the services

view in the management console. At the measurement agent, these parameters keep their default

values, which have been chosen to be appropriate to the most encountered situations. Table 3.21

contains the environmental variables of the queuing service and a short description of each of

them.

Table 3.21 Default values for environmental variables of the Queuing Service

This ends our discussion about the queuing service. As a conclusion, one should remember why

the queuing service is necessary: to cope with incoming asynchronous management messages –

even messages that arrive at the same moment – and to transmit them synchronously to the

server service. The server service is either the management service for outbound messages or the

upper layer application for inbound messages and can process only one message at the time.

Hence, if more messages need to be processed, there is a single lucky one, while the others wait

in the queue for their turn.

In addition to this major role, the queuing service also provides the excellent background in

delivering other services such as reliability through retransmission, duplicate message

elimination, priorities.

The next sub-chapter presents the last major service of the management console, the Session

Manager.

Variable Name Default Value Unit Description

Message
Retransmission Retry

5 retries
The number of times an acknowledgeable
message is retransmitted if not deleted
from the queue

Message Timeout
Counter

100 times

The message retransmission is done once
at every message timeout counter cycles
of the main service thread of the
management service

Maximum Queue Size 8192 messages
The maximum size of each queue in
number of messages (in total there are up
to 65536 messages into the 8 queues)

Message Duplicate
Counter

30 times
The record of received messages used to
detect duplicates is deleted after message
duplicate counter recycle intervals

Duplicate Queue
Recycle Counter

100 times

This parameter defines the duration of a
recycle interval which is duplicate queue
recycle counter times the duration of cycle
of the main service thread of the
management service (10 milliseconds by
default)

131

33..66 TTHHEE SSEESSSSIIOONN MMAANNAAGGEERR

33..66..11 PPUURRPPOOSSEE AANNDD OOBBJJEECCTTIIVVEESS

The Session Manager it is only implemented by the management console. At the remote

measurement agent, there is another software entity in its place, called the message dispatcher

and processing unit but this is described in [2].

The Session Manager it is the point where all management messages start and end. This manager

provides services that directly accessible by the user via the graphical user interface of the

management console. The basic of the Session Manager starts in the following way. Suppose

that the user wants to perform a measurement test. The user must first create something that will

be an abstract representation of that test, and which will contain the parameters of the

measurement.

Let us call the abstract representation of the measurement test a measurement session or simply a

session. After a session is created the test could either start right a way or could be delayed and

start to a specified time moment into the future. To offer the user more flexibility the

management console allows the scheduling of each session by creating a session task or simply

task. When a task is created, means that the measurement session is scheduled for execution.

At the right moment, the task we talked about in the previous paragraph starts executing. This

implies that a proper set of management messages – according to the variables that define the

session – is sent to the measurement agent or agents and replies are expected. Usually each test

contain two parts: first in which the parameters of the session are sent and acknowledgments are

expected, called session negotiation and second in which the management console polls for data

from the agents in order to feedback results to the user.

Considering the example discussed the objective of the session manager becomes very clear: to

execute session tasks. I.e. when the time is right, the Session Manager looks at the task to see

which session is used, after that, it reads the parameters of the session and creates successively in

state-machine manner management messages (which are sent to the involved agents).

33..66..22 SSEESSSSIIOONNSS AANNDD SSEESSSSIIOONN GGRROOUUPPSS

When a measurement is performed, a session and a task are created. The session contains the

parameters that describe the measurement test, such as the agents involved, the network

interfaces used on each agent, and variables that describe what kind of test is performed. The

Network Measurement System supports three different session types, which are presented in

table 3.22.

Table 3.22 Session types

Session Type Agents Used Description

Traffic Generation 1
This type of session uses just one agent to generate network
traffic.

Traffic Analysis 1
This session type uses one agent to analyze the incoming

network traffic.

132

The following sections will explain in more detail the parameters specific to each session type.

For now, keep in mind that these three types exist and when you want to perform a measurement,

you have to choose one among them. How each section is created will be presented in the next

chapter that explains the user interface and some results that can by obtained using NMS.

After a session is created, you have to create a task based on that session in order to inform the

Session Manager that the session can be executed. This approach is also useful in having the

session created just once and then executed several times without the need of specifying the

session parameters again. Therefore, scheduling multiple sessions can be done by starting a

session now within a task, another in thirty minutes, and the third one in two hours, for example.

This is achieved only by creating different tasks based on same session and specifying the

previous start times.

Nevertheless, there might be situation in which you may want to run the same session several

times just by changing something to the original. To anticipate the discussion about the session

types, imagine that you create a traffic generating session in which you specify a packet rate of

100 packets per second. If for example, you want to analyze the network behavior for generating

traffic having the packet rate between 100 and 1000 packets per second in increments of 100

packets per seconds, the task scheduling does not help too much. Finally you will be constrained

of creating 10 session with 100, 200, 300 packets per second and so forth.

The management console features a way that could greatly reduce for you the headache in such a

situation. The solution is called session group and it is what its name says: a group of sessions.

However, it is not only a collection of groups, but also rather a set of measurement session and a

relationship between them. Two types of session groups exist – table 3.23 comes with them.

Table 3.23 Type of session groups

The first type of session group means that several sessions are represented by a single entity –

the group and within the group, the relationship between the sessions is the time. For the sessions

that were added the user interface enables to specify the start moment of the session with respect

to the beginning of the task, which at this moment is unknown. For each new added session, four

options allow you to determine the start moment, see next table.

Table 3.24 Options for selecting the start moment for a session a type I group

Traffic Generation and
Analysis

2

This type uses two agents, one for generation and one for

analysis the traffic generated by the first one. This type of
session is flow-based, meaning that only the traffic
generated by the first agent will be analyzed by the second
one.

Session Group Type Sessions Used Relationship

Group of Independent
Sessions

Multiple The relationship is based on time

Group of Parameter
Dependent Session

Single The relationship is based on a user-selected parameter

Startup Option Parameter Description

On Start No This session will start at the scheduled moment inside the
task. This moment is the reference moment for all the

133

 Notes

 The first session in the group is always set as on start and the startup option of that

session cannot be changed.

 The startup option can be defined for each session in the group.

The following figure illustrates how sessions are executed for a group of independent sessions.

Figure 3.43 Executing a group of independent sessions

The most used group type is, of course the second one, which allows using just a single session

and then to run that session multiple times by changing the value of a single parameter. The

parameters as well as the range and increment are selected by the user. Table 3.25 lists the

parameters that are available for selection (not all parameters may be available, depending on the

session type), and then figure 3.44 depicts how scheduled parameter dependent session groups

are executed.

session in the group of this type.

With Previous No
This session will start at the same instance with the previous
session in the group. The order of the session in the group is
the order of their addition in the group.

After Previous No

This session will start after the duration of the previous
session in the group elapses. Since a session might actually

last longer that their specified duration, means that the
previous session could not be finished until the next one
starts for this startup option.

Within
Number of
seconds

The user must specify a number of seconds in which the
current session will start from the moment of beginning of
the previous one.

Session Startup Duration

S1

S2

S3

On Start

After Previous

With Previous

Within 2 seconds

On Start

S4

S5

5 seconds

3 seconds

7 seconds

5 seconds

4 seconds

T
im

e
li
n
e

0

5

10

S1

S2 S3

S4

S5

134

Table 3.25 Parameters available for selection for a type II session group

 Notes

 For a group created with a specific session not all parameters may be available. Later

in this sub-chapter when the types of sessions will be presented, the available group

parameters will be specified.

 The parameter range used in the experiment is set by a start and an end plus a delta. It

is not necessary the start parameter is less than the end value, but in this case, the

values are accepted only if the delta is negative.

Suppose that you create a session group based on a parameter, let us choose the packet rate, for

example, with a range between 100 and 400 packets per second with an increment of 100 packets

per second. The next figure illustrates the group execution.

Figure 3.44 Executing a group of parameter dependent session

Parameter Range Description

Packet Rate 1 ÷ 4,294,967,296
This parameter means either frames per seconds, IP
datagrams per second or transport PDUs per second
depending on selected traffic

Packet Size

For Ethernet, IP:
64 ÷ MTU

For UDP: 1 ÷
65,536

This parameter specifies the used protocol header and
PDU size

Test Duration 1 ÷ 4,294,967,296
This is the duration of the measurement test, not of the
session which is longer due to the parameters negotiation

Protocol/Length

For Ethernet: 0 ÷
65,536

For IP: 0 ÷ 255

This is the value of the protocol/length field from
Ethernet/IEEE 802.3 or IP headers

Time-to-Live For IP: 0 ÷ 255 This is the value of the TTL field from IP header

Type-of-Service For IP: 0 ÷ 255 This is the value of the TOS field from IP header

Session Group

Session:

Parameter:

Start:

S1

Packet Rate

100

400

100

End:

Delta:

T
im

e
li
n
e

S1

S1

S1

S1

Packet Rate: 100 pps

Packet Rate: 200 pps

Packet Rate: 300 pps

Packet Rate: 400 pps

135

33..66..33 TTRRAAFFFFIICC GGEENNEERRAATTIIOONN SSEESSSSIIOONNSS

These types of sessions perform traffic generation. The first question should be what kind of

traffic is it generated? The answer is that the Network Measurement System features three

options for traffic generation, depending on the layer up to which the traffic is encapsulated:

 Ethernet/IEEE 802.3 or layer two traffic, meaning that raw frames are sent through

the network

 Internet Protocol version 4 (IPv4) or layer three traffic, in which case IPv4 packets

are sent through the network

 User Datagram Protocol (UDP) or layer four traffic, by using UDP over IPv4

Why are different types of traffic necessary? Well, because if you want, for example, to test the

link between two machines connected directly (they are within the same network segment) there

is no need of using a network layer protocol (IP in this case), unless you want to test the

performance of the IP implementation software from the operating system as well.

If at least one router separates the two machines involved in the test you must go with a layer

three protocol that supports routing, IP in this case. Finally, if the network load is made with

many different flows, in the way the destination could confuse the generated packets with other

packets, you may go for a transport layer protocol, in which the multiplexing mechanism ensured

by the UDP port number allows the destination application to filter the packets destined to it. The

table 3.26 contains the possible encapsulations available for traffic generation.

Table 3.26 Encapsulation options for traffic generation

The parameters for a traffic generation session are divided in two parts:

 Common parameters, that are used regardless of the session type

 Specific parameters that might be available or not depending on which session type is

selected

The following tables contain these parameters, starting with the common ones and then specific

for each session in part. There is also mentioned whether a parameter is editable or not (for

example parameters such as source addresses always exist but hey cannot be modified).

Table 3.27 Common parameters for generating sessions

Traffic Type Layer Description

Ethernet / IEEE 802.3 Data-link
Generates Ethernet / IEEE 802.3 depending on the value
from protocol/length field from the header

Internet Protocol version 4 Network Generates IPv4 datagrams

User Datagram Protocol Transport Generates UDP segments

Parameter Editable Description

Test Duration Yes
It expresses in seconds the duration of a measurement test
(not of a session).

Packet Distribution Yes
It selects the packet distribution used when packets are
generated. Three types of packet distributions are available:

136

For Ethernet/IEEE 802.3 traffic, the next parameters are added.

Table 3.28 Specific parameters used for Ethernet/IEEE 802.3 traffic

When using IPv4 instead of the parameters from table 3.28 the following are available.

Table 3.29 Specific parameters used for IPv4 traffic

Periodic distribution, in which the time spacing between the
packets is approximately constant and given by the
reciprocal of the packet rate

Poisson distribution, in which the time distance between
the packets follow the Poisson probability law

Link flooding, in which the packets are generated
respecting no distribution alone but sending them up to
the available capacity of the link

Packet Rate Yes
It is used in computing the packet spacing for the periodic
distribution, and this value is considered the average packet
rate in the case of Poisson distribution.

Poisson Distribution
Approximation

Yes

It is available only if the Poisson distribution has been selected,
and represents the method used in minimizing the error
between the used packet distribution and the Poisson packet
distribution. For more information on Poisson approximation,

methods consult the appropriate topic from [2].

