
X5-RX User's Manual

X5-RX User's Manual

The X5-RX User's Manual was prepared by the technical staff of
Innovative Integration on August 8, 2011.

For further assistance contact:

Innovative Integration
2390-A Ward Ave

Simi Valley, California 93065

PH: (805) 578-4260
FAX: (805) 578-4225

email: techsprt@innovative-dsp.com
Website: www.innovative-dsp.com

This document is copyright 2011 by Innovative Integration. All rights
are reserved.

VSS \ Distributions \ X5-RX \ Documentation \ Manual \ X5-
RXMaster.odm

#XXXXXX

Rev 1.1

mailto:techsprt@innovative-dsp.com

Table of Contents
List of Tables...7
List of Figures...8

Chapter 1:Introduction...10
Real Time Solutions!..10
Vocabulary..10

What is X5-RX? ..11
What is Malibu? ...11
What is C++ Builder?...11
What is DialogBlocks?...11
What is wxWidgets?...11
What is Microsoft MSVC?...12
What kinds of applications are possible with Innovative Integration hardware?.............................12
Why do I need to use Malibu with my Baseboard?..12
Finding detailed information on Malibu...12

Online Help..13
Innovative Integration Technical Support..13
Innovative Integration Web Site..13

Typographic Conventions...13
Chapter 2:Windows Installation...15
Host Hardware Requirements..15
Software Installation..15

Starting the Installation ...16
The Installer Program..17

Tools Registration..19
Bus Master Memory Reservation Applet...19

Hardware Installation...20
After Power-up...21
Installation on a Deployed System...21

Running MalibuRed..21
Chapter 1:Installation on Linux...23

Package File Names...23
Prerequisites for Installation...23
The Redistribution Package Group - MalibuRed...23
Malibu...24
Other Software...24
Baseboard Package Installation Procedure...24
Board Packages..25
Unpacking the Package...25

Creating Symbolic Links..25
Completing the Board Install..26
Linux Directory Structure...26

Applets..26
Documentation...26
Examples..26

Hardware..26
Chapter 2:Hardware Installation...27
Compatible Host Cards...27
System Requirements..30
Power Considerations..31
Mechanical Considerations...32
Chapter 1. About the X5 XMC Modules..33
X5 XMC Architecture..33
X5 Computing Core...35
X5 PCI Express Interface..36
Data Buffering and Memory Use..37

Computational SRAM..37
Data Buffer DRAM..37

Serial EEPROM Interface..38
EEPROM..38

Digital I/O...39
Available Bit I/O..39
Software Support...39
Digital IO Electrical Characteristics...41

LVTTL Pins..41
LVCMOS 2.5 Pins..41

Notes on Digital IO Use...42
P16 SERDES I/O..42
Thermal Protection and Monitoring..44
Thermal Failures..45
Led Indicators..45

LEDs NOT Lit with FrameWork Logic Installed..45
JTAG Scan Path...46
FrameWork Logic..46
Integrating with Host Cards and Systems...46
Standalone Operation..48
Updating the XMC logic Configuration EEPROM..48

Rescuing the Card When the Logic Image is Bad..49
Chapter 3:Writing Custom Applications...50
The Snap Example...50

Tools Required...50
Program Design...51

The Host Application ..51
User Interface..51

Configure Tab...51
Setup Tab..52
Stream Tab..52
Host Side Program Organization..53

ApplicationIo...53
Initialization..53
Starting Data flow...56

Handle Data Available..60
EEProm Access..62

The Linux Snap Example..63
The ApplicationIo Class...63

User Interface..64
Configure Tab...65
Setup Tab..66
Stream Tab..67

The Wave Example..67
Stream Initialization...67
Data Required Event Handler...69

The Wave Example for Linux...71
The ApplicationIo Class...71

User Interface..71
Developing Host Applications...73
Borland Turbo C++..73

Other considerations:..74
Microsoft Visual Studio 2005..75
DialogBlocks...77
Summary...77
Chapter 4:Applets..78
Common Applets..78

Registration Utility (NewUser.exe)..78
Reserve Memory Applet (ReserveMemDsp.exe)...79

Data Analysis Applets..79
Binary File Viewer Utility (BinView.exe)..79

Chapter 5:Applets for the X5-RX Baseboard...80
Logic Update Utility (VsProm.exe)..80
Finder...81

Chapter 6:X5-RX XMC Module..82
Introduction..82
Hardware Features..84

A/D Converters..84
A/D Front End...84
Input Range and Conversion Codes..85
DC and Low Frequency Band Digitizing..86
Driving the A/D Inputs..86
Overrange Detection...87

Sample Rate Generation and Clocking Controls..87
External Clock/Reference Input..88
Sample Rate Generation...88
Setting the Sample Rate in the SNAP Example..88
Controlling the PLL..89
How To Set the Sample Rate Generator to a Specific Frequency...89
Using An External PLL Reference...90
Using An External Clock for Sample Clock..92

External Clock Requirements..93
CDCDE72010 SPI Port...94
VCXO I2C Port...94

VCXO I2C Port - 0x80F (r/w)...94
Triggering...95

Trigger Source...96
Framed Trigger Mode...96
Decimation...96
Trigger Controls in SNAP Example...97
External Trigger Input Requirements...98
Multi-A/D Synchronization..98

FrameWork Logic Functionality..98
Power Controls and Thermal Design...100

System Thermal Design..100
Temperature Sensor and Over Temperature Protection..100

Alert Log...100
Overview..100
Types of Alerts...101
Alert Packet Format...101
Software Support for Alerts...102
Tagging the Data Stream..102

Calibration..102
Updating the Calibration Coefficients..103

Using the X5-RX..103
Where to start?..103
Getting Good Analog Performance...104

Performance Data..105
Power Consumption..105
Environmental...105
Analog Input..106

Connectors..115
Front Panel Connectors J1-J6..115
XMC P15 Connector...116
XMC P16 Connector...119
Xilinx JTAG Connector..121
FLASH Boot Image Select..122

Mechanicals..122

List of Tables
Table 1. X6 XMC Bus Requirements..27
Table 2. Required PCIe Resource Allocations..31
Table 3. XMC Mounting Hardware..32
Table 4. X5 XMC Family..34
Table 5. X5 XMC Family Peripherals...34
Table 6. X5 Computing Core Devices..35
Table 7. PCI Express Standards Compliance..36
Table 8. Interfaces from PCI Express to Application Logic...37
Table 9. X5 Modules Available Bit I/O...39
Table 10. IUsesDioPort Class Operations...39
Table 11. LVTTL Digital IO Bits Electrical Characteristics...41
Table 12. LVCMOS2.5 Digital IO Bits Electrical Characteristics..42
Table 13. X5 JTAG Scan Path...46
Table 14. XMC Adapters and Hosts..47
Table 15. Development Tools for the Windows Snap Example..50
Table 16. X5-RX A/D Features...84
Table 17. High Speed A/D Conversion Coding..86
Table 18. Secondary (Low Speed) A/D Conversion Coding..86
Table 19. PLL Specifications..88
Table 1. Sample Rate Generation Parameters...90
Table 2. Steps to Configure the VCXO and PLL ...90
Table 3. Effect of Sample Clock Jitter on Digitizing Accuracy (Courtesy Analog Devices, Inc.).......91
Table 4. External PLL Reference Additive Jitter and Delay...91
Table 5. External PLL Reference Requirements...91
Table 6. External Clock Input Requirements..94
Table 7. PLL SPI interface – 0x801 (r/w)...94
Table 8. VCXO control and I2C register – 0x801 (r/w)..95
Table 9. External Trigger Input Requirements..98
Table 10. External Trigger IDELAY Control – 0x80A (r/w)..98
Table 11. Alert Types...101
Table 12. Alert Packet Format...102
Table 13. X5-RX Power Consumption...105
Table 14. X5-RX Environmental Limits...106
Table 15. X5-RX Analog Performance Summary...107
Table 16. A/D Signal Quality vs Input Frequency..108
Table 17. X5-RX XMC Connector P15 Pinout...117
Table 18. P15 Signal Descriptions..118
Table 19. X5-RX XMC Secondary Connector P16 Pinout...120
Table 20. P16 Signal Descriptions..120
Table 21. X5-RX JP1 Xilinx JTAG Connector Pinout..122
Table 22. X5-RX JP3 Boot Image Select..122

