
SPANEX™

Span Macros Manual

Span Software Consultants Limited

Version: 05.1 Product Number: SPOS-001

Revision: 1st February 2003 Manual Ref: SPZ-02-016

© 1988,2003 Span Software Consultants Limited.

Span Macros Manual Version 05.1

Page 2 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

Span Macros Manual Version 05.1

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 3 of 94

CONTENTS Page

1 Introduction . 5
1.1 Changes for Release 5.1 6
1.2 Changes for Release 5.0 6
1.3 Changes for Release 4.6 7
1.4 Changes for Release 4.5 7

2 Span Macro Descriptions . 9
2.1 Notation and Coding Conventions 9
2.2 #SPAMODE Macro - MVS/XA, ESA/390 and z/Architecture Addressing

Mode Manipulation 10
2.3 #SPANCHK Macro - Data Verification Macro 13
2.4 #SPANLTG Macro - LTORG and Patch Area Generation 15
2.5 #SPANTRY Macro - Module or Subroutine Entry Point Macro 17
2.6 #SPANXIT Macro - Module or Subroutine Exit Point Macro 22
2.7 #SPBINSR Macro - Perform Binary Search of an Ordered Table 25
2.8 #SPCPTIM Macro - Execute Routine and Calculate CPU Usage 27
2.9 #SPGLBL Macro - Define SPOUTPUT/SPZPARSE Control Block 29
2.10 #SPMSG Macro - SPOUTPUT Parameter Formatting 30
2.11 #SPMVCL Macro - Simulate MVCL instruction 31
2.12 #SPTEST Macro - Check Program Environment 32
2.13 #SPXFIND Macro - Invoke SPANEX Lookup Functions 33
2.14 #SPXICB Macro - Generate SPANEX DSECTs 35
2.15 #SPXICBA Macro - Find Field in SPANEX ICB 36
2.16 #SPXMSG Macro - Internal Message Request to SPANEX 37
2.17 #SPXQ Macro - Locate SPANEX Internal Control Block 40
2.18 #SPXRSTU Macro - Request to SPANEX Utility 41
2.19 #SPXSVC Macro - Issue SPANEX SVC 46
2.20 #SPXUDDN Macro - Specify DDNAME for #SPXUMSG Message

Requests 49
2.21 #SPXUMSG Macro - User Message Request to SPANEX 50
2.22 #SPZCLOS Macro - SPZQPAM Close Macro 52
2.23 #SPZCMD Macro - SPZPARSE Parameter Formatting 53
2.24 #SPZFIND Macro - Position to a Partitioned Dataset Member when

using SPZQPAM 55
2.25 #SPZFLD Macro - SPOUTPUT Parameter Formatting 56
2.26 #SPZKWRD Macro - SPZPARSE Parameter Formatting 62
2.27 #SPZOPEN Macro - SPZQPAM Open Macro 66
2.28 #SPZPARS Macro - Invoke SPZPARSE Service Routine 67
2.29 #SPZPEND Macro - SPZPARSE Parameter Formatting 73
2.30 #SPZPMAP Macro - Generate SPZPARSE DSECTs 74
2.31 #SPZPOSN Macro - SPZPARSE Parameter Formatting 75
2.32 #SPZSOB Macro - SPOUTPUT Interface Macro 78
2.33 #SPZSUBP Macro - SPZPARSE Parameter Formatting 90
2.34 #SPZTITL Macro - SPOUTPUT Parameter Formatting 93

Span Macros Manual Version 05.1

Page 4 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

This page intentionally left blank.

Span Macros Manual Version 05.1

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 5 of 94

1 Introduction

This manual describes all currently available Span Macros for IBM System/390
and z/Series operating systems.

These Span Macros are supported only for IBM System/390 or z/Series
Assembler Language and assume the availability of one of the following IBM
Assemblers or equivalent: MVS Assembler H or High-level Assembler.

Note that Span Macro names begin with the “#” symbol. This character may not
appear on some 3270 keyboards. It has a hexadecimal representation of X'7B' in
EBCDIC. If the symbol is not on your keyboard, use an IBM System/390 or z/OS
Reference Card or manual to determine the symbol used by your keyboard for
X'7B' in the EBCDIC character set.

Span Manuals in this Series Order No

Span Macros Manual SPZ-02

Span Service Routines Manual SPZ-03

Span Macros Manual Version 05.1

Page 6 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

1.1 Changes for Release 5.1

The #SPAMODE macro now supports the new 64-bit addressing mode introduced
with z/OS.

The new BASE=NONE option of the #SPANTRY macro allows assembler
programming to be performed without module base registers. Branching
within the module is performed by relative jump instructions. This
feature is supported by the #SPANXIT and #SPAMODE macros, and by a
limited number of IBM macros.

The new CLEAR=YES option of the #SPANXIT macro clears a dynamic save
area to zeros before releasing the storage. This ensures that sensitive
information cannot be retrieved in response to a subsequent request for
storage.

The new SETCONT= option of the SPZPARSE #SPZKWRD macro extends the
number of values supported for the SET= parameter of keyword
definitions. More possible values can thus be defined for parsing
keywords.

1.2 Changes for Release 5.0

SPZPARSE now supports TSO- or IDCAMS-style command syntax, as an
alternative to the traditional “keyword=value” style. Command and
parameter format is dynamically specified via a new parameter of the
#SPZPARS macro.

The features provided in the #SPANTRY and #SPANXIT macros for MVS/ESA
and OS/390 programming using the Linkage Stack may now be executed
is ASC AR mode.

The #SPANTRY macro now allows dynamic save areas to be automatically set to
binary zeros.

The new #SPZFIND macro is now required to be used instead of the standard
FIND macro by users of the SPZQPAM service routine.

New DATE4 field type in the #SPZFLD macro supports for 4-digit year notation
for Year 2000 compliance.

New SYSID field type in the #SPZFLD macro supports inclusion of the SMF
System ID in program output.

New USERID field type in the #SPZFLD macro supports inclusion of the owning
user ID in program output.

SPOUTPUT now supports the use of WTO tokens, to allow groups of console
messages to be deleted with a single operating system DOM macro. This
is implemented by means of the WTOTOKN option of the OPT=
parameter of the #SPZSOB macreo, and by the WTOKEN= parameter of
the #SPZSOB macro.

Span Macros Manual Version 05.1

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 7 of 94

New version of the SOB used by SPOUTPUT eliminates all 3-byte addresses
from the SPOUTPUT interface. All modules sharing a SOB must be
assembled with the same version of the SPANEX macros, but
SPOUTPUT supports existing modules compiled with all previous
versions of the macros.

Minor editorial and technical changes have been made throughout this manual
and the Span Service Routines manual.

1.3 Changes for Release 4.6

SPZSORT can now sort in-storage records up to 32767 bytes in length.

New features are provided in the #SPANTRY and #SPANXIT macros for
MVS/ESA programming using the Linkage Stack.

The #SPANTRY macro now supports ESA-style module entry and exit linkage,
and allows user-defined identification text to be added to a module entry
point.

All invocation macros for Span Service Routine functions now support user
programs running in AR mode on MVS/ESA systems.

New “Double-underline” feature is provided by SPOUTPUT formatting.

1.4 Changes for Release 4.5

The #SPAMODE macro now supports ARMODE switching for MVS/ESA
systems.

The RUN=R4FSCR option of the #SPZSOB macro is now the default. Old-format
full-screen output from SPOUTPUT is no longer supported for new
programs. User programs assembled with Release 4.4 and earlier
versions of the Span Macros can continue to use the earlier support - if
these programs are assembled with Release 4.5 of the macros, the
improved support will automatically be included.

The #SPZFLD macro now allows the screen high-lighting and colour attributes of
fields on a 3270 screen to be modified dynamically.

SPOUTPUT now supports the BMARG= option of the #SPZSOB macro for full-
screen output. This provides a “conditional end-of-screen” function to
ensure that groups of output lines are kept together on the screen.

SPZDIRD now supports the reading of PDSE directories. Mixed concatenations
of PDS and PDSE datasets is fully supported.

Support is now provided for versions of Span Software programs and user
programs that are specific to the MVS/XA and MVS/ESA environments.

Span Macros Manual Version 05.1

Page 8 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

This page intentionally left blank.

Span Macros Manual Version 05.1

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 9 of 94

2 Span Macro Descriptions

2.1 Notation and Coding Conventions

Notation for Macros in this Manual

Square brackets, [], denote (1) that a macro parameter is optional: if an entire
parameter with its options is enclosed in square brackets, then that parameter is
optional; (2) that a range of values is permissible for a given parameter: if a
series of possible values for a parameter is shown in a vertical manner, all
surrounded by additional square brackets, then choose one from the values
shown.

Normal parentheses, (), signify that parentheses should appear when the macro
is coded, denoting, for example, a list of sub-parameters.

Underlining, , denotes default values for parameters.

Coding Conventions

Standard Assembler language coding conventions are used for all Span Macros:
- Labels must begin in column 1;
- Macro names and operands may be placed anywhere on the

statement but are conventionally in columns 10 and 16
respectively;

- Continuations are indicated by a non-blank character in
column 72 of the continued statement;

- Continuation statements must begin in column 16.

It is recommended that programmers using Span Macros do not define Global
symbols having names beginning with “#” (Hash or Number sign). These are
used extensively within the Span Macros. Additionally, the SPZPARSE macros
define program labels beginning with “#”.

Certain Span Macros support the “DOC=YES” parameter in addition to the
parameters documented in this manual. This is to permit the generation of
automated data areas manuals for some Span Program Products. Macros
affected by this include: #SPXICB, #SPZFLD, #SPZPMAP, #SPZSOB,
#SPZTITL.

Page 10 Span Macros Manual
#SPAMODE Macro

Page 10 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

2.2 #SPAMODE Macro - MVS/XA, ESA/390 and
z/Architecture Addressing Mode Manipulation

The #SPAMODE macro is a general-purpose macro for setting and retrieving the
Addressing Mode for MVS/XA, ESA/390 and z/OS systems. It supports modules
running in either 24-bit mode, 31-bit mode or 64-bit mode, and can generate re-
entrant code and “portable” code for z/OS, ESA, XA and non-XA systems. The
contents of Registers 1 and 15 may be destroyed by this macro.

format:

 [ENTRY]
 (name) #SPAMODE MODE=([BIT24], ...)
 [BIT31]
 [BIT64]
 [INITIAL]

 [[SET]]
 [,ARMODE=[]]
 [[RESET]]

 [[ONLY]] [[ONLY]] [[ONLY]]
 [,XA=[]] [,ESA=[]] [,Z64=[]]
 [[TEST]] [[TEST]] [[TEST]]

 [[L]]
 [,MF=[(E,laddr)]]
 [[(R,(reg))]]

where:
(name) - variable symbol name, max=8 bytes

 - specifies the value of a label to be placed on the first
executable instruction generated by the #SPAMODE
macro.

MODE= - fixed keyword value
 - specifies the function to be performed.

MODE=ENTRY is typically used at the entry point of
a sub-module or utility routine, and specifies that the
Addressing Mode is to be determined and stored for
later use. If “MF=(E,...” or “MF=(R,...” is not specified,
then the macro generates a word of storage in-line in
which to save the Addressing Mode, and module will
not be re-entrant.
MODE=BIT24 specifies that the Addressing Mode is to
be changed to 24-bit mode.
MODE=BIT31 specifies that the Addressing Mode is to
be changed to 31-bit mode.
MODE=BIT64 specifies that the Addressing Mode is to
be changed to 64-bit mode.
MODE=INITIAL specifies that the Addressing Mode is
to be changed back to the mode that was in effect when
the #SPAMODE macro specifying the
“MODE=ENTRY” option was executed. If the
“MODE=ENTRY” form of the macro has not been
previously executed, then the Addressing Mode after

Span Macros Manual Page 11
#SPAMODE Macro

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 11 of 94

executing the “MODE=INITIAL” form of the macro
will be unpredictable.
Note that the mode sub-parameters can be combined;
eg “MODE=(ENTRY,BIT24)” will save the current
Addressing Mode and then switch to 24-bit mode.

ARMODE= - fixed keyword value
 - specifies a change to the ARMODE for ESA/390 or

z/OS. Note that the MODE= parameter is ignored if
the ARMODE= parameter is coded. The ESA=TEST
option may be specified to ensure that modules using
this option can be executed on non-ESA systems, but
use of the ARMODE= parameter requires that the
module be assembled on an MVS/ESA, OS/390 system
or z/OS.
ARMODE=SET is used to turn on Access Register
mode for the calling program. This is a shorthand way
of issuing the combination of machine instruction and
assembler instruction required to switch into AR-
mode.
ARMODE=RESET is used to turn off Access Register
mode for the calling program. This is a shorthand way
of issuing the combination of machine instruction and
assembler instruction required to switch out of AR-
mode.

XA= - fixed keyword value
 - XA=TEST is used to generate “portable” code (code

that can be executed without modification on MVS/XA
systems and non-XA systems). The CVT mapping
macro must be included in the assembly if the
“XA=TEST” option is used. The default is “XA=ONLY”
which generates code that will execute on MVS/XA
systems only.

ESA= - fixed keyword value
 - ESA=TEST is used to generate “portable” code (code

that can be executed without modification on ESA/390
systems and non-ESA systems). The CVT mapping
macro must be included in the assembly if the
“ESA=TEST” option is used. The “ESA=ONLY” option
generates code that, if the ARMODE= option is used,
will execute on MVS/ESA or OS/390 systems only.

Z64= - fixed keyword value
 - Z64=TEST is used to generate “portable” code (code

that can be executed without modification on z/OS
systems and non-z/OS systems). The CVT mapping
macro must be included in the assembly if the
“Z64=TEST” option is used. The “Z64=ONLY” option
generates code using z/Architecture instructions, and
will execute on z/OS systems only.

Page 12 Span Macros Manual
#SPAMODE Macro

Page 12 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

MF= - fixed keyword value
 - specifies the macro format (“List”, “Execute” or

“Register” form) to be generated. If this parameter is
not specified, in-line coding is generated and the
module will be non-re-entrant.
MF=L specifies the “List” form of the macro, and
generates a non-executable parameter list that is used
by the “Execute” form of the macro.
MF=(E,laddr) specifies the “Execute” form of the
macro, with the second sub-parameter specifying the
address (in label or register notation) of the “List” form
parameter list to be used. Matching “MODE=ENTRY”
and “MODE=INITIAL” macros must specify the same
“List” form to ensure that the correct Addressing Mode
is set.
MF=(R,(reg)) specifies the “Register” form of the
macro, with the second sub-parameter specifying a
register (in register notation, ie enclosed in
parentheses), that is to be used to store the Addressing
Mode. Register numbers from 1-15 are supported.
The specified register will contain the Addressing
Mode after a “MODE=ENTRY” form of the macro, and
must contain the Addressing Mode before a
“MODE=INITIAL” form of the macro is used.

Span Macros Manual Page 13
#SPANCHK Macro

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 13 of 94

2.3 #SPANCHK Macro - Data Verification Macro

The #SPANCHK macro provides coding to check the System Control Program
that is being run, the level of the Span Product program that is being assembled,
and other information that is required by the #SPANTRY macro which calls
#SPANCHK internally.

format:

 [(SCPVAL[,NOBASE])]
 #SPANCHK TYPE=[SCPVAL] [,SCP=scpname]
 [PRODLEV]

 [,ERROR=label] [,REG=gpr]

 [,PRODUCT=prodname]

where:
TYPE= - fixed keyword value

 - specifies the type of #SPANCHK function to be
performed.
TYPE=SCPVAL requests that in-line coding be
generated to verify that the SCP under which this
module is executing is compatible with the SCP for
which the module was generated; the “SCP=” and
“ERROR=” operands must be specified if
TYPE=SCPVAL. The SCP is checked by means of TM
instructions on the CVTDCB field.
TYPE=(SCPVAL,NOBASE) specifies that the
TYPE=SCPVAL function be performed and that
addressability to the CVT has already been
established; if the NOBASE subparameter is omitted,
instructions are generated to obtain addressability to
the CVT - the CVT DSECT must be included in the
assembly.
TYPE=PRODLEV requests that the currently defined
release level of the Span Program Product to which
this module belongs be returned as a 4-byte Global
SETC symbol; the calling program should include a
GBLC definition for the symbol &#RELNO.

SCP= - fixed keyword value
 - specifies the class of Operating System under which

this module is to be run. See #SPANTRY macro, SCP=
operand, for permissible values. This operand must be
present if TYPE=SCPVAL is specified.

ERROR= - label
 - specifies the label at the beginning of the coding within

the user program that handles SCP incompatibilities
for this module. This operand must be present if
TYPE=SCPVAL is specified.

Page 14 Span Macros Manual
#SPANCHK Macro

Page 14 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

REG= - General Purpose Register, symbolic register name
 - specifies a work register to be used by TYPE=SCPVAL

processing. Default is R14. This parameter is ignored
if TYPE=(SCPVAL,NOBASE) is specified.

PRODUCT= - Span Program Product common name
 - specifies the name of the Span Software product whose

release level is required to be returned in the
&#RELNO global variable. This parameter is required
if TYPE=PRODLEV is specified.

Span Macros Manual Page 15
#SPANLTG Macro

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 15 of 94

2.4 #SPANLTG Macro - LTORG and Patch Area
Generation

The #SPANLTG macro should be used in place of the LTORG assembler
statement. A LTORG statement is generated as well as a patch area for the
module. The patch area is a series of S-type constants, which greatly simplifies
the development of SUPERZAP fixes to code.

format:

 [[64]] [[NO]]
 (name) #SPANLTG [LENGTH=[]] [,PAD=[]]
 [[nn]] [[YES]]

 [,BASEREG=n] [,LEAVE=n]

where:
(name) - variable symbol name, max=8 bytes

 - specifies the value of a label to be placed on the
generated assembler DC instruction that defines the
patch area. This name appears as an 8-byte prefix to
the patch area. Default is “ZAPAREA” for the first use
of the #SPANLTG macro in an assembly, and a
system-generated name for subsequent #SPANLTG
macro instructions. If the name field defaults to
“ZAPAREA”, the patch area has a 16-byte prefix of the
form “ZAPAREA.csectname”.

LENGTH= - numeric value
 - specifies the number of half-words of patch area to be

generated in addition to the 8- or 16-byte patch area
prefix. Default value is 64.

PAD= - fixed keyword value
 - “PAD=YES” specifies that the patch area generated is

to extend to the limit of addressability of this module,
modified by the “BASEREG=” and “LEAVE=”
parameters.

BASEREG= - numeric value
 - specifies the number of base registers to be used to

calculate the maximum addressable size of the module
for the purposes of generating a patch area. This
parameter is used only if the “PAD=YES” parameter is
specified. The default if this parameter is not specified
is the number of base registers specified on the
preceding #SPANTRY macro.