Real-time Failure Policy Yes

It represents the action taken by the traffic generation software
from the agent in correcting the moment of packet
transmissions, when the packet distribution can no longer be
respected due to a system bottleneck or because the link
capacity has been reached.

Parameter Editable Description

Source Physical Address No
It represents the MAC address of the source (in this case of the
network interface card used on the transmitting agent).

Destination Physical
Address

Yes
It represents the MAC address of the NIC from the destination
host or it can be broadcast.

Frame Size Yes

It is the size of the Ethernet / IEEE 802.3 frame. It must be

larger than 64 bytes and it cannot exceed the value of the
maximum transmission unit.

Maximum Transmission
Unit

No
It is the maximum size of a frame, which could be transmitted
by the networking hardware.

Protocol/Length Yes
It represents the contents of the 16-bit protocol/type field from
the frame header.

Parameter Editable Description

Source IP Address No
It represents the IP address assigned to the network interface
where traffic is being generated. If an IP address is not
assigned the IP traffic generation option will not be available.

Destination IP Address Yes
It represents the IP address assigned to the NIC of the remote
host, where the packets are sent or it can be

broadcast/multicast.

137

For transport layer traffic, the options are in table 3.30.

Table 3.30 Specific parameters used for UDP traffic

When you begin creating a session, first the session type must be selected (i.e. generation,

analysis, or both) and then you have to choose the layer type on the case of traffic generation or

generation plus analysis. After which this information was provided the parameters specific to

each traffic type could be introduced. At the end, the common parameters should be provided

and afterwards the generation session setup is completed.

The results available when a traffic generation session is executed are:

 The number of packets that were sent from the beginning of the session

 The number of real time failures, i.e. for how many packets the time distribution

could not be respected due to insufficient link capacity or processing power

The next section will describe the second session type, for traffic analysis measurements.

Datagram Size Yes It is the size of the IPv4 datagram, header included.

Protocol Field Yes
It represents the value of the 8-bit protocol field from the IPv4

header.

Time-to-Live Yes
It represents the value of the 8-bit TTL field from the IPv4
header.

Type-of-Service Yes
It represents the value of the 8-bit TOS field from the IPv4
header.

Do Not Fragment No The do not fragment flag in the IPv4 header is always set.

Identification No
This field represents the identification number of the IP
fragment. Since the datagram cannot be fragmented, this value
cannot be modified and its value is undefined.

Parameter Editable Description

Source IP Address No
It represents the IP address assigned to the network interface
where traffic is being generated. If an IP address is not

assigned the IP traffic generation option will not be available.

Destination IP Address Yes
It represents the IP address assigned to the NIC of the remote
host, where the packets are sent or it can be
broadcast/multicast.

Source UDP Port Yes
It represents the value of the UDP port number within the

generated UDP segment.

Destination UDP Port Yes
It is the value of the destination port number within the UDP
segment.

Segment Size Yes It is the size of the UDP datagram, header included.

138

33..66..44 TTRRAAFFFFIICC AANNAALLYYSSIISS SSEESSSSIIOONNSS

These types of sessions are very simple in the sense they require less input data at the setup and

provide at least the same information as for traffic generation session. Traffic analysis sessions

are used to perform passive measurement, i.e. measuring the throughput of existing incoming

traffic in the network.

The background and implementation of the analysis methods will not be discussed here;

therefore, for a through description consult the appropriate topic in [2]. However, it should be

only mentioned that two types of analysis sessions exist:

 Traffic analysis sessions performed using regular Ethernet/IEEE 802.3 cards

 Traffic analysis sessions that used the Endace® DAG card

The parameters required by these analysis sessions are presented in table 3.31, and the result

available for both types of cards is always only the throughput.

Table 3.31 Parameters of traffic analysis sessions

Since incoming messages are captured and analyzed regardless of other parameters, no

additional parameters are required.

 Notes

 For traffic generation sessions the hardware supported is only the regular network

interface cards (Ethernet/IEEE 802.3)

33..66..55 TTRRAAFFFFIICC GGEENNEERRAATTIIOONN AANNDD AANNAALLYYSSIISS SSEESSSSIIOONNSS

These types of sessions are the most complex one, because they involve two agents working

together, one generating the traffic, the other capturing the traffic.

The session parameters that need to be provided are the parameters from the traffic generation

sessions and in addition, one may specify the results that should be available after the

measurement test is complete. These sessions support the three types of traffic generation

mentioned before, while the analysis can be done with either regular NICs or the Endace card.

However, for the user the selection of the card is very straightforward – both cards are selected

from the same list, and then the agent application cares in using the appropriate traffic capturing

software.

Two analysis methods are available when double generation and analysis sessions are used:

 A real-time analysis in which parameters are received in real time from both agents –

this implies a time domain description of the QoS parameters

 A dump analysis that saves the data on the hard drive and performs an offline analysis

upon it after the test is completed.

Parameter Editable Description

Test Duration Yes
It expresses in seconds the duration of a measurement test
(not of a session).

139

For the real-time method, the user may also specify whether the session is a simple one or an

advanced one, meaning that supplementary QoS traffic parameters are computed.

These results are available from a simple, real-time session:

 The transmitted number of packets from the beginning of the session

 The real time failure at the transmission

 The received number of packets from the beginning of the session

 The incoming throughput of the analyzed flow between two consecutive readings

 The average one-way delay

 The average packet delay variation

In addition, if advanced real-time session is specified the following results are available:

 The minimum and maximum of the one-way delay

 The minimum and maximum of the packet delay variation

 The number of out-of-order packets

Table 3.32 shows which of the parameters are available when either simple, advanced or offline

analysis method is selected.

Table 3.32 Availability of results with respect to selected analysis method

 Notes

 Between the two types of online analysis at least one is always performed. However,

when selecting a simple method of analysis not all parameters from table 3.32 are

computed, increasing the results accuracy since the agent software allocates the

processing resources towards the increasing of analysis precision.

 The offline analysis can be either selected or not. Using offline analysis permits the

computation of the rest of parameters when it is used in combination with a simple

online analysis.

Parameter Simple Online Advanced Online Offline

Average Throughput Yes Yes Yes

Received Number of Packets Yes Yes Yes

Average One-way Delay Yes Yes Yes

Minimum One-way Delay No Yes Yes

Maximum One-way Delay No Yes Yes

Average Packet Delay Variation Yes Yes Yes

Minimum Packet Delay Variation No Yes Yes

Maximum Packet Delay Variation No Yes Yes

Out-of-order Packets No Yes Yes

140

 The selection of parameters is available only at the receiving agent, i.e. the one that

captures and analyzes the active traffic. At the generating agent, the both parameters

(the number of transmitted packets and the number of real-time failures) are always

available. Note, that since data about the transmitted and received number of packets

is always collected in real-time from both agents, the management console can

compute parameters such as the packet loss and the packet loss ratio.

 Important

 Keep in mind that performing an offline analysis gives some processing slack to the

analyzing agent; it implies dumping information about each incoming packet on the

hard drive. When the incoming data rate exceeds the data rates of writing to the

magnetic medium (or other type storage), information about the packets will be lost

and error will occur in the processing of the information. Even the agent alerts the

user in such situations, the test is nevertheless compromised.

33..66..66 AANNAALLYYZZIINNGG TTRRAAFFFFIICC WWIITTHH EENNDDAACCEE CCAARRDDSS

From the management console point of view, the Endace DAG interface cards are not very

special. This is one of the reasons this project neither emphasize their features nor provides

additional information such as how these cards are used with the tools provided by the

manufacturer. In the first chapter, the example scenario was enough to understand the basics.

Of course, for the measurement agent using a regular NIC or a DAG means completely different

implementation, algorithms and data processing. But the role of the distributed architecture of

the Network Measurement System is to separate the functions that interact with the hardware,

generate packets, analyze flows and so on, by the management part that contains the intelligence

of gathering QoS results, putting them together and presenting them into an accessible manner to

the user.

The management console does not make any difference whether the agent measures the

throughput with the expensive DAG or with the cheapest NIC on the market. The difference lies

only in the quality of the result and obviously additional function at the agent. If you are

interested to find out more on the DAG card, how it is used and some details about the

implementation of the software that uses it, consult [2].

Nevertheless, for purposes of user interface response, the management console is aware to some

extent that a DAG is used. This is related to the fact that when using an Endace card the

following are true:

 The traffic generation option cannot be selected for an Endace DAG interface card

 The method of online analysis at the receiving agent is always advanced (i.e. when

capturing traffic with the DAG the minimum/maximum one-way delay, packet delay

variation and out-of-order packets are automatically computed).

 The control and return parameters used for the DAG are assigned a different set of

managed objects. Hence, the Session Manager will rely on different functions when

assembling messages that are sent to a DAG than when using a regular NIC.

Except these exceptions no knowledge of the fact that a QoS parameter was measured with a

DAG rather than an ordinary card is ever kept.

141

33..66..77 IIMMPPLLEEMMEENNTTIINNGG SSEESSSSIIOONNSS,, GGRROOUUPPSS AANNDD TTAASSKKSS

When the user schedules a command, the Session Manager must verify, at first, which is the

moment when the task must start. The task is based either on a session or on a session group by

keeping a reference to the already loaded sessions or groups. The reference is:

 If the task is based on session, it is the index of the session. The session index is the

session ID displayed by default in the first column of the management console.

 If the task is based on a session group and the group is made up of individual

sessions, it is the group ID. By accessing the group via the group ID, the task can

obtain the list of sessions and finally the properties of each test.

 If the task is based on a group of a parameter dependent session, the implementation

becomes more complex.

In the first two situations, the things are simple because no parameters of either session are

changed. Keep in mind that the session is the basic unit of a test, since the session keeps the data

according to which the experiment can be executed: used agents and interfaces, type of tests,

type of traffic, traffic parameters. The groups are merely a way of simplifying the way of doing

tests from the user point of view.

When the user schedules a group made up of parameter dependent session it means that the

session must change the parameter that was selected within the group and successively take the

values within the specified group range in increments or decrements of delta. However, the task

cannot modify directly the data within the session due to two reasons: if the data would be

modified, the original version of the session will be compromised and second, other tasks may be

using the same session.

Bottom line, tasks cannot modify either the sessions or the session groups. Instead, for situations

like the one of a parameter-dependent group, they must make a copy of the data they partially

intend to modify. The copy of the original session is used only by the task that created it, and

will not be available either in the session list, or to the other tasks. Because of this, this type of

session is called a virtual session. The following figures show how sessions are accessed by the

tasks.

Figure 3.45 Accessing sessions: task of single session

The figure 3.45 illustrates the situation of the single session task in which the properties of the

session are accessed directly, since they are not modifies. This is also the situation of a group

made up of independent sessions, because the properties of the sessions do not chance in that

case too. Figure 3.46 suggests that.

Session 1

Session 2

Session 3

Task

Type: single session

Session: Session 1

Direct access

142

Figure 3.46 Accessing sessions: task of independent sessions’ group

Figure 3.47 Accessing sessions: task of a parameter dependent session group

The last example expresses the idea already explained: when the data from a session needs to be

modified the tasks copies the whole session into a new one. However, because the new session is

not available to other tasks or to new groups, it is said to be virtual.

The Session Manager has several exportable functions, which other modules, like the user

interface can use to create sessions, groups and tasks. The headers of these functions are given

below, while the complete implementation can be found in appendix D.

Table 3.33 Functions of the Session Manager for managing sessions

Function Name Description

Create Session

It is used to create a new session. The parameter is a pointer to a session

record that contains the session information. The definition of the session record
is specified in appendix D. After this function is executed, the session will be
automatically added to the session list in the console interface.

Save Session It is used to save the selected session from the user interface to a file.

Load Session
It is used to load a session from file. After this function is executed is
automatically added to the session list, in the user interface.

Get Session Count It is used to return the number of existing sessions.

Get Session
It returns the data of a session as a session record, when given the index of a
session. The index must be lower than the current number of sessions.

