
Dok.-Nr/ Doc. No.:   CGS–RIBRE–STD–0001
Ausgabe /Issue:          5
Überarbtg./ Rev.:        –

Datum/Date :    2009–02–01

Datum/Date:     2010–01–29

Daimler–Benz Aerospace AG, D–28199 Bremen – All Rights reserved – Copyright per DIN 34

Dokument Typ: Standard
Document Type:

Titel: User Control Language (UCL) Reference Manual
Title:

Lieferbedingungs–Nr.: Klassifikations Nr.:

DRL/DRD No.:  Classification No.:

Produktgruppe: Konfigurationsteil–Nr.:

Product Group: Configuration Item No.:    

Schlagwörter: UCL Porduktklassifizierungs–Nr.:

Headings: User Control Language Classifying  Product Code:

AP
Automated Procedure

Freigabe Ordnungs–Nr.:

Release Orde No.:

Bisherige Dok.–Nr.:

previous doc.–no.:          CGS–RIBRE–STD–0001

Bearbeitet: Franz Kruse Org. Einh.:     TE 55 Unternehmen:         EADS Astrium Bremen
Prepared by: Orgin. Unit:     Company:

Geprüft: Stephan Marz Org. Einh.:     TE 55 Unternehmen:             EADS Astrium Bremen
Agreed by: Orgin. Unit::    Company:

Genehmigt: Jürgen Frank Org. Einh.:    TE 55 Unternehmen:             EADS Astrium Bremen
Approved by: Orgin. Unit: Company:

Genehmigt: Org. Einh.:   Unternehmen:

Approved by: Orgin. Unit: Company:



DOCUMENT CHANGE RECORD

ISSUE/REV. DATE Affected Paragraph/Page DESCRIPTION OF CHANGE

Dok.-Nr/ Doc. No.:   CGS–RIBRE–STD–0001
Ausgabe /Issue:        5
Überarbtg./ Rev.:      –
Seite/Page:             I

Datum/ Date :   2009–02–01

Datum/ Date:    2010–01–29

von/ of          V

Daimler–Benz Aerospace AG, D–28199 Bremen – All Rights reserved – Copyright per DIN 34

1/– 2002–02–01 First version including:

– 32–bit UNSIGNED_INTEGER type.

 – Database aliases (”nicknames”)

 – High resolution TIME/DURATION format

1/A 2002–06–03 4.9.4.3 String conversions

4.3.4, 4.7 Qualified identifier syntax enhanced to better fit alias usage

 4.13.4 Derived Values can access their own (old) values.

 Different editorial changes

4.5.2.1, 4.5.2.5, 4.11, 4.12 COL–RIBRE–SPR–10651
New function LOW, generalized HIGH

1/B 2003–01–15 4.12 Generalized Min/Max functions

2/– 2004–05–19 4.14 Privileges, authorization

 4.1.3 I/O format

2/A 2004–09–01 4.3.4 Qualified predefined identifiers (. xyz )

 4.9.4.4 I/O format

 4.13.2 Imports in library spec. available in body

2/B 2004–12–14 4.14 Privileges inherited on subprogram level

2/C 2005–02–20 4.9.4.3 Extended string conversions

2/D 2005–06–08 4.8.2, 4.9.4.1 Counting units

2/E 2005–08–30 4.9.4.3 unit string conversion for pathname types

3/– 2005–12–01 4.8 declaration of new base units

4.8, 4.9.4.1 unitized integer types

3/A 2008–07–02 4.13.4 declaration of new base units

4/– 2009–02–01 4.5.2.5 Substrings (slices)

4.12 Predefined procedure PUT

Appendix H Constraints removed

5/– 2010–01–29 4.1, 4.4 Annotations

4.16.2 Explicitly numbered system library subprograms

4.1.2.2 New keywords union, entity, void



Dok.-Nr/ Doc. No.:   CGS–RIBRE–STD–0001
Ausgabe /Issue:        5
Überarbtg./ Rev.:      –
Seite/Page:             II

Datum/ Date :   2009–02–01

Datum/ Date:    2010–01–29

von/ of            V

Daimler–Benz Aerospace AG, D–28199 Bremen – All Rights reserved – Copyright per DIN 34

Table of Contents

1 Introduction 1–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1.1  Identification 1–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1.2  Purpose 1–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1.3  Document Outline 1–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2 Applicable and Reference Documents 2–1. . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.1  Applicable Documents 2–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.2  Reference Documents 2–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3 Overview 3–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.1  Conceptual Overview 3–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.2  Language Summary 3–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.3  Syntax Notation 3–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.4  Conventions Used in Examples 3–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4 Language Definition 4–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.1  Vocabulary & Lexical Elements 4–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.1.1  Character Set 4–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.1.2  Lexical Elements 4–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.1.2.1  Delimiters 4–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.1.2.2  Identifiers 4–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.1.2.3  Path Identifiers and Pathnames 4–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.1.2.4  Numeric Literals 4–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.1.2.5  Statecode Literals 4–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.1.2.6  Character Literals 4–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.1.2.7  String Literals 4–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.1.2.8  Time Literals 4–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.1.2.9  Duration Literals 4–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.1.2.10  Unit Literals 4–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.2  Import 4–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.3  Declarations, Names and Scopes 4–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.3.1  Identifiers 4–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.3.2  Scope of Identifiers 4–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.3.3  Database Scope and Aliases (”nicknames”) 4–11. . . . . . . . . . . . . . . . . . . . . . . . 
4.3.4  Qualified Identifiers 4–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.3.5  Lifetime of Objects 4–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.3.6  MDB Objects, Pathnames 4–13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.3.7  Node Names 4–15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.4  Annotations 4–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.5  Constant Declarations 4–17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.8  Type Declarations 4–18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.8.1  Elementary Types 4–19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Dok.-Nr/ Doc. No.:   CGS–RIBRE–STD–0001
Ausgabe /Issue:        5
Überarbtg./ Rev.:      –
Seite/Page:             III

Datum/ Date :   2009–02–01

Datum/ Date:    2010–01–29

von/ of            V

Daimler–Benz Aerospace AG, D–28199 Bremen – All Rights reserved – Copyright per DIN 34

4.8.1.1  Type INTEGER 4–19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.8.1.2  Type UNSIGNED_INTEGER 4–19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.8.1.3  Type REAL 4–20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.8.1.4  Type LONG_REAL 4–20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.8.1.5  Type BOOLEAN 4–20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.8.1.6  Type CHARACTER 4–21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.8.1.7  Low Level Types BYTE, WORD, LONG_WORD 4–21. . . . . . . . . . . . . . 
4.8.1.8  Statecode Types 4–22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.8.1.9  Types TIME and DURATION 4–23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.8.1.10  Type COMPLETION_CODE 4–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.8.1.11  Enumeration Types 4–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.8.1.12  Subrange Types 4–25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.8.2  Structured Types 4–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.8.2.1  Array Types 4–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.8.2.2  Record Types 4–28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.8.2.3  Set Types 4–30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.8.2.4  Type BITSET 4–31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.8.2.5  String Types 4–32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.8.3  Pathname Types 4–34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.8.4  Subitem Pathname Types 4–36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.8.5  Inherited Types 4–37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.8.6  Compatibility of Types 4–38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.8.6.1  General Rules 4–38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.8.6.2  Structural Compatibility 4–39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.7  Variable Declarations 4–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.8  Alias Declarations 4–41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.9  Unitized Values and Types 4–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.9.1  Units of Measure 4–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.9.2  Counting Units 4–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.9.3  Predefined Units 4–43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.9.4  Unit Declaration 4–43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.9.5  Unit Syntax 4–44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.9.6  Unitized Types 4–45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.9.7  Unitized Variables and Constants 4–45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.9.8  Compatibility of Unitized Types 4–45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.9.9  Unitized Literals & Constants 4–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.9.10  Expressions with Unitized Values 4–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.9.11  Unitized Integer Values 4–48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.11  Expressions 4–49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.11.1  Operands 4–50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.11.2  Operators 4–51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.11.2.1  Arithmetical Operators 4–51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.11.2.2  Concatenation Operator 4–52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.11.2.3  Logical or Boolean Operators 4–52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.11.2.4  Relational or Comparison Operators 4–52. . . . . . . . . . . . . . . . . . . . . . . . . 



Dok.-Nr/ Doc. No.:   CGS–RIBRE–STD–0001
Ausgabe /Issue:        5
Überarbtg./ Rev.:      –
Seite/Page:             IV

Datum/ Date :   2009–02–01

Datum/ Date:    2010–01–29

von/ of            V

Daimler–Benz Aerospace AG, D–28199 Bremen – All Rights reserved – Copyright per DIN 34

4.11.2.5  Set Operators 4–52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.11.3  Function Calls 4–53. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.11.4  Type Conversions 4–54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.11.4.1  High Level Conversions 4–54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.11.4.2  Low Level Conversions 4–59. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.11.4.3  String Conversions 4–60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.11.4.4  Input/Output Format 4–62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.11  Statements 4–63. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.11.1  Assignment 4–63. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.11.2  Procedure Call 4–64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.11.3  if Statement 4–66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.11.4  case Statement 4–66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.11.5  Loop Statements 4–67. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.11.5.1  Simple loop Statement 4–68. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.11.5.2  while Statement 4–68. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.11.5.3  repeat Statement 4–69. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.11.5.4  for Statement 4–70. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.11.6  return Statement 4–72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.11.7  halt Statement 4–72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.11.8  exit Statement 4–73. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.12  Subprogram Declarations 4–74. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.12.1  Procedure Declaration 4–74. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.12.2  Function Declaration 4–76. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.12.3  Guarded Procedures, Functions and Parameters 4–77. . . . . . . . . . . . . . . . . . . . 

4.13  Standard Functions and Procedures 4–78. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.16  Compilation Units 4–81. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.16.1  Automated Procedures 4–82. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.16.2  Libraries 4–85. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.16.3  Formal Parameter List Definitions 4–91. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.16.4  Derived Values 4–92. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.15  Privileges and Authorization 4–94. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.15.1  Determining the Privileges of a Subprogram or Compilation Unit 4–94. . . . . . 
4.15.2  Guarded Library Procedures and Functions 4–95. . . . . . . . . . . . . . . . . . . . . . . 
4.15.3  Guarded Parameters 4–95. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.15.4  Dependencies Imposed by Privileges 4–96. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5 Compilation 5–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.1  References and Dependencies 5–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.2  Compilation Order 5–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Appendix A: Acronyms A–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Appendix B: Definitions B–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Appendix C: deleted C–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Appendix D: UCL Syntax D–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Dok.-Nr/ Doc. No.:   CGS–RIBRE–STD–0001
Ausgabe /Issue:        5
Überarbtg./ Rev.:      –
Seite/Page:             V

Datum/ Date :   2009–02–01

Datum/ Date:    2010–01–29

von/ of            V

Daimler–Benz Aerospace AG, D–28199 Bremen – All Rights reserved – Copyright per DIN 34

Appendix E:  ASCII Character Set E–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Appendix F: UCL/MDB Type Correspondence Table F–1. . . . . . . . . . . . . . . 

Appendix G: Engineering Units G–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
G–1  Base Units G–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

G–2  SI Units G–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

G–3  Non–SI Units G–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

G–4  Prefix Names and Values G–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Appendix H: Implementation Constraints H–1. . . . . . . . . . . . . . . . . . . . . . . . 



Dok.-Nr/ Doc. No.:   CGS–RIBRE–STD–0001
Ausgabe /Issue:          5
Überarbtg./ Rev.:        –
Seite/Page:               1–1

Datum/ Date :    2009–02–01

Datum/ Date:     2010–01–29

von/ of             1–1

Daimler–Benz Aerospace AG, D–28199 Bremen – All Rights reserved – Copyright per DIN 34

1 Introduction

1.1  Identification

This is the Language Reference Manual for the CGS User Control Language (UCL), Document
CGS–RIBRE–STD–0001. The first issue is derived from the Columbus document
COL–RIBRE–STD–0010, issue 4/A. Changes to this base document are marked with change bars.

1.2  Purpose

This document provides the language definition for UCL. Its primary goal is to establish formal
requirements on syntax and semantics of UCL for the development of language processing tools such
as compiler and interpreter. It may also be used as a language reference manual.

Please note that this reference manual covers only the UCL language itself, it does not define system
libraries for specific target systems. The definition of UCL system libraries is part of the interface
documentation of the respective target systems, e. g. the CGS ICD, DMS ICD etc.

1.3  Document Outline

This reference manual is divided into main chapters (3 and 4), and several appendices which, for the
most part, summarise information provided elsewhere in the document.

Chapter 3 gives a general overview; it briefly explains the underlying concept, and puts UCL in
perspective, showing how it fits into the CGS language scenario (UCL, HLCL).

Chapter 4 deals with the basic language definition. It is organised into sections, each covering a specific
language element. This is first explained in narrative form, followed by the formal syntax (using a
variant of the Backus–Naur Form) and finally illustrated by one or more examples.

The appendices (A through H) have the following contents:

• Appendix A and B explain the acronyms and terms used.

• Appendix C is empty.

• Appendix D summarizes the syntax of UCL.

• Appendix E shows the ASCII character set.

• Appendix F shows correspondences between MDB item types and UCL types.

• Appendix G shows the ISO 1000 engineering units.

• Appendix H summarizes issues of implementation.

At the end of the document there is an alphabetical index.
2
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2 Applicable and Reference Documents

2.1  Applicable Documents

none

2.2  Reference Documents

2.2.1 High Level Command Language (HLCL) Reference Manual
CGS–RIBRE–STD–0002

2.2.2 UCL Virtual Stack Machine and I–Code Reference Manual
CGS–RIBRE–STD–0003

2.2.3 Mission Database (MDB) User Manual
There are specific MDB user manuals for different target systems.

2.2.4 ISO 1000, SI units and recommendations for the use of their multiples
and of certain other units
International Standards Organisation, Geneva, Switzerland

2.2.5 ISO 646, Information Processing ISO 7–Bit Coded Character Set
for Information Interchange
International Standards Organisation, Geneva, Switzerland

3
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3 Overview

3.1  Conceptual Overview

Although its basic syntax is that of a general–purpose programming language, UCL is a dedicated test
and operations language for monitoring and control of spacecraft subsystems. It is intended for use in
both the on–board operational and the ground (checkout) environment.

UCL is a procedural language representing the set of all commands or instructions that can be
predefined and stored as so–called Automated Procedures (APs) and User Libraries in the Mission
Database (MDB). Automated procedures play the role of a main program. They can be executed like
an individual program, but can, typically, also be part of some higher–level actions which are stored
in the form of hierarchical tree structures.

For better manageability and adaptability to specific target environments, the monitoring and control
features of UCL have been removed from the actual language definition and encapsulated in system
libraries. These libraries are specific for the respective target systems, they are defined in the interface
documentation for these systems (e. g. the DMS ICD, the CGS ICD etc.).

The library construct of UCL corresponds to the Ada package (or the module in Modula–2). It supports
the information hiding concept which allows the separation of a module’s specification from its
implementation. The library concept is not restricted to system libraries, but a user may implement his
own user libraries in UCL.

UCL programs (Automated Procedures, or APs) automatically ”inherit” the definitions of objects
contained in the MDB. These objects are thus directly visible and may be referenced by their Database
path names (see Fig. 1.)

UCL also supports on–line interactive commands. These facilities are provided by the High Level
Command Language (HLCL) in the ground SW environment. HLCL is somewhat a modification of
UCL (i.e. it extends UCL with respect to interactive commanding, e.g. HLCL allows abbreviations)
and shares the same system libraries. In this manner, UCL’s monitoring and control facilities also
become available on–line, as HLCL keyboard commands. HLCL is described in reference document
2.2.1.

UCL programs are edited and compiled off–line. This process is depicted in Figure 3. During the
compilation process, the UCL code is transformed into a binary intermediate code which is later
executed (interpreted) in the target environment (e.g. DMS, EGSE) by a dedicated program
(interpreter).
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CSF
EGSE

   EPS    TCSECLSS

SubSystems

Equip_A Equip_B

input_voltage
power_on

DMS

DBA TTA. . .

. . .Payload

APM

for illustration purposes only

output_voltage

shut_offtemperatureswitch_position

\APM\SubSystems\TCS\Equip_A\switch_position
Example of end item name:

Figure 1. Hierarchical Name Tree (example)
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Figure 2. UCL runtime environment
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MDB
UCL editor/

compiler data extraction
services

to
ODB

to  EGSE
Configuration DBsource

+
I–codeUCL source

code

Figure 3. Off–line preparation of an AP

3.2  Language Summary

• Compilation Units

− Automated Procedures (main program)

− Libraries

− Formal parameter list definitions

− Derived Values

• A Library consists of :

− Library specification

− Library body (implementation part)

• Automated Procedures, Library specifications, and Library bodies are compiled separately.

• Two kinds of subprograms:

− Procedures

− Functions

• Subprograms must be defined within main programs (APs) or Libraries; they may not be nested
inside other subprograms. Their parameters may have default values, and may be ”unbound”
arrays or strings. Parameter associations are either named or positional. Subprograms may be
called recursively.

• Predefined Subprograms

− ABS, MAX, MIN, HIGH, LENGTH, ODD, INC, DEC, INCL, EXCL, ...

• All I/O (Monitoring & Control operations) via target–specific system library routines.

• Access to database items as global objects via their path name.

• Support for physical measurement units.
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• Statements

− Assignments, Procedure calls, Function calls

− Conditional statements:

· if  statement with elsif  and else  clauses
· case  statement with when and else  clauses

− Iteration:

· general loop  statement with exit ;
· repeat , while  and for  loops

− Transfer of Controls

· halt , return , exit

• Declarations.

− constant , variable , type , unit  and alias  declarations

− Declaration of variables is mandatory.

− Objects must be declared before they are referenced.

• Certain keywords are reserved and cannot be used as identifiers.

• The semicolon (; ) is a statement terminator (not a separator).

• Data types

− predefined: 
Integers, real numbers (with single and double precision), Booleans, enumerated types, state
codes, times, durations, sets, character strings, byte strings, arrays, records, pathnames and
low level types for bytes, words and long words

− user–defined

• Arrays and strings may be of arbitrary dimension with arbitrary bounds; array bounds are
constants (i.e. no dynamic arrays, except in parameter list of procedures and functions). Strings
may vary in length, up to a fixed, user declared upper limit.

• Operators: + , – , *  , /  , **  , % , & , |  , ~ , < , <= , = , >= , > , <> , in

• Implementation restrictions:
Several restrictions are indirectly imposed on the language through the I–code and symbol table
definition. These restrictions are summarized in Appendix H.



Dok.-Nr/ Doc. No.:   CGS–RIBRE–STD–0001
Ausgabe /Issue:          5
Überarbtg./ Rev.:        –
Seite/Page:               3–5

Datum/ Date :    2009–02–01

Datum/ Date:     2010–01–29

von/ of            3–5

Daimler–Benz Aerospace AG, D–28199 Bremen – All Rights reserved – Copyright per DIN 34

3.3  Syntax Notation

Throughout this manual the syntax of UCL is described in an Extended Backus–Naur Form:

– The symbol = (equal sign) separates a syntactic class from its definition.

– Terminal symbols, i.e. literals, are enclosed in double quotes. If the quote character appears as
a literal itself, it is written twice.

– Braces (curly brackets) denote repetition, i.e. the enclosed item may appear zero or more times;
e.g. {A} means 0 or more occurrences of A.

– Square brackets enclose optional items, i.e. the enclosed item may appear once or be omitted; e.g.
[A] means 0 or 1 occurrence of A.

– A vertical bar separates alternative items; e.g: A | B means either A or B, but not both.

– Parentheses are used for grouping; e.g: (a|b)c stands for ac | bc.

– Each production rule is terminated by a period.

A complete syntax summary is given in appendix D.

3.4  Conventions Used in Examples

UCL source text in examples is written in a mono–spaced font (Courier). Strict conventions are
followed for the representation of word classes:

• UCL reserved words are written in bold and all lower–case (begin , if , case  etc.).

• Predefined identifiers are written in all upper–case (INTEGER, REAL, INCL , DECL etc.).

• Other identifiers are written with upper–case initial letters for each word part (e.g. File_Name ,
Min_Value ).

Control structures are uniformly indented according to the logical program structure.
4
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4 Language Definition

4.1  Vocabulary & Lexical Elements

4.1.1  Character Set

The text of a UCL program (also called the source code) is a sequence of lexical elements (or tokens),
each consisting of one or more characters. These characters may be any of the ASCII graphic symbols
defined in the ISO standard 646.

The UCL source code  can be freely broken into lines whereby the length of the line is restricted to 256
characters. (This is a restriction imposed by the particular implementation of the UCL compiler; see
Appendix H.)

Adjacent lexical elements may be separated by one or more special characters (e.g. blank space) called
separators. Separators are allowed between any two tokens, and also before the first and after the last
token; in particular, the end of a line is a separator. Within lexical elements separators are not allowed,
except if a separator is part of the element (character and string literals).

A separator is mandatory whenever its absence would result in an ambiguous token sequence. For
example, it is not required between identifiers and non–alphanumeric symbols (e.g. the arithmetical
operators), but it is required between identifiers and keywords or numeric constants.

Thus, A=B+C is equivalent to A = B + C . However, IFA=B THEN ... 
is invalid because of the missing separator between the keyword if  and the identifier A .

The UCL separators are:

• Blank space

• Horizontal tabulator

• Vertical tabulation character LF (line feed) and VT (vertical tabulator)

• End of line

• Page separator (ASCII form–feed (FF) character)

• Annotation

• Comment

These ASCII graphic symbols (printable characters) and the separator symbols are the only characters
allowed in UCL source code. The other non–graphic symbols (so–called control characters), e.g.
backspace or escape, are not allowed except in comments (see below), and are rejected by the UCL
compiler.

A comment begins with two consecutive hyphens (––) and terminates with the end of the line. Note:
the contents of a comment are not interpreted. Hence, a comment may contain any characters (even
those prohibited outside a comment).

An annotation is a special comment that can be attached to declared items. It begins with an annotation
marker (<–) and terminates with the end of the line. Unlike a comment, an annotation is not ignored
by the compiler, but kept as a textual description of the item. It can be displayed in an HLCL command
window as part of the help information for the item. For a description of annotations see 4.4.
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4.1.2  Lexical Elements

The text of a UCL program may consist of the following lexical elements: delimiters, identifiers
(predefined and user–defined), and literals (numeric, character, string, state code, time and unit
literals).

4.1.2.1  Delimiters

Delimiters are either one character or two consecutive characters, used as punctuation symbols or as
operators. They are listed below.

  ( left parenthesis
 ) right parenthesis
 * asterisk (multiplication operator)
 ** exponentiation operator
 + plus (addition operator)
 , comma
 – minus (subtraction operator)
 . dot
 .. double dot (range symbol)
 / slash (division operator)
 % percent (modulus operator)
 & logical AND
 | logical OR
 ~ logical NOT
 : colon
 := assignment operator
 ; semicolon (also used as statement terminator)
 < less than 
 <= less than or equal 
 <> not equal
 = equal
 >= greater than or equal 
 [ left bracket
 ] right bracket
 { left brace
 } right brace
  <– annotation marker
  –– comment marker
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4.1.2.2  Identifiers

Identifiers are the names used in a UCL program to designate various UCL entities, such as constants,
variables, types, etc. An identifier begins with a letter which may be followed by any combination of
letters, digits and underscore characters “_”. Not allowed are consecutive underscore characters,
”a__b ”, and underscore character at the end of a name, ”abc_ ”.

UCL is not case sensitive (i.e. does not distinguish between upper– and lower case letters). Thus the
three identifiers SENsor_A , SENSOR_A and sensor_a are equivalent.

Since ”end of line” is a separator, an identifier must fit on one line. The maximum length of an identifier
is thus restricted to 256 characters. All characters in an identifier are significant.

Formal syntax
Identifier = Letter { [ ”_” ] Letter_Or_Digit }

Letter_Or_Digit = Letter | Digit

Examples
Valve_nr_5
Sensor_12 
An_example_of_a_very_long_identifier

Reserved words

Some identifiers are reserved words, having a special meaning in the language. They cannot be used
to denote user–defined entities (e.g. variables, constants). The following identifiers are reserved words
in UCL:

alias array begin body by case constant
do else elsif end entity exit for
function guarded halt if import in library
loop of out pathname procedure record repeat
return sequence set statecode string then to
type union unit until variable void when
while

4.1.2.3  Path Identifiers and Pathnames

A Database object is denoted in UCL by its pathname (see also 4.8.3, Pathname Types). Syntactically,
a pathname consists of a sequence of path identifiers corresponding each to a level (or node) in the
hierarchical nametree. A path identifier consists of either one backslash (the root pathname), or two
consecutive backslash characters (no pathname), or an identifier prefixed by a backslash character “\ ”.
The syntax of a path identifier is less strict than the normal identifier syntax. The nametree design
restricts the length of a path identifier to 16 characters (not including the backslash).

Formal syntax
Path_Identifier = ”\” ( Letter | ”_” | Digit ) { Letter | ”_” | Digit }

Examples of path identifiers

\ (root pathname)
\\ (no pathname)
\APM
\EQUIPMENT_Y

Pathnames are formed by a sequence of path identifiers with no spaces between them. The pathname
\APM\DMS\ASSEMBLY_X\UNIT_Y consists of 4 consecutive path identifiers.
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4.1.2.4  Numeric Literals

In the UCL source code, numeric literals (constants) may take three possible forms: integer (simple
integer), based integer or real numbers.

4.1.2.4.1  Integers

An integer is simply a sequence of digits (’0’ .. ’9’). The underscore character (’_’) may be used to
logically group digits, it has no effect on the numeric value of the literal. The value of an integer must
be in the range: 0 .. MAX(UNSIGNED_INTEGER) . The compiler issues an error message if this
range constraint is violated.

Formal syntax

Simple_Integer = Digits

Digits = Digit { [ ”_” ] Digit }

Digit = ”0” | ”1” | ”2” | ”3” | ”4” | ”5” | ”6” | ”7” | ”8” | ”9”

Examples

 5, 123, 027, 10_000

4.1.2.4.2  Based Integers

A based integer has the form:

Base “#” Value “#”

where Base is a decimal number indicating the base of the numbering system, it must be in the range
2 .. 16. Some bases are particularly useful: 2 for binary, 8 for octal, 10 for decimal (the default), or 16
for hexadecimal. Value must be a sequence of ”extended digits” (i.e. ’0’ .. ’9’ or the letters ’A’ .. ’F’,
which in hexadecimal notation correspond to the decimal values 10 .. 15, respectively). Further, for a
given base B, each ”extended digit” must be in the range: 0 to B–1.

The compiler generates an error if the value of the specified number is not in the range
0 .. MAX(UNSIGNED_INTEGER) .

Formal syntax

Based_Integer = Digits ”#” Hex_Digit { [ ”_” ] Hex_Digit } ”#”

Digits = see 4.1.2.4.1

Hex_Digit = Digit | ”A” | ”B” | ”C” | ”D” | ”E” | ”F”

Examples of based integers, all having the value 255:

2#1111_1111#
8#377#
16#FF#
10#255#
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4.1.2.4.3  Real Numbers

A real number may be built as:

Formal syntax

Real = Digits ”.” Digits [ ”E” [ ”+” | ”–” ] Digits ]

Digits = see 4.1.2.4.1

The exponent indicates the power of ten by which the value of the decimal literal is to be multiplied.
Thus the value of a real number can be obtained as:

Decimal_Literal * 10 ** Exponent

The compiler generates an error if the value of the specified number is not a valid floating–point number
(see predefined type LONG_REAL, 4.8.1.4).