List of Figures
Figure 1. Vista Verification Dialog..16
Figure 2. Innovative Install Program...17
Figure 3. Progress is shown for each section..18
Figure 4. ToolSet registration form...19
Figure 5. BusMaster configuration...20
Figure 6. Installation complete..20
Figure 7. Innovative x8 lane PCIe – XMC.3 adapter card (P/N 80259)...28
Figure 8. Innovative 3U VPX- XMC.3 adapter card (P/N 80260) ..28
Figure 9. Innovative Single lane PCIe – XMC.3 adapter card (P/N 80172)...29
Figure 10. Innovative PCI 64/66 – XMC.3 (4x lanes) adapter card (P/N 80167-0)...........................29
Figure 11. Innovative x8 Lane PCI Express – XMC.3 (8x lanes) adapter card (P/N 80173-0)..........29
Figure 12. Innovative Compact PCI/PXI – XMC.3 (x4 lanes) adapter card (P/N 80207-0)...............30
Figure 13. eInstrument Node – cabled PCI Express adapter (x1 lane) for XMC Modules (II P/N
90181)...30
Figure 14. eInstrument PC – embedded PC (Windows/Linux) hosts two XMC modules (II P/N
90199)...30
Figure 15. X5 XMC Family Block Diagram..34
Figure 16. DIO Control Register (BAR1+0x14)...40
Figure 17. Digital IO Port Addresses..40
Figure 18. Virtex-5 Rocket I/O Assignments for P16 signals...43
Figure 19. eInstrument Node Enclosure (P/N 90181) Supports Standalone Operation........................48
Figure 20. XMC EEProm Programmer...49
Figure 21. X5-RX Module (analog cover and heat sink installed)...82
Figure 22. X5-RX Block Diagram..83
Figure 23. X5-RX A/D Channel Front End..85
Figure 1. Sample Clock Generation and Distribution Block Diagram...87
Figure 2. Input Clock/Reference Electrical Specifications...88
Figure 3. SNAP Example Sample Clock Controls..89
Figure 1. Clock Path Using External Reference Input..92
Figure 1. Clock Path Using External Clock Input...93
Figure 2. Analog Triggering Timing...96
Figure 3. X5-RX SNAP Example Triggering Controls...97
Figure 4. X5-RX FrameWork Logic Data Flow...99
Figure 5. Typical Performance Evaluation Setup..104
Figure 6. Frequency Response for 1 MHz to 1.2GHz span..107
Figure 7. Frequency Response for 5 MHz to 400 MHz span..108
Figure 8. A/D Signal Quality vs. Input Frequency..109
Figure 1. Wideband Signal Quality, Fin = 5 MHz, 1.3Vp-p, Fs = 200 MSPS....................................109
Figure 1. Wideband Signal Quality, Fin = 70 MHz, 1.4Vp-p, Fs = 200 MSPS..................................110
Figure 2. Narrowband Signal Quality, Fin = 70 MHz, 1.4Vp-p, Fs = 200 MSPS..............................111
Figure 3. Wideband Signal Quality, Fin = 99 MHz, 1.3 Vp-p, Fs = 200 MSPS.................................112
Figure 4. Wideband Signal Quality, Fin = 165 MHz, 1.3Vp-p, Fs = 200 MSPS................................113
Figure 5. Narrowband Signal Quality, Fin = 165 MHz, 1.3Vp-p, Fs = 200 MSPS............................114
Figure 6. Connectors J1-J6 Functions...115

Figure 7. P15 XMC Connector Orientation..116
Figure 8. P16 XMC Connector Orientation..119
Figure 9. X5-RX JP1 Orientation, board face view..121
Figure 10. X5-RX JP1 Orientation, board top edge view...121
Figure 11. X5-RX Mechanicals (Top View) ..123
Figure 12. X5-RX Mechanicals (Bottom View)...124

Introduction

Chapter 1: Introduction

Real Time Solutions!
Thank you for choosing Innovative Integration, we appreciate your business! Since 1988, Innovative Integration has grown
to become one of the world's leading suppliers of DSP and data acquisition solutions. Innovative offers a product portfolio
unrivaled in its depth and its range of performance and I/O capabilities .

Whether you are seeking a simple DSP development platform or a complex, multiprocessor, multichannel data acquisition
system, Innovative Integration has the solution. To enhance your productivity, our hardware products are supported by
comprehensive software libraries and device drivers providing optimal performance and maximum portability.

Innovative Integration's products employ the latest digital signal processor technology thereby providing you the competitive
edge so critical in today's global markets. Using our powerful data acquisition and DSP products allows you to incorporate
leading-edge technology into your system without the risk normally associated with advanced product development. Your
efforts are channeled into the area you know best ... your application.

Vocabulary

X5-RX User's Manual 10

Introduction

What is X5-RX?
The X5-RX is a PCI Express XMC IO module featuring four TI ADS5485 providing 200 MSPS, 16-bit A/D data.

A Xilinx Virtex5 SX95T with 512 MByte DDR2 DRAM and 4MB QDR-II memory provide a very high performance DSP
core for demanding applications such as emerging wireless standards. The close integration of the analog IO, memory and
host interface with the FPGA enables real-time signal processing at extremely high rates exceeding 300 GMACs per second.

The X5 XMC modules couple Innovative's powerful Velocia architecture with a high performance, 8-lane PCI Express
interface that provides over 1 GB/s sustained transfer rates to the host. Private links to host cards with > 1.6 GB/s capacity
using J16 are provided for system integration. The X5 family can be fully customized using VHDL and MATLAB using the
FrameWork Logic toolset. The MATLAB BSP supports real-time hardware-in-the-loop development using the graphical,
block diagram Simulink environment with Xilinx System Generator.

Software tools for host development include C++ libraries and drivers for Windows and Linux. Application examples
demonstrating the module features and use are provided.

What is Malibu?
Malibu is the Innovative Integration-authored component suite, which combines with the Borland, Microsoft or GNU C++
compilers and IDEs to support programming of Innovative hardware products under Windows and Linux. Malibu supports
both high-speed data streaming plus asynchronous mailbox communications between the DSP and the Host PC, plus a wealth
of Host functions to visualize and post-process data received from or to be sent to the target DSP.

What is C++ Builder?
C++ Builder is a general-purpose code-authoring environment suitable for development of Windows applications of any type.
Armada extends the Builder IDE through the addition of functional blocks (VCL components) specifically tailored to perform
real-time data streaming functions.

What is DialogBlocks?
DialogBlocks is an easy-to-use dialog editor for your wxWidgets applications, generating C++ code and XRC resource files.
Using sizer-based layout, DialogBlocks helps you build dialogs and panels that look great on Windows, Linux or any
supported wxWidgets platform. Add context-sensitive help text, tooltips, images, splitter windows and more.

What is wxWidgets?
wxWidgets was started in 1992 by Julian Smart at the University of Edinburgh. Initially started as a project for creating
applications portable across Unix and Windows, it has grown to support the Mac platform, WinCE, and many other toolkits

X5-RX User's Manual 11

http://www.anthemion.co.uk/dialogblocks

Introduction

and platforms. The number of developers contributing to the project is now in the dozens and the toolkit has a strong userbase
that includes everyone from open source developers to corporations such as AOL. So what is special about wxWidgets
compared with other cross-platform GUI toolkits?

wxWidgets gives you a single, easy-to-use API for writing GUI applications on multiple platforms that still utilize the native
platform's controls and utilities. Link with the appropriate library for your platform (Windows/Unix/Mac, others coming
shortly) and compiler (almost any popular C++ compiler), and your application will adopt the look and feel appropriate to
that platform. On top of great GUI functionality, wxWidgets gives you: online help, network programming, streams,
clipboard and drag and drop, multithreading, image loading and saving in a variety of popular formats, database support,
HTML viewing and printing, and much more.