Session 1

Session 2

Session 3

Task

Type: type I session group

Session: Group 1

Direct access

Group 1

Session 1

Session 2

Session 3

Start at 1

Start at 2

Start at 3

1

2

3

Session 1

Session 2

Task

Type: type II session group

Session: Group 2

Direct access

Group 2

Session:

Start:

End:

Session 3

500

100

Delta: 250
Session 3

Session 3

 Copy the data of the original
session into a virtual session

void CreateSession(LPSESSIONRECORD lpRecord);

void SaveSession(LPVOID hwndMainWnd, LPVOID lpSelected);

void LoadSession(LPVOID hwndMainWnd);

WORD GetSessionCount(void);

SESSIONRECORD GetSession(WORD wIndex);

143

Table 3.34 Functions of the Session Manager for managing session groups

Table 3.35 Functions of the Session Manager for managing scheduled tasks

In addition to the functions above, functions providing the following services are also available:

 Obtaining the status of a service or service group, which could be: not scheduled or

scheduled, in the last situation the task ID to which the session/session group is

assigned can be obtained as well

 Deleting a scheduled task, prior to its start

 Caution

 The management console allows you to delete a task as long as it is not started. After

deletion, the task will be marked as deleted but will not be removed from the task list.

Nevertheless, neither you can delete a task after it started nor you can stop it. In the

situation, an unwanted scheduled task started, and you want to cancel it from some

reason without closing the management console, you should stop the management

services in the Services view.

Function Name Description

Create Session Group
It is used to create a new session group. The parameters of the group, such as
the type and component sessions, are specified in the session group parameter.
The structure of the session group type are specified in appendix D.

Get Session Group
Count

It returns the number of existing sessions.

Get Session Group

It is used to obtain the parameters of the session group, given the group index

parameter. The index must be lower than the maximum number of session
groups.

Function Name Description

Create Scheduled Task

It is used to create a new scheduled task. The parameters of the task, such as
the type and reference to the session or session group, are specified in the task
record parameter. The structure of the task record type are specified in the
source code from appendix D.

Get Scheduled Task
Count

It returns the number of existing scheduled tasks. This number includes the
tasks that were executed in the past and are now in finished state.

Get Scheduled Task
It is used to obtain the parameters of a scheduled task, given the task index
parameter. The index must be lower than the maximum number of scheduled
tasks.

void CreateSessionGroup(LPSESSIONGROUP lpGroup);

WORD GetSessionGroupCount(void);

SESSIONGROUP GetSessionGroup(WORD wCnt);

void CreateScheduledTask(LPTASKRECORD lpTask);

WORD GetScheduledTaskCount(void);

TASKRECORD GetScheduledTask(WORD wCnt);

144

33..66..88 IIMMPPLLEEMMEENNTTIINNGG TTHHEE SSEESSSSIIOONN MMAANNAAGGEERR

The goal of the implementation of the Session Manager is to execute scheduled tasks. The

Session Manager does not feature its own execution flow in order to run; rather is based on

another service: the management service. The reason for this is that by comparison with other

services, the Session Manager has always the execution initiative – this is the software

component that handles all the measurement.

Because the Session Manager is most of the time user interactive, it does not require a fined-

grained temporal flow in the multitasking environment. Instead, it suffices to execute the

required code from time to time and then using the processing power for other objectives rather

than keeping a single thread in idle.

The Session Manager has a single function that must be executed periodically in the context of

other services that implements stand-alone threads. For the management console, this is the

management service. This approach has to implications, which are neither bad:

 When the management service is stopped or pause the Session Manager is also

stopped or paused. This condition is nevertheless necessary since if one endpoint of

the queuing service is stopped (the management service) the other one – the Session

Manager – could not be up and sending messages to the queue. This is also available

in the reverse way.

 Second, because the job of the Session Manger is done on behalf of processing time

of another service, it must execute at large intervals, in such a way the host thread

(and service) is not affected. The Session Manager is intended to create management

messages whenever the user gives a command and during a task is run: to collect real

time data from the agents. Since neither collecting data from the agents nor user

commands must be executed within milliseconds, running the Session Manager

allows for a much coarse time spreading.

 Notes

 You should remember that the queuing service featured also several maintenance

functions that were executed within the main context of the management service, thus

underlining the approach that when the management service is stopped (or paused)

the entire management data halts.

The function used to take control from the main service thread of the management service is

given below:

This function is executed by the main service thread of the management service at every cycle, in

order to yield control for a brief moment to the Session Manager. Because the cycle duration of a

control thread of the management service is too small (10 milliseconds, by default) and because

the Session Manager does dot require such fined-grained execution, only once at a given number

of cycles will the schedule task function do its job; otherwise will just exit.

The session tasks are scheduled with second accuracy. In addition, it is believed that for running

measurement tests no higher real time resolution than one second is necessary, for the following

reasons:

 In order not to flood the network with management messages, especially when the

number of tasks is very large

void ScheduleTask(void);

145

 The update of the real time data computed by the measurement agent, is done most

frequently once at every second; hence, requesting data often that a second interval

would yield the same information

 Computing and transmitting real time information often than once per second implies

higher processing load, for the agent, decreased performance and poor accuracy

 The retransmission interval for an acknowledgeable management message is one

second by default

 Notes

 The agent documentation [2] shows that the implementation of the agent supports the

computation of real time QoS parameters at a much higher rate that once per second.

The decision not to use this feature was to prevent the performance degradation on

one hand and to synchronize with the retransmission mechanism.

When the management requests for online data it sends a request message and waits for a reply.

The request messages are acknowledgeable. Final argument, since the Session Manager will not

send the next packet until an answer for the first one is received and because at least one second

is waited by default to receive an answer, there is no need of even trying in sending request

messages more often.

However, because the cycle of the service control thread is much less than a second, implies the

schedule task function is executed at a much higher rate. Some algorithm is required to prevent

the function doing its main job unless more than a second elapsed from the last time. The

algorithm is presented in figure 3.48 along with the presentation of the portion of the

management service that releases control for a small period to the Session Manager.

Figure 3.48 Scheduling task timing and control

Now let us pass to the code, which implements the main objectives of the Session Manager: to

execute session or session groups tasks. The first aspect to be considered comes from the name

of what the Session Manager is executing scheduled tasks. Because the tasks are scheduled,

means that the user might setup a task right now, but will be executed tomorrow. Each task can

be scheduled to a specific moment in time, either in the past, present or future.

No

Is current second different
from last time?

Yes

P
o

r
ti

o
n

 o
f

M
a
n

a
g

e
m

e
n

t
S

e
r
v
ic

e

Start

Schedule Task Get Current Second

Run Tasks

Continue

Begin

End

S
e
s
s
io

n
 M

a
n

a
g

e
r

146

The timestamp identifies when a task should start executing. It is kept in the task record along

with the task type (of session or session group), session or group reference, reference to a virtual

session if the group is of type II, and some other parameters among which one is the task status

that is to be discussed in a few moments. The timestamp is expressed in multiples of seconds

(actually, it is the time in Epoch format – the number of seconds that passed since January 1,

1970, 00:00:00 hours), this being one of the reasons why the session manager should not execute

more often than one second, at least from the starting tasks point of view.

Another parameter of a scheduled task is its status. Three status values have been defined and are

presented in table 3.38. The status tells the Session Manager in which condition the task is,

whether it should start it by performing some initialization (remember that before a measurement

test is started some negotiation with the agents is required), to run it or ignore it.

Table 3.36 Scheduled tasks status values

Once at each second the scheduling task function runs the task, i.e. in the figure 3.48 the

execution flow goes through the left branch of the conditional block. In the run task procedure,

each existing task is checked for its status. If the task is in pending status, the Session Manager

checks its start time against the local time of the system. The task is started when the local time

is greater or at least equal with the startup time of the task. Otherwise, the task is ignored for

now.

For tasks in the running condition, the Session Manager runs each task, by calling a running

procedure. This procedure will be analyzed a little later (it receives the task identifier, collects

information about the task, checks the last execution point and runs the next associated function).

At this point, the Session Manger makes a difference between single session tasks and session

groups meaning the two different types of tasks receive different processing. To understand

better the explanations, follow the algorithm diagram from figure 3.49.

If you look at the figure, the major difference, in addition of being completely different

procedures for session and for session groups is that the running task procedure must check the

error condition for session based tasks. If an error occurs for such a task, the task automatically

receives the finished status and it will no longer be executed.

In the case of group based task, the group running procedure that at its turn dispatches the

execution to the component session verifies for each session that an error occurred. In that case,

the decision is made not only to cancel the session but also the entire group.

Status Name Value Session Manager Action

Pending 0

At each execution cycle the Session Manager checks to see whether the start

time of the task is less or equal with the current time. If so, the task is started
and its status set to running.

Running 1
The task initialization already occurred, at each cycle the Session Manager
performs a task specific operation. The tasks keep an identification of their
execution flow, and the Session Manager use this information to execute them.

Finished 2
After a task is finished, wither normally or with an error, thy pass to finished

state. The Session Manager ignores any tasks that are in finished state.

Deleted 3
The user can delete a task while it still is in the pending state. When the task
is deleted, it is not removed from the task list, but it is set to the deleted
state. The Session Manager ignores any tasks that are in deleted state.

147

Figure 3.49 The run task procedure of the management service

33..66..88..11 SSTTAARRTTIINNGG TTHHEE SSEESSSSIIOONN BBAASSEEDD TTAASSKKSS

The role of the start session functions is to set the scheduled task to running state and to begin

the negotiations with the agents involved in performing the measurement. The function

implementing this is:

The function receives the task identifier, this being enough in order to have access to all task

related data, including session information. The first thing is to collect the session parameters by

requesting the session record (the session identifier is provided, since it is available with the task

information). After the session information is collected, the session starting function can send the

first messages to the involved agent or agents.

The golden rule here, which makes the distinction, is the session type. Depending on whether

there is a generation, analysis or combined session, the function sends a negotiation message to

one or both of them. If the session either is of analysis or combined, the distinction is also made

No

Were all tasks processed?
Yes

Start

Start Session

Is Pending
Status?

Stop

Type of Task

Session Group Session

Yes

Is Startup Time Less or Equal
than Local Time?

Yes

No

Is Running
Status?

Yes

Run Session

No

Is Error?

Stop Task

No

Start Group

Yes

Is Startup Time Less or
Equal than Local Time?

Yes

No

No

Is Pending
Status?

Is Running
Status?

Yes

No

Run Group
No Yes

void StartSingleSession(WORD wTaskId);

148

according the used hardware: a regular network interface card or the DAG card. This is

necessary, since for the DAG other managed objects are used for session parameters compared to

sessions that use ordinary NICs.

At the end of the start session function, if no error occurred, the status of the task is set to

running. The next figure contains the graphical representation of the execution flow.

Figure 3.50 The start session algorithm

Yes

Start

Stop

Type of Interface

Endace DAG Regular NIC

No

Collect Session Information

Set Status to Running

Is Generation Session?

Create Flow ID

Sent Negotiation Management Message

Set Wait for Reply Timer

Yes

No
Is Analysis Session?

Create Flow ID

Sent Negotiation
Management Message

Set Wait for Reply Timer

Create Flow ID

Sent Negotiation
Management Message

Set Wait for Reply Timer

Type of Interface

Endace DAG Regular NIC

Yes

No
Is Generation and Analysis Session?

Create Flow ID

Sent Negotiation
Management Message

Set Wait for Reply Timer

Create Flow ID

Sent Negotiation
Management Message

Set Wait for Reply Timer

Initialize Flow Step

149

The most interesting aspect of running the sessions by the Session Manager is the way in which

each task keeps its execution flow. The simplest analogy to understand it is the one of the state

machine. Each task keeps an execution or flow step, which is initialized when the task is started.

Later when the session running procedures comes, it knows according to the flow step which

part of the session must be executed.

Each step of execution comes with some specific operations that must be performed. Depending

on the results of those operations, the decision is taken to remain at the same step, i.e. the next

time the procedure runs the same operation are undertaken, or to move on to another.

In the case of the start procedure, it initializes the flow step; usually the value zero is used to

represent the task flow initialization. Because the status is set to running, at the next second the

running task procedure takes its turn. Look at the figure 3.49 that illustrates how a task is

executed. The running procedure knows that according to the flow step, that only negotiation of

the session has been performed (meaning management messages have been sent to agents) and

the corresponding action is to wait for the replies.