Examples of real numbers:

2.575   5.8e3   300.6E+05   0.1E23   1.2e–3   0.000_000_1

4.1.2.5  Statecode Literals

In the MDB, a statecode is a literal constant identifying one specific state (e.g. Open, Closed) of a
”discrete–type” MDB object. When such an object is created (like a switch or a valve), its allowable
states are also defined and appropriate symbolic names (or statecodes) assigned to them.

In UCL, each statecode identifier must be prefixed by a dollar sign ( “$”). The following identifier may
be up to 8 characters long (not including the $ sign). A special statecode literal is the constant $$ , which
stands for an undefined statecode value.

Formal syntax

Statecode = ”$” Identifier | ”$$”

Identifier = see 4.1.2.2

Examples of statecode literals:

$OFF   $ACTIVE   $OPEN   $$

4.1.2.6  Character Literals

A character literal consists of any one of the 95 graphic ASCII characters (including the space
character) enclosed between single quotes (apostrophe). The single quote character itself is represented
in a similar manner, i.e. also enclosed between single quotes.

Examples of character literals:

’ ’   ’a’   ’1’   ’.’   ’’’
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4.1.2.7  String Literals

Strings fall in two classes: character strings and byte strings.

4.1.2.7.1  Character Strings

A character string is a sequence of zero or more characters from the 95 graphic ASCII characters
(including the space) enclosed between quotation marks (double quote characters). The quotation mark
itself has to be doubled if it appears within the string. The empty string is denoted by two adjacent
quotation marks (”” ). Since end–of–line is a separator, a string must not extend over the end of a line.
The maximum length of a string literal, including the quotes, is thus 256 characters.

Character string literals are mapped to the predefined string  type (4.8.2.5). Characters in a string are
packed with one character per byte.

Formal syntax

Char_String = ””” { ASCII  |  ”””  ”””  }  ”””

Character = ”’” ASCII  ”’”

ASCII = any of the ASCII Characters in range 32 .. 126

Examples of character string literals:

”String 1”
”String with ””quoted”” word ”
”” (empty string)

4.1.2.7.2  Byte Strings

A byte string is a sequence of zero or more bytes. A byte string literal is written in hexadecimal form,
enclosed in quotation marks, like a character string, prefixed with #. The number of hexadecimal digits
must always be even. The empty byte string is denoted as #”” . Like for character strings, the maximum
length of a byte string literal, including the quotes, is restricted to 256 characters.

Underscore characters (’_’ ) and blank characters (’ ’ ) may be used to logically group the bytes in
a string. They have no effect on the value of the literal.

Byte string literals are mapped to the predefined string of BYTE type (4.8.2.5). Bytes in a string
are packed with four bytes in a 32–bit word.

Formal syntax

Byte_String = ”#” ””” [ Hex_Digit Hex_Digit { [ ”_” | ”  ” ] Hex_Digit Hex_Digit  } ] ”””

Hex_Digit = see 4.1.2.4.2

Examples of byte string literals:

#”0000_0001 0000_0002 0000_0003”
#”FF 0102_AE_F1 0103_E0_00”
#”01 02 03 04 05 06 07 08 09 0A”
#”” (empty string)
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4.1.2.8  Time Literals

A time literal consists of two separate lexical elements, date and hour specification. If the date is
omitted, UCL ignores it in any related time operation. Other omitted parts are assumed as zero. A
special time literal is the constant ~:~ , which stands for an undefined time value. It can only be used
in assignments and as parameters and tested for equality, no further operations are defined on it.

The date is restricted to the range from year 1901 to year 2099.

Formal syntax

Time_Literal = Date [ Time ] |
Time

Date = Day ”.” Month ”.” Year

Day = [ Digit ] Digit

Month = [ Digit ] Digit

Year = Digit Digit Digit Digit

Time = Hours ”:” Minutes [ ”:” Seconds [ ”.” Fraction ] ] |
”~:~”

Hours = [ Digit ] Digit

Minutes = Digit Digit

Seconds = Digit Digit

Fraction = Digits

Digits = see 4.1.2.4.1

Digit = see 4.1.2.4.1

Examples

30.05.1992 12:34:17.48 date and time
13:30 time only (date is ignored)
24.12.1991 date only (at 00:00 h)
~:~ undefined time

4.1.2.9  Duration Literals

A duration literal is written as a real number with a time unit, e.g. seconds, minutes or hours. Unit literals
are described in 4.1.2.10, the unit concept is described in 4.11.

Examples (each representing a duration of one hour):

3600.0 [s] in seconds
60.0 [min] in minutes
1.0 [h] in hours
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4.1.2.10  Unit Literals

A unit literal denotes a physical measurement unit. It is enclosed in square brackets. The unit expression
follows the ISO 1000 conventions (see section 4.11 and reference document 2.2.4 ). Exponentiation
is denoted by placing the exponent directly behind a unit identifier with no blanks between them, e. g.
[m2]  stands for m2. Note that, in contrast to ordinary identifiers, unit identifiers used in unit
expressions (kg , m, A, MeV etc.) are case sensitive.

Formal syntax

Unit = ”[” Unit_Expression ”]”

Unit_Expression = [ Numerator [ ”/” Denominator ] [ ”+” Offset | ”–” Offset ] ]

Offset = Number [ ”/” Number ]

Numerator = Unit_Term |
”(” Unit_Term ”)”

Denominator = Number |
Unit_Factor |
”(” Unit_Term ”)”

Unit_Term = [ Number ] Unit_Factor { Unit_Factor } |
Number

Unit_Factor = Unit_Identifier { Digit }

Unit_Identifier = Letter { Letter }

Number = Simple_Integer |
Based_Integer |
Real

Simple_Integer = see 4.1.2.4.1

Based_Integer = see 4.1.2.4.2

Real = see 4.1.2.4.3

Examples

[kg]
[kg m/s]
[A s]
[N m/s2]
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4.2  Import

Import is used to make objects declared in other compilation units (e.g. libraries) available to the current
compilation unit. Importable modules are libraries, automated procedures and parameterized MDB
items. The module is given by its pathname, see section 4.3.6.

When imported, all identifiers exported by the imported module (units, constants, types, variables,
aliases, procedures, and functions) become visible throughout the compilation unit. For the different
types of modules, the exported part is

• for libraries: the library specification,

• for automated procedures: the items declared before the AP header, the implicit AP alias and the
parameter list, not the items within the AP,

• for parameterized MDB items (formal parameter lists): the items declared together with the
parameter list, and the implicit alias, if defined.

An imported identifier will be hidden, if

• the same identifier is imported from more than one module. The conflicting imported identifiers
are then hidden throughout the compilation unit.

• the same identifier is declared within the importing compilation unit. The imported identifier is
then hidden throughout the scope of the local identifier.

• there is an identical predefined identifier. The imported identifier is then hidden throughout the
compilation unit.

An imported identifier can thus never hide a predefined identifier or an identifier declared in the
compilation unit. Imported identifiers, even if hidden, can always be accessed with a qualified
identifier, see section 4.3.4.

Formal Syntax

Import= ”import” Name ”;”

Name = see 4.3.4

Example

import  \APM\ONBOARD\DMS\SYSLIB;

import  GROUND_LIBRARY;           –– import via alias (”nickname”)
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4.3  Declarations, Names and Scopes

4.3.1  Identifiers

All UCL objects (i.e. constant, variable, type, procedure etc.), with the exception of the predefined
standard identifiers, Mission Database objects and imported objects, must be explicitly introduced via
an object declaration before they can be used in the program. The object declaration associates the
object with a name, and at the same time establishes the object’s attributes or properties. Declaration
of all UCL objects is described in the following sections. Once an object has been declared, it may be
referenced by its name or identifier. An identifier used in a declaration must have been declared in a
previous declaration, i. e. an identifier must not be used in its own declaration.

Within the same scope, all identifiers must be unique.

4.3.2  Scope of Identifiers

A UCL program (AP) may be structured, it may contain subprograms (procedures and functions) which
are nested within the main program. The main program, as well as each subprogram, form a scope
which may contain its own set of locally declared objects. Parameters belong to the local scope of the
AP or subprogram.

The scope of an identifier is the section of a program or subprogram in which the object denoted by the
identifier exists. In general, the scope of an object extends from its declaration to the end of the block
in which it is declared (see figure 4. below). Whithin its scope, an identifier is visible and can be used:

• An identifier declared in an outer scope (e. g. an AP) may be redeclared in an inner scope (a
subprogram). In this case two different objects are denoted by the same identifier, and the
identifier declared in the inner scope hides the same identifier declared in the outer scope. Within
the inner scope, the hidden variable from the outer scope still exists but is not visible and cannot
be accessed.

• The predefined identifiers (INTEGER, REAL, BOOLEAN etc.) belong to a global scope outside
the compilation unit. Like any other identifiers, they may be redeclared within inner scopes (main
program or subprogram). This will hide the predefined identifier for the rest of the block.
Redeclarations of predefined identifiers are legal, but usually they obscure the program and
should be avoided.

• The scope of record field names is the record. Since record field names are always written in dot
notation, prefixed with the name of the record variable, there is never a name conflict.

• The scope of a for  loop variable is the body of the for  loop (see 4.13.5.4). Since for  loops
may be nested, the loop variable of an inner loop may hide a loop variable of an outer loop, and
loop variables may hide identifiers declared outside the loop.

Libraries and other importable modules have their own scope. The scope of an identifier declared in
a library specification comprises both the specification (up from its declaration) and the body of the
library. Identifiers declared in a library body are visible in the body only. When imported, all identifiers
declared in the specification of the imported module become visible throughout the compilation unit
(see 4.2).

Note that unit identifiers, such as [kg] , [A] , [MeV]  etc., are not ordinary identifiers. They are not
bound to scopes, but are always global, see 4.11.
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–– AP with 2 local procedures Proc1 and Proc2

import  \APM\Sys_Lib; –– exports T1

type  T2 = statecode ($OFF, $ON);

procedure  AP (X : T1; Y : T2);

import  \APM\User_Lib;

variable  A: INTEGER;

procedure  Proc1;

variable  A: INTEGER;
variable  B: INTEGER;

begin

...

end  Proc1;

procedure  Proc2;

variable  C: REAL;

begin

...

end  Proc2;

begin  –– AP main part

...

end  AP;

scope
of  B

scope
of  C

scope of
outer  A

outer A
visible

outer A
visible

scope of
inner A

imported
objects
visible

scope
of T

imported
objects
visible

Figure 4. Scope and Visibility of Identifiers

4.3.3  Database Scope and Aliases (”nicknames”)

The database represents a name scope, too. It may contain certain identifiers, e. g. predefined aliases
(”nicknames”) for database items. These identifiers can be used like any other identifiers and, like
these, they can be hidden by identifiers from other scopes. The database scope is located “behind” all
other scopes, i. e. its identifiers will be hidden by equal identifiers declared in any other scope.
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4.3.4  Qualified Identifiers

A qualified identifier is an identifier prefixed with a pathname or alias designating the library or other
importable module in which the qualified identifier is defined. The prefix and the identifier are
separated by a period (dot). The qualified form can be used to access imported objects. It is the only
way to access imported objects whose identifier is hidden.

Predefined identifiers can be qualified by preceding them with just a single dot, e. g. .INTEGER.,
.MIN , .LENGTH. This may be used to access a predefined identifier, if it is hidden by a local
declaration of the same identifier.

The qualified form can also be used to access identifiers predeclared in the database. The pathname
denoting the database scope is the root pathname, a single backslash (\ ).

Formal syntax

Qualified_Identifier = [  [ Name ] ”.” ] Identifier

Simple_Name = Identifier { Path_Identifier } |
Pathname

Name = Simple_Name { “.” Identifier }

Pathname = see 4.3.6

Identifier = see 4.1.2.2

Examples

GROUND_LIBRARY.Issue                  –– a procedure declared in a library

\APM\EGSE\USER_LIBS\MATH_LIB.Matrix   –– a type declared in a library

\.Ground_Library                      –– an alias predefined in the database

4.3.5  Lifetime of Objects

Apart from the static scope hierarchy described above, objects in UCL have a dynamic behaviour. An
object is created when the block whose scope it is declared in is activated, it is deleted when the block
terminates:

• Objects declared in an AP are created when the AP is started, and deleted when the AP terminates.

• Objects declared in a subprogram (procedure or function) are created when the subprogram is
called and deleted when the subprogram ends. So in each call of the subprogram its locally
declared identifiers will denote different objects. When a subprogram is called recursively, each
incarnation of the subprogram will have its own set of local objects. These sets of objects form
a stack, according to the subprogram call hierarchy. The identifiers denote the objects in the
uppermost incarnation of the subprogram, i.e. the currently active incarnation.

• All objects declared in the specification or body of any modules linked to an AP by direct or
indirect import, are created when the AP is started and deleted when it terminates.

• The predefined objects are created when the AP is started and deleted when it terminates.

• A for  loop variable is created when the loop is entered and deleted when the loop ends.
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4.3.6  MDB Objects, Pathnames

Mission Database (MDB) objects are, by default, visible to the UCL program, i.e. they need not be
explicitly declared. Their definitions are ”inherited” from the MDB.

An MDB object (or MDB item) is identified by a pathname reflecting its respective position in the
hierarchical name tree. Some MDB items may have subitems. These are denoted by a subitem
pathname, i.e. an identifier prefixed with the pathname of the MDB item, separated with a dot. Note
that the subitem identifier may be identical to a reserved word.

Formal syntax
Pathname = ”\” | ”\\” | Path_Identifier { Path_Identifier }

Subitem_Pathname = Path_Identifier { Path_Identifier } ”.” Identifier

Identifier = see 4.1.2.2

Path_Identifier = see 4.1.2.3

Examples
\APM\PAYLOAD\EQUIPMENT_UNIT_A a pathname

\APM\PAYLOAD\EQUIPMENT_UNIT_A.INPUT_1 a subitem pathname

MDB objects may have parameters, e.g. APs, messages, stimuli. It depends on the program context
whether or not an actual parameter list must be supplied with the pathname of such items, see 4.8.3 for
details. The parameter list is then given together with the pathname, e.g.:

\EGSE\TES01\AP_1 (3.14)

MDB objects fall into several classes or types. The item type of an MDB object (not to be confused with
the corresponding UCL type) defines the object’s characteristics or properties and, by implication, the
semantic rules governing its usage.

In the UCL environment, several kinds of operations or user interactions may be performed on MDB
objects. In particular, all monitoring and control operations (measurement acquisition, stimuli
commands, etc.) are performed via dedicated system library procedures/functions. Also, other kinds
of interactions are available via a system library, e.g. a procedure that causes a specific MDB object
of type ”automated procedure” to be executed.

A pathname designator tells the UCL compiler to retrieve an object’s definition (classification, type,
etc.) from the Mission Database to check its semantics. Depending on the context, a pathname designa-
tor represents either a value or a reference to an MDB item.

In assignments, expressions, conditions, or when used as parameters of a type other than pathname ,
pathname designators refer to objects whose runtime values may change independently of the execut-
ing UCL program, e.g. value of sensor data periodically updated by data acquisition software.

In all other cases, they are references to specific object definitions in the MDB. A pathname designator
by itself does not refer to any particular occurrence or version of the object. Such information must be
provided to the compiler by the user.

Notes:

• The definition of ”analog measurement” objects (in the MDB) includes the physical quantity
(voltage, temperature, etc.) and the respective engineering units associated with the particular
measurement. Similarly ’discrete measurement’ objects are associated with statecodes (names
identifying the states the object may be in, such as: $ON/$OFF, $OPEN/$CLOSED,
$LOW/$MEDIUM/$HIGH).
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• The runtime values of ”analog measurement” objects are expressed in engineering values, i.e. the
acquired raw values are converted to the predefined engineering units using the appropriate
calibration curves. For discrete objects the runtime values correspond to the predefined
statecodes.

• The runtime values of MDB items have a software type according to the UCL type system. (See
Type Correspondence Table between MDB and UCL objects in Appendix F).

MDB items are further classified by an access class. Some of these access classes define the allowed
usage of an item in UCL and HLCL, these are marked with UCL and/or HLCL superscripts:

READ UCL, HLCL

indicates that the item has a runtime value that is read–only, i.e. it may be read but cannot be altered
by a UCL program. The corresponding pathnames may be used in an expression (may appear on the
right–hand side in an assignment statement) or as an in  parameter. In expression evaluation, the
current (i.e. most recent) runtime value of the MDB item is used.

READ/WRITE UCL, HLCL

indicates that the item has a runtime value that may be read and altered by a UCL program. Items
of this class may be regarded as global software variables. The corresponding pathnames may be
used in expressions, assignments (on either side of the assignment symbol) or in parameter lists (as
in , in out , or out  parameters).

IMPORT UCL, HLCL

applies to UCL libraries that may be imported by other compilation units.

EXECUTE HLCL

applies to MDB items of type ”automated procedure” which may be invoked by other APs.

PATH SELECT HLCL

applies to parent (virtual) MDB items, i.e. those at non–terminal nodes of the MDB name tree.

NODE SELECT HLCL

applies to MDB items of type ”network node”. The corresponding pathnames designate a specific
computer in the network.

SEND
applies to items that represent commands (stimuli, telecommands) that may be sent to specific target
systems.

none
applies to all other MDB items.

Note: A compilation unit may reference itself, directly or indirectly, in non–parameterized form.
Parameterized references require the referenced unit to be compiled and up to date, this prohibits
self–references and cyclic references.

Examples:
\APM\DMS\ITEM_A := 3.5; set current runtime value of the global software

variable named \APM\DMS\ITEM_A  to 3.5 .
(valid only if the MDB item’s access class is
READ/WRITE and its software type is REAL)
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if  \APM\XYZ\SWITCH = $OPEN ...; check whether current runtime value of MDB
item named \APM\XYZ\SWITCH  is OPEN
(valid only if the MDB item’s access class is
READ or READ/WRITE and its software type is
statecode )

x := \APM\DMS\ITEM_X; assign current runtime value of MDB item 
\APM\DMS\ITEM_X  to the local variable X
(valid only if the MDB object’s access class
is READ or READ/WRITE and its software type is 
compatible with the type of X)

Issue (\APM\xyz\POWER_ON); pass an MDB item named \APM\xyz\POWER_ON
as a parameter to a system library procedure.
Here a reference to the item is passed, not its
runtime value. The procedure may retrieve its
definition from the MDB, including stimulus
characteristics, target equipment, authorization, etc.

4.3.7  Node Names

UCL is designed for use in a networked environment consisting of several network nodes (processors).
These nodes are referenced by node names which correspond to their MDB pathnames. Node names
and pathnames are thus syntactically equivalent.



Dok.-Nr/ Doc. No.:   CGS–RIBRE–STD–0001
Ausgabe /Issue:          5
Überarbtg./ Rev.:        –
Seite/Page:              4–16

Datum/ Date :    2009–02–01

Datum/ Date:     2010–01–29

von/ of        4–96

Daimler–Benz Aerospace AG, D–28199 Bremen – All Rights reserved – Copyright per DIN 34

4.4  Annotations

Declared items can have a so–called annotation attached. An annotation is a descriptive text that is kept
together with the item and can be displayed in an HLCL command window as part of the help output
for the item. Annotations will typically be used in library specifications (4.16.2), but can be used in any
compilation unit for any type of declaration.

The form of an annotation is very similar to a list of comments, the only syntactic difference is that
annotation lines start with ’<–’, while comment lines start with ’––’ , both extend to the end of the line.
An annotations given directly after a declaration is attached to the item defined by that declaration. For
subprogram declarations an annotation is given after the subprogram header (4.5). For AP and library
declarations (4.16) it is given after the AP or library header, respectively.

Annotations may be applied to all declared items, including enumeration literals (4.8.1.11), fields of
a record (4.8.2.2) and formal parameters (4.6).

Formal Syntax
Annotation = Annotation_Line { Annotation_Line }

Annotation_Line = ”<–” { Printable } eol

Printable = any of the printable Characters in the underlying character set

eol = end of line

Examples
unit  [cwt] = [112 lb];  <– hundredweight

variable Default_Width : Integer := 10;
  <– Default output width for numeric values
  <– Changing this value will globally change the output format

type States = (Enabled,   <– Device switched on
               Disabled,  <– Device switched off
               Locked     <– Access to device blocked
              )
  <– Possible states of a device

type Device = record
                 Name    : string (20);       <– Device name
                 Address : Unsigned_Integer;  <– Device address
                 State   : States;            <– Current state of device
              end record ;
  <– Description of a device

procedure Enqueue ( in out  Container : Queue;   <– queue container
                   in     Element   : Object   <– element to be enqueued
                  );

  <– Append an element to the end of the queue.
  <– If queue is full, global Status is set to Failed.

begin
   ...
end Enqueue;
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4.7  Constant Declarations

A constant declaration associates an identifier (a name) with a value. The associated value must be a
constant or a constant expression. The latter is an expression consisting of literal constants and already
defined constant identifiers; it can thus be computed at compile time.

A constant declaration is introduced with the reserved word constant , followed by the name of the
constant. A colon (”:” ) associates the constant with a type, the “becomes” symbol (:= ) associates it
with a value.

For string constants, the type may be given as just string , the maximum length need not be specified,
it is then assumed from the assigned string value.

Formal Syntax
Constant_Declaration = ”constant” Identifier ”:” Constant_Type ”:=” Constant_Expression ”;”

Constant_Type = Qualified_Identifier [ Unit ] |
”string” [ ”of” Identifier ] |
”statecode” |
”pathname” [ ”.” ”*” ]

Qualified_Identifier = see 4.1.2.2

Constant_Expression = Expression

Expression = see 4.12

Unit = see 4.11 and 4.1.2.10

Examples
constant  Two         : REAL           := 2.0; 
constant  Lower_Limit : REAL           := 25.36;
constant  Upper_Limit : REAL           := Two * Lower_Limit;
constant  Warning     :  string         := ”Value exceeds upper limit”; 
constant  Code        :  string of  Byte := #”FF 0102_AE_F1 0103_E0_00”; 
constant  On          :  statecode       := $ON;
constant  Max_Voltage : Voltage        := 100.0 [V]; –– see unitized values
constant  High_Value  : INTEGER        := MAX(INTEGER);
constant  Set_Value   : BITSET         := {0, 3, 4};
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4.8  Type Declarations

Every UCL object has a type defining the set of valid values that it may take, and the set of operations
that may be performed on it. UCL types fall into the following broad categories:

• Elementary types comprise all predefined types (INTEGER,REAL, etc.), as well as the
enumeration types (section 4.8.1.11) and subrange types (section 4.8.1.12) which enable users
to create new data types. Such user–defined types make code more readable, and let the user
exclude illegal values from storage in variables.

• Structured types allow the definition of data structures (arrays, records, sets, strings).

• Unitized types are for dimensioned quantities, i.e. associated with a unit of measure.

• Pathname types and subitem pathname types represent references to MDB items or their
subitems, resp.

• Inherited types are types inherited from the software types of database items.

A type declaration is introduced with the reserved word type , followed by the type identifier. The ”=”
symbol associates the identfier with the type definition.

Note that a type declaration need not introduce a new type, it may define a synonym to an existing type.

Formal Syntax

Type_Declaration = ”type” Identifier ”=” Type [ Unit ] ”;”

Type = Simple_Type |
String_Type |
Statecode_Type |
Pathname_Type |
Array_Type |
Set_Type |
Record_Type |
Pathname_Type |
Subitem_Pathname_Type |
Inherited_Type

Simple_Type = Qualified_Identifier |
Enumeration_Type |
Subrange_Type

Qualified_Identifier = see 4.3.4

Enumeration_Type = see 4.8.1.11

Subrange_Type = see 4.8.1.12

String_Type = see 4.8.2.5

Statecode_Type = see 4.8.1.8

Pathname_Type = see 4.8.3

Subitem_Pathname_Type = see 4.8.4

Array_Type = see 4.8.2.1

Set_Type = see 4.8.2.3

Record_Type = see 4.8.2.2

Inherited_Type = see 4.8.5

Unit = see 4.11
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4.8.1  Elementary Types

4.8.1.1  Type INTEGER

Values of type INTEGER are whole numbers which may be positive or negative. Its range is given by
the predefined constants: MIN(INTEGER)  and MAX(INTEGER) corresponding to –231 and 231–1,
respectively. Integer literals are defined in 4.1.2.4.1.

The operators +, –, * , /  , **  and % may be applied to values of this type and represent addition,
subtraction, multiplication, division, exponentiation, and modulus, respectively. These operators are
infix operators, which means that they are written between their operands. The + and – operators may
also be used as unary operators to denote the sign of a value.

The relational operators (<, <=, = , <> , > , >=) are also applicable to this type and yield BOOLEAN
values.

The predefined procedures/functions MIN, MAX, ABS, ODD, INC and DEC may be used for INTEGER,
see 4.15.

The operator /  denotes integer division (which always yields an integer result, possibly leaving a
remainder). No rounding is performed; e.g. 9/4  = 2, 9/5  = 1. The result of an integer division is zero
whenever the divisor is greater than the dividend.

Representation in memory

An Integer value is internally represented as one 32–bit word in 2’s complement representation.

4.8.1.2  Type UNSIGNED_INTEGER

The type UNSIGNED_INTEGER comprises non–negative whole numbers in the range 0 to 232–1.
These bounds correspond to the predefined constants MIN(UNSIGNED_INTEGER) and MAX(UN-
SIGNED_INTEGER), respectively. The compiler issues an error message if this range constraint is
violated.

All operators defined for type INTEGER also apply to UNSIGNED_INTEGER. The arithmetic
operators have cyclic semantics, i. e. the values do not overflow or underflow, but wrap around within
the above mentioned range. It is, however, not possible to assign values outside the range.

Values of type UNSIGNED_INTEGER and INTEGER are mutually compatible. Thus, also mixed
expressions, consisting of both INTEGER and UNSIGNED_INTEGER values, are allowed.

Representation in memory

An unsigned integer value is internally represented as one 32–bit word.
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4.8.1.3  Type REAL

Values of the type REAL represent approximations of the mathematical real numbers. Their range is
given by the predefined constants MIN(REAL)  and MAX(REAL), corresponding approximately to the
range: –3.4028 E+38 to 3.4028 E+38. Real values may be written either in decimal notation (with
integer part and fractional part separated by a decimal point) or in the scientific (or exponential)
notation, as defined in 4.1.2.4.3.

The operators that may be used with REAL operands are +, –, * , /   and ** , which represent addition,
subtraction, multiplication, division and exponentiation, respectively. For the exponentiation operator
**  the right operand must be of type INTEGER or UNSIGNED_INTEGER. The relational operators
(<, <=, = , <> , > , >=) are also applicable to this type; they yield BOOLEAN values.

The predefined procedures/functions MIN, MAX, and ABS may be used for REAL, see 4.15.

Representation in memory

A REAL value is internally represented using one 32–bit word in IEEE standard single
floating–point format.

4.8.1.4  Type LONG_REAL

Values of the type LONG_REAL represent approximations of the mathematical real numbers, like the
REAL type, but with a better precision and a larger exponent range. Their range is given by the
predefined constants MIN(LONG_REAL) and MAX(LONG_REAL) corresponding approximately to
the range –1.7969E+308 to 1.7969E+308.

The syntax of LONG_REAL literals is the same as for REAL values, and the same operators may be
applied.

Note that values of type REAL are compatible with those of type LONG_REAL and vice versa. Thus
mixed expressions, consisting of both REAL and LONG_REAL values, are allowed.

Representation in memory

A LONG_REAL value is internally represented as two 32–bit words in IEEE standard double
floating–point format.

4.8.1.5  Type BOOLEAN

The standard type BOOLEAN is an enumeration type defined as follows:

type  BOOLEAN = (FALSE, TRUE);

All properties and operations defined for enumeration types apply to BOOLEAN as well. For a definition
of enumeration types see 4.8.1.11. In addition, there are three special BOOLEAN operators: & , | , ~,
corresponding to ”and”, ”or” and ”not”, respectively.