LEAVE= - numeric value
 - specifies the number of half-words to be left within the

addressable size of this module at the end of the patch
area. This parameter is used only if the “PAD=YES”
parameter is specified. The default if this parameter is
not specified is zero, which means that the patch area

Page 16 Span Macros Manual
#SPANLTG Macro

Page 16 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

will exactly use up the addressing range of the base
registers.

Span Macros Manual Page 17
#SPANTRY Macro

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 17 of 94

2.5 #SPANTRY Macro - Module or Subroutine Entry
Point Macro

The #SPANTRY macro provides Entry Point linkage for all called routines,
including routines called by the Operating System. If coded at the start of an
assembly, #SPANTRY must be the first executable instruction in the Control
Section (and must be placed after the CSECT statement). Use of #SPANTRY
should not be mixed with the use of any other Entry Point macros; the
#SPANXIT macro should be used to provide matching Exit Point linkage. The
first invocation of #SPANTRY provides, by default, standard (Rn) Register
Equates.

format:

 [,S]
 (name) #SPANTRY [length] [,dname] []
 [,L]

 [{(r1,r2, ...)}]
 [,BASE={ }]
 [{NONE }]

 [[RENT]]
 [,TYPE=[STATIC]] [,PRODUCT=prodname]
 [[NOSAVE]]
 [[NOCHAIN]]

 [[NO]]
 [,CLEAR=[]]
 [[YES]]

 [[DOS]]
 [[DOS/VS]]
 [[SVS]]
 [[VS1]]
 [[OS]] [[1]]
 [,SCP=[OS/VS]] [,MODLEV=[]]
 [[VS2R2]] [[n]]
 [[VS2R3]]
 [[MVS]]
 [[MVS/XA]]
 [[MVS/ESA]]
 [[390]]
 [[OS/390]]
 [[Z/OS]]

 [[YES]] [[YES]]
 [,EXTCALL=[NO]] [,ASMTIME=[]]
 [[CSECT]] [[NO]]

 [[ESA]]
 [,LINKAGE=[STD]] [,CATCHER='eyecatcher']
 [[NONE]]

 [[YES]] [[ONLY]]
 [,MODUSE=[]] [,EQU=[NO]]
 [[NO]] [[regprefix]]

where:

Page 18 Span Macros Manual
#SPANTRY Macro

Page 18 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

(name) - variable symbol name, max=8 bytes for DOS
 - specifies the value of a label to be placed on the first

executable instruction generated by the #SPANTRY
macro; the value of “name” also appears as part of the
Entry Point constant. If “name” is not specified, the
CSECT name appears as part of the Entry Point
constant.

length - absolute value, symbolic name
 - used only if TYPE=RENT, default is 72; specifies the

length of the dynamic save area to be obtained upon
execution of the #SPANTRY macro. If an absolute
value is specified, the minimum value is 72. The
length specified must include 72 bytes for the standard
register save area (even if the LINKAGE=ESA option
is used). Indicate the absence of this parameter with a
comma if the “dname”, “L” or “S” value is to be
specified.

dname - symbolic name
 - used only if TYPE=RENT, no default; specifies the

name of a DSECT to be based over the dynamic save
area obtained upon execution of the #SPANTRY
macro. The DSECT must include at the start a
definition of the standard 72-byte register save area.
Indicate the absence of this parameter with a comma if
the “L” or “S” value is to be specified.

S - fixed character value
 - specifies that the length of the work area to be

obtained by the #SPANTRY macro (TYPE=RENT only)
is less than 4096 bytes. This is the default and will not
normally need to be specified.

L - fixed character value
 - specifies that the length of the work area to be

obtained by the #SPANTRY macro (TYPE=RENT only)
is greater than or equal to 4096 bytes. This parameter
need be specified only if a long work area is required
and the work area length is not specified as a numeric
value in the “length” parameter of this #SPANTRY
macro.

BASE= - Register number(s), symbolic register name(s), or the
keyword NONE

 - specifies the base register(s) to be used for this CSECT
or subroutine; default is R12. If more than one base
register is required, a list of registers may be specified,
enclosed in parentheses. On the second and
subsequent uses of the #SPANTRY macro in an
assembly, the value of BASE will be carried forward
from the first occurrence of #SPANTRY, base registers
apart from the first may be overridden in any
invocation of #SPANTRY, but the original base
registers will still be carried forward. All registers are

Span Macros Manual Page 19
#SPANTRY Macro

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 19 of 94

permitted as base registers, with the exception of R0,
R1, R13, R14, R15. The specification BASE=NONE
defines a module with no base registers at all, that
uses relative jump instructions instead of branch
instructions. This feature is for use in very special
cases, to produce large assembler modules that do not
use system services or standard Span Software or IBM
macros. The #SPANXIT and #SPAMODE macros
support the BASE=NONE feature.

TYPE= - fixed keyword value
 - specifies the type of #SPANTRY expansion to be

generated; default is RENT.
RENT specifies re-entrant coding with

dynamic save area.
STATIC specifies an in-line save area.
NOSAVE specifies that this routine will not

call a lower-level routine, no new
save area will be generated.

NOCHAIN specifies that save areas are pre-
chained, the save area addressed by
R13 upon execution of #SPANTRY
already points to a usable lower
save area.

PRODUCT= - Span program product common name
 - specifies the name of the Span Software program

product to which this module belongs, and causes a
Span Software Copyright notice to be generated.
PRODUCT should be specified only once for each load
module in the product; for modules which are not part
of any specific product, PRODUCT=UTIL should be
specified.

CLEAR= - fixed keyword value
 - CLEAR=YES specifies (for a TYPE=RENT expansion

only) that the dynamic save area allocated by the
#SPANTRY macro is to be set to binary zeros. The
cleared section of the dynamic save area begins after
the 72-byte register save area that is at the start of the
allocated storage. Code to perform storage clearing is
generated only if the dynamic save area length is
greater than 72 bytes. If this parameter is not
specified, the storage is not cleared.

Page 20 Span Macros Manual
#SPANTRY Macro

Page 20 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

SCP= - fixed keyword value
 - specifies the class of Operating System for which this

#SPANTRY generation should build code. SCP need
be specified only on the first occurrence of the
#SPANTRY macro; default is “OS/VS”.
DOS specifies DOS/VS Release 32

onwards
DOS/VS specifies DOS/VS Release 32

onwards
SVS specifies SVS only
VS1 specifies OS/VS1 only
OS specifies all versions of OS/360 and

OS/VS
OS/VS specifies OS/VS1, SVS, MVS,

MVS/XA, MVS/ESA
VS2R2 specifies MVS and later systems

only
VS2R3 specifies MVS and later systems

only
MVS specifies MVS and later systems

only
MVS/XA specifies MVS/XA and later systems

only
MVS/ESA specifies MVS/ESA and later

systems only
390 specifies OS/390 Version 1 and later

systems only
OS/390 specifies OS/390 Version 1 and later

systems only
Z/OS specifies z/OS systems only

MODLEV= - numeric value, DOS only
 - specifies the level of this module; ie MODLEV=1

specifies that this module is entered directly from
DOS, any other value specifies that this module is
called from another module using Span Software
standard linkage macros and conventions. Default is
MODLEV=1.

EXTCALL= - fixed keyword value
 - specifies, for the second or subsequent use of the

#SPANTRY macro in an assembly, that the Entry
Point at which the #SPANTRY macro is coded can be
called from an external CSECT.
EXTCALL=YES specifies that an external call is
possible and generates coding to reload base registers
for this module.
EXTCALL=NO specifies that this Entry Point is called
only from within this module.
EXTCALL=CSECT specifies that an external call is
possible from a different CSECT within the same
assembly - linkage is generated as if this were the only
#SPANTRY macro in this assembly.
Default is EXTCALL=NO.

Span Macros Manual Page 21
#SPANTRY Macro

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 21 of 94

ASMTIME= - fixed keyword value, not DOS
 - specifies whether (ASMTIME=YES) or not

(ASMTIME=NO) a character representation of the
time and date of assembly should be included as part
of the Entry Point constant for this module; default is
ASMTIME=YES. This parameter is ignored except on
the first occurrence of the #SPANTRY macro in an
assembly.

LINKAGE= - fixed keyword value, not DOS
 - specifies the module entry and exit linkage technique

to be used.
LINKAGE=STD (the default) uses traditional MVS
module linkage with register save area chaining.
LINKAGE=ESA uses the ESA Linkage Stack instead
of register save areas. The linkage stack is
manipulated via BAKR, PR and EREG instructions. If
this option is specified no SVCs will be issued in order
to allocate storage, and the module may be invoked by
an AR-mode caller.
LINKAGE=NONE does not use either save areas or
the linkage stack, and should be used with care.

CATCHER= - character string
 - specifies an optional “eye-catcher” literal string to be

included at the start of the module for identification
purposes. If the string contains blanks or special
characters it should be enclosed in single quotes. The
specified eye-catcher will be prefixed by two blank
characters when it is included in the module.

MODUSE= - fixed keyword value
 - specifies whether (MODUSE=YES) or not

(MODUSE=NO) a module/entry point use count should
be maintained by the #SPANTRY macro. This option
causes to be generated a fullword use count field
preceded by the 3-character literal “USE” within the
code of the Entry Point linkage. This count is
incremented by one each time a branch is taken to this
Entry Point. Note that if MODUSE=YES is used the
module is not strictly reentrant. MODUSE=YES is the
default except for TYPE=RENT.

EQU= - fixed keyword value or register prefix
 - EQU=ONLY specifies that no entry linkage at all is to

be generated; standard register equates are produced
if this is the first #SPANTRY macro in the assembly.
EQU=NO specifies that no register equates at all are
to be generated; if this is specified on the first
occurrence of #SPANTRY, subsequent occurrences of
#SPANTRY will not produce register equates either.
EQU=regprefix allows any user-defined register prefix
to be generated in addition to the standard Rx equates.

Page 22 Span Macros Manual
#SPANXIT Macro

Page 22 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

2.6 #SPANXIT Macro - Module or Subroutine Exit Point
Macro

The #SPANXIT macro provides exit linkage for all called routines, and is a
companion to the #SPANTRY macro.

format:

 [,S]
 (name) #SPANXIT [length] [,dname] []
 [,L]

 [,RC=returncode]

 [[RENT]] [(R0,)]
 [,TYPE=[STATIC]] [,PRESERV=(, ...)]
 [[NOSAVE]] [(R1,)]
 [[NOCHAIN]]

 [[ESA]]
 [,LINKAGE=[STD]]
 [[NONE]]

 [[NO]]
 [,CLEAR=[]]
 [[YES]]

 [,OPT=XCTL,TARGET=modname]

 [,PASS=parameter]

where:
(name) - variable symbol name, max=8 bytes for DOS

 - specifies the value of a label to be placed on the first
executable instruction generated by the #SPANXIT
macro.

length - absolute value, symbolic name
 - used only if TYPE=RENT specified on the #SPANXIT

macro or TYPE=RENT specified or defaulted on the
previous #SPANTRY macro; default is the length of
the dynamic save area specified on the previous
#SPANTRY macro, or 72 if none was specified.
Indicate the absence of this parameter with a comma if
the “dname”, “L” or “S” value is to be specified.

dname - symbolic name
 - reserved for compatibility with the #SPANTRY macro.

Indicate the absence of this parameter with a comma if
the “L” or “S” value is to be specified.

S - fixed character value
 - specifies that the length of the work area to be freed by

the #SPANXIT macro (TYPE=RENT only) is less than
4096 bytes. This is the default and will not normally
need to be specified.

Span Macros Manual Page 23
#SPANXIT Macro

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 23 of 94

L - fixed character value
 - specifies that the length of the work area to be freed by

the #SPANXIT macro (TYPE=RENT only) is greater
than or equal to 4096 bytes. This parameter need be
specified only if a long work area was obtained by the
corresponding #SPANTRY macro, or a long work area
was specified on this #SPANXIT macro, and the length
was not specified as a numeric value.

RC= - absolute value, Register number, symbolic register
name

 - specifies the return code to be passed to the calling
routine in general register 15. The maximum value
that should be contained in the specified register is
4095; if this parameter is omitted, register 15 is
assumed to contain the required return code and is
passed to the calling routine unchanged.

TYPE= - fixed keyword value
 - specifies the type of #SPANXIT expansion to be

generated - see #SPANTRY macro description. If this
parameter is omitted, the coding generated will be
compatible with the most recent #SPANTRY macro in
the assembly.

PRESERV= - fixed keyword value(s)
 - specifies one or both of registers R0 and R1 that are to

be passed back to the calling routine unchanged by the
#SPANXIT macro (ie not reloaded from the save area).
Register 0 is specified by the keyword “R0” and
register 1 by the keyword “R1”. If both registers are to
be preserved then specify the keywords as a list within
brackets and separated by commas.

LINKAGE= - fixed keyword value, not DOS
 - specifies the module entry and exit linkage technique

to be used.
LINKAGE=STD (the default) uses traditional MVS
module linkage with register save area chaining.
LINKAGE=ESA uses the ESA Linkage Stack instead
of register save areas. The linkage stack is
manipulated via BAKR, PR and EREG instructions.
LINKAGE=NONE does not use either save areas or
the linkage stack, and should be used with care.

CLEAR= - fixed keyword value
 - CLEAR=YES specifies (for a TYPE=RENT expansion

using ESA linkage only) that the dynamic save area
allocated by the #SPANTRY macro is to be set to
binary zeros before the storage is released. This
ensures that any contents of the dynamic save area
will be destroyed, and will not be visible to any
subsequent routine that issues a request for storage.
All the storage is cleared, including the register save

Page 24 Span Macros Manual
#SPANXIT Macro

Page 24 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

area. If this parameter is not specified, the storage is
not cleared before being released to the system.

OPT= - fixed keyword value
 - OPT=XCTL specifies that when the exit linkage is

complete this module wishes to transfer control by
means of OS SVC 7 to the load module specified in the
“TARGET=” parameter. If the “TARGET=” parameter
is omitted, OPT=XCTL has no effect.

TARGET= - load module name
 - valid only if OPT=XCTL is specified. Specifies the

name of the load module to which this module is to
transfer control.

PASS= - variable name
 - valid only if OPT=XCTL is specified. Specifies the

name of a variable whose address is to be contained in
register 1 when the module which is the target of the
XCTL receives control. Note that this variable address
should not be an address within the module issuing
#SPANXIT with this option, as this load module may
not be in storage when the target module receives
control. Note also that the PASS= option is not
compatible with the PRESERV= option if R1 is
preserved; if both these are specified, the PASS=
parameter will take precedence.

Span Macros Manual Page 25
#SPBINSR Macro

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 25 of 94

2.7 #SPBINSR Macro - Perform Binary Search of an
Ordered Table

The #SPBINSR macro provides a general-purpose binary search function for
ordered in-storage tables. Parameters are passed to the macro indicating the
address and characteristics of the table, and the address of a search argument. A
return code is issued indicating whether or not the search was successful, and, if
successful, the address of the matching table entry is returned. The #SPBINSR
macro may be executed in ASC AR mode on ESA-capable systems.

format:

 (name) #SPBINSR TABLE=(tablereg), TABEND=(endreg)

 [(reg)] [[0]]
 ,ENTLEN=[] [,OFFSET=[]]
 [length] [[offset]]

 [(reg)]
 ,ARG=[] ,ARGLEN=nnn
 [search-arg]

 [[(reg)]]
 [,WKREG=[]]
 [[(R2)]]

where:
(name) - variable symbol name

 - specifies the value of a label to be placed on the first
executable instruction generated by the #SPBINSR
macro.

TABLE= - general register (0 - 12, 14)
 - specifies a register that contains the address of the

start of the sorted in-storage table that is to be
searched.

TABEND= - general register (0 - 12, 15)
 - specifies a register that contains the address of the end

of the table. Note that the difference between the
values of the end of the table and the start of the table
must be a whole multiple of the table entry length,
which is specified by the ENTLEN parameter.

ENTLEN= - general register (2 - 12), or integer value
 - specifies the length of a single entry of the table.

OFFSET= - general register (2 - 12), or integer value
 - specifies the offset within each table entry to the key

field on which the table is sorted, and on which the
binary search is to be performed. The default offset is
zero.

ARG= - general register (2 - 12), or A-constant
 - specifies the address of the search argument. The

length of the argument must equal the key length of
the table, and is specified by the ARGLEN parameter.

Page 26 Span Macros Manual
#SPBINSR Macro

Page 26 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

ARGLEN= - general register (2 - 12), or integer value
 - specifies the key length of the table and the length of

the argument. The value specified must be less than
or equal to the length of a table entry, and has a
maximum value of 256 bytes.

WKREG= - general register (2 - 12)
 - specifies a register that may be used by the macro for

working. The register specified may be the same as
the register used for the TABLE or TABEND
parameter. If the WKREG parameter is omitted,
Register 2 will be used, and it will be saved in the save
area addressed by Register 13, and restored at the
completion of the macro.

Return Codes
After execution of the #SPBINSR macro, register 15 will contain one of the
following return codes:

0 The search was successful. Register 1 contains the address of the
table entry located.

4 The search was unsuccessful. The contents of Register 1 are
unpredictable.

Span Macros Manual Page 27
#SPCPTIM Macro

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 27 of 94

2.8 #SPCPTIM Macro - Execute Routine and Calculate
CPU Usage

The #SPCPTIM macro provides a means of simplifying the use of Span Software
program product SPMV-002 (SPSMFINF) when this is used to calculate the CPU
time used by a particular routine. After execution of the #SPCPTIM macro,
Register 1 contains the address of a 15-byte area containing the CPU time used
by the routine in question in character format, suitable for printing or displaying
in a WTO message.

Note that if this macro is to be used to invoke Release 2.x of SPSMFINF on an
MVS/SE or MVS/SP1 system then the SPSMFINF routine is entered in problem
mode and may not be able to give completely accurate information (CPU time up
to the last dispatch will be returned). For MVS/SP2 (MVS/XA) and later,
accurate information is returned when SPSMFINF is entered in problem mode.
See the SPSMFINF User Manual for further details. For SPANEX users the
#SPXSVC macro can be used for full access to SPSMFINF features, and the
SPANEX=YES operand of the #SPCPTIM macro will permit fully accurate
values for CPU time to be returned on MVS/SE and MVS/SP1 systems.

This macro generates a V-constant for the SPSMFASM entry point of the
SPSMFINF product unless either the INFEP= or the SPANEX=YES parameter
is specified.

format:

 (name) #SPCPTIM RTN=rtnname [,LINK=YES] [,SPANEX=YES]

 [[(reg)]]
 [,INFEP=[]]
 [[epaddr]]

where:
(name) - variable symbol name

 - specifies the value of a label to be placed on the first
executable instruction generated by the #SPCPTIM
macro.

RTN= - symbolic entry point name
 - specifies the name of the entry point of the routine

whose CPU time is to be measured.

