Dok.-Nr/ Doc. No.: CGS—-RIBRE-STD-0001

D S) C S Ausgabe /Issue: 5 Datum/Date : 2009—02-01
EA —— Uberarbtg./ Rev.: — Datum/Date: 2010-01-29
=2EsSErium

Dokument Typ: Standard

Document Type:

Thet: User Control Language (UCL) Reference Manual

Title:

Lieferbedingungs—Nr.:
DRL/DRD No.:

Produktgruppe:

Product Group:

Schlagworter: UCL
Headings: User Control Language
AP

Automated Procedure

Bearbeitet: Franz Kruse Org. Einh.:
Prepared by: Orgin. Unit:
Gepriift: Stephan Marz Org. Einh.:
Agreed by: Orgin. Unit::
Genehmigt: Jurgen Frank Org. Einh.:
Approved by: Orgin. Unit:
Genehmigt: Org. Einh.:
Approved by: Orgin. Unit:

TE 55

TE 55

TE 55

Klassifikations Nr.:
Classification No.:

Konfigurationsteil-Nr.:

Configuration ltem No.:

Porduktklassifizierungs—Nr.:

Classifying Product Code:

Freigabe Ordnungs—Nr.:
Release Orde No.:

Bisherige Dok.—Nr.:

previous doc.—no.: CG S—R|BRE—STD—0001

Unternehmen: EADS Astrium Bremen
Company:

Unternehmen: EADS Astrium Bremen

Company:

Unternehmen: EADS Astrium Bremen
Company:

Unternehmen:

Company:

Daimler—Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

EAH)S%;

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C S Ausgabe /Issue: 5 Datum/Date : 2009-02-01
SPACE Uberarbtg./ Rev.: — Datum/Date: 2010-01-29
TRANSPORTATION Seite/ Page: I von/ of \%
DOCUMENT CHANGE RECORD
ISSUE/REV. DATE Affected Paragraph/Page DESCRIPTION OF CHANGE
1/- 2002-02-01L First version including:
— 32-bit UNSIGNED_INTEGER type.
— Database aliases ("nicknames”)
— High resolution TIME/DURATION format
1/A 2002-06-03 4.9.4.3 String conversions
434,47 Qualified identifier syntax enhanced to better fit alias uspge
4.13.4 Derived Values can access their own (old) values.
Different editorial changes
45.2.1,4525,4.11,4.12 COL-RIBRE-SPR-10651
New function LOW, generalized HIGH
1/B 2003-01-1% 4.12 Generalized Min/Max functions
2/- 2004-05-19 4.14 Privileges, authorization
41.3 I/O format
2/A 2004-09-01 4.3.4 Qualified predefined identifiersyz)
4.9.4.4 I/0 format
4.13.2 Imports in library spec. available in body
2/B 2004-12-14 4.14 Privileges inherited on subprogram level
2/C 2005-02-2p 4.9.4.3 Extended string conversions
2/D 2005-06-08 4.8.2,49.4.1 Counting units
2/E 2005-08-3p 4.9.4.3 unit string conversion for pathname types
3/- 2005-12-01 4.8 declaration of new base units
48,49.4.1 unitized integer types
3/A 2008-07-02 4.13.4 declaration of new base units
4/— 2009-02-0l 4.5.2.5 Substrings (slices)
412 Predefined procedure PUT
Appendix H Constraints removed
5/- 2010-01-2p 4.1,4.4 Annotations
4.16.2 Explicitly numbered system library subprograms
41.2.2 New keywords union, entity, void

Daimler—Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

—+ Dok-Nr/Doc. No: CGS—RIBRE-STD—0001

EADS C s Ausgabe /issue: 5 Datum/Date : 2009-02-01
SPACE Uberarbtg./ Rev.: — Datum/Date: 2010-01-29
TRANSPORTATION Seite/Page: 1l von/ of \%

Table of Contents

1INtrodUCtioNo o e e 1-1
1.1 Identification 1-1
1.2 PUIPOSE . .o 1-1
1.3 Document Outline. 1-1

2 Applicable and Reference Documents. 2-1
2.1 Applicable Documents. 2-1
2.2 Reference DOCUMENtSottt e e e e e 2-1

S OVEIVIBW . it 3-1
3.1 Conceptual OVEIVIEW.o 3-1
3.2 Language SUMIMaAIY. . . .ottt et et e e e 3-3
3.3 Syntax NOtatioN. 3-5
3.4 ConventionsUsed in Examples. 3-5

4 Language Definition 4-1
4.1 Vocabulary & Lexical Elements 4-1

4.1.1 CharaCter Set. oo e 4-1
4.1.2 Lexical Elements 4-2
4.1.2.1 Delimiters.o 4-2
4.1.2.2 ldentifiers.o 4-3
4.1.2.3 Path Identifiers and Pathnames. 4-3
4.1.2.4 Numeric Literals e 4-4
4.1.2.5 Statecode Literals. 4-5
4.1.2.6 Character Literals. o 4-5
4.1.2.7 String Literals e 4-6
4.1.2.8 Time Literalso 4-7
4.1.2.9 Duration Literals. 4-7
4.1.2.10 UnitLiterals. i 4-8
4.2 IMPOIt o o 4-9
4.3 Declarations, Names and SCOPESttt 4-10
4.3.1 Identifiers.o 4-10
4.3.2 Scopeof ldentifiers. 4-10
4.3.3 Database Scope and Aliases ("nicknames”) 4-11
4.3.4 Qualified Identifiers. 4-12
4.3.5 Lifetime of Objects. 4-12
4.3.6 MDB Objects, Pathnames 4-13
4.3.7 NOde NamMeES.o e e e 4-15
4.4 ANNOtAtiONSo e A -16
4.5 Constant Declarations AT
4.8 Type Declarations.o 4-18
4.8.1 Elementary TYPeSottt 4-19

Daimler—Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

EADS | Cg s Ausgabe fissue: 5 Datum/Date : 2009-02-01

SPACE Uberarbtg./ Rev.: — Datum/Date: 2010-01-29
TRANSPORTATION Seite/ Page: n von/ of \Y

4.8.1.1 Type INTEGER. e 4-19
4.8.1.2 Type UNSIGNED_INTEGER i, 4-19
4.8.1.3 Type REAL e 8 -20
4.8.1.4 Type LONG_REAL. e 4-20
4.8.1.5 Type BOOLEAN. e e e e 4-20
4.8.1.6 Type CHARACTER e e e 4-21
4.8.1.7 Low Level Types BYTE, WORD, LONG_ WORD............. 4-21
4.8.1.8 Statecode TYPeS. . . .ottt e 4-22
4.8.1.9 Types TIMEand DURATION 4-23
4.8.1.10 Type COMPLETION_CODE.o 4-24
4.8.1.11 Enumeration TYPeSottt it e 4-24
4.8.1.12 Subrange TyPeS . . . oo 4-25
4.8.2 Structured TYPES . . . oottt 4-26
4.8.2.1 Array TYPES. . o oo 4-26
4.8.2.2 ReCOrd TYPeS . . .ottt e 4-28
4.8.2.3 Sl TYPES. . oo 4-30
4.8.2.4 Type BITSET. e e 4-31
4.8.2.5 SHING TYPES . . v 4-32
4.8.3 Pathname Typeso 4-34
4.8.4 Subitem Pathname Types. 4-36
4.8.5 Inherited TYpeS.ot 4-37
4.8.6 Compatibility of Types. 4-38
4.8.6.1 GeneralRules. 4-38
4.8.6.2 Structural Compatibility 4-39
4.7 Variable Declarations. 4-40
4.8 Alias Declarations.ot 4-41
4.9 Unitized Values and TYPESo 4-42
4.9.1 UnitS Of MEASUIEottt e 4-42
492 CountinQUnNItS e A42
4.9.3 Predefined Units 4-43
4.9.4 Unit Declaration. 4-43
4.9.5 Unit Syntax.ot 4-44
4.9.6 Unitized TYPeS . . .ottt 4-45
4.9.7 Unitized Variables and Constants.t 4-45
4.9.8 Compatibility of Unitized Types. 4-45
4.9.9 Unitized Literals & Constants. 4-46
4.9.10 Expressions with Unitized Values. 4-46
4.9.11 Unitized Integer Values. 4-48
4.1 EXPreSSIONS . .« v vttt et 4-49
4.11.1 Operandst e -50
4.11.2 OPEIatOrS . . o o ettt e 8 -51
4.11.2.1 Arithmetical Operators. 4-51
4.11.2.2 Concatenation Operatorttt 4-52
4.11.2.3 Logical or Boolean Operators. 4-52
4.11.2.4 Relational or Comparison Operatars. 4-52

Daimler—Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

EADS | Cg s Ausgabe fissue: 5 Datum/Date : 2009-02-01

SPACE Uberarbtg./ Rev.: — Datum/Date: 2010-01-29
TRANSPORTATION Seite/ Page: v von/ of \Y

4.11.2.5 Set Operatorst 4-52
4.11.3 Function Calls. 4-53
4.11.4 Type CONVEISIONS . . . vttt ettt e e e e e e e e e e e 4-54
4.11.4.1 High Level CONVErSIONS. ottt 4-54
4.11.4.2 Low Level CONVErSIONS. oottt 4-59
4.11.4.3 String CONVEISIONS. . . . oottt e e e 4-60
4.11.4.4 Input/Output Format. 4-62
4,11 StatemMEeNtS. . . . 4-63
4.11.1 ASSIQNMENT. . . . oottt e e —63
4.11.2 Procedure Call. 4-64
4.11.3 if Statement —66
4.11.4 case Statement e 4-66
4.11.5 Loop Statementsot 4-67
4.11.5.1 Simpleloop Statement 4-68
4.11.5.2 while Statement 4-68
4.11.5.3 repeat Statement 4-69
4.11.5.4 for Statement. 4-70
4.11.6 return Statement 4-72
4.11.7 halt Statement 4-72
4.11.8 exit Statement 4-73
4.12 Subprogram Declarations. 4-74
4.12.1 Procedure Declaratian 4-74
4.12.2 Function Declaration. e 4-76
4.12.3 Guarded Procedures, Functions and Parameters 4-77
4.13 Standard Functions and Procedures. 4-78
4.16 Compilation UNitS. 4-81
4.16.1 Automated Procedures.t 4-82
4.16.2 Libraries 4-85
4.16.3 Formal Parameter List Definitions. 4-91
4.16.4 Derived Values. 4-92
4.15 Privileges and Authorization. e 4-94
4.15.1 Determining the Privileges of a Subprogram or Compilation.Unit . . 4-94
4.15.2 Guarded Library Procedures and Functions. 4-95
4.15.3 Guarded Parameters.t e 4-95
4.15.4 Dependencies Imposed by Privileges 4-96
S5Compilation 5-1
5.1 References and Dependencies. 5-1
5.2 Compilation Order 5-1
Appendix A: ACIONYMSttt et e e A-1
Appendix B: Definitions B-1
Appendix C: deleted. e C-1
Appendix D: UCL Syntax D-1

Daimler—Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

EADS | Cg s Ausgabe fissue: 5 Datum/Date : 2009-02-01

SPACE Uberarbtg./ Rev.: — Datum/Date: 2010-01-29
TRANSPORTATION Seite/ Page: \% von/ of \Y

Appendix E: ASCIl CharacterSet E-1
Appendix F: UCL/MDB Type Correspondence Table. F-1
Appendix G: Engineeringunits G-1
G—1 BasSe UNItS. G-1
G—2 SIUNIS . . G-1
G=3 NON=SIUNItS e e G-6
G—4 Prefix Namesand Values. e G-6
Appendix H: Implementation Constraints H-1

Daimler—Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.:. CGS—-RIBRE-STD-0001

E AD S . C s Ausgabe /Issue: 5 Datum/Date : 2009-02-01
— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29

SsSskErium Seite/Page: 1-1 von/of 1-1

1 Introduction

1.1 Identification

This is the Language Reference Manual for the CGS User Control Language (UCL), Document
CGS-RIBRE-STD-0001. The first issue is derived from the Columbus document
COL-RIBRE-STD-0010, issue 4/A. Changes to this base document are marked with change bars.

1.2 Purpose

This document provides the language definition for UCL. Its primary goal is to establish formal
requirements on syntax and semantics of UCL for the development of language processing tools sut
as compiler and interpreter. It may also be used as a language reference manual.

Please note that this reference manual covers only the UCL language itself, it does not define syste
libraries for specific target systems. The definition of UCL system libraries is part of the interface
documentation of the respective target systems, e. g. the CGS ICD, DMS ICD etc.

1.3 Document Outline
This reference manual is divided into main chapters (3 and 4), and several appendices which, for tt
most part, summarise information provided elsewhere in the document.

Chapter 3 gives a general overview; it briefly explains the underlying concept, and puts UCL in
perspective, showing how it fits into the CGS language scenario (UCL, HLCL).

Chapter 4eals with the basic language definition. It is organised into sections, each covering a specific
language element. This is first explained in narrative form, followed by the formal syntax (using a
variant of the Backus—Naur Form) and finally illustrated by one or more examples.

The appendices (A through H) have the following contents:
» Appendix A and B explain the acronyms and terms used.
* Appendix C is empty.
» Appendix D summarizes the syntax of UCL.
» Appendix E shows the ASCII character set.
» Appendix F shows correspondences between MDB item types and UCL types.
* Appendix G shows the ISO 1000 engineering units.
* Appendix H summarizes issues of implementation.
At the end of the document there is an alphabetical index.

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

E AD S . C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
—— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29

SskErium Seite/Page: 2-1 von/of 2-1

2 Applicable and Reference Documents

2.1 Applicable Documents

none

2.2 Reference Documents

2.2.1 High Level Command Language (HLCL) Reference Manual
CGS-RIBRE-STD-0002

2.2.2 UCL Virtual Stack Machine and I-Code Reference Manual
CGS—-RIBRE-STD-0003

2.2.3 Mission Database (MDB) User Manual
There are specific MDB user manuals for different target systems.

2.2.4 1S0O 1000, Sl units and recommendations for the use of their multiples
and of certain other units
International Standards Organisation, Geneva, Switzerland

2.2.5 1S0 646, Information Processing ISO 7-Bit Coded Character Set
for Information Interchange
International Standards Organisation, Geneva, Switzerland

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS e Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
5

—Iarm Seite/ Page: 3-1 von/of 3-5

3 Overview

3.1 Conceptual Overview

Although its basic syntax is that of a general—purpose programming language, UCL is a dedicated te
and operations language for monitoring and control of spacecraft subsystems. It is intended for use
both the on—board operational and the ground (checkout) environment.

UCL is a procedural language representing the set of all commands or instructions that can b
predefined and stored as so—caledomated Procedurg®Ps) andUser Librariesin the Mission
Database (MDB). Automated procedures play the rolenohia program They can be executed like

I an individual program, but can, typically, also be part of some higher-detiehswhich are stored
in the form of hierarchical tree structures.

For better manageability and adaptability to specific target environments, the monitoring and contro
features of UCL have been removed from the actual language definition and encapsshaaairnin
libraries. These libraries are specific for the respective target systems, they are defined in the interfac
documentation for these systems (e. g. the DMS ICD, the CGS ICD etc.).

Thelibrary construct of UCL corresponds to the Amieckaggor themodulein Modula—2). It supports

the information hiding concept which allows the separation of a module’s specification from its
implementation. The library concept is not restricted to system librariesubat enay implement his
ownuser librariesin UCL.

UCL programs (Automated Procedures, or APs) automatically "inherit” the definitions of objects
contained in the MDB. These objects are thus directly visible and may be referenced by their Databa:s
path names (see Fig. 1.)

UCL also supporten—line interactivecommands. These facilities are provided byHgh Level
Command Languag@LCL) in the ground SW environment. HLCL is somewhat a modification of
UCL (i.e. it extends UCL with respect to interactive commanding, e.g. HLCL allows abbreviations)
and shares the same system libraries. In this manner, UCL's monitoring and control facilities alsc
become availablen—ling as HLCL keyboard commands. HLCL is described in reference document
2.2.1.

UCL programs are edited and compileidi-line. This process is depicted in Figure 3. During the
compilation process, the UCL code is transformed into a binary intermediate code which is latel
executed (interpreted) in the target environment (e.g. DMS, EGSE) by a dedicated progran
(interprete).

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No

. CGS-RIBRE-STD-0001

C S Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
sasErium Seite/ Page: 3-2 von/of 3-5
< SubSystems > < fosE —CSE —
AR
/// \\ /// \\ \

pd

-~/ \\ / \\ \\
DBA A > CEquip A>
</ \\ -~/ \\

switch_positiop
output_voltage

input_voltage @
power_on

Example of end item name:

IAPM\SubSystems|\TCSI\Equip Alswitch_position |

for illustration purposes only |

Figure 1.

Hierarchical Name Tree (example)

Subsystems/
Equipment

Data
Acquisition,
Monitoring &
Control SW

tables \
SIDs Attributes Runtime
values

—_— UCL |-code

—_ Interpreter
A1y | e —— B0 DEGC

o

>

predefineoﬁonfiguration data

Figure 2.

UCL runtime environment

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

Ausgabe /Issue: 5 Datum/Date : 2009-02-01

EA D S B Cgs Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
305

— 1L Seite/ Page: 3-3 von/of 3-5

- to

ODB

UCL editor/|
| compiler

source
=+

— MDB data extraction

services
\ to EGSE
Configuration DB

UCL source I-code
code
Figure 3. Off—line preparation of an AP

3.2 Language Summary

Compilation Units

— Automated Procedures (main program)
— Libraries

— Formal parameter list definitions

— Derived Values

A Library consists of :
— Library specification
— Library body (implementation part)

Automated Procedures, Library specifications, and Library bodies are compiled separately.

Two kinds of subprograms:
— Procedures
- Functions

Subprograms must be defined within main programs (APS) or Libraries; they may not be nestec
inside other subprograms. Their parameters may have default values, and may be "unbounc
arrays or strings. Parameter associations are either named or positional. Subprograms may |
called recursively.

Predefined Subprograms
- ABS, MAX, MIN, HIGH, LENGTH, ODD, INC, DEC, INCL, EXCL, ...

All' I/O (Monitoring & Control operations) via target—specific system library routines.
Access to database items as global objects via their path name.

Support for physical measurement units.

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS e Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
35

Errium Seite/ Page: 3-4 von/of 3-5

« Statements
- Assignments, Procedure calls, Function calls
Conditional statements:

if statement witkelsif andelse clauses
case statement withvhen andelse clauses
Iteration:

generaloop statement witlkexit ;
repeat ,while andfor loops
Transfer of Controls

halt ,return |, exit

» Declarations.
— constant ,variable ,type ,unit andalias declarations
— Declaration of variables is mandatory.
— Objects must be declared befdhney are referenced.

» Certain keywords are reserved and cannot be used as identifiers.
* The semicolon;() is a statement terminator (not a separator).

» Data types

— predefined:
Integers, real numbers (with single and double precision), Booleans, enumerated types, sta
codes, times, durations, sets, character strings, byte strings, arrays, records, pathnames ar
low level types for bytes, words and long words

- user—defined

* Arrays and strings may be of arbitrary dimension with arbitrary bounds; array bounds are
constants (i.e. no dynamic arrays, except in parameter list of procedures and functions). String
may vary in length, up to a fixed, user declared upper limit.

e Operators# ,— ,* [,* %, &,| ,~,<,<=,=,>=,>,<>,in

* Implementation restrictions:
Several restrictions are indirectly imposed on the language through the I-code and symbol tabl
definition. These restrictions are summarized in Appendix H.

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS e Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
g5 —iam Seite/ Page: 3-5 von/of 3-5

3.3 Syntax Notation

Throughout this manual the syntax of UCL is described in an Extended Backus—Naur Form:

— The symbok (equal sign) separates a syntactic class from its definition.

— Terminal symbols, i.e. literals, are enclosed in double quotes. If the quote character appears ¢
a literal itself, it is written twice.

— Braces (curly brackets) denote repetition, i.e. the enclosed item may appear zero or more time
e.g.{A} means 0 or more occurrencesfof

— Squarébrackets enclose optional items, i.e. the enclosed item may appear once or be omitted; e.
[A] means O or 1 occurrence/f

— A vertical bar separates alternative items; &.gB means eitheA or B, but not both.
— Parentheses are used for grouping; @tp)c stands folc | bc.

— Each production rule is terminated by a period.
A complete syntax summary is given in appendix D.

3.4 Conventions Used in Examples
UCL source text in examples is written in a mono—spaced font (Courier). Strict conventions are
followed for the representation of word classes:

» UCL reserved words are written in bold and all lower—chsgif , if , case etc.).

» Predefined identifiers are written in all upper—cdBH EGER REAL INCL, DECLetc.).

» Otheridentifiers are written with upper—case initial letters for each word parFHjiegName
Min_Value).

Control structures are uniformly indented according to the logical program structure.

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= 5 — 1L rm Seite/Page: 4-1 von/ of 4-96

4 Language Definition
4.1 Vocabulary & Lexical Elements

4.1.1 Character Set

The text of a UCL program (also called swirce codeis a sequence déxical elementgor tokeng,
eachconsisting of one or moharacters These characters may be any of the ASCII graphic symbols
defined in the ISO standard 646.

The UCL source code can be freely broken into lines whereby the length of the line is restricted to 25
characters. (This is a restriction imposed by the particular implementation of the UCL compiler; see
Appendix H.)

Adjacentlexical elements may be separated by one or more special characters (e.g. blank space) call
separators Separators are allowed between any two tokens, and also before the first and after the la
token; in particularthe end of a line is a separator. Within lexical elements separators are not allowed,
except if a separator is part of the element (character and string literals).

A separator is mandatory whenever its absence would result in an ambiguous token sequence. F
example, it is not required between identifiers and non—-alphanumeric symbols (e.g. the arithmetice
operators), but it is required between identifiers and keywords or numeric constants.

Thus, A=B+Cis equivalenttA =B + C . However,IFA=B THEN ...
is invalid because of the missing separator between the keyiwaadd the identifieA .

The UCL separators are:

* Blank space
» Horizontal tabulator
» \ertical tabulation character LF (line feed) and VT (vertical tabulator)
* End of line
» Page separator (ASCII form—feed (FF) character)

B - Annotation
« Comment

These ASCII graphic symbols (printable characters) and the separator symbols are the only characte
allowed in UCL source code. The other non—graphic symbols (so—called control characters), e.g
backspace or escape, are not allowed excegirmmentgsee below), and are rejected by the UCL
compiler.

A commenbegins with two consecutive hyphers-{ and terminates with the end of the line. Note:
the contents of a comment are not interpreted. Hence, a comment may contain any characters (ev
those prohibited outside a comment).

An annotationis a special comment that can be attached to declared items. It begins with an annotatio
marker €&-) and terminates with the end of the line. Unlike a comment, an annotation is not ignored
by the compiler, but kept as a textual description of the item. It can be displayed in an HLCL commanc
window as part of the help information for the item. For a description of annotations see 4.4.

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

EADS -
=25

cgs

— I rm

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

Ausgabe /Issue: 5 Datum/Date : 2009-02-01
Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
Seite/Page: 4-2 von/ of 4-96

4.1.2 Lexical Elements

The text of a UCL program may consist of the following lexical elements: delimiters, identifiers
(predefined and user—defined), and literals (numeric, character, string, state code, time and un
literals).

4.1.2.1 Delimiters

Delimiters are either one character or two consecutive characters, used as punctuation symbols or
operators. They are listed below.

(
)

+

>=

[
]
{
}

left parenthesis

right parenthesis

asterisk (multiplication operator)
exponentiation operator
plus (addition operator)
comma

minus (subtraction operator)
dot

double dot (range symbol)
slash (division operator)
percent (modulus operator)
logical AND

logical OR

logical NOT

colon

assignment operator
semicolon (also used as statement terminator)
less than

less than or equal

not equal

equal

greater than or equal

left bracket

right bracket

left brace

right brace

l <— annotation marker
— comment marker

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
=205 —iarm Seite/ Page: 4-3 von/ of 4-96

4.1.2.2 ldentifiers

Identifiers are the names used in a UCL program to designate various UCL entities, such as constan
variables, types, etc. An identifier begins with a letter which may be followed by any combination of
letters, digits and underscore characters Not allowed are consecutive underscore characters,
"a__b”, and underscore character at the end of a naabe, ™.

UCL is not case sensitive (i.e. does not distinguish between upper— and lower case letters). Thus tl
three identifierSENsor_ A, SENSOR_Aandsensor_a are equivalent.

Since’end of line” is a separator, an identifier must fit on one line. The maximum lengthdsfrdifier
is thus restricted to 256 characters. All characters in an identifier are significant.
Formal syntax
Identifier = Letter{["_ "] Letter_Or_Digit}
Letter_Or_Digit = Letter | Digit
Examples

Valve_nr 5
Sensor_12
An_example_of _a_very_long_identifier

Reserved words

Some identifiers areeserved worddhaving a special meaning in the language. They cannot be used
to denote user—defined entities (e.g. variables, constants). The following identifiers are reserved worc
in UCL:

alias array begin body by case constant
do else elsif end entity exit for
function guarded halt if import in library
loop of out pathname procedure record repeat
return sequence set statecode string then to

type union unit until variable void when

while

4.1.2.3 Path Identifiers and Pathnames

A Database object is denoted in UCL byptghnamgsee also 4.8.3, Pathname Types). Syntactically,

a pathname consists of a sequencpath identifierscorresponding each tolavel (or node) in the
hierarchical nametree. A path identifier consists of either one backslasbdtiathnamg or two
consecutivdbackslash charactensd pathnamp or an identifier prefixed by a backslash charadtér “

The syntax of a path identifier is less strict than the normal identifier syntax. The nametree desigr
restricts the length of a path identifier to 16 characters (not including the backslash).

Formal syntax

Path_ldentifier= "\" (Letter | "_" | Digit) { Letter | ”_" | Digit }
Examples of path identifiers

\ (root pathname)

\ (no pathname)

\APM

\EQUIPMENT_Y

Pathnames are formed by a sequence of path identifiers with no spaces between them. The pathna
\APM\DMS\ASSEMBLY_X\UNIT_Y consists of 4 consecutive path identifiers.

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-4 von/ of 4-96

4.1.2.4 Numeric Literals

In the UCL source code, numeric literals (constants) may take three possibleifbeges.(simple
integer),based integeor real numbers.

4.1.2.4.1 Integers

An integeris simply a sequence of digits ('0’ .. '9’). The underscore character ("_') may be used to
logically group digits, it has no effect on the numeric value of the literal. The value of an integer must
be in the ranged .. MAX(UNSIGNED_ INTEGER) . The compiler issues an error message if this
range constraint is violated.

Formal syntax

Simple_Integer = Digits

Digits = Digit{[”_"] Digit }
Digit = "0"|"1"|"2"|"3"|"4" | "5" | "6" | "7" | "8" | "9"
Examples

5, 123, 027, 10_000

4.1.2.4.2 Based Integers

A based integer has the form:
Base “#" Value “#”

whereBaseis a decimal number indicating the base of the numbering system, it must be in the range
2 .. 16. Some bases are particularly useful: 2 for binary, 8 for octal, 10 for decimal (the default), or 1¢
for hexadecimalvValuemust be a sequence of "extended digits” (i.e. '0’ .. '9’ or the letters 'A’ .. 'F’,
which in hexadecimal notation correspond to the decimal values 10 .. 15, respectively). Further, for
given base B, each "extended digit” must be in the range: 0 to B-1.