What is Microsoft MSVC?
MSVC is a general-purpose code-authoring environment suitable for development of Windows applications of any type.
Armada extends the MSVC IDE through the addition of dynamically created MSVC-compatible C++ classes specifically
tailored to perform real-time data streaming functions.

What kinds of applications are possible with Innovative Integration hardware?
Data acquisition, data logging, stimulus-response and signal processing jobs are easily solved with Innovative Integration
baseboards using the Malibu software. There are a wide selection of peripheral devices available in the Matador DSP product
family, for all types of signals from DC to RF frequency applications, video or audio processing. Additionally, multiple
Innovative Integration baseboards can be used for a large channel or mixed requirement systems and data acquisition cards
from Innovative can be integrated with Innovative's other DSP or data acquisition baseboards for high-performance signal
processing.

Why do I need to use Malibu with my Baseboard?
One of the biggest issues in using the personal computer for data collection, control, and communications applications is the
relatively poor real-time performance associated with the system. Despite the high computational power of the PC, it cannot
reliably respond to real-time events at rates much faster than a few hundred hertz. The PC is really best at processing data,
not collecting it. In fact, most modern operating systems like Windows are simply not focused on real-time performance, but
rather on ease of use and convenience. Word processing and spreadsheets are simply not high-performance real-time tasks.

The solution to this problem is to provide specialized hardware assistance responsible solely for real- time tasks. Much the
same as a dedicated video subsystem is required for adequate display performance, dedicated hardware for real-time data
collection and signal processing is needed. This is precisely the focus of our baseboards – a high performance, state-of-the-
art, dedicated digital signal processor coupled with real-time data I/O capable of flowing data via a 64-bit PCI bus interface.

The hardware is really only half the story. The other half is the Malibu software tool set which uses state of the art software
techniques to bring our baseboards to life in the Windows environment. These software tools allow you to create applications
for your baseboard that encompass the whole job - from high speed data acquisition, to the user interface.

Finding detailed information on Malibu
Information on Malibu is available in a variety of forms:

• Data Sheet (http://www.innovative-dsp.com/products/malibu.htm)

X5-RX User's Manual 12

Introduction

• On-line Help

• Innovative Integration Technical Support

• Innovative Integration Web Site (www.innovative-dsp.com)

Online Help

Help for Malibu is provided in a single file, Malibu.chm which is installed in the Innovative\Documentation folder during the
default installation. It provides detailed information about the components contained in Malibu - their Properties, Methods,
Events, and usage examples. An equivalent version of this help file in HTML help format is also available online at
http://www.innovative-dsp.com/support/onlinehelp/Malibu.

Innovative Integration Technical Support

Innovative includes a variety of technical support facilities as part of the Malibu toolset. Telephone hotline supported is
available via

Hotline (805) 578-4260 8:00AM-5:00 PM PST.

Alternately, you may e-mail your technical questions at any time to:

techsprt@innovative-dsp.com.

Also, feel free to register and browse our product forums at http://forum.iidsp.com/, which are an excellent source of FAQs
and information submitted by Innovative employees and customers.

Innovative Integration Web Site

Additional information on Innovative Integration hardware and the Malibu Toolset is available via the Innovative Integration
website at www.innovative-dsp.com

Typographic Conventions
This manual uses the typefaces described below to indicate special text.

Typeface Meaning

Source Listing Text in this style represents text as it appears onscreen or in code. It
also represents anything you must type.

Boldface Text in this style is used to strongly emphasize certain words.

X5-RX User's Manual 13

http://forum.iidsp.com/
http://www.innovative-dsp.com/support/onlinehelp/Malibu

Introduction

Emphasis Text in this style is used to emphasize certain words, such as new
terms.

Cpp Variable Text in this style represents C++ variables

Cpp Symbol Text in this style represents C++ identifiers, such as class, function,
or type names.

KEYCAPS Text in this style indicates a key on your keyboard. For example,
“Press ESC to exit a menu”.

Menu Command Text in this style represents menu commands. For example “Click
View | Tools | Customize”

X5-RX User's Manual 14

Windows Installation

Chapter 2: Windows Installation

This chapter describes the software and hardware installation procedure for the Windows platform (WindowsXP, Vista, and
Windows 7).

Do NOT install the hardware card into your system at this time. This will follow the software
installation.

Host Hardware Requirements
The software development tools require an IBM or 100% compatible Pentium IV - class or higher machine for proper
operation. An Intel-brand processor CPU is strongly recommended, since AMD and other “clone” processors are not
guaranteed to be compatible with the Intel MMX and SIMD instruction-set extensions which the Armada and Malibu Host
libraries utilize extensively to improve processing performance within a number of its components. The host system must
have at least 1 GB of memory (2 GB recommended), 1 GB available hard disk space, and a DVD-ROM drive. Most
versions of Windows released after Win2000 including XP, Vista, or Windows 7 (referred to herein simply as Windows) or
later is required to run the developer’s package software, and are the target operating systems for which host software
development is supported.

Software Installation
The development package installation program will guide you through the installation process.

Note: Before installing the host development libraries (VCL components or MFC classes), you must
have Microsoft MSVC Studio (version 9 or later), CodeGear RAD Studio 2007/2009, Embarcadero Rad
Studio 2010 or QtCreator installed on your system, depending on which of these IDEs you plan to use
for Host development. If you are planning on using these environments, it is imperative that they are
tested and known-operational before proceeding with the library installation. If these items are not
installed prior to running the Innovative Integration install, the installation program will not permit
installation of the associated development libraries. However, drivers and DLLs may be installed to
facilitate field deployment.

You must have Administrator Privileges to install and run the software/hardware onto your system, refer to the Windows
documentation for details on how to get these privileges.

X5-RX User's Manual 15

Windows Installation

Starting the Installation

To begin the installation, start Windows. Shut down all running programs and disable anti-virus software. Insert the
installation DVD. If Autostart is enabled on your system, the install program will launch. If the DVD does not Autostart,
click on Start | Run... Enter the path to the Setup.bat program located at the root of your DVD-ROM drive (i.e.
E:\Setup.bat) and click “OK” to launch the setup program.

SETUP.BAT detects if the OS is 64-bit or 32-bit and runs the appropriate installation for each
environment. It is important that this script be run to launch an install.

When installing on a Vista OS, the dialog below may pop up. In each case, select “Install this driver software anyway” to
continue.

Figure 1. Vista Verification Dialog

X5-RX User's Manual 16

Windows Installation

The Installer Program

After launching Setup, you will be presented with the following screen.

Figure 2. Innovative Install Program

Using this interface, specify which product to install, and where on your system to install it.

1) Select the appropriate product from the Product Menu.

2) Specify the path where the development package files are to be installed. You may type a path or click “Change” to
browse for, or create, a directory. If left unchanged, the install will use the default location of “C:\Innovative”.

3) Typically, most users will perform a “Full Install” by leaving all items in the “Components to Install” box
checked. If you do not wish to install a particular item, simply uncheck it. The Installer will alert you and
automatically uncheck any item that requires a development environment that is not detected on your system.

4) Click the Install button to begin the installation.

X5-RX User's Manual 17

Windows Installation

Note: The default “Product Filter” setting for the installer interface is “Current Only” as indicated by
the combo box located at the top right of the screen. If the install that you require does not appear in the
“Product Selection Box” (1), Change the “Product Filter” to “Current plus Legacy”.