LINK= - fixed keyword value
 - LINK=YES specifies that the entry point name

specified in to be invoked by means of a LINK (SVC 6).
If LINK=YES is not specified a CALL will be
generated to the specified entry point name.

Page 28 Span Macros Manual
#SPCPTIM Macro

Page 28 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

SPANEX= - fixed keyword value
 - SPANEX=YES specifies that this program will be run

only under SPANEX, and this macro will generate
linkage to the SPANEX SVC in order to access
SPSMFINF. There is no advantage in using this
option under an MVS/SP2 or later system. This
parameter is mutually exclusive with the INFEP=
parameter. If neither the SPANEX= nor the INFEP=
parameter is specified, this macro will generate a
V-constant for SPSMFASM. If SPANEX=YES is
specified and the program is run not under SPANEX,
the #SPCPTIM macro will perform no function.

INFEP= - SPSMFASM routine address label value, (register
2-12)

 - specifies the address of the SPSMFASM entry point of
the SPSMFINF product. If the label format is used,
the field addressed must contain the address of
SPSMFASM; if the register format is used, the
register containing the address of SPSMFASM must
be in the range 2 to 12. This parameter is mutually
exclusive with the SPANEX= parameter. If neither
the INFEP= nor the SPANEX= parameter is specified,
this macro will generate a V-constant for SPSMFASM.

Span Macros Manual Page 29
#SPGLBL Macro

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 29 of 94

2.9 #SPGLBL Macro - Define SPOUTPUT/SPZPARSE
Control Block

The #SPGLBL macro is assembled to define the internal control block required
by the SPOUTPUT and SPZPARSE service routines. TYPE=CSECT must be
specified in order to create the SPGLBL CSECT which must either be link-edited
with SPOUTPUT and SPZPARSE or available as a separate load module
“SPGLBL”. SPANEX user programs may obtain the address of the SPGLBL
CSECT from the SPXMGLBL field of the SPANEX ICB.

format:

 [[DSECT]] [[SYSLOG]]
 (name) #SPGLBL [TYPE=[]] [,DDNAME=[]]
 [[CSECT]] [[ddname]]

where:
(name) - symbolic name

 - specifies the value of a label to be placed on the
DSECT or CSECT statement generated at the start of
the control block definition. Default is SPGLBL.

TYPE= - fixed keyword value
 - specifies the type of #SPGLBL generation to be

performed:
TYPE=DSECT specifies that a dummy section be
generated to map the SPGLBL fields.
TYPE=CSECT specifies that the SPGLBL CSECT is
being generated.
TYPE=DSECT is the default if “TYPE=” is not
specified.

DDNAME= - symbolic value
 - specifies the DDNAME to be used for the SYSLOG

dataset output from the SPOUTPUT service routine if
the “LOG=YES” option is in effect. Default DDNAME
is “SYSLOG”.

Page 30 Span Macros Manual
#SPMSG Macro

Page 30 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

2.10 #SPMSG Macro - SPOUTPUT Parameter
Formatting

The #SPMSG macro is used to build a “stream mode” message to be output by
the SPOUTPUT service routine, and whose address can be inserted into the SOB
by means of the “MSG=” parameter of the #SPZSOB macro.

format:

 name #SPMSG 'text'

where:
name - variable symbol name

 - specifies the value of a label to be placed on the
message definition. The name field is required.

text - quoted character string
 - specifies the actual text of the message to be output.

Span Macros Manual Page 31
#SPMVCL Macro

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 31 of 94

2.11 #SPMVCL Macro - Simulate MVCL instruction

The #SPMVCL macro is a functional alternative to the MVCL instruction.
Benchmark tests have shown that this macro requires approximately 50% of the
CPU time used by the MVCL instruction, when used for non-trivial moves. This
macro should be considered as an alternative to the MVCL instruction when
large number of data moves are to be performed, or when performance is critical.
Note that the contents of both parameter registers, and of both odd-numbered
registers that are numerically one higher than the parameter registers, will be
destroyed by the execution of this macro. The contents of the registers after the
execution of this macro will not necessarily be the same as if the MVCL
instruction had been used. This macro does not currently support the pad
character or area filling functions of the MVCL instruction.

format:

 name #SPMVCL to-register, from-register

where:
name - variable symbol name

 - specifies the value of a label to be placed at the
beginning of the executable code generated by this
macro.

to-register - even-numbered general register
 - specifies the even-numbered register that contains the

address to which data is to be moved. The odd-
numbered register that is numerically one higher than
this must contain the length to be moved.

from-register - even-numbered general register
 - specifies the even-numbered register that contains the

address from which data is to be moved.

Page 32 Span Macros Manual
#SPTEST Macro

Page 32 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

2.12 #SPTEST Macro - Check Program Environment

The #SPTEST macro is used to generate code to check the environment in which
the program is executing (eg whether a TSO foreground or background task).
Note that the code produced by this macro is not re-entrant.

format:

 ([TSO])
 (name) #SPTEST ([] ,label)
 ([NOTTSO])

where:
(name) - variable symbol name

 - specifies the value of a label to be placed on the first
executable instruction generated by the #SPTEST
macro.

TSO - fixed keyword value
 - specifies that a check for running in TSO foreground is

to be made. If this program is running under TSO,
then a branch is taken to the address specified as
“label”, the second sub-parameter of the macro
operand. Note that one of “TSO” and “NOTTSO” must
be specified as the first sub-parameter of a two-sub-
parameter list and that the “label” value is required as
the second sub-parameter.

NOTTSO - fixed keyword value
 - specifies that a check for running in TSO foreground is

to be made. If this program is not running under TSO,
then a branch is taken to the address specified as
“label”, the second sub-parameter of the macro
operand. Note that one of “TSO” and “NOTTSO” must
be specified as the first sub-parameter of a two-sub-
parameter list and that the “label” value is required as
the second sub-parameter.

Span Macros Manual Page 33
#SPXFIND Macro

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 33 of 94

2.13 #SPXFIND Macro - Invoke SPANEX Lookup
Functions

The #SPXFIND macro may be used by user or SPANEX modules to perform
control block look-up functions. Control blocks for the SPANEX Restart and Job
Networking facilities that may be found are: JRCB (Job Restart Control Block),
SRCB (Step Restart Control Block), JRCX (JRCB Extension), CLABE (Catalog
Look-Aside Buffer Entry). If the requested control block is successfully found,
Register 15 on return from the macro will contain zero, and Register 1 will
contain the address of the control block. For further information on the use and
function of the SPANEX product, see the SPANEX General Usage Manual, Span
Software Manual Ref: SPX-02.

format:

 [JRCB]
 (name) #SPXFIND [SRCB] [,N] [,JOBNAME=jobname]
 [JRCX]
 [CLABE]

 [,JRCB=jrcbaddr]

where:
(name) - variable symbol name

 - specifies the value of a label to be placed on the first
executable instruction generated by the #SPXFIND
macro.

type - fixed keyword value
 - the first operand of the #SPXFIND macro specifies the

type of lookup to be performed:
JRCB specifies that a JRCB is to be found; the
JOBNAME= parameter is required for this function.
SRCB specifies that a SRCB is to be found; the
JRCB= parameter is required for this function.
JRCX specifies that a JRCB extension is to be found;
the JRCB= parameter is required for this function.
CLABE specifies that a CLAB entry is to be found; the
JRCB= parameter is required for this function.

N - fixed keyword value
 - specifies that an Abend is not to be generated if the

required control block cannot be found. If this
parameter is specified, a non-zero value in Register 15
indicates that the control block cannot be located.
Without this parameter, an Abend U0056 is generated
for this condition.

JOBNAME= - label, (general register)
 - specifies the Jobname for which a control block is to be

found.

Page 34 Span Macros Manual
#SPXFIND Macro

Page 34 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

JRCB= - label, (general register)
 - specifies the JRCB address for which a related control

block is to be found.

Span Macros Manual Page 35
#SPXICB Macro

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 35 of 94

2.14 #SPXICB Macro - Generate SPANEX DSECTs

The #SPXICB macro is required by user modules that are to run as SPANEX
Span Product programs, by SPANEX modules, and by SPANEX Installation Exit
routines, SPANEX restart user exit routines, SPANEX user submit routines or
any other SPANEX exit routines. A USING statement on symbol SPXICB
provides addressability as required by other SPANEX macros. In addition to the
#SPXICB macro, a COPY statement must be included at the beginning of the
assembly for #SPXGLOB. For further information on the use and function of the
SPANEX product, see the SPANEX General Usage Manual, Span Software
Manual Ref: SPX-02.

format:

 [[YES]
 #SPXICB [DSECT=NO] [,SVCPARM=[NO]]
 [[ONLY]]

where:
DSECT= - fixed keyword value

 - DSECT=NO specifies that no “DSECT” statement is to
be generated at the beginning of the Internal Control
Block section.

SVCPARM= - fixed keyword value
 - SVCPARM=YES specifies that the SPANEX SVC

parameter blocks DSECT is required.
SVCPARM=NO specifies that the SPANEX SVC
parameter blocks are not to be mapped.
SVCPARM=ONLY specifies that only the SPANEX
SVC parameter blocks DSECT is required, and not the
Internal Control Block DSECT.
Default is SVCPARM=YES.

Page 36 Span Macros Manual
#SPXICBA Macro

Page 36 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

2.15 #SPXICBA Macro - Find Field in SPANEX ICB

The #SPXICBA macro is recommended to be used by user modules that are to
access fields in the SPANEX ICB (mapped by the #SPXICB macro). The offsets
to some of the fields in the ICB can change from one SPANEX release to another,
and from one operating system to another. Use of the #SPXICBA macro to
obtain addressability to ICB fields ensures compatibility between user programs
and SPANEX. Addressability to the SPANEX ICB is required for execution of
this macro. For further information on the use and function of the SPANEX
product, see the SPANEX General Usage Manual, Span Software Manual Ref:
SPX-02.

format:

 (name) #SPXICBA fieldname [,register]

where:
(name) - variable symbol name

 - specifies the value of a label to be placed on the first
executable instruction generated by the #SPXICBA
macro.

fieldname - standard ICB field name
 - specifies the name of the field within the SPANEX ICB

for which addressability is required. The following is a
list of the fields within the ICB for which use of the
#SPXICBA macro is essential:
SPXOPENL SPXCLOSL SPXESTL
SPXEXTL SPXATTCH SPXUDCB
SPXSDCB SPXSOB SPXUSOB
SPXSTAXL SPXXAMSG SPXXASVC
SPXLINE1 SPXKSCDT SPXSCAS1
SPXCPUID SPXACHKX SPXTCBOK
SPXADYNA SPXAJBST SPXDATA3
SPXCALTB SPXCALUS SPXRACFN

register - register number, register equated symbol
 - specifies the general register to be used to return the

address of the required field. If this parameter is
omitted, Register 1 is used.

Span Macros Manual Page 37
#SPXMSG Macro

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 37 of 94

2.16 #SPXMSG Macro - Internal Message Request to
SPANEX

The #SPXMSG macro is used by SPANEX modules to issue messages to all
SPANEX destinations including the SPANEX Message Log, using the SPANEX
message editing facilities. User programs should normally use the #SPXUMSG
macro in preference to the #SPXMSG macro.

format:

 [[label]]
(name) #SPXMSG [msgid] [,TEXT=[]]
 [[(register)]]

 [[YES]]
 [,FILLIN=NO] [,CNSL=[]]
 [[FORCE]]

 [,ABTERM=YES] [,SEND=YES] [,PUTLINE=YES]

 [[YES]] [[YES]]
 [,LOG=[ONLY]] [,GLOG=[]]
 [[CLOSE]] [[ONLY]]

where:
(name) - variable symbol name

 - specifies the value of a label to be placed on the first
executable instruction generated by the #SPXMSG
macro.

msgid - numeric SPANEX message ID
 - specifies the number of the SPANEX canned message

to be issued. This number is the relative position in
the SPANEX message tables of the message to be
issued and is also the number that appears in the
“SPXnnn” message identifier of the message itself.
The maximum value of “msgid” is “995” for users of the
#SPXMSG macro. Note that the “msgid” and “TEXT=”
operands are mutually exclusive.

TEXT= - label, (general register)
 - specifies the address of the message text to be issued

as a SPANEX message. The first byte of the text area
contains the length of the remaining bytes of the text
area (as built by the #SPMSG macro). Specify
“TEXT=(0)” if register 0 is already loaded with the
address of the message text area with the appropriate
option flag settings in the high-order byte - this option
is not permitted if the “GLOG=” parameter is specified.
Note that the “msgid” and “TEXT=” operands are
mutually exclusive.

Page 38 Span Macros Manual
#SPXMSG Macro

Page 38 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

FILLIN= - fixed keyword value
 - FILLIN=NO specifies that editing of the supplied text

should not be performed by the SPANEX message
service routines. Editing is performed if FILLIN=NO
is not specified.

CNSL= - fixed keyword value
 - CNSL=YES specifies that the message should be

issued as a WTO message if SPANEX is running as a
batch job and has the “OPT=H” SPANEX option in
effect. The message will also appear on the SPANEX
Message Log.
CNSL=FORCE specifies that the message should be
issued as a WTO message if SPANEX is running as a
batch job regardless of any SPANEX option
specification. The message will also appear on the
SPANEX Message Log.

ABTERM= - fixed keyword value
 - ABTERM=YES specifies that SPANEX should be

Abended (in batch) with a code User 16 after issuing
this message. The #SPXMSG macro will not return if
“ABTERM=YES” is specified.

SEND= - fixed keyword value
 - SEND=YES specifies that the message should be

issued to the SPANEX NOTIFY userid (if any) to be
received by him (if a TSO user) when he next logs on to
TSO.

PUTLINE= - fixed keyword value
 - PUTLINE=YES specifies that the message be issued

as a PUTLINE to the TSO user if this program is being
run as a TSO task. This option will be implemented
only if SPANEX is running as a TSO Command
Processor.

LOG= - fixed keyword value
 - LOG=CLOSE specifies that SPANEX has finished

issuing messages. A #SPXMSG macro with the
LOG=CLOSE operand will be the last #SPXMSG
macro issued by SPANEX. The “msgid” and “TEXT=”
operands are ignored if LOG=CLOSE is specified.
LOG=ONLY specifies that this message is to be sent to
the SPANEX Message Log only and that other
message destinations are to be ignored.
LOG=YES is the default and specifies that this
message is to be sent to the SPANEX Message Log.
All messages are sent to the SPANEX Message Log
except when the “GLOG=ONLY” parameter is
specified.

Span Macros Manual Page 39
#SPXMSG Macro

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 39 of 94

GLOG= - fixed keyword value
 - GLOG=YES specifies that this message is to be sent to

the SPANEX Global Log dataset (if any, supported
only for SPANEX job networks and defined in the
SPANEX Restart Control Module for the network)
after it has been issued to any other destinations
specified.
GLOG=ONLY specifies that this message is to be sent
to the SPANEX Global Log only.
Note that it is not valid to specify the “GLOG=”
parameter if “TEXT=(0)” is specified.

Page 40 Span Macros Manual
#SPXQ Macro

Page 40 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

2.17 #SPXQ Macro - Locate SPANEX Internal Control
Block

The #SPXQ macro is provided for SPANEX user programs to enable the address
of the SPANEX Internal Control Block (ICB) to be obtained if this is not
available from the original parameter passed by SPANEX. The #SPXQ macro
also enables all programs to determine whether or not they are executing under
the control of SPANEX. Programs which use the #SPXQ macro must also
include the Operating System DSECT macros for the PSA (MVS only), CVT and
TCB. Note that the code generated by the #SPXQ macro is Operating System
dependent, and modules using it must be re-assembled before being executed
under a different Operating System.

format:

 (name) #SPXQ [USERCHK=YES]

where:
(name) - variable symbol name

 - specifies the value of a label to be placed on the first
executable instruction generated by the #SPXQ macro.

USERCHK= - fixed keyword value
 - USERCHK=YES specifies that the user program that

is issuing the #SPXQ macro is always to be run with
the “OPT=C” SPANEX option because the Operating
System Checkpoint/Restart system is being used. This
parameter is not required for programs not using OS
Checkpoint/Restart.

Return Codes
After execution of the #SPXQ macro, register 15 will contain one of the following
return codes:

0 The issuing routine is executing as part of the SPANEX control
task, register 1 contains the address of the SPANEX ICB.

4 The issuing routine is executing as a subtask of SPANEX, register
1 contains the address of the SPANEX ICB.

8 The issuing routine is not executing under the control of SPANEX,
register 1 has no meaning.

Span Macros Manual Page 41
#SPXRSTU Macro

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 41 of 94

2.18 #SPXRSTU Macro - Request to SPANEX Utility

The #SPXRSTU macro is used by SPANEX Restart and Job Networking user exit
routines or user application programs, that are running with SPANEX option
“OPT=M”, to access the SPANEX Utility user interface. This can be used to
inquire as to the status of user program execution (as far as the Restart and
Networking facilities are concerned), to set or to remove an error condition (to
force or prevent a restart), and to CANCEL or SCHEDULE the execution of a job
that is a member of a SPANEX job network from within another job in the same
job network. This macro is also used to manipulate the “last-run” status for a
multiple-execution SPANEX job, and to issue internal HOLD and POST
commands for jobs within a SPANEX network. Note that many of the functions
provided via the #SPXRSTU macro do not actually take effect until the normal
termination of the jobstep in which they are invoked - step termination is taken
as a synchronization point by SPANEX to ensure consistent and valid processing.

format:

 (name) #SPXRSTU TYPE=calltype [,JOBNAME=area]

 [,EVENT=event]

where:
(name) - variable symbol name

 - specifies the value of a label to be placed on the first
executable instruction generated by the #SPXRSTU
macro.

TYPE= - fixed keyword value
 - specifies the SPANEX Utility function name required.

Valid “calltype” values:
TYPE=SETERR Force a restart next run of this job,

regardless of Abend or Return Code
from this application program. This
option will reset a previous
“TYPE=SETOK” request.

TYPE=SETOK Prevent a restart next run of this
job, even if this jobstep Abends or
terminates with an abnormal
Return Code. This option will reset
a previous “TYPE=SETERR”
request.

TYPE=INQ Inquire whether or not restart is to
be required due to error or
“TYPE=SETERR” request so far.

TYPE=CANCEL Cancel a network job. The name of
the job to be cancelled must be
supplied by means of the
“JOBNAME=” parameter. The
cancel will be actioned only if the job
in question has not yet been
scheduled by SPANEX.

TYPE=SCHEDULE
Schedule a network job. The name
of the job to be scheduled must be

Page 42 Span Macros Manual
#SPXRSTU Macro

Page 42 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

supplied by means of the
“JOBNAME=” parameter. The
schedule will be actioned only if the
job in question has not yet been
scheduled by SPANEX, and will not
take place until the termination of
the user program issuing the
#SPXRSTU macro with this option.