The compiler generates an error if the value of the specified number is not in the range
0 .. MAX(UNSIGNED_INTEGER)

Formal syntax

Based_Integer = Digits "#” Hex_Digit {[”_"] Hex_Digit } "#"
Digits = see4.1.2.4.1
Hex_Digit = Digit|"A"|"B"|"C"|"D" | "E" | "F"

Examples of based integers, all having the value 255:

2#1111 1111#
8#37T#
16#FF#
10#255#

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
=205 —iarm Seite/ Page: 4-5 von/of 4-96

4.1.2.4.3 Real Numbers
A real number may be built as:

Formal syntax
Real = Digits ".” Digits ["E” ["+" | ="] Digits]
Digits = see 4.1.2.4.1

The exponent indicates the power of ten by which the value of the decimal literal is to be multiplied.
Thus the value of a real number can be obtained as:

Decimal_Literal * 10 ** Exponent
The compiler generates an error if the value of the specified number is not a valid floating—point numbe
(see predefined tydeONG_REA| 4.8.1.4).
Examples of real numbers:

2.575 5.8e3 300.6E+05 0.1E23 1.2e-3 0.000_000_1

4.1.2.5 Statecode Literals

In the MDB, astatecode is a literal constant identifying one spestfite (e.g. Open, Closed) of a
"discrete—type” MDB object. When such an object is created (like a switch or a valve), its allowable
states are also defined and appropriate symbolic nams&{ecodesassigned to them.

In UCL, each statecode identifier must be prefixed by a dollar s&f).(The following identifier may
be up to 8 characters long (not including$hgign). A special statecode literal is the consg&ntwhich
stands for an undefined statecode value.
Formal syntax

Statecode = "$” Identifier | "$$”

Identifier = see4.1.2.2

Examples of statecode literals:
$OFF $ACTIVE $OPEN 3

4.1.2.6 Character Literals

A character literal consists of any one of the 95 graphic ASCII characters (including the space
charactergenclosed between single quotes (apostrophe). The single quote character itself is represent
in a similar manner, i.e. also enclosed between single quotes.

Examples of character literals:
11 la’ ’1’ ’.1 11

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
=205 —iarm Seite/ Page: 4-6 von/ of 4-96

4.1.2.7 String Literals

Strings fall in two classesharacter stringandbyte strings

4.1.2.7.1 Character Strings

A character strings a sequence of zero or more characters from the 95 graphic ASCII characters
(includingthe space) enclosed between quotation marks (double quote characters). The quotation ma
itself has to be doubled if it appears within the string. The empty string is denoted by two adjacen
guotation marks’{). Since end—of-line is a separator, a string must not extend over the end of a line.
The maximum length of a string literal, including the quotes, is thus 256 characters.

Character string literalsre mapped to the predefingiting type (4.8.2.5). Characters in a string are
packed with one character per byte.

Formal syntax

Char_String = " { ASCII | "M RiREELE } 7”1
Character = ™" ASCIl ™
ASCII = any of the ASCII Characters in range 32 .. 126

Examples of character string literals:

"String 1”
"String with ""quoted™ word ”
(empty string)

4.1.2.7.2 Byte Strings

A byte stringis a sequence of zero or more bytes. A byte string literal is written in hexadecimal form,
enclosed imuotation marks, like a character string, prefixed witfihe number of hexadecimal digits
mustalways be even. The empty byte string is denotét’asLike for character strings, the maximum
length of a byte string literal, including the quotes, is restricted to 256 characters.

Underscore characters’() and blank characters’() may be used to logically group the bytes in
a string. They have no effect on the value of the literal.

Byte string literals are mapped to the predefiskeithg of BYTEtype (4.8.2.5). Bytes in a string
are packed with four bytes in a 32—bit word.

Formal syntax

Byte String
Hex_Digit

"#" " [Hex_Digit Hex_Digit {[”_"|” "] Hex_Digit Hex_Digit }] ™
see4.1.2.4.2

Examples of byte string literals:

#°0000_0001 0000_0002 0000_0003"
#'FF 0102_AE_F1 0103_EO_00"
#'01 02 03 04 05 06 07 08 09 OA”

#” (empty string)

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

EADS cgs

— I rm

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

Ausgabe /Issue: 5 Datum/Date : 2009-02-01
Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
Seite/Page: 4-7 von/ of 4-96

4.1.2.8 Time Literals

A time literal consists of two separate lexical elements, date and hour specification. If the date i

omitted, UCL ignores it in any related time operation.

Other omitted parts are assumed as zero. /

special time literal is the constafit- , which stands for an undefined time value. It can only be used
in assignments and as parameters and tested for equality, no further operations are defined on it.

The date is restricted to the range from year 1901 to year 2099.

Formal syntax

Time_Literal= Date [Time] |

Time
Date = Day ".” Month ".” Year
Day = [Digit] Digit
Month = [Digit] Digit
Year = Digit Digit Digit Digit
Time = Hours ”:” Minutes [":” Seconds [".” Fraction]] |
Hours = [Digit] Digit
Minutes = Digit Digit
Seconds = Digit Digit
Fraction = Digits
Digits = seed.1.24.1
Digit = see4.1.24.1
Examples
30.05.1992 12:34:17.48 date and time
13:30 time only (date is ignored)
24.12.1991 date only (at 00:00 h)

~i~ undefined time

4.1.2.9 Duration Literals

A duration literals written as a real number with a time unit, e.g. seconds, minutes or hours. Unit literals
are described in 4.1.2.10, the unit concept is described in 4.11.

Examples (each representing a duration of one hour):

3600.0 [s] in seconds
60.0 [min] in minutes
1.0 [h] in hours

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

EADS -
=25

— I rm

cgs

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

Ausgabe /Issue: 5 Datum/Date : 2009-02-01
Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
Seite/Page: 4-8 von/ of 4-96

4.1.2.10 Unit Literals

A unit literaldenotes a physical measurement unit. It is enclosed in square brackets. The unit expressic
follows the ISO 1000 conventions (see section 4.11 and reference document 2.2.4). Exponentiatic
is denoted by placing the exponent directly behind a unit identifier with no blanks between them, e. g
[m2] stands for i Note that, in contrast to ordinary identifiers, unit identifiers used in unit

expressionsk@, m A, MeVetc.) are case sensitive.

Formal syntax
Unit =
Unit_Expression =
Offset =

Numerator =

Denominator =

Unit_Term =

Unit_Factor =
Unit_Identifier =

Number =

Simple_Integer =
Based_Integer =

Real =

Examples

(ka]
[kg m/s]
[As]
[N m/s2]

"[” Unit_Expression "

[Numerator ["/” Denominator] ["+” Offset | "-" Offset]]

Number ["/” Number]

Unit_Term |
"(” Unit_Term)"

Number |
Unit_Factor |
"(" Unit_Term)"

[Number] Unit_Factor { Unit_Factor } |
Number

Unit_Identifier { Digit }
Letter { Letter }

Simple_Integer |
Based_Integer |
Real

see4.1.24.1
see 4.1.2.4.2
see 4.1.2.4.3

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-9 von/ of 4-96

4.2 Import

Import isused to make objects declared in other compilation units (e.g. libraries) available to the curren
compilation unit. Importable modules are libraries, automated procedures and parameterized MDE
items. The module is given by pethnamesee section 4.3.6.

When imported, all identifiers exported by the imported module (units, constants, types, variables
aliases, procedures, and functions) become visible throughout the compilation unit. For the differen
types of modules, the exported part is

« for libraries: the library specification,

» for automated procedures: the items declared before the AP header, the implicit AP alias and th
parameter list, not the items within the AP,

» for parameterized MDB items (formal parameter lists): the items declared together with the
parameter list, and the implicit alias, if defined.

An imported identifier will be hidden, if

» the same identifier is imported from more than one module. The conflicting imported identifiers
are then hidden throughout the compilation unit.

» the same identifier is declared within the importing compilation unit. The imported identifier is
then hidden throughout the scope of the local identifier.

 there is an identical predefined identifier. The imported identifier is then hidden throughout the
compilation unit.

An imported identifier can thus never hide a predefined identifier or an identifier declared in the
compilation unit. Imported identifiers, even if hidden, can always be accessed wyitalied
identifier, see section 4.3.4.

Formal Syntax

Import="import” Name ”;”

Name= see 4.3.4

Example
import \APM\ONBOARD\DMS\SYSLIB;

import GROUND_LIBRARY; — import via alias ("nickname”)

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-10 von/of 4-96

4.3 Declarations, Names and Scopes

4.3.1 ldentifiers

All UCL objects (i.e. constant, variable, type, procedure etc.), with the exception of the predefined
standard identifiers, Mission Database objects and imported objects, must be explicitly introduced vi
an object declaration before they can be used in the program. The object declaration associates t
object with a name, and at the same time establishes the object’s attributes or properties. Declaratit
of all UCL objects is described in the following sections. Once an object has been declared, it may b
referenced by its name wtentifier. An identifier used in a declaration must have been declared in a
previous declaration, i. e. an identifier must not be used in its own declaration.

Within the samecope all identifiers must be unique.

4.3.2 Scope of Identifiers

A UCL program (AP) may be structured, it may contain subprograms (procedures and functions) whict
are nested within the main program. The main program, as well as each subprogransdope a
which may contain its own set of locally declared objects. Parameters belong to the local scope of th
AP or subprogram.

The scope of an identifier is the section of a program or subprogram in which the object denoted by th
identifier exists. In general, the scope of an object extends from its declaration to the end of the bloc
in which it is declared (see figure 4. below). Whithin its scope, an identifiesilide and can be used:

* An identifier declared in an outer scope (e. g. an AP) may be redeclared in an inner scope (
subprogram). In this case two different objects are denoted by the same identifier, and the
identifier declared in the inner scope hides the same identifier declared in the outer sttope. W
the inner scope, the hidden variable from the outer scope still exists but is not visible and cannc
be accessed.

» The predefined identifierSNTEGER REAL BOOLEANMtc.) belong to a global scope outside
the compilation unit. Like any other identifiers, they may be redeclared within inner scopes (main
program or subprogram). This will hide the predefined identifier for the rest of the block.
Redeclarations of predefined identifiers are legal, but usually they obscure the program anc
should be avoided.

* The scope of record field names is the record. Since record field names are always written in dc
notation, prefixed with the name of the record variable, there is never a name conflict.

» The scope of for loop variable is the body of tlier loop (see 4.13.5.4). Sinéar loops
may be nested, the loop variable of an inner loop may hide a loop variable of an outer loop, ant
loop variables may hide identifiers declared outside the loop.

Libraries and other importable modules have their own scope. The scope of an identifier declared i
a library specification comprises both the specification (up from its declaration) and the body of the
library. Identifiers declared in a library body are visible in the body only. When imported, all identifiers
declared in the specification of the imported module become visible throughout the compilation unit
(see 4.2).

Note that unit identifiers, such fgg] , [A] , [MeV] etc., are not ordinary identifiers. They are not
bound to scopes, but are always global, see 4.11.

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.:

CGS-RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _ Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
=2SEriam Seite/ Page: 4-11 von/of 4-96
— AP with 2 local procedures Procl and Proc2
import \APM\Sys_Lib; — exports T1
type T2= statecode ($OFF, $ON); ‘
procedure AP (X:T1;Y:T2);
import \APM\User_Lib;
ffffffffffffffffffffffffffff C
variable A: INTEGER;
e T
procedure Procl; outer A
visible
variable A:INTEGER; v
variable B: INTEGER;
be Tn ******* o imported
? scope scope of \c/)ibsjif)(lzéS
of B inner A
scope
end Procl; of T
ffffffffffffffff -
procedure Proc2; imported
objects
variable C: REAL; visible
s - scope of
begin outer A
scope
of C outer A
end Proc2; visible
begin — AP main part
edAP; v Yo A R v
Figure 4. Scope and Visibility of Identifiers

4.3.3 Database Scope and Aliases ("nicknames”)

The database represents a name scope, too. It may contain certain identifiers, e. g. predefined alia
("nicknames”) for database items. These identifiers can be used like any other identifiers and, like
these, they can be hidden by identifiers from other scopes. The database scope is located “behind”
other scopes, i. e. its identifiers will be hidden by equal identifiers declared in any other scope.

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
=205 —iarm Seite/ Page: 4-12 von/of 4-96

4.3.4 Qualified ldentifiers

A qualified identifieris an identifier prefixed with a pathname or alias designating the library or other
importable module in which the qualified identifier is defined. The prefix and the identifier are
separated by a period (dot). The qualified form can be used to access imported objects. It is the on
way to access imported objects whose identifier is hidden.

Predefined identifiers can be qualified by preceding them with just a single dotINTIEGER .,
.MIN , .LENGTH. This may be used to access a predefined identifier, if it is hidden by a local
declaration of the same identifier.

The qualified form can also be used to access identifiers predeclared in the database. The pathna
denoting the database scope is the root pathname, a single badKslash (

Formal syntax

Qualified_ldentifier= [[Name]".”] Identifier
Simple_Name = I|dentifier { Path_ldentifier } |
Pathname
Name = Simple_Name { “.” Identifier }
Pathname = see4.3.6
Identifier = see4.1.22
Examples
GROUND_LIBRARY.Issue — a procedure declared in a library
\APM\EGSE\USER_LIBS\MATH_LIB.Matrix — a type declared in a library
\.Ground_Library — an alias predefined in the database

4.3.5 Lifetime of Objects

Apart from the static scope hierarchy described above, objects in UCL have a dynamic behaviour. Al
object is created when the block whose scope it is declared in is activated, it is deleted when the bloc
terminates:

» Objectsdeclared in an AP are created when the AP is started, and deleted when the AP terminate

* Objects declared in a subprogram (procedure or function) are created when the subprogram
called and deleted when the subprogram ends. So in each call of the subprogram its locall
declared identifiers will denote different objects. When a subprogram is called recursively, each
incarnation of the subprogram will have its own set of local objects. These sets of objects form
a stack, according to the subprogram call hierarchy. The identifiers denote the objects in the
uppermost incarnation of the subprogram, i.e. the currently active incarnation.

» All objects declared in the specification or body of any modules linked to an AP by direct or
indirect import, are created when the AP is started and deleted when it terminates.

» The predefined objects are created when the AP is started and deleted when it terminates.
« Afor loop variable is created when the loop is entered and deleted when the loop ends.

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= 5 — 1L rm Seite/Page: 4-13 von/of 4-96

4.3.6 MDB Objects, Pathnames

Mission Databas€MDB) objectsare, by default, visible to the UCL program, i.e. they need not be
explicitly declared. Their definitions are "inherited” from the MDB.

An MDB object(or MDB item) is identified by gathnamereflecting its respective position in the
hierarchical name tree. Some MDB items may hsweitems These are denoted bysabitem
pathnamei.e. an identifier prefixed with the pathname of the MDB item, separated with a dot. Note
that the subitem identifier may be identical to a reserved word.

Formal syntax

Pathname = "\"|"\\" | Path_Identifier { Path_ldentifier }
Subitem_Pathname = Path_Identifier { Path_Identifier } ".” Identifier
Identifier = see4.1.2.2
Path_Identifier = see4.1.2.3

Examples
\APM\PAYLOAD\EQUIPMENT_UNIT_A a pathname

\APM\PAYLOAD\EQUIPMENT_UNIT_A.INPUT_1 a subitem pathname

MDB objects may have parameters, e.g. APs, messages, stimuli. It depends on the program conte
whether or not an actual parameter list must be supplied with the pathname of such items, see 4.8.3 1
details. The parameter list is then given together with the pathname, e.g.:

\EGSE\TESO1\AP_1 (3.14)

MDB obijects fall into several classes or types. itéma typeof an MDB object (not to be confused with
the corresponding CL type) defines the object’s characteristics or properties and, by implication, the
semantic rules governing its usage.

In the UCL environment, several kinds of operations or user interactions may be performed on MDE
objects. In particular, all monitoring and control operations (measurement acquisition, stimuli
commands, etc.) are performed via dedicated system library procedures/functions. Also, other kind
of interactions are available via a system library, e.g. a procedure that causes a specific MDB obje
of type "automated procedure” to be executed.

A pathname designator tells the UCL compiler to retrieve an object’s definition (classification, type,
etc.)from the Mission Database to check its semantics. Depending on the context, a pathname desigr
tor represents either a value or a reference to an MDB item.

In assignments, expressions, conditions, or when used as parameters of a type qihdrrthare |,
pathname designators refer to objects whose runtime values may change independently of the exec
ing UCL program, e.g. value of sensor data periodically updated by data acquisition software.

In all other cases, they are references to specific object definitions in the MDB. A pathname designatc
by itself does not refer to any particular occurrence or version of the object. Such information must b
provided to the compiler by the user.

Notes:

» The definition of "analog measurement” objects (in the MDB) includes the physical quantity
(voltage, temperature, etc.) and the respective engineering units associated with the particule
measurement. Similarly 'discrete measurement’ objects are associated with statecodes (nam:
identifying the states the object may be in, such $B8N/$OFF, $OPEN/$CLOSED
$LOW/SMEDIUM/$HIGH.

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= 5 — 1L rm Seite/Page: 4-14 von/of 4-96

» The runtime values of "analog measurement” objects are expressed in engineering values, i.e. tl
acquired raw values are converted to the predefined engineering units using the appropriat
calibration curves. For discrete objects the runtime values correspond to the predefinec
statecodes.

» The runtime values of MDB items haveaftware typeccording to the UCL type system. (See
Type Correspondence Table between MDB and UCL objects in Appendix F).

MDB items are further classified by ancess classSome of these access classes define the allowed
usage of an item in UCL and HLCL, these are marked ¥thand/orHLCL superscripts:

READ UcL, HLCL

indicates that the item has a runtime value that is read-+enlg,may be read but cannot be altered

by a UCL program. The corresponding pathnames may be used in an expression (may appear on t
right—hand side in an assignment statement) or &3 grarameter. In expression evaluation, the
current (i.e. most recent) runtime value of the MDB item is used.

READ/WRITE Uct. HLeL

indicates that the item has a runtime value that may be read and altered by a UCL program. Iten
of this class may be regarded as global software variables. The corresponding pathnames may
used in expressions, assignments (on either side of the assignment symbol) or in parameter lists (
in ,inout , orout parameters).

|MPORT UCL, HLCL
applies to UCL libraries that may be imported by other compilation units.
EXECUTE HtcL
applies to MDB items of type "automated procedure” which may be invoked by other APs.
PATH SELECT HLct
applies to parent (virtual) MDB items, i.e. those at non—terminal nodes of the MDB name tree.
NODE SELECT Htct
applies to MDB items of type "network node”. The corresponding pathnames designate a specific
computer in the network.
SEND
applies to &ms that represent commands (stimuli, telecommands) that may be sent to specific targe
systems.
none
applies to all other MDB items.

Note: A compilation unit may reference itself, directly or indirectly, in non—parameterized form.
Parameterized references require the referenced unit to be compiled and up to date, this prohibi
self—references and cyclic references.

Examples:
\APM\DMS\ITEM_A := 3.5; set current runtime value of the global software
variable namedAPM\DMS\NITEM_A t0 3.5 .
(valid only if the MDB item’s access class is
READ/WRITE and its software type REAL

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= 5 — 1L rm Seite/Page: 4-15 von/of 4-96
if \APM\XYZ\SWITCH = $OPEN ...; check whether current runtime value of MDB

item namedAPM\XYZ\SWITCH is OPEN

(valid only if the MDB item’s access class is
READ or READ/WRITE and its software type is
statecode)

x := \APM\DMS\ITEM_X; assign current runtime value of MDB item
\APM\DMS\ITEM_ X to the local variabl&
(valid only if the MDB object’s access class
is READ or READ/WRITE and its software type is
compatible with the type of)

Issue \APM\xyzZ\POWER_ON); pass an MDB item hamadPM\xyz\POWER_ON
as a parameter to a system library procedure.
Here a reference to the item is passed, not its
runtime value. The procedure may retrieve its
definition from the MDB, including stimulus
characteristics, target equipment, authorization, etc.

4.3.7 Node Names

UCL is designed for use in a networked environment consisting of seeesalrk nodegprocessors).
These nodes are referencednogle namewvhich correspond to their MDB pathnames. Node names
and pathnames are thus syntactically equivalent.

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-16 von/of 4-96

4.4 Annotations

Declaredtems can have a so—call@ahotationattached. An annotation is a descriptive text that is kept
together with the item and can be displayed in an HLCL command window as part of the help outpu
for the item. Annotations will typically be used in library specifications (4.16.2), but can be used in any
compilation unit for any type of declaration.

The form of an annotation is very similar to a list of comments, the only syntactic difference is that
annotatiorlines start with<—’, while comment lines start with—' , both extend to the end of the line.

An annotations given directly after a declaration is attached to the item defined by that declaration. Fc
subprogram declarations an annotation is given after the subprogram header (4.5). For AP and libra
declarations (4.16) it is given after the AP or library header, respectively.

Annotations may be applied to all declared items, including enumeration literals (4.8.1.11), fields of
a record (4.8.2.2) and formal parameters (4.6).

Formal Syntax

Annotation

Annotation_Line { Annotation_Line }
"<—"{ Printable } eol

Annotation_Line

Printable = any of the printable Characters in the underlying character set
eol = end of line
Examples

unit [cwt] = [112 Ib]; <— hundredweight

variable Default_Width : Integer := 10;
<— Default output width for numeric values
<— Changing this value will globally change the output format

type States = (Enabled, <- Device switched on
Disabled, <— Device switched off
Locked <— Access to device blocked

<— Possible states of a device

type Device = record
Name : string (20); <— Device name
Address : Unsigned_Integer; <— Device address
State : States; <— Current state of device
end record ;

<— Description of a device

procedure Enqueue (inout Container: Queue; <— queue container
in Element : Object <- element to be enqueued
);

<— Append an element to the end of the queue.
<— If queue is full, global Status is set to Failed.
begin

end Enqueue;

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-17 von/of 4-96

4.7 Constant Declarations

A constant declaration associates an identifier (a name) with a value. The associated value must be
constant or a constant expression. The latter is an expression consisting of literal constants and alrec
defined constant identifiers; it can thus be computed at compile time.

A constant declaration is introduced with the reserved wondtant |, followed by the name of the
constant. A colon’(”) associates the constant with a type, the “becomes” symbphésociates it
with a value.

For string constants, the type may be given asjtisg , the maximum length need not be specified,
it is then assumed from the assigned string value.

Formal Syntax

Constant_Declaration

"constant” Identifier ”;” Constant_Type ":=" Constant_Expression ";"

Qualified_ldentifier [Unit] |
"string” ["of” Identifier] |

Constant_Type

"statecode” |
"pathname” [".” ™"]
Qualified_lIdentifier = see 4.1.2.2
Constant_Expression = Expression
Expression = see4.12
Unit = see4.11and 4.1.2.10
Examples
constant Two . REAL =2.0;
constant Lower_Limit : REAL .= 25.36;
constant Upper_Limit : REAL := Two * Lower_Limit;
constant Warning string :="Value exceeds upper limit”;
constant Code : string of Byte := #"FF 0102_AE_F1 0103_EO_00%;
constant On : statecode := $ON;
constant Max_Voltage : Voltage :=100.0 [V]; — see unitized values
constant High_Value : INTEGER := MAX(INTEGER);
constant Set Value :BITSET :={0, 3, 4};

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-18 von/of 4-96

4.8 Type Declarations

Every UCL object has typedefining the set of valid values that it may take, and the set of operations
that may be performed on it. UCL types fall into the following broad categories:

» Elementary typesomprise allpredefinedtypes (NTEGER,REAL, etc.), as well as the
enumeration typeection 4.8.1.11) arglbrangetypes (section 4.8.1.12) which enable users
to create new data types. Such user—defined types make code more readable, and let the u:
exclude illegal values from storage in variables.

» Structured typeallow the definition of data structures (arrays, records, sets, strings).
» Unitized typesre for dimensioned quantities, i.e. associated with a unit of measure.

« Pathname typesind subitem pathname typespresent references to MDB items or their
subitems, resp.

 Inherited typesre types inherited from the software types of database items.

A type declaration is introduced with the reserved vigpeé , followed by the type identifier. The "="
symbol associates the identfier with the type definition.

Notethat a type declaration need not introduce a new type, it may define a synonym to an existing type

Formal Syntax

Type_Declaration = ’type” Identifier "=" Type [Unit]";”
Type = Simple_Type |
String_Type |

Statecode_Type |
Pathname_Type |
Array_Type |

Set_Type |

Record_Type |
Pathname_Type |
Subitem_Pathname_Type |
Inherited_Type

Simple_Type = Qualified_ldentifier |
Enumeration_Type |
Subrange_Type

Qualified_ldentifier see 4.3.4
Enumeration_Type see 4.8.1.11
Subrange_Type see 4.8.1.12
String_Type see 4.8.2.5
Statecode_Type see 4.8.1.8
Pathname_Type see 4.8.3
Subitem_Pathname_Type see 4.8.4
Array_Type see 4.8.2.1
Set_Type see 4.8.2.3
Record_Type see 4.8.2.2
Inherited_Type see 4.8.5
Unit see 4.11

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-19 von/of 4-96

4.8.1 Elementary Types

4.8.1.1 Type INTEGER

Values of typdNTEGERare whole numbers which may be positive or negative. Its range is given by
the predefined constantgIN(INTEGER) andMAX(INTEGER) corresponding to -2and 21-1,
respectively. Integer literals are defined in 4.1.2.4.1.

The operators, —, *,/ ,** and%may be applied to values of this type and represent addition,
subtraction, multiplication, division, exponentiation, and modulus, respectively. These operators are
infix operators, which means that they are written between their operandsaritie operators may

also be used amary operators to denote the sign of a value.

The relational operators: (<=, =,<>,> ,>=) are also applicable to this type and yiBIWOLEAN
values.

The predefined procedures/functiavitN, MAXABS ODDINC andDECmay be used fdNTEGER
see 4.15.

The operatof/ denotes integer division (which always yields an integer result, possibly leaving a
remainder). No rounding is performed; @§l =2,9/5 = 1. The result of an integer division is zero
whenever the divisor is greater than the dividend.

Representation in memory

An Integer value is internally represented as one 32-bit word in 2's complement representation.

4.8.1.2 Type UNSIGNED_INTEGER

The typeUNSIGNED_INTEGERomprises non—negative whole numbers in the range 8*d.2
These bounds correspond to the predefined condHN(@INSIGNED_INTEGER)andMAX(UN-
SIGNED_INTEGER) respectively. The compiler issues an error message if this range constraint is
violated.

All operators defined for typdNTEGER also apply toUNSIGNED_INTEGERThe arithmetic
operators have cyclic semantics, i. e. the values do not overflow or underflow, but wrap around withir
the above mentioned range. It is, however, not possible to assign values outside the range.

Values of typeUNSIGNED_INTEGERandINTEGERare mutually compatible. Thus, also mixed
expressions, consisting of bdMTEGERandUNSIGNED _INTEGERalues, are allowed.

Representation in memory

An unsigned integer value is internally represented as one 32-bit word.

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-20 von/of 4-96

4.8.1.3 Type REAL

Values of the typ&@EAL represent approximations of the mathematical real numbers. Their range is
given bythe predefined constarftiN(REAL) andMAX(REAL), corresponding approximately to the
range: —3.4028 E+38 to 3.4028 E+38. Real values may be written either in decimal notation (with
integer part and fractional part separated by a decimal point) or in the scientific (or exponential)
notation, as defined in 4.1.2.4.3.

The operators that may be used VRIBAL operands are,—, *,/ and** , which represent addition,
subtraction, multiplication, division and exponentiation, respectively. For the exponentiation operator
** the right operand must be of tyTEGERor UNSIGNED_INTEGERThe relational operators

(<, <=,=,<>,>,>x) are also applicable to this type; they BEDLEANalues.

The predefined procedures/functidvitN, MAX andABS may be used fdREAL see 4.15.

Representation in memory

A REAL value is internally represented using one 32-bit word in IEEE standard single
floating—point format.

4.8.1.4 Type LONG_REAL

Values of the type ONG_REAlepresent approximations of the mathematical real numbers, like the
REAL type, but with a better precision and a larger exponent range. Their range is given by the
predefined constandIN(LONG_REAL) andMAX(LONG_REAL)xorresponding approximately to

the range —1.7969E+308 to 1.7969E+308.

The syntax oLONG_REALiterals is the same as fREAL values, and the same operators may be
applied.

Note that values of typ@EAL are compatible with those of tyh©NG_REAland vice versa. Thus
mixed expressions, consisting of b&@BALandLONG_REAlvalues, are allowed.