The management messages that are sent to the agents are specific for each type of operation. In

the figure 3.50, different messages are used for different session types and even for different

hardware. These functions are available in a library called SNMP wrapper, since it performs the

top-level function in handling SNMP data: it receives session data, such as information about

agents, measurement parameters and converts them into an appropriate SNMP message structure

that will be sent to one of the queues of the queuing service. More details about the SNMP

wrapper are found later in this document.

33..66..88..22 RRUUNNNNIINNGG TTHHEE SSEESSSSIIOONN BBAASSEEDD TTAASSKKSS

The purpose of this topic is to explain the principles that stand at the basis of executing simple

measurement tasks, and by extension, of the sessions and virtual sessions for the group based

scheduled tasks.

Running a task means that for each task in the running state the Session Manager should execute

the following function:

As in the previous situation, the function receives the task identifier, which is enough in order to

obtain all other information. Along with the task identifier comes the possibility of getting the

task information, including the session identifier (to know the session data), and the task flow

step.

What the running session function does is very simple:

 First, it gathers information about the session to see the session type and the hardware

used by the agents. Remember that a session could be either of traffic generation,

analysis or both involving one or two agents, while the hardware is important since

different managed objects are used for the Endace DAG card than for regular

Ethernet/IEEE 802.3 cards. The running session function relies on the same SNMP

wrapper to generate SNMP information, and involves using different wrapping

functions – that make the implementation easier. Different function for different

session types and different hardware means to know which type and hardware is in

use.

void RunSingleSession(WORD wTaskId);

150

 Next, according to the previous parameters the execution jumps to the code section

that involves only the current session. If, for example the current session is a session

of traffic analysis using the DAG, the session running function, after determining

these parameters, is focused only on executing the pieces of program dedicated to that

scenario.

 Notes

 The Session Manager uses a series of codes for describing each type of session. There

are seven codes in total describing five possible session scenarios. Each scenario is

implemented separately on both the start and running function. In figure 3.50, you can

identify each scenario by looking at the bolded text, which means different

negotiation management message for each of the five.

 Table 3.37 contains a description of each session type mapped to each session

scenario.

Table 3.37 Mapping session types and hardware to session scenarios

After the determination of the session scenario, the program checks the flow step of the task.

According to the numeric value of this parameter, the execution jumps to a particular sub-

procedure that is executed. During this procedure, the decision is also taken if at the next

moment the step remains the same, it is changed, or even the task is finished.

It is not the intention of this document to explain the execution flow for each session scenario.

You must understand only the principle of execution, since the only difference between the

scenarios is only that at the same step indexes other operations are performed, operations that

imply:

 Creating management messages using the SNMP wrapper (the messages are

automatically added to the outbound queue)

 Testing the inbound queue for replies

 Retrieving the replies from the inbound queue

 Using the SNMP wrapper to extract QoS data from the SNMP variables

Session Type Code Hardware Used Session Scenario

Generating Layer 2 (Ethernet) 0 Regular NIC

Traffic Generation Generating Layer 3 (IP) 1 Regular NIC

Generating Layer 4 (UDP) 2 Regular NIC

Analysis 3

Regular NIC Traffic Analysis using Ethernet

Endace DAG Traffic Analysis using DAG

Generating and Analysis Layer 2 4
Regular NIC

Traffic Generation and Analysis using
Ethernet

Generating and Analysis Layer 3 5

Endace DAG
Traffic Generation and Analysis using
DAG Generating and Analysis Layer 4 6

151

 Using the Session Manager functions that handle result processing, store the QoS data

and make it available for the user

 Notes

 In accordance with the requirements of the queuing service the inbound testing of the

queue and the extractions of the message from the queue; both operations must be

performed at once, if the queue test yields true. Remember from the chapter

describing the queuing service that queuing operations are locked between the testing

of the inbound queue and reading the message. Check the topic on implementing the

queuing service from the sub-chapter about the queuing service.

 The Session Manager uses flow-based filtering of the inbound queue in order to seek

for agent replies. This is necessary, because when having multiple sessions running,

need to ensure that each session gets only the messages that are addressed to it. The

flow number is generated when the session is created (see figure 3.50) and it is unique

per management console. The algorithm of generation the flow number is given

below. In addition to the flow ID, the following variables are used to filter the

inbound queue: the agent’s IP address, the agent’s port and the message type.

The flow identifier is a unique number that is used to refer to a measurement session. In the

communication between the management console and the measurement agent, this number

ensures that messages can be identified at the destination, when messages for multiple

measurements have been received. At the agent software, the same flow identifier is also used

when generating and analyzing traffic by stamping the packets with this value at a specific offset

inside the packet. Therefore, if one agent generates the traffic, it puts the flow ID inside the

packets (along with other information) and at the destination of the generated traffic, the

analyzing agent can distinguish between all received packets.

The flow ID is a 16-bit number meaning that at one moment the management console may have

up to 65536 running tasks. There are two situations in computing the flow ID:

 When there is only one agent involved in the session

 When there are two agents used

The following parameters are used in computing the flow ID:

 The IP address of traffic-generation agent (if it is the case)

 The IP address of traffic-analysis agent (if it is the case)

 An incremental number managed by the Session Manager

Figure 3.51 Computing the flow ID with only one agent

Byte 3 Byte 2 Byte 1 Byte 0

Agent IP Address

Counter

Incremental Flow Number

Byte 3

Byte 2

Byte 1

Byte 0

XOR

XOR

XOR

Result Counter

Flow ID

MSB LSB

152

Figure 3.52 Computing the flow ID with two agents

The next figure illustrates the algorithms inside the running session procedure, while the second

figures exemplifies for an imaginary situation.

Figure 3.53 Execution algorithms inside the running session procedure

Byte 3 Byte 2 Byte 1 Byte 0

Generating Agent IP Address

Counter

Incremental Flow Number

Byte 3

Byte 2

Byte 1

Byte 0

XOR

XOR

XOR

Result Counter

Flow ID

MSB LSB

Byte 3 Byte 2 Byte 1 Byte 0

Analyzing Agent IP Address

No

Collect Session Information

Yes

Start

Is Session Scenario 1?

Run Session Scenario 1

No

Yes

Is Session Scenario 2?

Run Session Scenario 2

No

Yes

Is Session Scenario 3?

Run Session Scenario 3

No

Yes

Is Session Scenario 4?

Run Session Scenario 4

No

Yes

Is Session Scenario 5?

Run Session Scenario 5

Stop

Start Scenario 1

No

Yes

Is Flow Step 0?

Run Session Step 0

No

Yes

Is Flow Step 1?

Run Session Step 1

No

Yes

Is Flow Step N?

Run Session Step N

Stop Scenario 1

153

In figure 3.53, the execution algorithm is exemplified only for the first scenario. However, you

may see that diagram presented is a general one and does not contain session specific blocks. In

figure 3.54, there is an example for a traffic generating session. However, the diagram from this

drawing does not depict the implementation algorithm but the execution flow. The flow is split

up in several cycles, where each cycle is processed at every second.

Figure 3.54 Execution flow for a single session task – traffic generating session

The above figure is an easy example in order to understand what is happening:

 At start, the session starts procedure starts, by sending a negotiation message to the

agent. The road of message has been explained, the procedure calls for a function

from the SNMP wrapper library that determines the value for the SNMP fields and

puts the message to the queue. The message is handled by the queuing service from

now on; it will be transmitted by the management service and eventually it should

reach the agent. When this step is completed, the flow step (or index) is initialized.

 At the first step in the running procedure, the algorithm will test to see either a reply

was received. If no reply was received, the step will not be changed, and after a

second, the same thing will be executed. A counter, which is not shown in the figure,

will prevent the Session Manager of looping indefinitely with a given task, if a reply

is not received. When a message is sent to the agent, the counter is reset and

decremented at each execution of the running routine, i.e. every second. When the

timer reaches zero, means the remote agent did not respond and the session is usually

aborted.

 Assuming that a reply is finally received the results are being processed, in our

situation it will be checked whether the agent responded in favor of session

negotiation. If yes, means that on the agent, the traffic generation already started and

the management console could request for results: a new management is sent to the

T
im

e
li
n
e

Start Session

Send Negotiation to Agent Set Flow Index to 0

X 0

Start Flow Index End Flow Index

Run Session

Test Inbound Queue Reply Not Received

0 0

Run Session

Test Inbound Queue Reply Received

0 1

Send Results Request Set Flow Index to 1

Run Session

Test Inbound Queue Reply Not Received

1 1

Run Session

Test Inbound Queue Reply Received

1 2

Set Flow Index to 2

154

agent requesting real time data. The execution step is changed to one, because next

time, the Session Manager expects for a reply to a data request rather than a

negotiation request.

 At step one, the same verification on inbound messages is performed. If no messages

are received this cycle, the flow step is not changed until either a reply is received or

the timeout counter (that is decremented at each second) reaches zero.

 When a reply is received, the data will follow another processing path, because it is

no longer a negotiation reply but rather a set of measurement results.

 The figure diagram stops at this point, but the next a new request message should be

sent to the agent requesting newer results. After the new request is sent, the execution

step should change back to one, since this is the step in which the Session Manager

expects to receive results.

It is obvious now, the behavior of the task execution flow within the Session Manager is very

similar to a state machine, where at each step, based on the received messages, and the decision

is taken whether to stay at the same step, to move forward or to go back.

33..66..88..33 SSTTAARRTTIINNGG AANNDD RRUUNNNNIINNGG SSEESSSSIIOONN GGRROOUUPPSS

Handling session groups is not very different in starting and executing simple session. The

difference consists in an intermediary additional step required between the task scheduling and

the execution of a specific session.

The following list contains similarities with the execution mode of the simple session tasks:

 When a session group either is started or executed, the task ID is passed as parameter.

This allows the determination of the parameters of the task, including the group ID. If

the group ID is known, the list of the sessions that make up the group is also available

right away.

 For each executed session, the flow of execution and the algorithms used are identical

with the single session case. Remember that the last two topics were referred to

sessions alone. There was no connection with tasks; each function received only the

task ID in order to determine easily the session parameters. For the session group start

and running functions, the mechanism is the same; however, the session information

is no longer passed as a flow ID from which the session is determined but is rather

available as a pointer to a virtual session, where the virtual session is prepared in

advanced.

Regarding the differences between running sessions and session groups:

 The first difference is related to the virtual sessions. When a simple session is started,

the start procedure usually executes the first step of the state machine algorithm of the

measurement session. The session data was available directly via the task ID and the

corresponding session ID. However, in the case of groups is no longer the case,

because for each group you can have a list of sessions or a single session with a list of

parameters. To minimize the implementation differences as much as possible with

respect of the single-session approach, the Session Manager creates a set of virtual

sessions for each session group.

 The idea of virtual sessions is that each session is independently treated and executed.

There are start and running procedures for virtual sessions similar to the ones for

single sessions. Their content is astonishing alike. Furthermore, in the situation you

155

have parameter dependent sessions, each new session is a copy of the original in

which the parameter has already been changed. In this way, the execution of each

virtual session is done like for single session. The procedures do not know and care

that the sessions they are executing are part of a group.

 In the start procedure of a group, the virtual sessions are created: a list of virtual

sessions or a single virtual session, depending on the group type. In the latter case, the

selected parameter is changed to the start value from the group.

 In the running procedure of the group the following actions are performed: verify if

not all the sessions from the group are in the stopped state, in which case stop also the

group. For type parameter dependent groups, there is only one virtual session and the

group stop condition is the parameter reached its end value. Also, in the case of these

groups, if the group is not stopped but the virtual session is, perform an update on the

session parameter, by adding the delta value to it.

These are the functions used to run session groups and virtual sessions. You can find their

implementation in appendix D.

33..66..99 TTHHEE SSNNMMPP WWRRAAPPPPEERR

The SNMP wrapper is a collection of functions that perform the mapping between a call of a

specific function and a management messages. Its role is to provide the Session Manager the

functions required to send each management message. In this way to the Session Manager,

sending a message is as simple as calling a function, while the SNMP wrapper creates the

required SNMP data and places it into the message queue.