TYPE=(SCHEDULE,FORCE)
Schedule a network job that is
EXCLUDEd from the network. The
name of the job to be scheduled
must be supplied by means of the
“JOBNAME=” parameter. The
schedule will be actioned only if the
job in question has not yet been
scheduled by SPANEX, and will not
take place until the termination of
the user program issuing the
#SPXRSTU macro with this option.

TYPE=LASTRUN
Indicate, for a multiple-execution
job, that this is the last execution of
the job for this run of the network.
This function can be used only from
within the multiple-execution job
itself. The job must be defined with
the “PROCESS=MULT” option on
the #SPXJOB macro in the RCM
generation. This option will reset a
previous “TYPE=NOTLAST”
request.

TYPE=NOTLAST
Indicate, for a multiple-execution
job, that this is not the last
execution of the job for this run of
the network. This function can be
used only from within the multiple-
execution job itself. The job must be
defined with the
“PROCESS=MULT” option on the
#SPXJOB macro in the RCM
generation. This option will reset a
previous “TYPE=LASTRUN”
request.

TYPE=HOLD Issue internally a SPANEX Utility
HOLD command for an event for
another job within the same
network. The name of the job to be
held must be specified by means of
the JOBNAME= parameter, and the
event number (from 1-8) must be
specified by means of the EVENT=
parameter.

Span Macros Manual Page 43
#SPXRSTU Macro

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 43 of 94

TYPE=POST Issue internally a SPANEX Utility
POST command to signal an event
complete for another job within the
same network. The name of the job
to be held must be specified by
means of the JOBNAME=
parameter, and the event number
(from 1-8) must be specified by
means of the EVENT= parameter.

JOBNAME= - area addr, (general register)
 - specifies the address of an 8-byte area which contains

the name of the job to be cancelled, scheduled, held or
posted. This parameter is required for TYPEs
“CANCEL”, “SCHEDULE”, “(SCHEDULE,FORCE)”,
“HOLD” and “POST”.

EVENT= - event number, (general register)
 - specifies the number (from 1-8) of the external event

whose status is to be changed by means of a HOLD or
POST function call. The event should be specified
either as a literal number, or in a general register. If
register notation is used, the nominated register must
contain the binary event number in its low-order byte.
This parameter is required for TYPEs “HOLD” and
“POST”.

Return Codes
After execution of the #SPXRSTU macro, register 15 will contain one of the
following return codes.

TYPE=SETERR 0 always

TYPE=SETOK 0 always

TYPE=INQ 0 No error has occurred or been requested
4 The error condition is set

TYPE=CANCEL 0 Job cancelled. Note that any post-
requisite jobs of the cancelled job that may
become eligible for scheduling as a result
of the cancellation just performed will not
be automatically scheduled by SPANEX
until the end of the current jobstep.

4 Job requested for cancel not found in the
current Restart Control Module, or illegal
TYPE=CANCEL macro call, eg not from a
user program in OPT=M step.

8 The current Restart Control Module does
not define a SPANEX job network.

12 Catalog error occurred during cancel
processing.

16 Job not cancelled because it has already
been scheduled.

Page 44 Span Macros Manual
#SPXRSTU Macro

Page 44 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

TYPE=SCHEDULE
0 Job set for scheduling. Note that the job

will not be automatically scheduled by
SPANEX until the end of the current
jobstep.

4 Job requested for schedule not found in
the current Restart Control Module, or
illegal TYPE=SCHEDULE macro call, eg
not from a user program in OPT=M step.

8 The current Restart Control Module does
not define a SPANEX job network.

12 Catalog error occurred during schedule
processing.

16 Job not scheduled because it has already
been scheduled.

20 Job not scheduled because it is
EXCLUDEd from the network. The user
program may cause the scheduling of this
job if required by means of a
TYPE=(SCHEDULE,FORCE) call to the
#SPXRSTU macro.

TYPE=(SCHEDULE,FORCE)
0 Job set for scheduling. Note that the job

will not be automatically scheduled by
SPANEX until the end of the current
jobstep.

4 Job requested for schedule not found in
the current Restart Control Module, or
illegal macro call, eg not from a user
program in OPT=M step.

8 The current Restart Control Module does
not define a SPANEX job network.

12 Catalog error occurred during schedule
processing.

16 Job not scheduled because it was not
EXCLUDEd from the network, or job has
already been force-scheduled.

TYPE=LASTRUN 0 Function successfully completed.
Subsequent jobs will be scheduled upon
successful completion of the last step of
this job, without operator action.

4 Job not found in the current Restart
Control Module, or illegal macro call, eg
not from a user program in OPT=M step.

8 The current Restart Control Module does
not define a SPANEX job network.

12 Catalog error occurred during processing
of the LASTRUN function.

16 Job is not defined with the
PROCESS=MULT option in the RCM.

Span Macros Manual Page 45
#SPXRSTU Macro

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 45 of 94

TYPE=NOTLAST 0 Function successfully completed.
Subsequent jobs will not be scheduled
upon successful completion of the last step
of this job.

4 Job not found in the current Restart
Control Module, or illegal macro call, eg
not from a user program in OPT=M step.

8 The current Restart Control Module does
not define a SPANEX job network.

12 Catalog error occurred during processing
of the NOTLAST function.

16 Job is not defined with the
PROCESS=MULT option in the RCM.

TYPE=HOLD 0 Function successfully completed. The
requested event will be set not-complete
for the specified job during step
termination processing for this job.

4 Job for which HOLD processing was
requested was not found in the current
Restart Control Module, or illegal macro
call, eg not from a user program in
OPT=M step.

8 The current Restart Control Module does
not define a SPANEX job network.

12 Catalog error occurred during processing
of the HOLD function.

16 HOLD request was invalid because the
Job was EXCLUDEd from this run of the
network, or had already begun execution.

20 HOLD request rejected because the
specified Event Number was not in the
range 1-8.

TYPE=POST 0 Function successfully completed. The
requested event will be set complete for
the specified job during step termination
processing for this job.

4 Job for which POST processing was
requested was not found in the current
Restart Control Module, or illegal macro
call, eg not from a user program in
OPT=M step.

8 The current Restart Control Module does
not define a SPANEX job network.

12 Catalog error occurred during processing
of the POST function.

16 POST request was invalid because the Job
was EXCLUDEd from this run of the
network, or had already begun execution.

20 POST request rejected because the
specified Event Number was not in the
range 1-8.

Page 46 Span Macros Manual
#SPXSVC Macro

Page 46 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

2.19 #SPXSVC Macro - Issue SPANEX SVC

The #SPXSVC macro is used by user modules that are authorized to run as
SPANEX “Span Product” programs and provides access to SPANEX SVC
services. Addressability to the SPANEX ICB is required. This macro is also used
extensively within SPANEX modules to perform SVC functions.

format:

 (name) #SPXSVC TYPE=svctype [,BRANCH=NO]

where:
(name) - variable symbol name

 - specifies the value of a label to be placed on the first
executable instruction generated by the #SPXSVC
macro.

TYPE= - fixed keyword value
 - specifies the SPANEX SVC function name required.

Note that all parameter registers should be loaded
before issuing the #SPXSVC macro.
Valid “svctype” values:
TYPE=GETAUTH Obtain APF authority
TYPE=RSETAUTH Remove APF authority
TYPE=SETSWAP Set Address Space swappable

(MVS) - causes OKSWAP
SYSEVENT to be issued

TYPE=NONSWAP Set Address Space non-
swappable (MVS) - causes
TRANSWAP SYSEVENT to
be issued

TYPE=SVC34 Issue SVC 34 for OS
command

TYPE=GETCSCB Allocate and build SPANEX
CSCB

TYPE=FREECSCB Dechain and free SPANEX
CSCB

TYPE=OWNCODE Execute caller's code in Key 0
TYPE=SDUMP1 Issue SDUMP SVC for user

abend
TYPE=SDUMP2 Issue SDUMP SVC for

operator command
TYPE=SDUMP3 Issue SDUMP SVC with user

dump title
TYPE=SWAIT Issue WAIT SVC on protected

ECB or ECBLIST
TYPE=SIGNON Initiate SPANEX Span

Product
TYPE=CPUTIME Enter SPSMFASM in

supervisor mode (valid only if
SPSMFINF product is
installed, MVS only)

TYPE=DASDUCB Perform UCB lookup

Span Macros Manual Page 47
#SPXSVC Macro

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 47 of 94

BRANCH= - fixed keyword value
 - BRANCH=NO specifies that this #SPXSVC macro is to

be executed by a user program task (SPANEX
subtask) and therefore cannot use the branch interface
to the SPANEX SVC facilities. If this operand is not
specified and the #SPXSVC macro is executed by a
user program, an abend of the user task will result.
Default is BRANCH=YES for use by SPANEX modules
and user exit routines only.

Parameter Registers and Return Codes

GETAUTH
Input R0 No applicable information

R1 No applicable information
Returns R15=0 Authorization has been set

R15=4 Authorization has not been set because
already authorized

RSETAUTH
Input R0 No applicable information

R1 No applicable information
Returns R15=0 Always

SETSWAP/NONSWAP
Input R0 No applicable information

R1 No applicable information
Returns R15=SRM Return Code from SYSEVENT

SVC34
Input R0 SVC 34 parameter register

R1 SVC 34 parameter register

GETCSCB (For SPANEX Internal Use Only)
Input R0 No applicable information

R1 No applicable information
Returns R15=0 SPANEX CSCB built

R15=4 SPANEX CSCB already built,
STOP/MODIFY ECB reset

FREECSCB (For SPANEX Internal Use Only)
Input R0 No applicable information

R1 No applicable information
Returns R15=0 SPANEX CSCB freed

R15=4 SPANEX CSCB does not exist

OWNCODE
Input R0 No applicable information

R1 Parameter (if any) to user code
R15 Addr of user code entry point

Returns R15 As set by user code

Page 48 Span Macros Manual
#SPXSVC Macro

Page 48 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

SDUMP1/SDUMP2 (For SPANEX Internal Use Only)
Input R0 No applicable information

R1 No applicable information
Returns R15=0 SDUMP successfully taken

R15=4 Partial SDUMP taken
R15=8 SDUMP not taken

SDUMP3
Input R0 No applicable information

R1 Addr of user dump title (first byte of title
is length of remainder)

Returns R15=0 SDUMP successfully taken
R15=4 Partial SDUMP taken
R15=8 SDUMP not taken

SWAIT
Input R0 SVC WAIT parameter register

R1 SVC WAIT parameter register

SIGNON (For SPANEX Internal Use Only)
Input R0 No applicable information

R1 No applicable information

CPUTIME
Input R0 No applicable information

R1 As required by SPSMFASM
Returns R15 As set by SPSMFASM

DASDUCB
Input R0 No applicable information

R1 No applicable information
Returns R15=0 VolSer in SPXCVOL field of ICB is not

online
R15=4 VolSer in SPXCVOL field of ICB is online
R1 Addr of UCB for SPXCVOL volume (if

R15=4)

Span Macros Manual Page 49
#SPXUDDN Macro

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 49 of 94

2.20 #SPXUDDN Macro - Specify DDNAME for
#SPXUMSG Message Requests

The #SPXUDDN macro is used by user modules that are designed to run as
SPANEX “Span Product” programs and provides the ability to change the
DDNAME used by SPANEX for user-issued messages. If the #SPXUDDN macro
is not used, user messages will appear on the SPANEX Message Log. The
#SPXUDDN macro must be executed before any #SPXUMSG macros or
immediately preceded by a #SPXUMSG macro with the “CLOSE=YES” option.

format:

 (name) #SPXUDDN DDNAME=ddname

where:
(name) - variable symbol name

 - specifies the value of a label to be placed on the first
executable instruction generated by the #SPXUDDN
macro.

DDNAME= - symbolic name, (general register)
 - specifies the DDNAME (maximum 8 bytes) to be used

for printed messages issued by the SPANEX user
program via the #SPXUMSG macro. If the register
format is used, the general register specified must
contain the address of an 8-byte area which contains
the required DDNAME, padded on the right with
blanks if necessary.

Page 50 Span Macros Manual
#SPXUMSG Macro

Page 50 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

2.21 #SPXUMSG Macro - User Message Request to
SPANEX

The #SPXUMSG macro is used by user modules that are designed to run as
SPANEX “Span Product” programs, and provides the ability to issue messages to
all SPANEX destinations including the SPANEX Message Log, using the
SPANEX message editing facilities.

format:

 [[label]]
(name) #SPXUMSG [TEXT=[]]
 [[(register)]]
 [CLOSE=YES]

 [,PRINT=ONLY] [,FILLIN=NO] [,CNSL=YES]

 [,ABTERM=YES] [,SEND=YES] [,PUTLINE=YES]

where:
(name) - variable symbol name

 - specifies the value of a label to be placed on the first
executable instruction generated by the #SPXUMSG
macro.

TEXT= - label, (general register)
 - specifies the address of the message text to be issued

as a SPANEX message. The first byte of the text area
contains the length of the remaining bytes of the text
area (as built by the #SPMSG macro). Specify
“TEXT=(0)” if register 0 is already loaded with the
address of the message text area with the appropriate
option flag settings in the high-order byte.

CLOSE= - fixed keyword value
 - CLOSE=YES specifies that the user has finished

issuing SPANEX messages. A #SPXUMSG macro
with the CLOSE=YES operand should be the last
#SPXUMSG macro issued by the user program, and
should also immediately precede the #SPXUDDN
macro if used to effect a change of print output
DDNAME. The TEXT= operand is ignored if
CLOSE=YES is specified.

PRINT= - fixed keyword value
 - PRINT=ONLY specifies that this message is to be sent

only to the SPANEX Message Log (or user data set if
the #SPXUDDN macro has been used to change
DDNAME), and that other message destinations are to
be ignored.
PRINT=YES is the default and specifies that this
message is to be sent to the SPANEX Message Log (or
user data set), in addition to any other destinations.

Span Macros Manual Page 51
#SPXUMSG Macro

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 51 of 94

FILLIN= - fixed keyword value
 - FILLIN=NO specifies that editing of the supplied text

should not be performed by the SPANEX message
service routines. Editing is performed if FILLIN=NO
is not specified.

CNSL= - fixed keyword value
 - CNSL=YES specifies that the message should be

issued as a WTO message if the user program is
running as a batch job. The message will also appear
on the SPANEX Message Log.

ABTERM= - fixed keyword value
 - ABTERM=YES specifies that the user program should

be Abended (in batch) with a code User 16 after
issuing this message. The #SPXUMSG macro will not
return if “ABTERM=YES” is specified.

SEND= - fixed keyword value
 - SEND=YES specifies that the message should be

issued to the SPANEX NOTIFY userid (if any) to be
received by him (if a TSO user) when he next logs on to
TSO.

PUTLINE= - fixed keyword value
 - PUTLINE=YES specifies that the message be issued

as a PUTLINE to the TSO user if this program is being
run as a TSO task. This option will be implemented
only if SPANEX is running as a TSO Command
Processor.

Page 52 Span Macros Manual
#SPZCLOS Macro

Page 52 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

2.22 #SPZCLOS Macro - SPZQPAM Close Macro

The #SPZCLOS macro is functionally equivalent to an Operating System
“CLOSE” macro, and closes one DCB that has been in use by the Span Software
SPZQPAM Queued PDS Access Method service routine.

format:

 (name) #SPZCLOS dcbaddr

where:
(name) - variable symbol name

 - specifies the value of a label to be placed on the first
executable instruction generated by the #SPZCLOS
macro.

dcbaddr - address field, (general register)
 - specifies the address of the Data Control Block that is

to be closed by SPZQPAM. See the Span Service
Routines manual for usage information on SPZQPAM.

Span Macros Manual Page 53
#SPZCMD Macro

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 53 of 94

2.23 #SPZCMD Macro - SPZPARSE Parameter
Formatting

The #SPZCMD macro is used to define a valid control statement command to the
SPZPARSE Span Service Routine. It produces non-executable code that is
passed as a parameter to the SPZPARSE routine by means of the #SPZPARS
macro. There must be one #SPZCMD macro for each valid command, and each
must be followed by #SPZPOSN and/or #SPZKWRD macros defining the
parameters for that command. A #SPZCMD macro with an “ID=” parameter
different from the previous ID value delimits a set of definition macros and
begins a new set. See the Span Service Routines manual for usage information
about the SPZPARSE routine.

format:

(name) #SPZCMD [command] ,RTN=rtnaddr [,ID=cmdid]

 [,ALIAS=aliasname]

where:
(name) - variable symbol name

 - specifies the value of a label to be placed on the first
instruction generated by the #SPZCMD macro.

command - character command name, max=8 bytes
 - specifies the command to be recognized by SPZPARSE.

This positional parameter is required, unless control
statements with no command are to be accepted, in
which case this must be the only #SPZCMD macro
with no “command” parameter in this set of
SPZPARSE definition macros.

RTN= - label value
 - specifies the address of a routine in the user program

that is to be given control when a control statement
with the command specified (or with no command if
the “command” positional parameter is omitted) is
encountered. This routine will be entered with all
registers (except 1,14,15) containing the same as
before the #SPZPARS macro was issued, and with all
operand parameter blocks filled in from the command
operands.

ID= - single character macro-set identifier
 - specifies an identifier by which a set of SPZPARSE

definition macros may be identified. The value of this
operand is specified in the “CMDID=” parameter of the
#SPZPARS macro in order to identify the set of
commands permitted.

Page 54 Span Macros Manual
#SPZCMD Macro

Page 54 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

ALIAS= - character command name, max=8 bytes
 - specifies an alias (alternative command name) of the

control statement command specified by the
“command” parameter. If the value specified for
ALIAS is encountered in a control statement, the
control statement is processed exactly as if the value
specified for the “command” parameter were found.
This parameter should be used to permit either
alternative command names or abbreviations to be
used for commands.

Span Macros Manual Page 55
#SPZFIND Macro

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 55 of 94

2.24 #SPZFIND Macro - Position to a Partitioned Dataset
Member when using SPZQPAM

The #SPZFIND macro is exactly equivalent to the standard Operating System
FIND macro, and is used instead of the FIND macro in user programs using the
SPZQPAM Span Service Routine. Existing user programs that use the standard
FIND with SPZQPAM must be changed to use #SPZFIND in order to run
successfully with OS/390 Version 2.4.0 and later. The parameters of #SPZFIND
are exactly equivalent to the parameters for FIND, and the appropriate
Operating System manual should be referred to for definitive parameter
descriptions.

format:

(name) #SPZFIND dcbaddr,

 {nameaddr,D}
 { }
 {ttrcaddr,C}

where:
(name) - variable symbol name

 - specifies the value of a label to be placed on the first
instruction generated by the #SPZFIND macro.

dcbaddr - DCB address
 - specifies the address of the opened DCB for the

Partitioned Dataset being accessed via SPZQPAM.

nameaddr,D - address of member name
 - specifies the address of the member name within the

Partitioned Dataset of the member to which position is
to be set. The fixed character parameter “D” must be
specified after the name address to indicate that a
search by member name is being performed. Only one
of the nameaddr and ttrcaddr parameters may be
specified.

ttrcaddr,C - address of TTRC field
 - specifies the address of a 4-byte field which contains a

ttr (relative DASD address) in the first 3 bytes and a
concatenation number in the fourth byte. This value
may have been returned by an Operating System
BLDL macro, or from the results of an invocation of
the SPZDIRD Span Service Routine. Only one of the
nameaddr and ttrcaddr parameters may be specified.