Representation in memory

A LONG_REALvalue is internally represented as two 32-bit words in IEEE standard double
floating—point format.

4.8.1.5 Type BOOLEAN

The standard typBOOLEANs an enumeration type defined as follows:
type BOOLEAN = (FALSE, TRUE);

All properties and operations defined for enumeration types apB@@LEANs well. For a definition
of enumeration types see 4.8.1.11. In addition, there are three sg@CaEAMNperators&, | , ~,
corresponding to "and”, "or” and "not”, respectively.

Representation in memory
A BOOLEANalue is internally represented like enumeration typéd SE= 0, TRUE=1) .

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-21 von/of 4-96

4.8.1.6 Type CHARACTER

The value of a variable of tyg@HARACTERs an 8—bitcharacterwhose literals are defined by the
ASCII character set. A character literal is written between single quotes (or apostrophes), see 4.1.2.

Values oftype CHARACTERTre ordered according to its 8—bit code, whose 7-bit first half is the ASCII
character set (ségpendix E). The relational operators may therefore be apQlldARACTERalues

may also be used in string operations, see 4.8.2.5. Type conversions to airsaiERcan be used

to convert between a character value and its ordinal number (its ASCII code), see 4.12.4. Thi
predefined procedures/functioBN andMAXmay be used faCHARACTERsee 4.15.

Representation in memory

A CHARACTERalue is internally represented as an unsigned integer in the range 0 .. 255 containet
in one 32-bit word, where the subrange 0 .. 127 is the ASCII character set. Within strings, 4
characters are packed in one 32—bit word., see 4.8.2.5.

4.8.1.7 Low Level Types BYTE WORPLONG_WORD

The low level type8YTE WORRNALONG_WORiBpresent individually accessible untyped storage
units of 8, 32 or 64 bits, respectively. No operation is defined on these types, their values can only b
assigned and passed as parameters. If the target variable of an assignment or the formal paramete
a subprogram is of a low level type, the assigned value or passed actual parameter, respectively, m
be of any scalar type, but the value must not occupy more than the corresponding number of bits. |
particular:

BYTE

The typeBYTErepresents untyped 8—bit obje®¥.TEvariables and formd@Y TE parameters may

be assigned/passed values of any scalar type that fithittod@HARACTERBOOLEANNTEGER

and small enumeration types with up to 256 values), as well as byte strings of length 1. For intege
values a check is done that the value will fit in 8 bits (i. e. it is in the range O .. 255), for non—static
values the check will be performed at runtime. Note, however, that byte values are held in 32—bi
words in memory. Only in strings, 4 bytes are packed in a word, see 4.8.2.5.

WORD

The typeWORDepresents untyped 32-bit obje&#ORariables and formalVOR[Pparameters
may be assigned/passed values of any scalar type that are represented in 32—-b@k\aiRds (
ACTER BOOLEANINTEGER REAL BITSET, pathname types, enumeration types), as well as
byte strings of length 4.

LONG_WORD

The typeLONG_WOREepresents untyped 64—bit objedtONG_WORIizariables and formal
LONG_WORmarameters may be assigned/passed values of any scalar type that is represented in-
bits LONG_REALTIME, statecode types, subitem pathname types), as well as byte strings of
length 8.

Representation in memory

BYTEandWORDalues are represented as one 32-bit word. Within stringsB¥6LEE values are
packed in one 32 bit word. Within strings, f@YTE values are packed in one 32 bit word, see
4.8.2.5.

LONG_WORMElues are represented as two consecutive 32—bit words.

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-22 von/of 4-96

4.8.1.8 Statecode Types

The set of legal values for a statecode type comprises the literals indicating the predefined states
discreteitems (e.g. on/off, open/closed, low/medium/high etc.). Statecodes are defined in the Missior
Database as attributes of the respective discrete items. In UCL, statecode constants are denoted
identifiers prefixed with a dollar sign ($), such$sCTIVE,$OFF ., see 4.1.2.5.

The special literal $$ mean® statecode valudt may be used e. g. as a default value for statecode
parameters or as an initial or dummy value for statecode variables. $$ is compatible to all statecoc
types, regardless of constraints.

Statecode types represemorderedsets of values, i.e. there is no defined less/greater relationship
between the statecode literals, and the relational operators cannot be used. The only allowed operati
on statecode values is comparison on equality and inequaliy].

Statecode types may be unconstrained or constrained.

* An unconstrained statecode tyje denoted by the keyworstatecode , it comprises all
possible statecode literals.

» A constrained statecode tyjmerestricted to a specific set of statecode literals. This is denoted
by the keywordstatecode , followed by the list of allowed literals in parentheses.

All declared statecode types are subtypes of the general predefinetatygoede

Formal Syntax

Statecode_Type "statecode” ["(" Statecode_List)"]
Statecode {”,” Statecode }
"$” Identifier

(see 4.1.2.2)

Statecode_List

Statecode

Identifier

Examples

type Code = statecode ; — unconstrained type
type Switch = statecode ($ON, $SOFF); — constrained type

variable S1 : statecode ; — unconstrained variable
variable S2 : Code; — unconstrained variable
variable S3 : Switch; — constrained

S1 := $HIGH;

S2 := $HIGH;

S3 := $HIGH; — not allowed, constraint violation
S2 := $ON;

S3 := $OFF;

Representation in memory

Internally, a statecode variable is represented by two 32—bit words containing the correspondin
statecode literal as an ASCII character sequence (up to 8 characters) in all upper—case, left—justifie
and padded with blanks. The literal $$ is represented as 8 blanks.

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
=205 —iarm Seite/ Page: 4-23 von/of 4-96

4.8.1.9 Types TIME and DURATION

UCL distinguishes between absolute and relative time references. Two predefined data types ai
provided:TIME, whose values are absolute points in time, RBRATION whose values are time
distances.

TIME values range from 1901 to 2099, the lowest and highest allowed values can be obtained with th
standard function®IIN(TIME) andMAX(TIME) . The resolution oT IME values is 1 nanosecond.

The typeDURATIONcomprised ONG_REALlvalues expressed in seconds, the lowest and highest al-
lowedvalues can be obtained with the standard functididyDURATION) andMAX(DURATION)
The predefined typPURATIONis declared as

type DURATION = LONG_REAL [s];

The following operations may be performedTdME/DURATION objects:

time + duration =time
duration + time =time
time — duration =time
time — time = duration
duration * real = duration
duration / real = duration

duration + duration = duration
duration — duration = duration

Furthermore, all comparison operations are provided for both types, e.g.:

time < time = boolean

duration < duration = boolean

Time values may be with or without a date. In the second case the date is ignored in any operation
If in an operation an operand is without a date, it is assumed to refer to the same date as the other op
and, e.g.

01.09.1997 13:00 — 12:00 = 3600.0 [s]

12:00 - 13:00 =-3600.0 [s]
The special time literat:~ denotesno time This may be used e.g. as a default valueTtttE
parameters or variables. It can only be compared on equaliky>§ and must not be used in other
operations.

Representation in memory

A TIME value is internally represented using two 32—bit words. They contain the following time
components in packed format in this order: year — 1900 (8—bit integer), month (4—bit integer), day
(5-bit integer), seconds since midnight (474ikéd point value with 17 bits before and 30 bits after

the decimal point). Times without a date are represented with the year, month and day fields = 0. Th
constant-:~ (no time) is represented with all bits in both words set to 1.

DURATIONvalues are represented lkONG_REAlvalues (see 4.8.1.4).

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= 5 — 1L rm Seite/Page: 4-24 von/of 4-96

4.8.1.10 Type COMPLETION_CODE

The predefined typEOMPLETION_CODIE an enumeration type defined as
type COMPLETION_CODE = (SUCCESS, FAILURE)

All characteristics and operations defined for enumeration types (see 4.8.1.11) apOIyVIRLE-
TION_CODEas well.

Representation in memory

COMPLETION_COD¥alues are represented like other enumeration typesSW@CESS- 0 and
FAILURE = 1.

4.8.1.11 Enumeration Types

An enumeration consists of an ordered sequence of identifiers. These identifiers are constants definir
the list of values that may be assumed by a variable of that type.

Enumeratedypes are ordered by the sequence of values in the enumeration (in the exampkdaklow,

is smaller or less tha@reen). In an enumeration with n elements, the first element has the ordinal
number 0 and the last element the ordinal number n—1. All comparison operators can therefore be us
on enumeration values, according to this ordering. Type conversions (see 4.12.4) can be used to conv
between an enumeration value and its ordinal number.

The predefined procedures/functidviN, MAXINC andDECmay be used for enumeration types, see
4.15.

NotethatBOOLEANINACOMPLETION_COD#&re enumeration types. Whenever an enumeration type
may be used, it includes these two types.

Formal Syntax

Enumeration = "(" Identifier_List ")”

Identifier_List = Identifier { ”,” Identifier }

Identifier = see4.1.2.2
Examples

type Color = (White, Red, Green, Blue, Black);
type State = (Ready, Active, Suspended);

Representation in memory

Enumeration values are represented INEEGER the 32-bit word stores the ordinal value.

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-25 von/of 4-96

4.8.1.12 Subrange Types

A subrange type denotes a restricted range of consecutive values from some other type (baed the
type) The latter must be one of the following typelNTEGER, UNSIGNED_IN-
TEGER,REAL,LONG_REAL,CHARACTE® enumeration type. They are not separate types, but
subtypes obther types. All characteristics and operations defined for the base type apply to the subtyp
as well. However, a value to be assigned to a variable of a subrange type must lie within the specifie
interval, otherwise a runtime error occurs.

A subrange type is specified by its bounds, i.e. the lowest and highest allowable values. The lowe
bound must not be greater than the upper bound, further they must be both specified as constants
constant expressions. Both bounds must be compatible with the given base type. The predefine
constant functionMIN andMAXmay be used to obtain the lower and upper bound, resp.

It is possible to define a subrange type of another subrange type. Then both subrange types have |
same base type, and the bounds of the new type must not lie outside the bounds of the old type.

A subrange type declaration is given by the name of the base type, followed by the range, enclosed
parentheses, as INTEGER (10 .. 100) . The two dots are part of the syntax.

Formal Syntax

Subrange
Qualified_ldentifier

Qualified_ldentifier "(" Constant_Expression "..” Constant_Expression ")"
see 4.3.4

Constant_Expression = see 4.12

Examples
type Index = INTEGER (0 .. 25);
type Light_Colors = Colors (Red .. Blue);
type Digit = CHARACTER (0’ ..’9");

Representation in memory

Subrange values are represented like values of their base type.

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-26 von/of 4-96

4.8.2 Structured Types

4.8.2.1 Array Types

An array is a structure consisting of a fixed number of components which are all of the same type. Eac
componentan be denoted and directly accessed by the name of the array variable followeattaythe
indexin parentheses, e.§(i) indicates the—th element of the array. For matricesA(i,j) or

A)() are both valid ways to access an element, wher¢he row, angl the column of the matrix.

The number of dimensions of an array is determined by the number of indices, it is not restricted b
the language. A runtime error occurs if the array index is outside the defined ranges.

Eachindex belongs to a specific index type. This must be a discretd WpEGER UNSIGNED _IN-
TEGER CHARACTERenumeration type or constrained statecode type). If a constrained statecode type
Is used as the index type of an array, the order in which the array components are arranged is not defin:
since statecode types are unordered. A program must not rely on a specific order.
An array type is specified in the form

array (index range) of element type

The index range may either be given as an explicit range in thedgrm max or as the name of
a discrete type. In the latter case the index range comprises all values of the type:

(1) array (min.. max of element type
(2) array (type_name) of element type

For statecode types, (2) is the only allowed form.

The type of an array element may itself be an array (this leads to multidimensional arrays). In that cas
the following two notations are identical:

(1) array (0..10) of array (0 ..20) of INTEGER
(2) array (0..10,0..20) of INTEGER

No operations are defined on array objects. They can only be assigned and passed as parameter:
subprograms.

The predefined functionsOWand HIGH can be used to determine the lower or upper bound,
respectively, of an array type or variable. For an array with more than one dimension, the bounds ¢
the second, third, etc. dimension can be obtained by specifying the dimension as the second parame
of LOWandHIGH.

Formal Syntax

Array_Type = Tarray” "(" Index_Range {",” Index_Range })" "of” Qualified_Identifier [Unit]
Index_Range = Constant_Expression "..” Constant_Expression | Qualified_Identifier
Constant_Expression = see 4.12
Qualified_ldentifier = see 4.3.4
Unit = see4.11and 4.1.2.10
Examples
type Row_Index = INTEGER (0 ..10);
type Col_Index = INTEGER (0 .. 20);
type Vector = array (1..3) of REAL;
type Matrix = array (Row_Index, Col_Index) of REAL;

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EA D S _— Uberarbtg./ Rev.:
35

- Datum/Date: 2010-01-29
—iarm Seite/ Page: 4-27 von/of 4-96

type Color = (White, Red, Green, Blue, Yellow, Cyan, Magenta, Black);
type RGB = Color (Red .. Blue);

type Bool_Array = array (Red .. Magenta) of BOOLEAN;

type Color_Table = array (Color, RGB) of REAL;

type Level = statecode ($LOW, SMEDIUM, $HIGH);

type Level Array array (Level) of REAL;

Examples of LOWand HIGH

variable V : Vector;
variable M : Matrix;
variable C : Color_Table;

LOW (Vector) =1 HIGH (Vector) =3
LOW (V) =1 HIGH (V) =3
LOW (Matrix, 1) =0 HIGH (Matrix, 1) = 10
LOWM,2) =0 HIGHM,2) =20

LOW (C,1) =White HIGH (C,1) = Black
LOW (C,2) =Red HIGH(C,2) =Blue

Aggregates

An array value may be written in form of aggregatewith the array elements enumerated in
parentheses:

(value, value, ..., value)

Aggregates of multidimensional arrays are expressed in nested form. A matrix is written as a vecto
of line vectors:

((value, value, ..., value), —line 1
(value, value, ..., value), — line 2
(value, value, ..., value)) — linen

A three—dimensional array as a vector of two—dimensional planes, which are written as vectors of lins
vectors. This concept is recursively applied to any dimensionality:

(((value, value, ..., value), — plane 1
(value, value, ..., value),

(value, value, ..., value)),

((value, value, ..., value), — plane n
(value, value, ..., value),

(value, value, ..., value)))

An empty aggregate (for an array with no element) is written as an empty pair of pareiitheses:
Aggregates are expressions, see 4.12.

Representation in memory

An array is represented as a sequence of its elements in their respective representation. Arrays w
more than one dimension are stored "column—wise”, i.e. such that for all index positions i and i+1
indices on position i+1 vary faster than on position i.

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-28 von/of 4-96

4.8.2.2 Record Types

Like an array, a record is a structured type. In a record, however, the components are not constrain
to be of identical type. In the record declaration, each component (or field) must be specified by a nam
(field identifier) and a type. To reference a field, the name of the record is followed by a period (dot)
and the respective field identifier, eBJRTHDAY.MONTH

Records may be nested. The scope of a field identifier is the innermost record in which it is defined
Hence, field identifiers (i.e. the names of record components) may be reused outside the scope of th
record definition.

A record type may have sevevalriants based on the values of a specific field tdgefield. These
variantsmay differ in the number and type of components and thus allow for alternate forms of the same
record. They are enclosed by the keywaralse andend case . Each keywordvhen introduces
a variant that is to be part of the record for the list of tag field values given after the keyword.

Note that changing the value of the tag field, e.g. by an assignment, may select a different variant ar
thus change the structure of the record variable. Access to fields outside the currently selected variat
I.e. to undefined components, may have unpredictatdetef This is not checked and may be used for
low—level programmingurposes to circumvent UCL's type checking mechanisms, exploiting the fact
that all variants occupy the same location in memory and thus "overlay” each other. This is not norma
programmingpractice and should be avoided. If necessary for special and exceptional cases, great ca
must be taken. For an example see chapter Libraries (4.16.2), example 2.

No operations are defined on record objects. They can only be assigned and passed as parameter
subprograms.

Formal Syntax

Record_Type = "record”
{ Fields }

"end” "record”

Fields = l|dentifier_List ".” Qualified_ldentifier [Unit] |
"case” Identifier ":” Qualified_Identifier

Variant_Part

”endH ”CaSe” 17;”

Variant_Part = {"when” Case_Label List":"{Fields}}
["else” { Fields }]

Case_Label_List = Case_Labels{",” Case_Labels}

Case_Labels = Constant_Expression ["..” Constant_Expression]

Identifier_List = l|dentifier { ",” Identifier }

Qualified_ldentifier = see 4.3.4

Identifier = see4.1.2.2

Constant_Expression = see 4.12

Unit = see4.11and 4.1.2.10

Examples
a) Simple record
record
Day . INTEGER,;

Month : INTEGER;
Year :INTEGER;
end record

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001
Datum/Date : 2009-02-01
Datum/Date: 2010-01-29

A be /| : 5
EADS, cgs pemrypoi
=

SErium Seite/Page: 4-29

von/ of

4-96

b) Record with variant parts

type Measurement_Type = (Analog, Discrete);
type Eng_Unit Type = array (1..4) of CHARACTER;

type Measurement = record
Channel_No : INTEGER,;

case Measure: Measurement_Type
when Analog:
Eng_Value: REAL;
Eng_Unit : Eng_Unit_Type;
when Discrete:
State : statecode ;
end case ;
end record ;

Representation in memory

A record is represented as the sequence of its fields in their respective representation. All variant
of the same variant part are mapped to the same location in memory. The size of a variant part

determined by its longest variant.

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-30 von/of 4-96

4.8.2.3 Set Types

A set is a collection of objects of the same type Ilfdnetype). The latter must be a discrete type with
at most 26values(i.e. a set may contain as many elements as can be expressed using an unsigned 16—
integer).

A set type declaration is denoted by the keywsedf followed by the appropriate type identifier.

A set constant is represented by a list of its members, enclosed in braces (curly brackets), and precec
by the respective type identifier (base type), EltarSet{’a’, b, ¢} . If the typeidentifier
is omitted, the predefined ty@dTSET is assumed, e.§3,5,15} is a literal of typeBITSET.

If the members of a set are consecutive values, they may be expressed as a rénger 8.9}
may be writter{5..9}

A set may have no members at all, in which case it is calleghtipgy seaind is writter{} .

The operations applicable setvariables are:

Operation Operator
set union +

set difference —

set intersection *
symmetric set difference /

set inclusion <=, >=
set comparison =, <>
membership tests in

Theunionof two sets is a set containing the members of both sets.

Thedifferenceof two sets is a set containing all the members of the first set that are not members o
the second set.

Theintersectionof two sets is the set of objects that are members of both sets.

Thesymmetric set differenad two sets is a set containing those elements that are members of exactly
one of the two sets (not of both).

The membership operator is used to test faet membershipn is treated as a relational operator.
The expressioh in S is of typeBOOLEANreturningTRUEIf | is a member of the s8&t

The predefined procedurd$CL andEXCL (see 4.15) may be used to include a member in, or exclude
a member from, resp., a set variable.

Formal Syntax

Set_Type = "set” "of” Simple_Type.
Simple_Type = see4.8
Examples
type Id = INTEGER (0 .. 100);
type Id_Set = setof Id;
type Traffic_Light = setof (Red, Green, Blue);

type Spectrum = setof Color;

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
=205 —iarm Seite/ Page: 4-31 von/of 4-96

Set Constants

A set constant may be written by enumerating the set elements in braces, with the type name precedi
the bracketed expression. Each element can be a constant expression:

type_name { value, value, ..., value }

Ranges of adjacent values may be written in the fesm last , €. 0.
Char_Set{a ..’z’,’A’..’Z’,"_}

An empty set is written as an empty pair of braces:
Char_Set {}

Representation in memory

A set is represented by a number of bits packed in one or more 32—bit words, one bit for each possib
member of the set. A member is present in the set, if its bit is set, it is absent otherwise. The firs
member is expressed by bit 0, the last member by bit n—1.

4.8.2.4 Type BITSET

The predefined typBITSET is defined as
type BITSET = setof INTEGER (0..31)

It thus represents a set of 32 elements, corresponding to the width of a storage unit. All operation
applicable to the set types equally applBtdSET (see 4.8.2.3), bBITSET has additional special
characteristics. It may be used to access a 32—bit storage word as a sequence ofi bith: bitef

a bitsetB, for example, is 1 ifi is a member oB, O otherwise. Values of tydBITEGERandUN-
SIGNED_INTEGERmMay be converted BBITSET and vice versa (see 4.12.4).

Examples
variable Flags: BITSET,
variable | : INTEGER;

i:.'lags :={3,5,12};
| = INTEGER (Flags);

Bitset Constants

Bitset constants are written in braces, like set literals (see 4.8.2.3), but the preceding type name m:
be omitted, e. g.

{1,3,5,7,9,20.. 31}
{0..31}

An empty bitset is written as an empty pair of braces:
{

Representation in memory

A bitset is represented like a set (see 4.8.2.3) in one 32-bit word.

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-32 von/of 4-96

4.8.2.5 String Types

String types are used to store character or byte sequences of variable lengths. A string type is declat
with the keywordstring , followed by the maximum length of the string in parentheses and,
optionally, an indication of the component tyfeHARACTERTI BYTBE. If the component type
indication is omittedCHARACTER assumed, so

string (80)
string (80) of CHARACTER

have identical meaning and denote character strings, whereas
string (80) of BYTE
denotes a byte string.

The actual length of a variable of a string type may vary between 0 and the declared maximum lengtl
The actual length may be obtained with the predefined funcBNGTH In a string, each 32 bit word
stores four consecutive characters or bytes.

One may access individual string elements like in array indexi&gsif string variable, the®(1)
denotes the first character or byte in the string. The first element has index 1 etc.

Strings of diferent lengths may be assigned and compared. If a string with an actual length longer thal
the maximum length of the target string is to be assigned, a run—time error occurs (i.e. there is no implic
truncation). A run—time error also occurs if one tries to assign or retrieve an element outside the actu;
length of the string.

Character string values are written as string literals of the’form and may contain any printable
ASCII characters. Byte string literals hav# prefix: #...” and may contain only an even number

of hexadecimal digits grouped with underscore and blank characters, see 4.1.2.7. An empty string
written as™ or#” , respectively.

Supported operations on string variables are comparison and the concatenation of two strings with tt
“+” operator. The comparison operater,s<=, >, >= compare strings in lexicographic order, based on
the ASCII values of the characters or on the unsigned numerical value of the bytes, respectively, e. |

"aux” > "attention” (character strings)
#'FF" > #"AA0012FF" (byte strings)

A character or byte is treated as a string of length 1, if it is concatenated with a string or another
character or byte, assigned to a string variable or constant, or passed as a string parameter, e.g.
"car” +'s’ = "cars”
a’+'b ="ab”
#AA_BB” + BYTE(255) = #’AA_BB_FF”
BYTE(1) + BYTE(2) =#0102"
The predefined functionsOWand HIGH can be used to determine the lower or upper bound,
respectively, of a string type or variabl®©Wwill always return 1HIGH returns the maximum length
of the string type or variable.

Substrings

In expressions, a substringli¢e) may be selected from a string by giving the substring index range in
parenthesed.he lower and upper bounds may be outside the actual index range of the string.The resu
is the part of the string that lies within the given bounds:

S(5..10) selectsrange 5 .. 10

S(-5..3) selectsrange 1 .. 3
S(1..0) selects an empty substring (lower > upper)

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-33 von/of 4-96

Formal syntax

String_Type = "string” "(" Constant_Expression ”)” [“of” Identifier]
Constant_Expression = see 4.12
Identifier = see4.1.22

Examples
variable S : string (255); — String with max. 255 characters
variable S80: string (80); — String with max. 80 characters

variable B : string (255) of BYTE; — String with max. 255 bytes
variable B80: string (80) of BYTE; — String with max. 80 bytes

S := "Hello world”;

S80 = S; — implies length check

S :=S80;

B =#";

B80 := B; — implies length check

B :=B80;

S(1) :="X} — replace first character in S
S80 :="Hello” +’’+S; — string concatenation
B(1) := 16#FF#; — replace first byte in B

B :=B+B80+BYTE(0); — string concatenation

Examples of substrings

S80 :=S(11 .. 20); — selects a character substring of length 10
B80 :=B(11 .. 20); — selects a byte substring of length 10

Examples of LOWand HIGH
type String_80 = string (80);

variable S 80 : String_80;
variable S : string (HIGH (String_80) + 20);

LOW (String_80) =1 HIGH (String_80) = 80
LOW (S_80) =1 HIGH (S_80) =80
LOW (S) =1 HIGH (S) =100

Representation in memory

A string is represented as one 32-bit word holding the actual length of the string as an unsigne
integer, followed by zero or more words holding a byte array with 4 bytes (characters) each, packe
in one word. The number of bytes is the maximum length of the string, filled up to a multiple of 4.

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-34 von/of 4-96

4.8.3 Pathname Types

The values comprised by pathname types are references to database objects themselves, not to tl
runtime value. Pathnames are regarded as literals that denote the values of these types. The spe
literal\\ meanso pathnamelt may be used e.g. as a default value for pathname parameters or as ar
initial or dummy value for pathname variabl@s. is compatible to all pathname types, regardless of
constraints or parameterisation (see below). Pathname values can be assigned and compared
equality €, <>).

Pathname types can be unconstrained or constrained:

* Anunconstrained pathname tymedenoted by the keywomhthname , it comprises all valid
pathnames.

» A constrained pathname typerestricted to a specific set of MDB item types. This is denoted
by the keywordgathname , followed by the list of allowed item types in parentheses. The item
types are represented by a special set of identifiers defined in the database: the item type name
Thesedentifiers may appear only in this specific context, they do not interfere with normal UCL
identifiers. The compiler will check that pathnames assigned to a variable, associated with &
constant or passed as a parameter are of one of the item types allowed for the target object.

All declared pathname types are subtypes of the general predefingzhthipame .

Formal Syntax
Pathname_Type

"pathname” ["(” Identifier_List)"]
Identifier { ”,” Identifier }

Identifier_List

Identifier = see4.1.2.2
Examples

procedure P (X: pathname); begin ... end P; — unconstrained

type Monitor_Item = pathname (EGSE_INTEGER_MEASUREMENT, — constrained
EGSE_FLOAT_MEASUREMENT,
EGSE_INTEGER_SW_VARIABLE,
EGSE_FLOAT_SW_VARIABLE);

type AP_ltem = pathname (UCL_AUTOMATED_PROCEDURE); — constrained

If a formal parameter is of a (possibly constrained) pathname type and followed by the@Yyntax

the actual parameter must be followed by its own actual parameter list (if one is declared within the
database). Such a formal parameter is then known to beavfmeterized pathnangpe. For such

a parameter, only pathnames of items that may have parameters can be passed. The property whe
or not an item can have parameters is an attribute stored together with the item in the databas
Parameters of a parameterized pathname type can only be ofimgdee 4.14.1). Whithin the
subprogram they may be accessed as parameterized items (passed to other subprograms)
non—parameterized items, e.g assigned to a variable or passed to a subprogram that requires
non—parameterized item as parameter.

Examples
procedure Acquire (Item : Measurement); ... — non—parameterized item
procedure Execute (AP : AP_ltem()); ... — parameterized item

Note that all checks concerning constraints and parameterisation of pathname types are performed
compilation time, not at runtime. Whenever a pathname value is assigned to a variable or passed a:
parameter, it ishecked that the type of the source value has at least the constraints of the target objec

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001
C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-35 von/of 4-96

Example

type Measurement = pathname (EGSE_INTEGER_MEASUREMENT,
EGSE_FLOAT_MEASUREMENT);

procedure P (X: pathname ; Y : Monitor_ltem; Z : AP_ltem());

variable P: pathname ;
variable M : Measurement;
variable A : AP_ltem;
begin
P :=X; — OK. P may be assigned any type of pathnames ...
P:=Y;
P.=z — ... even parameterized pathnames
M:=Y; — Error: M is more constrained than Y
M :=X; — Error: X is not constrained at all, but M is
A:=2Z — OK. Non—parameterized access to parameterized item
Execute (Z); — OK. Z is parameterized and thus accepted by Execute
Execute (A); — Error: A is not parameterized, even if Z was assigned.
end P;

Representation in memory

Non—parameterized pathname values are represented as one 32-bit word contastogt the
identifier (SID) of the item as an unsigned integer.