The work performed by the SNMP wrapper is of two types:

 Receiving through a function call the parameters of a management command, and the

wrapper created the SNMP data o put it in the queue.

 The wrapper receives SNMP data as arguments, for data read directly from the queue

by the Session Manager, and is required to return a specific value from that data.

The most difficult part in handling mapping between program variables and SNMP values is

related to the creation and reading of managed objects. In addition to the community name, PDU

type, request ID, error status and error index, SNMP features only the filed containing managed

objects that could carry management information. Therefore, the parameters of every control

message and any QoS result must have a managed object correspondent according to the SMI

rules.

The Network Measurement System implements a set of managed objects specific for NMS

measurements. For the current implementation the set of objects are descendants of the

experimental class. The path from the MIB root to the experimental class is given in figure 3.3.

The experimental class has bee divided into four classes, depicted in figure 3.55. Each class

contains either objects or subclasses for different operations. In table 3.38, you may find each

class along with a short description and the equivalent OID of the class.

void StartSessionGroup(WORD wTaskId);

void RunSessionGroup(WORD wTaskId);

void StartVirtualSession(LPTASKRECORD lpTaskRecord, WORD wTaskId);

void RunVirtualSession(LPTASKRECORD lpTaskRecord, WORD wTaskId);

156

 Notes

 The class OID cannot be used within the management messages.

Figure 3.55 MIB classes implemented by NMS management

Table 3.38 Root MIB classes of NMS management

33..66..99..11 TTHHEE CCOONNNNEECCTTIIOONN CCLLAASSSS

The Connection class is used to implement the Identification Protocol. This protocol is not a

networking protocol, but rather an agreement method between a NMS agent and the

management console.

The SNMP relies on UDP and is connectionless, meaning no connection is established prior of

management data transmission, through some negotiation messages. However, in the case of the

Network Measurement System, both the management and the console require prior knowledge of

each other before the exchange of management information related to measurements begins.

Table 3.39 Managed objects in connection class

Class Name OID Description

Connection 1.3.6.1.3.1
This class contains objects used in connection negotiations
between NMS entities, either managers or agents

System 1.3.6.1.3.2
This class contains objects used in for system parameters
such as name, network interfaces

Traffic 1.3.6.1.3.3
This class contains objects used in traffic generating and
analysis sessions

Advanced 1.3.6.1.3.4
This class contains objects used in advanced traffic analysis
sessions

Object Name OID Description

SNMP AGENT IDENTIFICATION 1.3.6.1.3.1.1

It is used to identify the agent software. When
the agent receives a SNMP message having
this object with value null, it replies with value
0x0F0F0F0F (using the same object). NMS
software, which is not a measurement agent
replies with another value.

SNMP MANAGER IDENTIFICATION 1.3.6.1.3.1.2

It is used to identify the manager software.

When the agent receives a SNMP message
having this object with value null, it replies
with value 0x0F0F0F0F (using the same
object). NMS software, which is not a
management console replies with another
value.

connection = 1 system = 2 traffic = 3 advanced = 4

experimental = 3

157

This is implementing using also SNMP but having as ―payload‖ several special managed objects.

These are the objects from the connection class. They are described in table 3.39.

 Notes

 When the agent receives the agent identification object, a dual trust relationship is set

up between the management console and the measurement agent. In this way, further

management messages are automatically accepted without the need of additional

connectivity negotiation. This process is called registration.

 The registration can be cancelled by sending a message with agent dismiss object

with the value 0x0F0F0F0F.

33..66..99..22 TTHHEE SSYYSSTTEEMM CCLLAASSSS

The system class is used to exchange descriptive information between the NMS entities, either

managers or agents. This class contains objects for either software and hardware settings such as

the NMS entity name, description, contact, networking data (number of network interfaces,

vendor, name, IP configuration).

The table 3.40 contains the objects from this class and a brief description of each of them.

Table 3.40 Managed objects in the system class

 Notes

 The first four objects from this class refer to administrative properties of the NMS

entity. These properties are specific to both agents and managers and are set by the

network administrator or by the supervising user, hence the description of

administrative.

The system interfaces class contains two descendants, given in table 3.41. One of the objects

from this class, namely interfaces table is also a class containing objects for generic network

interfaces. The objects from the interafaces table class are given in table 3.42.

SNMP AGENT DISMISS 1.3.6.1.3.1.3
It is used to inform the agent that it is no
longer used by the management console.

Object Name OID Description

SNMP SYSTEM NAME 1.3.6.1.3.2.1
It returns the administrative name of the NMS
entity.

SNMP SYSTEM DESCRIPTION 1.3.6.1.3.2.2
It returns the administrative description of the
NMS entity.

SNMP SYSTEM LOCATION 1.3.6.1.3.2.3
It returns the administrative location of the
NMS entity.

SNMP SYSTEM CONTACT 1.3.6.1.3.2.4
It returns the administrative contact of the
NMS entity.

SNMP SYSTEM INTERFACES 1.3.6.1.3.2.5
It is class containing managed objects for
network interface properties.

158

Table 3.41 Managed objects in interafaces class

Table 3.42 Managed objects in if table class

 Notes

 In order to access the information about a specific network interface when more than

one is available on a given system one should first set the index of the chosen

interface in the if index object and then perform a get operation on the other objects.

 The interface index value must be less that the interface count parameter

(1.3.6.1.3.2.5.1)

Object Name OID Description

SNMP SYSTEM IF COUNT 1.3.6.1.3.2.5.1
It contains the number of network interfaces
available on the system.

SNMP SYSTEM IF TABLE 1.3.6.1.3.2.5.2
It is a class containing objects for each
network interface in the system

Object Name OID Description

SNMP SYSTEM IF INDEX 1.3.6.1.3.2.5.2.1

It is a number set by the remote peer, which

indicates the interface data that is available in
the other objects.

SNMP SYSTEM IF NAME 1.3.6.1.3.2.5.2.2
It contains the name of the selected network
interface.

SNMP SYSTEM IF VENDOR 1.3.6.1.3.2.5.2.3
It contains the name of the manufacturer of

the selected network interface.

SNMP SYSTEM IF SYSID 1.3.6.1.3.2.5.2.4
It contains the name of the interface from the
operating system reference (e.g. eth0)

SNMP SYSTEM IF PHYSADDR 1.3.6.1.3.2.5.2.5
It contains an octet string value with the
physical (or MAC) address of the selected
network interface

SNMP SYSTEM IF MTU 1.3.6.1.3.2.5.2.6
It contains a numeric value, which is the
maximum transmission unit of the selected
network interface

SNMP SYSTEM IF CLASS 1.3.6.1.3.2.5.2.7
It contains the name of the type of network
interface (either Ethernet controller or
network controller)

SNMP SYSTEM IF IPADDR 1.3.6.1.3.2.5.2.8
It contains the IPv4 address assigned to the
selected network interface

SNMP SYSTEM IF IPMASK 1.3.6.1.3.2.5.2.9
It contains the Ipv4 subnet mask assigned to
the selected network interface

SNMP SYSTEM IF ASSGN 1.3.6.1.3.2.5.2.10

It contains a number representing the
interface assigned roles:

Interface used for management (0)

Interface used for traffic generation (1)

Interface used for traffic analysis (2)

159

33..66..99..33 TTHHEE TTRRAAFFFFIICC CCLLAASSSS

The traffic class contains the bulk of objects used for QoS measurements. It has 35 managed

objects for operation setup, control and QoS parameters. The table 3.43 listing contains these

objects and a brief description of each of them.

Table 3.43 Managed objects in the traffic class

Object Name OID Description

SNMP TRAFFIC OPERATION 1.3.6.1.3.3.1

It is used to specify the measurement
operation:

Traffic generation (0)

Traffic analysis (1)

SNMP TRAFFIC PROTOCOL 1.3.6.1.3.3.2

It is used to specify the protocol used for
traffic generation and analysis in the case of
double sessions:

Ethernet II/IEEE 802.3 (0)

IPv4 (1)

UDP (2)

SNMP TRAFFIC TX PHYSADDR 1.3.6.1.3.3.3
It is used to specify the source MAC in case of
Ethernet traffic generation

SNMP TRAFFIC RX PHYSADDR 1.3.6.1.3.3.4
It is used to specify the destination MAC in

case of Ethernet traffic generation

SNMP TRAFFIC TX IP 1.3.6.1.3.3.5
It is used to specify the source IP address in
case of IPv4 or UDP traffic generation

SNMP TRAFFIC RX IP 1.3.6.1.3.3.6
It is used to specify the destination IP address
in case of IPv4 or UDP traffic generation

SNMP TRAFFIC TX UDP 1.3.6.1.3.3.7
It is used to specify the source UDP port in
case of UDP traffic generation

SNMP TRAFFIC RX UDP 1.3.6.1.3.3.8
It is used to specify the destination UDP port
in case of UDP traffic generation

SNMP TRAFFIC RATE 1.3.6.1.3.3.9

It is used to specify the traffic rate:

Frame rate for Ethernet II/IEEE 802.3

Datagram rate for IPv4

Segment rate for UDP

SNMP TRAFFIC PACKET SIZE 1.3.6.1.3.3.10

It specifies the packet size:

Frame size for Ethernet II/IEEE 802.3

Datagram size for IPv4

Segment size for UDP

SNMP TRAFFIC DISTRIBUTION 1.3.6.1.3.3.11

It specifies the generated traffic distribution:

Periodic (0)

Poisson distributed (1)

Link flooding (2)

160

SNMP TRAFFIC POISSON STEP 1.3.6.1.3.3.12

It specifies the value used for approximation

of traffic distribution when using Poisson: it
can be one percent of the mean value, square
root of the mean or other value (see note
below)

SNMP TRAFFIC TEST DURATION 1.3.6.1.3.3.13 It specifies the test duration in seconds

SNMP TRAFFIC FLOW ID 1.3.6.1.3.3.14 It specifies the session flow ID

SNMP TRAFFIC RT CORRECTION 1.3.6.1.3.3.15

It specifies the method of correction applied in
case of real time failure:

Increase test length (0)

Increase packet density (1)

SNMP TRAFFIC PROT FIELD 1.3.6.1.3.3.16
It is the value of the protocol field (applies
only for Ethernet and IP traffic)

SNMP TRAFFIC IP TTL 1.3.6.1.3.3.17
It is the value of the TTL field (applies only for
IP traffic)

SNMP TRAFFIC IP TOS 1.3.6.1.3.3.18
It is the value of the TOS field (applies only
for IP traffic)

SNMP TRAFFIC UPDATE 1.3.6.1.3.3.19
It is the time interval (in seconds) at which
the measurement agent performs an update
of online QoS parameters

SNMP TRAFFIC DETAILED 1.3.6.1.3.3.20
It specifies whether the online method of
analysis is simple (0) or advanced (1)

SNMP TRAFFIC DUMP 1.3.6.1.3.3.21
It specifies whether a dump is performed by
the agent for offline analysis

SNMP TRAFFIC START TIME 1.3.6.1.3.3.22
It contains an 8-byte value which is the Epoch

representation of the session start time

SNMP TRAFFIC END TIME 1.3.6.1.3.3.23
It contains an 8-byte value which is the Epoch
representation of the last computed data

SNMP TRAFFIC PACKET COUNT 1.3.6.1.3.3.24
It specifies the number of packets transmitted
or received

SNMP TRAFFIC THROUGHPUT 1.3.6.1.3.3.25 It specifies the analyzed through

SNMP TRAFFIC AVG OWD 1.3.6.1.3.3.26
It specifies the analyzed average one way
delay in the last observation

SNMP TRAFFIC MIN OWD 1.3.6.1.3.3.27
It specifies the analyzed minimum one way
delay over the all observation period

SNMP TRAFFIC MAX OWD 1.3.6.1.3.3.28
It specifies the analyzed maximum one way
delay over the all observation period

SNMP TRAFFIC AVG JITTER 1.3.6.1.3.3.29
It specifies the average packet delay variation
over the last observation period

SNMP TRAFFIC MIN JITTER 1.3.6.1.3.3.30
It specifies the minimum packet delay
variation over the all observation period

161

 Notes

 The Poisson step refers to a unit of approximation when computing the distance

between two packets, such as the distribution is followed with higher accuracy. The

NMS management console allows selecting this parameter either one percent of the

average time distance between packets or square root. One option copes with packets

at higher rates, while others work better at lower rates. The lowest possible value of

the parameter is one millisecond. If this parameter is zero, the distribution is periodic.