Representation in memory

A BOOLEAN value is internally represented like enumeration types (FALSE = 0, TRUE = 1) .
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4.8.1.6  Type CHARACTER

The value of a variable of type CHARACTER is an 8–bit character whose literals are defined by the
ASCII character set. A character literal is written between single quotes (or apostrophes), see 4.1.2.6.

Values of type CHARACTER are ordered according to its 8–bit code, whose 7–bit first half is the ASCII
character set (see Appendix E). The relational operators may therefore be applied. CHARACTER values
may also be used in string operations, see 4.8.2.5. Type conversions to and from INTEGER can be used
to convert between a character value and its ordinal number (its ASCII code), see 4.12.4. The
predefined procedures/functions MIN and MAX may be used for CHARACTER, see 4.15.

Representation in memory

A CHARACTER value is internally represented as an unsigned integer in the range 0 .. 255 contained
in one 32–bit word, where the subrange 0 .. 127 is the ASCII character set. Within strings, 4
characters are packed in one 32–bit word., see 4.8.2.5.

4.8.1.7  Low Level Types BYTE, WORD, LONG_WORD

The low level types BYTE, WORD and LONG_WORD represent individually accessible untyped storage
units of 8, 32 or 64 bits, respectively. No operation is defined on these types, their values can only be
assigned and passed as parameters. If the target variable of an assignment or the formal parameter of
a subprogram is of a low level type, the assigned value or passed actual parameter, respectively, may
be of any scalar type, but the value must not occupy more than the corresponding number of bits. In
particular:

BYTE

The type BYTE represents untyped 8–bit objects. BYTE variables and formal BYTE parameters may
be assigned/passed values of any scalar type that fit into 8 bits (CHARACTER, BOOLEAN, INTEGER
and small enumeration types with up to 256 values), as well as byte strings of length 1. For integer
values a check is done that the value will fit in 8 bits (i. e. it is in the range 0 .. 255), for non–static
values the check will be performed at runtime. Note, however, that byte values are held in 32–bit
words in memory. Only in strings, 4 bytes are packed in a word, see 4.8.2.5.

WORD

The type WORD represents untyped 32–bit objects. WORD variables and formal WORD parameters
may be assigned/passed values of any scalar type that are represented in 32–bit words (CHAR-
ACTER, BOOLEAN, INTEGER, REAL, BITSET, pathname types, enumeration types), as well as
byte strings of length 4.

LONG_WORD

The type LONG_WORD represents untyped 64–bit objects. LONG_WORD variables and formal
LONG_WORD parameters may be assigned/passed values of any scalar type that is represented in 64
bits (LONG_REAL, TIME, statecode types, subitem pathname types), as well as byte strings of
length 8.

Representation in memory

BYTE and WORD values are represented as one 32–bit word. Within strings, four BYTE values are
packed in one 32 bit word. Within strings, four BYTE values are packed in one 32 bit word, see
4.8.2.5.

LONG_WORD values are represented as two consecutive 32–bit words.
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4.8.1.8  Statecode Types

The set of legal values for a statecode type comprises the literals indicating the predefined states of
discrete items (e.g. on/off, open/closed, low/medium/high etc.). Statecodes are defined in the Mission
Database as attributes of the respective discrete items. In UCL, statecode constants are denoted by
identifiers prefixed with a dollar sign ($), such as $ACTIVE,$OFF ., see 4.1.2.5.

The special literal $$ means no statecode value. It may be used e. g. as a default value for statecode
parameters or as an initial or dummy value for statecode variables. $$ is compatible to all statecode
types, regardless of constraints.

Statecode types represent unordered sets of values, i.e. there is no defined less/greater relationship
between the statecode literals, and the relational operators cannot be used. The only allowed operation
on statecode values is comparison on equality and inequality (=, <>).

Statecode types may be unconstrained or constrained.

• An unconstrained statecode type is denoted by the keyword statecode , it comprises all
possible statecode literals.

• A constrained statecode type is restricted to a specific set of statecode literals. This is denoted
by the keyword statecode , followed by the list of allowed literals in parentheses.

All declared statecode types are subtypes of the general predefined type statecode .

Formal Syntax

Statecode_Type = ”statecode” [ ”(” Statecode_List ”)” ]

Statecode_List = Statecode { ”,” Statecode }

Statecode = ”$” Identifier

Identifier = (see 4.1.2.2)

Examples

type Code = statecode ; –– unconstrained type
type Switch = statecode  ($ON, $OFF); –– constrained type

variable  S1 : statecode ; –– unconstrained variable
variable  S2 : Code; –– unconstrained variable
variable  S3 : Switch; –– constrained

...

S1 := $HIGH;
S2 := $HIGH;
S3 := $HIGH; –– not allowed, constraint violation
S2 := $ON;
S3 := $OFF;

Representation in memory

Internally, a statecode variable is represented by two 32–bit words containing the corresponding
statecode literal as an ASCII character sequence (up to 8 characters) in all upper–case, left–justified
and padded with blanks. The literal $$ is represented as 8 blanks.
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4.8.1.9  Types TIME and DURATION

UCL distinguishes between absolute and relative time references. Two predefined data types are
provided: TIME, whose values are absolute points in time, and DURATION, whose values are time
distances.

TIME values range from 1901 to 2099, the lowest and highest allowed values can be obtained with the
standard functions MIN(TIME)  and MAX(TIME) . The resolution of TIME values is 1 nanosecond.

The type DURATION comprises LONG_REAL values expressed in seconds, the lowest and highest al-
lowed values can be obtained with the standard functions MIN(DURATION) and MAX(DURATION).
The predefined type DURATION is declared as

type DURATION = LONG_REAL [s];

The following operations may be performed on TIME/DURATION objects:

time + duration = time
duration + time = time

time – duration = time
time – time = duration

duration * real = duration
duration / real = duration

duration + duration = duration
duration – duration = duration

Furthermore, all comparison operations are provided for both types, e.g.:

time < time = boolean

duration < duration = boolean

Time values may be with or without a date. In the second case the date is ignored in any operations.
If in an operation an operand is without a date, it is assumed to refer to the same date as the other oper-
and, e.g.

01.09.1997 13:00 – 12:00 = 3600.0 [s]
12:00 – 13:00            = –3600.0 [s]

The special time literal ~:~  denotes no time. This may be used e.g. as a default value for TIME
parameters or variables. It can only be compared on equality (=, <>) and must not be used in other
operations.

Representation in memory

A TIME value is internally represented using two 32–bit words. They contain the following time
components in packed format in this order: year – 1900 (8–bit integer), month (4–bit integer), day
(5–bit integer), seconds since midnight (47–bit fixed point value with 17 bits before and 30 bits after
the decimal point). Times without a date are represented with the year, month and day fields = 0. The
constant ~:~  (no time) is represented with all bits in both words set to 1.

DURATION values are represented like LONG_REAL values (see 4.8.1.4).
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4.8.1.10  Type COMPLETION_CODE

The predefined type COMPLETION_CODE is an enumeration type defined as

type  COMPLETION_CODE = (SUCCESS, FAILURE)

All characteristics and operations defined for enumeration types (see 4.8.1.11) apply to COMPLE-
TION_CODE as well.

Representation in memory

COMPLETION_CODE values are represented like other enumeration types, with SUCCESS = 0 and
FAILURE = 1.

4.8.1.11  Enumeration Types

An enumeration consists of an ordered sequence of identifiers. These identifiers are constants defining
the list of values that may be assumed by a variable of that type.

Enumerated types are ordered by the sequence of values in the enumeration (in the example below, Red
is smaller or less than Green ). In an enumeration with n elements, the first element has the ordinal
number 0 and the last element the ordinal number n–1. All comparison operators can therefore be used
on enumeration values, according to this ordering. Type conversions (see 4.12.4) can be used to convert
between an enumeration value and its ordinal number.

The predefined procedures/functions MIN, MAX, INC and DEC may be used for enumeration types, see
4.15.

Note that BOOLEAN and COMPLETION_CODE are enumeration types. Whenever an enumeration type
may be used, it includes these two types.

Formal Syntax

Enumeration = ”(” Identifier_List ”)”

Identifier_List = Identifier { ”,” Identifier }

Identifier = see 4.1.2.2

Examples

type  Color = (White, Red, Green, Blue, Black);
type  State = (Ready, Active, Suspended);

Representation in memory

Enumeration values are represented like INTEGER, the 32–bit word stores the ordinal value.
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4.8.1.12  Subrange Types

A subrange type denotes a restricted range of consecutive values from some other type (called the base
type). The latter must be one of the following types: INTEGER, UNSIGNED_IN-
TEGER,REAL,LONG_REAL,CHARACTER or enumeration type. They are not separate types, but
subtypes of other types. All characteristics and operations defined for the base type apply to the subtype
as well. However, a value to be assigned to a variable of a subrange type must lie within the specified
interval, otherwise a runtime error occurs.

A subrange type is specified by its bounds, i.e. the lowest and highest allowable values. The lower
bound must not be greater than the upper bound, further they must be both specified as constants or
constant expressions. Both bounds must be compatible with the given base type. The predefined
constant functions MIN and MAX may be used to obtain the lower and upper bound, resp.

It is possible to define a subrange type of another subrange type. Then both subrange types have the
same base type, and the bounds of the new type must not lie outside the bounds of the old type.

A subrange type declaration is given by the name of the base type, followed by the range, enclosed in
parentheses, as in INTEGER (10 .. 100) . The two dots are part of the syntax.

Formal Syntax

Subrange = Qualified_Identifier ”(” Constant_Expression ”..” Constant_Expression ”)”

Qualified_Identifier = see 4.3.4

Constant_Expression = see 4.12

Examples

type  Index = INTEGER (0 .. 25);
type  Light_Colors = Colors (Red .. Blue);
type  Digit = CHARACTER (’0’ .. ’9’);

Representation in memory

Subrange values are represented like values of their base type.
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4.8.2  Structured Types

4.8.2.1  Array Types

An array is a structure consisting of a fixed number of components which are all of the same type. Each
component can be denoted and directly accessed by the name of the array variable followed by the array
index in parentheses, e.g. A(i)  indicates the i –th element of the array A. For matrices, A(i,j)  or
A(i)(j)  are both valid ways to access an element, where i  is the row, and j  the column of the matrix.
The number of dimensions of an array is determined by the number of indices, it is not restricted by
the language. A runtime error occurs if the array index is outside the defined ranges.

Each index belongs to a specific index type. This must be a discrete type (INTEGER, UNSIGNED_IN-
TEGER,  CHARACTER, enumeration type or constrained statecode type). If a constrained statecode type
is used as the index type of an array, the order in which the array components are arranged is not defined,
since statecode types are unordered. A program must not rely on a specific order.

An array type is specified in the form

array  ( index_range ) of  element_type

The index range may either be given as an explicit range in the form min .. max  or as the name of
a discrete type. In the latter case the index range comprises all values of the type:

(1) array  ( min  .. max) of  element_type

(2) array  ( type_name ) of  element_type

For statecode types, (2) is the only allowed form.

The type of an array element may itself be an array (this leads to multidimensional arrays). In that case,
the following two notations are identical:

(1) array  (0 .. 10) of  array  (0 .. 20) of  INTEGER

(2) array  (0 .. 10, 0 .. 20) of  INTEGER

No operations are defined on array objects. They can only be assigned and passed as parameters to
subprograms.

The predefined functions LOW and HIGH can be used to determine the lower or upper bound,
respectively, of an array type or variable. For an array with more than one dimension, the bounds of
the second, third, etc. dimension can be obtained by specifying the dimension as the second parameter
of LOW and HIGH.

Formal Syntax

Array_Type = ”array” ”(” Index_Range { ”,” Index_Range } ”)” ”of” Qualified_Identifier [ Unit ]

Index_Range = Constant_Expression ”..” Constant_Expression | Qualified_Identifier

Constant_Expression = see 4.12

Qualified_Identifier = see 4.3.4

Unit = see 4.11 and 4.1.2.10

Examples

type Row_Index = INTEGER (0 .. 10);
type Col_Index = INTEGER (0 .. 20);

type Vector = array  (1 .. 3) of  REAL;
type Matrix = array  (Row_Index, Col_Index) of  REAL;
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type Color = (White, Red, Green, Blue, Yellow, Cyan, Magenta, Black);
type RGB = Color (Red .. Blue);

type Bool_Array = array  (Red .. Magenta) of  BOOLEAN; 
type Color_Table = array  (Color, RGB) of  REAL;

type Level = statecode  ($LOW, $MEDIUM, $HIGH);
type Level_Array = array  (Level) of  REAL;

Examples of LOW and HIGH

variable V : Vector;
variable M : Matrix;
variable C : Color_Table;

LOW (Vector)    = 1      HIGH (Vector)    = 3
LOW (V)         = 1      HIGH (V)         = 3

LOW (Matrix, 1) = 0      HIGH (Matrix, 1) = 10
LOW (M, 2)      = 0      HIGH (M, 2)      = 20

LOW (C, 1)      = White  HIGH (C, 1)      = Black
LOW (C, 2)      = Red    HIGH (C, 2)      = Blue

Aggregates

An array value may be written in form of an aggregate with the array elements enumerated in
parentheses:

( value, value, ..., value )

Aggregates of multidimensional arrays are expressed in nested form. A matrix is written as a vector
of line vectors:

(( value, value, ..., value ), –– line 1
 (value, value, ..., value), –– line 2
 ...
 (value, value, ..., value)) –– line n

A three–dimensional array as a vector of two–dimensional planes, which are written as vectors of line
vectors. This concept is recursively applied to any dimensionality:

((( value, value, ..., value ), –– plane 1
  (value, value, ..., value),
  ...
  (value, value, ..., value)),

  ...

 (( value, value, ..., value ), –– plane n
  (value, value, ..., value),
  ...
  (value, value, ..., value)))

An empty aggregate (for an array with no element) is written as an empty pair of parentheses: () .

Aggregates are expressions, see 4.12.

Representation in memory

An array is represented as a sequence of its elements in their respective representation. Arrays with
more than one dimension are stored ”column–wise”, i.e. such that for all index positions i and i+1
indices on position i+1 vary faster than on position i.
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4.8.2.2  Record Types

Like an array, a record is a structured type. In a record, however, the components are not constrained
to be of identical type. In the record declaration, each component (or field) must be specified by a name
(field identifier) and a type. To reference a field, the name of the record is followed by a period (dot)
and the respective field identifier, e.g. BIRTHDAY.MONTH.

Records may be nested. The scope of a field identifier is the innermost record in which it is defined.
Hence, field identifiers (i.e. the names of record components) may be reused outside the scope of that
record definition.

A record type may have several variants, based on the values of a specific field (the tag field). These
variants may differ in the number and type of components and thus allow for alternate forms of the same
record. They are enclosed by the keywords case  and end case . Each keyword when introduces
a variant that is to be part of the record for the list of tag field values given after the keyword.

Note that changing the value of the tag field, e.g. by an assignment, may select a different variant and
thus change the structure of the record variable. Access to fields outside the currently selected variant,
i.e. to undefined components, may have unpredictable effects. This is not checked and may be used for
low–level programming purposes to circumvent UCL’s type checking mechanisms, exploiting the fact
that all variants occupy the same location in memory and thus ”overlay” each other. This is not normal
programming practice and should be avoided. If necessary for special and exceptional cases, great care
must be taken. For an example see chapter Libraries (4.16.2), example 2.

No operations are defined on record objects. They can only be assigned and passed as parameters to
subprograms.

Formal Syntax
Record_Type = ”record”

{ Fields }
”end” ”record”

Fields = Identifier_List ”:” Qualified_Identifier [ Unit ] |
”case” Identifier ”:” Qualified_Identifier

Variant_Part
”end” ”case” ”;”

Variant_Part = { ”when” Case_Label_List ”:” { Fields } }
[ ”else” { Fields } ]

Case_Label_List = Case_Labels { ”,” Case_Labels }

Case_Labels = Constant_Expression [ ”..” Constant_Expression ]

Identifier_List = Identifier { ”,” Identifier }

Qualified_Identifier = see 4.3.4

Identifier = see 4.1.2.2

Constant_Expression = see 4.12

Unit = see 4.11 and 4.1.2.10

Examples

a) Simple record
record
   Day : INTEGER;
   Month : INTEGER;
   Year : INTEGER;
end record ;
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b) Record with variant parts

type Measurement_Type = (Analog, Discrete);
type Eng_Unit_Type = array  (1..4) of  CHARACTER;
...

type  Measurement = record
Channel_No : INTEGER;

case  Measure: Measurement_Type
when Analog:

Eng_Value : REAL;
Eng_Unit : Eng_Unit_Type;

when Discrete:
State : statecode ;

end case ;
end record ;

Representation in memory

A record is represented as the sequence of its fields in their respective representation. All variants
of the same variant part are mapped to the same location in memory. The size of a variant part is
determined by its longest variant.
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4.8.2.3  Set Types

A set is a collection of objects of the same type (the base type). The latter must be a discrete type with
at most 216 values (i.e. a set may contain as many elements as can be expressed using an unsigned 16–bit
integer).

A set type declaration is denoted by the keywords set of  followed by the appropriate type identifier.

A set constant is represented by a list of its members, enclosed in braces (curly brackets), and preceded
by the respective type identifier (base type), e.g. CharSet{’a’, ’b’, ’c’} . If the type identifier
is omitted, the predefined type BITSET  is assumed, e.g. {3,5,15}  is a literal of type BITSET.

If the members of a set are consecutive values, they may be expressed as a range: e.g. {5,6,7,8,9}
may be written {5..9} .

A set may have no members at all, in which case it is called the empty set and is written {}  .

The operations applicable to set variables are:

Operation Operator
set union +
set difference –
set intersection *
symmetric set difference /
set inclusion <=, >=
set comparison = , <>
membership tests in

The union of two sets is a set containing the members of both sets.

The difference of two sets is a set containing all the members of the first set that are not members of
the second set.

The intersection of two sets is the set of objects that are members of both sets.

The symmetric set difference of two sets is a set containing those elements that are members of exactly
one of the two sets (not of both).

The membership operator in  is used to test for set membership. in  is treated as a relational operator.
The expression I in  S  is of type BOOLEAN, returning TRUE if I  is a member of the set S.

The predefined procedures INCL  and EXCL (see 4.15) may be used to include a member in, or exclude
a member from, resp., a set variable.

Formal Syntax

Set_Type = ”set” ”of” Simple_Type.

Simple_Type = see 4.8

Examples

type Id = INTEGER (0 .. 100);
type Id_Set = set of  Id;
type Traffic_Light = set of  (Red, Green, Blue);
type Spectrum = set of  Color;
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Set Constants

A set constant may be written by enumerating the set elements in braces, with the type name preceding
the bracketed expression. Each element can be a constant expression:

type_name  { value, value, ..., value }

Ranges of adjacent values may be written in the form first .. last , e. g.

Char_Set {’a’ .. ’z’, ’A’ .. ’Z’, ’_’}

An empty set is written as an empty pair of braces:

Char_Set {}

Representation in memory

A set is represented by a number of bits packed in one or more 32–bit words, one bit for each possible
member of the set. A member is present in the set, if its bit is set, it is absent otherwise. The first
member is expressed by bit 0, the last member by bit n–1.

4.8.2.4  Type BITSET

The predefined type BITSET  is defined as

type  BITSET = set of  INTEGER (0 .. 31)

It thus represents a set of 32 elements, corresponding to the width of a storage unit. All operations
applicable to the set types equally apply to BITSET  (see 4.8.2.3), but BITSET  has additional special
characteristics. It may be used to access a 32–bit storage word as a sequence of bits: The i –th bit of
a bitset B, for example, is 1 if i  is a member of B, 0 otherwise. Values of type INTEGER and UN-
SIGNED_INTEGER may be converted to BITSET  and vice versa (see 4.12.4).

Examples

variable Flags: BITSET;
variable I : INTEGER;

...
Flags := {3,5,12};
I := INTEGER (Flags);

Bitset Constants

Bitset constants are written in braces, like set literals (see 4.8.2.3), but the preceding type name may
be omitted, e. g.

{1, 3, 5, 7, 9, 20 .. 31}
{0 .. 31}

An empty bitset is written as an empty pair of braces:

{}

Representation in memory

A bitset is represented like a set (see 4.8.2.3) in one 32–bit word.
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4.8.2.5  String Types

String types are used to store character or byte sequences of variable lengths. A string type is declared
with the keyword string , followed by the maximum length of the string in parentheses and,
optionally, an indication of the component type (CHARACTER or BYTE). If the component type
indication is omitted, CHARACTER is assumed, so

string (80)
string (80) of CHARACTER

have identical meaning and denote character strings, whereas
string (80) of BYTE

denotes a byte string.

The actual length of a variable of a string type may vary between 0 and the declared maximum length.
The actual length may be obtained with the predefined function LENGTH. In a string, each 32 bit word
stores four consecutive characters or bytes.

One may access individual string elements like in array indexing: if S is a string variable, then S(1)
denotes the first character or byte in the string. The first element has index 1 etc.

Strings of different lengths may be assigned and compared. If a string with an actual length longer than
the maximum length of the target string is to be assigned, a run–time error occurs (i.e. there is no implicit
truncation). A run–time error also occurs if one tries to assign or retrieve an element outside the actual
length of the string.

Character string values are written as string literals of the form ”...”  and may contain any printable
ASCII characters. Byte string literals have a # prefix: #”...”  and may contain only an even number
of hexadecimal digits grouped with underscore and blank characters, see 4.1.2.7. An empty string is
written as ””  or #”” , respectively.

Supported operations on string variables are comparison and the concatenation of two strings with the
“+” operator. The comparison operators <, <=, >, >= compare strings in lexicographic order, based on
the ASCII values of the characters or on the unsigned numerical value of the bytes, respectively, e. g.

”aux” > ”attention”    (character strings)

#”FF” > #”AA0012FF”    (byte strings)

A character or byte is treated as a string of length 1, if it is concatenated with a string or another
character or byte, assigned to a string variable or constant, or passed as a string parameter, e.g.

”car” + ’s’ = ”cars”
’a’ + ’b’   = ”ab”

#”AA_BB” + BYTE(255) = #”AA_BB_FF”
BYTE(1) + BYTE(2)    = #”01 02”

The predefined functions LOW and HIGH can be used to determine the lower or upper bound,
respectively, of a string type or variable. LOW will always return 1, HIGH returns the maximum length
of the string type or variable.

Substrings

In expressions, a substring (slice) may be selected from a string by giving the substring index range in
parentheses. The lower and upper bounds may be outside the actual index range of the string.The result
is the part of the string that lies within the given bounds:

S(5 .. 10) selects range 5 .. 10
S(–5 .. 3) selects range 1 .. 3
S(1 .. 0) selects an empty substring (lower > upper)
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Formal syntax

String_Type = ”string” ”(” Constant_Expression ”)” [ “of” Identifier ]

Constant_Expression = see 4.12

Identifier = see 4.1.2.2

Examples

variable S   : string  (255);          –– String with max. 255 characters
variable  S80 :  string  (80);           –– String with max.  80 characters

variable B   :  string  (255) of BYTE;  –– String with max. 255 bytes
variable  B80 :  string  (80) of BYTE;   –– String with max.  80 bytes

...
S   := ”Hello world”;
S80 := S;                       –– implies length check
S   := S80;

B   := #””;
B80 := B;                       –– implies length check
B   := B80;

...
S(1) := ’X’;                    –– replace first character in S
S80  := ”Hello” + ’ ’ + S;      –– string concatenation

B(1) := 16#FF#;                 –– replace first byte in B
B    := B + B80 + BYTE(0);      –– string concatenation

Examples of substrings

S80  := S(11 .. 20);            –– selects a character substring of length 10
B80  := B(11 .. 20);            –– selects a byte substring of length 10

Examples of LOW and HIGH

type String_80 = string (80);

variable S_80 : String_80;
variable S    : string (HIGH (String_80) + 20);

LOW (String_80) = 1   HIGH (String_80) = 80
LOW (S_80)      = 1   HIGH (S_80)      = 80
LOW (S)         = 1   HIGH (S)         = 100

Representation in memory

A string is represented as one 32–bit word holding the actual length of the string as an unsigned
integer, followed by zero or more words holding a byte array with 4 bytes (characters) each, packed
in one word. The number of bytes is the maximum length of the string, filled up to a multiple of 4.
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4.8.3  Pathname Types

The values comprised by pathname types are references to database objects themselves, not to their
runtime value. Pathnames are regarded as literals that denote the values of these types. The special
literal \\  means no pathname. It may be used e.g. as a default value for pathname parameters or as an
initial or dummy value for pathname variables. \\  is compatible to all pathname types, regardless of
constraints or parameterisation (see below). Pathname values can be assigned and compared on
equality (=, <>).

Pathname types can be unconstrained or constrained:

• An unconstrained pathname type is denoted by the keyword pathname , it comprises all valid
pathnames.

• A constrained pathname type is restricted to a specific set of MDB item types. This is denoted
by the keyword pathname , followed by the list of allowed item types in parentheses. The item
types are represented by a special set of identifiers defined in the database: the item type names.
These identifiers may appear only in this specific context, they do not interfere with normal UCL
identifiers. The compiler will check that pathnames assigned to a variable, associated with a
constant or passed as a parameter are of one of the item types allowed for the target object.

All declared pathname types are subtypes of the general predefined type pathname .

Formal Syntax
Pathname_Type = ”pathname” [ ”(” Identifier_List ”)” ]

Identifier_List = Identifier { ”,” Identifier }

Identifier = see 4.1.2.2

Examples
procedure  P (X : pathname ); begin  ... end  P; –– unconstrained

type  Monitor_Item = pathname (EGSE_INTEGER_MEASUREMENT, –– constrained
 EGSE_FLOAT_MEASUREMENT,
 EGSE_INTEGER_SW_VARIABLE,
 EGSE_FLOAT_SW_VARIABLE);

type  AP_Item = pathname (UCL_AUTOMATED_PROCEDURE); –– constrained

If a formal parameter is of a (possibly constrained) pathname type and followed by the syntax “()” ,
the actual parameter must be followed by its own actual parameter list (if one is declared within the
database). Such a formal parameter is then known to be of a parameterized pathname type. For such
a parameter, only pathnames of items that may have parameters can be passed. The property whether
or not an item can have parameters is an attribute stored together with the item in the database.
Parameters of a parameterized pathname type can only be of mode in  (see 4.14.1). Whithin the
subprogram they may be accessed as parameterized items (passed to other subprograms) or
non–parameterized items, e.g assigned to a variable or passed to a subprogram that requires a
non–parameterized item as parameter.

Examples
procedure  Acquire (Item : Measurement); ... –– non–parameterized item

procedure  Execute (AP : AP_Item()); ... –– parameterized item

Note that all checks concerning constraints and parameterisation of pathname types are performed at
compilation time, not at runtime. Whenever a pathname value is assigned to a variable or passed as a
parameter, it is checked that the type of the source value has at least the constraints of the target object.
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Example

type  Measurement = pathname (EGSE_INTEGER_MEASUREMENT,
 EGSE_FLOAT_MEASUREMENT);

procedure  P (X : pathname ; Y : Monitor_Item; Z : AP_Item());

variable P : pathname ;
variable M : Measurement;
variable A : AP_Item;

begin

P := X; –– OK. P may be assigned any type of pathnames ...
P := Y;
P := Z; –– ... even parameterized pathnames

M := Y; –– Error: M is more constrained than Y
M := X; –– Error: X is not constrained at all, but M is

A := Z; –– OK. Non–parameterized access to parameterized item

Execute (Z); –– OK. Z is parameterized and thus accepted by Execute
Execute (A); –– Error: A is not parameterized, even if Z was assigned.

end  P;

Representation in memory

Non–parameterized pathname values are represented as one 32–bit word containing the short
identifier (SID) of the item as an unsigned integer.