Parameterized pathname values can only occur as parameters to a subprogram. When tl
subprogram is called,@arameter blocks constructed in memory that describes the item together
with its actual parameter list, and the address of the parameter block is passed to the subprogra

The parameter block conforms to theernal parameter encoding scheredescribed in reference
document 2.2.2.

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-36 von/of 4-96

4.8.4 Subitem Pathname Types

The values comprised by subitem pathname types are references to subitems of database obje
themselvesnot to their value. Subitem pathnames are regarded as literals that denote the values of the
types. Subitem pathname values can be assigned and compared on equatity (

Subitem pathname types can be unconstrained or constrained:

* Anunconstrained subitem pathname tygpdenoted by the pattegpathname .* | it comprises
all valid subitem pathnames.

» A constrained subitem pathname typeestricted to a specific set of MDB item types. This is
denoted by the patterpathname .* , followed by the list of allowed subitem types in
parentheses. The subitem types are represented by a special set of identifiers defined in tt
database: theubitem type names. These identifiers may appear only in this specific context, they
do not interfer with normal UCL identifiers. The compiler will check that subitem pathnames
assigned to a variable, associated with a constant or passed as a parameter are of one of -
subitem types allowed for the target object.

All declared subitem pathname types are subtypes of the general predefingatiy@ene .* .

Formal Syntax
Pathname_Type

"pathname” ".” ™" ["(" Identifier_List ")"]
Identifier { ”,” Identifier }

Identifier_List

Identifier = see4.1.2.2

Examples
type Subitem = pathname .*; — unconstrained
type Input = pathname .* (FB_IO_INPUT); — constrained to FB_1O_INPUT
procedure P (X: pathname .*); begin ... end P; — unconstrained parameter
procedure Q (X: Input); begin ... end Q; — constrained parameter

Note that all checks concerning constraints of subitem pathname types are performed at compilatic
time, not at runtime. Whenever a subitem pathname value is assigned to a variable or passed a:
parameter, it ishecked that the type of the source value has at least the constraints of the target objec

Example
procedure P (X: pathname .*; Y : Input);
variable P: pathname .*;
variable I Input;
begin
P.=X; — OK. P may be assigned any type of subitem pathnames ...
P:=Y,; —
I:=X; — Error: X is not constrained at all, but | is
1=, — OK. Same constraints on both sides
Q (X); — Error: Formal parameter is constrained, but X is not
Q (Y); — OK. Formal and actual parameter have same constraints
end P;

Representation in memory

Subitem pathname values are represented as two 32—bit words: the first contains the short identifi
(SID) of the database item, the second the subitem identifier, both as unsigned integers.

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-37 von/of 4-96

4.8.5 Inherited Types

An inherited typanherits thesoftware typg= UCL type) of a database item, defined together with the
item in the datbase. Note that only items with access ¢dSaD andREAD/WRITE have a software

type, see 4.3.6 for a description. An object (variable, constant, parameter) declared with an inherite
type thus has the same type properties as the corresponding database item, including any constrai
and engineering units.

Formal Syntax

Inherited_Type = "type” "of” Name (Name is a, possibly aliased, pathname)
Name = see4.34
Example

type Voltage= type of \APM\FLTSYS\MEAS\Volt1;
variable V : Voltage; — V has the same type as \APM\FLTSYS\MEAS\Voltl

V := X; — implies a check against the constraints of \ APM\FLTSYS\MEAS\Volt1

Representation in memory

Inherited types are not separate types. They always correspond to one of the above described tyy
and are represented like these.

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-38 von/of 4-96

4.8.6 Compatibility of Types

4.8.6.1 General Rules

Whenever aalue is assigned to a variable, passed as a parameter to a subprogram or used as an oper
in an operation, it is required that it bempatibleto the target object or to other operands in the
operation. WQually, two objects are compatible if they are of the same type, they are incompatible if they
are of different types.

Two types declared in different type declarations are considered different and incompatible types, eve
if the declarations are identical, except in the following cases:

» The type is declared to be identical to another type. In this case both type identifiers denote th
same type.

» The type is declared to constrain some other type. In this case the type is a subtype of the oth
type. All subtypes of the same base type are compatible to the base type and to each other.

For some closely related types, a value of one type is implicitly converted to the other type, if needec
 INTEGERandUNSIGNED INTEGERypes are always compatible.
« REALandLONG_REAltypes are always compatible.
« CHARACTERalues are compatible to string values in certain contexts (see 4.8.2.5).

Values of certain types may be explicitly converted to certain other types, without violating the strict
UCL typing rules (see 4.12.4).

For formal array and string parameters of subprograms there are "open” forms that allow for less
restrictive compatibility rules (see 4.13.2 and 4.12.3).

For unitized types, in addition to type compatibility, compatibility and commensurability of the
involved measurement units must be observed (see 4.11).

Examples
type Arr_1 = array (1..10) of REAL; — different types,
type Arr 2 = array (1..10) of REAL; — although textually identical
type Number = INTEGER; — identical types
type Arr 3 = Arr_l; — ..
type Short = INTEGER (0..2*16 —1); — subtypes ...
type Switch = statecode ($OFF, $ON); —.
type Node = pathname (EGSE_NODE); —..
type Input = pathname .* (FB_IO_INPUT); — ..
variable Al : Arr_1; — Al and A2 are incompatible
variable A2 : Arr_2;
variable A3 : Arr_1; — A3 and A4 are compatible

variable A4 : Arr_3;

Expressions are always evaluated in terms of the base type of the operands (see 4.12), constraints
therefore not relevant. But when a value is assigned to a variable, or passed as a parameter tc
subprogram, it is checked that the value does not violate the constraints of the target variable (se
4.13.1) or formal parameter (see 4.13.2 and 4.12.3).

The check whether a value violates a constraint is normally performed at runtime. If the value is ¢
constant, und hence known at compile time, the check will be done by the compiler. Pathname an

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
=205 —iarm Seite/ Page: 4-39 von/of 4-96

subitem pathname constraints are always checked at compile time (see 4.8.3 and 4.8.4), in order
avoid database queries at runtime which would otherwise be necessary to complete the check.

4.8.6.2 Structural Compatibility

When accessing structured runtime values of database items, the strict compatibility rules describe
above cannot be applied: e.g. a local array value would always be incompatible to the array value c
a database item, since their types can never stem from the same type declaration.

For this case a less restrictive compatibility concept, catlettural compatibilityis applied. Two
types are structurally compatible, if they have identical structure, e.g. for array types the index types
index range and element types must be identical.

Example
type Matrix = array (1..3,1..3) of REAL;
variable M : Matrix;

M :=\APM\EGSE\DATA\M1;

The assignment is legal,Mand the database item are structurally compatible, i.e. if the type of the
database item is structurally identical to the tiyfaerix

Note that in order to assure equal types, the type of the database itemrdaaritexi(see 4.8.5).

Example
type Matrix = type of \APM\EGSE\DATA\M1; — type inherited from database
variable M : Matrix;

M :=\APM\EGSE\DATAWM1; — M and \APM\EGSE\DATA\M1 have the same type

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= 5 — 1L rm Seite/Page: 4-40 von/of 4-96

4.9 Variable Declarations

A variable declaration associates a variable with a unique identifier and atygetaThe type
determines the set of values that the variable may assume and the operators that are applicable; it
defines the structure of the variable (see 4.8, Type Declaration).

In a variabledeclaration, either predefined type, as in example (a), or a named user—defined type may
be specified, as in example (b). String variables may be declared directly, where the maximum lengt
is specified within the variable declaration, see example (c).

A variable declaration is introduced by the reserved warthble | followed by the name of the
variable (an identifier). A colon (™) introduces the type. Optionally, the variable may be given a
constantnitial value indicated with the assignment symback (7). If no initial value is given, the value

of the variable is undefined. Using an uninitialized variable is an error that is not automatically detected

Formal Syntax

Variable_Declaration "variable” Identifier ”:” Variable_Type [":=” Constant_Expression] ;"

Qualified_ldentifier [Unit] |

Variable_Type

String_Type |
"statecode” |
"pathname” [".” "*"]
Identifier = see4.1.22
Constant_Expression = see 4.12
Qualified_lIdentifier = see 4.3.4
Unit = see4.11and 4.1.2.10
String_Type = see4.8.25
Examples

(a) variable declaration with predefined types:

variable Index: INTEGER;
variable State: statecode

(b) variable declaration with user—defined types:

type Primary_Color = (Red, Green, Blue);
variable Color : Primary_Color;

(c) string variable declaration:

variable s: string (80);

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-41 von/of 4-96

4.10 Alias Declarations

An alias declaration associates a simple name (an identifier) with a complex name that includes
pathname, and thus provides a shorthand for the long name. The alias name may then be used inst
of the corresponding long name. The long name may be one of the following:

e a pathname
alias Lib =\EGSE\VICOS\SYSTEM\GROUND_LIBRARY;

The pathname may be incomplete, i.e. denote a virtual node in the database name tree. In this ce
the alias may be used as a prefix in other pathnames:

alias System = \EGSE\VICOS\SYSTEM,;
alias Lib = System\GROUND_LIBRARY;
* a subitem pathname
alias Input_1 =\APM\SIMULATION\PAYLOAD\EQUIPMENT_UNIT_A.INPUT _1;

» a qualified name (an identifier prefixed with the pathname of an imported module, e.g. a library)

import \EGSE\VICOS\SYSTEM\GROUND_LIBRARY;
alias Issue = \EGSE\VICOS\SYSTEM\GROUND_LIBRARY.Issue;

Note that for any compilation unit the name (identifier) of the unit is implicitly declared as an alias for
the pathname of the unit (see 4.16.1, 4.16.2 and 4.16.3). When importing a library or some othe
module, the name alias of the module is imported together with the other identifiers from the module
and may then be used instead of the long pathname:

import \EGSE\VICOS\SYSTEM\GROUND_LIBRARY;
alias Issue = Ground_Library.Issue;

Formal Syntax

Alias_Declaration = "alias” Identifier "=" Name ;"
Name = see4.34
Identifier = see4.1.2.2

Please note that the Mission Database may itself predefine a set of aliases, called “nicknames” (st
4.3.3). These predefined aliases may be used like any user declared alias.

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-42 von/of 4-96

4.11 Unitized Values and Types

The types and values introduced in the previous sections were all refeumtieass valuesUCL also
provides the facility for defining and operatingwmitized values,e. real or integer values associated
with aunit of measureThis facility improves the readability of the source code and at the same time
enables additional semantic checking at compilation time.

4.11.1 Units of Measure

Every measurement system defines a numbbasé uniteach describing a physical quantity. The
currently world—wide used unit system is the Sl system, which defines 7 basenetéito measure

the lengthsecondo measure the timkilogramto measure the mass etc. It is standardized under ISO
1000. The units of measure in UCL are based on this International Standard.

All other units can be derived from the base units by multiplication or division of two or more base units
or by multiplication and/or addition with constants. Such units are adieded unitsFor example,
the unitvolt is defined as:

(m2 *kg) /(s 3*A) or m2*kg l*s -3*A -1

The second expression shows that derived units are products of base units raised to positive or negat
integer power.

The same physical quantity can be described by more than one unit. For example, the length can |
measured imeters or in inches. Such units are catlechmensurable unit3hey are assignment com-
patible. The UCL compiler automatically converts between commensurable units. This is explainec
later in more detail.

UCL predefines the seven base units defined by the international system of units (Systéme Internatic
naled’Unités, Sl), but allows the user to define additional base units. It can handle all units derived from
these base units by means of the usual arithmetical operations, as shown above. Additional unit nam
can then be defined for units derived from existing units by means of UCL unit declarations.For a defi-
nition of the Sl base units, see the ISO 1000 standard, annex B.

Quantity Unit Sl symbol UCL symbol
length meter m m

mass kilogram kg kg

time second S S

electric current ampere A A
temperature kelvin K Kabs
temperature difference kelvin K K

amount of substance mole mol mol
luminosity candela cd cd

Note the distinction made betwemperatureandtemperature differenc@xpressed with different
UCL unit symbolKabs (= K absolute) an#. This is necessary to allow conversions betweeR@.g.
and K. Theemperaturaelationship ®C = 273.15 K is not reflected feemperaturalifferenceswhere
1°C=1K.

4.11.2 Counting Units

Beside the normal physical units, UCL suppeordanting unitdike pair or dozen These are pseudo—
units that represent a grouping of non—dimensional quantities. All counting units are commensurabl
with one another and with pure scalar values. They are resolved to scalar values whenever appropria

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= 5 — 1L rm Seite/Page: 4-43 von/of 4-96

4.11.3 Predefined Units

Within a target system based on UCL, there are two groups of predefined units:

* UCL predefined
UCL itself predefines only the names of the seven Sl base units. These are available and identic
in any UCL based system.

» Project predefined
The target system may predefine further, project specific, unit names (both new base units an
derived units) by means of the Mission Database. These units must not overwrite Sl base units

Both of these groups of units are automatically available in any UCL compilation unit and need not be
declared by the user.

4.11.4 Unit Declaration

New base units can be defined in the form
unit [unit_identifier I

and new identifiers for derived units can be declared in a unit declaration, which takes the form
unit [unit_identifier 1=[unit_expression IK

Units cannot be declared local to a procedure or function. Unit names are always global. For conve
nience itis, however, possible to redeclare an existing unit name, but only identical to the existing unit.

Formal syntax

Unit_Declaration = "unit” "[* Unit_ldentifier "]" ["=" Unit]";"
Unit = "[” Unit_Expression "]”
Unit_Expression = [Numerator ["/” Denominator] ["+” Offset | ™" Offset]]
Offset = Number [/" Number]
Numerator = Unit_Term |
"(” Unit_Term)"
Denominator = Number |
Unit_Factor |
”(H Unlt_Term H)”
Unit_Term = [Number] Unit_Factor { Unit_Factor } |
Number
Unit_Factor = Unit_ldentifier { Digit }
Unit_ldentifier = Letter { Letter }

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= 5 — 1L rm Seite/Page: 4-44 von/of 4-96

4.11.5 Unit Syntax

A unit is expressed with a syntax production defined somehow like a string with an imposed syntax
enclosed in bracket§ *and 7 .

Note that no space may be used betweerUtlie Identifier and the followingDigit in the syntax
productionUnit_Factor. A Unit_ldentifier is composed of letters only.

The following conventions are used for unit expressions:

Identifiers are case sensitive: mA, MeV
Multiplication is denoted by a space: kgm, Nm, 1000 m
Division is denoted by a slash ("/"): m/s, 1/s

Exponentiation is denoted by an attached digit: m3, s2
For numbers, reals or integers may be used: 0.0254 m, 10 degC/18 — 320/18

An expression with + or — createsasoluteunit: Kabs + 273.15
(it defines the offset of the two zero points)

A single number defines a counting unit: 12 (for dozen)

Parentheses may be used to clarify the order of evaluation, but no nested parentheses are supporte
keep a unit expression as clear as possible. Also, only one division (both for the unit and the offset) |
allowed in a unit expression, thus avoiding ambiguous expressions.

Please note that factors and offsets may only be used within the defining unit expression in a un
declaration, but not as a unit literal otherwise. Thus, while the faoo®m] and[12] are legal as
the defining part in the declarations

unit [km] =[1000 m];
unit [doz] =[12];
they are not in expressions liked [1000 m] and2.0 [12] . Instead, usel.0 [km] and
2.0 [doz]
Examples
unit [bit]; — new base unit bit
unit [Byte] = [8 bit]; — unit Byte derived from bit
unit [N] =[kg m/s2]; — Newton
unit [Pa] =[N/m2]; — Pascal
unit [km] =[1000 m]; — kilometer
unit [degC] = [Kabs + 273.15]; — degrees Celsius
unit [degF] =[10 degC /18 — 320/ 18]; — degrees Fahrenheit
unit [doz] =[12]; — dozen

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-45 von/of 4-96

4.11.6 Unitized Types

In type declarations, a unit clause is used to indicate a unitized—value typdigad typefor short).
The associated type is given first, then a unit expression. Variables and constants declared to be o
unitized type are bound to values of the respective physical dimension.

Examples

type Furnace_Temperature = REAL [Kabs];
type Coolant_Temperature = REAL [degC];

type Power = REAL [m2 kg/s3];

type Dozen = REAL [doz];

constant Freezing_Point : Furnace_Temperature := 0.0 [K];
variable Curr_Power : Power := 0.0 [m2 kg/s3];
variable Count : Dozen;

OnlyREAL LONG_REALINTEGERandUNSIGNED_ INTEGERtypes may be "unitized”, i.e. asso-
ciated wth a unit of measure via a unit expression. A unitized type may be part of a structured type (e.g
array, record); however, the structured type itseist not be unitized. Thus, in the following example:

type Rval_Array = array (Lo .. Hi) of REAL;
type Temperature_Array = Rval_Array [degC]; — not allowed !!!
type Voltage Array = array (Lo .. Hi) of REAL [V];

the type declaration fremperature_Array is invalid; the type/oltage_Array , on the other
hand, is a valid UCL construct.

In type, variable and constant declarations, a unit clause is used to indicate a unitized—value type (i
unitized typefor short). The associated type is given first, then a unit expression.

4.11.7 Unitized Variables and Constants

UCL also allows variables and constants to be associated directly with a unit of measure. This is synta
tically analogous to declaring an unnamed structured type. For example,

constant Max_Speed : REAL [m/s] := 1000.0 [m/s];
variable Mass : REAL [kq];

The variable declaration associates the varighte with the mass unit kilogram. This variable is com-
patiblewith other variables of typ@EALwhich are associated with a unit commensurable to kilogram.
Unitized types are forbidden in such declarations. For example,

variable Temp: Furnace_Temperature [degC];

is not allowed, becausaurnace_Temperature is already a unitized type.

4.11.8 Compatibility of Unitized Types

Two unitized types are compatible, if the types are compatible without the unit and the two units are
commensurable, i. e. of the same physical dimension. A type conversiaohuoéts the value to the
representation of the other type and rescales the value to the other unit, if necessary. Types that are i
plicitly converted to each othelNTEGERUNSIGNED_INTEGERand REALULONG_REA} will

also be implicitly converted, if they are associated with a measurement unit.

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-46 von/of 4-96

4.11.9 Unitized Literals & Constants

In the UCL source code, unitized values may be formed by suffixing a real or integer value with their
appropriate unit, which is written in brackets in the syntax described below.

As stated above, it is possible to derive other units using #&mel/ operators, offsets and exponenti-
ationswith integer numbers. Suehit expessiongdescribed below) must be enclosed in square brack-
ets.They follow a syntax which allows unit expressions as close as possible to the normally used scier
tific syntax, as defined in ISO 1000.

Examples:
10.0 [degC], 1.3E+3[K], 35.5 [m/s], 100.0 [m2 kg/s2], 2.0 [doz]

4.11.10 Expressions with Unitized Values

Unitized values can be used in arithmetical expressions according to the following rules:

* In assignments both operands must have commensurable units. The UCL compiler converts uni
as necessary. Example:

variable X : REAL [Kabs];
X :=25.0 [degC]; — automatic conversion from Celsius to Kelvin

 In additions or subtractions both operands must have commensurable units. The UCL compile
converts units as necessary, choosing the “smaller” (finer) of the two units as the resulting unit
The other operand is adapted (converted) to this smaller unit before the operation is performec
Note that counting units are commensurable with unitless values. When different counting units
are involved, those operands are converted to scalars.

Special treatment is needed to handle conversion between temperatures correctly, as there &
temperatureand temperature differences. Also, special conversion rules apply to measurements
of temperatures because the subtraction of two temperatures yields a temperature difference, f
any other unit it results in the unit itself. Examples:

100.0 [Kabs] — 90.0 [Kabs] = 10.0 [K]
100.0 [Kabs] — 10.0 [K] = 90.0 [Kabs]

100.0 [Kabs] + 10.0 [Kabs] is invalid!
100.0 [K] - 10.0 [K] = 90.0 [K]
100.0 [K] + 10.0 [K] = 110.0 [K]

» Likewise, for comparison operations, the operands are adapted to the smaller of the involve
units. When different counting units are involved, those operands are converted to scalars.

» The same holds for thdIN andMAXfunctions (see 4.15): All operands are adapted to the small-
est of the involved units, values with counting units are converted to scalars.

* In multiplications the operands can be of different units. The result is another unit or a unitless
value.Values with counting units are converted to scalars. Examples:

(a) force * length- work, or in units: Newton * Meter. m2* kg *s2 = Joule
(b) duration * frequency- unitless value.

But note that the resulting unit is always normalized to contain base units only.

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

EADS
205

| cgs

— I rm

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001
Ausgabe /Issue: 5 Datum/Date : 2009-02-01
Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
Seite/Page: 4-47 von/of 4-96

 In divisions the operands can be of different units. The result is another unit or a unitless value
Operands with commensurable units are adapted to the smaller of the involved units before pel
forming the operation. Values with counting units are converted to scalars. The resulting unit is

always normalized to contain base units only.

» Any unitized value can be multiplied with or divided by a unitless value. The resulting unit is the
unit of the unitized operand.

* In exponentiations the unitized values can be raised to constant integer powers only. This oper:
tion is equivalent to a multiplication or division of values with the same unit. It results in a new
unit, which will be normalized to contain base units only. Operands with counting units are con-
verted to scalars.

Examples:

unit
unit

unit

unit
unit
unit
unit
unit

type

[bit], — base type bit
[px]; — base type pixel

[Byte] = [8 bit];

[degC] = [Kabs + 273.15];
[km] =[1000 m];

[h] =13600 s];

[mi] =[1.609 km];

[doz] =[12];

Temperature = REAL [degC];

type Voltage
type Speed

= REAL [V];
= REAL [m/s];

type Acceleration = REAL [m/s2];

type Dozen

= REAL [doz];

type Color_Depth = INTEGER [bit/px];

constant Max_Voltage: Voltage := 100.0 [V];
variable T : Temperature;
variable V : Voltage;
variable S : Speed;
variable A : Acceleration;
variable M : REAL [m];
variable D : Dozen;
variable C: Color_Depth;
T := 37.5 [degC];
T:=105[V]; — invalid because T is of type TEMPERATURE;
D := 24.0; — assigns 2.0 [doz]
V :=\A\B\C; — valid only if \A\B\C refers to an MDB item
— of the appropriate type ('voltage’ measurement)
if V>5.0[V] then ...
M :=50.0 [km]; — commensurable units are converted by the compiler
S:=M/0.5[h]; — [m]/[h] —>[m/s]
A:=S/2.0[hj; — [m/s]/ [h] —> [m/s2]
C := 24 [bit/px];
C := 3 [Byte/px]; — implies a conversion [Byte/px] —> [bit/pX]

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-48 von/of 4-96

4.11.11 Unitized Integer Values

Integer values with units require special care:

* In expressions with unitized integer or unsigned integer values, integer arithmetic applies, like
for non—unitized values.

5[m]/2[s]=2[m/s]
* When converting between commensurable units, the resulting value will be rounded to the
nearest integer:
1[mis](- 3.6 [km/h]) ~ 4 [km/h]
3[m] (- 4.82803 [km]) - 5 [km]

» Expressions with mixed commensurable units may imply inadvertent unit conversions that leac
to loss of precision and, even worse, to unwanted zero values. The rules given in 4.11.10 try t
reduce such loss as much as possible, but cannot avoid it completely:

variable K :INTEGER [km];

K:=@Qkm]+1[mi)/2; —=@[km]+2[km])/2=2[km]
K :=1 [km] — 400 [m]; — =1000 [m] — 400 [m] = 600 [m] = 1 [km]
K:=1[km/h] * 1 [s] — =1[1000/3600 m] =0 [m] =0 [km]

» Unit conversions and normalizations can much more easily lead to overflows or underflows thar
for unitized real values.

» Divisions whose operands have units that are not commensurable but have common base uni
like
1 [km/h] / 1 [min]

present &pecific problem. Due to its internal unit representation, the compiler cannot decide how
to adapt these units to each other. Expressions of this kind are therefore not allowed.

This does not affect division of “unrelated” units like
1[kg m]/1s] =1 [kg m/s]

* The right operand of th#(mod) operator must not be unitized:

5M%2=1[m] — OK
5[m] % 2 [s] — not allowed!

* The increment parameter of ti¢C andDECfunctions (see 4.15) must not be unitized:

X:=2[mls];
INC (X); — OK: X =3[m/s]
INC (X, 2); — OK: X=5[m/s]

INC (X, 2 [m/s]); — not allowed!

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= 5 — 1L rm Seite/Page: 4-49 von/of 4-96

4.12 Expressions

Expressions are syntactical constructs used to calculate values of variables or generate new valut
They represent combinations @berandsandoperatorswhereby an operand may itself contain an
expression; i.e. expressions can be constructed recursively.

At runtime, when the expression is evaluated, the respective current values denoted by the operan
are combined using the specified operators to yield a new value. An error will occur if the computec
value cannot be represented on the current target machine (e.g. division by zero).

The arithmetical operators, e.g., applietNGEGER UNSIGNED INTEGERREALorLONG_REAL
operands fornarithmetical expressionsvhereas the logical, relational and some set operators together
with their respective operands yidddolean expressions

If an MDB object is used in an expression (througtahname designatprits meaning depends on
the expected target type:

 If the target type is a pathname type, the pathname stands for itself as a reference to the item

» Otherwise the pathname denotes the runtime value of the item. The item must then be accessik
in READ or READ/WRITE mode (see section 4.2).

The same holds, analogously, for subitem pathnames.

Formal Syntax

Expression = Relation { "&" Relation } |
Relation { "|” Relation } |
Aggregate
Aggregate = "("[Component {",” Component }]")"
Component = [Identifier ":"] Expression
Relation = Simple_Expression

["=" Simple_Expression |
"<>" Simple_Expression |
"<” Simple_Expression |
"<=" Simple_Expression |
">" Simple_Expression |
">=" Simple_Expression |
"in” Simple_Expression]

Simple_Expression = ["+"|"-"]Term {"+” Term | "-" Term }
Term = Factor { "*" Factor | /" Factor | "%" Factor }
Factor = Primary [™*" Factor]
Primary = Number [Unit] |

String |

Character |

Set_Constant |
Date [Time] | Time
Statecode |
Designator |
Function_Call |
Type_Conversion |
"(” Expression ") |
"~" Primary

Designator = Name {".” (Identifier | (" Expression_List ")") }

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

i rm Seite/Page: 4-50 von/of 4-96
Slice = Designator "(” Expression “..” Expression)"
Name = see4.34
Expression_List = Expression {",” Expression }
Number = Simple_Integer |
Based_Integer |
Real
Identifier = see4.1.22
Simple_Integer = seed.1.24.1
Based_Integer = seed.1.24.1
Real = see4.1.2.4.3
String = see4.1.2.7
Character = see4.1.2.6
Set_Constant = see4.823
Date = see4.1.2.8
Time = see4.1.2.8
Statecode = see4.1.25
Function_Call = see4.12.3
Type_Conversion = seed.124
Unit = see4.11

Constant expressions

An expression may be required to be constant. Constant expressions are expressions whose opera
are all constants or constant expressions, such that its value can be determined at compilation time

Constant_Expression = Expression

4.12.1 Operands

The various components of an expression are cajedands Valid operands are
* literal constants (see 4.1)
» declared or imported constants (see 4.4 and 4.2)
» declared or imported variables (see 4.9 and 4.2)
e array components (see 4.8.2.1)
 array aggregates (see 4.8.2.1)
» substringsgliceg (see 4.8.2.5)
» record components (see 4.8.2.2)
 MDB items and subitems (see 4.3.6)
 function calls (see 4.12.3)
* type conversions (see 4.12.4)
* expressions

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
=205 —iarm Seite/ Page: 4-51 von/of 4-96

4.12.2 Operators

Thereexists gorecedence hierarchggmong operators. It determines the order of evaluation of operands
in an expression. The “not” operator and the exponentiation operator have the highest precedenc
followed by the so—called multiplying operators, the so—called adding operators and the relationa
operators. Boolean operators have the lowest precedence. Sequences of operators of the sa
precedencare evaluated from left to right, except for sequences of exponentiation operators which are
evaluated from right to left. The order of evaluation may be altered by using parentheses.