Each item of the checklist in the screen shown above, has a sub-install associated with it and will open a sub-install screen if
checked. For example, the first sub-install for “Quadia - Applets, Examples, Docs, and Pismo libraries” is shown below.

The installation will display a progress window, similar to the one shown below, for each item checked.

Figure 3. Progress is shown for each section.

X5-RX User's Manual 18

Windows Installation

Tools Registration
At the end of the installation process you will be prompted to register.
If you decide that you would like to register at a later time, click
“Register Later”.

When you are ready to register, click Start | All Programs | Innovative |
<Board Name> | Applets. Open the New User folder and launch
NewUser.exe to start the registration application. The registration form
to the left will be displayed.

Before beginning DSP and Host software development, you must
register your installation with Innovative Integration. Technical
support will not be provided until registration is successfully
completed. Additionally, some development applets will not operate
until unlocked with a passcode provided during the registration
process.

It is recommend that you completely fill out this form and return it to
Innovative Integration, via email or fax. Upon receipt, Innovative
Integration will provide access codes to enable technical support and
unrestricted access to applets.

Figure 4. ToolSet registration form

Bus Master Memory Reservation Applet.
At the conclusion of the installation process, ReserveMem.exe will run
(except for SBC products). This will allow you to set the memory size
needed for the busmastering to occur properly. This applet may be run from
the start menu later if you need to change the parameters.

For optimum performance, reserve at least 64 MB of memory for each
Innovative board to be used simultaneously within the PC plus 32 MB for
other system use. For example, if using two X5-400M modules, reserve 2 *
64 + 32 MB = 160 MB. To reserve this memory, the registry must be
updated using the ReserveMem applet. Simply type the desired size into the
Rsv Region Size (MB) field, click Update and the applet will update the
registry for you. If at any time you change the number of boards in your
system, then you must invoke this applet found in Start | All Programs |
Innovative | <target board> | Applets | Reserve Memory.

After updating the system exit the applet by clicking the exit button to
resume the installation process.

X5-RX User's Manual 19

Windows Installation

Figure 5. BusMaster configuration

At the end of the install process, the following screen will appear.

Figure 6. Installation complete

Click the “Shutdown Now” button to shut down your computer. Once the shutdown process is complete unplug the system
power cord from the power outlet and proceed to the next section, “Hardware Installation.”

Hardware Installation
Now that the software components of the Development Package have been installed the next step is to configure and install
your hardware. Detailed instructions on board installation are given in the Hardware Installation chapter, following this
chapter.

IMPORTANT: Many of our high speed cards, especially the PMC and XMC Families, require forced
air from a fan on the board for cooling. Operating the board without proper airflow may lead to
improper functioning, poor results, and even permanent physical damage to the board. These boards
also have temperature monitoring features to check the operating temperature. The board may also be
designed to intentionally fail on over-temperature to avoid permanent damage. See the specific
hardware information for airflow requirements.

X5-RX User's Manual 20

Windows Installation

After Power-up
After completing the installation, boot your system into Windows.

Innovative Integration boards are plug and play compliant, allowing Windows to detect them and auto-configure at start-up.
Under rare circumstances, Windows will fail to auto-install the device-drivers for the JTAG and baseboards. If this happens,
please refer to the “TroubleShooting” section.

Installation on a Deployed System
The above instructions install the complete development platform onto a system for the development of application software.
Often, however, a developed application needs to be installed on a system that will only be used to run the program. In this
instance, installing the complete library is overkill.

To support this situation, Innovative has a minimal installation program called “MalibuRED”. This is short for Malibu
Redistributable. This install will install the driver software and support DLLs required to run a Malibu application.

Note: Specific applications may have their own, additional requirements that are not covered by
MalibuRED. For example, .NET applications require the .NET libraries to be installed as well.
Installation programs for .NET can be obtained from Microsoft over the Internet.

Running MalibuRed

MalibuRED can be found on the installation CD in the Windows-32\Malibu subdirectory. The name of the installation file is
MalibuRED.exe. Running the program displays the setup screen for the installer:

Using the combo box, select the appropriate baseboard to install support for. In this case, we are installing an X3-A4D4
board. If support for multiple cards is needed, the program must be run to completion once for each type of board. This is
required because parts of the installation, such as baseboard device drivers, may be different for different board types.

After selecting the board, press “Go” to begin installation. The window changes to display the progress of the install.

X5-RX User's Manual 21

Windows Installation

After completing the installation, reboot the system to allow Windows to recognize the new drivers. Then proceed with the
Hardware Installation as in the development system installation above.

X5-RX User's Manual 22

Installation on Linux

Chapter 1: Installation on Linux

This chapter contains instruction on the installation of the baseboard software for Linux operating systems.

Software installation on Linux is performed by loading a number of packages. A Package is a special kind of archive file that
contains not only the files that are to be installed, but also installation scripts and dependency information to allow a smooth
fit into the system. This information allows the package to be removed, or patched. Innovative uses RPM packages in its
installs.

Package File Names
A package file name such as Malibu-LinuxPeriphLib-1.1-3.i586.rpm encodes a lot of information.

Package Name Package ID Information Fields

Distribution Subpackage Version Revision Hardware Type Extension

Malibu-Linux PeriphLib 1.1 3 i586 .rpm

Prerequisites for Installation
In order to properly use the baseboard example programs and to develop software using the baseboard, some packages need
to be installed before the actual baseboard package.

The Redistribution Package Group - MalibuRed

This set of packages contain the libraries and drivers needed to run a program using Malibu. This group is called
“MalibuRed” because it contains the packages needed to allow running Malibu based programs on a target, non-development
machine. (Red is short for 'redistributable').

MalibuRed Packages Description

WinDriver-9.2-1.i586.rpm Installs WinDriver 9.2 release.

MalibuLinux-Red-[ver]-[rel].i586.rpm Installs Baseboard Driver Kernel Plugin.

intel-ipp_rti-5.3p.x32.rpm Installs Intel IPP library redistributable files.

X5-RX User's Manual 23

The Redistribution Package Group - MalibuRed

The installation CD, or the web site contains a file called LinuxNotes.pdf giving instructions on how to load these packages
and how to install the drivers onto your Linux machine. This file is also loaded onto the target machine by the the Malibu-
LinuxRed RPM. These procedures need to be completed for every target machine.

Malibu

To develop software for a baseboard the Malibu packages also must be installed.

Malibu Packages Description

Malibu-LinuxPeriphLib-[ver]-[rel].i586.rpm Installs Malibu Source, Libraries and Examples.

Other Software

Our examples use the DialogBlocks designer software and wxWidgets GUI library package for user interface code. If you
wish to rebuild the example programs you will have to install this software as well.

Package Company URL

wxWidgets wxWidgets http://www.wxwidgets.org

DialogBlocks Anthemion http://www.anthemion.co.uk.org/dialogblocks

Baseboard Package Installation Procedure
Each baseboard installation for Linux consists of one or more package files containing self-extracting packages of
compressed files, as listed in the table below. Note that package version codes may vary from those listed in the table.

Each of these packages automatically extract files into the /usr/Innovative folder, herein referred to as the Innovative
root folder in the text that follows. For example, the X5-400 RPM extracts into /usr/Innovative/X5-400-[ver]. A
symbolic link named X5-400 is then created pointing to the version directory to allow a single name to apply to any version
that is in use.

X5-RX User's Manual 24

Board Packages

Board Packages

Baseboard Packages Description

X5-400M Malibu-LinuxPeriphLib-[ver]-[rel].i586.rpm Board files and examples.

X5-210M X5-210M-LinuxPeriphLib-[ver]-[rel].i586.rpm Board files and examples.

X3-10M X3-10M-LinuxPeriphLib-[ver]-[rel].i586.rpm Board files and examples.

X3-25M X3-25M-LinuxPeriphLib-[ver]-[rel].i586.rpm Board files and examples.

X3-A4D4 X3-A4D4-LinuxPeriphLib-[ver]-[rel].i586.rpm Board files and examples.