Parameterized pathname values can only occur as parameters to a subprogram. When the
subprogram is called, a parameter block is constructed in memory that describes the item together
with its actual parameter list, and the address of the parameter block is passed to the subprogram.
The parameter block conforms to the internal parameter encoding scheme as described in reference
document 2.2.2.
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4.8.4  Subitem Pathname Types

The values comprised by subitem pathname types are references to subitems of database objects
themselves, not to their value. Subitem pathnames are regarded as literals that denote the values of these
types. Subitem pathname values can be assigned and compared on equality (=, <>).

Subitem pathname types can be unconstrained or constrained:

• An unconstrained subitem pathname type is denoted by the pattern pathname .* , it comprises
all valid subitem pathnames.

• A constrained subitem pathname type is restricted to a specific set of MDB item types. This is
denoted by the pattern pathname .* , followed by the list of allowed subitem types in
parentheses. The subitem types are represented by a special set of identifiers defined in the
database: the subitem type names. These identifiers may appear only in this specific context, they
do not interfer with normal UCL identifiers. The compiler will check that subitem pathnames
assigned to a variable, associated with a constant or passed as a parameter are of one of the
subitem types allowed for the target object.

All declared subitem pathname types are subtypes of the general predefined type pathname .* .

Formal Syntax
Pathname_Type = ”pathname” ”.” ”*” [ ”(” Identifier_List ”)” ]

Identifier_List = Identifier { ”,” Identifier }

Identifier = see 4.1.2.2

Examples
type  Subitem = pathname .*; –– unconstrained

type  Input = pathname .* (FB_IO_INPUT); –– constrained to FB_IO_INPUT

procedure  P (X : pathname .*); begin  ... end  P; –– unconstrained parameter

procedure  Q (X : Input); begin  ... end  Q; –– constrained parameter

Note that all checks concerning constraints of subitem pathname types are performed at compilation
time, not at runtime. Whenever a subitem pathname value is assigned to a variable or passed as a
parameter, it is checked that the type of the source value has at least the constraints of the target object.

Example
procedure  P (X : pathname .*; Y : Input);

variable P : pathname .*;
variable I : Input;

begin
P := X; –– OK. P may be assigned any type of subitem pathnames ...
P := Y; –– ...

I := X; –– Error: X is not constrained at all, but I is
I := Y; –– OK. Same constraints on both sides

Q (X); –– Error: Formal parameter is constrained, but X is not
Q (Y); –– OK. Formal and actual parameter have same constraints

end  P;

Representation in memory

Subitem pathname values are represented as two 32–bit words: the first contains the short identifier
(SID) of the database item, the second the subitem identifier, both as unsigned integers.
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4.8.5  Inherited Types

An inherited type inherits the software type (= UCL type) of a database item, defined together with the
item in the database. Note that only items with access class READ and READ/WRITE have a software
type, see 4.3.6 for a description. An object (variable, constant, parameter) declared with an inherited
type thus has the same type properties as the corresponding database item, including any constraints
and engineering units.

Formal Syntax

Inherited_Type = ”type” ”of” Name (Name is a, possibly aliased, pathname)

Name = see 4.3.4

Example

type  Voltage =  type  of  \APM\FLTSYS\MEAS\Volt1;

variable  V : Voltage;  –– V has the same type as \APM\FLTSYS\MEAS\Volt1

...

V := X;  –– implies a check against the constraints of \APM\FLTSYS\MEAS\Volt1

Representation in memory

Inherited types are not separate types. They always correspond to one of the above described types
and are represented like these.
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4.8.6  Compatibility of Types

4.8.6.1  General Rules

Whenever a value is assigned to a variable, passed as a parameter to a subprogram or used as an operand
in an operation, it is required that it be compatible to the target object or to other operands in the
operation. Usually, two objects are compatible if they are of the same type, they are incompatible if they
are of different types.

Two types declared in different type declarations are considered different and incompatible types, even
if the declarations are identical, except in the following cases:

• The type is declared to be identical to another type. In this case both type identifiers denote the
same type.

• The type is declared to constrain some other type. In this case the type is a subtype of the other
type. All subtypes of the same base type are compatible to the base type and to each other.

For some closely related types, a value of one type is implicitly converted to the other type, if needed:

• INTEGER and UNSIGNED_INTEGER types are always compatible.

• REAL and LONG_REAL types are always compatible.

• CHARACTER values are compatible to string values in certain contexts (see 4.8.2.5).

Values of certain types may be explicitly converted to certain other types, without violating the strict
UCL typing rules (see 4.12.4).

For formal array and string parameters of subprograms there are ”open” forms that allow for less
restrictive compatibility rules (see 4.13.2 and 4.12.3).

For unitized types, in addition to type compatibility, compatibility and commensurability of the
involved measurement units must be observed (see 4.11).

Examples

type  Arr_1 = array  (1 .. 10) of  REAL; –– different types,
type  Arr_2 = array  (1 .. 10) of  REAL; –– although textually identical

type  Number = INTEGER; –– identical types
type  Arr_3 = Arr_1; –– ...

type  Short = INTEGER (0 .. 2**16 – 1); –– subtypes ...
type  Switch = statecode  ($OFF, $ON); –– ...
type  Node = pathname  (EGSE_NODE); –– ...
type  Input = pathname .* (FB_IO_INPUT); –– ...

variable  A1 : Arr_1; –– A1 and A2 are incompatible
variable  A2 : Arr_2;

variable  A3 : Arr_1; –– A3 and A4 are compatible
variable  A4 : Arr_3;

Expressions are always evaluated in terms of the base type of the operands (see 4.12), constraints are
therefore not relevant. But when a value is assigned to a variable, or passed as a parameter to a
subprogram, it is checked that the value does not violate the constraints of the target variable (see
4.13.1) or formal parameter (see 4.13.2 and 4.12.3).

The check whether a value violates a constraint is normally performed at runtime. If the value is a
constant, und hence known at compile time, the check will be done by the compiler. Pathname and
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subitem pathname constraints are always checked at compile time (see 4.8.3 and 4.8.4), in order to
avoid database queries at runtime which would otherwise be necessary to complete the check.

4.8.6.2  Structural Compatibility

When accessing structured runtime values of database items, the strict compatibility rules described
above cannot be applied: e.g. a local array value would always be incompatible to the array value of
a database item, since their types can never stem from the same type declaration.

For this case a less restrictive compatibility concept, called structural compatibility, is applied. Two
types are structurally compatible, if they have identical structure, e.g. for array types the index types,
index range and element types must be identical.

Example

type  Matrix = array  (1 .. 3, 1 .. 3) of  REAL;

variable  M : Matrix;

...

M := \APM\EGSE\DATA\M1;

The assignment is legal, if M and the database item are structurally compatible, i.e. if the type of the
database item is structurally identical to the type Matrix .

Note that in order to assure equal types, the type of the database item can be inherited (see 4.8.5).

Example

type  Matrix = type of \APM\EGSE\DATA\M1;  –– type inherited from database

variable  M : Matrix;

...

M := \APM\EGSE\DATA\M1;  –– M and \APM\EGSE\DATA\M1 have the same type
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4.9  Variable Declarations

A variable declaration associates a variable with a unique identifier and a data type. The type
determines the set of values that the variable may assume and the operators that are applicable; it also
defines the structure of the variable (see 4.8, Type Declaration).

In a variable declaration, either a predefined type, as in example (a), or a named user–defined type may
be specified, as in example (b). String variables may be declared directly, where the maximum length
is specified within the variable declaration, see example (c).

A variable declaration is introduced by the reserved word variable , followed by the name of the
variable (an identifier). A colon (”: ”) introduces the type. Optionally, the variable may be given a
constant initial value indicated with the assignment symbol (”:= ”). If no initial value is given, the value
of the variable is undefined. Using an uninitialized variable is an error that is not automatically detected.

Formal Syntax

Variable_Declaration = ”variable” Identifier ”:” Variable_Type [ ”:=” Constant_Expression ] ”;”

Variable_Type = Qualified_Identifier [ Unit ] |
String_Type |
”statecode” |
”pathname” [ ”.” ”*” ]

Identifier = see 4.1.2.2

Constant_Expression = see 4.12

Qualified_Identifier = see 4.3.4

Unit = see 4.11 and 4.1.2.10

String_Type = see 4.8.2.5

Examples

(a) variable declaration with predefined types:

variable  Index: INTEGER;
variable  State: statecode ;

(b) variable declaration with user–defined types:

type  Primary_Color = (Red, Green, Blue);
variable  Color : Primary_Color;

(c) string variable declaration:

variable  s: string  (80);
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4.10  Alias Declarations

An alias declaration associates a simple name (an identifier) with a complex name that includes a
pathname, and thus provides a shorthand for the long name. The alias name may then be used instead
of the corresponding long name. The long name may be one of the following:

• a pathname

alias  Lib = \EGSE\VICOS\SYSTEM\GROUND_LIBRARY;

The pathname may be incomplete, i.e. denote a virtual node in the database name tree. In this case
the alias may be used as a prefix in other pathnames:

alias  System = \EGSE\VICOS\SYSTEM;
alias  Lib    = System\GROUND_LIBRARY;

• a subitem pathname

alias  Input_1 = \APM\SIMULATION\PAYLOAD\EQUIPMENT_UNIT_A.INPUT_1;

• a qualified name (an identifier prefixed with the pathname of an imported module, e.g. a library)

import  \EGSE\VICOS\SYSTEM\GROUND_LIBRARY;
alias  Issue = \EGSE\VICOS\SYSTEM\GROUND_LIBRARY.Issue;

Note that for any compilation unit the name (identifier) of the unit is implicitly declared as an alias for
the pathname of the unit (see 4.16.1, 4.16.2 and 4.16.3). When importing a library or some other
module, the name alias of the module is imported together with the other identifiers from the module
and may then be used instead of the long pathname:

import  \EGSE\VICOS\SYSTEM\GROUND_LIBRARY;
alias  Issue = Ground_Library.Issue;

Formal Syntax

Alias_Declaration = ”alias” Identifier ”=” Name ”;”

Name = see 4.3.4

Identifier = see 4.1.2.2

Please note that the Mission Database may itself predefine a set of aliases, called “nicknames” (see
4.3.3). These predefined aliases may be used like any user declared alias.
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4.11  Unitized Values and Types
The types and values introduced in the previous sections were all referring to unitless values. UCL also
provides the facility for defining and operating on unitized values, i.e. real or integer values associated
with a unit of measure. This facility improves the readability of the source code and at the same time
enables additional semantic checking at compilation time.

4.11.1  Units of Measure

Every measurement system defines a number of base units each describing a physical quantity. The
currently world–wide used unit system is the SI system, which defines 7 base units: meter to measure
the length, second to measure the time, kilogram to measure the mass etc. It is standardized under ISO
1000. The units of measure in UCL are based on this International Standard.

All other units can be derived from the base units by multiplication or division of two or more base units
or by multiplication and/or addition with constants. Such units are called derived units. For example,
the unit volt is defined as:

(m2 * kg) / (s 3 * A)   or    m2 * kg 1 * s –3 * A –1.

The second expression shows that derived units are products of base units raised to positive or negative
integer power.

The same physical quantity can be described by more than one unit. For example, the length can be
measured in meters or in inches. Such units are called commensurable units. They are assignment com-
patible. The UCL compiler automatically converts between commensurable units. This is explained
later in more detail.

UCL predefines the seven base units defined by the international system of units (Système Internatio-
nale d’Unités, SI), but allows the user to define additional base units. It can handle all units derived from
these base units by means of the usual arithmetical operations, as shown above. Additional unit names
can then be defined for units derived from existing units by means of UCL unit declarations.For a defi-
nition of the SI base units, see the ISO 1000 standard, annex B.

Quantity Unit SI symbol UCL symbol

length meter m m

mass kilogram kg kg

time second s s

electric current ampere A A

temperature kelvin K Kabs

temperature difference kelvin K K

amount of substance mole mol mol

luminosity candela cd cd

Note the distinction made between temperature and temperature difference, expressed with different
UCL unit symbols Kabs  (= K absolute) and K. This is necessary to allow conversions between e.g. oC
and K. The temperature relationship 0 oC = 273.15 K is not reflected for temperature differences, where
1 oC = 1 K.

4.11.2  Counting Units

Beside the normal physical units, UCL supports counting units like pair or dozen. These are pseudo–
units that represent a grouping of non–dimensional quantities. All counting units are commensurable
with one another and with pure scalar values. They are resolved to scalar values whenever appropriate.
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4.11.3  Predefined Units

Within a target system based on UCL, there are two groups of predefined units:

• UCL predefined

UCL itself predefines only the names of the seven SI base units. These are available and identical
in any UCL based system.

• Project predefined

The target system may predefine further, project specific, unit names (both new base units and
derived units) by means of the Mission Database. These units must not overwrite SI base units.

Both of these groups of units are automatically available in any UCL compilation unit and need not be
declared by the user.

4.11.4  Unit Declaration

New base units can be defined in the form

unit  [ unit_identifier ];

and new identifiers for derived units can be declared in a unit declaration, which takes the form

unit  [ unit_identifier ] = [ unit_expression ];

Units cannot be declared local to a procedure or function. Unit names are always global. For conve-
nience it is, however, possible to redeclare an existing unit name, but only identical to the existing unit.

Formal syntax

Unit_Declaration = ”unit” ”[” Unit_Identifier ”]” [ ”=” Unit ] ”;”

Unit = ”[” Unit_Expression ”]”

Unit_Expression = [ Numerator [ ”/” Denominator ] [ ”+” Offset | ”–” Offset ] ]

Offset = Number [ ”/” Number ]

Numerator = Unit_Term |
”(” Unit_Term ”)”

Denominator = Number |
Unit_Factor |
”(” Unit_Term ”)”

Unit_Term = [ Number ] Unit_Factor { Unit_Factor } |
Number

Unit_Factor = Unit_Identifier { Digit }

Unit_Identifier = Letter { Letter }
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4.11.5  Unit Syntax

A unit is expressed with a syntax production defined somehow like a string with an imposed syntax,
enclosed in brackets ‘[ ’ and ‘] ’.

Note that no space may be used between the Unit_Identifier and the following Digit in the syntax
production Unit_Factor. A Unit_Identifier is composed of letters only.

The following conventions are used for unit expressions:

Identifiers are case sensitive: mA,  MeV

Multiplication is denoted by a space: kg m,  N m,  1000 m

Division is denoted by a slash (”/”): m/s,  1/s

Exponentiation is denoted by an attached digit: m3,  s2

For numbers, reals or integers may be used: 0.0254 m,  10 degC/18 – 320/18

An expression with + or – creates an absolute unit: Kabs + 273.15
(it defines the offset of the two zero points)

A single number defines a counting unit: 12 (for dozen)

Parentheses may be used to clarify the order of evaluation, but no nested parentheses are supported to
keep a unit expression as clear as possible. Also, only one division (both for the unit and the offset) is
allowed in a unit expression, thus avoiding ambiguous expressions.

Please note that factors and offsets may only be used within the defining unit expression in a unit
declaration, but not as a unit literal otherwise. Thus, while the forms [1000 m]  and [12]  are legal as
the defining part in the declarations

unit  [km]  = [1000 m];
unit  [doz] = [12];

they are not in expressions like 1.0 [1000 m]  and 2.0 [12] . Instead, use  1.0 [km]  and
2.0 [doz] .

Examples

unit [bit];                               –– new base unit bit
unit  [Byte] = [8 bit];                    –– unit Byte derived from bit
unit  [N]    = [kg m/s2];                  –– Newton
unit  [Pa]   = [N/m2];                     –– Pascal
unit  [km]   = [1000 m];                   –– kilometer
unit  [degC] = [Kabs + 273.15];            –– degrees Celsius
unit  [degF] = [10 degC / 18 – 320 / 18];  –– degrees Fahrenheit
unit  [doz]  = [12];                       –– dozen
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4.11.6  Unitized Types

In type declarations, a unit clause is used to indicate a unitized–value type (or unitized type, for short).
The associated type is given first, then a unit expression. Variables and constants declared to be of a
unitized type are bound to values of the respective physical dimension.

Examples

type  Furnace_Temperature = REAL [Kabs];
type  Coolant_Temperature = REAL [degC];
type  Power               = REAL [m2 kg/s3];
type  Dozen               = REAL [doz];

constant  Freezing_Point : Furnace_Temperature := 0.0 [K];
variable  Curr_Power     : Power               := 0.0 [m2 kg/s3];
variable  Count          : Dozen;

Only REAL, LONG_REAL, INTEGER and UNSIGNED_INTEGER  types may be ”unitized”, i.e. asso-
ciated with a unit of measure via a unit expression. A unitized type may be part of a structured type (e.g.
array, record); however, the structured type itself must not be unitized. Thus, in the following example:

type  Rval_Array        = array  (Lo .. Hi) of  REAL;
type  Temperature_Array = Rval_Array [degC];         –– not allowed !!!
type  Voltage_Array     = array  (Lo .. Hi) of  REAL [V];

the type declaration for Temperature_Array  is invalid; the type Voltage_Array , on the other
hand, is a valid UCL construct.

In type, variable and constant declarations, a unit clause is used to indicate a unitized–value type (or
unitized type, for short). The associated type is given first, then a unit expression.

4.11.7  Unitized Variables and Constants

UCL also allows variables and constants to be associated directly with a unit of measure. This is syntac-
tically analogous to declaring an unnamed structured type. For example,

constant  Max_Speed : REAL [m/s] := 1000.0 [m/s];
variable  Mass      : REAL [kg];

The variable declaration associates the variable Mass with the mass unit kilogram. This variable is com-
patible with other variables of type REAL which are associated with a unit commensurable to kilogram.
Unitized types are forbidden in such declarations. For example,

variable  Temp: Furnace_Temperature [degC];

is not allowed, because Furnace_Temperature  is already a unitized type.

4.11.8  Compatibility of Unitized Types

Two unitized types are compatible, if the types are compatible without the unit and the two units are
commensurable, i. e. of the same physical dimension. A type conversion both converts the value to the
representation of the other type and rescales the value to the other unit, if necessary. Types that are im-
plicitly converted to each other (INTEGER/UNSIGNED_INTEGER and REAL/LONG_REAL) will
also be implicitly converted, if they are associated with a measurement unit.
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4.11.9  Unitized Literals & Constants

In the UCL source code, unitized values may be formed by suffixing a real or integer value with their
appropriate unit, which is written in brackets in the syntax described below.

As stated above, it is possible to derive other units using the *  and /  operators, offsets and exponenti-
ations with integer numbers. Such unit expressions (described below) must be enclosed in square brack-
ets. They follow a syntax which allows unit expressions as close as possible to the normally used scien-
tific syntax, as defined in ISO 1000.

Examples:

10.0 [degC],  1.3E+3 [K],  35.5 [m/s],  100.0 [m2 kg/s2], 2.0 [doz]

4.11.10  Expressions with Unitized Values

Unitized values can be used in arithmetical expressions according to the following rules:

• In assignments both operands must have commensurable units. The UCL compiler converts units
as necessary. Example:

variable  X : REAL [Kabs];

X := 25.0 [degC]; –– automatic conversion from Celsius to Kelvin

• In additions or subtractions both operands must have commensurable units. The UCL compiler
converts units as necessary, choosing the “smaller” (finer) of the two units as the resulting unit.
The other operand is adapted (converted) to this smaller unit before the operation is performed.
Note that counting units are commensurable with unitless values. When different counting units
are involved, those operands are converted to scalars.

Special treatment is needed to handle conversion between temperatures correctly, as there are
temperatures and temperature differences. Also, special conversion rules apply to measurements
of temperatures because the subtraction of two temperatures yields a temperature difference, for
any other unit it results in the unit itself. Examples:

100.0 [Kabs] – 90.0 [Kabs] = 10.0 [K]
100.0 [Kabs] – 10.0 [K]    = 90.0 [Kabs]

100.0 [Kabs] + 10.0 [Kabs] is invalid!

100.0 [K] – 10.0 [K] =  90.0 [K]
100.0 [K] + 10.0 [K] = 110.0 [K]

• Likewise, for comparison operations, the operands are adapted to the smaller of the involved
units. When different counting units are involved, those operands are converted to scalars.

• The same holds for the MIN and MAX functions (see 4.15): All operands are adapted to the small-
est of the involved units, values with counting units are converted to scalars.

• In multiplications the operands can be of different units. The result is another unit or a unitless
value.Values with counting units are converted to scalars. Examples:

  (a) force * length → work,  or in units: Newton * Meter →  m2 * kg * s–2  =  Joule
  (b) duration * frequency  →  unitless value.

But note that the resulting unit is always normalized to contain base units only.
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• In divisions the operands can be of different units. The result is another unit or a unitless value.
Operands with commensurable units are adapted to the smaller of the involved units before per-
forming the operation. Values with counting units are converted to scalars. The resulting unit is
always normalized to contain base units only.

• Any unitized value can be multiplied with or divided by a unitless value. The resulting unit is the
unit of the unitized operand.

• In exponentiations the unitized values can be raised to constant integer powers only. This opera-
tion is equivalent to a multiplication or division of values with the same unit. It results in a new
unit, which will be normalized to contain base units only. Operands with counting units are con-
verted to scalars.

Examples:

unit  [bit];   –– base type bit
unit  [px];    –– base type pixel

unit [Byte] = [8 bit];

unit  [degC] = [Kabs + 273.15];
unit  [km]   = [1000 m];
unit  [h]    = [3600 s];
unit  [mi]   = [1.609 km];

unit  [doz]  = [12];

type  Temperature  = REAL [degC];
type  Voltage      = REAL [V];
type  Speed        = REAL [m/s];
type  Acceleration = REAL [m/s2];

type  Dozen        = REAL [doz];

type  Color_Depth  = INTEGER [bit/px];

constant  Max_Voltage: Voltage := 100.0 [V];

variable  T : Temperature;
variable  V : Voltage;
variable  S : Speed;
variable  A : Acceleration;
variable  M : REAL [m];
variable  D : Dozen;

variable  C : Color_Depth;

...

T := 37.5 [degC];
T := 10.5 [V];           –– invalid because T is of type TEMPERATURE;
D := 24.0;               –– assigns 2.0 [doz]

V := \A\B\C;             –– valid only if \A\B\C refers to an MDB item
                         –– of the appropriate type (’voltage’ measurement)

if  V > 5.0 [V] then  ...

M := 50.0 [km];          –– commensurable units are converted by the compiler
S := M / 0.5 [h];        –– [m] / [h]   –> [m/s]
A := S / 2.0 [h];        –– [m/s] / [h] –> [m/s2]

C := 24 [bit/px];
C := 3 [Byte/px];        –– implies a conversion [Byte/px] –> [bit/px]
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4.11.11  Unitized Integer Values

Integer values with units require special care:

• In expressions with unitized integer or unsigned integer values, integer arithmetic applies, like
for non–unitized values.

5 [m] / 2 [s] = 2 [m/s]

• When converting between commensurable units, the resulting value will be rounded to the
nearest integer:

1 [m/s] ( → 3.6 [km/h]) → 4 [km/h]
3 [mi]  ( → 4.82803 [km]) → 5 [km]

• Expressions with mixed commensurable units may imply inadvertent unit conversions that lead
to loss of precision and, even worse, to unwanted zero values. The rules given in 4.11.10 try to
reduce such loss as much as possible, but cannot avoid it completely:

variable  K : INTEGER [km];

K := (1 [km] + 1 [mi]) / 2;   –– = (1 [km] + 2 [km]) / 2 = 2 [km]
K := 1 [km] – 400 [m];        –– = 1000 [m] – 400 [m] = 600 [m] = 1 [km]

K := 1 [km/h] * 1 [s]         –– = 1 [1000/3600 m] = 0 [m] = 0 [km]

• Unit conversions and normalizations can much more easily lead to overflows or underflows than
for unitized real values.

• Divisions whose operands have units that are not commensurable but have common base units
like

1 [km/h] / 1 [min]

present a specific problem. Due to its internal unit representation, the compiler cannot decide how
to adapt these units to each other. Expressions of this kind are therefore not allowed.

This does not affect division of “unrelated” units like

1 [kg m] / 1 [s] = 1 [kg m/s]

• The right operand of the % (mod) operator must not be unitized:

5 [m] % 2 = 1 [m]   –– OK
5 [m] % 2 [s]       –– not allowed!

• The increment parameter of the INC and DEC functions (see 4.15) must not be unitized:

X := 2 [m/s];
INC (X);           –– OK:  X = 3 [m/s]
INC (X, 2);        –– OK:  X = 5 [m/s]
INC (X, 2 [m/s]);  –– not allowed!
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4.12  Expressions

Expressions are syntactical constructs used to calculate values of variables or generate new values.
They represent combinations of operands and operators whereby an operand may itself contain an
expression; i.e. expressions can be constructed recursively.

At runtime, when the expression is evaluated, the respective current values denoted by the operands
are combined using the specified operators to yield a new value. An error will occur if the computed
value cannot be represented on the current target machine (e.g. division by zero).

The arithmetical operators, e.g., applied to INTEGER, UNSIGNED_INTEGER, REAL or LONG_REAL
operands form arithmetical expressions; whereas the logical, relational and some set operators together
with their respective operands yield Boolean expressions.

If an MDB object is used in an expression (through a pathname designator), its meaning depends on
the expected target type:

• If the target type is a pathname type, the pathname stands for itself as a reference to the item.

• Otherwise the pathname denotes the runtime value of the item. The item must then be accessible
in READ or READ/WRITE mode (see section 4.2).

The same holds, analogously, for subitem pathnames.

Formal Syntax

Expression = Relation { ”&” Relation } |
Relation { ”|” Relation } |
Aggregate

Aggregate = ”(” [ Component { ”,” Component } ] ”)”

Component = [ Identifier ”:” ] Expression

Relation = Simple_Expression
[ ”=” Simple_Expression |
”<>” Simple_Expression |
”<” Simple_Expression |
”<=” Simple_Expression |
”>” Simple_Expression |
”>=” Simple_Expression |
”in” Simple_Expression ]

Simple_Expression = [ ”+” | ”–” ] Term { ”+” Term | ”–” Term }

Term = Factor { ”*” Factor | ”/” Factor | ”%” Factor }

Factor = Primary [ ”**” Factor ]

Primary = Number [ Unit ] |
String |
Character |
Set_Constant |
Date [ Time ] | Time
Statecode |
Designator |
Function_Call |
Type_Conversion |
”(” Expression ”)” |
”~” Primary

Designator = Name { ”.” ( Identifier | ”(” Expression_List ”)” ) }
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Slice = Designator ”(” Expression “..” Expression ”)”

Name = see 4.3.4

Expression_List = Expression { ”,” Expression }

Number = Simple_Integer |
Based_Integer |
Real

Identifier = see 4.1.2.2

Simple_Integer = see 4.1.2.4.1

Based_Integer = see 4.1.2.4.1

Real = see 4.1.2.4.3

String = see 4.1.2.7

Character = see 4.1.2.6

Set_Constant = see 4.8.2.3

Date = see 4.1.2.8

Time = see 4.1.2.8

Statecode = see 4.1.2.5

Function_Call = see 4.12.3

Type_Conversion = see 4.12.4

Unit = see 4.11

Constant expressions

An expression may be required to be constant. Constant expressions are expressions whose operands
are all constants or constant expressions, such that its value can be determined at compilation time.