The precedence of operators is:

(highest) 1) ~ + — ** Boolean negation, unary +/—, exponentiation
2) *| % multiplying operators
3) + - adding operators
4) = <> <<= > >= in relational operators
(lowest) 5) & | Boolean operators
Examples
(I+J)*K — INTEGER/UNSIGNED_INTEGER expression
~A|B —same as (~A) | b
I=1]J=1 —sameas(1=1)|(J=1)
A**N + B — same as (A**N) + B
AFN**M — same as A**(N**M); — ** associates right to left
A*N*M — same as (A*N)*M; — * associates left to right

4.12.2.1 Arithmetical Operators

Symbol Operation

+ addition

— subtraction

* multiplication
/ division

** exponentiation
% modulus

All operators apply to variables of the tyiNTEGER/UNSIGNED_INTEGERand their subranges.
The operators, —,* ,** and/ apply toREALandLONG_REAlvariables. The operatots—, * and

/ apply toTIME andDURATIONvariables as well. For exponentiation, however, the right operand
(calledthe exponent) must be of the typeTEGER/UNSIGNED _INTEGERand the result type is the
type of the left operand. Further, the operatoesxd— may be used as unary operators to denote the
sign of a number.

Integer division and modulus are defined by the relation:
A = (A/B)*B + (A % B)

where (A % Bhas the sign of A and an absolute value less than the absolute value of B. During divisions
and modulus operations, a runtime error occurs if the right operand is zero.

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-52 von/of 4-96

4.12.2.2 Concatenation Operator

Symbol Operation

+ string concatenation

This operator joins two strings of the same base type, i.e. string literals, string constants or variable
or string elements (characters, bytes). The result is a string containing the left and right operanc
concatenated.

4.12.2.3 Logical or Boolean Operators

Symbol Operation

| logical or
& logical and
~ logical negation (unary operator)

Their operands must have the tfR®OLEANThe definition of the Boolean operat&snd| is as
follows:

p &q-= if p then g else FALSE
plag-= if p then TRUE else q

This definition implies that the second operand will not be evaluated if the result is already known from
the evaluation of the first operanshrt—circuit evaluatioh

4.12.2.4 Relational or Comparison Operators

Symbd Operation

= equal
<> unequal
< less

<= less or equal
>= greater or equal
> greater

These operators are applicable to all ordered typesNiT&GER UNSIGNED_INTEGERREAL,
LONG_REALCHARACTERIME and enumeration types. They may also be used for string operands
and (excepk and>) for set operands. The equality operandsd<> can also be applied to statecode,
set, pathname and subitem pathname operands, as waSNaBsEONVORRNALONG_WORd&perands.

4.12.2.5 Set Operators

Symbol Operation

in contained in

+ set union

— set difference

* set intersection

/ symmetric set difference

<= inclusion (left operand included in right operand)
>= inclusion (right operand included in left operand)

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

EADS -
=25

— I rm

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
Seite/Page: 4-53 von/of 4-96

4.12.3 Function Calls

Like a procedure, a function is invoked by its name followed by the appropriate actual parameters. I
contrast to a procedure call, which denotes an action, a function call returns a value and correspon:
therefore to an expression. The specification of actual parameters in functidioltalighe same
syntax rules as in procedure calls (see 4.13.2).

Formal Syntax

Function_Call =

Actual_Parameters=

Qualified_ldentifier [Actual_Parameters]

"(" [Parameter { ",” Parameter }]")”

Parameter = [Identifier ;"] Expression
Qualified_ldentifier= see 4.3.4
Identifier = see4.1.22
Expression = seed.12
Examples
X := Average (First_Val, Last_Val); — function "Average”
if Is_Empty (Buffer) then ... — Boolean function "Is_Empty”

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= 5 — 1L rm Seite/Page: 4-54 von/of 4-96

4.12.4 Type Conversions

Expressions of one type may be converted to certain other types. UCL provides the following types o
conversions:

* high level conversions between closely related types,
» low level conversions to circumvent typing rules,
 string conversions to convert between values and their textual representation.

4.12.4.1 High Level Conversions

High level conversions preserve the strong typing properties of the language, they can only be dor
between closely related types.

A type conversion is specified by prefixing the expression to be converted (in parentheses) with the
name of the target type (one of the above). A type conversion is an expression, syntactically i
corresponds to a function call.

Note that type conversions done automatically by the compiler may be written explicitly as well.

Type_Conversion = Qualified_ldentifier ”(" Expression ")” |
String_Conversion

String_Conversion = see 4.12.4.3
Qualified_ldentifier= see 4.3.4
Expression = seed.12

Formal Syntax

Scalar and byte stringto BYTHWORMLONG_WORDonversion

BYTE (8-bit_scalar_value or 1_element_byte string)
WORD (32-bit_scalar_value or 4_element_byte string)
LONG_WORIDB¢-bit_scalar_value or 8_element_byte_string)

These conversions are implicitly carried out whenever necessar$,8.1.7. They may, however, also
be done explicitly.

Examples:
B :=BYTE ('x); — character to BYTE
W := WORD (#"FF000000"); — byte string to WORD
L := LONG_WORD ($OFF); — statecode to LONG_WORD

REALULONG_REAIlo INTEGER/UNSIGNED_INTEGERConversion

INTEGER (real_value)
INTEGER (long_real value)

UNSIGNED_INTEGER (real_value)
UNSIGNED_INTEGER (long_real value)

The result of this type conversion is the integer value obtained by truntdainglue expressed by
real_value orlong real value toward zero.

Examples:

INTEGER (3.6); —valueis 3
INTEGER (1.5); —valueis 1
INTEGER (-1.3) —value is -1

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-55 von/of 4-96

INTEGER/UNSIGNED_INTEGER0o REALLONG_REAIConversion

REAL (integer_value)
LONG_REAL (integer_value)

REAL (unsigned_integer _value)
LONG_REAL (unsigned_integer value)

The result of this type conversion is the floating point value corresponding to the vatie- of
ger value or unsigned_integer value

Examples:

REAL (I +5); — value converted to floating point

CHARACTER INTEGER/UNSIGNED_INTEGERConversion
INTEGER (character_value)
UNSIGNED_INTEGER (character_value)

The result of this type conversion is the integer corresponding to the ordinal vatharat-
ter_value (i.e. its sequence number) in the ASCII character set.

Examples:

INTEGER (A"); — vields 65
INTEGER (E’); — yields 69

INTEGER/UNSIGNED_INTEGERo CHARACTER onversion
CHARACTER (nteger_value)
CHARACTER (nsigned_integer_value)

The result of this type conversion is the character whose ordinal number (in the ASCII character se
is integer_value or unsigned_integer_value , resp.

Examples:

CHARACTER (65); — returns character 'A’
CHARACTER (69); — returns character 'E’

Enumeration to INTEGER/UNSIGNED_INTEGERConversion

INTEGER (enumeration_value)

UNSIGNED_INTEGER (enumeration_value)
The result of this type conversion is the integer corresponding to the positienuofera-
tion_value in the enumeration list. (The first element in the list has the position 0).

Examples:
type Color = (Red, Green, Blue);

INTEGER (Green); —returns 1
INTEGER (Red); —returns 0

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
=205 —iarm Seite/ Page: 4-56 von/of 4-96

INTEGER/UNSIGNED_INTEGERo0 Enumeration Conversion
enumeration_type (integer_value)
enumeration_type (unsigned_integer_value)

The result of this type conversion is the enumerated value (literal) whose position in the enumeratio
list is equal tanteger_value or unsigned_integer_value . (The first element in a list has

the position 0). A runtime error occursiiteger_value < Qor integer_value >INTEGER

(MAX(enumeration_type)) .

Examples:
type Color = (Red, Green, Blue);

Color (1); — returns Green
Color (0); — returns Red

BITSET to INTEGER/UNSIGNED_INTEGERConversion
INTEGER (bitset_value)
UNSIGNED_INTEGER (bitset_value)

The result of this type conversion is the 32—bit integer whose internal representation corresponds to tt
(32 memberpitset _value

Examples:
INTEGER ({0, 1, 2}); — returns 7 (or 2 0+2 142 2)

INTEGER/UNSIGNED_INTEGERo BITSET Conversion
BITSET (integer value)
BITSET (unsigned_integer_value)

The result of this type conversion is BESET variable whose internal representation corresponds
to the 32-bit integer valuateger_value or unsigned_integer_value

Examples:
BITSET (7); — returns the BITSET constant {0, 1, 2}

Unitized Type to Non-Unitized Type Conversion

REAL (unitized_value)

LONG_REAL (unitized _value)
INTEGER (unitized_value)
UNSIGNED_INTEGER (unitized_value)

The result of type conversion is the raw (unitless) real or integer valueitcfed value A
conversion between real and integer values is done, if necessary. For counting units the conversic
yields the effective quantity.

Examples:
REAL (3.6 [km/h]) — returns 3.6
INTEGER (3.6 [km/h]) — returns 3 (conversion REAL to INTEGER truncates)
REAL (2.5 [doz]) — returns 30.0

INTEGER (2.5 [doz]) — returns 30

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-57 von/of 4-96

Non-Unitized Type to Unitized Type Conversion

unitized_type (real value)
unitized_type (long_real value)
unitized_type (integer value)

unitized_type (unsigend_integer_value)
The result of type conversion is the unitless value expressed in unitsit@ed type . A
conversion between real and integer values is done, if necessary.
Examples:

type Velocity = REAL [m/s];
type Distance = INTEGER [km];
type Dozen = REAL [doz];

Velocity (3.6) — returns 3.6 [m/s]
Distance (3.6) — returns 3 [km]
Dozen (24.0) — returns 2.0 [doz]

Unitized Type to Unitized Type Conversion

unitized_type (' unitized_value)

The type ofunitized _value must be commensurable withnitized _type . The result of this
type conversion is the value ahitized value expressed in units afnitized _type A
conversion between real and integer values is done, if necessary.
Example:

unit [mph] =[1609 m/h]; — miles per hour

type Mph =REAL [mph];

variable Speed : REAL [m/s];
variable X REAL;

X := REAL (Mph (Speed)); — Speed is converted to Mph, then to REAL

INTEGERUNSIGNED_INTEGERConversion

INTEGER (unsigned_integer value)
UNSIGNED_INTEGER (integer_value)

These conversions are implicitly carried out whenever necessary. They may, however, also be dor
explicitly. A check will be done that the allowed range of the target type is not violated.

Examples:
Unsigned_Integer_Value := UNSIGNED_INTEGER (Integer_Value) * 2;

REALLONG_REAIConversion

REAL (long_real_value)
LONG_REAL (real_value)

These conversions are implicitly carried out whenever necessary. They may, however, also be dor
explicitly.

Examples:
Long_Real_Value := LONG_REAL (Real_Value) * 1.0E50;

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

EADS -
=25

— I rm

cgs

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

Ausgabe /Issue: 5 Datum/Date : 2009-02-01
Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
Seite/Page: 4-58 von/of 4-96

Type to Subtype Conversion
subtype (value)

The base type afalue must be the same as the base tymibtype . The effect of this conversion

is to interpret the value as belonging to the subtype.

A check will be done to insure that the value does not violate possible constraints of the subtype. If th
value is constant, and thus known to the compiler, the compiler will do the check, otherwise it will be
carried out at runtime. For pathname and subitem pathname types, the check will always be done

compile time: it makes sure that thegetrsubtype

is not more constrained than the typealue .

Note: A special case is the conversion of a type to itself, which is allowed but has no effect.

($LOW, $MEDIUM, $HIGH);

Example:
type Short = INTEGER (0 .. 2 ** 16 — 1);
type Switch = statecode
type Label = string (10);
variable |:INTEGER;

variable C: statecode ;

variable S: string (80);

| := Short (I); — make sure | is a short integer
C := Switch (C); — make sure C is a Switch value
Send_Message (Label(S), ...); — make sure S is not longer than a Label

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-59 von/of 4-96

4.12.4.2 Low Level Conversions

Low level conversions circumvent the UCL strong typing concept. They allow to convert a value of
one type into any other type, as long as the sizes fit. A low level conversion does not change th
representation in memory, but just regards the same byte/word representation to be of a different typ

Low level conversions are done using the special predefined futdidY PEDThe function call
UNTYPED (expression)

removes the type from the expression and makes it convertible to any other type. A conversion i
implicitly perfomed when assigning the untyped expression to a variable or passing it as a paramete

to a subprogram, or by converting it explicitly into a specific target type with the usual conversion
notation.

For strings, only the string contents (excluding the length field) is converted. The size of a string value
to be converted is the current string length, and the length of a string target is set according to the si:
of the value.

Example:
type Rec= record .. endrecord ;
variable R : Rec;
variable S: string (10) of BYTE;
variable | : INTEGER;
variable P: pathname ;
procedure Proc (A: array of WORD); begin ... end Proc;
| ;= UNTYPED (P); — get SID of pathname
P := UNTYPED (I); — get pathname of SID
S :=UNTYPED (R); — convert record to string of bytes
R := UNTYPED (S); — convert string of bytes to record

Proc (UNTYPED (R)); — pass record as an array of words
if 1=INTEGER (UNTYPED(P)) then ... end if ; — explicit conversion

For a low level conversion, the size of the value to be converted must fit the size of the target type. /
check is done to enforce this restriction.

 If the target is a string, the size in bytes of the value must not be greater than the maximum siz
of the string. For open string parameters there is no such restriction.

 If the target is an open array parameter, there is no upper limit for the size, but the size in byte
must be a multiple of the array element size. A check is performed to enforce this restriction.

» For other target types the size of the value must be identical to the size of the target.

Example:
— declarations as above
S :=UNTYPED (R); — size of R must not be greater than 10
| := UNTYPED (S); — length of S must be 4
Proc (UNTYPED(S)); — length of S must be a multiple of 4

Proc (UNTYPED(R)); — no check

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
=205 —iarm Seite/ Page: 4-60 von/of 4-96

4.12.4.3 String Conversions

Values ofscalar types and string types (both character strings and byte strings) may be converted to the
textualrepresentation, according to UCL syntax, by just converting them to some character string type
using the high level conversion syntax. Two syntactical forms are available:

string (expression)
typename (expression)

The first form creates a general string without any size restrictions. The second form creates a strin
of the indicated specific type. A check will be performed that the resulting string fits the declared size
constraint of the type.

For pathname types the two forms may be preceeded by an additional modifier kesthioame
or alias

pathname string (expression)
alias string (expression)

pathname typename (expression)
alias typename (expression)

With thepathname keyword the pathname will be chosen as the textual representatiafiaghe
keyword requests the database alias to be generated, instead. If the item does not have a database &
the result will be an empty string. The pathname will be used as the default text representation, if neithg
of the two keywords is present.

For unitized types and for pathname types the unit itself may be obtained as a string with the following
forms, the unit is not enclosed in brackets:

unit string (expression)
unit typename (expression)

All forms allow to specify simple string formatting:

string (expression, width) for all types

typename (expression, width)

string (expression, width, aft) for REAL LONG_REAlandTIME
typename (expression, width, aft)

string (expression, width, aft, exp) for REALandLONG_REAL
typename (expression, width, aft, exp)

width specifies a minimum total width of the resulting string. Negative values request left
justification, positive values right justification. If the string is larger than the specified
minimum width, the actual size will be taken.

aft specifies the number of digits after the decimal point. HME valuesaft affects the
fraction part of the seconds component, 0 suppresses the fraction part. Note that the synta
of REALandLONG_REALlvalues requires at least one digit after the decimal point.

exp specifieghe width of the exponent REALLONG _REAIlfloating point representation. For
exp = 0 fix point notation (no exponent) will be used.

Omitted format parameters default to 0. If all format parameters are 0 (or omitted), UCL standarc
format will be used.

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EA D S _ Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
=

SEriam Seite/ Page: 4-61 von/of 4-96

Formal Syntax

String_Conversion = [“pathname” | “alias” | “unit”] Qualified_ldentifier "(" Expression [“,” Format]")" |
[“pathname” | “alias” | “unit”] “string” ”(” Expression [“,” Format]”)”

Format = Width[",” Aft[“," Exp]]

Width, Aft, Exp = Expression
Qualified_ldentifier= see 4.3.4
Expression = see4.12
Examples:
string (123) - 123
T+ string (123,-5) + 7 - [123]
T + string (123,5)+ 7T - [123]
string (1.23) - 1.23
string (1.23, 0, 6) - 1.230000
string (1.23,0, 6, 4) - 1.230000E+00
string (13:30) - 13:30:00
string (13:30, 0, 3) - 13:30:00.000
string (#'FFFFFFFF") - #'FF FF FF FF”
T+ string ("abc”, 5) + T - [abc]
pathname string (Path_Variable) - \some\path\name
alias string (Path_Variable) - xyz (if xyz is the database alias\ebme\path\name)
unit string (Path_Variable) - m/s (if \some\path\name has the unit m/s)
unit string (10.0 [m/s]) - m/s

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

EADS
=

| cgs

SEriam

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

Ausgabe /Issue: 5 Datum/Date : 2009-02-01
Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
Seite/Page: 4-62 von/of 4-96

4.12.4.4 Input/Output Format

When converted to string representation (see 4.12.4.3), some lexical elements take a form differel

from their literal form discribed above:

» Characters are shown without enclosing single quotes.

» Strings are shown without enclosing quotation marks, and quotation marks within the string are
not doubled.

» Byte strings are shown without enclosing quotation marks.

» Statecode values are shown without the leading dollar sigmd b&tecode@alue remain$$.

» The low level types BYTE, WORD and LONG_WORD are shown as byte strings with the
corresponding length.

» Measurement units are not enclosed in square brackets.

The table below gives examples for these different forms:

Type UCL literal I/O format
CHARACTER & a
string "hello” hello
"string with ""quotes™” string with "quotes”
byte string #’01FE 0203 AFFE” 01 FE 02 03 AF FE
#H"
statecode $OFF OFF
$CLOSED CLOSED
$$ $$
BYTE
WORD (no literal) (like byte strings)
LONG_WORD
unitized value 1.0 [m/s] 1.0 m/s

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-63 von/of 4-96

4.13 Statements

The following kinds of statements are supported in UCL.:
* Assignments
* Procedure calls
» Conditional statements (, case)
 lteration statementswhile ,repeat ,loop ,for)
» Others(exit ,return ,halt)

UCL requires each statement to be terminated by a semicolon. In many places a, possibly empt
sequence of statements is allowed. Individual statement descriptions follow.

Formal syntax

Statement = Assignment | Procedure_Call | If_Statement |
Case_Statement | While_Statement | Repeat_Statement|
Loop_Statement | For_Statement | Halt_Statement |

|

Exit_Statement Return_Statement

Statement_Sequence = { Statement }

4.13.1 Assignment

An assignment serves to replace the current value of a variable (or an array or record element) by a ne
value indicated by an expression. The assignment operater’isVariable and expression must be
compatible(see Section 4.8.6). The designator to the left of the assignment operator must be a variab
or an MDB item or subitem given by its pathname; in the latter case, the assignment changes the runtir
value of the item or subitem, the corresponding MDB object must therefore be accessible in the
READ/WRITE mode. After an assignment is executed, the variable has the value obtained by
evaluating the expression (the old value is lost, i.e. overwritten).

The value to be assigned must not violate any constraints imposed on the target variable, e.qg. if tt
variable is of a subrange type, the value must be within the bounds of the subrange. Constraints a
usually performed at runtime, and constraint violations yield a runtime error. If the value is constant
(und thus known to the compiler), the check is performed at compilation time. Checks on pathnams
constraints are always performed at compilation time, since a runtime check would require a databa:s
access.

Note: Instring assignments, left and right side may be of different lengths. If the length of the right side
exceeds the maximum length on the left, a runtime error occurs.

Formal Syntax

Assignment = Designator ":=" Expression ;"
Designator = see 4.12

Expression = see 4.12

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-64 von/of 4-96

Examples
type Matrix = array (1..10,1..20) of Real,;
variable S: string (8);
variable C:CHARACTER;
variable A : Matrix;
variable B : Real,
S = "hello”;
C =X
A(l+1, 1-1) = B;

Rec_X.Comp_A :=100;
\PM\TTC\STAT :=$NOGO;

4.13.2 Procedure Call

A procedure call activates the specified procedure. It is denoted by stating the procedure’s name
possibly followed by one or more parameters in parenth€sese parameters, thetual parameters,
are substituted for tHermal parameters specified in the corresponding procedure declaration.

The association betweatualandformal parameter may be specified eithepositionalor innamed

notation. In the positional form, the correspondence between actual and formal parameters i
established by the positions of the respective parameters in the list. In a named parameter associati
the parameter must be named explicitly. Named parameters may be given in any order. If both position
and named associations are used in one procedure call, the positional associations must occur first

For each formal parameter, there must be exactly one actual parameter, (either explicitly specified c
by default). If a default value exists, the actual parameter may be omitted. In this case, all remainin
actual parameters must be denoted by name. For example, if the prdeexidedined as:

procedure P (X:INTEGER :=0; Y : REAL :=0.0; Z : BOOLEAN := FALSE);
then the following procedure calls are all valid:

P (5, 3.14, TRUE); — all parameters positional
P (1, Z: TRUE); — X positional, Y omitted, Z named
P(X:1,Y:0.0); — X and Y named, Z omitted
P(; — all parameters omitted
P; —same as P ();
Note that the use of commas to indicate omitted (default) parameters is not allowed. Thus,
P (5, , TRUE)
is invalid.

In a procedure call, the types of the actual parameters mgsintggatiblewith those of the formal
parameters.

Subprogram parameters belong to one of three classes :

in parameterallow to pass values into a subprogram. Within the subprogram only read access
is allowed. The actual parameter for a formal IN parameter may be an expression. The
keywordin may be omitted in the parameter declaration.

out parameters allow to pass values out of a subprogram. Within the subprogram read acces
is allowed, but only to obtain a value that was previously assigned within the same
subprogram call. The actual parameter for a foonaparameter must be a variable or an
MDB item or subitem with READ/WRITE access.

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-65 von/of 4-96

in out parameters allow to pass values into and out of a subprogram. Both read and write acces
are allowed within the subprogram. The actual parameter for a formati parameter
must be a variable or an MDB item or subitem with READ/WRITE access.

Scalarin parameter are passed by copying the value into the subprogram, strirctyp@eémeters

are passed by referenceit andinout parameters are always passed by reference. MDB items and
subitems are passed by copy: the input valueif out) is copied into the procedure, the output
value {(n out ,out) is copied back to the location of the runtime value of the item.

If a formal parameter type denotes an array structure, its corresponding actual parameter must be
array of identical type (i.e. same bounds, same component types); unless the array is defined as
unboundarray or unbound string, in which case only the component types must match (also ses
unbound array and unbound string in subprogram declarations, 4.6).

A procedure call is inherently synchronous, i.e. control is returned to the caller only after execution of
the called procedure is completed.

Note:

» A procedure (or function) may invoke itself (recursive call). Indirect recursion — which occurs,
for example, when a procedure A calls a procedure B which, in turn, calls A — is also allowed.

* The order of evaluation of actual parameters is not defined and a program must not depend ©
the evaluation order.

Formal Syntax

Procedure_Call = Qualified_ldentifier [Actual_Parameters]";"
Actual_Parameters = "("[Parameter {",” Parameter }]")"
Parameter = [Identifier ":"] Expression
Qualified_ldentifier = see 4.3.4
Identifier = seed.1.2.2
Expression = seed.12

Examples

Assuming the following procedure declarations:

procedure Calculate_New_Limit (Threshold : REAL;
Ref Factor - REAL;
out New_Limit: REAL);

procedure Get_Total (First :REAL :=0.0;
How_many : INTEGER := 50;
out Total: REAL);

procedure Finish_Up;

then these are valid procedure calls:

Calculate_New_Limit (Rvall, Rval2, Rlim);
Calculate_New_Limit (100.0, 2.5, Rlim);

Get_Total (5.5, Total: T);
Get_Total (First: 5.5, How_Many: 100, Total: T);
Get_Total (Total: T);

Finish_Up;

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-66 von/of 4-96

4.13.3 If Statement

Theif statement denotes conditional execution of one or more statements. It takes the form:

if condition 1 then
statement_sequence_1
elsif condition 2 then
Statement_sequence_2
elsif

else
Statement_sequence_n+1
endif ;
wherecondition 1 andcondition 2 are Boolean expressions.

Theseexpressions are evaluated one after the other, and as soon as one yields TiUEline corre-
sponding statement sequence is executed, and no further conditions are tesse. Tert, if pres-
ent, is executed, if none of the conditions was true.€l$ie andelse parts are optional.

Formal Syntax

"if” Expression "then”
Statement_Sequence

{ "elsif” Expression "then”
Statement_Sequence }

If_Statement

["else))
Statement_Sequence]
"end” "if" "
Statement_Sequence = see 4.13
Expression = seed.12
Examples
if \PM\TTC\TRANSMITTER\STATUS =1 then .. endif ;
if X<Y then
statements ...;
elsif X>Y then
statements ...;
else
endif ;

4.13.4 CAaSe Statement

Thecase statement is used when a choice from among several mutually exclusive alternatives mus
be made on the basis of the value of an expression. It thus represents a generalizatidn of the
statement. It has the form

case expression

when labels 1 : statement sequence 1
when labels 2 . statement sequence 2

else statement_sequence_n
end case ;

Thecase statement causes one of its statement sequences to be selected according to the value of
expressiorfthecase selectgmwhich must be of a discrete tyddlTEGER,UNSIGNED_INTEGER,

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-67 von/of 4-96

CHARACTER, enumeration type or constrained statecode type). The different values that may be
taken by this selector appear in ttase statement as case labels or case label ranges.

The branches in@ase statement must be uniguely identified by its labels, i.e. a label may appear only
once in acase statement. The union of labels and label rangesasa statements must cover all
possible values of the selector type, either explicitly or implicitly bgls@ branch that collects all
labelvalues not explicitly specified in previous branches. If there edsan branch, it must be the last
branch in theease statement.

The case labels must be constants or constant expressions; and they must be unique within a partict
case statement (i.e. no label may occur more than once). When the same action is required for sever
different valies of the case selector, these values may be written in a list, separated by commas. Rang
of contiguous values may be written in range notation (lowgaper). Statecode labels cannot form
ranges, because statecode types are unordered. The type of all case labels must be compatible with
type of the case selector.

When thecase statement is executed, the selector is first evaluated. If there is a case label with the
same value as the case selector, the corresponding statement sequence is executed. Otherwise
statement sequence specified indglee clause, if present, is executed. Bige clause is optional;

if omitted, however, the specified case labels must cover the entire value range of the case selector tyj

Formal Syntax

Case_Statement = "case” Expression
Case
{Case}
["else” Statement_Sequence]
”end” ”Case” 11;11
Case = "when” Case_Label_List ”:;” Statement_Sequence
Case_Label_List = Case_Labels {",” Case_Labels } |
Statecode_List
Case_Labels = Constant_Expression [”..” Constant_Expression]
Statecode_List = Statecode {”,” Statecode }
Statecode = see4.8.1.8
Constant_Expression = see 4.12
Expression = seed.12
Statement_Sequence = see 4.13
Examples

case Traffic_Light
when Red : Stop Car;
when Green : Go_Ahead; Turn_Right;

else No_Traffic_Light;
end case ;
case Code

when $LOW : ... ;

when $MEDIUM : ...;

when $HIGH : ..
end case ;

4.13.5 Loop Statements

A loop statement specifies that a sequence of statements is to be repeatedly executed until a terminat
condition, if any, becomes true, or untilexit statement is executed. UCL has four different forms
of loop statements.