X3-SD X3-SD-LinuxPeriphLib-[ver]-[rel].i586.rpm Board files and examples.

X3-SDF X3-SDF-LinuxPeriphLib-[ver]-[rel].i586.rpm Board files and examples.

X3-Servo X3-Servo-LinuxPeriphLib-[ver]-[rel].i586.rpm Board files and examples.

SBC-ComEx Sbc-ComEx-LinuxPeriphLib-[ver]-[rel].i586.rpm Board files and examples.

Unpacking the Package

As root, type:

rpm -i -h X5-400-LinuxPeriphLib-1.1-4.i586.rpm

This extracts the X5-400 board files into the Innovative root directory. Use the package for the particular board you are
installing.

Creating Symbolic Links
The example programs assume that the user has created symbolic links for the installed board packages. A script file is
provided to simplify this operation by the Malibu Red package. In the MalibuRed/KerPlug directory, there is a script called
quicklink.

quicklink X5-400 1.1

These commands will create a symbolic link X5-400 pointing to X5-400-1.1.

This script can be moved to the user's bin directory to allow it to be run from any directory.

X5-RX User's Manual 25

Completing the Board Install

Completing the Board Install

The normal board install is complete with the installation of the files. The board driver install is already complete with the
loading of the Malibu Red package. If there are any board-specific steps they will be listed at the end of this chapter.

Linux Directory Structure

When a board package is installed, its files are placed under the /usr/Innovative folder. The base directory is named
after the board with a version number attached -- for example, the version 2.0 X5-400 RPM extracts into
/usr/Innovative/X5-400-2.0.

This allows multiple version of installs to coexist by using a symbolic link to point to a particular version. Changing the
symbolic link changes with version will be used.

Under the main directory there are a number of subdirectories.

Applets
The applets subdirectory contains small application programs that aid in the use of the board. For example, there is a Finder
program that allows the user to flash an LED on the board to determine which board is associated with a target number. See
the Applets chapter for a fuller description of the applets for a board.

Documentation
This directory contains any documentation files for the project. Open the index.html file in the directory with a web browser
to see the available files and a description of the contents.

Examples
This directory and its subdirectories contain the projects, source and example programs for the board.

Hardware
This directory contains files associated with programming the board Logic and any logic images provided.

X5-RX User's Manual 26

Hardware Installation

Chapter 2: Hardware Installation

The X6 XMC cards may be used on a variety of host cards supporting an XMC.3 PCI Express (VITA standard 42.3
compatible) site. XMC P16 is also used for system integration including use as a dedicated data channel.

Compatible Host Cards
X6 XMC cards are compatible with the VITA 42.3 PCI Express mezzanine module sites. The card form factor is IEEE 1386
with XMC connectors P15 and P16. P15 is used for PCI Express, while P16 is used as digital IO unique to the X6 modules.
The X6 modules mount 10mm from the host card and may use standoffs for mechanically securing the module to the host.

PCI Express Bus
Requirement

Type

Standard PCI Express 1.0a

Lanes 8

Bus Speed Gen1: 2.5 Gbps per lane per direction
Gen2: 5 Gbps per lane per direction

Power Supplies 3.3V and VPWR (+5V or +12V) is required on all XMCs.

Table 1. X6 XMC Bus Requirements

Note: PCI Express interfaces supports Gen1 (2.5 Gbps) or Gen2 (5 Gbps) operation. For Gen2, the host system must support
Gen2 operation in the installed site. For Gen2 x8, the X6 module must be ordered with -2 FPGA speed grade or better.

Adapter cards for XMC modules, shown below, allow X6 XMC modules to be used in a desktop PCs with PCI Express or
PC slots.

To get out of the PC chassis, consider using either the eInstrument Node. The eInstrument node can host one XMC using
cabled PCI Express using a cable as long as 5 meters.

For an intelligent computing node, the eInstrument PC provides an embedded PC running Windows or Linux, disk drives,
and other PC peripherals with two XMC module sites.

X5-RX User's Manual 27

Hardware Installation

Figure 7. Innovative x8 lane PCIe – XMC.3 adapter card (P/N 80259)

Figure 8. Innovative 3U VPX- XMC.3 adapter card (P/N 80260)

Conduction-cooled or Air-cooled versions are offered.

X5-RX User's Manual 28

Preferred for
X6 Modules

Hardware Installation

Figure 9. Innovative Single lane PCIe – XMC.3 adapter card (P/N 80172)

Figure 10. Innovative PCI 64/66 – XMC.3 (4x lanes) adapter card (P/N 80167-0)

Figure 11. Innovative x8 Lane PCI Express – XMC.3 (8x lanes) adapter card (P/N 80173-0)

X5-RX User's Manual 29

Hardware Installation

Figure 12. Innovative Compact PCI/PXI – XMC.3 (x4 lanes) adapter card (P/N 80207-0)

Figure 13. eInstrument Node – cabled PCI Express adapter (x1 lane) for XMC Modules (II P/N 90181)

Figure 14. eInstrument PC – embedded PC (Windows/Linux) hosts two XMC modules (II P/N 90199)

XMC systems should be be compatible with VITA 42.3 specification for P15.

The P16 interface can only be used when the PCI Express interface is present and active. The XMC P16 interface to the host
may be customized in the Application Logic. Host card support for P16 interfaces varies so this must be verified on a case-
by-case basis to determine compatibility. In the specific description of each module, the P16 connection pinout is provided in
this manual. Innovative's adapter cards provide access to P16 IO for system integration. Contact technical support if you
need any assistance in checking compatibility with the X6 XMC P16 interface.

System Requirements

X5-RX User's Manual 30

Hardware Installation

The PCI Express slot must be PCI Express 1.0a compatible and be able to map the following resources.

Table 2. Required PCIe Resource Allocations

Required PCIe Resources

BAR0 : 1MB Memory

BAR1 : 64K B Memory

1 Interrupt

When you first plug in the module, it will then be found and the driver should be installed for the module. The standard driver
resides in the \Innovative\drivers directory after software installation.

The XMC module may be used an any PCI Express slot supporting 1 or more lanes. Innovative offers a line of adapters for
use with the X6 series which allow the module to be used in PCI and cPCI environments. These adapters may limit the
number of lanes available to the X6 for host communication, depending on their design.

Power Considerations
Each XMC should be reviewed for its specific power, cooling and any special mechanical considerations. For each module
the power consumption and required power supplies are shown in the specific discussion for that module.

For desktop applications, you MUST provide forced air cooling with 5-10 CFM capability. The air must blow directly
on the Virtex 6 device.

The X6 XMCs are designed to operate over the typical commercial temperature range of 0 to 70 C, but this relies on
sufficient forced air cooling for most installations and modules. At the lower temperatures, it is also required that the
environment be non-condensing for the standard commercial modules. Extended temperature versions of many modules are
available with conformal coating if the environment is more demanding.

During operation, the module temperature should be monitored to prevent unexpected shutdown. If the module temperature
exceeds 85C (L0 rating), the module will deactivate on-board power supplies to avoid overheating. Please refer to the
section on thermal properties for more details.

PCI Express slots are rated for their power capability. Each installation should be reviewed to verify that the host card plus
the module do not exceed the rated power of the slot. The power consumption for each module is provided in the specific
discussion of that module. Most slots support 15W in desktop systems and provide 3.3V and 12V. Some XMC modules
require -12V, which must be provided by the host card.

X5-RX User's Manual 31

Hardware Installation

Mechanical Considerations
The X6 modules conform to IEEE1386 CMC specification and ANSI/VITA 42.0 specifications, except as specified on
individual modules. These specifications define the size of the module and mounting requirements. In short the modules are
75 x 150 mm and mount 10 mm from the host card. This allows the XMC modules to fit in one slot in desktop PC or compact
PCI systems.