Constant_Expression = Expression

4.12.1  Operands

The various components of an expression are called operands. Valid operands are

• literal constants (see 4.1)

• declared or imported constants (see 4.4 and 4.2)

• declared or imported variables (see 4.9 and 4.2)

• array components (see 4.8.2.1)

• array aggregates (see 4.8.2.1)

• substrings (slices) (see 4.8.2.5)

• record components (see 4.8.2.2)

• MDB items and subitems (see 4.3.6)

• function calls (see 4.12.3)

• type conversions (see 4.12.4)

• expressions



Dok.-Nr/ Doc. No.:   CGS–RIBRE–STD–0001
Ausgabe /Issue:          5
Überarbtg./ Rev.:        –
Seite/Page:              4–51

Datum/ Date :    2009–02–01

Datum/ Date:     2010–01–29

von/ of        4–96

Daimler–Benz Aerospace AG, D–28199 Bremen – All Rights reserved – Copyright per DIN 34

4.12.2  Operators

There exists a precedence hierarchy among operators. It determines the order of evaluation of operands
in an expression. The “not” operator and the exponentiation operator have the highest precedence,
followed by the so–called multiplying operators, the so–called adding operators and the relational
operators. Boolean operators have the lowest precedence. Sequences of operators of the same
precedence are evaluated from left to right, except for sequences of exponentiation operators which are
evaluated from right to left. The order of evaluation may be altered by using parentheses.

The precedence of operators is:

(highest) 1)   ~  +  –  **  Boolean negation, unary +/–, exponentiation
2)   *  /   %  multiplying operators
3)   +  –  adding operators
4)   =  <>  <  <=  >  >=  in  relational operators

(lowest) 5)   &  |  Boolean operators

Examples

(I + J) * K –– INTEGER/UNSIGNED_INTEGER expression
~A | B –– same as (~A) | b
I = 1 | J = 1 –– same as (I = 1) | (J = 1)
A**N + B –– same as (A**N) + B
A**N**M –– same as A**(N**M); –– ** associates right to left
A*N*M –– same as (A*N)*M; ––  * associates left to right

4.12.2.1  Arithmetical Operators

    Symbol Operation

+ addition
– subtraction

  * multiplication
 / division
 ** exponentiation

% modulus

All operators apply to variables of the type INTEGER/UNSIGNED_INTEGER and their subranges.
The operators +, –, *  , **  and /  apply to REAL and LONG_REAL variables. The operators +, –, *  and
/  apply to TIME and DURATION variables as well. For exponentiation, however, the right operand
(called the exponent) must be of the type INTEGER/UNSIGNED_INTEGER and the result type is the
type of the left operand. Further, the operators + and – may be used as unary operators to denote the
sign of a number.

Integer division and modulus are defined by the relation:

A = (A/B)*B + (A % B)

where (A % B) has the sign of A and an absolute value less than the absolute value of B. During divisions
and modulus operations, a runtime error occurs if the right operand is zero.
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4.12.2.2  Concatenation Operator

    Symbol Operation

+ string concatenation

This operator joins two strings of the same base type, i.e. string literals, string constants or variables,
or string elements (characters, bytes). The result is a string containing the left and right operands
concatenated.

4.12.2.3  Logical or Boolean Operators

    Symbol Operation

| logical or
& logical and
~ logical negation (unary operator)

Their operands must have the type BOOLEAN. The definition of the Boolean operators & and |  is as
follows:

p  &  q  =  if  p then  q    else  FALSE
p  |  q  =  if  p then  TRUE else  q

This definition implies that the second operand will not be evaluated if the result is already known from
the evaluation of the first operand (short–circuit evaluation).

4.12.2.4  Relational or Comparison Operators

    Symbol Operation 

= equal
<> unequal
< less
<= less or equal
>= greater or equal
> greater

These operators are applicable to all ordered types, i.e. INTEGER, UNSIGNED_INTEGER, REAL,
LONG_REAL, CHARACTER, TIME and enumeration types. They may also be used for string operands
and (except < and >) for set operands. The equality operands = and <> can also be applied to statecode,
set, pathname and subitem pathname operands, as well as to BYTE, WORD and LONG_WORD operands.

4.12.2.5  Set Operators

    Symbol Operation

in contained in
+ set union
– set difference
* set intersection 
/ symmetric set difference
<= inclusion (left operand included in right operand)
>= inclusion (right operand included in left operand)
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4.12.3  Function Calls

Like a procedure, a function is invoked by its name followed by the appropriate actual parameters. In
contrast to a procedure call, which denotes an action, a function call returns a value and corresponds
therefore to an expression. The specification of actual parameters in function calls follow the same
syntax rules as in procedure calls (see 4.13.2).

Formal Syntax

Function_Call = Qualified_Identifier [ Actual_Parameters ]

Actual_Parameters= ”(” [ Parameter { ”,” Parameter } ] ”)”

Parameter = [ Identifier ”:” ] Expression

Qualified_Identifier = see 4.3.4

Identifier = see 4.1.2.2

Expression = see 4.12

Examples

X := Average (First_Val, Last_Val);    –– function ”Average”
if  Is_Empty (Buffer) then  ...          –– Boolean function ”Is_Empty”
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4.12.4  Type Conversions

Expressions of one type may be converted to certain other types. UCL provides the following types of
conversions:

• high level conversions between closely related types,

• low level conversions to circumvent typing rules,

• string conversions to convert between values and their textual representation.

4.12.4.1  High Level Conversions

High level conversions preserve the strong typing properties of the language, they can only be done
between closely related types.

A type conversion is specified by prefixing the expression to be converted (in parentheses) with the
name of the target type (one of the above). A type conversion is an expression, syntactically it
corresponds to a function call.

 Note that type conversions done automatically by the compiler may be written explicitly as well.
Type_Conversion = Qualified_Identifier ”(” Expression ”)” |

String_Conversion

String_Conversion = see 4.12.4.3

Qualified_Identifier = see 4.3.4

Expression = see 4.12

Formal Syntax

Scalar and byte string to BYTE/WORD/LONG_WORD Conversion
BYTE     ( 8–bit_scalar_value or 1_element_byte_string )
WORD     ( 32–bit_scalar_value or 4_element_byte_string )
LONG_WORD(64–bit_scalar_value or 8_element_byte_string )

These conversions are implicitly carried out whenever necessary, see 4.8.1.7. They may, however, also
be done explicitly.

Examples:
B := BYTE (’x’);          –– character to BYTE
W := WORD (#”FF000000”);  –– byte string to WORD
L := LONG_WORD ($OFF);    –– statecode to LONG_WORD

REAL/LONG_REAL to INTEGER/UNSIGNED_INTEGER Conversion
INTEGER ( real_value )
INTEGER ( long_real_value )

UNSIGNED_INTEGER (real_value )
UNSIGNED_INTEGER (long_real_value )

The result of this type conversion is the integer value obtained by truncating the value expressed by
real_value  or long_real_value  toward zero.

Examples:
INTEGER (3.6);   –– value is  3
INTEGER (1.5);   –– value is  1
INTEGER (–1.3)   –– value is –1
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INTEGER/UNSIGNED_INTEGER to REAL/LONG_REAL Conversion

REAL      ( integer_value )
LONG_REAL (integer_value )

REAL      ( unsigned_integer_value )
LONG_REAL (unsigned_integer_value )

The result of this type conversion is the floating point value corresponding to the value of inte-
ger_value  or unsigned_integer_value .

Examples:

REAL (I + 5);   –– value converted to floating point

CHARACTER to INTEGER/UNSIGNED_INTEGER Conversion

INTEGER ( character_value )

UNSIGNED_INTEGER (character_value )

The result of this type conversion is the integer corresponding to the ordinal value of charac-
ter_value  (i.e. its sequence number) in the ASCII character set.

Examples:

INTEGER (’A’);   –– yields 65
INTEGER (’E’);   –– yields 69

INTEGER/UNSIGNED_INTEGER to CHARACTER Conversion

CHARACTER (integer_value )

CHARACTER (unsigned_integer_value )

The result of this type conversion is the character whose ordinal number (in the ASCII character set)
is integer_value  or unsigned_integer_value , resp.

Examples:

CHARACTER (65);   –– returns character ’A’
CHARACTER (69);   –– returns character ’E’

Enumeration to INTEGER/UNSIGNED_INTEGER Conversion

INTEGER ( enumeration_value )

UNSIGNED_INTEGER (enumeration_value )

The result of this type conversion is the integer corresponding to the position of enumera-
tion_value  in the enumeration list. (The first element in the list has the position 0).

Examples:

type  Color = (Red, Green, Blue);
...
INTEGER (Green);   –– returns 1
INTEGER (Red);     –– returns 0
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INTEGER/UNSIGNED_INTEGER to Enumeration Conversion

enumeration_type  ( integer_value )

enumeration_type  ( unsigned_integer_value )

The result of this type conversion is the enumerated value (literal) whose position in the enumeration
list is equal to integer_value  or unsigned_integer_value . (The first element in a list has
the position 0). A runtime error occurs if integer_value  < 0 or integer_value  > INTEGER
(MAX( enumeration_type )) .

Examples:

type  Color = (Red, Green, Blue);
...
Color (1);   –– returns Green
Color (0);   –– returns Red

BITSET  to INTEGER/UNSIGNED_INTEGER Conversion
INTEGER ( bitset_value )

UNSIGNED_INTEGER (bitset_value )

The result of this type conversion is the 32–bit integer whose internal representation corresponds to the
(32 member) bitset_value .

Examples:

INTEGER ({0, 1, 2});   –– returns 7 (or 2 0 + 2 1 + 2 2)

INTEGER/UNSIGNED_INTEGER to BITSET  Conversion

BITSET ( integer_value )

BITSET ( unsigned_integer_value )

The result of this type conversion is the BITSET  variable whose internal representation corresponds
to the 32–bit integer value integer_value  or unsigned_integer_value .

Examples:

BITSET (7);   –– returns the BITSET constant {0, 1, 2}

Unitized Type to Non–Unitized Type Conversion
REAL ( unitized_value )
LONG_REAL (unitized_value )
INTEGER ( unitized_value )
UNSIGNED_INTEGER (unitized_value )

The result of type conversion is the raw (unitless) real or integer value of unitized_value . A
conversion between real and integer values is done, if necessary. For counting units the conversion
yields the effective quantity.

Examples:

REAL (3.6 [km/h])      –– returns 3.6
INTEGER (3.6 [km/h])   –– returns 3 (conversion REAL to INTEGER truncates)
REAL (2.5 [doz])       –– returns 30.0
INTEGER (2.5 [doz])    –– returns 30
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Non–Unitized Type to Unitized Type Conversion
unitized_type  ( real_value )
unitized_type  ( long_real_value )
unitized_type  ( integer_value )
unitized_type  ( unsigend_integer_value )

The result of type conversion is the unitless value expressed in units of unitized_type . A
conversion between real and integer values is done, if necessary.

Examples:
type  Velocity = REAL [m/s];
type  Distance = INTEGER [km];
type  Dozen    = REAL [doz];

...

Velocity (3.6)   –– returns 3.6 [m/s]
Distance (3.6)   –– returns 3 [km]
Dozen (24.0)     –– returns 2.0 [doz]

Unitized Type to Unitized Type Conversion
unitized_type  ( unitized_value )

The type of unitized_value  must be commensurable with unitized_type . The result of this
type conversion is the value of unitized_value  expressed in units of unitized_type . A
conversion between real and integer values is done, if necessary.

Example:
unit [mph] = [1609 m/h];    –– miles per hour

type Mph   = REAL [mph];

variable  Speed : REAL [m/s];
variable X     : REAL;

...

X := REAL (Mph (Speed));   –– Speed is converted to Mph, then to REAL

INTEGER/UNSIGNED_INTEGER Conversion
INTEGER ( unsigned_integer_value )
UNSIGNED_INTEGER (integer_value )

These conversions are implicitly carried out whenever necessary. They may, however, also be done
explicitly. A check will be done that the allowed range of the target type is not violated.

Examples:
Unsigned_Integer_Value := UNSIGNED_INTEGER (Integer_Value) * 2;

REAL/LONG_REAL Conversion
REAL ( long_real_value )
LONG_REAL (real_value )

These conversions are implicitly carried out whenever necessary. They may, however, also be done
explicitly.

Examples:
Long_Real_Value := LONG_REAL (Real_Value) * 1.0E50;
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Type to Subtype Conversion

subtype  ( value )

The base type of value  must be the same as the base type of subtype . The effect of this conversion
is to interpret the value as belonging to the subtype.

A check will be done to insure that the value does not violate possible constraints of the subtype. If the
value is constant, and thus known to the compiler, the compiler will do the check, otherwise it will be
carried out at runtime. For pathname and subitem pathname types, the check will always be done at
compile time: it makes sure that the target subtype  is not more constrained than the type of value .

Note: A special case is the conversion of a type to itself, which is allowed but has no effect.

Example:

type Short  = INTEGER (0 .. 2 ** 16 – 1);
type  Switch = statecode  ($LOW, $MEDIUM, $HIGH);
type  Label  = string  (10);

variable  I : INTEGER;
variable  C : statecode ;
variable  S : string  (80);

...

I := Short (I);                 –– make sure I is a short integer
C := Switch (C);                –– make sure C is a Switch value
Send_Message (Label(S), ...);   –– make sure S is not longer than a Label
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4.12.4.2  Low Level Conversions

Low level conversions circumvent the UCL strong typing concept. They allow to convert a value of
one type into any other type, as long as the sizes fit. A low level conversion does not change the
representation in memory, but just regards the same byte/word representation to be of a different type.

Low level conversions are done using the special predefined function UNTYPED. The function call

UNTYPED (expression )

removes the type from the expression and makes it convertible to any other type. A conversion is
implicitly perfomed when assigning the untyped expression to a variable or passing it as a parameter
to a subprogram, or by converting it explicitly into a specific target type with the usual conversion
notation.

For strings, only the string contents (excluding the length field) is converted. The size of a string value
to be converted is the current string length, and the length of a string target is set according to the size
of the value.

Example:

type Rec = record ... end record ;

variable R : Rec;
variable S : string (10) of BYTE;
variable I : INTEGER;
variable P : pathname ;

procedure Proc (A : array of WORD); begin ... end Proc;

...

I := UNTYPED (P);    –– get SID of pathname
P := UNTYPED (I);    –– get pathname of SID

S := UNTYPED (R);    –– convert record to string of bytes
R := UNTYPED (S);    –– convert string of bytes to record

Proc (UNTYPED (R));  –– pass record as an array of words

if  I = INTEGER (UNTYPED(P)) then  ... end if ;   –– explicit conversion

For a low level conversion, the size of the value to be converted must fit the size of the target type. A
check is done to enforce this restriction.

• If the target is a string, the size in bytes of the value must not be greater than the maximum size
of the string. For open string parameters there is no such restriction.

• If the target is an open array parameter, there is no upper limit for the size, but the size in bytes
must be a multiple of the array element size. A check is performed to enforce this restriction.

• For other target types the size of the value must be identical to the size of the target.

Example:

–– declarations as above

S := UNTYPED (R);    –– size of R must not be greater than 10
I := UNTYPED (S);    –– length of S must be 4

Proc (UNTYPED(S));   –– length of S must be a multiple of 4
Proc (UNTYPED(R));   –– no check
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4.12.4.3  String Conversions

Values of scalar types and string types (both character strings and byte strings) may be converted to their
textual representation, according to UCL syntax, by just converting them to some character string type,
using the high level conversion syntax. Two syntactical forms are available:

string ( expression )

typename ( expression )

The first form creates a general string without any size restrictions. The second form creates a string
of the indicated specific type. A check will be performed that the resulting string fits the declared size
constraint of the type.

For pathname types the two forms may be preceeded by an additional modifier keyword pathname
or alias :

pathname string ( expression )
alias string ( expression )

pathname typename ( expression )
alias typename ( expression )

With the pathname  keyword the pathname will be chosen as the textual representation, the alias
keyword requests the database alias to be generated, instead. If the item does not have a database alias,
the result will be an empty string. The pathname will be used as the default text representation, if neither
of the two keywords is present.

For unitized types and for pathname types the unit itself may be obtained as a string with the following
forms, the unit is not enclosed in brackets:

unit string ( expression )

unit typename ( expression )

All forms allow to specify simple string formatting:

string   ( expression, width )              for all types
typename ( expression, width )

string   ( expression, width, aft )         for REAL, LONG_REAL and TIME
typename ( expression, width, aft )

string   ( expression, width, aft, exp )    for REAL and LONG_REAL
typename ( expression, width, aft, exp )

width specifies a minimum total width of the resulting string. Negative values request left
justification, positive values right justification. If the string is larger than the specified
minimum width, the actual size will be taken.

aft specifies the number of digits after the decimal point. For TIME values aft  affects the
fraction part of the seconds component, 0 suppresses the fraction part. Note that the syntax
of REAL and LONG_REAL values requires at least one digit after the decimal point.

exp specifies the width of the exponent in REAL/LONG_REAL floating point representation. For
exp  = 0 fix point notation (no exponent) will be used.

Omitted format parameters default to 0. If all format parameters are 0 (or omitted), UCL standard
format will be used.
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Formal Syntax

String_Conversion = [ “pathname” | “alias” | “unit” ]  Qualified_Identifier ”(” Expression [ “,” Format ] ”)” |
[ “pathname” | “alias” | “unit” ] “string” ”(” Expression  [ “,” Format ] ”)”

Format = Width [ ”,” Aft [ “,” Exp ] ]

Width, Aft, Exp = Expression

Qualified_Identifier = see 4.3.4

Expression = see 4.12

Examples:

string  (123) → 123
’[’ + string  (123, –5) + ’]’ → [123  ]
’[’ + string  (123, 5) + ’]’ → [  123]

string  (1.23) → 1.23
string  (1.23, 0, 6) → 1.230000
string  (1.23, 0, 6, 4) → 1.230000E+00

string  (13:30) → 13:30:00
string  (13:30, 0, 3) → 13:30:00.000

string  (#”FFFFFFFF”) → #”FF FF FF FF”
’[’ + string  (”abc”, 5) + ’]’ → [  abc]

pathname string  (Path_Variable) → \some\path\name
alias string  (Path_Variable) → xyz  (if xyz  is the database alias of \some\path\name )
unit string  (Path_Variable) → m/s     (if \some\path\name has the unit m/s )

unit string  (10.0 [m/s]) → m/s
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4.12.4.4  Input/Output Format

When converted to string representation (see 4.12.4.3), some lexical elements take a form different
from their literal form discribed above:

• Characters are shown without enclosing single quotes.

• Strings are shown without enclosing quotation marks, and quotation marks within the string are
not doubled.

• Byte strings are shown without enclosing quotation marks.

• Statecode values are shown without the leading dollar sign. The no statecode value remains $$ .

• The low level types BYTE, WORD and LONG_WORD are shown as byte strings with the
corresponding length.

• Measurement units are not enclosed in square brackets.

The table below gives examples for these different forms:

Type UCL literal I/O format
CHARACTER ’a’

’’’
’ ’

a
’
 

string ”hello”
”string with ””quotes”””
””

hello
string with ”quotes”

byte string #”01FE 0203 AFFE”
#””

01 FE 02 03 AF FE

statecode $OFF
$CLOSED
$$

OFF
CLOSED
$$

BYTE
WORD
LONG_WORD

 
(no literal)

 
(like byte strings)

unitized value 1.0 [m/s] 1.0 m/s
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4.13  Statements

The following kinds of statements are supported in UCL:

• Assignments

• Procedure calls

• Conditional statements (if , case )

• Iteration statements ( while , repeat , loop , for )

• Others ( exit , return , halt )

UCL requires each statement to be terminated by a semicolon. In many places a, possibly empty,
sequence of statements is allowed. Individual statement descriptions follow.

Formal syntax

Statement = Assignment | Procedure_Call | If_Statement |
Case_Statement | While_Statement | Repeat_Statement |
Loop_Statement | For_Statement | Halt_Statement |
Exit_Statement | Return_Statement

Statement_Sequence = { Statement }

4.13.1  Assignment

An assignment serves to replace the current value of a variable (or an array or record element) by a new
value indicated by an expression. The assignment operator is ”:= ”. Variable and expression must be
compatible (see Section 4.8.6). The designator to the left of the assignment operator must be a variable
or an MDB item or subitem given by its pathname; in the latter case, the assignment changes the runtime
value of the item or subitem, the corresponding MDB object must therefore be accessible in the
READ/WRITE mode. After an assignment is executed, the variable has the value obtained by
evaluating the expression (the old value is lost, i.e. overwritten).

The value to be assigned must not violate any constraints imposed on the target variable, e.g. if the
variable is of a subrange type, the value must be within the bounds of the subrange. Constraints are
usually performed at runtime, and constraint violations yield a runtime error. If the value is constant
(und thus known to the compiler), the check is performed at compilation time. Checks on pathname
constraints are always performed at compilation time, since a runtime check would require a database
access.

Note: In string assignments, left and right side may be of different lengths. If the length of the right side
exceeds the maximum length on the left, a runtime error occurs.

Formal Syntax

Assignment = Designator ”:=” Expression ”;”

Designator = see 4.12

Expression = see 4.12
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Examples
type  Matrix = array  (1 .. 10, 1 .. 20) of  Real;

variable  S : string  (8);
variable  C : CHARACTER;
variable  A : Matrix;
variable  B : Real;
...
S := ”hello”; 
C := ’X’;
A(I+1, I–1) := B;
Rec_X.Comp_A := 100;
\PM\TTC\STAT := $NOGO;

4.13.2  Procedure Call

A procedure call activates the specified procedure. It is denoted by stating the procedure’s name,
possibly followed by one or more parameters in parentheses. These parameters, the actual parameters,
are substituted for the formal parameters specified in the corresponding procedure declaration.

The association between actual and formal parameter may be specified either in positional or in named
notation. In the positional form, the correspondence between actual and formal parameters is
established by the positions of the respective parameters in the list. In a named parameter association,
the parameter must be named explicitly. Named parameters may be given in any order. If both positional
and named associations are used in one procedure call, the positional associations must occur first.

For each formal parameter, there must be exactly one actual parameter, (either explicitly specified or
by default). If a default value exists, the actual parameter may be omitted. In this case, all remaining
actual parameters must be denoted by name. For example, if the procedure P is defined as:

procedure  P (X : INTEGER := 0; Y : REAL := 0.0; Z : BOOLEAN := FALSE);

then the following procedure calls are all valid:

P (5, 3.14, TRUE); –– all parameters positional
P (1, Z : TRUE); –– X positional, Y omitted, Z named
P (X : 1, Y : 0.0); –– X and Y named, Z omitted
P (); –– all parameters omitted
P; –– same as P ();

Note that the use of commas to indicate omitted (default) parameters is not allowed. Thus,

P (5, , TRUE)

is invalid.

In a procedure call, the types of the actual parameters must be compatible with those of the formal
parameters.

Subprogram parameters belong to one of three classes :

in parameters allow to pass values into a subprogram. Within the subprogram only read access
is allowed. The actual parameter for a formal IN parameter may be an expression. The
keyword in  may be omitted in the parameter declaration.

out parameters allow to pass values out of a subprogram. Within the subprogram read access
is allowed, but only to obtain a value that was previously assigned within the same
subprogram call. The actual parameter for a formal out parameter must be a variable or an
MDB item or subitem with READ/WRITE access.
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in out parameters allow to pass values into and out of a subprogram. Both read and write access
are allowed within the subprogram. The actual parameter for a formal in out  parameter
must be a variable or an MDB item or subitem with READ/WRITE access.

Scalar in  parameter are passed by copying the value into the subprogram, structured in  parameters
are passed by reference. out  and in out  parameters are always passed by reference. MDB items and
subitems are passed by copy: the input value (in , in out ) is copied into the procedure, the output
value (in out , out ) is copied back to the location of the runtime value of the item.

If a formal parameter type denotes an array structure, its corresponding actual parameter must be an
array of identical type (i.e. same bounds, same component types); unless the array is defined as an
unbound array or unbound string, in which case only the component types must match (also see
unbound array and unbound string in subprogram declarations, 4.6).

A procedure call is inherently synchronous, i.e. control is returned to the caller only after execution of
the called procedure is completed.

Note:

• A procedure (or function) may invoke itself (recursive call). Indirect recursion – which occurs,
for example, when a procedure A calls a procedure B which, in turn, calls A – is also allowed.

• The order of evaluation of actual parameters is not defined and a program must not depend on
the evaluation order.

Formal Syntax

Procedure_Call = Qualified_Identifier [ Actual_Parameters ] ”;”

Actual_Parameters = ”(” [ Parameter { ”,” Parameter } ] ”)”

Parameter = [ Identifier ”:” ] Expression

Qualified_Identifier = see 4.3.4

Identifier = see 4.1.2.2

Expression = see 4.12

Examples

Assuming the following procedure declarations:

procedure  Calculate_New_Limit (Threshold : REAL;
 Ref_Factor : REAL;
 out  New_Limit : REAL);

procedure  Get_Total (First : REAL := 0.0;
 How_many : INTEGER := 50;
 out  Total: REAL);

procedure  Finish_Up;

then these are valid procedure calls:

Calculate_New_Limit (Rval1, Rval2, Rlim);
Calculate_New_Limit (100.0, 2.5, Rlim);

Get_Total (5.5, Total: T); 
Get_Total (First: 5.5, How_Many: 100, Total: T);
Get_Total (Total: T);

Finish_Up;
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4.13.3  if  Statement

The if  statement denotes conditional execution of one or more statements. It takes the form:

if  condition_1  then
   statement_sequence_1
elsif  condition_2   then
   statement_sequence_2
elsif  ...
   ...
else
   statement_sequence_n+1
end if  ;

where condition_1  and condition_2  are Boolean expressions.

These expressions are evaluated one after the other, and as soon as one yields the value TRUE, the corre-
sponding statement sequence is executed, and no further conditions are tested. The else  part, if pres-
ent, is executed, if none of the conditions was true. The elsif  and else  parts are optional.

Formal Syntax
If_Statement = ”if” Expression ”then”

Statement_Sequence 
{ ”elsif” Expression ”then”

Statement_Sequence }
[ ”else”

Statement_Sequence ]
”end” ”if” ”;”

Statement_Sequence = see 4.13

Expression = see 4.12

Examples
if  \PM\TTC\TRANSMITTER\STATUS = 1 then ... end if ;

if  X < Y then
  statements  ...;
elsif  X > Y then
  statements  ...;
else
  ...;
end if ;

4.13.4  case  Statement

The case  statement is used when a choice from among several mutually exclusive alternatives must
be made on the basis of the value of an expression. It thus represents a generalization of the if
statement. It has the form

case  expression
when labels_1 : statement_sequence_1
when labels_2 : statement_sequence_2
...
else statement_sequence_n

end case ;

The case  statement causes one of its statement sequences to be selected according to the value of an
expression (the case selector) which must be of a discrete type (INTEGER,UNSIGNED_INTEGER,
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CHARACTER, enumeration type or constrained statecode type). The different values that may be
taken by this selector appear in the case  statement as case labels or case label ranges.

The branches in a case  statement must be uniquely identified by its labels, i.e. a label may appear only
once in a case  statement. The union of labels and label ranges in a case  statements must cover all
possible values of the selector type, either explicitly or implicitly by an else  branch that collects all
label values not explicitly specified in previous branches. If there is an else  branch, it must be the last
branch in the case  statement.

The case labels must be constants or constant expressions; and they must be unique within a particular
case  statement (i.e. no label may occur more than once). When the same action is required for several
different values of the case selector, these values may be written in a list, separated by commas. Ranges
of contiguous values may be written in range notation (lower .. upper). Statecode labels cannot form
ranges, because statecode types are unordered. The type of all case labels must be compatible with the
type of the case selector.

When the case  statement is executed, the selector is first evaluated. If there is a case label with the
same value as the case selector, the corresponding statement sequence is executed. Otherwise the
statement sequence specified in the else  clause, if present, is executed. The else  clause is optional;
if omitted, however, the specified case labels must cover the entire value range of the case selector type.