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-68 von/of 4-96

The sequence of statements within a loop statement may itself contain loop statements; that is, 100
may be nested. When a termination condition has become true, or when a loop is lefxiia an
statementgontrol is passed to the first statement following the innermost enclosing loop (aéedthe

loop keywords), and the loop statement is considered to have finished its execution. Note that loop
need not necessarily terminate, endless loops are valid constructs.

A loop is, of course, implicitly terminated whemedurn orhalt statement is executed, see 4.13.6
and 4.13.7.

4.13.5.1 Simple lOOp Statement

The basic form of iteration is tHeop statement. It specifies that a statement sequence is to be
repeatedly executed until @xit statement is executed.

A typicalloop statement with aexit statement is shown below.

loop
statement_sequence_1
if condition then exit ; endif ;
statement_sequence_1

end loop ;

Formal Syntax

Loop_Statement = "loop”
Statement_Sequence
Hendl! Hloopn n;n

Statement_Sequence = see 4.13

Example

loop

A=A+1;
if A>10 thenexit ; endif ;

end.l.é)op ;

4.13.5.2 while statement

Thewhile statement specifies the repeated execution of a statement sequence depending on the va
of a Boolean expression. The expression is evaluated lesfdnesubsequent execution of the statement
sequence, hence the statement sequence may not be executed at all. The repetition stops as soon a
evaluation of the expression yields the vetidd SE

A while statement has the following form and is equivalent to the skaoapn statement:

while expression do loop
statement_sequence if ~ expression thenexit ; endif ;
end while ; statement_sequence

end loop

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-69 von/of 4-96

Formal Syntax
While_Statement

"while” Expression "do”
Statement_Sequence

"end” "while” ;"
Expression = see4.12
Statement_Sequence = see 4.13

Examples

while \PM\TTC\MODE =0 do
Wait (1.0 [s]);
end while ;

4.13.5.3 repeat Statement

Arepeat statement specifies the repeated execution of a statement sequence depending on the va
of a Boolean expression. In contrast to teile loop, the expression is evaluated afaich
subsequenrgxecution of the statement sequence; hence the statement sequence is executed at least ol
The repetition stops as soon as the evaluation of the expression yields thERIdkie

A repeat statement has the following form and is equivalent to the skanpn statement:

repeat loop
Statement_sequence Statement_sequence
until expression if expression thenexit ; endif ;
end loop ;

Formal Syntax

Repeat_Statement "repeat”
Statement_Sequence

"until” Expression ;"

Statement_Sequence = see 4.13
Expression = see4.12
Examples
repeat
INC (Index);
if ~ Table(Index).Used thenexit ; endif ;

until Index = Max_Index;

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-70 von/of 4-96

4.13.5.4 for Statement

Thefor statement issed when a statement sequence is to be executed a known number of times whil
a progression of values is assigned to a control variable (the loop index). It takes two alternative form:

1. lterative for statement

for loop index = start value to limit [by increment] do
s tatement sequence
end for

The iterativefor statement is used to loop over a range of values, vatatevalueandlimit are
explicitly specified. The iterativeor statement cannot be used for statecode types, since statecode
types are not ordered. The typeliafit must be compatible with the type sthrt valug and the
incremenimust be ailNTEGERconstant or constant expression.

2. Collective for statement

for loop_index in type name [by increment]| do
Statement_sequence
end for ;

The collectivdfor statement is used to loop over all values of a discrete type, including constrained
statecode types. For non—statecode typest#re valueandlimit are implicitly determined by the

min. and max. value of the type. Since statecode types are unordered, the order in which the valu
are processed is undefined andlifgeclause cannot be used. Tiheremenimust be alNTEGER
constant or constant expression.

Note thatstart_value, limitandincrementare evaluated only once, and in that order, betfugdoop
body. Further, the value of th@p_indexcannot be altered by the statements insidéatheloop.

The ordinal value oftart_valueandlimit, for both forms, must always lie within the bounds of type
INTEGER

Thefor statement causes the statement sequence enclosetbin the end for bracket to be
repeatedly executed until the value of lingp _indexhas covered all values of the rangt&f(t_value
to limit) or type. After each iteration, theop_indexs incremented by the specifiettrementvalue
(whichmay be negative). If no increment is specified, 1 is assumed. For a negatweentthe values
are processed in descending order. In contrast to other forms ofdooppops always terminate.

A for statement (with a positive increment) is equivalent to the following loop:

Loop_Index = start value

Saved Limit := limit

Saved_Increment ;= increment ; — (1 by default)
while Loop_Index <= Saved_Limit do

Statement_sequence
Loop_Index := Loop_Index + Saved_Increment;
end while ;

With a negative increment, the relational operator imthide statement would be-=.

Theloop indexneed not be declared in the UCL program, it is implicitly (that is, automatically) created;
its type is derived from the type sfart_valueandlimit or from the specified type, resp., and its scope

is limited to the body of the loop only. Should an object of the same name exist, it is hidden inside the
for loop by the loop index and thus become inaccessible, as shown in the following example. For :
discussion of scoping rules see 4.3.2.

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EA D S _ Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
=

SEriam Seite/ Page: 4-71 von/of 4-96

variable Index: INTEGER; — declaration of a variable named Index

begin
— The variable Index is accessible here

for Index:=1 to 100 do — loop index also called Index

— only the loop index is visible here
— the variable Index is hidden by the

— loop index
end for ;
— variable Index is now accessible again
— and it still has its original value.
end;

Formal Syntax

For_Statement = lterative_For_Statement |
Collective_For_Statement
Iterative_For_Statement = "for” Identifier ":=” Expression "to” Expression ["by” Const._Expression] "do”
Statement_Sequence
nend!! Hforl! !I;H

Collective_For_Statement= "for” Identifier "in” Qualified_ldentifier ["by” Constant_Expression] "do”
Statement_Sequence

"end” "for" ";"
Identifier = see4.1.2.2
Qualified_Identifier = seed.3.4
Expression = see4.12
Constant_Expression = see4.12
Statement_Sequence = see 4.13

Examples

for 1:=1 to 1000 do
Sum :=Sum + I;
end for ;

for i:=10 to —-10 by -2 do
Statement sequence
end for ;

for C:=Red to Blue do

Statement sequence
end for ;

type Level= statecode ($LOW, SMEDIUM, $HIGH)

for L in Level do
Process (L);
end for ;

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-72 von/of 4-96

4.13.6 return Statement

A return statement consists of the keywaeturn , possibly followed by an expression. It
indicates the end of a procedure or function execution. There may be seltgral statements in
one procedure or function, although only one will be executed.

In afunction thereturn statement is mandatory and it must be followed by an expression which
specifies the value returned by the function. pr@cedure thereturn statement is optional. It is
implied by the end of the procedure body. Wheatarn statement is executed, control returns to
the caller of the procedure or function.

In a Derived Value theeturn statement terminates execution and returns the computed value. It may
be used with or without an expression, see 4.16.4 for details.

Formal Syntax

Return_statement "return” [Expression] ;"

Expression = see4.12
Examples:

return |+ J; — in a function

return — in a procedure

4.13.7 halt statement

Thehalt statement is used within an AP to terminate the AP itself. It further provides an optional
facility for reporting the AP completion status (successful/non—successful) to the runtime system.
A halt statement takes the form:

halt [completion_status 1;

The expression is optional. It is of the ty@®MPLETION_CODBY default, SUCCESSs assumed.
At runtime, depending on the AP activation method, the completion code may be sent either:
 to thecalling APon request
 to thesupervisory (higher—level) softwaresponsible for AP activation

* to an interactive user who started the AP via an interactive High Level Command Language
(HLCL) command, as e.g. in an EGSE environment, on request.

Note that unlike aeturn statement, thbalt statement causes termination of the AP, i.e. of the
"main program”. A call to théalt statement itself is optional; an AP may terminate without such a
statement, in which casalt SUCCESSIs assumed by default.

Formal Syntax

Halt_Statement= "halt” [Expression]";"

Expression = see4.12?

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

EADS cgs

SEriam

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

Ausgabe /Issue: 5 Datum/Date : 2009-02-01
Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
Seite/Page: 4-73 von/of 4-96

4.13.8 exit Statement

Theexit

statement consists of the keywaxdt . It causes termination of the innermost enclosing

loop, execution is resumed with the statement following the loop.

Any iterative statement (i.00p , while , repeat

Formal Syntax

Exit Statement = "exit" ;"

Examples
loop
A=A+1;

if A>10 then
exit ;
endif ;
B:=B+A;
end loop ;

<— execution continues here when A > 10

orfor) may be left via aexit statement.

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-74 von/of 4-96

4.14 Subprogram Declarations

A subprogram (or subroutine) is a code segment or sequence of statements which can be invoked
name. UCL supports two kinds of subprograpreceduresandfunctions

4.14.1 Procedure Declaration

A procedure declaration comprises:

» aprocedure headeconsisting of the reserved woptdocedure followed by the procedure
name and an optional parameter list in which the procedoresl parametersire defined.

» aprocedure bodyhich may contain declarations and statements. It must not, however, contain
procedure or function declarations. In other words, procedures and functions cannot be neste
inside other procedures and functions.

Formal Parameters

Formal parameters are identifiers which denote values or objects to be passed with the call. There a
threemodesof formal parameters:

* in parameters are treated as place holders to which the result of the evaluation of the
corresponding actual parameter is assigned as an initial value. They may be as=figuied
values(via the assignment operator™). These default values are used as actual parameters if
the corresponding parameters are omitted from the procedure call.

* inout andout parameters correspond to actual parameters that are variables, and they stan
for these variables.

Each formal parameter must be specified by its name and its type. In the parameter list, the reserve
wordsin andout are used to preceed the parameter in order to specify a parameter mode. If no mod
Is specified, thein is implicitly assumed.

Formal parameters are local to the procedure, i.e. their scope is the program text which constitutes tl
procedure declaration. They can also be used within the actual parameter list to associate a value w
a specific parameter, see 4.13.2. In this context they do not conflict with identifiers declared outside
the subprogram.

The type of a formal parameter may beogen type
 If the parameter is a string, the type may be specified as just

string

string of type_identifier
where the specification of the maximum length is omitted. The parameter is then said to be ar
openor unbound stringparameter, and actual parameters of any string types are accepted. Their
first index and maximum length can be obtained through the standard fuh«dasidHIGH.

 If the parameter is an array, the type may be specified as just
array of type_identifier

where the specification of the actual index bounds is omittechreay. of INTEGER. The
parameter is then said to be@enor unbound arrayparameter, and array parameters of any
size,but with the given element type, are accepted. Within the subprogram, the actual index rangt
and its type is always mapped to a corresponiNiigc GERrange with a lower bound of 0; its
lower and upper bounds can be obtained through the standard fuh&€dasdHIGH.

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= 5 — 1L rm Seite/Page: 4-75 von/of 4-96
* The parameter type may be one of the open forms
pathname any pathname types
pathname .* any subitem pathname types
statecode any statecode types

If the parameter is of a pathname type, it may require actual parameters to be given together with the
actual parameter list. For parameterized MDB items see 4.3.6. The pathname type specification is the
suffixed with an empty pair of parentheses:

pathname ()
typename ()
Subitem pathnames cannot be parameterized.

Procedure body

The procedure body contains a statement sequence bracketed by the reserviedgiordsdend
possibly preceded by local constant, type, variable or alias declarations. These local declaratior
effectivelyhide any identically named objects in the enclosing main program (AP), as well as imported
and predefined identifiers. A procedure or function declaration may appear within an AP or a library,
but not within another procedure or function. After the end keyword the name of the procedure may
be repeated.

Also note thaparameters of moda may not be modified within a procedure body; i.e. they are not
allowed as tagets in an assignment statement and must not be passeouds@rn out parameter
to another subprogram.

Formal Syntax

Procedure_Declaration = Procedure_Heading Block

Procedure_Heading = "PROCEDURE” Identifier [Formal_Parameters]”;”
Block = { Declaration }
”beginH

Statement_Sequence
"end” [Identifier] ;"

"(" [Parameter_List { ;" Parameter_List}1")"

Formal_Parameters

Parameter_List

Identifier_List = Identifier { ”,” Identifier }

["in”]["out”] Identifier_List ":" Formal_Type [":=" Constant_Expression]

Formal_Type Formal_Simple_Type |
"array” "of” Formal_Simple_Type |

"string” ["of” Identifier]
Qualified_ldentifier ["(")"] |

Formal_Simple_Type

"statecode” |

npathnamen [H(H !l)n] |

npathnamen nln Mg
Declaration = see4.3

Statement_Sequence = see 4.13
Identifier = see4.122
Qualified_ldentifier = see 4.3.4

Constant_Expression = see 4.12

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

—iarm Seite/ Page: 4-76 von/of 4-96
Example
procedure Accumulate (First: INTEGER; Last: INTEGER,; out Result: INTEGER);
variable Sum: INTEGER;
begin
Sum := First;
for |:=First+1 to Last do
Sum :=Sum + [;
end for ;

Result := Sum;
end Accumulate;

4.14.2 Function Declaration

A function is a subprogram that returns a value. A function declaration starts with the reserved worc
function , followed by the function name, an optional list of formal parameters, and the function
result type. Formal parameters and bodfun€tions are specified in the same way as procedures (see
4.14.1).

The type of the function return value is restricted to scalar types and pathname types.

The statements of the function body must include one or netuen statements (see 4.13.6)
specifying the returned value (but only aeéurn statement is executed). A runtime error occurs if
a function is left otherwise than byeturn statement. Note that the expression followingréie
turn keyword must yield a value of the function result type stated in the function header.

Neitherout norinout parameters are allowed for functions.

Formal Syntax
Function_Declaration = Function_Heading Block

Function_Heading "function” Identifier [Formal_Parameters] ":” Qualified_Identifier [Unit]";”

Block = { Declaration }
"begin”
Statement_Sequence
"end” [Identifier] ;"

Formal _Parameters = see 4.14.1
Declaration = see4.3
Statement_Sequence = see 4.13

Qualified_ldentifier = see 4.3.4

Identifier = see4.1.2.2

Unit = see4.11and 4.1.2.10
Examples

function Square (N : INTEGER) : INTEGER,;

begin

return N*N;
end Square;

function Is_Printable (C : CHARACTER) : BOOLEAN;
begin

return C > CHARACTER(31) & C < CHARACTER(127);
end Is_Printable;

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.:

C s Ausgabe /Issue: 5
EADS _— Uberarbtg./ Rev.: -
= = — Iarm Seite/ Page: 4-77

CGS-RIBRE-STD-0001

Datum/Date : 2009-02-01
Datum/Date: 2010-01-29
von/ of 4-96

function Sum_Of (A : array of INTEGER) : INTEGER;
variable Sum : INTEGER = 0;
begin
for 1:=0 to HIGH (A) do
Sum ;= Sum + A(l);
end for ;
return Sum;
end Sum_Of;

4.14.3 Guarded Procedures, Functions and Parameters
Procedures and functions may be markeguasdedin the form

guarded procedure Name(...);

guarded function Name(...) : Type;

Also the formal parameters of a procedure or function may be markgcaked

procedure Name(guarded Name : Type; ...);

function Name(guarded Name : Type;...): Type;

A subprogram that calls a guarded subprogram or a subprogram with a guarded parameter will inhet
the privileges attached to the accessed entity, and calls to this subprogram will themselves be guarde
If the compilation unit itself in its body or initialization part, resp., calls such a subprogram, the
compilationunit will inherit the privileges attached to the guarded items. For a description of privileges

and authorization see 4.17.

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-78 von/of 4-96

4.15 Standard Functions and Procedures

The following functions and procedures are predefined. Some of them are "generic” in the sense th:
theymay have several possible parameter list forms. For example, the pro¢Nd@i2EC may have

one or two actual parameters and the first parameter maylNdFBGER UNSIGNED _INTEGERTF

an enumerated-type value.

ABSFunction

ABS(x) returns the absolute value of the expression or variable
x must be of typédNTEGER, UNSIGNED_INTEGER, REAL or LONG_REAL
The result has the type wf

MAXFunction

MAX(t) denotes @onstant equal to the maximum (highest) value of thettypéheret may
be one of the basic types (or subtypes thereof)

INTEGER,UNSIGNED_INTEGER, REAL, LONG_REAL, TIME,
DURATION enumeration types

MAX(x1, X2, ..., Xn)
determineshe maximum of a group of values. The values must be of one of the above
mentioned types, and all must be of the same type or implicitly convertible to each
other.

MAX(a) determineshe maximum element of the arrayThe array may be of any dimension,
and the elements must be of one the above mentioned types.

MIN Function

MIN(t) denotes a constant equal to the minimum (lowest) value of the typleeret may
be one of the basic types
INTEGER, UNSIGNED_INTEGER, REAL, LONG_REAL, TIME,
DURATION enumeration types

MIN(x1, X2, ..., Xn)
determines the mimum of a group of values. The values must be of one of the above
mentioned types, and all must be of the same type or implicitly convertible to each
other.

MIN(a) determineshe minimum element of the array The array may be of amymension,
and the elements must be of one the above mentioned types.

LOWFunction

LOW@) returnsthe lowest index of the array or string type or variable a. For strings it is always

1. The return value has the type of the corresponding index, for open arrays and
strings it is alway$NTEGER O for open arrays, 1 for open strings.

LOW@, n) returns the lowest index of time-th dimension of the (multidimensional) array type
or variablea. The return value has the type of the corresponding index.

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-79 von/of 4-96

HIGH Function

HIGH(a) returns thesppermost index of the array or string type or variabl€he return value
has the type of the corresponding index, for open arrays and strings it is always
INTEGER

HIGH(a, n) returns the uppermost index of theth dimension of the (multidimensional) array
type or variablex. The return value has the type of the corresponding index.

LENGTH-unction

LENGTH@) returns the current (actual) length of strang~or an empty strind,ENGTHeturns
0. The return value is of tygBITEGER

ODDrFunction

ODD(x) returns the Boolean valdéRUEIf x is odd (i.e.x % 2<>0), elseFALSE
Xx must be of typdNTEGERor UNSIGNED_INTEGER

INC Procedure

This procedure increments a variable. The parameter can be of any discrete type, except statecc
types.

INC(x) This procedure increments the varialyleoy 1. If x is an enumeration type or
CHARACTERalue, it is replaced by its successor.

INC(x, n) This procedure increments the variaklby n. Regardless of the type ®f n must
be an expression of typ®NTEGER or UNSIGNED_INTEGERIf x is an
enumeration type dCHARACTERalue, it is replaced by its-th successor.

DECProcedure

This procedure decrements a variable. The parameter can be of any discrete type, except statecc
types.

DEC(x) This procedure decrements the variabley 1.
If x is an enumeration type @HARACTERalue, it is replaced by its predecessor.

DEC(x, n) This procedure decrements the variabley n. Regardless of the type ®f n must
be an expression of typ®NTEGER or UNSIGNED_INTEGERIf x is an
enumeration type dHARACTERalue, it is replaced by its-th predecessor.

INCL Procedure

INCL(s, X) This procedure includes the elemearinto the set variabls.
X must be an expression of the element type. of

EXCLProcedure

EXCL(s, X) This procedure excludes the element x from the set variable s.
X must be an expression of the element type. of

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EA D S _ Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
=

SEriam Seite/ Page: 4-80 von/of 4-96

PUT Procedure
PUT(S) This procedure prints the strimgon the standard output channel.

UNTYPEDFunction

UNTYPEDf) This function supports lovevel conversion. It removes the type from the expression
X and makes it convertible to any other type. For details see 4.12.4.2.

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= 5 — 1L rm Seite/Page: 4-81 von/of 4-96

4.16 Compilation Units

A text which is accepted by the compiler as a unit is calthgilation unit There are four kinds of
compilation units in UCL.:

* Main program (called\utomated Proceduna the COLUMBUS UCL environment)
 Library specification

* Library body

* Formal parameter list definition

» Derived value

Automated Procedures

An Automated Procedure (AP) constitutes a parameterized UCL program or main procedure. It ma
import objects defined in separately compiled units, cdiledries, and it can also be imported by
other objects, see 4.2.

Libraries

A UCL library (like apackagein Ada, or amodulein Modula—2) is a collection of computational
resources (procedures, functions, data types, variables etc.) that may be used by the library’s clients
importing the provided objects or services. In the UCL context, these clients may be any kind of
compilation unit.

A UCL library consists of two parts:liérary specificationand dibrary body (implementation part).
Each part is compiled separately. The librspgcificationidentifies the resources that are visible to
its clients, whereas tH®dycontains the corresponding implementation details and is hidden from the
clients.

All objects declared in a library specification are available in the corresponding body without explicit
import. Also note that all libraries (including system libraries) must be explicitly imported by their
clients.

A library specification and its corresponding body form two separate compilation units. The library
body may be modified without affecting the library’s clients, whereas a modification of the library
specification implies recompilation of the corresponding body and of all clients.

UCL requires compilation units to be compiled in the following order:
1. Alibrary specification must be compileéforeits clients.
2. Alibrary specification must be compileéforeits body (if one exists).
Note that the body of a user library must have been compiled before its services can actually be use
(executed) by a client.
Formal Parameter List Definitions

Database items may have formal parameter lists. When using such an item in a context that requir:
a parameterized item (see 4.14.1), the item name must be given together with its actual parameter li
The UCL Compiler can be used to create the formal parameter lists of such database items. ltems wi
formal parameter lists can be imported by other objects, see 4.2.

Derived Values

A derived values a database item that returns a value computed from the values of other database item
Its compilation unit describes the algorithm for the value computation.

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
=205 —iarm Seite/ Page: 4-82 von/of 4-96

4.16.1 Automated Procedures

An Automated Procedur@P) corresponds to a UQhain program An AP declaration consists of
the following:

« an optional import and declarations section before the AP header

* an AP header

« an optional list of imported libraries or other modules

» an optional declarations section

» a statement sequence bracketethdyin andend.
The AP headercomprises the keyworprocedure followed by the AP’s name and an optional
parameter list The AP name is implicitly declared as an alias for the AP’s pathname in the database.

The parameter list is similar to the formal parameter list of a procedure or function (see 4.14.1), excef
that noin out orout parameters are allowed.

The optionaimport listcontains import directives of the form:
import pathname ;

wherepathname denotes an importable item, e.g. a library from which objects are importeida-The
port clause makes all objects declared in the imported module’s specification directly visible. See
section 4.2 for details.

The optional declaration part of an AP may declare constants, types, variables, aliases and units, as w
as procedures and functions. See sections 4.3 and 4.6 for detalils.

The AP’s name may be repeated at the end, aftenthdeyword; in this case, it obviously must match
the name following therocedure keyword in the header.

The AP definition may be preceded by unit, constant, type and alias declarations. This allows to hav
parameter types other than the predefined types, and named default values in the AP parameter li
Units, constants, types and aliases may also be obtained by importing them from libraries or othe
parameterized items.

Notethat items declared outside the AP belong to the same name scope as the global declarations witt
the AP. When importing an AP in another module, only identifiers declared before the AP header, the
implicit AP alias and the parameters become visible, see 4.2.

Formal Syntax

Main_Procedure { Import }
{ Unit_Declaration | Constant_Declaration |

Type_Declaration | Alias_Declaration }

procedure” Identifier [Formal_Parameters] ;"
{ Import }
{ Declaration }

"begin”
Statement_Sequence

"end” [Identifier] ;"

Formal Parameters = see 4.14.1
Import = see4.?2

Declaration = see4.3

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
==

— 1L rm Seite/Page: 4-83 von/of 4-96

Unit_Declaration = see4.114
Constant_Declaration = see 4.7
Type_Declaration = see4.8
Alias_Declaration = see4.10
Statement_Sequence = see 4.13
Identifier = seed.1.2.2

Example

— This is the definition of an Automated Procedure named

— \PM\PAYLOAD\EQUIPMENT_UNIT_A\COMMAND\MODE_OFF.

— Procedures like Issue, Execute_AP, Enable_EVL etc. are imported from a
— system library named \APM\UCL\GROUND_LIBRARY.

procedure Mode_Off;
import \APM\UCL\GROUND_LIBRARY;

constant Limit : REAL := 15.0;

variable AP_Id : AP_ldentifier;
variable AP_Code : INTEGER;
variable Status : INTEGER,;

alias Equipment = \APM\PAYLOAD\EQUIPMENT_UNIT_A;

begin
if Equipment\NOSHARE\FLAG = $ON then
Write_Message_To_User ("Equipment error”, Status);

halt FAILURE;
elsif Equipment\MODE = $Off then
if Equipment\SENSOR_1 > Limit then — check sensor output
Write_Message_To_User ("Limit exceeded”, Status);
halt FAILURE;
else
Issue (Equipment\POWER_OFF, Status: Status);
endif ;
endif ;
Delay (10.0 [s]);
if Equipment\SENSOR_1 <= Limit then

Execute_AP (Equipment\COMMAND\MODE_ON, AP_Id, Status);
Synchronize_With_AP (AP_Id, \\, AP_Code, Status);

endif ;
Equipment\Mode := $OFF; — update the status flag
Enable EVL (Equipment\MODE, Status); — write flag to memory

end Mode_Off;

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EA D S _ Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
=

SEriam Seite/ Page: 4-84 von/of 4-96

Example

— This AP has an import and declaration section before its header.
— It uses identifiers from both the imported library and the declaration
— in its parameter list.

import \APM\UCL\ONBOARD_LIBRARY;

type Switch= statecode ($OFF, $ON);

procedure Check (Measurement : Discrete_Value_ltem; — imported type
State : Switch); — type declared above
variable Value: statecode ;
begin

Get_Discrete (Measurement, Value, ...);

if Value <> State then
Submit_Event (...);
halt Failure;
endif ;
end Check;

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= 5 — 1L rm Seite/Page: 4-85 von/of 4-96

4.16.2 Libraries

In UCL, alibrary is an encapsulation mechanism or envelope for data structures and operations (simila
to apackagen Ada, or anodulein Modula—2). There are two types of UCL libraries:

 user librarieswhich have both their specification and implementation (body) written in UCL,

» system librarieswhich are special, predefined libraries with a UCL specification, but no
corresponding UCL implementation. Such libraries will be provided by the target—specific
runtime environment (presumably as part of the interpreter).

Fromthe user point of view the library type is transparent. Both types of libraries are imported and usec
in exactly the same way.

A library consists of two parts belonging to two separate compilation units:
* library specification
* library body (missing for system libraries).

Thelibrary specificationis the list of all entities which are visible to APs or other libraries (i.e., they
may bemport ed). Thdibrary body on the other hand, contains the actual implementations of these
entities, as well as other entities that are invisible from the outside. For system libraries the body i
missing, since their implementation is part of the runtime system.

This partitioning of libraries (into specification and implementation part) allows:
* to restrict the number of entities visible to users, and
 to hide implementation details (information hiding principle)

It also improves maintainability by allowing changes to be made to a library implementation without
affecting its clients.

UCL allows a library to be composed of a specification part only, i.e. without a corresponding body.
For example, a library could contain constant and type declarations only.

Note that the specification and body parts logically belong to the same library and must share the san
name. The specification part of a library represents the interface between the library on one side ar
the library’s clients on the other side. Any change to the specification will require changes to the body
On the other hand, the body may change without affecting the definition part and, hence, its clients.

Library specification

A library specification starts with the keywdidrary , followed by the library'©iame, an optional
import list (see 4.2), and an optional declaration part (see 4.3). It is terminated by the keysvord

The library’s name may be repeated at the end, aftenthdeyword, in which case it obviously must
match the name specified in the header. The library name is implicitly declared as an alias for th
library’s pathname in the database. This alias is visible to client units.

Only the entities declared in a library specification can be imported by other compilation units. The
declaratiorpart may contain any kind of declarations, $ygtem librariegannot declare variables. For
procedures and functions only the subprogram header is given, the subprogram body must be given
the library body.

Subprogramsleclared in system libraries are identified in the system by a unique number. This numbe
is assigned implicitly, starting at 1, but may also be given explicitly by prefixing the subprogram header
with the number followed by a semicolon. Implicit and explicit numbering may be mixed, but as soon
as explicit numbering is used, all following subprograms must be explicitly numbered. The numbers
must be unique but need not be contiguous or in any order.