For ruggedness, the modules should be mounted to a host card using the mounting screws and standoffs. The host bracket
should securely hold the XMC front bracket so that the module is snug in the bracket opening. This reduces mechanical strain
on the XMC connectors from the front panel cable attachments.

The card may be secured to the host card with two standoffs and four screws as shown. The Digikey number is provided
(www.digikey.com) for convenience; many suppliers have these standard screw and standoff sizes.

For high vibration applications, screws should be mounted with locking compound such as Loctite 222.

Table 3. XMC Mounting Hardware

Description Quantity Digikey Part Number

Metric pan head screw, M3X6, 3mm x 5mm 5 H742-ND

Threaded Standoff, 10mm with 3mm thread 3 4391K

During the logic and firmware design process, some modules require access to JTAG connectors for use with the
development tools. This may require greater access space than the final installation. A variety of engineering tools are
available to assist the designer during the development process such as PCIe to XMC adapters. A cabled version allows the
module to operate outside the chassis. An open chassis may also be required to get access to the XMC during the
development process so that the cables are easily accessible.

X5-RX User's Manual 32

http://www.digikey.com/

About the X5 XMC Modules

Chapter 1. About the X5 XMC Modules

In this chapter, we will discuss the common features of the X5 module family. Specifics on each module are covered in later
chapters.

X5 XMC Architecture
The X5 XMC modules share a common architecture and many features such as the PCI Express interface, data buffering
features, the Application Logic, and other system integration features. This allows the X5 XMC modules to utilize common
software and logic firmware, while providing unique analog and digital features.

X5-RX User's Manual 33

About the X5 XMC Modules

Figure 15. X5 XMC Family Block Diagram

The X5 XMCs have a variety of analog and digital IO front ends suited to many applications.

Table 4. X5 XMC Family

X5 XMC Features Applications

X5-400M 2 A/D channels, 14 bit, 400MHz; 2 D/A channels, up to
500M updates/sec

Software radio, RADAR, medical imaging

X5-210M 4 A/D channels, 14 bit, 250 MHz Software radio, RADAR

X5-GSPS 2 A/D channels, 8 bit, at 1.5GSPS IF/RF receivers and test, RADAR

X5-COM 4 SFP ports at 3.125 Gbps Remote IO, system expansion

X5-TX 4 DAC channels, 16-bit, 500 MSPS each or dual channel
1 GSPS, pattern generation mode for DRAM

Arbitrary waveform generation,
communications waveform generation

X5-G12 2 A/D channels, 12-bit, at 1GSPS, integrated FFT engine RADAR, communications receivers, pulse
digitizing

X5-RX 4 A/D channels, 16bit, 200 MHz, integrated 4 channel
DDC

IF digitizing and receivers.

The X5 XMCs feature a Xilinx Virtex-5 SX95T or LX155T core for signal processing and control. In addition to the features
in the Virtex-5 logic such as embedded multipliers and memory blocks, the FPGA computing core has one bank of DDR2
DRAM and two banks of QDR2 SRAM for data buffering and computing memory.

There are also a number of support peripherals for IO control and system integration. Each XMC may have additional
application-specific support peripherals.

Table 5. X5 XMC Family Peripherals

Peripheral Features

XMC.3 PCI Express
interface

The XMC.3 host interface integrates with PCI Express systems using eight lanes operating at 2.5 Gbps
that provides up to 4 GBytes/sec data rate on the bus (full duplex). This interface complies with VITA
standard 42.3 which specifies PCI Express interface for the XMC module format.
The Velocia packet system provides fast and flexible communications with the host using a credit-based
flow control supporting packet transfers with the host. A secondary command channel provides
independent interface for control and status outside of the data channel that is extensible to custom
applications.

XMC P16 Provides a bank of digital IO lines which may be used for general purpose bit I/O or to implement a
private link to cards featuring a parallel data bus. Additionally, eight independent rocket I/O links
(VITA 42.0) are available, each capable of 500 MB/s, full-duplex operation

Timing and triggering Flexible clocking and synchronization features for I/O

Data buffering and Two 1Mx16 SRAM devices are used provide data buffering, processor memory and computation

X5-RX User's Manual 34

About the X5 XMC Modules

Peripheral Features

Computational Memory memory for the Application FPGA

Alert Log Monitors system events and error conditions to help manage the data acqusiton process

X5 Computing Core
The X5 XMC module family has an FPGA-based computing core that controls the data acquisition process, provides data
buffing and host communications. The computing core consists of a Xilinx Virtex-5 FPGA, one bank of DDR2 DRAM
(4Gbits in a x64 configuration), and two banks of QDR2 SRAM (32Mbits total in two x32 dual-ported banks). The FPGA
uses the memories for data buffering and computational workspace.

Table 6. X5 Computing Core Devices

Feature Device Part Number

Application Logic FPGA Xilinx Virtex-5 SX95T
Xilinx Virtex-5 LX155T

XC5VSX95T-1FFG1136C (some cards use -2)
XC5VLX155T-1FFG1136C (some cards use -2)

Computation memory QDR2 SRAM 2x Cypress CY7C1314BV18-167

Buffer memory DDR2 DRAM 4x Micron MT47H64M16HR-37E

As the focus of the module, the X5 computing core connects the IO, peripherals, host communications and support features.
Each IO device directly connects to the application FPGA on the X5 modules providing tight coupling for high performance,
real-time IO. The FPGA logic implements an interface to each device that connects them to the controls and data
communications features on the module. Support features, such as sample triggering and data analysis, are implemented in
the logic to provide precise real-time control over the data acquisition process.

The X5 module architecture is really defined by the features in the logic that connect the IO devices to Velocia packet system.
For data from IO devices such as A/Ds, the data flows from the IO interface and is then enqueued in the multi-queue buffer.
The packetizer then creates data packets from the data stream that are moved across the data link to the PCIe interface.
Packets to output devices travel in the opposite direction – from the link to the de-framer and into the multi-queue data buffer.
The output IO, such as a DAC, then consumes the data from the queue as required. The Alert Log monitors error conditions
and important events for management of the data acquisition process.

The host interacts with the X5 computing core using the packet system for high speed data and over the command channel.
The packet system is the main data channel to the card and delivers the high performance, real-time data capability of moving
data to and from the module. Since it uses an efficient DMA system, it is very efficient at moving data which leaves the host
system unburdened by the data flow. The command channel provides the PCIe host direct access to the computing core logic
for status, control and initialization. Since it is outside the packet system, it is less complex to use and provides unimpeded
access to the logic.

The application FPGA image is loaded at power up from onboard flash EEPROM storage.

Adding New Features to the FPGA

X5-RX User's Manual 35

About the X5 XMC Modules

The functionality of the computing core can be modified using the FrameWork Logic tools for the X5 module family. The
tools support development in either VHDL or MATLAB. Signal processing, data analysis and unique functions can be added
to the X5 modules to suit application-specific requirements. See the X5 FrameWork Logic User Guide for further
information.

X5 PCI Express Interface
The X5 module family has a PCI Express interface that provides a lane, 2.5 Gbps full duplex link to the host computer. The
interface is compatible with industry standard PCI Express systems and may be used in a variety of host computers. The
following standards govern the PCI Express interface on the X5 XMC modules.

Table 7. PCI Express Standards Compliance

Standard Describes Standards Group

PCI Express 1.0a PCI Express electrical and protocol standards.
2.5 Gbps data rate per lane per direction.

PCI SIG (http://www.picmg.com)

ANSI/VITA 42 XMC module mechanicals and connectors VITA (www.vita.org)

ANSI VITA 42.3 XMC module with PCI Express Interface. VITA (www.vita.org)

The major interfaces to the application logic are the data link, command channel and SelectMAP interface. The data link
provides a high performance channel for the application logic to communicate with the host computer while the Command
Channel is a command and control interface from the host computer to the application logic. The SelectMAP interface is the
application FPGA configuration port for loading the logic image.