Page 56 Span Macros Manual
#SPZFLD Macro

Page 56 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

2.25 #SPZFLD Macro - SPOUTPUT Parameter
Formatting

The #SPZFLD macro is used in message, screen format, and heading and footing
definitions to describe a field of information in the output line to be generated by
the SPOUTPUT Span Service Routine. A line of output is formed from one or
more #SPZFLD macros in a series (with no other intervening coding), terminated
by a #SPZFLD macro with the “LAST” attribute. The output line is dynamically
constructed by SPOUTPUT immediately prior to performing the output
operation.

format:

 ([[TEXT]
 ([[TIME]
 ([[DATE]
 ([[DATE4]
 ([[PAGE]
 ([[JOB]
(name) #SPZFLD ([[STEP] [,UL] [,LAST] [,LOW] [,BACKUP]
 ([[PROC]
 ([[CPRIGHT]
 ([[SYSID]
 ([[USERID]
 ([BLANK
 ([LINE
 ([DLINE
 ([MOD

 [,colour] [,attr] [,CONTIN]

 [[CENTER]]
 [,[]]
 [[RIGHT]]

 [,INDIRECT]])

 [,offset] [,'text'] [,label]

 [,LENGTH=length] [,DATADDR=addr]

 [,NAME=macrolab]

 [,HLIGHT=highlight] [,COLR=colour]

where:
(name) - variable symbol name

 - specifies the value of a label to be placed on the
generated field definition. This permits this #SPZFLD
macro to be referred to by the #SPZTITL and
#SPZSOB macros for the purposes of defining titles or
specifying message text areas.

Span Macros Manual Page 57
#SPZFLD Macro

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 57 of 94

The type of information to be included into the message field by this #SPZFLD
macro is indicated by one of the following keywords:

TEXT - text as specified by the calling program at assembly time in
the “text” parameter, or moved in at execution time by
reference to the “label” label field (see below), or indirectly
addressed by combination of the “DATADDR=” and
“LENGTH=” operands. Length of the generated field is
equal to the length of “text” specified or to the “LENGTH=”
parameter.

TIME - time of day in the format HH:MM:SS. Length is always 9 for
this field type.

DATE - date in the format DDMMMYY. Length is always 8 for this
field type.

DATE4 - date in the format DDMMMYYYY. Length is always 10 for
this field type.

PAGE - current page or screen number. Length is always 6 for this
field type.

JOB - current jobname. Length is always 8 for this field type.
STEP - current stepname. Length is always 8 for this field type.
PROC - current procedure stepname. Length is always 8 for this

field type.
CPRIG H- T Span Software Consultants Limited copyright notice.

Length is always 45 for this field type.
SYSID - SMF System ID of the MVS, OS/390 or z/OS image where the

program is run. Length is always 4 for this field type.
USER I D- user identifier of the user owning the jobstep or TSO session

where the program is run. Length is always 8 for this field
type.

These field definitions can be followed by one or more of the following
modifiers:
UL - if the following line contains a field with the “LINE” type,

this field will be underlined with a string of “-” characters. If
the following line contains a field with the “DLINE” type,
this field will be underlined with a string of “=” characters.
The line with the “LINE” or “DLINE” type must directly
follow both in assembly sequence and logical (output)
sequence.

LOW - the field will appear in low intensity if output with
SPOUTPUT “OPT=FULLSCR” option to a 3270-type
terminal. This is the default except for screen headings,
where high intensity is the default.

LAST - this is the last field on this output line.

Page 58 Span Macros Manual
#SPZFLD Macro

Page 58 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

BACK U -P this field is to be positioned at the byte after the last
non-blank character so far generated, plus the value
specified by the “offset” parameter (see below)

colour - specifies the colour for this field if displayed on a colour
VDU. SPOUTPUT currently supports 7-colour screens, and
valid colour specifications are: BLUE, RED, PINK, GREEN,
TURQUOIS, YELLOW, WHITE. Use of a colour attribute
forces the use of the indirect format of the #SPZFLD
parameter list; TEXT field types must use the DATADDR=
and LENGTH= parameters to address the text contents of
the field.

attr - specifies the attributes for this field if displayed on a
3270-type VDU. SPOUTPUT currently supports normal and
extended high-lighting attributes, and valid attribute
specifications are: HIGH (high intensity), NONDISP (non-
display), PROTECT (protected), BLINK (blinking - 3270
extended high-lighting only), REVERSE (reverse video -
3270 extended high-lighting only), USCORE (underscored -
3270 extended high-lighting only). Use of a high-lighting
attribute forces the use of the indirect format of the
#SPZFLD parameter list; TEXT field types must use the
DATADDR= and LENGTH= parameters to address the text
contents of the field.

CONT I N- specifies that this field is a continuation of the previous field.
This option forces the use of extended #SPZFLD format
generation (see the SPOUTPUT section of the Span Service
Routines manual). The use of the CONTIN option is
specifically for generation of 3270 full-screen output, and it is
ignored for all other output destinations. Generally for full-
screen output, each #SPZFLD macro definition causes a new
“field” on the resulting 3270 screen, with the attendant 3270
overhead of an “attribute byte” occurring at the start of the
field. Use of the CONTIN option, for 3270 screens
supporting the Extended Data Stream only, allows the
programmer to change the colour or attribute for succeeding
characters without generating a new 3270 field; SPOUTPUT
issues a 3270 “Set Attribute” order at the screen address
implied by the “offset” parameter of the #SPZFLD macro.
The screen attribute will be set to the combination of colour
and high-lighting specified on the #SPZFLD macro; use of
CONTIN with no colour or attribute specified will result in
the screen being reset to the colour and attributes specified
for the previous #SPZFLD macro that did not specify the
CONTIN option. See the SPOUTPUT section of the Span
Service Routines manual for a discussion of full-screen
output.

CENT E -R specifies that the data specified by this #SPZFLD
CENTRE macro is to be centred within the output line. The centring is

automatically adjusted according to the line width of the
print dataset, and according to the model of 3270 VDU for
Full-Screen mode. The position of the field within the output
line can be modified by means of the “offset” parameter,
which is interpreted as the number of columns to the right of
the centre position to place the field. The CENTER
parameter forces the use of extended #SPZFLD format

Span Macros Manual Page 59
#SPZFLD Macro

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 59 of 94

generation (see the SPOUTPUT section of the Span Service
Routines manual).

RIGHT - specifies that the data specified by this #SPZFLD macro is to
be positioned flush-right (against the right-hand margin)
within the output line. The right-hand margin is
automatically adjusted according to the line width of the
print dataset, and according to the model of 3270 VDU for
Full-Screen mode. The position of the field within the output
line can be modified by means of the “offset” parameter,
which is interpreted as the number of columns to the left of
the flush-right position to place the field. The RIGHT
parameter forces the use of extended #SPZFLD format
generation (see the SPOUTPUT section of the Span Service
Routines manual). If both the CENTER and the RIGHT
parameters are specified, CENTER takes precedence and
RIGHT is ignored.

INDIR E -CT specifies indirect addressing for text data (using the
DATADDR= and LENGTH= parameters), and forces the use
of extended #SPZFLD format generation (see the
SPOUTPUT section of the Span Service Routines manual).

Three special type definitions are also available:
BLAN K - generate one complete blank output line.
LINE - generate “-” characters to underline selected fields in the

previous line. These selected fields are specified with the
“UL” modifier in their own #SPZFLD macros.

DLINE - generate “=” characters to double-underline selected fields in
the previous line. These selected fields are specified with the
“UL” modifier in their own #SPZFLD macros.

All three of the above special type definitions also imply the “LAST”
modifier and should be used alone.

The further special type option “MOD” is also available. MOD must be
the only type option specified, and is used to generate an executable form
of #SPZFLD macro in order to permit run-time specification of indirect
text field addresses (using the DATADDR= and LENGTH= parameters),
and full-screen attributes for high-lighting and colour (using the
HLIGHT= and COLR= parameters).

offset - numeric value, *, *+n
 - specifies the offset of this field from the beginning of the

output line. This operand is required for all field types
except “BLANK” and “LINE”. “*” specifies that this field is
to be placed in the character position after the last character
so far generated; *+n specifies that this field is to be placed
in the character position after the last character so far
generated, plus the number of bytes specified by “n”. For
centred fields (CENTER parameter specified) the offset
should be a numeric value, and specifies an offset to the right
of the centre position for the field. For right-flush fields
(RIGHT parameter specified) the offset should be a numeric
value, and specifies an offset to the left of the right-hand
margin for the placement of the field.

Page 60 Span Macros Manual
#SPZFLD Macro

Page 60 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

text - quoted character string
 - specifies the actual text to be inserted into this field. If the

“TEXT” field type is being generated, either this operand or
the DATADDR= operand is required in order to specify the
text to be inserted into the output message.

label - symbolic value
 - specifies an assembler label to be used for the generated field

containing the text specified by means of the “text” positional
parameter. The label is given a length attribute equal to the
length of the specified text. This operand is optional for a
field type of “TEXT”.

LENG T -H= numeric value, (general register)
 - specifies the length of text being defined by this #SPZFLD

macro. This length is used only if indirect addressing
(DATADDR= parameter) is being used for the text data, if
colour or extended highlighting is used for full-screen output,
or if the assembled length of the field referenced by the
DATADDR= parameter is not to be used as the length of the
text. This parameter may also be used for an executable
version of #SPZFLD (“MOD” type) to change the text length
defined by this macro - the register format may be used in
this case, with the specified register containing the required
length.

DATAD -DR=symbolic value, (general register)
 - specifies the address of text to be included in the output

message as a result of this #SPZFLD macro. This parameter
is required only if indirect addressing is to be used for the
text data, or if colour or extended highlighting is used for
full-screen output. This parameter may also be used for an
executable version of #SPZFLD (“MOD” type) to change the
address of the text to be included in the output message - the
register format for the address may be used in this case.

NAME =- symbolic value, (general register)
 - specifies the address of a #SPZFLD macro to be dynamically

modified by the executable form of #SPZFLD. This
parameter is ignored if the type field of this macro is not
“MOD”. The NAME= parameter should specify the address
of the beginning of an extended format #SPZFLD macro - a
label may be placed on the start of an #SPZFLD macro by
use of the “(name)” label field on the macro instruction.

Span Macros Manual Page 61
#SPZFLD Macro

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 61 of 94

HLIGHT= - one or more fixed keywords
 - specifies a new option or set of options for high-lighting

a field on a 3270 VDU when using the SPOUTPUT
full-screen facilities. The HLIGHT= parameter is valid
only if the MOD type of #SPZFLD macro is being
coded, and has effect only for full-screen output. Valid
high-lighting options are: LOW (resets high-
brightness - high-brightness is the default for fields
defined in screen headings), HIGH (high-brightness),
NONDISP (non-display field), PROTECT (non-
modifiable field - failure to specify PROTECT produces
a modifiable field), BLINK (flashing field - 3270
extended high-lighting only), REVERSE (field shown
in reverse video - 3270 extended high-lighting only),
USCORE (under-scored field - 3270 extended high-
lighting only). All required options must be specified
together, as high-lighting options replace any previous
options.

COLR= - fixed keyword value
 - specifies a new colour for a field on a 3270 colour VDU

when using the SPOUTPUT full-screen facilities. The
COLR= parameter is valid only if the MOD type of
#SPZFLD macro is being coded, and has effect only for
full-screen output. Valid colour options are: BLUE
(blue field), RED (red field), PINK (pink field), GREEN
(green field), TURQUOIS (turquoise field), YELLOW
(yellow field), WHITE (white field). The colour option
specified replaces any previous colour.

Page 62 Span Macros Manual
#SPZKWRD Macro

Page 62 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

2.26 #SPZKWRD Macro - SPZPARSE Parameter
Formatting

The #SPZKWRD macro is used to define a valid keyword operand of a command
that was defined in a previous #SPZCMD macro statement. There may be
multiple #SPZKWRD macros (and #SPZPOSN macros) for one #SPZCMD macro.
The #SPZKWRD macro generates non-executable code that is part of a
parameter list to the SPZPARSE Span Service Routine.

format:

(name) #SPZKWRD parmname [,FIELD=fieldname]

 [,LENGTH=fieldlen]

 [[C]]
 [[N]] [[N]]
 [,FMT=[P]] [,REQD=[]]
 [[B]] [[Y]]
 [[X]]

 [,VALID=(value, ...)]

 [,SET=((value,instr,mask), ...)]

 [,SETCONT=((value,instr,mask), ...)]

 [,SETYN=mask]

 [,PRESFLD=field] [,SETPRES=(instr,mask)]

 [[YES]] [[YES]]
 [,VALUE=[NO]] [,ACCEPT=[]]
 [[OPT]] [[NO]]

 [,ALIAS=aliasname] [,TYPE=MOD,NAME=name]

where:
(name) - variable symbol name

 - symbol “name” is assigned to the user flag field for this
operand parameter, to enable the user program to
interrogate the status of this operand. The field with
this label will be set to zero if this operand is not
present in the command, to 4 if the operand is present,
and to 8 if the operand is present but is in error.
Fields at certain offsets from this label may also be
interrogated in order to determine the length, value
and address of the data entered for this operand -
these fields are mapped by the DODDS DSECT which
is generated by the #SPZPMAP macro (see the Span
Service Routines manual for full details). Note that
the “USING” statement must be on symbol
DODUFLG. The value of this “name” parameter
should be used in the “TYPE=MOD” executable form of
the #SPZKWRD macro by the user program before
calling SPZPARSE, in order to permit the user
program to be written re-entrantly (if this is required).

Span Macros Manual Page 63
#SPZKWRD Macro

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 63 of 94

parmname - character value, max=8 bytes
 - specifies the literal value of the keyword parameter

that this #SPZKWRD macro describes. This is the
first positional parameter of the #SPZKWRD macro
and is always required.

FIELD= - label value
 - specifies the name of the field (if any) that is to be

filled with the data input as an operand of the
parameter defined by this macro (for a
“keyword=value” parameter).

LENGTH= - numeric value, max=255
 - specifies the length of the field that is to be filled with

the data input as an operand of the parameter defined
by this macro. If the “field” parameter is specified but
the “LENGTH=” parameter is omitted, then the length
taken will be the assembled length of the field defined
by the “field” parameter. Note that if this #SPZKWRD
macro describes a parameter that may have multiple
sub-parameters (which are to be defined by following
#SPZSUBP macros), then this length field must be the
total length of all sub-parameters, including
intervening commas and external parentheses; it may
be helpful to set the length to the maximum (255
bytes) and to specify the lengths of individual sub-
parameters on their respective #SPZSUBP macros.

FMT= - fixed keyword value
 - defines the data format of the field that is to receive

the parameter data.
FMT=C (the default) specifies character data.
FMT=N specifies character numeric data.
FMT=P specifies packed decimal (numeric input data).
FMT=B specifies binary (numeric input data).
FMT=X specifies hexadecimal (character hex input
data).

REQD= - fixed keyword value
 - specifies whether or not this parameter is mandatory

for every occurrence of the command defined by the
preceding #SPZCMD macro.
REQD=N (the default) specifies that this parameter is
optional.
REQD=Y specifies that this parameter is always
required.

VALID= - one or more character values
 - specifies a list of values that this parameter may take.

If this option is specified and the parameter as input is
not one of this list of values, it will be rejected as an
error.

Page 64 Span Macros Manual
#SPZKWRD Macro

Page 64 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

SET= - one or more SET parameters
 - specifies an operation to be performed if this

parameter as input takes one of a list of one or more
values. The “SET=” option is specified as a sequence of
one or more 3-part parameters, each of the form
“(value,instruction,mask)”, where “value” is a literal
value that the parameter may take, “instruction” is a
valid Assembler operation code defining a System/390
or z/Architecture “Immediate” instruction, “mask” is
the mask to be used by the immediate instruction. For
example, if “SET=((ALL,OI,X'80'))” is specified, and the
value “ALL” is input, then the field defined by the
“field” parameter is modified by the instruction “OI
field,X'80'”.
If the “SET=” parameter is specified and the value as
input is not one of the values defined, then the input
will be rejected as an error. Note that if a single value
is to be specified as an operand of the “SET=”
parameter, it must be enclosed in two sets of
parentheses as in the example above.
Assembler language limits the total length of
parameters to the “SET=” operand to 256 characters.
If more “SET=” options than this are required, the
“SETCONT=” parameter may be used to continue
defining “SET=” options. The options specified for the
“SET=” parameter and the “SETCONT=” parameter
are combined to define all of the allowable values for
this keyword.

SETCONT= - one or more SET parameters
 - The “SETCONT=” parameter defines a continuation of

the options specified for the “SET=” parameter. See
the description of the “SET=” parameter for further
details.

SETYN= - immediate instruction mask
 - specifies the mask for an “Immediate” instruction to be

executed if this parameter appears as an operand of
the command defined on the preceding #SPZCMD
macro. The “SETYN=” parameter is a special case of
the “SET=” parameter described above, and causes the
mask specified to be used in an “OI” instruction if the
value as input is “Y” or “YES”, and to be used in a “NI”
instruction if the value as input is “N” or “NO”.

PRESFLD= - label value
 - specifies the name of a field (if any) that is to be

modified by the instruction specified by the
“SETPRES=” parameter.

Span Macros Manual Page 65
#SPZKWRD Macro

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 65 of 94

SETPRES= - SETPRES parameter
 - specifies an “Immediate” instruction to be executed

against the field designated by the “PRESFLD=”
parameter if this operand is present in the input, and
the mask to be used in this immediate instruction.
There must be two sub-parameters (instruction and
mask), enclosed in parentheses and separated by a
comma.

VALUE= - fixed keyword value
 - specifies whether the keyword defined by this

#SPZKWRD macro is permitted to have an “=” sign
following it, and therefore to pass a value for this
keyword to the user program.
VALUE=YES (the default) specifies that this keyword
must be specified as a “keyword=value” parameter.
VALUE=NO specifies that this keyword must not be
specified as a “keyword=value”, the keyword must
appear alone as an operand.
VALUE=OPT specifies that this keyword may or may
not be specified with a value.

ACCEPT= - fixed keyword value
 - specifies whether the keyword defined by this

#SPZKWRD macro is currently acceptable. If
“ACCEPT=NO” is specified this keyword will not be
recognized until an executable #SPZKWRD macro
specifying “TYPE=MOD,ACCEPT=YES” is executed.