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
=205 —iarm Seite/ Page: 4-86 von/of 4-96
Library body

A library body starts with the keywortibrary body, followed by the library’s name, an optional
import list (see 4.2), an optional declaration part (see 4.3), and finally by the actual body containing
the respective implementations for all functions and procedures defined in the corresponding libran
specificationNote that identifiers declared in the specification part of a library are visible in the corre-
sponding body, i.e. may be used in the body without declarations. Items imported into a library specifi
cation are available to the library body, as well.

A library body may optionally contain amtialization section (consisting of a statement sequence de-
limited bybegin andend), which is used to initialize its local objects. This initialization section will

be automatically executed before the client (AP or library) is executed. A library is initialized only once,
even if it isimported many times by different imported units. If multiple libraries are imported they are
initialized in the order in which they textually appear. Circular references (for example, A imports B,
which imports C, which imports A) are not allowed and result in error messages.

At runtime, all APs share the same system libraries, but user libraries are not shared between APs, ec
AP has its own copy of user libraries.

Formal Syntax

Library_Specification "library” Identifier ;"
{ Import }
{ Definition }

"end” [Identifier] ;"

Library_Body "library” "body” Identifier ”;"
{ Import }
{ Declaration }

["begin”
Statement_Sequence |

"end” [Identifier] ;"

Definition = Unit_Declaration |
Constant_Declaration |
Type_Declaration |
Variable_Declaration |
Alias_Declaration |
[Simple_Integer “:"] Procedure_Heading |
[Simple_Integer “:"] Function_Heading

Import = see4.?
Declaration = see4.3
Statement_Sequence = see 4.13
Unit_Declaration = see4.ll

Constant_Declaration = see 4.7

Type_Declaration = see4.8
Variable_Declaration = see 4.9
Alias_Declaration = see4.10
Procedure_Heading = see4.14.1
Function_Heading = seed.14.2
Identifier = see4.1.2.2
Simple_Integer = seed.1.24.1

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

EADS -
=25

— I rm

cgs

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

Ausgabe /Issue: 5 Datum/Date : 2009-02-01
Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
Seite/Page: 4-87 von/of 4-96

Example 1

Thislibrary keeps a buffer of pathnames. The buffer implementation is invisible to the user, the library
providesoperations to put/get items in/from the buffer, and to inquire the number of items in the buffer.

Library specification:

library ~ Pathname_Buffer;

constant Buffer_Size : INTEGER := 100;

type Buffer_Error = (No_Error, Buffer_Full, Buffer_Empty);
procedure Put_Buffer (in ltem : pathname ;
out Error : Buffer_Error);

procedure Get_Buffer (out Item : pathname ;
out Error : Buffer_Error);

function Buffer_Level : UNSIGNED_INTEGER,;

end Pathname_Buffer;

Library body:

library body Pathname_Buffer;

type Buffer_Type =

variable Buffer : Buffer_Type;
variable Index : UNSIGNED_INTEGER := 0;

array (1 .. Buffer_Size) of pathname ;

procedure Put_Buffer (in ltem : pathname ;
out Error : Buffer_Error);
begin
if Index < Buffer_Size then
INC (Index);
Buffer (Index) := Item;
Error := No_Error;
else
Error := Buffer_Full;
end if ;
end Put_Buffer;
procedure Get_Buffer (out Item : pathname ;
out Error : Buffer_Error);

begin

if Index>0 then

Item := Buffer (Index);
DEC (Index);
Error := No_Etrror;
else
Error := Buffer_Empty;
end if ;
end Get_Buffer;

function Buffer_Level : UNSIGNED_INTEGER,;

begin
return Index;
end Buffer_Level;

end Pathname_Buffer;

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

EADS cgs

— I rm

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

Ausgabe /Issue: 5 Datum/Date : 2009-02-01
Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
Seite/Page: 4-88 von/of 4-96

Example 2

Thisuser library provides operations to spiME values into their components and to consffiligtE
values from components. This is an example of how to use low level conversions with overlayed recor:
variants in aafe and controlled way (see 4.12.4.2). FoililME representation in memory see 4.8.1.9.

Library specification:

library Time_Library;

procedure Split_Time (in Item :TIME;

out Year :UNSIGNED_INTEGER;

out Month

- UNSIGNED_INTEGER;

out Day :UNSIGNED_INTEGER,;
out Seconds : DURATION);

function Time_Of (Year : UNSIGNED_INTEGER;
Month : UNSIGNED_INTEGER;

Day :UNSIGNED_INTEGER,;
Seconds : DURATION) : TIME;

end Time_Library;

Library body:

library body Time_Library;

— Use a record with variants to overlay time values, packed components:

— year — 1900 (8 bits), month (4 bits), day (5 bits),

— seconds since midnight (fix point, 47 bits, 17 bits fore, 30 bits aft).

type Time_Overlay = record

case Tag: BOOLEAN
when False: Word_1
Word_2 : UNSIGNED_INTEGER;

- UNSIGNED_INTEGER,;

when True: Time_Field : Time;

end case ;
end record

procedure Split_Time (in Item :TIME;
: UNSIGNED_INTEGER,;
: UNSIGNED_INTEGER;

out Year
out Month

out Day :UNSIGNED_INTEGER;
out Seconds : DURATION);

variable Overlay: Time_Overlay;
begin

— Handling of ~:~ and dateless times omitted for simplicity

Overlay.Time_Field := Item;
Year := Overlay.Word_1/2 ** 24 + 1900;

Month := UNSIGNED_INTEGER (BITSET (Overlay.Word_1) * {20 .. 23}) / 2**20;
Day :=UNSIGNED_INTEGER (BITSET (Overlay.Word_1) * {15 .. 19}) / 2**15;

Seconds =

DURATION (LONG_REAL (Overlay.Word_1 % 2**15 * 2+%2)) +
DURATION (LONG_REAL (Overlay.Word_2 / 2++30)) +
DURATION (LONG_REAL (Overlay.Word_2 % 2*+30)) / LONG_REAL (2**30);

end Split_Time;

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
==

— 1L rm Seite/Page: 4-89 von/of 4-96

function Time_Of (Year :UNSIGNED_INTEGER;
Month : UNSIGNED_INTEGER,;
Day :UNSIGNED_INTEGER,;
Seconds : DURATION) : TIME;

variable Overlay: Time_Overlay;

begin
— Check for validity and handling of ~:~ and dateless times
— omitted for simplicity

Int ;= UNSIGNED_INTEGER (LONG_REAL (Seconds)); — truncate
Fraction := Seconds — DURATION (LONG_REAL (Int));

Overlay.Word_1
= (Year — 1900) * 2**24 +
Month * 2**20 +
Day * 2**15 +
Int / 2**2;
Overlay.Word_2
=Int% 2**2*2* 30 +
UNSIGNED_INTEGER (LONG_REAL (Fraction) * LONG_REAL (2**30));

return Overlay.Time_Field;
end Time_Of;

end Time_Library;

Example 3

The following library does not need a body. It contains no executable parts, but only passive
declarations. It might be implemented both as a user library or as a system library.

Library specification:
— This library defines a set of useful non—SI engineering units.

library Non_SI_Units;

unit [in] =1[0.0254 mj; <—inch

unit [ft] =[12in]; <— foot

unit [yd] =[3ft]; <—vyard

unit [mi] =[1760 yd]; <—mile

unit [0z] =[0.282495]; <—ounce

unit [Ib] =[16 oz]; <— pound

unit [gr] = [Ib/7000]; <—grain

unit [cwt] =[112 Ib]; <— hundredweight

unit [ton] =[20 cwt]; <—ton

unit [degC] =[273.15 Kabs]; <— degree Celsius

unit [degF] = [10 degC/18 — 320/18]; <— degree Fahrenheit
end Non_SI_Units;

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-90 von/of 4-96

Example 4

The following system library declares explicity numbered subprograms. The numbers are
non—contiguous, in order to group related subprograms.

The subprograms are annotated.
B Library specification:

library IO_Library;

<— Simple input/output operations.

<— The subprograms operate on standard input and standard output.
— Input operations:

1: procedure Get Char (out C:CHARACTER);
<— Read character from standard input

2: procedure Get String(out S: string);
<— Read string from standard input

3: procedure Get_Integer (out I: INTEGER);
<— Read an Integer literal from standard input

4. procedure Get Real (out R:REAL);
<— Read a Real literal from standard input

— Output operations

11: procedure Put_Char (C: CHARACTER);
<— Write a character on standard ouput

12: procedure Put_String (S: string ; Width: INTEGER := 0);
<— Write a character on standard ouput

13: procedure Put_Integer (I: INTEGER; Width: INTEGER := 1);
<— Write a character on standard ouput

14: procedure Put Real (R: REAL; Width: INTEGER :=0);
<— Write a character on standard ouput

— Line and column control

21:. procedure New_Line;
<— Terminate current output line

30: function Column : Unsigned_Integer;
<— Return the current output column

31: procedure Set_Column (Column : Unsigned_lInteger);
<— Set a new output column

end 10 _Library;

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
=205 —iarm Seite/ Page: 4-91 von/of 4-96

4.16.3 Formal Parameter List Definitions

Items in the database may have formal parameter lists. When such an item is used in a context tr
requires parameters, the item name must be given together with actual parameters conforming to tl
formal parameter list.

The formal parameter list can be defined in UCL syntax and compiled with the UCL compiler. The
parameter list definition is given in the same form as for an AP or a subprogram:

identifier (formal_parameter , ..., formal _parameter);

Theidentifier is optional. If present, it will be implicitly declared as an alias for the item’s path name.
For specific item types there may be restrictions on the allowed number and types of parameters. Su
operational restrictions must be observed by the programmer and will not be checked by the compile

The parameter list definition may be preceded by unit, constant, type and alias declarations. This allow
to have parameter types other than the predefined types, and named default values. Units, constar
types and aliases may also be obtained by importing them from libraries or other parameterized item

Database items with formal parameter lists may be imported like libraries in any compilation unit. An
import makes all objects declared in the formal parameter list definition visible in the importing
compilation unit. This comprises explicitly declared units, constants, types and aliases, as well as th
implicitly declared alias for the item’s path name. Without an import, a parameterized item can be use
without any restrictions, but any additional identifiers declared together with the formal parameter list
will not be visible.

Formal Syntax

Formal_Parameter_List Definition =
{ Import }
{ Unit_Declaration | Constant_Declaration |
Type_Declaration | Alias_Declaration }

[Identifier] Formal_Parameters ";”
Import = see4.2
Unit_Declaration = see4.11

Constant_Declaration = see 4.7

Type_Declaration = see4.8
Alias_Declaration = see4.10
Formal_Parameters = see 4.14.1
Identifier = see4.1.22
Example
import \APM\GLOBAL\COMMON_TYPES; — import common type declarations

constant Lower : INTEGER :=0;
constant Upper : INTEGER := 255;

type Range = INTEGER (Lower .. Upper);

Message (Name : string ; — the parameter list definition
Value : Range := Lower);

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-92 von/of 4-96

4.16.4 Derived Values

A derived values a database item that returns a value computed from the values of other database item
Its UCL source text describes the algorithm for the value computation.

A derived value definition consists of the following:
« an optional list of imported libraries (system libraries only) or other modules
» an optional declaration section with constant, unit, type, variable and alias declarations.

e a statement sequence containing at leastulan statement and, optionally, andcase
statements. Other statements are not allowed.

The main part of the derived value definition igturn statement that returns the value computed
via an expression. It can be used in two forms:

return expression ;

This statement computes a value, returns it as the new value of the item and stops execution. Tt
type of the returned value must be compatible to the software type of the item.

return ;

When the expression is omitted, execution is stopped without computing a new value. The iten
keeps its old value.

The expression will typically involve the runtime value of other database items, but it can also use
constants declared locally, as well as constants and variables imported from libraries, and it may ca
imported functions.

A derived value may access itself, in which case its old value will be used. Indirect cyclic references
through other items are not allowed.

Termination of execution must always be explicitly done througdtutan statement, otherwise a
runtime error will occur. There may be more than tern statement.

Derived value items may be used in other compilation units via their pathname, in order to obtain thei
current value, like any other database item that has a value.

Formal Syntax

Derived_Value { Import }

{ Unit_Declaration | Constant_Declaration |
Type_Declaration | Variable_Declaration | Alias_Declaration }

{ If_Statement | Case_Statement | Return_Statement }

Import = see4.?
Unit_Declaration = see4.ll
Constant_Declaration = see 4.4
Type_Declaration = see 4.8
Alias_Declaration = see4.10
If_Statement = see 4.13.3
Case_Statement = see4.134
Return_Statement = see4.13.6

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _ Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
=2SEriam Seite/ Page: 4-93 von/of 4-96
Example

return (EGSE\HK_TM\HK_PFE\DC_POWER_SUPPLY\XTP0104 +
\EGSE\HK_TM\HK_PFE\DC_POWER_SUPPLY\XTP0804);

Example

alias FNY1016 = \PLMAINSTR\SARR_TM_FLIGHT\RTRF\FNY1016;
alias FNY1017 = \PLMAINSTR\SARR_TM_FLIGHT\RTRF\FNY1017;
alias FNY1019 = \PLMAINSTR\SARR_TM_FLIGHT\RTRF\FNY1019;
alias FNY1020 = \PLMAINSTR\SARR_TM_FLIGHT\RTRF\FNY1020;

if FNY1016 > 0.1 [A] & FNY1019 > 10.0 [V] then
return 2;

elsif FNY1017 > 0.1 [A] & FNY1019 > 10.0 [V] then
return 3;

elsif FNY1016 > 0.1 [A] & FNY1020 > 10.0 [V] then
return 4;

elsif FNY1017 > 0.1 [A] & FNY1020 > 10.0 [V] then
return 5;

else

return 1;
endif ;

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= 5 — 1L rm Seite/Page: 4-94 von/of 4-96

4.17 Privileges and Authorization

Systems using UCL may assign user privileges to users and to single entities managed by the syste
such as commands, measurements, variables, APs, libraries and other items maintained in the Missi
Database. Furthermore, individual library procedures and functions can be assigned privileges. ¢
privilege is named with a single identifier that corresponds to UCL identifier syntax. Any number of
privileges may be defined, and any subset of privileges may be assigned to users and items. Tt
assignment of privileges is done outside UCL with a system tool.

Required privileges are configured in the database with each single item. UCL compilation units anc
subprograms that reference other privileged items, recursively inherit the privileges of all items
referencedlirectly or indirectly. UCL does not assume a specific meaning of the privileges, it just keeps
track of all privileges inherited by each item.

When using a privileged item in an HLCL command window, e. g. starting an AP, HLCL will deny
access to the item, if the user lacks any privileges required by the item. For details see the HLCI
Reference Manual (2.2.1).

4.17.1 Determining the Privileges of a Subprogram or Compilation Unit

When compiling a UCL item, the compiler determines the full set of required privileges, i. e. the
assigned privileges of the item itself plus all privileges inherited through refererathsrtdems, and
stores them together with the compiled item in the database. The privileges of items used within
compilation unit are evaluated only if used im@ardedposition. In non—guarded positions, the
privileges are ignored:

* Imports are always guarded.

» Assignments to software variables are always guarded, as well as passing a software variable
an out or in out parameter to a procedure.

» Procedure and function calls are guarded either if the call is to a library procedure or function
explicitly marked with the keyworduarded in its declaration, or if the called subprogram
directly or indirectly accesses any guarded entities.

» Passing a pahame as a parameter is guarded only, if the formal parameter was explicitly marked
with the keywordguarded in the procedure/function declaration.

A compilation unit accessing any entities that are guarded in the above described way will itself inheri
the privilegs of the accessed entities.

The privileges themselves do not appear in the UCL source text, they are exclusively configured in th
database. The source text just marks the guarded positions. Therefore, no UCL items need to |
rewritten and recompiled, if privileges change.

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: 4-95 von/of 4-96

4.17.2 Guarded Library Procedures and Functions
Library procedures and functions can be marked as guarded as shown in the example.

library Ground_Library;

procedure Write_Message _To_User (...); — not guarded
procedure Read_Message From_User (...); — not guarded
guarded procedure Enable_Monitoring (...); — guarded
guarded procedure Disable_Monitoring (...); — guarded
guarded procedure Issue (...); — guarded
procedure Pathname_To_String (...); — not guarded

enﬁ Ground_Library;

4.17.3 Guarded Parameters
Parameters of procedures and functions can be marked as guarded as shown in the example.

library Ground_Library;

mguarded procedure Enable_Monitoring (guarded Item : Monitor_Item; ...);
guarded procedure Disable_Monitoring (guarded Item : Monitor_Item; ...);
mguarded procedure Issue (guarded Command : Command_ltem(); ...);

enﬁ Ground_Library;

Guarded parameters must be of a pathname or parameterized pathname type. When the procedur
function is called, the calling subprogram or the compilation unit, resp., inherits the privileges of the
items that are passed as parameters:

procedure AP;

import \ some\ path \Ground_Library; — Import is always guarded,
— inherit the library’s privileges
begin
Issue — Issue is guarded,
(\ some\ path \Cmd_1 (...), — command parameter is guarded,
— other parameters are not guarded,
o) — so inherit the privileges of Issue
—and\ some\ path \Cmd_1.
end AP;

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

EADS
205

. -

— I rm

cgs

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

Ausgabe /Issue: 5 Datum/Date : 2009-02-01
Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
Seite/Page: 4-96 von/of 4-96

4.17.4 Dependencies Imposed by Privileges

Please note that inheriting privileges from another item imposes a dependency on that item. This me
create a hierarchy of dependencies between a group of items. When the privileges of an item al
changed, the item becomes outdated and must be recompiled. Likewise, when an item is changed
recompiled, its privileges may have changed, and so may the privileges of the depending item. Henc
all items depending on this item directly or indirectly must be recompiled. The compiler will keep track
of all dependencies and enforce recompilations where necessary.

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.: CGS—-RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS " Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
g 5 — I rm Seite/Page: 5-1 von/of 5-1

5 Compilation

5.1 References and Dependencies

When a compilation unit references another unit, by importing it or just by using its pathname or alias
in the source text, this reference creates a dependency between the two compilation units. All referenc
are kept in the database and checked by the compiler. The kind of reference determines the strength
the dependency and possibly consequences for the compilation process, e. g.

» Simple references, like declaring an alias for a pathname or using the pathname as
non—parameterized subprogram parameter, just require the referenced unit to exist.

* References to the value of an item, e. g. a sensor or a software variable, imply a dependency
the item’s software type properties, thus changing the referenced item will invalidate the
referencing compilation unit. It is no longgp to dateand will have to be recompiled.

» Alibrary body implies a dependency on its specification. So before a body can be compiled, its
specification must be compiled aog to date

» Importing antem implies a dependency on its specification and hence requires the specification
to be compiled andp to datebefore usage. The body is not concerned, it need not even exist.

» Passing an item as a parameterized parameter implies a dependency on its formal parameter |
and hence requires the item to be compiledugntb datebefore usage.

» Using an item in a guarded position implies a dependency on that item'’s privileges (see 4.17)
Changing the privileges of referenced items requires the referencing compilation unit to be
recompiled.

* In order to execute an AP, it must of courset@pletei. e. it must be compiled angb to date
(which implies that all its references meet the above mentioned conditions) and all its
constituents, including library bodies, must be compiledugmntdb dateas well.

The compiler will check all these different kinds of dependencies and enforce all mentioned conditions
If any of its references fails to meet the conditions, the unit cannot be compiled.

5.2 Compilation Order

A consequence of the conditions stated in 5.1 is that compilation units have to be compiled in a specif
order:

» A library specification must be compiled before its body.
» A library specification must be compiled before any compilation unit that imports the library.

* An item must be compiled before any compilation unit that passes it as a parameterizec
parameter.

» Before executing an AP, all its constituents, including bodies, must be compiled.

The compiler provides both a single compilation mode to compile one specific compilation unit, and
a specialmakemode that recompiles not only the unit itself but also all constituents of all units
referenced directly or indirectly in a valid order, and leaves the compilation wutripletestate.
Moreover, inmakemode the compiler performs only the necessary steps, i. e. constituents that are
alreadyup to datewill not be compiled. So, in case the unit is alreaoiyplete the compiler will do
nothing.

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.:. CGS—-RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS - Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
35 Seite/ Page: von/ of

—
Eri m

APPENDICES

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.:. CGS—-RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= =

— 1L rm Seite/Page: A-1 von/of A-1

Appendix A: Acronyms

AP Automated Procedure

APM Attached (Pressurized Module) Laboratory
ASCII American Standard Code for Information Interchange
BNF Backus—Naur Form (syntax)

CSS Core Simulation Software

DB DataBase

DMS Data Management Subsystem

EBNF Extended Backus—Naur Form

EGSE Electrical Ground Support Equipment

FLAP FLight Automated Procedure (onboard)

GMT Greenwich Mean Time

HCI Human Computer Interface

HLCL High—Level Command Language

HW HardWare

ICD Interface Control Document

IEEE Institute of Electrical and Electronics Engineers
ISO International Organisation for Standardization
I/0O Input/Output

MDB Mission DataBase

N/A Not Applicable

NASA National Aeronautics and Space Administration (USA)
ODB Onboard DataBase

(O Operating System

Sl Systéme Internationale (metric unit standards)
SID Short IDentifier

SW SoftWare

TBC To Be Confirmed

TBD To Be Defined

UCL User Control Language

UIL User Interface Language

VICOS Verification Integration and Check—Out Software

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

EADS -
=35

—Iarm

Dok.-Nr/Doc. No.:

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
Seite/Page: B-1 von/of B-2

Appendix B: Definitions

Access rights
Application

Automated Procedure
Child

Compilation unit

Database
Default
Derived Value
End item

Intermediate code (I-code)
Item type

MDB item, MDB object

Mission Database (MDB)

Name tree

Network
Nickname

Node
Operating system (OS)

permission users or applications have to access objects or entities.

program or set of programs performing some specialized
user—oriented function (as opposed to general—-purpose programs like
an operating system)

program (main procedure) written in User Control Language (UCL) .

in a hierarchical structure, denotes an immediate descendant of a
network or tree component. A child is thus located one hierarchical
level below its parent.

smallest unit of code that is accepted by the compiler. In UCL, there are
different types of Compilation Units: Automated Procedure (AP),
Library Specification, Library Body, Formal Parameter List Definition,
Derived Value.

common or integrated collection of interrelated data whose purpose is
to serve one or more applications.

a value supplied by the system when a user does not specify a required
parameter, qualifier, or attribute.

a database item whose value is computed from the values of other
database items.

MDB item located at the lowest hierarchical level (leaf or terminal
node), and hence cannot be further decomposed.

binary code generated by the UCL compiler, interpreted at run time.

type of an MDB item defines the properties (attributes) and the set
operations that may be performed on that item.

used interchangeably, uniquely identifiable entity defined in the
Mission Database (and corresponds to a real-world HW or SW entity).
An MDB Object or Item may be decomposed into lower—level items
according to the hierarchical name tree conventions, see Name tree.

the central repository for all HW/SW configuration information about
Flight Elements, Payloads and associated Ground Support
Equipment.

hierarchical (tree) structure within the MDB which decomposes the
system into subsystems, equipment, etc. The topmost node of the
name tree is called the root node, whereas terminal nodes (leaf nodes)
represent the items that cannot (or need not) be further decomposed,
the end items . Each MDB object is identifiable by a pathname
indicating the succession of nodes to be traversed to reach that
particular object in the name tree.

group of computers (workstations) and/or terminals that are linked
together to allow the sharing of resources (data and peripherals).

an alias for a database item, that may be used instead of a pathname.
Nicknames are predefined in the database.

component of a network or tree structure.

system software that controls the computer and its parts, performing
the basic tasks such as allocating memory, and allowing computer
components to communicate.

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

CGS-RIBRE-STD-0001

EADS -
=35

—Iarm

Dok.-Nr/Doc. No.:. CGS—-RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
Uberarbtg./ Rev.: - Datum/Date: 2010-01-29

Seite/Page: B-2 von/of B-2

Parent

Pathname
Semantics

Short identifier (SID)

Statecode

Unit

User Control Language

in a hierarchical structure, denotes an immediate ancestor of a network
or tree component.

see Name tree

rules dealing with the meaning of the language elements (symbols,
constants, variables, statements etc.)

software—generated unique number assigned to each MDB item
(allows faster retrieval)

identifier (character string) denoting one of many possible states of a
discrete end item. (e.9. SOPEN$CLOSED$HIGH, SMEDIUMS$LOWY

any lower level item in the SW architecture e.g. module, object

T est and operations language (used for real-time control & monitoring

purposes in both the onboard and ground environment)

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/ Doc. No.:. CGS—RIBRE-STD-0001

C s Ausgabe /Issue: 5 Datum/Date : 2009—02-01
EADS - Uberarbtg./ Rev.: - Datum/Date: 2010-01-29

saSsSErium Seite/Page: B-3 von/of B-2

i pl enwastsiiihn

Daimler—Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.:. CGS—-RIBRE-STD-0001

C S Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS __— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29

SESsEriam Seite/ Page: c-1 von/ of Cc-1

Appendix C: DELETED

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.:. CGS—-RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
= 5 -1

Errium Seite/Page: D von/ of D-7

Appendix D: UCL Syntax

The following syntax definition uses the variant of BNF described in section 3.3.

Within the syntax productions, between any terminal symbols, blanks, tabs or line and page breaks mz
be arbitrarily inserted. Within terminal symbols, no blanks, tabs, line or page breaks are allowed. A

comment starts with two hyphens-" and extends to the end of a line.

In identifiers and reserved words, as well as for the lettein real literals, lower— and upper—case
letters are notidtinghuished. These letters are shown here in lower—case only, they are to be undestoo
as representing both the lower—case and upper—case variant.

Please note:Annotations are not explicitly shown in the syntax. They are syntactically treated like
comments, but may appear only at defined positions in a compilation unit (see 4.4).