The data link is the primary data path for the data communications between the application FPGA and host computer. When
data packets are created by the application logic, such as A/D samples, or required by the application logic for output devices,
such as DAC channels, the data flows over the data link as packets. The maximum transfer rate over the data link is 2000
MB/s with a 1200 MB/s sustained rate (half-duplex). The data packets contain a Peripheral Device Number (PDN) that
identifies the peripheral associated with the this data packet. In this way, the packet system is extensible to other devices that
may be added to the logic. For example, an FFT analysis can be added to the logic and its result sent to the host as a new
PDN for display and further analysis while maintaining other data streams from A/D channels.

Application Logic
Interface

Max Data Rate Typical Use

 Velocia Packet Interface 1000 MB/s sustained to host memory. Velocia packet system interface -
main path for data communications

Wishbone SOC Bus 20 MB/s sustained System-On-Chip bus for command, control and status.
This bus is used to connect logic components in the
FPGA.

X5-RX User's Manual 36

http://www.vita.org/
http://www.vita.org/
http://www.picmg.com/

About the X5 XMC Modules

Table 8. Interfaces from PCI Express to Application Logic

Data Buffering and Memory Use
There are two sets of memory devices attached to the application FPGA that provide data buffering and computational RAM
for FPGA applications.

Computational SRAM
The X5 modules have two banks of 2MB QDR SRAM dedicated as FPGA local memory. Applications in the FPGA may use
the SRAM as a local buffer memory if the data buffer is too large to fit in FPGA block RAMs, or as memory for an
embedded processor in the FPGA.

The SRAM devices connected to the FPGA are 4 Mbytes total size, organized as two banks of 16Mbitx32 dual ported
memory. This device is an Cypress CY7C1314 (or equivalent) which is a synchronous QDR2 SRAM and supports clock rates
up to 167 MHz. All SRAM control and data lines pins are directly connected to the FPGA, allowing the SRAM memory
control to be customized to the application.

The Framework Logic provides a simple SRAM interface that can be readily modified for many types of applications.
Detailed explanation of the interface control logic is described in the FrameWork Logic User Guide. The SRAM has high
performance FIFO interface that allows the logic to fully exploit the high data rates to the QDR SRAM by providing support
for posted writes, read address queue and read data queue.

MATLAB developers frequently use the SRAM as the real-time data buffer during development. Since the MATLAB
Simulink tools operate over the FPGA JTAG during development at a low rate, it is necessary to use the SRAM for real-time,
high speed data buffering. The MATLAB Simulink library for each X5 module demonstrates the use of the SRAM as a data
capture buffer. The SRAM captures real-time, high-speed data that can then be read out into MATLAB for analysis or display
as a snapshot. This allows high-speed, real-time to be captured and brought into MATLAB Simulink over the slow
(10Mb/sec) JTAG link. See the X5 FrameWork Logic User Guide for more details and examples.

Data Buffer DRAM
The second set of memory provides a 512MByte DDR2 memory pool local to the FPGA. The Framework Logic implements
a data buffer with one or more queues for the A/D and D/A streams as appropriate for the particular X5 module.

In the Framework logic, the SRAM use is demonstrated as a multiple queue FIFO memory that divides the 2 MB memory
buffer into separate queues (virtual FIFOs) for input and output. The logic component, referred to as Multi-Queue DRAM,
controls the DRAM to create the FIFO queue functionality. Custom logic applications can use the Multi Queue DRAM
buffer component to add additional queues for new devices.

The X5-TX has special support for pattern generation using the DRAM memory bank. The pattern generation mode
provides dynamic pattern generation using DRAM memory bank that is driven by control and data packets from the host.
This allows the DRAM to be used as an arbitrary waveform generator for applications such as communications testing,
RADAR stimulus generation and ultrasonic stimulus.

X5-RX User's Manual 37

About the X5 XMC Modules

Serial EEPROM Interface

EEPROM
A serial EEPROM on the X5 series is used to store configuration and calibration information. The interface to the serial
EEPROM is an I2C bus that is controlled by the PCI logic device. The device is an Atmel AT24C16-10SI, a 16K bit device.
The I2C bus is slow and the calibration is read out of the EEPROM at initialization time by the application software and
written into registers in the application logic for real-time error correction.

The EEPROM also has a write cycle limit of 100K cycles, so it should only be written to when calibration is performed or
configuration information changes. Once the write cycle duration limit is exceeded, the device will not reliably store data any
more.

As delivered from the factory, this EEPROM contains the calibration coefficients used for the A/D and D/A error correction.

Caution: the serial EEPROM contains the calibration coefficients for the analog and is preprogrammed at factory test. Do
not erase these coefficients or calibration will be lost.

Use the baseboard IdRom() method to obtain a reference to the internally-managed IUsesPmcEeprom object, as shown
below:

// Open the module
Innovative::X5_400M Module;
Module.Target(0);
Module.Open();

// Create a 50-32-bit-word section at offset zero in ROM user space
PmcIdromSection Section1(Module.IdRom().Rom(), PmcIdrom::waUser, 0, 50);
// Create a 50-32-bit-word section at offset 50 in ROM user space
PmcIdromSection Section2(Module.IdRom().Rom(), PmcIdrom::waUser, 50, 50);

// Write to ROM
for (int i = 0; i < 50; ++i)

Section1.AsInt(i, i*2);
Section1.StoreToRom();

for (int i = 50; i < 100; ++i)
Section2.AsFloat(i, static_cast<float>(i*2));

Section2.StoreToRom();

// Read from ROM
Section1.LoadFromRom();
for (int i = 0; i < 50; ++i)

int x = Section1.AsInt(i);

Section2.LoadFromRom();
for (int i = 50; i < 100; ++i)

float x = Section2.AsFloat(i);

X5-RX User's Manual 38

About the X5 XMC Modules

Digital I/O
The X5 series has a digital I/O port accessible over the P16 connector that provides bit I/O. These bits are direct connections to
the FPGA and are used in many custom applications for controls, communications and status signals.

The DIO port is presented on P16. See the connectors section of this chapter the connector pin out and information about the
connector. The Framework Logic User Guide details the FPGA pin connections for the bit I/O.

Available Bit I/O

The X5 modules bit IO on P16 is shown here. For pinouts and IO standards, see the hardware chapter.

Module Number Bit IO Notes

X5-400M 33 Mixed 2.5V and 3.3V IO

X5-210M 16 3.3V IO

X5-GSPS 16 3.3V IO

X5-TX 16 3.3V IO

X5-G12 16 3.3V IO

X5-RX 16 3.3V IO

Table 9. X5 Modules Available Bit I/O

Software Support

The Framework Logic configures these bit I/O connections as a simple port that has programmable bit direction and data by
the host. The port is configured and accessed directly from the PCI Express host.

The digital I/O hardware is controlled by the IUsesDioPort class. Its properties:

Table 10. IUsesDioPort Class Operations

Function Type Description

DioPortConfig() Property Configures banks of bits for input or output

DioPortData() Property Broadside Read/Write to low-order 32-bits of
DIO.

Typical use of the digital IO port involves first configuring the port using the Config() operator. This sets the byte direction and
the clock mode. The port is then ready for read/write configurations to each port. For instance:

// Open the module
Innovative::X5_400M Module;
Module.Target(0);
Module.Open();

X5-RX User's Manual 39

About the X5 XMC Modules

// All bits input
Module.Config(0x0);
// Read the state of the port
volatile short x = Module.DioPortData();

// All bits output
Module.Config(0x3);
// Toggle the state of all output bits
while (1)
 Module.DioPortData(~Module.DioPortData());

Hardware Implementation
Digital I/O port activity is controlled by the digital I/O configuration control and data register. Port direction is controlled by
the configuration control register. Note that modules have differing number of digital IO bits so not all bits are available on
all modules.