ALIAS= - operand keyword
 - specifies an alternative keyword to the main keyword

that is to be treated as having the same. This facility
may be used in order to accept an abbreviation of the
main keyword.

TYPE= - fixed keyword value
 - TYPE=MOD specifies the executable form of the

#SPZKWRD macro, and will cause the generation of
instructions that will dynamically modify the options
on a static #SPZKWRD macro. The “NAME=”
parameter is required for TYPE=MOD to specify the
address of the static #SPZKWRD macro that is to be
modified. The macro parameters permitted to be
changed with a “TYPE=MOD” #SPZKWRD macro are
“FIELD=”, “PRESFLD=”, “ACCEPT=”, “VALUE=”,
“REQD=”, “FMT=”.

NAME= - label value
 - specifies the name on the static #SPZKWRD macro

that this #SPZKWRD macro is to modify dynamically.
This parameter is meaningful only if “TYPE=MOD” is
also specified, and should be accompanied by other
parameters which specify the modifications to be made
to the static #SPZKWRD macro.

Page 66 Span Macros Manual
#SPZOPEN Macro

Page 66 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

2.27 #SPZOPEN Macro - SPZQPAM Open Macro

The #SPZOPEN macro is functionally equivalent to an Operating System
“OPEN” macro, and opens one DCB for use by the Span Software SPZQPAM
Queued PDS Access Method service routine.

format:

(name) #SPZOPEN dcbaddr [,TYPE=J]

where:
(name) - variable symbol name

 - specifies the value of a label to be placed on the first
executable instruction generated by the #SPZOPEN
macro.

dcbaddr - address field, (general register)
 - specifies the address of the Data Control Block that is

to be opened by SPZQPAM. See the Span Service
Routines manual for usage information on SPZQPAM.

TYPE= - fixed character value
 - TYPE=J specifies that an OPEN TYPE J is to be

performed (the DCB Exit List must point to a JFCB
entry in the usual way - see the appropriate Operating
System Data Management manual).

Span Macros Manual Page 67
#SPZPARS Macro

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 67 of 94

2.28 #SPZPARS Macro - Invoke SPZPARSE Service
Routine

The #SPZPARS macro is used to invoke the Span Software SPZPARSE Service
Routine from a user program. There are “List” and “Execute” forms of the macro
only, a “List” form must be defined in a non-executable area of the program, and
is referred to in the “Execute” form, which will modify fields as necessary. The
“Execute” form of the macro generates a “V-constant” for SPZPARSE unless the
“PARSEP=” parameter is specified.

format:

(name) #SPZPARS [ERROR=erraddr] [,EODAD=eodaddr]

 [['./']]
 [,DATA=dataddr] [,CCID=[]]
 [[ccid]]

 [[SYSIN]]
 [,INDD=[ddname]] [,LABEL=lbladdr]
 [[(reg)]]

 [,SOB=sobaddr] [,CMDID=cmdid]

 [,STRING=straddr] [,STRLEN=length]

 [,PARSEP=epaddr] [,GLBLAD=addr]

 [[NONE]] [[NOPRINT]]
 [,FLAG=[CONTROL]] [,PRINTD=[]]
 [[DATA]] [[PRINT]]
 [[BOTH]]

 [[SPZ0]] [[NO]]
 [,MSGPREF=[xxxx]] [,REREAD=[YES]]

 [[STANDARD]]
 [,FORMAT=[AMS]]
 [[TSO]]

 [[PANV]]
 [,LIBR=[]] [,MEMBER=membername]
 [[LIBR]]

 [L]
 ,MF=[]
 [(E,laddr)]

where:
(name) - variable symbol name

 - symbol “name” is assigned to the first instruction
generated by the “Execute” form of the macro, or to the
start of the “List” form of the macro. A name field is
required for the “List” form of the macro.

Page 68 Span Macros Manual
#SPZPARS Macro

Page 68 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

ERROR= - label symbol, (register number)
 - specifies the address of a routine within the user

program which is to be given control if an error is
detected by SPZPARSE in the input being parsed. If
this parameter is not specified in either the “List” or
“Execute” forms of the #SPZPARS macro, and an error
is encountered, then control is returned to the
instruction immediately following the “Execute” form
#SPZPARS macro, with a code of 8 in register 15.

EODAD= - label value, (register number)
 - specifies the address of a routine within the user

program which is to be given control if end-of-file is
detected by SPZPARSE for an input control card
dataset. If this parameter is not specified in either the
“List” or “Execute” forms of the #SPZPARS macro, and
end-of-file is encountered, then control is returned to
the instruction immediately following the “Execute”
form #SPZPARS macro, with a code of 12 in register
15. If SPZPARSE is invoked a further time after end-
of-file has been signalled (without the
“REREAD=YES” option), the end-of-file condition will
be raised immediately.

DATA= - label symbol, (register number)
 - specifies the address of a routine within the user

program which is to be given control if a data record is
detected by SPZPARSE in the input control card
dataset. If this parameter is not specified in either the
“List” or “Execute” forms of the #SPZPARS macro, and
a data record is encountered, then control is returned
to the instruction immediately following the “Execute”
form #SPZPARS macro, with a code of 4 in register 15.

CCID= - quoted 2-character string
 - specifies the two-character identifier that will appear

in columns 1 and 2 to identify control records in the
input. This value is only relevant when a mixture of
control and data records is expected in the input (when
the “DATA=” parameter is specified on either the
“List” or “Execute” forms of the #SPZPARS macro).
The default value is “./”. Quotes must enclose the
value specified.

INDD= - 8-character DDNAME, (register number)
 - specifies the DD name to be used for the input control

statement file. This DD name may be allocated to a
single sequential input dataset with 80-byte logical
records, to a set of concatenated sequential input
datasets all with 80-byte logical records, to a
partitioned input dataset of 80-byte logical records, to
a CA-PANVALET dataset or to a CA-LIBRARIAN
Master. For partitioned input, or for CA-PANVALET
or CA-LIBRARIAN, the input member name must be
specified by means of the “MEMBER=” parameter.

Span Macros Manual Page 69
#SPZPARS Macro

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 69 of 94

CA-PANVALET or CA-LIBRARIAN input must also
be indicated by means of the “LIBR=” parameter. The
INDD= parameter is mutually exclusive with the
“STRING=” parameter, and indicates that I/O is to
performed by the SPZPARSE routine to obtain input
control statements. Default DDNAME if the
“STRING=” parameter is omitted is “SYSIN”. If the
register notation is used for this parameter (“Execute”
form only), the register specified must contain the
address of an 8-byte area containing the DD name
required, padded on the right with blanks if necessary.

LABEL= - label symbol, (register number)
 - specifies the address of an 8-byte field that is to receive

the data from the “label” field of control statements. If
the “LABEL=” parameter is not specified on either the
“List” or “Execute” forms of the #SPZPARSE macro,
then labels will not be permitted on control
statements.

SOB= - label symbol, (register number)
 - specifies the address of a SOB to be used for the output

of print data from SPZPARSE (see elsewhere in this
manual for a description of the #SPZSOB macro used
to define the SOB, and see the Span Service Routines
manual for a description of the SPOUTPUT service
routine). If the “SOB=” parameter is not specified on
either the “List” or “Execute” forms of the #SPZPARS
macro, then there will be no print output from
SPZPARSE. If the user program requires to intercept
the print output from SPZPARSE (which consists of an
echo of control statements if an input DDNAME is
specified, and error messages), then the address of a
user print routine may be placed in the SOB before
issuing the “Execute” form of the #SPZPARS macro.

CMDID= - single-character ID
 - specifies the ID character of the set of SPZPARSE

definition macros to be used for this parsing operation.
This value is the same as the value specified for the
“ID=” parameter of the relevant #SPZCMD macro that
begins the set of definition macros. If this parameter
is omitted, then it is assumed that a set of definition
macros is to be used where the first #SPZCMD macro
had no “ID=” parameter.

STRING= - label value, (register number)
 - specifies the main storage address of a parameter

string to be interpreted according to the SPZPARSE
rules. The length of the string should be specified with
the “STRLEN=” parameter - if this parameter is not
specified then the assembled length of the “STRING=”
parameter is used (the “STRLEN=” parameter is
required if the register form is used). This parameter
overrides and replaces any “INDD=” specification.

Page 70 Span Macros Manual
#SPZPARS Macro

Page 70 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

STRLEN= - length value, (register number), max value =255
 - specifies the length of the main storage string specified

by the “STRING=” parameter. If the register notation
is used (“Execute” form of #SPZPARS), then the
register specified must contain the length of the string
in its low-order byte. If this parameter is not specified
then the assembled length of the “STRING=”
parameter is used. The “STRLEN=” parameter is
required if the register format is used for the
“STRING=” parameter.

PARSEP= - label value, (register number)
 - specifies the address of the entry point of the

SPZPARSE service routine. If the label format is used,
the field addressed must contain the address of the
SPZPARSE routine. If this parameter is not specified,
the macro generates a “V-constant” for SPZPARSE,
and the SPZPARSE module must then be link-edited
with the user program. This parameter may be
specified only in the “Execute” form of the #SPZPARS
macro. For a user program running under the control
of SPANEX, “PARSEP=SPXMKWSC” may be specified
to use SPANEX's copy of the SPZPARSE routine.

GLBLAD= - address, (register number)
 - specifies the address of the Span Software SPGLBL

control block CSECT. If this parameter is not
specified, the “V-constant” within SPZPARSE will be
used by SPZPARSE to locate SPGLBL (if SPGLBL is
link-edited with SPZPARSE), or else a LOAD macro
will be issued for SPGLBL. For a user program
running under the control of SPANEX,
“GLBLAD=SPXMGLBA” may be specified to use
SPANEX's copy of the SPGLBL control block.

FLAG= - fixed keyword value
 - specifies which output line types (if any) are to be

flagged (high-lighted) on the output listing.
FLAG=NONE (the default) specifies that no lines are
to be flagged.
FLAG=CONTROL specifies that control statements
are to be flagged.
FLAG=DATA specifies that data records are to be
flagged.
FLAG=BOTH specifies that both control statements
and data records are to be flagged.
Flagging consists of prefixing the print line with a row
of three asterisks.

Span Macros Manual Page 71
#SPZPARS Macro

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 71 of 94

PRINTD= - fixed keyword value
 - specifies whether or not data records are to be printed.

PRINTD=NOPRINT (the default) specifies that data
records are not to be printed.
PRINTD=PRINT specifies that data records are to be
printed via the specified SOB.

MSGPREF= - four-character value
 - specifies the first four characters of the message

identifiers to be used on SPZPARSE error messages.
SPZPARSE will add a 2-digit number and a 1-byte
message type indicator to these four characters.
Default is “SPZ0”. This parameter, if specified, must
consist of four characters.

REREAD= - fixed keyword value
 - REREAD=YES specifies that it is permissible to

reread the input control statement dataset, even after
the end-of-data condition has been recorded by
SPZPARSE. This permits multiple uses of SPZPARSE
to read from the same DD statement (which may have
been re-allocated or changed to a different PDS
member, for example). If the REREAD=YES option is
not specified, any attempt to obtain SPZPARSE input
from the same DDNAME after the end-of-data
condition has been raised will produce an immediate
end-of-data condition again, with no data read.

FORMAT= - fixed keyword value
 - specifies the type of format user-input control

statements are to take. The FORMAT= option is
actioned dynamically at run-time, and it is permissible
to switch between control statement formats by
changing the option on successive #SPZPARS macro
invocations.
FORMAT=STANDARD (the default) specifies that the
control statement input is in “keyword=value” format,
with parameters separated by commas, input is
terminated by a blank, and continuation statements
indicated by a trailing comma at the end of the
previous statement.
FORMAT=AMS specifies that the control statement
input is in a format similar to that used by the Access
Method Services utility program (IDCAMS).
Parameters are specified as keyword(value),
parameters are separated by spaces, comments are
bracketed by “/* . . . */”, and continuations are
indicated by terminating the previous statement with
a “-“ or a “+”.
FORMAT=TSO specifies that the control statement
input is in a format similar to that used by the Access
Method Services utility program (IDCAMS) as with
the FORMAT=AMS option above. Additionally, with
FORMAT=TSO any non-ambiguous abbreviation is
accepted for any keyword parameter.

Page 72 Span Macros Manual
#SPZPARS Macro

Page 72 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

LIBR= - fixed keyword value
 - specifies a library type for control statement input.

Note that if input is to be read from a PDS member by
SPZPARSE, then the member name should be
specified by means of the MEMBER= parameter, and
the LIBR= parameter must be omitted.
LIBR=PANV specifies that the control statement input
is held as a member of a CA-PANVALET library, and
that SPZPARSE is to access CA-PANVALET to obtain
the input data. The CA-PANVALET member name to
be used should be specified by the “MEMBER=”
parameter of the #SPZPARS macro. Note that the
same input member should be read until an end-of-
data condition is returned by SPZPARSE. The
DDNAME specified by the “INDD=” parameter is
assumed to be allocated to a CA-PANVALET library.
LIBR=LIBR specifies that the control statement input
is held as a member of a CA-LIBRARIAN Master, and
that SPZPARSE is to access CA-LIBRARIAN to obtain
the input data. The CA-LIBRARIAN member name to
be used should be specified by the “MEMBER=”
parameter of the #SPZPARS macro. Note that the
same input member should be read until an end-of-
data condition is returned by SPZPARSE. The
DDNAME specified by the “INDD=” parameter is
assumed to be allocated to a CA-LIBRARIAN Master.

MEMBER= - address, (register number)
 - specifies the member name to be used for accessing a

Partitioned Dataset, or a CA-PANVALET or
CA-LIBRARIAN library. A member name must be
supplied in either the List or Execute forms of the
#SPZPARS macro. If this parameter is specified and
the “LIBR=” parameter is not coded, then input is
assumed to be from a PDS. The member name must
be specified for every invocation of SPZPARSE when
reading from any library type, and each input member
should be read until an end-of-data condition is
returned. If more than one input member is to be read
in the same execution of the user program, then the
“REREAD=YES” parameter must also be specified.

MF= - fixed keyword value
 - specifies the macro format (“List” or “Execute” form) to

be generated. This parameter is always required.
MF=L specifies the “List” form of the macro, and
generates a non-executable parameter list.
MF=(E,laddr) specifies the “Execute” form of the
macro, with the second sub-parameter specifying the
address (in label or register notation) of the “List” form
parameter list to be used.

Span Macros Manual Page 73
#SPZPEND Macro

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 73 of 94

2.29 #SPZPEND Macro - SPZPARSE Parameter
Formatting

The #SPZPEND macro is used to delimit a set of SPZPARSE parameter
definition macros. It must be the last SPZPARSE macro in a set. A set of
SPZPARSE macros may also be delimited by a #SPZCMD macro specifying a
new value for the “ID=” parameter, but the last defined set of macros must
always end with the #SPZPEND macro.

format:

 #SPZPEND

where:
 - there are no operands

Page 74 Span Macros Manual
#SPZPMAP Macro

Page 74 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

2.30 #SPZPMAP Macro - Generate SPZPARSE DSECTs

The #SPZPMAP macro is used to define the DSECTs used by the SPZPARSE
Span Service Routine. The #SPZPMAP macro must be specified in any program
that uses the #SPZKWRD or #SPZPOSN macros with the “TYPE=MOD” option.

format:

 #SPZPMAP

where:
 - there are no operands

Span Macros Manual Page 75
#SPZPOSN Macro

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 75 of 94

2.31 #SPZPOSN Macro - SPZPARSE Parameter
Formatting

The #SPZPOSN macro is used to define a valid positional operand of a command
that was defined in a previous #SPZCMD macro statement. There may be
multiple #SPZPOSN macros (and #SPZKWRD macros) for one #SPZCMD macro,
but all #SPZPOSN macros should precede any #SPZKWRD macros, and any
#SPZPOSN macros specifying “REQD=Y” must precede any #SPZPOSN macros
defining optional positional parameters. The #SPZPOSN macro generates non-
executable code that is part of a parameter list to the SPZPARSE Span Service
Routine.

format:

(name) #SPZPOSN [FIELD=fieldname] [,LENGTH=fieldlen]

 [[C]]
 [[N]] [[N]]
 [,FMT=[P]] [,REQD=[]]
 [[B]] [[Y]]
 [[X]]

 [,PRESFLD=field] [,SETPRES=(instr,mask)]

 [[YES]]
 [,ACCEPT=[]]
 [[NO]]

 [,TYPE=MOD,NAME=name]

where:
(name) - variable symbol name

 - symbol “name” is assigned to the user flag field for this
operand parameter, to enable the user program to
interrogate the status of this operand. The field with
this label will be set to zero if this operand is not
present in the command, to 4 if the operand is present,
and to 8 if the operand is present but is in error.
Fields at certain offsets from this label may also be
interrogated in order to determine the length, value
and address of the data entered for this operand -
these fields are mapped by the DODDS DSECT which
is generated by the #SPZPMAP macro (see the Span
Service Routines manual for full details). Note that
the “USING” statement must be on symbol
DODUFLG. The value of this “name” parameter
should be used in the “TYPE=MOD” executable form of
the #SPZPOSN macro by the user program before
calling SPZPARSE, in order to permit the user
program to be written re-entrantly (if this is required).

FIELD= - label value
 - specifies the name of the field (if any) that is to be

filled with the data input for the positional parameter
defined by this macro.

Page 76 Span Macros Manual
#SPZPOSN Macro

Page 76 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

LENGTH= - numeric value, max=255
 - specifies the length of the field that is to be filled with

the data input for the positional parameter defined by
this macro. If the “field” parameter is specified but the
“LENGTH=” parameter is omitted, then the length
taken will be the assembled length of the field defined
by the “field” parameter.

FMT= - fixed keyword value
 - defines the data format of the field that is to receive

the parameter data.
FMT=C (the default) specifies character data.
FMT=N specifies character numeric data.
FMT=P specifies packed decimal (numeric input data).
FMT=B specifies binary (numeric input data).
FMT=X specifies hexadecimal (character hex input
data).

REQD= - fixed keyword value
 - specifies whether or not this parameter is mandatory

for every occurrence of the command defined by the
preceding #SPZCMD macro.
REQD=N (the default) specifies that this is an optional
positional parameter
REQD=Y specifies that this positional parameter is
always required.
Note that it is not valid to place #SPZPOSN macros
specifying “REQD=Y” after #SPZPOSN macros
defining optional positional parameters (it is logically
unsound to have a required positional operand after an
optional positional operand). If the “TYPE=MOD”
feature is used in such a way that this situation is
created an execution time, then SPZPARSE will treat
“required” #SPZPOSN macros defined after “optional”
#SPZPOSN macros as optional, and will give no
warning that it has done this.

PRESFLD= - label value
 - specifies the name of a field (if any) that is to be

modified by the instruction specified by the
“SETPRES=” parameter.