For more information, please consult the agent documentation in [2].

 Real-time failure occurs whenever the software no longer can send packets at the

specified moments in time due to either limited processing power of insufficient

available capacity on the link. For each packet a real time failure occurs, the agent

that generates the traffic increases a counter. A real time correction policy could, in

case of a real time failure, to align all new packets to the current time (value 0 for rt

correction parameter), or to send as much packets as possible in order to reach the old

time references (value 1).

33..66..99..44 TTHHEE AADDVVAANNCCEEDD AANNAALLYYSSIISS CCLLAASSSS

This class contains managed objects to be used when using the following analysis methods:

 Full link analysis using the PCAP system library

 Traffic analysis using the Endace DAG network controller

It contains two classes, one for each type of analysis. The objects from each of these classes are

given in tables 3.46 and 3.47.

Table 3.44 Classes in the advanced class

SNMP TRAFFIC MAX JITTER 1.3.6.1.3.3.31
It specifies the maximum packet delay
variation over the all observation period

SNMP TRAFFIC OOO PACKETS 1.3.6.1.3.3.32
It specifies the number of out-of-order
packets received

SNMP TRAFFIC RT FAILURE 1.3.6.1.3.3.33
It specifies for how many packets real time
failure occurred at the transmission agent

SNMP TRAFFIC BUFFER
OVERFLOW

1.3.6.1.3.3.34
It specifies whether buffer overflow occurred
during the saving of the data dump, if the
dump is performed

SNMP TRAFFIC DUMP READY 1.3.6.1.3.3.35
It specifies whether the dump analysis is
completed (1) at the end of a session

Class Name OID Description

SNMP TRAFFIC PCAP 1.3.6.1.3.4.1
It contains objects to be used with PCAP-
based analysis

SNMP TRAFFIC DAG 1.3.6.1.3.4.2
It contains objects to be used with DAG card
based analysis

162

Table 3.45 Managed objects in the PCAP class

Table 3.46 Managed objects in the DAG class

Object Name OID Description

SNMP TRAFFIC PCAP IF 1.3.6.1.3.4.1.1
It is used to specify the interface with which
the PCAP analysis is performed (the values is
the MAC address of the interface)

SNMP TRAFFIC PCAP
THROUGHPUT

1.3.6.1.3.4.1.2
It contains the throughput obtained on the
interface on which the PCAP analysis is
performed

SNMP TRAFFIC PCAP TIME 1.3.6.1.3.4.1.3
It contains an 8-byte timestamp with the time
in Epoch format at which the last information
update was made

Object Name OID Description

SNMP TRAFFIC DAG NAME 1.3.6.1.3.4.2.1
It specifies the device name of the DAG card
to be used with the measurement

SNMP TRAFFIC DAG TEST
DURATION

1.3.6.1.3.4.2.2
It specifies in seconds the length of the
measurement session

SNMP TRAFFIC DAG ADVANCED 1.3.6.1.3.4.2.3
This managed object is obsolete. Its value
should always be one.

SNMP TRAFFIC DAG PROTOCOL 1.3.6.1.3.4.2.4

It specifies the type of traffic analyzed. It can

be:

Ethernet II/IEEE 802.3 (0)

IPv4 (1)

UDP (2)

SNMP TRAFFIC DAG SOURCE
ADDR

1.3.6.1.3.4.2.5

It specifies the source address for incoming
packets in an octet string format. Options:

6-byte hardware address for Ethernet

4-byte IP address for Ipv4 and UDP

SNMP TRAFFIC DAG TIME 1.3.6.1.3.4.2.6
It contains the timestamp in Epoch format of
the last parameters update

SNMP TRAFFIC DAG DUMP 1.3.6.1.3.4.2.7
It specifies whether a dump is performed for
offline analysis

SNMP TRAFFIC DAG THROUGHPUT 1.3.6.1.3.4.2.8
It contains the last value of the analyzed
inbound throughput of the specified flow

SNMP TRAFFIC DAG AVG OWD 1.3.6.1.3.4.2.9
It represents the average one way delay
during the last observation period

SNMP TRAFFIC DAG MIN OWD 1.3.6.1.3.4.2.10
It represents the minimum one way delay
during the all observation period

SNMP TRAFFIC DAG MAX OWD 1.3.6.1.3.4.2.11
It represents the maximum one way delay
during the all observation period

SNMP TRAFFIC DAG AVG JITTER 1.3.6.1.3.4.2.12
It represents the average packet delay
variation during the last observation period

163

The information contained in these tables is a brief description of the 74 managed objects that

are used by the Network Measurement System management infrastructure. The information

contained here is, of course, not enough to cover all aspects of using these set of objects correctly

with either the manager or the agent software.

However, for additional information of using the NMS MIB, you may want to consult the

documentation of the agent, since the agent software is the one creating the data for most of

them. You may also consult in the appendix E the source code of the SNMP wrapper that gives

valuable information on how toe use this set of objects when communicating with the agents.

33..66..1100 SSEESSSSIIOONN RREESSUULLTTSS

During the execution of each session when results are received, they are automatically saved and

are available to the user. In order to prevent memory issues, the management console saves the

incoming results to disk. In this way, the program is scalable to a large number of tasks and long

session, without the worry that it will be out of system physical memory.

Each new set of results is referenced by an entry into a result list. The mapping is usually made

according to flow ID (in the case of session group global results the mapping is made according

to the task ID, rather than the flow ID).

The following functions implement results management:

SNMP TRAFFIC DAG MIN JITTER 1.3.6.1.3.4.2.13
It represents the minimum packet delay
variation during the all observation period

SNMP TRAFFIC DAG MAX JITTER 1.3.6.1.3.4.2.14
It represents the maximum packet delay
variation during the all observation period

SNMP TRAFFIC DAG OOO
PAKCETS

1.3.6.1.3.4.2.15
It represents the number of out-of-order
packets received during the analysis period

SNMP TRAFFIC DAG PACKET
COUNT

1.3.6.1.3.4.2.16
It represents the number of packets received
during the analysis period

SNMP TRAFFIC DAG DUMP READY 1.3.6.1.3.4.2.17

It specifies whether the dump performed at
the end of the analysis session (if any), is
completed and the QoS parameters are
available

void CreateDatasetSingleSession(WORD wTaskId);

void SaveDatasetSingleSession(

 WORD wTaskId,

 WORD wFlowId,

 BYTE bType,

 BOOL bDump,

 struct timeval tvTxStartTime,

 struct timeval tvTxEndTime,

 DWORD dwTxPacketCount,

 DWORD dwTxRtFailure,

 struct timeval tvRxStartTime,

164

Before some explanations about the previous functions, there must be specified the method of

saving the results. Two folders are available by default for keeping the session results. See table

3.47.

Table 3.47 Folders for session results

The files that store the results are either files that keep session group information or files that

keep session flow information. For example, if you run a single session, the resulting data will be

stored in a flow file in the second directory. The file name contains the flow ID, and since the

flow ID has one-to-one correspondence with the task ID, is easy to collect the results.

However, in the case of group the mapping flow ID – task ID is no longer saved. Having only

the task information you can determine at most the group ID, the sessions ID from within the

group but not the actual flow IDs that were used for each session in its turn. Because of this, in

the case of session, the flow ID correspondence must be saved to a group results file saved in the

first folder.

We have:

 The first function is used to create a flow ID file for use with a single session task.

 The second used to save flow real time information in the flow file, regardless it is for

a single session task or for a session group task

 The last three functions are used exclusively for group: they allow to create an empty

group file when a group is started; to add a new flow to the group as more sessions

from the group start executing and finally to create new flow files in the flows folder

– the files will be populated with data by using the same function like for single

session case

Folder Name Description

./session This folder keeps the session group related data files

./session/flows This folder keeps the flow data files, containing the QoS parameters

struct timeval tvRxEndTime,

 DWORD dwRxPacketCount,

 DWORD dwRxThroughput,

 unsigned long long lwRxAvgOwd,

 unsigned long long lwRxMinOwd,

 unsigned long long lwRxMaxOwd,

 long long liRxAvgOwd,

 long long liRxMinOwd,

 long long liRxMaxOwd,

 DWORD dwRxOoo,

 DWORD dwRxOverflow

);

void CreateDatasetSessionGroup(WORD wTaskId);

void AddDatasetToSessionGroup(WORD wTaskId, WORD wFlowId,

WORD wSessionId);

void CreateDatasetSession(WORD wTaskId, WORD wFlowId);

165

In addition, the Session Manager contains functions for the following:

 Accessing the results in both the saved groups and saved flow files

 Check the availability of results during a session or a session group

 To export the results in a comma separated values format

WORD GetTaskResultCount(void);

WORD GetTaskResultTaskId(WORD wIdx);

WORD GetTaskResultFlowId(WORD wIdx);

BOOL GetTaskResultAvailable(WORD wTaskId, WORD wFlowId);

DWORD GetTaskResultDatasetCount(WORD wFlowId);

int SaveListViewAsSpreadsheet(LPVOID ptrListView, LPCTSTR szFileName,

BYTE bColumns);

166

33..77 OOTTHHEERR SSEERRVVIICCEESS

The role of this subchapter is to present briefly some additional technologies of the NMS

management console, in order to be better acquainted with the terminology, the options and

possible settings.

33..77..11 TTHHEE LLOOCCAALL MMEESSSSAAGGEE DDIISSPPAATTCCHHEERR

The messages from the queue are regularly read by the Session Manager, if the message is

related to a measurement session. However, the received SNMP messages could also be

management messages unrelated to any measurement process. In this situation, it is the job of the

message dispatcher thread to handle the processing of each message. Such messages could be

requests of information such as whether the software is an agent or a manager, the name and so

on.

This type of descriptive information that ensures distribution of identification data between NMS

managers and agents is called the Identification Protocol and it was already presented as a

feature of the management infrastructure. If you need more information, review the section that

presents the extended features of the management infrastructure, and especially the table 3.2.

The implementation of the message dispatcher is based on a single function running under the

context of the management service.

The purpose of the message dispatcher is to reply with the values of some local parameters when

interrogated by another SNMP capable entity, either a manager or an agent. The objects

implemented by the dispatcher of the management console are listed in table 3.48.

Table 3.48 Managed objects handled by the message dispatcher

Object Name OID Description

Agent Identification 1.3.6.1.3.1.1

The management console always replies with the value
0xF0F0F0F0, hence different from 0x0F0F0F0F. The
management console does not identify as a measurement
agent.

Manager Identification 1.3.6.1.3.1.2
The management console always replies with the value
0x0F0F0F0F, hence it identifies itself as a management
console.

System Name 1.3.6.1.3.2.1
The management console replies with the administratively
set name.

System Description 1.3.6.1.3.2.2
The management console replies with the administratively

set description.

System Location 1.3.6.1.3.2.3
The management console replies with the administratively
set location.

System Contact 1.3.6.1.3.2.4
The management console replies with the administratively
set contact information.

void DispatchMessage(void);

167

33..77..22 TTHHEE SSEERRVVIICCEE CCOONNTTRROOLL MMAANNAAGGEERR

The role of the Service Control Manager is to allow the user to control the status of the

management (and dependent) services, while ensuring at the same time recoverability in the case

of failures.

The user can control the status of the management service, and due to dependency reasons of the

following services:

 The queuing service

 The SNMP service

 The Session Manager

 The local message dispatcher

The control is achieved by allowing the external change of the management service’s control

variables that could place it in either of the following states: stopped, started and paused.

Intermediary states such as starting, stopping, pausing and resuming exist but they are not

interesting from the user’s perspective.