Formal Syntax
Case_Statement = ”case” Expression 

Case
{ Case } 
[ ”else” Statement_Sequence ] 

”end” ”case” ”;”

Case = ”when” Case_Label_List ”:” Statement_Sequence

Case_Label_List = Case_Labels { ”,” Case_Labels } |
Statecode_List

Case_Labels = Constant_Expression [ ”..” Constant_Expression ]

Statecode_List = Statecode { ”,” Statecode }

Statecode = see 4.8.1.8

Constant_Expression = see 4.12

Expression = see 4.12

Statement_Sequence = see 4.13

Examples
case  Traffic_Light

when Red   : Stop_Car;
when Green : Go_Ahead; Turn_Right;
else          No_Traffic_Light;

end case ;

case  Code
when $LOW    : ... ;
when $MEDIUM : ...;
when $HIGH   : ...;

end case ;

4.13.5  Loop Statements

A loop statement specifies that a sequence of statements is to be repeatedly executed until a termination
condition, if any, becomes true, or until an exit  statement is executed. UCL has four different forms
of loop statements.
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The sequence of statements within a loop statement may itself contain loop statements; that is, loops
may be nested. When a termination condition has become true, or when a loop is left via an exit
statement, control is passed to the first statement following the innermost enclosing loop (after the end
loop  keywords), and the loop statement is considered to have finished its execution. Note that loops
need not necessarily terminate, endless loops are valid constructs.

A loop is, of course, implicitly terminated when a return  or halt  statement is executed, see 4.13.6
and 4.13.7.

4.13.5.1  Simple loop  Statement

The basic form of iteration is the loop  statement. It specifies that a statement sequence is to be
repeatedly executed until an exit  statement is executed.

A typical loop  statement with an exit  statement is shown below.

loop  
statement_sequence_1
if  condition  then  exit ; end if ;
statement_sequence_1

end loop ;

Formal Syntax

Loop_Statement = ”loop”
Statement_Sequence

”end” ”loop” ”;”

Statement_Sequence = see 4.13

Example

loop
 ...
A := A + 1;
if  A > 10 then exit ; end if ;
 ...

end loop ;

4.13.5.2  while  Statement

The while  statement specifies the repeated execution of a statement sequence depending on the value
of a Boolean expression. The expression is evaluated before each subsequent execution of the statement
sequence, hence the statement sequence may not be executed at all. The repetition stops as soon as the
evaluation of the expression yields the value FALSE.

A while  statement has the following form and is equivalent to the shown loop  statement:

while  expression  do loop
statement_sequence if  ~ expression  then exit ; end if ;

end while ; statement_sequence
end loop ;
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Formal Syntax

While_Statement = ”while” Expression ”do”
Statement_Sequence

”end” ”while” ”;”

Expression = see 4.12

Statement_Sequence = see 4.13

Examples

while  \PM\TTC\MODE = 0 do
Wait (1.0 [s]);

end while ;

4.13.5.3  repeat  Statement

A repeat  statement specifies the repeated execution of a statement sequence depending on the value
of a Boolean expression. In contrast to the while  loop, the expression is evaluated after each
subsequent execution of the statement sequence; hence the statement sequence is executed at least once.
The repetition stops as soon as the evaluation of the expression yields the value TRUE.

A repeat  statement has the following form and is equivalent to the shown loop  statement:

repeat loop
statement_sequence statement_sequence

until  expression ; if  expression  then exit ; end if ;
end loop ;

Formal Syntax

Repeat_Statement = ”repeat”
Statement_Sequence

”until” Expression ”;”

Statement_Sequence = see 4.13

Expression = see 4.12

Examples

repeat
INC (Index);
if  ~ Table(Index).Used then exit ; end if ;

until  Index = Max_Index;
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4.13.5.4  for  Statement

The for  statement is used when a statement sequence is to be executed a known number of times while
a progression of values is assigned to a control variable (the loop index). It takes two alternative forms:

1. Iterative for  statement

for  loop_index  := start_value  to  limit  [ by  increment  ] do
statement sequence

end for ;

The iterative for  statement is used to loop over a range of values, whose start_value and limit are
explicitly specified. The iterative for  statement cannot be used for statecode types, since statecode
types are not ordered. The type of limit must be compatible with the type of start_value, and the
increment must be an INTEGER constant or constant expression.

2. Collective for  statement

for  loop_index  in  type_name  [ by  increment  ] do
statement_sequence

end for ;

The collective for  statement is used to loop over all values of a discrete type, including constrained
statecode types. For non–statecode types the start_value and limit are implicitly determined by the
min. and max. value of the type. Since statecode types are unordered, the order in which the values
are processed is undefined and the by  clause cannot be used. The increment must be an INTEGER
constant or constant expression.

Note that start_value, limit and increment are evaluated only once, and in that order, before the loop
body. Further, the value of the loop_index cannot be altered by the statements inside the for  loop.

The ordinal value of start_value and limit, for both forms, must always lie within the bounds of type
INTEGER.

The for  statement causes the statement sequence enclosed in the for  ... end for  bracket to be
repeatedly executed until the value of the loop_index has covered all values of the range (start_value
to limit) or type. After each iteration, the loop_index is incremented by the specified increment value
(which may be negative). If no increment is specified, 1 is assumed. For a negative increment the values
are processed in descending order. In contrast to other forms of loop, for  loops always terminate.

A for  statement (with a positive increment) is equivalent to the following loop:

Loop_Index      := start_value ;
Saved_Limit     := limit ;
Saved_Increment := increment ;       –– (1 by default)

while  Loop_Index <= Saved_Limit do
statement_sequence
Loop_Index := Loop_Index + Saved_Increment;

end while ;

With a negative increment, the relational operator in the while  statement would be >=.

The loop index need not be declared in the UCL program, it is implicitly (that is, automatically) created;
its type is derived from the type of start_value and limit or from the specified type, resp., and its scope
is limited to the body of the loop only. Should an object of the same name exist, it is hidden inside the
for  loop by the loop index and thus become inaccessible, as shown in the following example. For a
discussion of scoping rules see 4.3.2.
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variable  Index: INTEGER; –– declaration of a variable named Index

...

begin
... –– The variable Index is accessible here
...

for  Index := 1 to  100 do –– loop index also called Index
...
... –– only the loop index is visible here
... –– the variable Index is hidden by the

–– loop index
...

end for ;

... –– variable Index is now accessible again

... –– and it still has its original value.
end ;

Formal Syntax

For_Statement = Iterative_For_Statement |
Collective_For_Statement

Iterative_For_Statement = ”for” Identifier ”:=” Expression ”to” Expression [ ”by” Const._Expression ] ”do”
Statement_Sequence

”end” ”for” ”;”

Collective_For_Statement= ”for” Identifier ”in” Qualified_Identifier [ ”by” Constant_Expression ] ”do”
Statement_Sequence

”end” ”for” ”;”

Identifier = see 4.1.2.2

Qualified_Identifier = see 4.3.4

Expression = see 4.12

Constant_Expression = see 4.12

Statement_Sequence = see 4.13

Examples

for  I := 1 to  1000 do
Sum := Sum + I;

end for ;

for  i := 10 to  –10 by  –2 do
statement sequence

end for ;

for  C := Red to  Blue do
statement sequence

end for ;

type  Level = statecode  ($LOW, $MEDIUM, $HIGH)
...

for  L in  Level do
Process (L);

end for ;
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4.13.6  return  Statement

A return  statement consists of the keyword return , possibly followed by an expression. It
indicates the end of a procedure or function execution. There may be several return  statements in
one procedure or function, although only one will be executed.

In a function, the return  statement is mandatory and it must be followed by an expression which
specifies the value returned by the function. In a procedure, the return  statement is optional. It is
implied by the end of the procedure body. When a return  statement is executed, control returns to
the caller of the procedure or function.

In a Derived Value the return  statement terminates execution and returns the computed value. It may
be used with or without an expression, see 4.16.4 for details.

Formal Syntax

Return_statement =  ”return” [ Expression ] ”;”

Expression = see 4.12

Examples:

return  I + J; –– in a function

return ; –– in a procedure

4.13.7  halt  Statement

The halt  statement is used within an AP to terminate the AP itself. It further provides an optional
facility for reporting the AP completion status (successful/non–successful) to the runtime system.

A halt  statement takes the form:

halt  [ completion_status  ];

The expression is optional. It is of the type COMPLETION_CODE. By default, SUCCESS is assumed.

At runtime, depending on the AP activation method, the completion code may be sent either:

• to the calling AP on request

• to the supervisory (higher–level) software responsible for AP activation

• to an interactive user who started the AP via an interactive High Level Command Language
(HLCL) command, as e.g. in an EGSE environment, on request.

Note that unlike a return  statement, the halt  statement causes termination of the AP, i.e. of the
”main program”. A call to the halt  statement itself is optional; an AP may terminate without such a
statement, in which case halt  SUCCESS is assumed by default.

Formal Syntax

Halt_Statement = ”halt” [ Expression ] ”;”

Expression = see 4.12
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4.13.8  exit  Statement

The exit  statement consists of the keyword exit . It causes termination of the innermost enclosing
loop, execution is resumed with the statement following the loop.

Any iterative statement (i.e. loop , while , repeat  or for ) may be left via an exit  statement.

Formal Syntax

Exit_Statement =  ”exit” ”;”

Examples

loop
A := A + 1;

if  A > 10 then
exit ;

end if ;

B := B + A;
end loop ;

...       <–– execution continues here when A > 10
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4.14  Subprogram Declarations

A subprogram (or subroutine) is a code segment or sequence of statements which can be invoked by
name. UCL supports two kinds of subprograms: procedures and functions.

4.14.1  Procedure Declaration

A procedure declaration comprises:

• a procedure header consisting of the reserved word procedure  followed by the procedure
name and an optional parameter list in which the procedure’s formal parameters are defined.

• a procedure body which may contain declarations and statements. It must not, however, contain
procedure or function declarations. In other words, procedures and functions cannot be nested
inside other procedures and functions.

Formal Parameters

Formal parameters are identifiers which denote values or objects to be passed with the call. There are
three modes of formal parameters:

• in  parameters are treated as place holders to which the result of the evaluation of the
corresponding actual parameter is assigned as an initial value. They may be assigned default
values (via the assignment operator ”:= ”). These default values are used as actual parameters if
the corresponding parameters are omitted from the procedure call.

• in out  and out  parameters correspond to actual parameters that are variables, and they stand
for these variables.

Each formal parameter must be specified by its name and its type. In the parameter list, the reserved
words in  and out  are used to preceed the parameter in order to specify a parameter mode. If no mode
is specified, then in  is implicitly assumed.

Formal parameters are local to the procedure, i.e. their scope is the program text which constitutes the
procedure declaration. They can also be used within the actual parameter list to associate a value with
a specific parameter, see 4.13.2. In this context they do not conflict with identifiers declared outside
the subprogram.

The type of a formal parameter may be an open type:

• If the parameter is a string, the type may be specified as just

string
string of  type_identifier

where the specification of the maximum length is omitted. The parameter is then said to be an
open or unbound string parameter, and actual parameters of any string types are accepted. Their
first index and maximum length can be obtained through the standard functions LOW and HIGH.

• If the parameter is an array, the type may be specified as just

array  of  type_identifier

where the specification of the actual index bounds is omitted, e.g. array  of  INTEGER. The
parameter is then said to be an open or unbound array parameter, and array parameters of any
size, but with the given element type, are accepted. Within the subprogram, the actual index range
and its type is always mapped to a corresponding INTEGER range with a lower bound of 0; its
lower and upper bounds can be obtained through the standard functions LOW and HIGH.
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• The parameter type may be one of the open forms

pathname any pathname types

pathname .* any subitem pathname types

statecode any statecode types

If the parameter is of a pathname type, it may require actual parameters to be given together with their
actual parameter list. For parameterized MDB items see 4.3.6. The pathname type specification is then
suffixed with an empty pair of parentheses:

pathname ()

typename ()

Subitem pathnames cannot be parameterized.

Procedure body

The procedure body contains a statement sequence bracketed by the reserved words begin  and end
possibly preceded by local constant, type, variable or alias declarations. These local declarations
effectively hide any identically named objects in the enclosing main program (AP), as well as imported
and predefined identifiers. A procedure or function declaration may appear within an AP or a library,
but not within another procedure or function. After the end keyword the name of the procedure may
be repeated.

Also note that parameters of mode in  may not be modified within a procedure body; i.e. they are not
allowed as targets in an assignment statement and must not be passed as an out  or in out  parameter
to another subprogram.

Formal Syntax

Procedure_Declaration = Procedure_Heading Block

Procedure_Heading = ”PROCEDURE” Identifier [ Formal_Parameters ] ”;”

Block = { Declaration }
”begin”

 Statement_Sequence
”end” [ Identifier ] ”;”

Formal_Parameters = ”(” [ Parameter_List { ”;” Parameter_List } ] ”)”

Parameter_List = [ ”in” ] [ ”out” ] Identifier_List ”:” Formal_Type [”:=” Constant_Expression ]

Identifier_List = Identifier { ”,” Identifier }

Formal_Type = Formal_Simple_Type |
”array” ”of” Formal_Simple_Type |
”string” [ ”of” Identifier ]

Formal_Simple_Type = Qualified_Identifier [ ”(” ”)” ] |
”statecode” |
”pathname” [ ”(” ”)” ] |
”pathname”  ”.” ”*”

Declaration = see 4.3

Statement_Sequence = see 4.13

Identifier = see 4.1.2.2

Qualified_Identifier = see 4.3.4

Constant_Expression = see 4.12
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Example
procedure  Accumulate (First: INTEGER; Last: INTEGER; out  Result: INTEGER);

variable  Sum: INTEGER;

begin
Sum := First;

for  I := First + 1 to  Last do
Sum := Sum + I;

end for ;

Result := Sum;

end  Accumulate;

4.14.2  Function Declaration

A function is a subprogram that returns a value. A function declaration starts with the reserved word
function , followed by the function name, an optional list of formal parameters, and the function
result type. Formal parameters and body of functions are specified in the same way as procedures (see
4.14.1).

The type of the function return value is restricted to scalar types and pathname types.

The statements of the function body must include one or more return  statements (see 4.13.6)
specifying the returned value (but only one return  statement is executed). A runtime error occurs if
a function is left otherwise than by a return  statement. Note that the expression following the re-
turn  keyword must yield a value of the function result type stated in the function header.

Neither out  nor in out  parameters are allowed for functions.

Formal Syntax
Function_Declaration = Function_Heading Block

Function_Heading = ”function” Identifier [ Formal_Parameters ] ”:” Qualified_Identifier [ Unit ] ”;”

Block = { Declaration }
”begin”

Statement_Sequence
”end” [ Identifier ] ”;”

Formal_Parameters = see 4.14.1

Declaration = see 4.3

Statement_Sequence = see 4.13

Qualified_Identifier = see 4.3.4

Identifier = see 4.1.2.2

Unit = see 4.11 and 4.1.2.10

Examples
function  Square (N : INTEGER) : INTEGER;
begin
   return  N*N;
end  Square;

function  Is_Printable (C : CHARACTER) : BOOLEAN;
begin

return  C > CHARACTER(31) & C < CHARACTER(127);
end  Is_Printable;
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function  Sum_Of (A : array of  INTEGER) : INTEGER;

variable  Sum : INTEGER := 0;

begin
for  I := 0 to  HIGH (A) do

Sum := Sum + A(I);
end for ;

return  Sum;
end  Sum_Of;

4.14.3  Guarded Procedures, Functions and Parameters

Procedures and functions may be marked as guarded in the form

guarded procedure Name (...);

guarded function Name (...) : Type ;

Also the formal parameters of a procedure or function may be marked as guarded:

procedure Name ( guarded Name : Type; ...);

function Name ( guarded Name : Type; ...) : Type ;

A subprogram that calls a guarded subprogram or a subprogram with a guarded parameter will inherit
the privileges attached to the accessed entity, and calls to this subprogram will themselves be guarded.
If the compilation unit itself in its body or initialization part, resp., calls such a subprogram, the
compilation unit will inherit the privileges attached to the guarded items. For a description of privileges
and authorization see 4.17.
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4.15  Standard Functions and Procedures

The following functions and procedures are predefined. Some of them are ”generic” in the sense that
they may have several possible parameter list forms. For example, the procedures INC/DEC  may have
one or two actual parameters and the first parameter may be an INTEGER, UNSIGNED_INTEGER or
an enumerated–type value.

ABS Function

ABS(x) returns the absolute value of the expression or variable x . 
x  must be of type INTEGER, UNSIGNED_INTEGER, REAL  or LONG_REAL.
The result has the type of x .

MAX Function

MAX(t ) denotes a constant equal to the maximum (highest) value of the type t , where t  may
be one of the basic types (or subtypes thereof)

INTEGER,UNSIGNED_INTEGER, REAL, LONG_REAL, TIME,
DURATION, enumeration types

MAX(x1, x2, ..., xn)
determines the maximum of a group of values. The values must be of one of the above
mentioned types, and all must be of the same type or implicitly convertible to each
other.

MAX(a) determines the maximum element of the array a. The array may be of any dimension,
and the elements must be of one the above mentioned types.

MIN Function

MIN( t ) denotes a constant equal to the minimum (lowest) value of the type t , where t  may
be one of the basic types

INTEGER, UNSIGNED_INTEGER, REAL, LONG_REAL, TIME,
DURATION, enumeration types

MIN( x1, x2, ..., xn)
determines the minimum of a group of values. The values must be of one of the above
mentioned types, and all must be of the same type or implicitly convertible to each
other.

MIN( a) determines the minimum element of the array a. The array may be of any dimension,
and the elements must be of one the above mentioned types.

LOW Function

LOW(a) returns the lowest index of the array or string type or variable a. For strings it is always
1. The return value has the type of the corresponding index, for open arrays and
strings it is always INTEGER, 0 for open arrays, 1 for open strings.

LOW(a, n ) returns the lowest index of the n–th dimension of the (multidimensional) array type
or variable a. The return value has the type of the corresponding index.



Dok.-Nr/ Doc. No.:   CGS–RIBRE–STD–0001
Ausgabe /Issue:          5
Überarbtg./ Rev.:        –
Seite/Page:              4–79

Datum/ Date :    2009–02–01

Datum/ Date:     2010–01–29

von/ of        4–96

Daimler–Benz Aerospace AG, D–28199 Bremen – All Rights reserved – Copyright per DIN 34

HIGH Function

HIGH( a) returns the uppermost index of the array or string type or variable a. The return value
has the type of the corresponding index, for open arrays and strings it is always
INTEGER.

HIGH( a, n ) returns the uppermost index of the n–th dimension of the (multidimensional) array
type or variable a. The return value has the type of the corresponding index.

LENGTH Function

LENGTH(a) returns the current (actual) length of string a. For an empty string, LENGTH returns
0. The return value is of type INTEGER.

ODD Function

ODD(x) returns the Boolean value TRUE if x  is odd (i.e. x  % 2 <> 0 ), else FALSE.
x  must be of type INTEGER or UNSIGNED_INTEGER.

INC  Procedure

This procedure increments a variable. The parameter can be of any discrete type, except statecode
types.

INC( x) This procedure increments the variable x  by 1. If x  is an enumeration type or
CHARACTER value, it is replaced by its successor.

INC( x, n) This procedure increments the variable x  by n. Regardless of the type of x , n must
be an expression of type INTEGER or UNSIGNED_INTEGER. If x  is an
enumeration type or CHARACTER value, it is replaced by its n–th successor.

DEC Procedure

This procedure decrements a variable. The parameter can be of any discrete type, except statecode
types.

DEC(x) This procedure decrements the variable x  by 1.
If x  is an enumeration type or CHARACTER value, it is replaced by its predecessor.

DEC(x, n) This procedure decrements the variable x  by n. Regardless of the type of x , n must
be an expression of type INTEGER or UNSIGNED_INTEGER. If x  is an
enumeration type or CHARACTER value, it is replaced by its n–th predecessor.

INCL  Procedure

INCL( s, x) This procedure includes the element x  into the set variable s .
x  must be an expression of the element type of s .

EXCL Procedure

EXCL(s, x) This procedure excludes the element x from the set variable s.
x  must be an expression of the element type of s .
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PUT Procedure

PUT(S) This procedure prints the string s  on the standard output channel.

UNTYPED Function

UNTYPED(x) This function supports low level conversion. It removes the type from the expression
x  and makes it convertible to any other type. For details see 4.12.4.2.
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4.16  Compilation Units

A text which is accepted by the compiler as a unit is called a compilation unit. There are four kinds of
compilation units in UCL:

• Main program (called Automated Procedure in the COLUMBUS UCL environment)

• Library specification

• Library body

• Formal parameter list definition

• Derived value

Automated Procedures

An Automated Procedure (AP) constitutes a parameterized UCL program or main procedure. It may
import objects defined in separately compiled units, called libraries, and it can also be imported by
other objects, see 4.2.

Libraries

A UCL library (like a package in Ada, or a module in Modula–2) is a collection of computational
resources (procedures, functions, data types, variables etc.) that may be used by the library’s clients by
importing the provided objects or services. In the UCL context, these clients may be any kind of
compilation unit.

A UCL library consists of two parts: a library specification and a library body (implementation part).
Each part is compiled separately. The library specification identifies the resources that are visible to
its clients, whereas the body contains the corresponding implementation details and is hidden from the
clients.

All objects declared in a library specification are available in the corresponding body without explicit
import. Also note that all libraries (including system libraries) must be explicitly imported by their
clients.

A library specification and its corresponding body form two separate compilation units. The library
body may be modified without affecting the library’s clients, whereas a modification of the library
specification implies recompilation of the corresponding body and of all clients.

UCL requires compilation units to be compiled in the following order:

1. A library specification must be compiled before its clients.

2. A library specification must be compiled before its body (if one exists).

Note that the body of a user library must have been compiled before its services can actually be used
(executed) by a client.

Formal Parameter List Definitions

Database items may have formal parameter lists. When using such an item in a context that requires
a parameterized item (see 4.14.1), the item name must be given together with its actual parameter list.
The UCL Compiler can be used to create the formal parameter lists of such database items. Items with
formal parameter lists can be imported by other objects, see 4.2.

Derived Values

A derived value is a database item that returns a value computed from the values of other database items.
Its compilation unit describes the algorithm for the value computation.
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4.16.1  Automated Procedures

An Automated Procedure (AP) corresponds to a UCL main program. An AP declaration consists of
the following:

• an optional import and declarations section before the AP header

• an AP header

• an optional list of imported libraries or other modules

• an optional declarations section

• a statement sequence bracketed by begin  and end .

The AP header comprises the keyword procedure  followed by the AP’s name and an optional
parameter list. The AP name is implicitly declared as an alias for the AP’s pathname in the database.
The parameter list is similar to the formal parameter list of a procedure or function (see 4.14.1), except
that no in out  or out  parameters are allowed.

The optional import list contains import directives of the form:

import  pathname ;

where pathname  denotes an importable item, e.g. a library from which objects are imported. The im-
port  clause makes all objects declared in the imported module’s specification directly visible. See
section 4.2 for details.

The optional declaration part of an AP may declare constants, types, variables, aliases and units, as well
as procedures and functions. See sections 4.3 and 4.6 for details.

The AP’s name may be repeated at the end, after the end  keyword; in this case, it obviously must match
the name following the procedure  keyword in the header.

The AP definition may be preceded by unit, constant, type and alias declarations. This allows to have
parameter types other than the predefined types, and named default values in the AP parameter list.
Units, constants, types and aliases may also be obtained by importing them from libraries or other
parameterized items.

Note that items declared outside the AP belong to the same name scope as the global declarations within
the AP. When importing an AP in another module, only identifiers declared before the AP header, the
implicit AP alias and the parameters become visible, see 4.2.

Formal Syntax

Main_Procedure = { Import }
{ Unit_Declaration | Constant_Declaration |
   Type_Declaration | Alias_Declaration }

procedure” Identifier [ Formal_Parameters ] ”;”
{ Import }
{ Declaration }

”begin”
Statement_Sequence

”end” [ Identifier ] ”;”

Formal_Parameters = see 4.14.1

Import = see 4.2

Declaration = see 4.3
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Unit_Declaration = see 4.11.4

Constant_Declaration = see 4.7

Type_Declaration = see 4.8

Alias_Declaration = see 4.10

Statement_Sequence = see 4.13

Identifier = see 4.1.2.2

Example

–– This is the definition of an Automated Procedure named
–– \PM\PAYLOAD\EQUIPMENT_UNIT_A\COMMAND\MODE_OFF.
–– Procedures like Issue, Execute_AP, Enable_EVL etc. are imported from a
–– system library named \APM\UCL\GROUND_LIBRARY.

procedure  Mode_Off;

import  \APM\UCL\GROUND_LIBRARY;

constant  Limit   : REAL := 15.0;

variable  AP_Id   : AP_Identifier;
variable  AP_Code : INTEGER;
variable  Status  : INTEGER;

alias  Equipment = \APM\PAYLOAD\EQUIPMENT_UNIT_A;

begin
if  Equipment\NOSHARE\FLAG = $ON then

Write_Message_To_User (”Equipment error”, Status);
halt  FAILURE;

elsif  Equipment\MODE = $Off then
if  Equipment\SENSOR_1 > Limit then –– check sensor output

Write_Message_To_User (”Limit exceeded”, Status);
halt  FAILURE;

else
Issue (Equipment\POWER_OFF, Status: Status);

end if ;
end if ;

Delay (10.0 [s]);

if  Equipment\SENSOR_1 <= Limit then
Execute_AP (Equipment\COMMAND\MODE_ON, AP_Id, Status);
Synchronize_With_AP (AP_Id, \\, AP_Code, Status);

end if ;

Equipment\Mode := $OFF; –– update the status flag
Enable_EVL (Equipment\MODE, Status); –– write flag to memory

end  Mode_Off;
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Example

–– This AP has an import and declaration section before its header.
–– It uses identifiers from both the imported library and the declaration
–– in its parameter list.

import \APM\UCL\ONBOARD_LIBRARY;

type Switch = statecode ($OFF, $ON);

procedure Check (Measurement : Discrete_Value_Item;  –– imported type
                 State       : Switch);              –– type declared above

   variable Value : statecode ;

begin
   Get_Discrete (Measurement, Value, ...);

   ...

   if Value <> State then
      Submit_Event (...);
      halt Failure;
   end if ;
end Check;



Dok.-Nr/ Doc. No.:   CGS–RIBRE–STD–0001
Ausgabe /Issue:          5
Überarbtg./ Rev.:        –
Seite/Page:              4–85

Datum/ Date :    2009–02–01

Datum/ Date:     2010–01–29

von/ of        4–96

Daimler–Benz Aerospace AG, D–28199 Bremen – All Rights reserved – Copyright per DIN 34

4.16.2  Libraries

In UCL, a library is an encapsulation mechanism or envelope for data structures and operations (similar
to a package in Ada, or a module in Modula–2). There are two types of UCL libraries:

• user libraries which have both their specification and implementation (body) written in UCL,

• system libraries which are special, predefined libraries with a UCL specification, but no
corresponding UCL implementation. Such libraries will be provided by the target–specific
runtime environment (presumably as part of the interpreter).

From the user point of view the library type is transparent. Both types of libraries are imported and used
in exactly the same way.

A library consists of two parts belonging to two separate compilation units:

• library specification

• library body (missing for system libraries).

The library specification is the list of all entities which are visible to APs or other libraries (i.e., they
may be import ed). The library body, on the other hand, contains the actual implementations of these
entities, as well as other entities that are invisible from the outside. For system libraries the body is
missing, since their implementation is part of the runtime system.