SETPRES= - SETPRES parameter
 - specifies an “Immediate” instruction to be executed

against the field designated by the “PRESFLD=”
parameter if this operand is present in the input, and
the mask to be used in this immediate instruction.
There must be two sub-parameters (instruction and
mask), enclosed in parentheses and separated by a
comma.

Span Macros Manual Page 77
#SPZPOSN Macro

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 77 of 94

ACCEPT= - fixed keyword value
 - specifies whether this positional parameter is

currently acceptable. If “ACCEPT=NO” is specified
the positional parameter represented by this
#SPZPOSN macro will not be recognized until an
executable #SPZPOSN macro specifying
“TYPE=MOD,ACCEPT=YES” is executed.

TYPE= - fixed keyword value
 - TYPE=MOD specifies the executable form of the

#SPZPOSN macro, and will cause the generation of
instructions that will dynamically modify the options
on a static #SPZPOSN macro. The “NAME=”
parameter is required for TYPE=MOD to specify the
address of the static #SPZPOSN macro that is to be
modified. The macro parameters permitted to be
changed with a “TYPE=MOD” #SPZPOSN macro are
“FIELD=”, “PRESFLD=”, “ACCEPT=”, “REQD=”,
“FMT=”.

NAME= - label value
 - specifies the name on the static #SPZPOSN macro that

this #SPZPOSN macro is to modify dynamically. This
parameter is meaningful only if “TYPE=MOD” is also
specified, and should be accompanied by other
parameters which specify the modifications to be made
to the static #SPZPOSN macro.

Page 78 Span Macros Manual
#SPZSOB Macro

Page 78 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

2.32 #SPZSOB Macro - SPOUTPUT Interface Macro

The #SPZSOB macro is used to generate the SOB, the control block used by user
programs to communicate with the Span Software SPOUTPUT output Service
Routine. The #SPZSOB macro can generate an in-line SOB, a dynamically-
obtained and formatted SOB, a SOB DSECT, instructions to modify the settings
of SOB fields, and also linkage to invoke the SPOUTPUT service routine.

format:

 [[DSECT]]
 [[STATIC]]
 [[DYNAM]]
(name) #SPZSOB [TYPE=[MOD]] [,BASE=reg]
 [[FREE]]
 [[CALL]]
 [[LINK]]

 [[adcon]] [[adcon]]
 [,TITLE=[]] [,SUBTITL=[]]
 [[(reg)] [[(reg)]]

 [[adcon]] [[adcon]]
 [,HEADER=[]] [,FOOTING=[]]
 [[(reg)]] [[(reg)]]

 [([TSO , ...])]
 [,RUN=([TEST , ...])]
 [([R4FSCR, ...])]
 [([NOEDS , ...])]

 [[60]] [[132] [[adcon]]
 [,LINECNT=[]] [,PRTCOLS=[] [,CPPL=[]]
 [[nn]] [[nnn] [[(reg)]]

 [[SYSPRINT]] [[NO]] [[NO]]
 [,DDNAME=[]] [,LOG=[]] [,TIME=[]]
 [[ddname]] [[YES]] [[YES]]

 [([WTOR,])]
 [([PRINT,])] [([PRINT,])]
 [([TPUT,])] [([TPUT,])]
 [([WTO,])] [([WTO,])]
 [,OPT=([WTONDEL, ...])] [,OPT2=([WTONDEL, ...])]
 [([WTOTOKN,])] [([WTOTOKN,])]
 [([PUTLINE,])] [([PUTLINE,])]
 [([SEND,])] [([SEND,])]
 [([FULLSCR,])] [([FULLSCR,])]
 [([CLOSE,])] [([CLOSE,])]
 [([NONE,])] [([NONE,])]

 [[*]] [[YES]]
 [,USERID=[(reg)]] [,EXTEND=[]] [,WTOKEN=WTOtoken]
 [[name]] [[NO]]

 [[YES]] [([SESS, ...])]
 [,PRTFOLD=[]] [([JOBNAMES, ...])]
 [[NO]] [,MSGTYP=([STATUS, ...])]
 [([BRDCST, ...])]
 [([HRDCPY, ...])]
 [([NOCPY, ...])]

Span Macros Manual Page 79
#SPZSOB Macro

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 79 of 94

 [([THROW, ...])]
 [,PAGE=([NOTHROW, ...])] [,ROUTE=(n, ...)]
 [([RESET,])]
 [([NORESET,])]

 [[0]]
 [[adcon]] [[n]]
 [,MSG=[]] [,BMARG=[+n]]
 [[(reg)]] [[-n]]
 [[(reg)]]

 [[STREAM]] [[YES]]
 [,MODE=[]] [,COMMENT=[]]
 [[INSERT]] [[NO]]

 [[adcon]] [[adcon]]
 [,WTORECB=[]] [,REPAREA=[]]
 [[(reg)]] [[(reg)]]

 [[nn]]
 [,REPLEN=[]] [,NAME=name]
 [[(reg)]]

 [[adcon]] [[adcon]]
 [,RTN1=[]] [,RTN2=[]]
 [[(reg)]] [[(reg)]]

 [[adcon]] [[adcon]]
 [,RTN3=[]] [,RTN4=[]]
 [[(reg)]] [[(reg)]]

 [[adcon]] [[adcon]]
 [,RTN5=[]] [,RTN6=[]]
 [[(reg)]] [[(reg)]]

 [[adcon]]
 [,ID=x] [,OUTEP=[]]
 [[(reg)]]

where:
(name) - variable symbol name

 - symbol “name” is assigned to the first instruction
generated by the TYPE=DYNAM, TYPE=MOD, and
TYPE=FREE options. It is ignored for TYPE=STATIC
and TYPE=DSECT.

TYPE= - fixed keyword value
 - specifies the type of macro generation to be performed.

TYPE=DSECT specifies that an assembler DSECT is
to be generated defining all fields in the SOB control
block.
TYPE=STATIC specifies that a SOB is to be assembled
in-line at this point, initialized with all default field
values, and including values defined by any other
operands of this macro that are specified.
TYPE=DYNAM specifies that a dynamically-obtained
SOB is to be used. If the “BASE=” operand is also
specified, code is generated to GETMAIN storage for a
SOB, which is then initialized from default values and
from any other specified macro operands. If the
“BASE=” operand is not specified, the GETMAIN is

Page 80 Span Macros Manual
#SPZSOB Macro

Page 80 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

bypassed and the SOB identified by the “NAME=”
operand is assumed to be the SOB area to be
initialized. The “NAME=” operand is always required
for TYPE=DYNAM.
TYPE=MOD specifies that an existing SOB is to be
modified with the values specified for other operands
of this macro.
TYPE=FREE specifies that the dynamically-obtained
SOB addressed by the register specified by the
“BASE=” operand is to be FREEMAINed. This must
only be done if the SOB has previously been closed.
TYPE=CALL specifies that the SPOUTPUT routine is
to be invoked by means of a “CALL” process. The
function of TYPE=MOD may be combined with this
option by specifying the other operands of the
#SPZSOB macro - the SOB fields will be modified
before SPOUTPUT is invoked.
TYPE=LINK specifies that the SPOUTPUT routine is
to be invoked by means of a “LINK” SVC (dynamic
program fetch). The function of TYPE=MOD may be
combined with this option by specifying the other
operands of the #SPZSOB macro - the SOB fields will
be modified before SPOUTPUT is invoked.

BASE= - general register number
 - For “TYPE=DYNAM” this operand is optional, and, if

specified, causes a GETMAIN to be performed for a
SOB area and a “USING” statement to be generated
naming the register specified in this operand and the
label specified in the “NAME=” operand. See “TYPE=”
operand description above.

 - For “TYPE=FREE” the “BASE=” operand is required,
and specifies the register that the contains the address
of the SOB area that is to be FREEMAINed.

TITLE= - label, (register number)
 - provides the address of a list of addresses of output

lines to be used as page headings for print output.
Each output line is defined by a series of #SPZFLD
macros. The last address in the list must have the
high-order bit set to one. The #SPZTITL macro may
be used to set up this address list.

SUBTITL= - label, (register number)
 - provides the address of a list of addresses of output

lines to be used as page sub-headings for print output.
Sub-headings are printed after headings defined by the
“TITLE=” operand. Each output line is defined by a
series of #SPZFLD macros. The last address in the list
must have the high-order bit set to one. The
#SPZTITL macro may be used to set up this address
list.

Span Macros Manual Page 81
#SPZSOB Macro

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 81 of 94

HEADER= - label, (register number)
 - provides the address of a list of addresses of output

lines to be used as screen headings for full-screen mode
output to a 3270-type terminal. Each output line is
defined by a series of #SPZFLD macros. The last
address in the list must have the high-order bit set to
one. The #SPZTITL macro may be used to set up this
address list.

FOOTING= - label, (register number)
 - provides the address of a list of addresses of output

lines to be used as page footings for print output. Each
output line is defined by a series of #SPZFLD macros.
All lines required, including any blank lines
immediately following the last line of text, must be
specified. The last address in the list must have the
high-order bit set to one. The #SPZTITL macro may
be used to set up this address list.

RUN= - fixed keyword value
 - specifies some optional SPOUTPUT processing

features.
RUN=TSO changes the default DDNAME for print
output to “TSOPRINT” from “SYSPRINT”.
RUN=TEST merely suppresses any WTO output,
regardless of output options that may be specified.
RUN=R4FSCR specifies that all full-screen output
issued using this SOB is to be in the new format
introduced with Release 4.0 of the Span Macros and
Service Routines package. This effectively treats all
#SPZFLD macros as using extended #SPZFLD options,
whether or not each individual macro defines any
extended options. Thus, for example, each message
field defined by a #SPZFLD macro will be displayed as
a separate 3270 field when the screen data is output.
This option is the default, and is always used for new
programs producing full-screen displays using
SPOUTPUT.
RUN=NOEDS specifies that the 3270-type terminal
being used for full-screen displays does not support the
3270 Extended Data Stream. If any #SPZFLD macros
appear in the user program specifying screen field
attributes such as colour or extended high-lighting, but
the program is run on an old-style 3270, this option
will prevent SPOUTPUT from issuing any Extended
Data Stream control characters to the terminal.

LINECNT= - decimal number
 - specifies the number of lines to be printed on the print

dataset before an automatic page throw is generated
(the numeric value specified must include all required
heading and footing lines). The default page line-count
is 60.

Page 82 Span Macros Manual
#SPZSOB Macro

Page 82 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

PRTCOLS= - decimal number, maximum=254
 - specifies the maximum number of print positions to be

used on the print dataset. This parameter must be
specified before the first call to SPOUTPUT for this
DDNAME, or it will have no effect. SPOUTPUT will
write the output file with RECFM of FBA, and an
LRECL one greater than the value specified for
PRTCOLS. The default page width is 132 columns.

CPPL= - label, (register number)
 - specifies the address of the TSO Command Processor

Parameter List (CPPL) as passed from the TSO
Terminal Monitor Program to the Command Processor
via register 1. The CPPL address is required if
OPT=PUTLINE is specified; if omitted a PUTLINE
will not be performed by the SPOUTPUT routine.

DDNAME= - ddname, max length=8 bytes
 - specifies the DDNAME to be used for the SPOUTPUT

print output file. Default is SYSPRINT unless
“RUN=TSO” is specified, when the default is
TSOPRINT.

LOG= - fixed keyword value
 - LOG=YES specifies that all messages are to be logged

on the SPOUTPUT disk log (default DDNAME for this
log is “SYSLOG”, but this is defined in the SPGLBL
CSECT, assembled from the #SPGLBL macro, and
may be altered by the user). If the DD statement for
this log is not present, the output will not be logged.
Default is LOG=NO.

TIME= - fixed keyword value
 - TIME=YES specifies that the current time of day is to

be added to the beginning of the output message when
sent to the print dataset. Default is TIME=NO. The
TIME=YES option will add 10 bytes to the length of
the printed message.

OPT= - fixed keyword value(s)
 - specifies one or more output destinations for message

data.
OPT=WTOR specifies that the output is to be sent to
the operator console via a WTOR (SVC 35), formatted
as indicated by the “MSGTYP=” and “ROUTE=”
operands. If “RUN=TEST” is specified, the WTOR will
be suppressed. The “WTORECB=”, “REPAREA=” and
“REPLEN=” operands should be used to specify the
other values needed for receiving the operator's reply
to a WTOR.
OPT=PRINT specifies that the output is to be directed
to a print-type listing, typically a SYSOUT file, whose
DDname is specified via the “DDNAME=” operand;
page control for this dataset is handled automatically
by SPOUTPUT based upon the values specified for the

Span Macros Manual Page 83
#SPZSOB Macro

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 83 of 94

“LINECNT=”, “TITLE=”, “SUBTITL=” and “FOOT-
ING=” operands. Page skipping can be made
unconditional by use of the “PAGE=” operand, or
conditional on the number of lines remaining on the
current page (“BMARG=” operand).
OPT=TPUT specifies that the output is to be sent to a
TSO user, as specified by the “USERID=” operand; or
to the current TSO user in whose address space
SPOUTPUT is executing, if the “USERID=” operand is
omitted.
OPT=WTO specifies that the output is to be sent to the
operator console via a WTO (SVC 35), formatted as
indicated by the “MSGTYP=” and “ROUTE=”
operands. If “RUN=TEST” is specified, the WTO will
be suppressed.
OPT=WTONDEL specifies that the output is to be sent
to the operator console via a WTO (as with the
“OPT=WTO” option), and that Descriptor Code 2 will
be set, making the message non-deletable on DIDOCS
consoles and available in response to an “*I R”
command on JES3 consoles. If this option is
requested, register 1 on return from SPOUTPUT
contains the WTO Msg ID that may be used to “DOM”
the message when necessary. If “RUN=TEST” is
specified, the WTO will be suppressed.
OPT=WTOTOKN specifies that the output is to be sent
to the operator console via a WTO (as with the
“OPT=WTO” option), and that a WTO token is to be
associated with the message. The token may be
specified by means of the “WTOKEN=” operand. If the
message is to be non-deletable then the WTONDEL
option must be specified in addition to the WTOTOKN
option (ie “OPT=(WTOTOKN,WTONDEL)” should be
specified). The token may then be used to “DOM” the
message when necessary. If “RUN=TEST” is specified,
the WTO will be suppressed.
OPT=PUTLINE specifies that the output is to be sent
to the invoking TSO user (or “SYSTSPRT” dataset for
the batch TSO TMP) by means of the PUTLINE TSO
service routine. This has the advantage over TPUT of
being effective when the TSO Terminal Monitor
Program is run in batch (MVS only). However, the
Command Processor Parameter List (CPPL) address
must be supplied via the “CPPL=” operand, and this is
normally known only to a program invoked as a TSO
Command Processor.
OPT=SEND specifies that the message is to be sent to
the TSO user specified by the “USERID=” operand via
the SEND operator command, using the “LOGON”
option of that command. This option will be effective
only when SPOUTPUT is being run under the
SPANEX Span Software program product, because the
authority needed to issue operator commands is not
otherwise available.

Page 84 Span Macros Manual
#SPZSOB Macro

Page 84 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

OPT=FULLSCR specifies that the output is to be
formatted into pages ready for sending to a 3270-type
VDU. Standard support within SPOUTPUT is for full-
screen TSO, but, by means of the user I/O routine
options, output can be sent to the screen via any TP
access method. Screen headings can be supplied by
means of the “HEADER=” operand. If the output is
sent to a TSO terminal, but the terminal is not a VDU,
this format becomes the same as with the
“OPT=TPUT” option. See the Span Service Routines
manual for a discussion on the use of the various
SPOUTPUT options for full-screen support.
OPT=CLOSE specifies that this is the end of current
output processing, and requests that SPOUTPUT
DCBs are closed, storage is freed, and that the user
program is preparing to terminate.
“OPT=(FULLSCR,CLOSE)” should be specified to
terminate full-screen output and to force the last
screen of data to be output.
OPT=NONE specifies that no output options at all are
required.
Note: Specification of the “OPT=” parameter nullifies
all previous output option specifications, and remains
in effect until the “OPT=” operand is respecified on
another executable #SPZSOB macro instruction.

OPT2= - fixed keyword value(s)
 - specifies one or more output destinations for this

message only. The “OPT2=” parameter is used to
effect a temporary or “one-shot” change to the output
options in effect without altering the current output
options. “OPT2” options replace “OPT” options for the
duration of one invocation only of SPOUTPUT,
thereafter the “OPT2” options are reset to zero. Values
for “OPT2” are the same as for the “OPT=” parameter
with the exception of the “WTOR” option which is not
supported.

USERID= - userid (max=7 bytes), (register number), *
 - specifies a TSO userid, or the location of a TSO userid.

If “TYPE=STATIC” is specified, the only valid
specification for the “USERID=” parameter is the
name of the TSO user, and this is the actual userid to
which the output is to be sent. This combination of
options is of little practical value as the actual userid
is unlikely to be known at assembly time.
If “TYPE=DYNAM”, “TYPE=MOD” or “TYPE=CALL”
is specified, the userid specified is the address of the
actual userid.
The register format specifies a register that contains
the address of the actual userid to be used.
“USERID=*” specifies that the output is to be sent to
the TSO user in whose address space SPOUTPUT is
executing.

Span Macros Manual Page 85
#SPZSOB Macro

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 85 of 94

EXTEND= - fixed keyword value
 - EXTEND=YES specifies that if the print dataset is

opened by SPOUTPUT, then the “EXTEND” option of
OPEN is to be used, and data is to be added to the end
of existing data in the dataset (analogous to the
“DISP=MOD” JCL parameter).
EXTEND=NO specifies that the print dataset should
be reused, with new data being written to the
beginning of the dataset. The “EXTEND=” parameter
need be used only if the SOB is to be closed and then
used for further output within the same jobstep, or if
an existing disk or tape dataset is to be extended with
the output produced.

WTOKEN= - 4-byte WTO Token value
 - specifies a WTO token to be used for WTO messages

issued via this SOB. The token is any 4-byte value,
and should be unique within the program. If a general
register is specified for this operand, the register must
contain the actual token, not the address of the token.
This token is used in conjunction with the
“OPT=WTOTOKN” option in order to associate a token
with a WTO message so that the message or a group of
messages may be deleted from the operator console by
means of a DOM macro. Once specified, the token will
remain in the SOB until altered by means of another
#SPZSOB macro with the WTOKEN= operand
specified.

PRTFOLD= - fixed keyword value
 - PRTFOLD=YES (the default) specifies that all output

to the print dataset is to be converted to Upper Case
characters by SPOUTPUT. Printed output is not
converted to upper case before being passed to the
SPOUTPUT Type 1 User Exit (see the RTN1=
parameter).
PRTFOLD=NO specifies that print output is to be
printed exactly as passed to SPOUTPUT by the user
program, with no translation of characters to be
performed. This function applies to both Stream and
Insert mode printed output, and to all page titles,
subtitles and footings.