Compilation Units

Compilation_Unit = Main_Procedure |
Library_Specification |
Library_Body |
Formal_Parameter_List Definition
Derived_Value

Main_Procedure = { Import }
{ Unit_Declaration | Constant_Declaration | Type_Declaration | Alias_Declaration }

"procedure” Identifier [Formal_Parameters] ";”
{ Import }
{ Declaration }

"begin”
Statement_Sequence

"end” [Identifier] ;"

Library_Specification = “library” Identifier ”;”
{ Import }
{ Definition }
"end” [Identifier] ;"

Library_Body = "library” "body” Identifier ”;”
{ Import }
{ Declaration }
["begin”
Statement_Sequence]
"end” [Identifier] ;"

Formal_Parameter_List_Definition =
{ Import }
{ Unit_Declaration | Constant_Declaration | Type_Declaration | Alias_Declaration }
[Identifier] Formal_Parameters ;"

Derived_Value = {Import }
{ Unit_Declaration | Constant_Declaration | Type_Declaration |
Variable_Declaration | Alias_Declaration }

{ If_Statement | Case_Statement | Return_Statement }

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.:. CGS—-RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
==

— 1L rm Seite/Page: D-2 von/ of D-7

Declarations
Import = "import” Name ;"

Definition = Unit_Declaration |
Constant_Declaration |
Type_Declaration |
Variable_Declaration |
Alias_Declaration |
Procedure_Heading |
Function_Heading

Declaration = Unit_Declaration |
Constant_Declaration |
Type_Declaration |
Variable_Declaration |
Alias_Declaration |
Procedure_Declaration |
Function_Declaration

Unit_Declaration = "unit” "[” Unit_ldentifier "]" ["=" Unit] ;"

Constant_Declaration = "constant” Identifier ":” Constant_Type ":=" Constant_Expression ”;

Constant_Type = Qualified_ldentifier [Unit] |
"string” |
"statecode” |
"pathname” [".” ™"]

Type_Declaration = "type” Identifier =" Type ”;”
Variable_Declaration = "variable” Identifier ”:” Variable_Type [;=" Constant_Expression] ";"
Variable_Type = Qualified_Identifier [Unit] |

String_Type |

"statecode” |

”pathnameﬂ [11.11 NkN]
Alias_Declaration = "alias” Identifier "=" Name [”.” Identifier] ";"
Procedure_Heading = ["guarded”] "procedure” Identifier [Formal_Parameters] ;"

Procedure_Declaration =Procedure_Heading
Block

Function_Heading = ["guarded”] "function” Identifier [Formal_Parameters] .”
Qualified_ldentifier [Unit] ;"

Function_Declaration = Function_Heading
Block

Block = { Declaration }
"begin”
Statement_Sequence
"end” [Identifier] ;"

Formal_Parameters = "(" [Parameter_List { ";” Parameter_List}]")"

Parameter_List = ["guarded”] [”in”] ["out”] Identifier_List ":” Formal_Type
[":=" Constant_Expression]

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.:. CGS—-RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
==

— 1L rm Seite/Page: D-3 von/ of D-7

Types

Formal_Type = Formal_Simple_Type |
"array” "of” Formal_Simple_Type |
"string” ["of” Identifier]

Formal_Simple_Type = Qualified_Identifier ["("”)”] [Unit] |

"statecode” |
”pathname" [”(H)1)”] |
"pathname” ".” "*"
Type = Simple_Type |
String_Type |

Statecode_Type |
Pathname_Type |
Subitem_Pathname_Type |
Array_Type |

Set_Type |

Record_Type |
Inherited_Type

Simple_Type = Qualified_ldentifier [Unit] |
Enumeration |
Subrange
Enumeration = (" Identifier_List ”)”
Subrange = Qualified_ldentifier "(" Constant_Expression "..” Constant_Expression ")”
String_Type = "string” "(" Constant_Expression ”)" ["of” Identifier]
Statecode_Type = "statecode” ["(” Statecode_List ")"]
Statecode_List = Statecode { ”,” Statecode }
Pathname_Type = "pathname” ["(” Identifier_List)"]

Subitem_Pathname_Type=
"pathname” ".” "*" ["(" Identifier_List ")"]

Array_Type = "array” "(" Index_Range {",” Index_Range })" "of” Qualified_Identifier [Unit]

Index_Range = Constant_Expression "..” Constant_Expression |
Qualified_ldentifier

Set_Type = "set” "of” Simple_Type
Record_Type = "record”
{ Fields }
"end” "record”
Fields = Identifier_List ":” Qualified_Identifier [Unit] |

"case” ldentifier " Qualified_Identifier
Variant_Part

"end” "case” ;"
Variant_Part = {"when” Case_Label_List ":” { Fields } }
["else” { Fields }]
Case_Label _List= Case_Labels {",” Case_Labels} |
Statecode_List
Case_Labels = Constant_Expression ["..” Constant_Expression]
Identifier_List = Identifier { ”,” Identifier }
Inherited_Type = "type” “of” Name

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.:. CGS—-RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS —— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
sEsSErrium Seite/Page: D-4 von/ of D-7
Statements
Statement = Assignment | Procedure_Call | If_Statement | Case_Statement |
While_Statement | Repeat Statement |Loop_Statement | For_Statement |
Halt_Statement | Exit_Statement | Return_Statement
Assignment = Designator ":=" Expression ;"

Procedure_Call =
Actual_Parameters =
Parameter =

If_Statement =

Case_Statement =

Case =

While_Statement =

Repeat_Statement =

Loop_Statement =

For_Statement =

Iterative_For_Statement

Qualified_ldentifier [Actual_Parameters]”;
"(" [Parameter { ”,” Parameter }])"
[Identifier ":"] Expression

"if” Expression "then”
Statement_Sequence
{ "elsif” Expression "then”
Statement_Sequence }
["else”
Statement_Sequence]
"end” "if" ;"

"case” Expression

Case

{Case}

["else” Statement_Sequence]
"end” "

case” "
"when” Case_Label List ™"
Statement_Sequence

"while” Expression "do”
Statement_Sequence
!lendl! 7,

Whilell H;H
"repeat”
Statement_Sequence

"until” Expression ”;

"lOOp"
Statement_Sequence
!lendl! Hloopﬂ !I;H

Iterative_For_Statement |
Collective_For_Statement

"for” Identifier ";=" Expression "to” Expression ["by” Constant_Expression] "do”
Statement_Sequence
”endﬂ ”forﬂ ”;ﬂ

Collective_For_Statement =

Halt_Statement =
Exit Statement =

Return_Statement =

"for” Identifier "in” Qualified_Identifier ["by” Constant_Expression] "do”
Statement_Sequence
”end)l ”forl) ";l)

"halt” [Expression] ;"

"exit” ”;

"return” [Expression] ;"

Statement_Sequence = { Statement }

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.:. CGS—-RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
==

— 1L rm Seite/Page: D-5 von/ of D-7

Expressions

Constant_Expression = Expression

Expression = Relation { "&” Relation } |

Relation {”|” Relation } |

Aggregate
Aggregate = "(" [Expression{ ”,” Expression}])"
Relation = Simple_Expression

["=" Simple_Expression |

"<>" Simple_Expression |
"< Simple_Expression |
"<=" Simple_Expression |
">" Simple_Expression |
">=" Simple_Expression |
"in” Simple_Expression]

Simple_Expression = ["+"|"="]Term {"+" Term | "=" Term }
Term = Factor { "*” Factor | "/” Factor | "%" Factor }
Factor = Primary ["™**” Factor]

Primary = Number [Unit] |
String |
Character |
Set_Constant |
Date [Time] |
Time |
Statecode |
Designator |
Function_Call |
Type_Conversion |
"(” Expression ") |

"~" Primary
Set_Constant = [Qualified_Identifier] "{" [Element { ",” Element }] "}"
Element = Constant_Expression ["..” Constant_Expression]
Function_Call = Qualified_ldentifier [Actual_Parameters]
Type_Conversion = Qualified_ldentifier ”(" Expression)" |
String_Conversion
String_Conversion = [“pathname” | “alias” | “unit”] Qualified_ldentifier "(" Expression [“,” Format])" |
[“pathname” | “alias” | “unit”] “string” ”(” Expression [*“,” Format]”)”
Format = Width [",” Aft [“," Exp]]
Width, Aft, Exp = Expression
Qualified_ldentifier = [[Name]".”] Identifier
Designator = Name {".” (Identifier | "(" Expression_List ")") }
Slice = Designator "(” Expression “..” Expression ”)”
Expression_List = Expression {",” Expression }
Simple_Name = Identifier { Path_Identifier } |
Pathname
Name = Simple_Name { “.” Identifier }
Pathname = "\" | "\" | Path_ldentifier { Path_ldentifier }
Subitem_Pathname = Name ".” Identifier

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

EADS -

SEriam

Dok.-Nr/Doc. No.. CGS—-RIBRE-STD-0001
C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
Uberarbtg./ Rev.: - Datum/Date: 2010-01-29

Seite/Page: D-6 von/ of D-7

Unit =
Unit_Expression =
Offset =

Numerator =

Denominator =

Unit_Term =

Unit_Factor =

Unit_Identifier =

Unit Expressions
"[" Unit_Expression "”
[Numerator ["/ Denominator] ["+" Offset | "-" Offset]]
Number ["/” Number]

Unit_Term |
"(" Unit_Term)"

Number |
Unit_Factor |
"(" Unit_Term)"

[Number] Unit_Factor { Unit_Factor } |
Number

Unit_ldentifier { Digit }
Letter { Letter }

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.:

Ausgabe /Issue: 5 Datum/ Date :
E ADS I Cgs Uberarbtg./ Rev.: - Datum/ Date:
=2SEriam Seite/Page: D-7 von/ of
Terminal Symbols

Unit_Factor = Unit_ldentifier { Digit }

Path_Identifier = "\" (Letter | "_" | Digit) { Letter | ”_" | Digit }

Statecode = "$” Identifier | "$$”

Identifier = Letter {["_"] Letter_Or_Digit }

Unit_ldentifier = Letter { Letter }

Letter_Or_Digit = Letter | Digit

Letter = "an | b | e | tdm | e | M gt | the K "mT | T

0" S 1 U Y W Y| 2
Number = Simple_Integer |

Simple_Integer =
Based_Integer =
Real =

Date =

Day =

Month =

Year =

Time =

Hours =
Minutes =
Seconds =
Fraction =
Digits =
Hex_Digit =
Digit =

String =
Char_String =
Byte_String=
Character =

Printable =

Based_Integer |
Real

Digits

Digits "#” Hex_Digit { Hex_Digit } "#”
Digits ".” Digits ["e” ["+" | "-"] Digits]
Day ".” Month ".” Year

[Digit] Digit

[Digit] Digit

Digit Digit Digit Digit

Hours ™"

Minutes [":” Seconds [”.” Fraction]] |

[Digit] Digit

Digit Digit

Digit Digit

Digits

Digit { ["_"] Digit }

Digit | "a" | "b™ | "¢ | "d" | "e" | "f"

"0" | "1 | "2 | "3 | "4” | "5 | "6 | "7 | "8 | 9"
Char_String | Byte_String

m{ASCI | oy

"#" ™ [Hex_Digit Hex_Digit {["_"| " "] Hex_Digit Hex_Digit }] ™
™ Printable ™"

any of the printable characters of the underlying character set

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

CGS-RIBRE-STD-0001

Dok.-Nr/Doc. No.:. CGS—-RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EA D S —— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
=

SEriam Seite/ Page: E-1 von/ of E-1

Appendix E: ASCII Character Set

(see ISO standard 646, Ref.doc. 2.2.5, for details)

0 1 2 3 4 5 6 7

NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,
BS, HT, LF, VT, FF, CR, SO, S,

16 DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB,

24 CAN, EM, SUB, ESC, FS, GS, RS, us,

32 i ', 7, ', "%, ‘&,

40 'C, Y, > '+ — T,

48 07, "1, 27, '3, 4, 5, '6’, T,

56 '8’, "9’ <, =’ > 2,

64 ‘@', ‘A, B, 'C, D, =4 F, 'G,

72 'H’, T, T, 'K, 'L, '™, 'N’, 'O,

80 P, 'Q’, 'R’, 'S, T, ‘U, V', "W,

88 X, Y, 'z, T, \, T, W, T

96 a’, v’ ¢/, d’, ‘e’, ', g,

104 ', T, T, 'K, T, m’, n, '0’,

112 P, 'q’, r, 's’, T, o, v, W,

120 X', Y, 'Z’, L, T, Y, '~ DEL

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

EADS -

sSsSErium

cgs

Dok.-Nr/Doc. No.. CGS—-RIBRE-STD-0001
Ausgabe /Issue: 5 Datum/Date : 2009-02-01
Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
Seite/Page: F-1 von/ of F-1

Appendix F: UCL/MDB Type Correspondence Table

The following table shows for a few examples the principle, how MDB item types map on UCL access
classes and software types. This is to be understood as an example only, the actual MDB item type
the corresponding access classes and software types are defined in the database documentation for

respective target system.

MDB object type _

MDB item type class access class UCL object type

analog measurement READ REAL

discrete measurement READ Statecode

analog stimulus SEND -

discrete stimulus SEND —

SW variable READ/WRITE INTEGER
REAL
BOOLEAN

UCL library IMPORT -

network node NODE SELECT -

SW unit none (*) -

nametree node PATH SELECT -

AP EXECUTE —

* "none” means: MDB objects of this type can be accessed only via System Library procedures/functions

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.:. CGS—-RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
=5 -1

— 1L rm Seite/Page: G von/ of G-6

Appendix G: Engineering Units
This section is based on the International Standard ISO 1000 “Sl units and recommendations for th
use of their multiples and of certain other units”.

G-1 Base Units

The international system of units (Systeme International d’Unités, Sl) definestssesanits(For
a definition of the Sl base units, see the ISO 1000 standard, annex B.)

Quantity Unit Sl symbol UCL symbol

1. length meter m m

2. mass kilogram kg kg

3. time second s S

4. electric current ampere A A

5. temperature kelvin K Kabs
temperature difference kelvin K K

6. amount of substance mole mol mol

7. luminosity candela cd cd

Notethat UCL makes the distinction betwesrsolute temperatur@abs) andemperature differengg). The distinction
is necessary to allow conversions betweenc€.gnd K; in particular, the relationship?© = 273.15 Kabs does not hold
for temperature differences.

G-2 Sl Units

In the table of SI units given below, the column “Sl unit” refers to the name of the unit as defined by
ISO 1000 and the international system of units (Systéme International d’Unités, Sl) or to unit names
composed by Sl unit names (e.g. m/s). The column “Sym.” (symbol) shows the recommended strin
to be used in UCL to denote such a unit, the same is true for the “supported multiples of this unit” in
the next columns. The “Definition” column exactly defines the unit.

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

EADS
=

B -

SEriam

Dok.-Nr/Doc. No.:

CGS-RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
Seite/Page: G-2 von/ of G-6

Quantity Sl unit Sym. Supported multiples of this unit Definition
length meter m km cm mm um nm pm base unit
astronomic
unit AU 1 AU = 149597.870 1P m
parsec pc 1 pc =206265 AU
area m2 m2 km2 dm2 cm2 mm2 1f=1mem
volume m3 m3 dm3 cm3 mm3 1fh=1me mem
liter LL hl cl mi 11=1dm?
Note that both the upper case letter ‘L’ and the lower case letter ‘I' denote the unit liter.
mass kilogram ka g mg ug base unit
atomic mass
unit u 1u=1.66053S 18" kg
tonne t 1t=18kg
time second s ms us ns base unit
minute min 1min=60s
hour h 1 h =60 min
day d 1d=24h
electric current ampere A kA mA UA nA pA base unit
temperature kelvin Kabs base unit
degree
Celsius degC C=1K+273.15
temp. difference kelvin K base unit
amount of
substance mole mol kmol mmol umol base unit
luminosity candela cd base unit
plane angle radian rad mrad urad supplementary urm/m
solid angle steradian sr supplementary ur#m2/m?2
frequency hertz Hz THz GHz MHz kHz 1Hz=1%
rotational freq. s1 1/s 1/min
force newton N MN kN mN uN 1N =1kg mfs
pressure pascal Pa GPa MPa kPa mPa uPa 1 Pa=2N/m
bar bar mbar ubar 1 bar =1Pa

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.:

CGS-RIBRE-STD-0001

C s Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _ Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
=2SEriam Seite/ Page: G-3 von/ of G-6
Quantity Sl unit Sym. Supported multiples of this unit Definition
energy, work,
heat joule J TJ G M K mJ 1J=1Nm
electronvolt eV GeV MeV keV 1eV=1.60219 S16J
torque Nm Nm MNm kKNm mNm uNm INmM=1Nm=1J
power watt w GW MW kW mw uw 1wW=1Js
electric charge coulomb C MC kC mC uC nC pC 1C=1As
Ah Ah mAh uAh 1 Ah=3.6 kC
electric potential volt \% MV kv mV uVv 1v=1JcC
electric
capacitance farad F mF uF nF pF 1F=1CNV
electric
resistance ohmQ Ohm GOhm MOhm kOhm mOhm 1W=1V/A
electric
conductance siemens S kS mS uS 1Ss=1
magnetic flux weber Wb mWb 1Wb=1Vs
magnetic
induction tesla T mT uT nT 1T =1Wb/k
inductance henry H mH uH nH pH 1H=1Wb/A
luminous flux lumen Im lim=1cdsr
illuminance lux Ix 11x=1Im/n?
activity (of a
radionuclide) becquerel Bq 1Bq=1%
absorbed dose gray Gy 1 Gy =1J/kg
dose equivalent sievert Sv 1Sv=1Jkg
velocity m/s m/s
km/h km/h 1 km/h = (1/3.6) m/s
knot knot 1 knot = 0.514n/s
angular velocity rad/s rad/s
acceleration m/& m/s2
density kg/m3 kg/m3 kg/l g/l
linear mass
density kg/m kg/m mg/m

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.:. CGS—-RIBRE-STD-0001

C s Ausgabe /Issue: 5 Datum/ Date :
Uberarbtg./ Rev.: - Datum/Date:

=SSErr I;I_-I'I'I Seite/ Page: G4 von/ of
Quantity Sl unit Sym. Supported multiples of this unit Definition
momentum kg m/s kg m/s
angular
momentum kg mé/s kg m2/s
moment of inertia kg n? kg m2
viscosity Pas Pas mPa s
specific acoustic
impedance Pa s/m Pa s/m
acoustic
impedance Pa s/m Pa s/m3
kinematic
viscosity m2/s m2/s mm2/s
volume flow rate m3/s m3/s /s
surface tension ~ N/m N/m mN/m
linear expansion
coefficient K-1 1/K
thermal
conductivity W/(m K) W/(m K)
coefficient of heat
transfer W/(m2K) W/(m2 K)
heat capacity JIK JIK kJ/IK
specific heat
capacity J/(kg K) J/(kg K)
specific internal
energy J/kg MJ/kg kJ/kg
charge density ~ C/m3 C/m3
surface density of
charge C/m? C/m2
electric field
strength Vim Vim MV/mkV/m mV/m uV/m
permittivity F/m F/m uF/m nF/m pF/m
electric
polarization C/nm? C/m2 kC/m2mC/m2 uC/m2
electric dipole
moment Cm Cm

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.:. CGS—-RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EA D S _ Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
=

SEriam Seite/ Page: G-5 von/ of G-6

Quantity Sl unit Sym. Supported multiples of this unit Definition

current density ~ A/m2 A/m2 A/mm2

linear current

density A/m A/m A/mm
magnetic vector

potential Whb/m Whb/m

permeability H/m H/m uH/m nH/m
electromagnetic

moment A m2 A m2

magnetization A/m A/m A/mm

magnetic dipole

moment Wb m Wb m

resistivity Qm Ohmm GOhmm MOhm m KOhmm mOhmm
conductivity S/m S/m MS/m kS/m
reluctance H-1 1/H

radiant intensity ~ W/sr W/sr

radiance Wi(srmd) WI(sr m2)

irradiance W/m?2 W/m2

quantity of light Ims Ims

luminance cd/n? cd/m2

luminous exitancelm/m?2 Im/m2

light exposure Ix s Ix s

luminous efficacy Im/W Im/W

mechanical

impedance N s/m N s/m

molar mass kg/mol kg/mol g/mol

molar volume m3/mol m3/mol I/mol

molar internal

energy J/mol KJ/mol
molar heat
capacity J/(mol K) J/(mol K)

concentration of
substance B mol/m3 mol/m3

molality of solute
substance B mol/kg mol/kg

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.:. CGS—-RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EADS _— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
g5 -6

— 1L rm Seite/Page: G von/ of G-6

G—-3 Non-SlI Units

For convenience, the following non-SI units are also supported.

Quantity Unit Sym. Supported multiples of this unit Definition
length inch in 1lin=25.4mm
An inch is defined to be exactly 25.4 mm. It is used as the “base unit” for imperial lengths.
foot ft 1ft=12in
yard yd lyd=31t
mile mi 1 mi=1760yd
mass pound b 11b =453.592 g
A pound is defined to be exactly 453.592 g. It is used as the “base unit” for imperial masses.
ounce 0z loz=(1/16) b
grain gr 1 gr = (1/43%?) oz
hundredweightcwt lcewt=1121b
ton ton 1 ton = 20 cwt
temperature degree
Fahrenheit degF 1 degF = 10/18 degC — 320/18

G—-4 Prefix Names and Values

The Sl prefixes (also in the ISO 1000 standard) are used with the unit symbols defined above.

E exa 188
P peta 1865
T tera 142
G giga 16
M mega 16

k kilo 103

h hecto 16
da deca 10
d deci 101
c centi 102
m milli 10-3
u micro 106 should bl (mu) but this is not in the ASCII character set
n nano 16°
p pico 1012
f femto 1015
a atto 1018

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

EADS cgs

— I rm

Dok.-Nr/Doc. No.. CGS—-RIBRE-STD-0001
Ausgabe /Issue: 5 Datum/Date : 2009-02-01
Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
Seite/Page: H-1 von/ of H-1

Appendix H: Implementation Constraints

The following restrictions are not inherent to the language; rather, they are due to the specific
implementation of the UCL compiler and its runtime environment. Restrictions on UCL procedures

also apply to UCL functions.

* Maximum length of a line of text, and hence of an identifier, is 256 characters.

« Maximum number of local variables/parameters in one procedure is restricted to 65585 (or 2

« Maximum number of global variables/parameters in one compilation unit is 6553&)or 2

« Maximum number of procedures in one compilation unit is 655361(r 2

« Maximum size of a record variable is 65536 words {6).2

« Maximum number of elements in a set is 65536 {6y.2

« Maximum number of components in an array3s-2.

« Maximum number of characters in a string3-2.

« Maximum number of imported user libraries in one AP is 655361Qr 2

« Maximum number of imported system libraries in one AP is 65536 r 2

« Maximum size of a boolean expression (contaiiragy | operators) is 65536 (0t9) bytes.

The UCL Compiler is part of the Columbus Ground System (CGS).

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

EADS -
=25

— I rm

cgs

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

Ausgabe /Issue: 5 Datum/ Date :
Uberarbtg./ Rev.: - Datum/Date:
Seite/Page: -1 von/ of

2009-02-01
2010-01-29
-4

A

ABS function, 4-19, 4-20, 4-78
access class, 4-14

actual parameter, 4-53
aggregate, 4-27, 4-32

alias declaration, 4-41

analog measurement, 4-13
annotation, 4-16

AP, 3-1

arithmetical operator, 4-51
array index, 4-26

array type, 4-26

ASCII, 4-5

assignment, 4—63

automated procedure, 3-1, 4-82

B

base unit, 4-42

based integer number, 4-4
bitset constant, 4-31
BITSET type, 4-31
Boolean operator, 4-52
BOOLEAN type, 4-20
byte string, 46

byte string literal, 4—6
BYTE type, 4-21

C

case sensitive, 4-3

case statement, 4—66
character literal, 4-5
character set, 4-1
character string, 4—6
character string literal, 4—6
CHARACTER type, 4-21
commensurable unit, 4-42

INDEX

annotation, 4-1

comment, 4-1

comparison operator, 4-52
compatibility, 4-38
compilation, 5-1

compilation order, 5-1
compilation unit, 4-81
COMPLETION_CODE type, 4-24
concatenation, 4-32
concatenation operator, 4-52
constant, 4-17

constant declaration, 4-17
constant expression, 4-50
conversion, 4-54

counting units, 4-42, 4-56

D

database scope, 4-11

DEC procedure, 4-19, 4-24, 4-79
declaration, 4-10

default value, 4—74

delimiter, 4-2

dependency, 5-1

dimension, 4-26

dollar sign, for state code identifiers, 4-5
duration literal, 4—7

DURATION type, 4-23

E

element type, 4-26

elementary type, 4-18, 4-19

end of line, 4-3

enumeration type, 4-20, 4-24
EXCL procedure, 4-30, 4-79, 4-80
exit statement, 4-73

expression, 4-49

F

floating point, 4-5

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

EADS cgs

— I rm

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001
Ausgabe /Issue: 5 Datum/Date : 2009-02-01
Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
Seite/Page: -2 von/ of -4

for statement, 4-70

formal parameter, 4—74

formal parameter list definition, 4-91, 4-92
function call, 4-53

function declaration, 4-76

H

halt statement, 4-72
HIGH function, 4-26, 4-32, 4-74, 4-79
HLCL, 3-1

10 format, 4-62

identifier, 4-3, 4-10

if statement, 4—66
implementation constraints, H-1
import, 4-9, 4-82

in out parameter, 4-65, 4—74, 4-76
in parameter, 4-64, 4-74

INC procedure, 4-19, 4-24, 4-79
INCL procedure, 4-30, 4—-79
index, 4-26

index type, 4—26

inherited type, 4-18, 4-37
integer number, 4-4

INTEGER type, 4-19

interactive commands, 3-1

L

LENGTH function, 4-32, 4-79
lexical element, 4-1, 4-2
library, 4-85

library body, 4-86

library implementation, 4-86
library specification, 4—85
lifetime of objects, 4-12

line length, 4-1

logical operator, 4-52
LONG_REAL type, 4-20

LONG_WORD type, 4-21

loop index, 4—-70
implicitly declared, 4-70

loop statement, 4—68

LOW function, 4-26, 4-32, 4—74, 4-78
low level conversion, 4-59, 4-80

low level programming, 4—28

Low Level Type, 4-21

M

MAX function, 4-19, 4-20, 4-21, 4-23, 4-78
MDB, 3-1, 4-13

MDB item, 4-13

MDB object, 4-13

MIN function, 4-19, 4-20, 4-21, 4-23, 4-24, 4-25,
4-78

Mission Database, 3-1, 4-13
multidimensional array, 4—26

N

name, 4-10

name tree, 3-2, 4-3
nickname, 4-11, 4-41
no pathname, 4-3
node name, 4-15
numeric literal, 4—4

O

ODD function, 4-19, 4-79

open array, 4-65, 4—74

open string, 4—65, 4-74
operand, 4-50

operator, 4-51

out parameter, 4-64, 4—74, 4-76
overlay, 4-28

P

path identifier, 4-3
pathname, 4-3, 4-13
pathname type, 4-18, 4-34

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

EADS cgs

— I rm

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

Ausgabe /Issue: 5 Datum/ Date :
Uberarbtg./ Rev.: - Datum/Date:
Seite/Page: -3 von/ of

2009-02-01
2010-01-29
-4

precedence, of operators, 4-51
predefined type, 4-18

predefined units, 4-43

privileges, authorization, 4-94
procedure body, 4-74, 4-75
procedure call, 4-64

procedure declaration, 4-74, 4—77
procedure header, 4—74

Q

qualified identifier, 4-12

R

range constraint, 4—4, 4-25
real number, 4-5

REAL type, 4-20

record field, 4-28

record type, 4-28
recursive call, 4-12, 4-65
reference, 5-1

relational operator, 4-52
repeat statement, 4—-69
reserved words, 4-3
return statement, 4—72

root pathname, 4-3

S

scope, 4-10
of loop index, 4-70

separator, 4-1

set comparison, 4-30

set constant, 4-31

set difference, 4-30

set inclusion, 4-30

set intersection, 4-30

set membership test, 4-30
set operator, 4-52

set type, 4-30

set union, 4-30

Sl system, 4-42

slice, 4-32

software type, 4-14

source code, 4-1

standard function, 4-78
standard procedure, 4-78
statecode literal, 4-5
statecode type, 4-22
statement, 4—63

statement sequence, 4—63
string conversion, 4—60

string literal, 4—6

string type, 4-32

structural compatibility, 4-39
structured type, 4-18, 4-26
subitem, 4-13

subitem pathname, 4-13
subitem pathname type, 4-18, 4-36
subprogram declaration, 4-74
subrange type, 4-25
substring, 4-32

symmetric set difference, 4-30
syntax notation, 3-5

T

tag field, 4-28

temperatures, special treatment for, 4-46
time literal, 4-7

TIME type, 4-23

type, 4-18

type conversion, 4-54

type declaration, 4-18

U

unbound array, 4-74
See alsprocedure declaration

unbound string, 4-65, 4-74
unit declaration, 4-43

unit expression, 4—44

unit identifier, 4-10

unit literal, 4-8

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

Dok.-Nr/Doc. No.. CGS—RIBRE-STD-0001

C 5 Ausgabe /Issue: 5 Datum/Date : 2009-02-01
EA D S —— Uberarbtg./ Rev.: - Datum/Date: 2010-01-29
=

SEriam Seite/ Page: -4 von/ of -4

unitized constants, 4-46 variant, 4-28
unitized type, 4-18, 4-42
unitized value, 4-42

vocabulary, 4-1

units of measure, 4—42
UNSIGNED_INTEGER type, 4-19
UNTYPED function, 4-59, 4-80 W

while statement, 4—68

V

variable declaration, 4-40

WORD type, 4-21

Daimler-Benz Aerospace AG, D-28199 Bremen — All Rights reserved — Copyright per DIN 34