This partitioning of libraries (into specification and implementation part) allows:

• to restrict the number of entities visible to users, and

• to hide implementation details (information hiding principle)

It also improves maintainability by allowing changes to be made to a library implementation without
affecting its clients.

UCL allows a library to be composed of a specification part only, i.e. without a corresponding body.
For example, a library could contain constant and type declarations only.

Note that the specification and body parts logically belong to the same library and must share the same
name. The specification part of a library represents the interface between the library on one side and
the library’s clients on the other side. Any change to the specification will require changes to the body.
On the other hand, the body may change without affecting the definition part and, hence, its clients.

Library specification

A library specification starts with the keyword library , followed by the library’s name, an optional
import  list (see 4.2), and an optional declaration part (see 4.3). It is terminated by the keyword end .
The library’s name may be repeated at the end, after the end  keyword, in which case it obviously must
match the name specified in the header. The library name is implicitly declared as an alias for the
library’s pathname in the database. This alias is visible to client units.

Only the entities declared in a library specification can be imported by other compilation units. The
declaration part may contain any kind of declarations, but system libraries cannot declare variables. For
procedures and functions only the subprogram header is given, the subprogram body must be given in
the library body.

Subprograms declared in system libraries are identified in the system by a unique number. This number
is assigned implicitly, starting at 1, but may also be given explicitly by prefixing the subprogram header
with the number followed by a semicolon. Implicit and explicit numbering may be mixed, but as soon
as explicit numbering is used, all following subprograms must be explicitly numbered. The numbers
must be unique but need not be contiguous or in any order.
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Library body

A library body starts with the keywords library body , followed by the library’s name, an optional
import  list (see 4.2), an optional declaration part (see 4.3), and finally by the actual body containing
the respective implementations for all functions and procedures defined in the corresponding library
specification. Note that identifiers declared in the specification part of a library are visible in the corre-
sponding body, i.e. may be used in the body without declarations. Items imported into a library specifi-
cation are available to the library body, as well.

A library body may optionally contain an initialization section (consisting of a statement sequence de-
limited by begin  and end ), which is used to initialize its local objects. This initialization section will
be automatically executed before the client (AP or library) is executed. A library is initialized only once,
even if it is imported many times by different imported units. If multiple libraries are imported they are
initialized in the order in which they textually appear. Circular references (for example, A imports B,
which imports C, which imports A) are not allowed and result in error messages.

At runtime, all APs share the same system libraries, but user libraries are not shared between APs, each
AP has its own copy of user libraries.

Formal Syntax

Library_Specification = ”library” Identifier ”;”
{ Import }
{ Definition }

”end” [ Identifier ] ”;”

Library_Body = ”library” ”body” Identifier ”;”
{ Import }
{ Declaration }

[ ”begin”
Statement_Sequence ]

”end” [ Identifier ] ”;”

Definition = Unit_Declaration |
Constant_Declaration |
Type_Declaration |
Variable_Declaration |
Alias_Declaration |
[ Simple_Integer “:” ] Procedure_Heading |
[ Simple_Integer “:” ] Function_Heading

Import = see 4.2

Declaration = see 4.3

Statement_Sequence = see 4.13

Unit_Declaration = see 4.11

Constant_Declaration = see 4.7

Type_Declaration = see 4.8

Variable_Declaration = see 4.9

Alias_Declaration = see 4.10

Procedure_Heading = see 4.14.1

Function_Heading = see 4.14.2

Identifier = see 4.1.2.2

Simple_Integer = see 4.1.2.4.1
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Example 1

This library keeps a buffer of pathnames. The buffer implementation is invisible to the user, the library
provides operations to put/get items in/from the buffer, and to inquire the number of items in the buffer.

Library specification:
library  Pathname_Buffer;

   constant  Buffer_Size : INTEGER := 100;

   type  Buffer_Error = (No_Error, Buffer_Full, Buffer_Empty);

   procedure  Put_Buffer ( in   Item  : pathname ;
                         out  Error : Buffer_Error);

   procedure  Get_Buffer ( out  Item  : pathname ;
                         out  Error : Buffer_Error);

   function  Buffer_Level : UNSIGNED_INTEGER;

end  Pathname_Buffer;

Library body:
library body  Pathname_Buffer;

   type  Buffer_Type = array  (1 .. Buffer_Size) of  pathname ;

   variable  Buffer : Buffer_Type;
   variable  Index  : UNSIGNED_INTEGER := 0;

   procedure  Put_Buffer ( in   Item  : pathname ;
                         out  Error : Buffer_Error);
   begin
      if  Index < Buffer_Size then
        INC (Index);
        Buffer (Index) := Item;
        Error := No_Error;
      else
        Error := Buffer_Full;
      end  if ;
   end  Put_Buffer;

   procedure  Get_Buffer ( out  Item  : pathname ;
                         out  Error : Buffer_Error);
   begin
      if  Index > 0 then
        Item := Buffer (Index);
        DEC (Index);
        Error := No_Error;
      else
        Error := Buffer_Empty;
      end  if ;
   end  Get_Buffer;

   function  Buffer_Level : UNSIGNED_INTEGER;
   begin
      return  Index;
   end  Buffer_Level;

end  Pathname_Buffer;
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Example 2

This user library provides operations to split TIME values into their components and to construct TIME
values from components. This is an example of how to use low level conversions with overlayed record
variants in a safe and controlled way (see 4.12.4.2). For the TIME representation in memory see 4.8.1.9.

Library specification:

library  Time_Library;

  procedure Split_Time ( in  Item    : TIME;
                        out Year    : UNSIGNED_INTEGER;
                        out Month   : UNSIGNED_INTEGER;
                        out Day     : UNSIGNED_INTEGER;
                        out Seconds : DURATION);

  function Time_Of (Year    : UNSIGNED_INTEGER;
                    Month   : UNSIGNED_INTEGER;
                    Day     : UNSIGNED_INTEGER;
                    Seconds : DURATION) : TIME;

end  Time_Library;

Library body:

library body  Time_Library;

   –– Use a record with variants to overlay time values, packed components:
   –– year – 1900 (8 bits), month (4 bits), day (5 bits), 
   –– seconds since midnight (fix point, 47 bits, 17 bits fore, 30 bits aft).

  type Time_Overlay = record
                        case Tag: BOOLEAN
                           when False: Word_1     : UNSIGNED_INTEGER;
                                       Word_2     : UNSIGNED_INTEGER;
                           when True:  Time_Field : Time;
                         end case ;
                       end record ;

  procedure Split_Time ( in  Item    : TIME;
                        out Year    : UNSIGNED_INTEGER;
                        out Month   : UNSIGNED_INTEGER;
                        out Day     : UNSIGNED_INTEGER;
                        out Seconds : DURATION);

    variable Overlay: Time_Overlay;

  begin
    –– Handling of ~:~ and dateless times omitted for simplicity

    Overlay.Time_Field := Item;

    Year  := Overlay.Word_1 / 2 ** 24 + 1900;
    Month := UNSIGNED_INTEGER (BITSET (Overlay.Word_1) * {20 .. 23}) / 2**20;
    Day   := UNSIGNED_INTEGER (BITSET (Overlay.Word_1) * {15 .. 19}) / 2**15;
      
    Seconds :=
          DURATION (LONG_REAL (Overlay.Word_1 % 2**15 * 2**2)) +
          DURATION (LONG_REAL (Overlay.Word_2 / 2**30)) +
          DURATION (LONG_REAL (Overlay.Word_2 % 2**30)) / LONG_REAL (2**30);

  end Split_Time;



Dok.-Nr/ Doc. No.:   CGS–RIBRE–STD–0001
Ausgabe /Issue:          5
Überarbtg./ Rev.:        –
Seite/Page:              4–89

Datum/ Date :    2009–02–01

Datum/ Date:     2010–01–29

von/ of        4–96

Daimler–Benz Aerospace AG, D–28199 Bremen – All Rights reserved – Copyright per DIN 34

   function Time_Of (Year    : UNSIGNED_INTEGER;
                     Month   : UNSIGNED_INTEGER;
                     Day     : UNSIGNED_INTEGER;
                     Seconds : DURATION) : TIME;

     variable Overlay: Time_Overlay;

   begin
     –– Check for validity and handling of ~:~ and dateless times
     –– omitted for simplicity

    Int      := UNSIGNED_INTEGER (LONG_REAL (Seconds));  –– truncate
    Fraction := Seconds – DURATION (LONG_REAL (Int));

    Overlay.Word_1
             := (Year – 1900) * 2**24 +
                 Month * 2**20 +
                 Day * 2**15 +
                 Int / 2**2;

    Overlay.Word_2
             := Int % 2 ** 2 * 2 ** 30 +
                UNSIGNED_INTEGER (LONG_REAL (Fraction) * LONG_REAL (2**30));

      return Overlay.Time_Field;
   end Time_Of;

end  Time_Library;

Example 3

The following library does not need a body. It contains no executable parts, but only passive
declarations. It might be implemented both as a user library or as a system library.

Library specification:

–– This library defines a set of useful non–SI engineering units.

library  Non_SI_Units;

   unit  [in]   = [0.0254 m];            <– inch

   unit  [ft]   = [12 in];               <– foot

   unit  [yd]   = [3 ft];                <– yard

   unit  [mi]   = [1760 yd];             <– mile

   unit  [oz]   = [0.282495];            <– ounce

   unit  [lb]   = [16 oz];               <– pound

   unit  [gr]   = [lb/7000];             <– grain

   unit  [cwt]  = [112 lb];              <– hundredweight

   unit  [ton]  = [20 cwt];              <– ton

   unit  [degC] = [273.15 Kabs];         <– degree Celsius

   unit  [degF] = [10 degC/18 – 320/18]; <– degree Fahrenheit

end  Non_SI_Units;
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Example 4

The following system library declares explicitly numbered subprograms. The numbers are
non–contiguous, in order to group related subprograms.

The subprograms are annotated.

Library specification:

library IO_Library;
   <– Simple input/output operations.
   <– The subprograms operate on standard input and standard output.

–– Input operations:

   1: procedure Get_Char ( out C: CHARACTER);
        <– Read character from standard input

   2: procedure Get_String ( out S: string );
        <– Read string from standard input

   3: procedure Get_Integer ( out I: INTEGER);
        <– Read an Integer literal from standard input

   4: procedure Get_Real ( out R: REAL);
        <– Read a Real literal from standard input

–– Output operations

  11: procedure Put_Char (C: CHARACTER);
        <– Write a character on standard ouput

  12: procedure Put_String (S: string ;    Width: INTEGER := 0);
        <– Write a character on standard ouput

  13: procedure Put_Integer (I: INTEGER;   Width: INTEGER := 1);
        <– Write a character on standard ouput

  14: procedure Put_Real (R: REAL;      Width: INTEGER := 0);
        <– Write a character on standard ouput

–– Line and column control

  21: procedure New_Line;
        <– Terminate current output line

  30: function Column : Unsigned_Integer;
        <– Return the current output column

  31: procedure Set_Column (Column : Unsigned_Integer);
        <– Set a new output column

end IO_Library;
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4.16.3  Formal Parameter List Definitions

Items in the database may have formal parameter lists. When such an item is used in a context that
requires parameters, the item name must be given together with actual parameters conforming to the
formal parameter list.

The formal parameter list can be defined in UCL syntax and compiled with the UCL compiler. The
parameter list definition is given in the same form as for an AP or a subprogram:

identifier ( formal_parameter , ..., formal_parameter );

The identifier is optional. If present, it will be implicitly declared as an alias for the item’s path name.
For specific item types there may be restrictions on the allowed number and types of parameters. Such
operational restrictions must be observed by the programmer and will not be checked by the compiler.

The parameter list definition may be preceded by unit, constant, type and alias declarations. This allows
to have parameter types other than the predefined types, and named default values. Units, constants,
types and aliases may also be obtained by importing them from libraries or other parameterized items.

Database items with formal parameter lists may be imported like libraries in any compilation unit. An
import makes all objects declared in the formal parameter list definition visible in the importing
compilation unit. This comprises explicitly declared units, constants, types and aliases, as well as the
implicitly declared alias for the item’s path name. Without an import, a parameterized item can be used
without any restrictions, but any additional identifiers declared together with the formal parameter list
will not be visible.

Formal Syntax

Formal_Parameter_List_Definition =
{ Import }
{ Unit_Declaration | Constant_Declaration |
Type_Declaration | Alias_Declaration }

[ Identifier ] Formal_Parameters ”;”

Import = see 4.2

Unit_Declaration = see 4.11

Constant_Declaration = see 4.7

Type_Declaration = see 4.8

Alias_Declaration = see 4.10

Formal_Parameters = see 4.14.1

Identifier = see 4.1.2.2

Example

import  \APM\GLOBAL\COMMON_TYPES; –– import common type declarations

constant  Lower : INTEGER := 0;
constant  Upper : INTEGER := 255;

type  Range = INTEGER (Lower .. Upper);

Message (Name : string ; –– the parameter list definition
         Value : Range := Lower);



Dok.-Nr/ Doc. No.:   CGS–RIBRE–STD–0001
Ausgabe /Issue:          5
Überarbtg./ Rev.:        –
Seite/Page:              4–92

Datum/ Date :    2009–02–01

Datum/ Date:     2010–01–29

von/ of        4–96

Daimler–Benz Aerospace AG, D–28199 Bremen – All Rights reserved – Copyright per DIN 34

4.16.4  Derived Values

A derived value is a database item that returns a value computed from the values of other database items.
Its UCL source text describes the algorithm for the value computation.

A derived value definition consists of the following:

• an optional list of imported libraries (system libraries only) or other modules

• an optional declaration section with constant, unit, type, variable and alias declarations.

• a statement sequence containing at least a return  statement and, optionally, if  and case
statements. Other statements are not allowed.

The main part of the derived value definition is a return  statement that returns the value computed
via an expression. It can be used in two forms:

return expression ;

This statement computes a value, returns it as the new value of the item and stops execution. The
type of the returned value must be compatible to the software type of the item.

return ;

When the expression is omitted, execution is stopped without computing a new value. The item
keeps its old value.

The expression will typically involve the runtime value of other database items, but it can also use
constants declared locally, as well as constants and variables imported from libraries, and it may call
imported functions.

A derived value may access itself, in which case its old value will be used. Indirect cyclic references
through other items are not allowed.

Termination of execution must always be explicitly done through a return  statement, otherwise a
runtime error will occur. There may be more than one return  statement.

Derived value items may be used in other compilation units via their pathname, in order to obtain their
current value, like any other database item that has a value.

Formal Syntax

Derived_Value = { Import }

{ Unit_Declaration | Constant_Declaration |
Type_Declaration | Variable_Declaration | Alias_Declaration }

{ If_Statement | Case_Statement | Return_Statement }

Import = see 4.2

Unit_Declaration = see 4.11

Constant_Declaration = see 4.4

Type_Declaration = see 4.8

Alias_Declaration = see 4.10

If_Statement = see 4.13.3

Case_Statement = see 4.13.4

Return_Statement = see 4.13.6
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Example

return  (\EGSE\HK_TM\HK_PFE\DC_POWER_SUPPLY\XTP0104 +
        \EGSE\HK_TM\HK_PFE\DC_POWER_SUPPLY\XTP0804);

Example

alias FNY1016 = \PLM\INSTR\SARR_TM_FLIGHT\RTRF\FNY1016;
alias FNY1017 = \PLM\INSTR\SARR_TM_FLIGHT\RTRF\FNY1017;
alias FNY1019 = \PLM\INSTR\SARR_TM_FLIGHT\RTRF\FNY1019;
alias FNY1020 = \PLM\INSTR\SARR_TM_FLIGHT\RTRF\FNY1020;

if FNY1016 > 0.1 [A] & FNY1019 > 10.0 [V] then
  return 2;
elsif FNY1017 > 0.1 [A] & FNY1019 > 10.0 [V] then
  return 3;
elsif FNY1016 > 0.1 [A] & FNY1020 > 10.0 [V] then
  return 4;
elsif FNY1017 > 0.1 [A] & FNY1020 > 10.0 [V] then
  return 5;
else
  return 1;
end if ;
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4.17  Privileges and Authorization

Systems using UCL may assign user privileges to users and to single entities managed by the system,
such as commands, measurements, variables, APs, libraries and other items maintained in the Mission
Database. Furthermore, individual library procedures and functions can be assigned privileges. A
privilege is named with a single identifier that corresponds to UCL identifier syntax. Any number of
privileges may be defined, and any subset of privileges may be assigned to users and items. The
assignment of privileges is done outside UCL with a system tool.

Required privileges are configured in the database with each single item. UCL compilation units and
subprograms that reference other privileged items, recursively inherit the privileges of all items
referenced directly or indirectly. UCL does not assume a specific meaning of the privileges, it just keeps
track of all privileges inherited by each item.

When using a privileged item in an HLCL command window, e. g. starting an AP, HLCL will deny
access to the item, if the user lacks any privileges required by the item. For details see the HLCL
Reference Manual (2.2.1).

4.17.1  Determining the Privileges of a Subprogram or Compilation Unit

When compiling a UCL item, the compiler determines the full set of required privileges, i. e. the
assigned privileges of the item itself plus all privileges inherited through references to other items, and
stores them together with the compiled item in the database. The privileges of items used within a
compilation unit are evaluated only if used in a guarded position. In non–guarded positions, the
privileges are ignored:

• Imports are always guarded.

• Assignments to software variables are always guarded, as well as passing a software variable as
an out or in out parameter to a procedure.

• Procedure and function calls are guarded either if the call is to a library procedure or function
explicitly marked with the keyword guarded  in its declaration, or if the called subprogram
directly or indirectly accesses any guarded entities.

• Passing a pathname as a parameter is guarded only, if the formal parameter was explicitly marked
with the keyword guarded  in the procedure/function declaration.

A compilation unit accessing any entities that are guarded in the above described way will itself inherit
the privilegs of the accessed entities.

The privileges themselves do not appear in the UCL source text, they are exclusively configured in the
database. The source text just marks the guarded positions. Therefore, no UCL items need to be
rewritten and recompiled, if privileges change.
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4.17.2  Guarded Library Procedures and Functions

Library procedures and functions can be marked as guarded as shown in the example.

library Ground_Library;
   ...
   procedure Write_Message_To_User (...);       –– not guarded
   procedure Read_Message_From_User (...);      –– not guarded
   ...
   guarded procedure Enable_Monitoring (...);   –– guarded
   guarded procedure Disable_Monitoring (...);  –– guarded
   ...
   guarded procedure Issue (...);               –– guarded
   ...
   procedure Pathname_To_String (...);          –– not guarded
   ...
end Ground_Library;

4.17.3  Guarded Parameters

Parameters of procedures and functions can be marked as guarded as shown in the example.

library Ground_Library;
   ...
   guarded procedure Enable_Monitoring  ( guarded Item : Monitor_Item; ...);
   guarded procedure Disable_Monitoring ( guarded Item : Monitor_Item; ...);
   ...
   guarded procedure Issue ( guarded Command : Command_Item(); ...);
   ...
end Ground_Library;

Guarded parameters must be of a pathname or parameterized pathname type. When the procedure or
function is called, the calling subprogram or the compilation unit, resp., inherits the privileges of the
items that are passed as parameters:

procedure AP;
   ...
   import  \ some\ path \Ground_Library;  –– Import is always guarded,
   ...                                –– inherit the library’s privileges
begin
   ...
   Issue                              –– Issue is guarded,
      (\ some\ path \Cmd_1 (...),        –– command parameter is guarded,
       ...;                           –– other parameters are not guarded,
       ...);                          –– so inherit the privileges of Issue
   ...                                –– and \ some\ path \Cmd_1.
end AP;
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4.17.4  Dependencies Imposed by Privileges

Please note that inheriting privileges from another item imposes a dependency on that item. This may
create a hierarchy of dependencies between a group of items. When the privileges of an item are
changed, the item becomes outdated and must be recompiled. Likewise, when an item is changed or
recompiled, its privileges may have changed, and so may the privileges of the depending item. Hence,
all items depending on this item directly or indirectly must be recompiled. The compiler will keep track
of all dependencies and enforce recompilations where necessary.

5
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5 Compilation

5.1  References and Dependencies

When a compilation unit references another unit, by importing it or just by using its pathname or alias
in the source text, this reference creates a dependency between the two compilation units. All references
are kept in the database and checked by the compiler. The kind of reference determines the strength of
the dependency and possibly consequences for the compilation process, e. g.

• Simple references, like declaring an alias for a pathname or using the pathname as a
non–parameterized subprogram parameter, just require the referenced unit to exist.

• References to the value of an item, e. g. a sensor or a software variable, imply a dependency on
the item’s software type properties, thus changing the referenced item will invalidate the
referencing compilation unit. It is no longer up to date and will have to be recompiled.

• A library body implies a dependency on its specification. So before a body can be compiled, its
specification must be compiled and up to date.

• Importing an item implies a dependency on its specification and hence requires the specification
to be compiled and up to date before usage. The body is not concerned, it need not even exist.

• Passing an item as a parameterized parameter implies a dependency on its formal parameter list
and hence requires the item to be compiled and up to date before usage.

• Using an item in a guarded position implies a dependency on that item’s privileges (see 4.17).
Changing the privileges of referenced items requires the referencing compilation unit to be
recompiled.

• In order to execute an AP, it must of course be complete, i. e. it must be compiled and up to date
(which implies that all its references meet the above mentioned conditions) and all its
constituents, including library bodies, must be compiled and up to date as well.

The compiler will check all these different kinds of dependencies and enforce all mentioned conditions.
If any of its references fails to meet the conditions, the unit cannot be compiled.

5.2  Compilation Order

A consequence of the conditions stated in 5.1 is that compilation units have to be compiled in a specific
order:

• A library specification must be compiled before its body.

• A library specification must be compiled before any compilation unit that imports the library.

• An item must be compiled before any compilation unit that passes it as a parameterized
parameter.

• Before executing an AP, all its constituents, including bodies, must be compiled.

The compiler provides both a single compilation mode to compile one specific compilation unit, and
a special make mode that recompiles not only the unit itself but also all constituents of all units
referenced directly or indirectly in a valid order, and leaves the compilation unit in complete state.
Moreover, in make mode the compiler performs only the necessary steps, i. e. constituents that are
already up to date will not be compiled. So, in case the unit is already complete, the compiler will do
nothing.

6
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Appendix A: Acronyms

AP Automated Procedure
APM Attached (Pressurized Module) Laboratory
ASCII American Standard Code for Information Interchange
BNF Backus–Naur Form (syntax)
CSS Core Simulation Software
DB DataBase
DMS Data Management Subsystem
EBNF Extended Backus–Naur Form
EGSE Electrical Ground Support Equipment
FLAP FLight Automated Procedure (onboard)
GMT Greenwich Mean Time
HCI Human Computer Interface
HLCL High–Level Command Language
HW HardWare
ICD Interface Control Document
IEEE Institute of Electrical and Electronics Engineers
ISO International Organisation for Standardization
I/O Input/Output
MDB Mission DataBase
N/A Not Applicable
NASA National Aeronautics and Space Administration (USA)
ODB Onboard DataBase
OS Operating System
SI Système Internationale (metric unit standards)
SID Short IDentifier
SW SoftWare
TBC To Be Confirmed
TBD To Be Defined
UCL User Control Language
UIL User Interface Language
VICOS Verification Integration and Check–Out Software

7
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Appendix B: Definitions

Access rights  permission users or applications have to access objects or entities.

Application  program or set of programs performing some specialized
user–oriented function (as opposed to general–purpose programs like
an operating system )

Automated Procedure program (main procedure) written in User Control Language (UCL) .

Child in a hierarchical structure, denotes an immediate descendant of a
network or tree component. A child is thus located one hierarchical
level below its parent.

Compilation unit smallest unit of code that is accepted by the compiler. In UCL, there are
different types of Compilation Units: Automated Procedure (AP),
Library Specification,  Library Body, Formal Parameter List Definition,
Derived Value.

Database common or integrated collection of interrelated data whose purpose is
to serve one or more applications.

Default a value supplied by the system when a user does not specify a required
parameter, qualifier, or attribute.

Derived Value a database item whose value is computed from the values of other
database items.

End item MDB item located at the lowest hierarchical level (leaf or terminal
node), and hence cannot be further decomposed.

Intermediate code (I–code) binary code generated by the UCL compiler, interpreted at run time.

Item type type of an MDB item defines the properties (attributes) and the set
operations that may be performed on that item.

MDB item, MDB object used interchangeably; uniquely identifiable entity defined in the
Mission Database (and corresponds to a real–world HW or SW entity).
An MDB Object or Item may be decomposed into lower–level items
according to the hierarchical name tree conventions, see Name tree .

Mission Database (MDB) the central repository for all HW/SW configuration information about
Flight Elements, Payloads and associated Ground Support
Equipment.

Name tree hierarchical (tree) structure within the MDB which decomposes the
system into subsystems, equipment, etc. The topmost node of the
name tree is called the root node, whereas terminal nodes (leaf nodes)
represent the items that cannot (or need not) be further decomposed,
the end items . Each MDB object is identifiable by a pathname
indicating the succession of nodes to be traversed to reach that
particular object in the name tree.

Network group of computers (workstations) and/or terminals that are linked
together to allow the sharing of resources (data and peripherals).

Nickname an alias for a database item, that may be used instead of a pathname.
Nicknames are predefined in the database.

Node component of a network or tree structure.

Operating system (OS) system software that controls the computer and its parts, performing
the basic tasks such as allocating memory, and allowing computer
components to communicate.
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Parent in a hierarchical structure, denotes an immediate ancestor of a network
or tree component.

Pathname see Name tree

Semantics rules dealing with the meaning of the language elements (symbols,
constants, variables, statements etc.)

Short identifier (SID) software–generated unique number assigned to each MDB item
(allows faster retrieval)

Statecode identifier (character string) denoting one of many possible states of a
discrete end item. (e.g. $OPEN, $CLOSED, $HIGH, $MEDIUM, $LOW)

Unit any lower level item in the SW architecture e.g. module, object

User Control Language T est and operations language (used for real–time control & monitoring
purposes in both the onboard and ground environment)

8
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I

implementation constraints, H-1
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Appendix C: DELETED
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Appendix D: UCL Syntax

The following syntax definition uses the variant of BNF described in section 3.3.

Within the syntax productions, between any terminal symbols, blanks, tabs or line and page breaks may
be arbitrarily inserted. Within terminal symbols, no blanks, tabs, line or page breaks are allowed. A
comment starts with two hyphens “––” and extends to the end of a line.

In identifiers and reserved words, as well as for the letter e/E in real literals, lower– and upper–case
letters are not distinghuished. These letters are shown here in lower–case only, they are to be undestood
as representing both the lower–case and upper–case variant.

Please note: Annotations are not explicitly shown in the syntax. They are syntactically treated like
comments, but may appear only at defined positions in a compilation unit (see 4.4).