MSGTYP= - fixed keyword value(s)
 - For “MSGTYP=SESS”, “MSGTYP=JOBNAMES” and

“MSGTYP=STATUS”, see the description of the
“MSGTYP” operand of the operating system “WTO”
macro in the appropriate systems programming
manual for your operating system.
For “MSGTYP=BRDCST”, “MSGTYP=HRDCPY” and
“MSGTYP=NOCPY”, see the description of the
“MCSFLAG” operand of the operating system “WTO”
macro in the appropriate systems programming
manual for your operating system.

Page 86 Span Macros Manual
#SPZSOB Macro

Page 86 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

PAGE= - fixed keyword value(s)
 - PAGE=THROW specifies that an unconditional page

throw is to be performed on the print dataset (if
OPT=PRINT is specified) on the next entry to
SPOUTPUT. If OPT=FULLSCR is specified,
PAGE=THROW requests that the next output line is
to appear on a new screen, and will cause lines
accumulated for the current screen to be written out on
the next entry to SPOUTPUT.
PAGE=RESET specifies that the print page number is
to be reset to one on the next page throw.
Note: Both these options are effective only once; they
are automatically reset by SPOUTPUT when they
have been actioned.
PAGE=NOTHROW specifies that a previously-set
request for a page throw is to be cancelled before an
output line had been issued. This will be effective only
if SPOUTPUT has not been entered since the page-
throw flag was set on in the SOB by means of the
“PAGE=THROW” option. Note that this will also
nullify a “RESET” request unless the option
“PAGE=(NOTHROW,RESET)” is specified.
PAGE=NORESET specifies that a previously-set
request for a page-number reset is to be cancelled
before an output line had been issued. This will be
effective only if SPOUTPUT has not been entered since
the page-reset flag was set on in the SOB by means of
the “PAGE=RESET” option. Note that this will also
nullify a page throw request unless the option
“PAGE=(NORESET,THROW)” is specified.

ROUTE= - numeric value(s), 1-16
 - specifies one or more MCS Routing Codes (numbers 1

to 16, separated by commas and enclosed in
parentheses) to be used for WTO and WTOR messages.
See the appropriate operating system manual for the
meaning of individual route codes, some of which may
be assigned by the user installation.

MSG= - label value, (register number)
 - specifies the location of the message or output to be

processed by SPOUTPUT. This may be either a
stream-mode message (a single string of text), or an
insert-mode message consisting of a series of #SPZFLD
macros describing the message content field-by-field.

BMARG= - numeric value, numeric delta value to add or subtract
from current BMARG value, (register number)

 - provides a “conditional-end-of-page” function for
printed output and full-screen displays. BMARG=
specifies that a new output print page, or screen
display page, is to be started if the current line is
within the specified number of lines of the bottom of
the current page. The relevant field of the SOB is
reset to zero on each exit from the SPOUTPUT service

Span Macros Manual Page 87
#SPZSOB Macro

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 87 of 94

routine, and so the BMARG value must be refreshed
before SPOUTPUT is invoked on each call. If the
register notation is used, the specified register must
contain a valid packed decimal number in its low-order
two bytes - this value will be stored in the SOB
without validation.

MODE= - fixed keyword value
 - specifies the “mode” of the input that is provided to the

SPOUTPUT service routine at the address specified by
the “MSG=” operand.
MODE=STREAM specifies that each line is presented
as a single string of printable characters, preceded by a
single byte length field, where the length value does
not include its own length. This format is generated
by the #SPMSG macro.
MODE=INSERT specifies that each line is presented
as a series of message field definitions, each one
generated by the #SPZFLD macro. Each field contains
text supplied by the user program, or a code requesting
SPOUTPUT to generate some standard information
(eg current time, date, jobname, etc). See the
description of the #SPZFLD macro in this manual, or
the Span Service Routines manual, for further
information.

COMMENT= - fixed keyword value
 - COMMENT=NO specifies that the block of “comments”

generated in the assembly listing by the #SPZSOB
macro if “TYPE=DSECT”, “TYPE=DYNAM” or
“TYPE=STATIC” is specified, describing the format of
#SPZFLD field definitions, is to be suppressed.
Comments will appear if this operand is not coded.

WTORECB= - symbolic name, (register number)
 - specifies the address of a standard Operating System

Event Control Block (ECB) to be passed to WTOR
(SVC 35), and which is to be POSTed when the
operator replies to the message. This operand is
referenced only for “OPT=WTOR”.

REPAREA= - symbolic name, (register number)
 - specifies the address of an area to be used by WTOR

(SVC 35) to return to the user program the reply data
entered by the operator in response to the message
sent to him. This operand is referenced only for
“OPT=WTOR”.

REPLEN= - numeric value, (register number)
 - specifies the length of the reply permitted in response

to a WTOR message. If the “REPAREA=” operand is
specified without the “REPLEN=” operand, a length of
8 is assumed. This operand is referenced only for
“OPT=WTOR”.

Page 88 Span Macros Manual
#SPZSOB Macro

Page 88 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

NAME= - symbolic name
 - specifies the assembler name field to be placed on the

SOB definition for the “TYPE=DSECT”,
“TYPE=DYNAM” and “TYPE=STATIC” formats of the
#SPZSOB macro. The “NAME=” operand is always
required for “TYPE=DYNAM”: it specifies the name to
be used in a “USING” statement for the SOB area if a
GETMAIN is issued to allocate the SOB; and specifies
the name of the SOB area to be initialized if a
GETMAIN is not generated.

RTN1= - symbolic name, (register number)
 - specifies the address of an optional user output exit

routine. This routine will be called by SPOUTPUT
after the output line has been completely formatted,
and may supplement or replace the standard output
technique used by SPOUTPUT. This routine is called
for print format output. See the Span Service
Routines manual for a description of SPOUTPUT user
output exit routines.

RTN2= - symbolic name, (register number)
 - specifies the address of an optional user output exit

routine. This routine will be called by SPOUTPUT
after the output line has been completely formatted,
and may supplement or replace the standard output
technique used by SPOUTPUT. This routine is called
for WTO/WTOR format output. See the Span Service
Routines manual for a description of SPOUTPUT user
output exit routines.

RTN3= - symbolic name, (register number)
 - specifies the address of an optional user output exit

routine. This routine will be called by SPOUTPUT
after the output line has been completely formatted,
and may supplement or replace the standard output
technique used by SPOUTPUT. This routine is called
for line-mode output to a user terminal. See the Span
Service Routines manual for a description of
SPOUTPUT user output exit routines.

RTN4= - symbolic name, (register number)
 - specifies the address of an optional user output exit

routine. This routine will be called by SPOUTPUT
after an entire screen-full of data has been completely
formatted, and may supplement or replace the
standard output technique used by SPOUTPUT. This
routine is called for full-screen mode output to a user
terminal. See the Span Service Routines manual for a
description of SPOUTPUT user output exit routines.

Span Macros Manual Page 89
#SPZSOB Macro

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 89 of 94

RTN5= - symbolic name, (register number)
 - specifies the address of an optional user output exit

routine. This routine will be called by SPOUTPUT
after the output line has been completely formatted,
and may supplement or replace the standard output
technique used by SPOUTPUT. This routine is
reserved for future use. See the Span Service Routines
manual for a description of SPOUTPUT user output
exit routines.

RTN6= - symbolic name, (register number)
 - specifies the address of an optional user output exit

routine. This routine will be called by SPOUTPUT
after the output line has been completely formatted,
and may supplement or replace the standard output
technique used by SPOUTPUT. This routine is
reserved for future use. See the Span Service Routines
manual for a description of SPOUTPUT user output
exit routines.

ID= - single character value
 - specifies a single-character SOB identifier that permits

multiple SOBs to be used or generated in one
assembly. All #SPZSOB macros referring to a specific
SOB control block must specify the same value for the
“ID=” operand. Default is a null ID. This operand is
not required if only one SOB is to be used.
Note: For modules that may require to include the
#SPXICB macro to define SPANEX control blocks,
SPANEX reserves the values “X” and “U” for the
#SPZSOB “ID=” parameter.

OUTEP= - label value, (register number)
 - specifies the entry point address of the SPOUTPUT

routine. If the label format is used, the field addressed
must contain the address of the SPOUTPUT routine.
If this parameter is not specified for a #SPZSOB macro
with the “TYPE=CALL” option, the macro generates
an assembler “V-constant” for SPOUTPUT, which
must then be link-edited with the user program.

Page 90 Span Macros Manual
#SPZSUBP Macro

Page 90 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

2.33 #SPZSUBP Macro - SPZPARSE Parameter
Formatting

The #SPZSUBP macro is used to define a valid sub-parameter of the parameter
that was defined in a previous #SPZKWRD macro statement. There may be
multiple #SPZSUBP macros for one #SPZKWRD macro. Note that the
“LENGTH” parameter of the preceding #SPZKWRD macro, and the field to
which it refers, must include sufficient storage for all of the expected sub-
parameters, including separating commas. The #SPZSUBP macro generates
non-executable code that is part of a parameter list to the SPZPARSE Span
Service Routine.

format:

(name) #SPZSUBP [FIELD=fieldname] [,LENGTH=fieldlen]

 [[C]]
 [[N]] [[N]]
 [,FMT=[P]] [,REQD=[]]
 [[B]] [[Y]]
 [[X]]

 [,VALID=(value, ...)]

 [,SET=((value,instr,mask), ...)]

 [,SETYN=mask]

 [,PRESFLD=field] [,SETPRES=(instr,mask)]

 [[YES]]
 [,ACCEPT=[]]
 [[NO]]

 [,TYPE=MOD,NAME=name]

where:
(name) - variable symbol name

 - symbol “name” is assigned to the user flag field for this
operand sub-parameter, to enable the user program to
interrogate the status of this operand. The field with
this label will be set to zero if this operand is not
present in the command, to 4 if the operand is present,
and to 8 if the operand is present but is in error.
Fields at certain offsets from this label may also be
interrogated in order to determine the length, value
and address of the data entered for this operand -
these fields are mapped by the DODDS DSECT which
is generated by the #SPZPMAP macro (see the Span
Service Routines manual for full details). Note that
the “USING” statement must be on symbol
DODUFLG. The value of this “name” parameter
should be used in the “TYPE=MOD” executable form of
the #SPZSUBP macro by the user program before
calling SPZPARSE, in order to permit the user
program to be written re-entrantly (if this is required).

Span Macros Manual Page 91
#SPZSUBP Macro

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 91 of 94

FIELD= - label value
 - specifies the name of the field (if any) that is to be

filled with the data input as an operand of the sub-
parameter defined by this macro.

LENGTH= - numeric value, max=255
 - specifies the length of the field that is to be filled with

the data input as a sub-parameter defined by this
macro. If the “field” parameter is specified but the
“LENGTH=” parameter is omitted, then the length
taken will be the assembled length of the field defined
by the “field” parameter.

FMT= - fixed keyword value
 - defines the data format of the field that is to receive

the sub-parameter data.
FMT=C (the default) specifies character data.
FMT=N specifies character numeric data.
FMT=P specifies packed decimal (numeric input data).
FMT=B specifies binary (numeric input data).
FMT=X specifies hexadecimal (character hex input
data).

REQD= - fixed keyword value
 - specifies whether or not this sub-parameter is

mandatory for every occurrence of the command
defined by the preceding #SPZCMD macro.
REQD=N (the default) specifies that this sub-
parameter is optional.
REQD=Y specifies that this sub-parameter is always
required.

VALID= - one or more character values
 - specifies a list of values that this sub-parameter may

take. If this option is specified and the parameter as
input is not one of this list of values, it will be rejected
as an error.

SET= - one or more SET parameters
 - specifies an operation to be performed if this sub-

parameter as input takes one of a list of one or more
values. The “SET=” option is specified as a sequence of
one or more 3-part parameters, each of the form
“(value,instruction,mask)”, where “value” is a literal
value that the parameter may take, “instruction” is a
valid Assembler operation code defining a System/390
or z/Architecture “Immediate” instruction, “mask” is
the mask to be used by the immediate instruction. For
example, if “SET=((ALL,OI,X'80'))” is specified, and the
value “ALL” is input for the keyword sub-parameter,
then the field defined by the “field” parameter is
modified by the instruction “OI field,X'80'”.
If the “SET=” parameter is specified and the value as
input is not one of the values defined, then the input
will be rejected as an error. Note that if a single value

Page 92 Span Macros Manual
#SPZSUBP Macro

Page 92 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

is to be specified as an operand of the “SET=”
parameter, it must be enclosed in two sets of
parentheses as in the example above.

SETYN= - immediate instruction mask
 - specifies the mask for an “Immediate” instruction to be

executed if this sub-parameter appears as an operand
of the command defined on the preceding #SPZCMD
macro. The “SETYN=” parameter is a special case of
the “SET=” parameter described above, and causes the
mask specified to be used in an “OI” instruction if the
value as input is “Y” or “YES”, and to be used in a “NI”
instruction if the value as input is “N” or “NO”.

PRESFLD= - label value
 - specifies the name of a field (if any) that is to be

modified by the instruction specified by the
“SETPRES=” parameter.

SETPRES= - SETPRES parameter
 - specifies an “Immediate” instruction to be executed

against the field designated by the “PRESFLD=”
parameter if this sub-parameter is present in the
input, and the mask to be used in this immediate
instruction. There must be two sub-parameters
(instruction and mask), enclosed in parentheses and
separated by a comma.

ACCEPT= - fixed keyword value
 - specifies whether the sub-parameter defined by this

#SPZSUBP macro is currently acceptable. If
“ACCEPT=NO” is specified this sub-parameter will not
be recognized until an executable #SPZSUBP macro
specifying “TYPE=MOD,ACCEPT=YES” is executed.

TYPE= - fixed keyword value
 - TYPE=MOD specifies the executable form of the

#SPZSUBP macro, and will cause the generation of
instructions that will dynamically modify the options
on a static #SPZSUBP macro. The “NAME=”
parameter is required for TYPE=MOD to specify the
address of the static #SPZSUBP macro that is to be
modified. The macro parameters permitted to be
changed with a “TYPE=MOD” #SPZSUBP macro are
“FIELD=”, “PRESFLD=”, “ACCEPT=”, “VALUE=”,
“REQD=”, “FMT=”.

NAME= - label value
 - specifies the name on the static #SPZSUBP macro that

this #SPZSUBP macro is to modify dynamically. This
parameter is meaningful only if “TYPE=MOD” is also
specified, and should be accompanied by other
parameters which specify the modifications to be made
to the static #SPZSUBP macro.

Span Macros Manual Page 93
#SPZTITL Macro

Copyright © 2003 Span Software Consultants Limited - 1 February 2003 Page 93 of 94

2.34 #SPZTITL Macro - SPOUTPUT Parameter
Formatting

The #SPZTITL macro is used to format data specified in the “TITLE=”,
“SUBTITL=”, “HEADER=” and “FOOTING=” parameters of the #SPZSOB
macro, and specifies the addresses of strings of #SPZFLD macros, one string of
#SPZFLD macros for each line of title or page footing.

format:

(name) #SPZTITL (line1,line2, ...)

where:
(name) - variable symbol name

 - specifies the value of a label to be specified by the
relevant “TITLE=”, “SUBTITL=”, “HEADER=” or
“FOOTING=” operand of the #SPZSOB macro.

line1,etc - label symbol
 - specifies the labels of strings of #SPZFLD macros that

define the format of title and footing lines. Each label
is the label placed on the first #SPZFLD macro of a
string.

Page 94 Span Macros Manual

Page 94 of 94 Copyright © 2003 Span Software Consultants Limited - 1 February 2003

This manual is published by

Span Software Consultants Limited

The Genesis Centre

Birchwood Science Park

Warrington

Cheshire

WA3 7BH

England

Tel: +44/0 1925 814444

Fax: +44/0 1925 837348

Email: spankey@spansoftware.com

www.spansoftware.com

to whom all comments and suggestions should be sent.

mailto:sales@spansoftware.com
http://www.spansoftware.com

	1 Introduction
	 1.1 Changes for Release 5.1
	 1.2 Changes for Release 5.0
	 1.3 Changes for Release 4.6
	 1.4 Changes for Release 4.5

	2 Span Macro Descriptions
	 2.1 Notation and Coding Conventions
	 2.2 #SPAMODE Macro - MVS/XA, ESA/390 and z/Architecture Addressing Mode Manipulation
	 2.3 #SPANCHK Macro - Data Verification Macro
	 2.4 #SPANLTG Macro - LTORG and Patch Area Generation
	 2.5 #SPANTRY Macro - Module or Subroutine Entry Point Macro
	 2.6 #SPANXIT Macro - Module or Subroutine Exit Point Macro
	 2.7 #SPBINSR Macro - Perform Binary Search of an Ordered Table
	 2.8 #SPCPTIM Macro - Execute Routine and Calculate CPU Usage
	 2.9 #SPGLBL Macro - Define SPOUTPUT/SPZPARSE Control Block
	 2.10 #SPMSG Macro - SPOUTPUT Parameter Formatting
	 2.11 #SPMVCL Macro - Simulate MVCL instruction
	 2.12 #SPTEST Macro - Check Program Environment
	 2.13 #SPXFIND Macro - Invoke SPANEX Lookup Functions
	 2.14 #SPXICB Macro - Generate SPANEX DSECTs
	 2.15 #SPXICBA Macro - Find Field in SPANEX ICB
	 2.16 #SPXMSG Macro - Internal Message Request to SPANEX
	 2.17 #SPXQ Macro - Locate SPANEX Internal Control Block
	 2.18 #SPXRSTU Macro - Request to SPANEX Utility
	 2.19 #SPXSVC Macro - Issue SPANEX SVC
	 2.20 #SPXUDDN Macro - Specify DDNAME for #SPXUMSG Message Requests
	 2.21 #SPXUMSG Macro - User Message Request to SPANEX
	 2.22 #SPZCLOS Macro - SPZQPAM Close Macro
	 2.23 #SPZCMD Macro - SPZPARSE Parameter Formatting
	 2.24 #SPZFIND Macro - Position to a Partitioned Dataset Member when using SPZQPAM
	 2.25 #SPZFLD Macro - SPOUTPUT Parameter Formatting
	 2.26 #SPZKWRD Macro - SPZPARSE Parameter Formatting
	 2.27 #SPZOPEN Macro - SPZQPAM Open Macro
	 2.28 #SPZPARS Macro - Invoke SPZPARSE Service Routine
	 2.29 #SPZPEND Macro - SPZPARSE Parameter Formatting
	 2.30 #SPZPMAP Macro - Generate SPZPARSE DSECTs
	 2.31 #SPZPOSN Macro - SPZPARSE Parameter Formatting
	 2.32 #SPZSOB Macro - SPOUTPUT Interface Macro
	 2.33 #SPZSUBP Macro - SPZPARSE Parameter Formatting
	 2.34 #SPZTITL Macro - SPOUTPUT Parameter Formatting