The control of the management services is useful since allows changes the configuration to be

performed without requiring an application restart. It also brings reliability since the SCM

supervises the execution of the management service. This is achieved using a keep-alive status

variable that is periodically checked to see whether the management service terminated its

execution (most probably due to a hang). In such a situation, the SCM can do nothing or take one

of the following corrective actions:

 Restart the service

 Restart the management console application

The corrective actions in case of failures can be setup via the Services view.

The implementation of the SCM uses a single procedure within its own thread. The Service

Control Manager starts executing before any other service at the application startup and

terminates the last.

33..77..33 TTHHEE CCOONNFFIIGGUURRAATTIIOONN SSEERRVVIICCEE

The configuration service features a set of functions that control the configuration of all other

services and of the user interface. Five global parameters specify the files in which specific

service configuration can be kept. Table 3.4 already presented the configuration descriptions;

table 3.49 contains the default file names for each configuration.

Table 3.49 Default names for the configuration files

File Purpose Default File

Toolbar Configuration ./config/toolbar.cfg

Manager Configuration ./config/mgr.cfg

168

Because the configuration parameters of the configuration service are quite critical (without the

correct file names, the proper configuration cannot be loaded), the filenames from table 3.49 can

also be edited offline. They are saved in a text file called global.cfg and it is the single

configuration file that is in text format (all others are binary).

The default contents of the global.cfg file:

33..77..44 TTHHEE HHAARRDDWWAARREE MMAANNAAGGEERR

The Hardware Manager collects from the system information about the local devices and makes

them available to the management console. A copy of the Hardware Manager is also

implemented at the measurement agent.

The device data that is available from the hardware manager is:

 Data about the PCI installed devices in the system

 Data about the networking configuration

 Notes

 The implementation of the Hardware Manager was based on the shared code provided

by lspci and ifconfig GNU applications. For more details about their implementation,

you may consult the source code of the files from table 3.50.

Table 3.50 Source code files of the Hardware Manager

Queuing Configuration ./config/queuesrv.cfg

Management Configuration ./config/mgmtsrv.cfg

SNMP Configuration ./config/snmpsrv.cfg

Session Manager Configuration ./config/sessmgr.cfg

File Name Size (bytes) Version Comments

pciapi.cpp 52,444 1.0.0.510 C++ source code file

pcilst.cpp 1,235,312 1.0.0.510 C++ source code file

pciapi.h 1,563 1.0.0.510 C++ header file

pciapt_config.h 347 1.0.0.510 C++ header file

[CONFIGURATION FILES]

ToolbarConfiguration=./config/toolbar.cfg

ManagerConfiguration=./config/mgr.cfg

QueuingServiceConfiguration=./config/queuesrv.cfg

ManagementServiceConfiguration=./config/mgmtsrv.cfg

SnmpServiceConfiguration=./config/snmpsrv.cfg

SessionManagerConfiguration=./config/sessmgr.cfg

169

pciapt_header.h 47,419 1.0.0.510 C++ header file

pciapt_sysdep.h 1,658 1.0.0.510 C++ header file

netapi.cpp 13,234 1.0.0.510 C++ source code file

netapi.h 981 1.0.0.510 C++ header file

170

33..88 UUSSIINNGG TTHHEE MMAANNAAGGEEMMEENNTT CCOONNSSOOLLEE

This sub-chapter is intended to be a brief user guide into using the Network Measurement

System management console. So far, the project focused on the implementation alone, with the

most important aspects discussed in detail. Now, it is time to turn our attention on part that is the

most from the user point of view: the user interface.

33..88..11 CCOONNSSOOLLEE SSEETTUUPP

When you first start the management console, may be when only the default files are present and

the console is not configured. If the manager configuration files are missing, you are notified by

a welcome message inviting you to configure the management console.

Figure 3.56 The welcome dialog

 Important

 There may be situations in which the configuration file is not missing but the

manager configuration became corrupted. In other cases, some parameters may be

incorrect. Such situations will also prevent the management console of starting

correctly or even loading the configuration. Such errors are usually notified to the

user with specific error dialog boxes, in which detailed error information shall be

available.

While the management console is not configured, the options of using it are very limited.

Actually the most important component, the management service, is not running and at this time,

the manager properties dialog requires a configuration – see figure 3.57 for details. To help the

user in performing the configuration with as little knowledge as possible, various elements

starting from dialog boxes, the main console view and the properties will indicate which are the

steps required to follow. You may even have configuration buttons just one click away, similar

to the configure manager button from the manager’s properties dialog.

The management console features a series of wizards to guide you through complex procedures.

The configuration process is one of them, and for this reason, you will have to use the Configure

Manager Wizard to have the console configured.

You may start the Configure Manager Wizard in the following ways:

 Click on the Management Station item in tree view and use the Configure

Management Station button.

171

 An alternative method is to open the properties dialog of the management console, by

selecting the Management Station in the left tree view and then by choosing View >

Properties. In the properties dialog, you must click on Configure Manager Wizard.

 The last method of opening the wizard is by opening the Open Wizard dialog from

Action menu > Wizards. In the dialog select Configure Manager Wizard in the list

and click Start.

Figure 3.57 Not configured manager’s properties dialog

The wizard contains a set of steps what will guide the user in introducing a set of information,

some mandatory, and other optional. In the order, the configuration data that one needs to input

is:

 The management console name (mandatory), description (optional), location

(optional) and contact (optional). This is the so-called administrative description

information of a NMS entity. It must be configured on the management console and

is recommended to configure it on the agents as well. You will see later, that this

information is used to identify at the console between different NMS applications

(especially agents) installed at different measurement points.

 You have to select a primary network interface to use it with the management service.

The management service supports multiple network interfaces, but these could be

configured only after the manager is configured. At this time, it allows you to select

only one. When you choose the network interface, you may also inspect its properties,

provided by the Hardware Manager to be sure of the selection. Figure 3.58 shows the

type of data available in the wizard’s window; while the figure 3.59 shows the

standard network interface properties dialog (it contains hardware information, such

as device identifier, name, manufacturer, MAC and other hardware related properties

and software configuration parameters like the IP configuration).

 At the next step, one should set up the SNMP community name along with their

permissions: none, notify, read-only, read-write and read-create.

172

 The last settings are the one related to security. The management supports two types

of management packet security: based on SNMP communities and based on source IP

filtering. The IP filtering information can be introduced in two ways: specifying

either a list of addresses that will be filtered (the default) or to create a list and only

management messages coming from those sources will be allowed.

 In the end, you may review your selection and entered data to verify if the

management console got it correctly and finishing will configure the management

console and save the configuration.

Figure 3.58 Selecting a network interface in the Configure Manager Wizard

Figure 3.59 Network interface properties dialog

173

 Important

 After the management console has been configured for the first time, the management

service is not started by default. To start the management service you have the

following option: to open the manager’s properties dialog (selecting the manager

from the tree list, and then click on View > Properties) or to open the properties

dialog of the management service by selecting it the Services view and following the

same procedure. In both dialogs, you will find a control area from which you can

control the management service.

 You must start the management service in order to pass to the next steps that involve

communicating with the agents. Remember that as far as the management service is

stopped the following service are also stopped: the queuing service, the Session

Manager and the SNMP service.

33..88..22 CCOONNFFIIGGUURRIINNGG SSEERRVVIICCEESS

Before using the management console, you may also want to refine the configuration

information for various services. If you have read the documentation so far, you noticed that

there many configuration parameters could be set up, such as operation timeouts, queue size,

maximum OID length etc. The role and usage of those parameters has been previously

explained.

Now, in order to access the configuration of a given service you must select the service, open its

properties dialog and go to the Advanced tab.

Figure 3.60 The advanced tab of the management service

You may see that various parameters come with a small description, however it is recommended

to understand them well prior to make and save any changes.

174

 Caution

 The changes to the services parameters take effect when you click the OK or Apply

button. In order to prevent any problems it is recommended that changes on the

advanced configuration setting is made by advanced users only.

Not only the management service has configuration parameters, but also other services that were

previously presented, such as the queuing service, SNMP service, configuration service.

The services properties dialog may also allow you to change the recovery settings of a service.

Remember the role of the Service Control Manager was to provide reliability in the case a

service failed. However, with the default setting no such feature is provided and must be set up

manually. Figure 3.61 suggests how this can be achieved using the service properties dialog.

Figure 3.61 The recovery tab of the management service

You may select a different recovery policy for the first, second or subsequent failures. Other

options such as the reset fail count specify after how many days the failures counter (that

indicates whether the failure was the first, second and so on) is reset. If you select the restart the

service recovery policy the restart service after parameter specifies the time interval in which the

service will be restarted.

Finally, if you choose the run a program recovery policy you need to specify a program name

and optional some parameters (the failure count can be added as a parameter as well).

33..88..33 RREEGGIISSTTEERRIINNGG AAGGEENNTTSS

If the manager has been configured successfully, and the configuration of the console’s services

has been tuned, you might start registering agents as the first step in performing network

175

measurements. You can do this by clicking on the Add Agent button in the Agents view. This

will start the Add New Agent Wizard that will guide you through the registration process.

To add a new agent the following information is required:

 The IP address of the agent

 The UDP port which is used by the management service on the agent

 The read-only and read-write communities configured (at least one read-write

community is required)

Figure 3.62 Agent registration process

If the agent exists, it should reply with the identification information (name, description, location

and contact). You may review this information and if it is correct, you may finish the registration

process. If the agent was successfully added, it will appear in the agents list.

There are two most often situations that will not allow a registration process to complete:

 The agent is not responding, in which case the wizard will inform the user with a

specific message

 The remote SNMP entity is not a NMS agent, meaning that it does not reply to the

identification request correctly.

When an agent is no longer in use, you may choose to remove its registration on order to delete it

from the agents list. The agent registration removal is also performed in agreement with the

agent software; hence, you will need to have the agent up and running in order to succeed.

The first window in the registration removal wizard will attempt to connect to the agent and if,

successful it will display the agent identification information. If the information checks out you

may confirm the registration removal process and the agent is also automatically removed from

the list.

When an agent is registered, you may collect additional information from it such as:

 The number of the interface cards installed on the system where the agent is running

 The name, vendor and type of those interfaces

176

 For regular Ethernet cards additional information such as the hardware physical

address, IP configuration, the maximum transmission unit and the roles for which that

interface is used is also available.

33..88..44 CCRREEAATTIINNGG MMEEAASSUURREEMMEENNTT SSEESSSSIIOONNSS AANNDD GGRROOUUPPSS

The next step in using the management console is creating measurement sessions. There was

already explained in the previous sub-chapter that three session types are available:

 Traffic generating sessions

 Traffic analysis sessions

 Double traffic generating and analysis sessions

Due to the complex nature of the session creation process a wizard is also available to guide you

through it. Figure 3.63 displays a snapshot of it, when you are required to select the session type.

Figure 3.63 The Create New Session wizard

Depending on which session type you choose, you need to select one or two agents, and the

configuration parameters for the tests depending on both the session and traffic type. The

parameters required were already presented in the description of the Session Manager earlier in

this document.

After the session has been created, it will be automatically added to the session list of the

management console and it will be available for creating session groups and tasks. You may also

save an existing session to a file, or load previously created session from file, in order to ease the

session handling.

If you want to run multiple sessions at once, or single session with a variable parameter you must

also create a session group. Since the group creation is very straightforward, a single dialog is

available to do this in one-step. In figure 3.64 there is the dialog used for creating session groups,

in the group of independent session mode. You may change the mode by selecting an alternate

option in the top drop-down list.

177

After the group is created, it will be automatically added to the session group list and is made

available for creating scheduled tasks.

Figure 3.64 Creating a session group

33..88..55 SSCCHHEEDDUULLIINNGG TTAASSKKSS AANNDD CCOOLLLLEECCTTIINNGG RREESSUULLTTSS

To create a scheduled task you need to have at least one session or session group loaded (either a

new created one or an existing one that has been loaded). To create the task use the New Task

button on the scheduled tasks view. Similar to creating session groups a single dialog will appear

in you need to specify the following:

 The type of objects that is scheduled: a session or a session group

 A session or a session group depending on the first selection

 A start moment which could be now, within a given number of minutes or at a given

time moment

Figure 3.65 Creating a scheduled task

178

Remember that the session will start if the start up time of the session is less or equal with the

current time, so specifying a past time moment will result in the task starting immediately. After

the task has been created it will results a new task line being added to the management console’s

task list. For each task, the status of pending, running, finished or deleted is specified.