Compilation Units

Compilation_Unit = Main_Procedure |
Library_Specification |
Library_Body |
Formal_Parameter_List_Definition
Derived_Value

Main_Procedure = { Import }
{ Unit_Declaration | Constant_Declaration | Type_Declaration | Alias_Declaration }

”procedure” Identifier [ Formal_Parameters ] ”;”
{ Import }
{ Declaration }

”begin”
Statement_Sequence

”end” [ Identifier ] ”;”

Library_Specification = ”library” Identifier ”;”
{ Import }
{ Definition }

”end” [ Identifier ] ”;”

Library_Body = ”library” ”body” Identifier ”;”
{ Import }
{ Declaration }

[ ”begin”
Statement_Sequence ]

”end” [ Identifier ] ”;”

Formal_Parameter_List_Definition =
{ Import }
{ Unit_Declaration | Constant_Declaration | Type_Declaration | Alias_Declaration }

[ Identifier ] Formal_Parameters ”;”

Derived_Value = { Import }
{ Unit_Declaration | Constant_Declaration | Type_Declaration |
Variable_Declaration | Alias_Declaration }

{ If_Statement | Case_Statement | Return_Statement }
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Declarations

Import = ”import” Name ”;”

Definition = Unit_Declaration |
Constant_Declaration |
Type_Declaration |
Variable_Declaration |
Alias_Declaration |
Procedure_Heading |
Function_Heading

Declaration = Unit_Declaration |
Constant_Declaration |
Type_Declaration |
Variable_Declaration |
Alias_Declaration |
Procedure_Declaration |
Function_Declaration

Unit_Declaration = ”unit” ”[” Unit_Identifier ”]” [ ”=” Unit ]  ”;”

Constant_Declaration = ”constant” Identifier ”:” Constant_Type ”:=” Constant_Expression ”;”

Constant_Type = Qualified_Identifier [ Unit ] |
”string” |
”statecode” |
”pathname” [ ”.” ”*” ]

Type_Declaration = ”type” Identifier ”=” Type ”;”

Variable_Declaration = ”variable” Identifier ”:” Variable_Type [ ”:=” Constant_Expression ] ”;”

Variable_Type = Qualified_Identifier [ Unit ] |
String_Type |
”statecode” |
”pathname” [ ”.” ”*” ]

Alias_Declaration = ”alias” Identifier ”=” Name [ ”.” Identifier ] ”;”

Procedure_Heading = [ ”guarded” ] ”procedure” Identifier [ Formal_Parameters ] ”;”

Procedure_Declaration =Procedure_Heading
Block

Function_Heading = [ ”guarded” ] ”function” Identifier [ Formal_Parameters ] ”:” 
Qualified_Identifier [ Unit ] ”;”

Function_Declaration = Function_Heading
Block

Block = { Declaration }
”begin”

Statement_Sequence
”end” [ Identifier ] ”;”

Formal_Parameters = ”(” [ Parameter_List { ”;” Parameter_List } ] ”)”

Parameter_List = [ ”guarded” ] [ ”in” ] [ ”out” ] Identifier_List ”:” Formal_Type
[ ”:=” Constant_Expression ]
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Types

Formal_Type = Formal_Simple_Type |
”array” ”of” Formal_Simple_Type |
”string” [ ”of” Identifier ]

Formal_Simple_Type = Qualified_Identifier [ ”(” ”)” ] [ Unit ] |
”statecode” |
”pathname” [ ”(” ”)” ] |
”pathname”  ”.” ”*”

Type = Simple_Type |
String_Type |
Statecode_Type |
Pathname_Type |
Subitem_Pathname_Type |
Array_Type |
Set_Type |
Record_Type |
Inherited_Type

Simple_Type = Qualified_Identifier [ Unit ] |
Enumeration |
Subrange

Enumeration = ”(” Identifier_List ”)”

Subrange = Qualified_Identifier ”(” Constant_Expression ”..” Constant_Expression ”)”

String_Type = ”string” ”(” Constant_Expression ”)” [ ”of” Identifier ]

Statecode_Type = ”statecode” [ ”(” Statecode_List ”)” ]

Statecode_List = Statecode { ”,” Statecode }

Pathname_Type = ”pathname” [ ”(” Identifier_List ”)” ]

Subitem_Pathname_Type=
”pathname” ”.” ”*” [ ”(” Identifier_List ”)” ]

Array_Type = ”array” ”(” Index_Range { ”,” Index_Range } ”)” ”of” Qualified_Identifier [ Unit ]

Index_Range = Constant_Expression ”..” Constant_Expression |
Qualified_Identifier

Set_Type = ”set” ”of” Simple_Type

Record_Type = ”record”
{ Fields }

”end” ”record”

Fields = Identifier_List ”:” Qualified_Identifier [ Unit ] |
”case” Identifier ”:” Qualified_Identifier

Variant_Part
”end” ”case” ”;”

Variant_Part = { ”when” Case_Label_List ”:” { Fields } }
[ ”else” { Fields } ]

Case_Label_List = Case_Labels {”,” Case_Labels} |
Statecode_List

Case_Labels = Constant_Expression [ ”..” Constant_Expression ]

Identifier_List = Identifier { ”,” Identifier }

Inherited_Type = ”type” “of” Name
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Statements

Statement = Assignment | Procedure_Call | If_Statement | Case_Statement |
While_Statement | Repeat_Statement | Loop_Statement | For_Statement |
Halt_Statement | Exit_Statement | Return_Statement

Assignment = Designator ”:=” Expression ”;”

Procedure_Call = Qualified_Identifier [ Actual_Parameters ] ”;”

Actual_Parameters = ”(” [ Parameter { ”,” Parameter } ] ”)”

Parameter = [ Identifier ”:” ] Expression

If_Statement = ”if” Expression ”then”
Statement_Sequence 

{ ”elsif” Expression ”then”
Statement_Sequence }

[ ”else”
Statement_Sequence ]

”end” ”if” ”;”

Case_Statement = ”case” Expression 
Case
{ Case } 
[ ”else” Statement_Sequence ] 

”end” ”case” ”;”

Case = ”when” Case_Label_List ”:”
Statement_Sequence

While_Statement = ”while” Expression ”do”
Statement_Sequence

”end” ”while” ”;”

Repeat_Statement = ”repeat”
Statement_Sequence

”until” Expression ”;”

Loop_Statement = ”loop”
Statement_Sequence

”end” ”loop” ”;”

For_Statement = Iterative_For_Statement |
Collective_For_Statement

Iterative_For_Statement =
”for” Identifier ”:=” Expression ”to” Expression [ ”by” Constant_Expression ] ”do”

Statement_Sequence 
”end” ”for” ”;”

Collective_For_Statement =
”for” Identifier ”in” Qualified_Identifier [ ”by” Constant_Expression ] ”do”

Statement_Sequence
”end” ”for” ”;”

Halt_Statement = ”halt” [ Expression ] ”;”

Exit_Statement = ”exit” ”;”

Return_Statement = ”return” [ Expression ] ”;”

Statement_Sequence = { Statement }
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Expressions

Constant_Expression = Expression

Expression = Relation { ”&” Relation } |
Relation { ”|” Relation } |
Aggregate

Aggregate = ”(” [ Expression{ ”,” Expression} ] ”)”

Relation = Simple_Expression
[ ”=” Simple_Expression |
”<>” Simple_Expression |
”<” Simple_Expression |
”<=” Simple_Expression |
”>” Simple_Expression |
”>=” Simple_Expression |
”in” Simple_Expression ]

Simple_Expression = [ ”+” | ”–” ] Term { ”+” Term | ”–” Term }

Term = Factor { ”*” Factor | ”/” Factor | ”%” Factor }

Factor = Primary [ ”**” Factor ]

Primary = Number [ Unit ] |
String |
Character |
Set_Constant |
Date [ Time ] |
Time |
Statecode |
Designator |
Function_Call |
Type_Conversion |
”(” Expression ”)” |
”~” Primary

Set_Constant = [ Qualified_Identifier ] ”{” [ Element { ”,” Element } ] ”}”

Element = Constant_Expression [ ”..” Constant_Expression ]

Function_Call = Qualified_Identifier [ Actual_Parameters ]

Type_Conversion = Qualified_Identifier ”(” Expression ”)” |
String_Conversion

String_Conversion = [ “pathname” | “alias” | “unit” ]  Qualified_Identifier ”(” Expression [ “,” Format ] ”)” |
[ “pathname” | “alias” | “unit” ] “string” ”(” Expression  [ “,” Format ] ”)”

Format = Width [ ”,” Aft [ “,” Exp ] ]

Width, Aft, Exp = Expression

Qualified_Identifier = [ [ Name ] ”.” ] Identifier

Designator = Name { ”.” ( Identifier | ”(” Expression_List ”)” ) }

Slice = Designator ”(” Expression “..” Expression ”)”

Expression_List = Expression { ”,” Expression }

Simple_Name = Identifier { Path_Identifier } |
Pathname

Name = Simple_Name { “.” Identifier }

Pathname = ”\” | ”\\” | Path_Identifier { Path_Identifier }

Subitem_Pathname = Name ”.” Identifier
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Unit Expressions

Unit = ”[” Unit_Expression ”]”

Unit_Expression = [ Numerator [ ”/” Denominator ] [ ”+” Offset | ”–” Offset ] ]

Offset = Number [ ”/” Number ]

Numerator = Unit_Term |
”(” Unit_Term ”)”

Denominator = Number |
Unit_Factor |
”(” Unit_Term ”)”

Unit_Term = [ Number ] Unit_Factor { Unit_Factor } |
Number

Unit_Factor = Unit_Identifier { Digit }

Unit_Identifier = Letter { Letter }
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Terminal Symbols

Unit_Factor = Unit_Identifier { Digit }

Path_Identifier = ”\” ( Letter | ”_” | Digit ) { Letter | ”_” | Digit }

Statecode = ”$” Identifier | ”$$”

Identifier = Letter { [ ”_” ] Letter_Or_Digit }

Unit_Identifier = Letter { Letter }

Letter_Or_Digit = Letter | Digit

Letter = ”a” | ”b” | ”c” | ”d” | ”e” | ”f” | ”g” | ”h” | ”i” | ”j” | ”k” | ”l” | ”m” | ”n” |
”o” | ”p” | ”q” | ”r” | ”s” | ”t” | ”u” | ”v” | ”w” | ”x” | ”y” | ”z”

Number = Simple_Integer |
Based_Integer |
Real

Simple_Integer = Digits

Based_Integer = Digits ”#” Hex_Digit { Hex_Digit } ”#”

Real = Digits ”.” Digits [ ”e” [ ”+” | ”–” ] Digits ]

Date = Day ”.” Month ”.” Year

Day = [ Digit ] Digit

Month = [ Digit ] Digit

Year = Digit Digit Digit Digit

Time = Hours ”:” Minutes [ ”:” Seconds [ ”.” Fraction ] ] |
”~:~”

Hours = [ Digit ] Digit

Minutes = Digit Digit

Seconds = Digit Digit

Fraction = Digits

Digits = Digit { [ ”_” ] Digit }

Hex_Digit = Digit | ”a” | ”b” | ”c” | ”d” | ”e” | ”f”

Digit = ”0” | ”1” | ”2” | ”3” | ”4” | ”5” | ”6” | ”7” | ”8” | ”9”

String = Char_String | Byte_String

Char_String = ””” { ASCII  |  ”””  ”””  }  ”””

Byte_String= ”#” ””” [ Hex_Digit Hex_Digit { [ ”_” | ”  ” ] Hex_Digit Hex_Digit  } ] ”””

Character = ”’” Printable ”’”

Printable = any of the printable characters of the underlying character set

10
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Appendix E:  ASCII Character Set

(see ISO standard 646, Ref.doc. 2.2.5, for details)

    0     1      2     3     4     5     6      7   

  0 NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,
  8 BS, HT, LF, VT, FF, CR, SO, SI,
 16 DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB,

 24 CAN, EM, SUB, ESC, FS, GS, RS, US,

 32 ’ ’, ’!’, ’”’, ’#’, ’$’, ’%’, ’&’, ’’’,
 40 ’(’, ’)’, ’*’, ’+’, ’,’, ’–’, ’.’, ’/’,
 48 ’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’,
 56 ’8’, ’9’, ’:’, ’;’, ’<’, ’=’, ’>’, ’?’,
 64 ’@’, ’A’, ’B’, ’C’, ’D’, ’E’, ’F’, ’G’,
 72 ’H’, ’I’, ’J’, ’K’, ’L’, ’M’, ’N’, ’O’,
 80 ’P’, ’Q’, ’R’, ’S’, ’T’, ’U’, ’V’, ’W’,
 88 ’X’, ’Y’, ’Z’, ’[’, ’\’, ’]’, ’^’, ’_’,
 96 ’‘’, ’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’,
104 ’h’, ’i’, ’j’, ’k’, ’l’, ’m’, ’n’, ’o’,
112 ’p’, ’q’, ’r’, ’s’, ’t’, ’u’, ’v’, ’w’,
120 ’x’, ’y’, ’z’, ’{’, ’|’, ’}’, ’~’, DEL

11
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Appendix F: UCL/MDB Type Correspondence Table

The following table shows for a few examples the principle, how MDB item types map on UCL access
classes and software types. This is to be understood as an example only, the actual MDB item types,
the corresponding access classes and software types are defined in the database documentation for the
respective target system.

MDB object type
UCL object type

analog measurement READ

discrete measurement READ

SW variable READ/WRITE INTEGER
REAL
BOOLEAN

REAL

statecode

analog stimulus

discrete stimulus

–

–

SEND

SEND

network node

SW unit

IMPORT

NODE SELECT

PATH SELECT

–

–

nametree node –

UCL library –

none (*)

AP EXECUTE –

MDB item type class

...

access class

*   ”none” means: MDB objects of this type can be accessed only via System Library procedures/functions

12
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Appendix G: Engineering Units

This section is based on the International Standard ISO 1000 “SI units and recommendations for the
use of their multiples and of certain other units”.

G–1  Base Units

The international system of units (Système International d’Unités, SI) defines seven base units. (For
a definition of the SI base units, see the ISO 1000 standard, annex B.)

   Quantity Unit SI symbol UCL symbol

1.  length meter m m

2.  mass kilogram kg kg

3.  time second s s

4. electric current ampere A A

5. temperature kelvin K Kabs

   temperature difference kelvin K K

6.  amount of substance mole mol mol

7.  luminosity candela cd cd

Note that UCL makes the distinction between absolute temperature (Kabs) and temperature difference (K). The distinction
is necessary to allow conversions between e.g. oC and K; in particular, the relationship: 0 oC = 273.15 Kabs does not hold
for temperature differences.

G–2  SI Units

In the table of SI units given below, the column “SI unit” refers to the name of the unit as defined by
ISO 1000 and the international system of units (Système International d’Unités, SI) or to unit names
composed by SI unit names (e.g. m/s). The column “Sym.” (symbol) shows the recommended string
to be used in UCL to denote such a unit, the same is true for the “supported multiples of this unit” in
the next columns. The “Definition” column exactly defines the unit.
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Quantity SI unit Sym. Supported multiples of this unit Definition

length meter m km cm mm um nm pm base unit

astronomic
unit AU 1 AU = 149597.870 •  106 m

parsec pc 1 pc = 206265 AU

area m2 m2 km2 dm2 cm2 mm2 1 m2 = 1 m •  m

volume m3 m3 dm3 cm3 mm3 1 m3 = 1 m •  m •  m

liter l, L hl cl ml 1 l = 1 dm3

Note that both the upper case letter ‘L’ and the lower case letter ‘l’ denote the unit liter.

mass kilogram kg g mg ug base unit

atomic mass
unit u 1 u = 1.66053 S 10–27 kg

tonne t 1 t = 103 kg

time second s ms us ns base unit

minute min 1 min = 60 s

hour h 1 h = 60 min

day d 1 d = 24 h

electric current ampere A kA mA uA nA pA base unit

temperature kelvin Kabs base unit

degree
Celsius degC 1 oC = 1 K + 273.15

temp. difference kelvin K base unit

amount of
substance mole mol kmol mmol umol base unit

luminosity candela cd base unit

plane angle radian rad mrad urad supplementary unit=m/m

solid angle steradian sr supplementary unit=m2/m2

frequency hertz Hz THz GHz MHz kHz 1 Hz = 1 s–1

rotational freq. s–1 1/s 1/min

force newton N MN kN mN uN 1 N = 1 kg m/s2

pressure pascal Pa GPa MPa kPa mPa uPa 1 Pa = 1 N/m2

bar bar mbar ubar 1 bar = 105 Pa
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Quantity SI unit Sym. Supported multiples of this unit Definition

energy, work,
heat joule J TJ GJ MJ kJ mJ 1 J = 1 N m

electronvolt eV GeV MeV keV 1 eV = 1.60219 S 10–19 J

torque Nm Nm MNm kNm mNm uNm 1 Nm = 1 N m = 1 J

power watt W GW MW kW mW uW 1 W = 1 J/s

electric charge coulomb C MC kC mC uC nC pC 1 C = 1 A s

Ah Ah mAh uAh 1 Ah = 3.6 kC

electric potential volt V MV kV mV uV 1 V = 1 J/C

electric
capacitance farad F mF uF nF pF 1 F = 1 C/V

electric
resistance ohm Ω Ohm GOhm MOhm kOhm mOhm 1 W = 1 V/A

electric
conductance siemens S kS mS uS 1 S = 1 W–1

magnetic flux weber Wb mWb 1 Wb = 1 V s

magnetic
induction tesla T mT uT nT 1 T = 1 Wb/m2

inductance henry H mH uH nH pH 1 H = 1 Wb/A

luminous flux lumen lm 1 lm = 1 cd sr

illuminance lux lx 1 lx = 1 lm/m2

activity (of a
radionuclide) becquerel Bq 1 Bq = 1 s–1

absorbed dose gray Gy 1 Gy = 1 J/kg

dose equivalent sievert Sv 1 Sv = 1 J/kg

velocity m/s m/s

km/h km/h 1 km/h = (1/3.6) m/s

knot knot 1 knot = 0.514 m/s

angular velocity rad/s rad/s

acceleration m/s2 m/s2

density kg/m3 kg/m3 kg/l g/l

linear mass
density kg/m kg/m mg/m
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Quantity SI unit Sym. Supported multiples of this unit Definition

momentum kg m/s kg m/s

angular
momentum kg m2/s kg m2/s

moment of inertia kg m2 kg m2

viscosity Pa s Pa s mPa s

specific acoustic
impedance Pa s/m Pa s/m

acoustic
impedance Pa s/m3 Pa s/m3

kinematic 
viscosity m2/s m2/s mm2/s

volume flow rate m3/s m3/s l/s

surface tension N/m N/m mN/m

linear expansion
coefficient K–1 1/K

thermal
conductivity W/(m K) W/(m K)

coefficient of heat
transfer W/(m2K) W/(m2 K)

heat capacity J/K J/K kJ/K

specific heat
capacity J/(kg K) J/(kg K)

specific internal
energy J/kg MJ/kg kJ/kg

charge density C/m3 C/m3

surface density of
charge C/m2 C/m2

electric field
strength V/m V/m MV/m kV/m mV/m uV/m

permittivity F/m F/m uF/m nF/m pF/m

electric
polarization C/m2 C/m2 kC/m2mC/m2 uC/m2

electric dipole
moment C m Cm
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Quantity SI unit Sym. Supported multiples of this unit Definition

current density A/m2 A/m2 A/mm2

linear current
density A/m A/m A/mm

magnetic vector
potential Wb/m Wb/m

permeability H/m H/m uH/m nH/m

electromagnetic
moment A m2 A m2

magnetization A/m A/m A/mm

magnetic dipole
moment Wb m Wb m

resistivity Ω m Ohm m GOhm m   MOhm m  KOhm m   mOhm m

conductivity S/m S/m MS/m kS/m

reluctance H–1 1/H

radiant intensity W/sr W/sr

radiance W/(sr m2) W/(sr m2)

irradiance W/m2 W/m2

quantity of light lm s lm s

luminance cd/m2 cd/m2

luminous exitance lm/m2 lm/m2

light exposure lx s lx s

luminous efficacy lm/W lm/W

mechanical
impedance N s/m N s/m

molar mass kg/mol kg/mol g/mol

molar volume m3/mol m3/mol l/mol

molar internal
energy J/mol KJ/mol

molar heat
capacity J/(mol K) J/(mol K)

concentration of
substance B mol/m3 mol/m3

molality of solute
substance B mol/kg mol/kg
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G–3  Non–SI Units

For convenience, the following non–SI units are also supported.

Quantity Unit Sym. Supported multiples of this unit Definition

length inch  in 1 in = 25.4 mm

An inch is defined to be exactly 25.4 mm. It is used as the “base unit” for imperial lengths.

foot  ft 1 ft = 12 in

yard  yd 1 yd = 3 ft

mile  mi 1 mi = 1760 yd

mass pound  lb 1 lb = 453.592 g

A pound is defined to be exactly 453.592 g. It is used as the “base unit” for imperial masses.

ounce  oz 1 oz = (1/16) lb

grain  gr 1 gr = (1/4371/2) oz

hundredweightcwt 1 cwt = 112 lb

ton  ton 1 ton = 20 cwt

temperature degree 
Fahrenheit  degF 1 degF = 10/18 degC – 320/18

G–4  Prefix Names and Values

The SI prefixes (also in the ISO 1000 standard) are used with the unit symbols defined above.

E exa 1018

P peta 1015

T tera 1012

G giga 109

M mega 106

k kilo 103

h hecto 102

da deca 101

d deci 10–1

c centi 10–2

m milli 10–3

u micro 10–6          should be µ (mu) but this is not in the ASCII character set

n nano 10–9

p pico 10–12

f femto 10–15

a atto 10–18

13
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Appendix H: Implementation Constraints

The following restrictions are not inherent to the language; rather, they are due to the specific
implementation of the UCL compiler and its runtime environment. Restrictions on UCL procedures
also apply to UCL functions.

• Maximum length of a line of text, and hence of an identifier, is 256 characters.

• Maximum number of local variables/parameters in one procedure is restricted to 65536 (or 216).

• Maximum number of global variables/parameters in one compilation unit is 65536 (or 216).

• Maximum number of procedures in one compilation unit is 65536 (or 216).

• Maximum size of a record variable is 65536 words (or 216).

• Maximum number of elements in a set is 65536 (or 216).

• Maximum number of components in an array is 231–1.

• Maximum number of characters in a string is 231–1.

• Maximum number of imported user libraries in one AP is 65536 (or 216).

• Maximum number of imported system libraries in one AP is 65536 (or 216).

• Maximum size of a boolean expression (containing & or |  operators) is 65536 (or 216) bytes.

The UCL Compiler is part of the Columbus Ground System (CGS).
14
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INDEX

A
ABS function, 4–19, 4–20, 4–78

access class, 4–14

actual parameter, 4–53

aggregate, 4–27, 4–32

alias declaration, 4–41

analog measurement, 4–13

annotation, 4–16

AP, 3–1

arithmetical operator, 4–51

array index, 4–26

array type, 4–26

ASCII, 4–5

assignment, 4–63

automated procedure, 3–1, 4–82

B
base unit, 4–42

based integer number, 4–4

bitset constant, 4–31

BITSET type, 4–31

Boolean operator, 4–52

BOOLEAN type, 4–20

byte string, 4–6

byte string literal, 4–6

BYTE type, 4–21

C
case sensitive, 4–3

case statement, 4–66

character literal, 4–5

character set, 4–1

character string, 4–6

character string literal, 4–6

CHARACTER type, 4–21

commensurable unit, 4–42

annotation, 4–1

comment, 4–1

comparison operator, 4–52

compatibility, 4–38

compilation, 5–1

compilation order, 5–1

compilation unit, 4–81

COMPLETION_CODE type, 4–24

concatenation, 4–32

concatenation operator, 4–52

constant, 4–17

constant declaration, 4–17

constant expression, 4–50

conversion, 4–54

counting units, 4–42, 4–56

D
database scope, 4–11

DEC procedure, 4–19, 4–24, 4–79

declaration, 4–10

default value, 4–74

delimiter, 4–2

dependency, 5–1

dimension, 4–26

dollar sign, for state code identifiers, 4–5

duration literal, 4–7

DURATION type, 4–23

E
element type, 4–26

elementary type, 4–18, 4–19

end of line, 4–3

enumeration type, 4–20, 4–24

EXCL procedure, 4–30, 4–79, 4–80

exit statement, 4–73

expression, 4–49

F
floating point, 4–5
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for statement, 4–70

formal parameter, 4–74

formal parameter list definition, 4–91, 4–92

function call, 4–53

function declaration, 4–76

H
halt statement, 4–72

HIGH function, 4–26, 4–32, 4–74, 4–79

HLCL, 3–1

I
IO format, 4–62

identifier, 4–3, 4–10

if statement, 4–66

implementation constraints, H–1

import, 4–9, 4–82

in out parameter, 4–65, 4–74, 4–76

in parameter, 4–64, 4–74

INC procedure, 4–19, 4–24, 4–79

INCL procedure, 4–30, 4–79

index, 4–26

index type, 4–26

inherited type, 4–18, 4–37

integer number, 4–4

INTEGER type, 4–19

interactive commands, 3–1

L
LENGTH function, 4–32, 4–79

lexical element, 4–1, 4–2

library, 4–85

library body, 4–86

library implementation, 4–86

library specification, 4–85

lifetime of objects, 4–12

line length, 4–1

logical operator, 4–52

LONG_REAL type, 4–20

LONG_WORD type, 4–21

loop index, 4–70
implicitly declared, 4–70

loop statement, 4–68

LOW function, 4–26, 4–32, 4–74, 4–78

low level conversion, 4–59, 4–80

low level programming, 4–28

Low Level Type, 4–21

M
MAX function, 4–19, 4–20, 4–21, 4–23, 4–78

MDB, 3–1, 4–13

MDB item, 4–13

MDB object, 4–13

MIN function, 4–19, 4–20, 4–21, 4–23, 4–24, 4–25,
4–78

Mission Database, 3–1, 4–13

multidimensional array, 4–26

N
name, 4–10

name tree, 3–2, 4–3

nickname, 4–11, 4–41

no pathname, 4–3

node name, 4–15

numeric literal, 4–4

O
ODD function, 4–19, 4–79

open array, 4–65, 4–74

open string, 4–65, 4–74

operand, 4–50

operator, 4–51

out parameter, 4–64, 4–74, 4–76

overlay, 4–28

P
path identifier, 4–3

pathname, 4–3, 4–13

pathname type, 4–18, 4–34
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precedence, of operators, 4–51

predefined type, 4–18

predefined units, 4–43

privileges, authorization, 4–94

procedure body, 4–74, 4–75

procedure call, 4–64

procedure declaration, 4–74, 4–77

procedure header, 4–74

Q
qualified identifier, 4–12

R
range constraint, 4–4, 4–25

real number, 4–5

REAL type, 4–20

record field, 4–28

record type, 4–28

recursive call, 4–12, 4–65

reference, 5–1

relational operator, 4–52

repeat statement, 4–69

reserved words, 4–3

return statement, 4–72

root pathname, 4–3

S
scope, 4–10

of loop index, 4–70

separator, 4–1

set comparison, 4–30

set constant, 4–31

set difference, 4–30

set inclusion, 4–30

set intersection, 4–30

set membership test, 4–30

set operator, 4–52

set type, 4–30

set union, 4–30

SI system, 4–42

slice, 4–32

software type, 4–14

source code, 4–1

standard function, 4–78

standard procedure, 4–78

statecode literal, 4–5

statecode type, 4–22

statement, 4–63

statement sequence, 4–63

string conversion, 4–60

string literal, 4–6

string type, 4–32

structural compatibility, 4–39

structured type, 4–18, 4–26

subitem, 4–13

subitem pathname, 4–13

subitem pathname type, 4–18, 4–36

subprogram declaration, 4–74

subrange type, 4–25

substring, 4–32

symmetric set difference, 4–30

syntax notation, 3–5

T
tag field, 4–28

temperatures, special treatment for, 4–46

time literal, 4–7

TIME type, 4–23

type, 4–18

type conversion, 4–54

type declaration, 4–18

U
unbound array, 4–74

See also procedure declaration

unbound string, 4–65, 4–74

unit declaration, 4–43

unit expression, 4–44

unit identifier, 4–10

unit literal, 4–8
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unitized constants, 4–46

unitized type, 4–18, 4–42

unitized value, 4–42

units of measure, 4–42

UNSIGNED_INTEGER type, 4–19

UNTYPED function, 4–59, 4–80

V
variable declaration, 4–40

variant, 4–28

vocabulary, 4–1

W

while statement, 4–68

WORD type, 4–21
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