The results of a task are available both during the execution of the task, as QoS data is received

from the agents and of course, at the end of the test. To access the results you must use to results

view. Here, for each task that has at least one set of stored data, a new item will appear. Opening

the result set will imply that a window similar to the one from figure 3.66 is created.

Figure 3.66 Results window

In the first results window a list of all parameters that are available is presented along with the

source for that parameter (the name of the agent), the session type - this is useful when you have

a group with multiple sessions and from the top drop down list you select the session you want to

visualize. Other information is the last value received for each parameter, the number of data

points available so far and a color used to identify each parameter a little easier.

This window offers only generic information about the task results but not so much measurement

data. For this reason, three other dialogs are available to provide data that are more detailed:

 A session summary containing global session information such as the start time, end

time, total number of packets average values, minimum and maximum values over

the entire session (see figure 3.67). If a dump for offline analysis is performed, a

dump data summary is also provided.

 A time or parameter domain list, in which data entries are available for each session

and globally for the group (see figure 3.69)

 The parameters displayed can be selected independently based on a source-basis,

using the dialog from figure 3.68.

 Finally, a trace plot is available for the same parameters displayed in table format.

179

Figure 3.67 The session summary

Figure 3.68 Selecting parameters for table-format display

The following figure displays the parameters for a session group, in the table format. This dialog

and method of inspecting the results is also available for the sessions (either single or group

members), the only exception being that for sessions the first two columns display time domain

information rather than parameter domain.

In the next figure, the data was obtained from a group of parameter-dependent session having a

packet rate between 100 and 1000 packets per second in increments of 100. The data in this

format can be also saved into a spreadsheet CSV format, allowing analysis with third party

applications.

180

Figure 3.69 Displaying session (group) parameters in a table format

The last method of result analysis is the trace plotting. The selection of the data to be displayed is

done using a dialog similar to the one from figure 3.68. The trace output is presented in figure

3.70. Trace handling controls are available to allow zooming, displaying of data points, grid and

axis customization.

Figure 3.70 Visualizing data in trace format

An additional dialog can be used to refine the axis range, to change the colors of the background

when indenting to use screenshots for publishing or to select titles for each trace, other than the

181

default one. The figure 3.71 presents the trace display properties dialog, which can be opened

using the trace properties tool button.

Figure 3.71 The trace properties dialog

33..88..66 UUSSIINNGG TTHHEE EEVVEENNTT LLOOGG

The event log is an embedded service in the NMS management console, that provides

troubleshooting, debugging and notification information whenever a special event is occurring.

The event log service starts always before any other service (except the Service Control

Manager) and it is ready of receiving event data from the application components. In the event

log pane, this data is made available to the user.

For the event log, the user may specify the following:

 The log file name

 The maximum log file size

 The event log full action, that could be either of overwriting events automatically,

overwrite events older that a specific number of days or to clear the event log

manually using a clear log button.

For each event, the following information is available: the event type (information, warning or

error), event code, source, description and parameters, if any.

182

44
CCOONNCCLLUUSSIIOONNSS
44..11 MMEEAASSUURREEMMEENNTT SSCCEENNAARRIIOO RREECCRREEAATTEEDD

This last topic is intended to redo the initial experiment of testing Gigabit network interface

cards, to see how NMS can be used to accomplish the job instead of the classical approach and

what kind of results are available at the end.

Figure 4.1 Testing NICs with NMS scenario

In the new scenario, we have replaced the Mazuela computer with Chenin that has a NMS

management console installed. On both Enologa and Macabeu NMS agents have been deployed.

On Enologa there is a SysKonnect SK9843 NIC connected with 1000BaseSX to the Endace

DAG card installed on Macabeu. The network traffic was generated with Enologa agent while

the analysis is done, of course with the Endace card on Macabeu. Next, it is assumed that the

following operations were completed successfully:

 The configuration of the management console

 The configuration of the measurement agents

 The agents registration process

The type of session used is flow-based using Ethernet encapsulation for data-link testing, both

traffic generation and analysis. There were created three types of scenarios using periodic,

Poisson and link flooding traffic. For each type of traffic distribution, were selected a set of

packet sizes: 256, 512, 768, 1024 and 1500 bytes. The maximum transmission unit was 1500

bytes.

For each packet size, a session group was created to run a series of tests with packet rates going

up to a gigabit for the selected packet size. In the following will be presented the results obtained

for 256 and 1500 byte frames in the case of the periodic distribution.

Enologa

SysKonnect

Endace DAG interface card

Macabeu

Chenin

LAN

IP: 147.83.130.21
Mask: 255.255.255.128

IP: 147.83.130.29
IP: 10.198.0.12

IP: 10.198.0.10
Mask:
255.255.255.248

Celler

Color Key

Point-to-point fiber optic link

Management connection

183

The interesting parameters are:

 The average throughput

 The packet delay variation

 The packet loss ration

Figure 4.2 Average throughputs for 256-byte packets

Figure 4.3 Average throughputs for 1500-byte packets

You may see that the obtained throughput depends largely on the packet size, while the software

limitations in this case depend rather on the packet rate, in both situations at around 50000

packets per second.

0

10

20

30

40

50

60

70

80

90

100

0 50000 100000 150000 200000 250000 300000 350000

T
h

ro
u

g
h

p
u

t
[M

b
p

s
]

Packet Rate [pps]

Throughput for 256-byte packets

0

100

200

300

400

500

600

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

T
h

ro
u

g
h

p
u

t
[M

b
p

s
]

Packet Rate [pps]

Throughput for 1500-byte packets

184

In figures 4.3 and 4.4, are represented the number of packets transmitted and received for each of

the previous two situations:

Figure 4.3 Transmitted and received number of packets for 256-byte frame

Figure 4.4 Transmitted and received number of packets for 1500-byte frame

The figures above are intended to show the kind of results you can obtain. The actual plots were

made in Microsoft® Excel based on the data exported from the management console. All four

figures contain the data from the session group with the parameter the packet rate.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 50000 100000 150000 200000 250000 300000 350000

P
a
c
k
e
t

C
o

u
n

t
[1

0
6

p
a
c
k
e
ts

]

Packet Rate [pps]

Packet Count

Transmitted Packet Count

Received Packet Count

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

P
a
c
k
e
t

C
o

u
n

t
[1

0
6

p
a
c
k
e
ts

]

Packet Rate [pps]

Packet Count

Transmitted Packet Count

Received Packet Count

185

In addition to the group data, session data is also available. Figures 4.5 to 4.8 show the same

parameters as in the previous figures, i.e. the throughput for 256 and 1500-byte packets and the

packet count for the same packet size, but this time versus time (i.e. during one session). The

selected session was chosen to be in the middle of the group, to be representative for the average

packet rate.

The duration of one session was of 100 seconds.

Figure 4.5 Transmitted packet count (packet size: 256 bytes, packet rate: 160200 pps)

Figure 4.6 Transmitted packet count (packet size: 256 bytes, packet rate: 160200 pps)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 10 20 30 40 50 60 70 80 90 100

P
a
c
k
e
t

C
o

u
n

t
[1

0
6

p
a
c
k
e
ts

]

Time [s]

Packet Count

Transmitted Packet Count

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 10 20 30 40 50 60 70 80 90 100

P
a
c
k
e
t

C
o

u
n

t
[1

0
6

p
a

c
k
e
ts

]

Time [s]

Packet Count

Transmitted Packet Count

186

Figure 4.7 Throughput for 256-byte packets at 160200 pps

Figure 4.8 Throughput for 1500-byte packets at 160200 pps

You can see from previous figures that data availability is quite high, since the entire

measurement session was done with very little efforts compared to the classical approach.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

T
h

ro
u

g
h

p
u

t
[M

b
p

s
]

Time [s]

Throughput

Throughput

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90 100

T
h

ro
u

g
h

p
u

t
[M

b
p

s
]

Time [s]

Throughput

Throughput

187

44..22 AADDVVAANNTTAAGGEESS AANNDD DDIISSAADDVVAANNTTAAGGEESS OOFF TTHHEE

PPRROOPPOOSSEEDD SSOOLLUUTTIIOONN

The Network Measurement System is not the perfect application. It has its inherent drawbacks

like any beginning. Nevertheless, the following advantages are gain whey you choose NMS in

favor of the existing measurement solutions:

 You can implement very quickly a wide palette of network measurements, with just

several clicks and without moving from your computer. In a large test environment,

once the machines are in placed, the software is installed all operations can be

performed only from the management console. Since the start of a session takes just a

few clicks in a wizard, it greatly saves a lot of time, when doing even complex

measurements.

 NMS does not require user attendance during the execution of the tests. Maybe it is

hard to believe but some of the results from the previous paragraph were performed at

night. We just created the corresponding sessions, groups, scheduled some tasks and

went home. The next morning, the management console displayed the list of results

ready for exporting and interpretation.

 If you want to use MGEN, the first thing to do is to obtain the MGEN documentation

and to study either the command line method (only the command syntax is almost

half of page) or the script file format. To make the things even worse if you created a

MGEN script and forgot to kick an enter after the last script line, you will probably

spent half a day trying to understand why the last command from the script is not

executed.

 It offers better performance for traffic generation.

 The user can focus on the objectives of the test, rather on how to implement them.

 It offers a high level of functionality, in most of the situations there is no need of

using additional third party software.

 Finally, the programming model is open source. Therefore, if you have some

problems or you found a better implementation feel free to put it in practice.

Among the disadvantages, it can be mentioned:

 The NMS is not completely portable across all GNU/Linux platforms. Nevertheless,

since the source code is available with slight changes it can be ported to almost all

major distributions.

 It is not optimized for local resource usage.

 It does not implement a fined-grained analysis system in order to save the limited

bandwidth of the management link.

 The latest version of the Network Measurement System requires additional testing.

188

44..33 FFUUTTUURREE WWOORRKK

The Network Measurement System is far from being a complete flaw-free set of applications.

The previous list of disadvantages is clearly a thing that needs improvement. The following

topics can therefore be considered as a future project in order to enhance the NMS capabilities:

 To eliminate the existing disadvantages

 To ensure support for other versions of SNMP

 To use managed objects set in the private class rather in the experimental class.

 Better communication control between the management console and the agent; in the

exiting implementation there are situation in which an agent may begin an operation

before the confirmation is received from the management console

 To extend the support for other networking technologies, hardware, protocols and

QoS parameters

189

RREEFFEERREENNCCEESS

[1] Alexandru Bikfalvi, Network Measurement in Telecommunications, draft paper,

Technical University of Cluj-Napoca, 2005

[2] Paul Pătraş, Distributed Agents for a Network Measurement System, B.S. thesis,

Technical University of Cluj-Napoca, 2006

[3] ●●●, Internetworking Technologies Handbook, Cisco Systems Inc, 2002

[4] ●●●, Request for Comments 791, Internet Engineering Task Force, 1981

[5] ●●●, Request for Comments 3168, Internet Engineering Task Force, 2001

[6] ●●●, Request for Comments 2205, Internet Engineering Task Force, 1997

[7] ●●●, Request for Comments 2330, Internet Engineering Task Force, 1998

[8] ●●●, Request for Comments 2678, Internet Engineering Task Force, 1999

[9] ●●●, Request for Comments 2679, Internet Engineering Task Force, 1999

[10] ●●●, Request for Comments 2681, Internet Engineering Task Force, 1999

[11] ●●●, Request for Comments 2680, Internet Engineering Task Force, 1981

[12] ●●●, MGEN User’s and Reference Guide, U.S. Naval Research Laboratory, 2006

[13] ●●●, Recommendation X.690, International Telecommunications Union, 2002

[14] ●●●, DAG 4.3 GE Card User Manual, Endace Measurement Systems, 2005

[15] ●●●, Endace Linux and Free BSD Software Installation, Endace Measurement System,

2005