Bit Function

0 DIO bits 7..0 direction control, 0=input, default

1 DIO bits 15..8 direction control, 0=input, default

2 DIO bits 23..16 direction control, 0=input, default

3 DIO bits 31..24 direction control, 0=input, default

4 DIO bits 39..32 direction control, 0=input, default

31..6 -

Figure 16. DIO Control Register (BAR1+0x14)

Port Address

DIO_L BAR1+0x13

DIO_H BAR1+0x16

Figure 17. Digital IO Port Addresses

Data may be written to/read from the digital I/O port using the digital I/O port data registers. Data written to ports bits which
are set for output mode will be latched and driven to the corresponding port pins, while data written to input bits will be
ignored. The input DIO may be clocked externally by enabling the external digital clock bit in the appropriate configuration
register. If the internal clock is used, the data is latched at the beginning of any read from the port. Data read from output bits
is equal to the last latched bit values (i.e. the last data written to the port by the host).

Digital I/O port pins are set to all inputs after logic configuration.

External signals connected to the digital I/O port bits or timer input pins should be limited to a voltage range between 0 and
3.3V referenced to ground on the digital I/O port connector. Exceeding these limits will cause damage to the X5 hardware.

X5-RX User's Manual 40

About the X5 XMC Modules

Digital IO Electrical Characteristics

The digital IO pins 0-15 are LVTTL compatible pins driven by 3.3V logic. The DIO port pins connect to the application
FPGA via 100 ohm series resistors. The X5-400M has additional pins that are LVCMOS 2.5V.

LVTTL Pins
Warning: the LVTTL DIO pins are NOT 5V compatible. Input voltage must not exceed 4.05V during normal operation.
Undershoot and overshoot must be limited: see the Xilinx Virtex-5 User Guide for details.

Parameter Value Notes

Input Voltage Max = 4.05V
Min = -0.75V

Exceeding these will damage
the FPGA

Output Voltage ''1' > 2.4V
'0' < 0.4V

For load < +/-12mA

Output Current +/-12mA FPGA can be reconfigured for
custom designs for other drive
currents.

Input Logic
Thresholds

'1' >= 2VDC
'0' < 0.8VDC

Input Impedance >1M ohm || 15 pF Excludes cabling

Table 11. LVTTL Digital IO Bits Electrical Characteristics

LVCMOS 2.5 Pins
Warning: the LVCMOS 2.5 DIO pins are NOT 5V compatible. Input voltage must not exceed 4.05V during normal
operation. Undershoot and overshoot must be limited: see the Xilinx Virtex-5 User Guide for details.

Parameter Value Notes

Input Voltage Max = 2.7V
Min = -0.75V

Exceeding these will damage
the FPGA

Output Voltage ''1' > 1.3V
'0' < 0.4V

For load < +/-12mA

Output Current +/-12mA FPGA can be reconfigured for
custom designs for other drive
currents.

X5-RX User's Manual 41

About the X5 XMC Modules

Parameter Value Notes

Input Logic
Thresholds

'1' >= 1.3VDC
'0' < 0.8VDC

Input Impedance >1M ohm || 15 pF Excludes cabling

Table 12. LVCMOS2.5 Digital IO Bits Electrical Characteristics

Notes on Digital IO Use

The digital I/O on X5 modules, as supported using the standard FrameWork Logic, is intended for low speed bit I/O controls
and status. The interface is capable of data rates exceeding 75 MHz and custom logic developers can implement much higher
speed and sophisticated interfaces by modifying the logic.

Since the bit I/O is not connected to the high speed data stream, this limits the effective update or read rate to about 1 MHz.
Custom logic implementations can achieve much higher data rates by creating logic for data packets transfers to the Digital
IO.

The X5 FrameWork Logic user Guide details logic supporting the digital IO port and gives the pin information for
customization.

P16 SERDES I/O
The X5 series implements a high speed SERDES communication system on the XMC P16 connector to allow data to be
exchanged with the host outside of the PCI Express bus. P16 connections on the X5 are compatible with the VITA 42.0
secondary connector specification, and provide eight transmit and receive pairs implemented using Virtex-5 Rocket I/O links.
A clock reference is provided on board for use by the Rocket I/O links.

Pinouts for the P16 connector showing the transmit and receive pair locations are given in the Connectors section. The
following table gives the Rocket I/O pin allocations on the Virtex-5 which connect to each of the P16 signals.

P16 Signal Virtex-5 FG1136 Pin Number Virtex-5 MGT Signal Identifier

TXP0 B6 MGT_124_ TXN1

TXN0 B5 MGT_124_TXP1

RXP0 A7 MGT_124_RXN1

RXN0 A6 MGT_124_RXP1

TXP1 B9 MGT_124_ TXN0

TXN1 B10 MGT_124_TXP0

RXP1 A8 MGT_124_RXN0

RXN1 A9 MGT_124_RXP0

X5-RX User's Manual 42

About the X5 XMC Modules

P16 Signal Virtex-5 FG1136 Pin Number Virtex-5 MGT Signal Identifier

TXP2 D2 MGT_120_ TXN1

TXN2 E2 MGT_120_TXP1

RXP2 C1 MGT_120_RXN1

RXN2 D1 MGT_124_RXP1

TXP3 B3 MGT_120_ TXN0

TXN3 B4 MGT_120_TXP0

RXP3 A2 MGT_120_RXN0

RXN3 A3 MGT_124_RXP0

TXP4 K2 MGT_116_ TXN1

TXN4 L2 MGT_116_TXP1

RXP4 J1 MGT_116_RXN1

RXN4 K1 MGT_116_RXP1

TXP5 G2 MGT_116_ TXN0

TXN5 F2 MGT_116_TXP0

RXP5 H1 MGT_116_RXN0

RXN5 G1 MGT_116_RXP0

TXP6 AN9 MGT_126_ TXN1

TXN6 AN10 MGT_126_TXP1

RXP6 AP8 MGT_126_RXN1

RXN6 AP9 MGT_126_RXP1

TXP7 AN6 MGT_126_ TXN0

TXN7 AN5 MGT_126_TXP0

RXP7 AP7 MGT_126_RXN0

RXN7 AP6 MGT_126_RXP0

Figure 18. Virtex-5 Rocket I/O Assignments for P16 signals

Note that the positive and negative polarities of the individual lanes are reversed between the polarity notation on the P16
connector versus the polarity notation on the Rocket I/O pin pairs. This was done to avoid vias on the PC board and thus
optimize the layout for signal integrity purposes. If needed by the application , strict signal polarity can be reversed in the
Virtex-5 logic design by using the Rocket I/O polarity controls within each MGT tile.

X5-RX User's Manual 43

About the X5 XMC Modules

Reference clocks running at 125 MHz are connected to the reference clock input pins of MGT_126 and MGT_120 (pins AL7,
AM7, E4, and D4 respectively). This clock is supplied by an LVPECL oscillator at location Y3. If a different frequency is
required by the user's application, this oscillator can be replaced by any 6 pin 2.5V LVPECL output device compatible with
Pletronics LV7745DEW footprint.

Thermal Protection and Monitoring
The Virtex-5 logic device includes a temperature and voltage monitoring subsystem called System Monitor. The X5 design
uses the System Monitor to check Virtex-5 device die temperature and control the enable/disable feature on key board power
supplies. This allows logic to disable power on the card in the event of an over-temperature condition within the Virtex-5
device. In the event of an over-temperature condition, the logic, memory interface, and analog power supplies are disabled,
shutting down power to most of the X5 module. The host system power must be toggled in order to reset the module from
this condition.

The Framework Logic implements this feature as standard. Although it is possible for custom user logic to remove this
feature, it is not recommended as it would expose the hardware to potential damage from over-temperature conditions, should
they occur.

The power enable signal is on Virtex-5 pin AF13. This pin must be held high to enable power.

Software support tools provide convenient access to the temperature and thermal controls. These should be used in
application programming configure and monitor the temperature, as illustrated below:

// Open the module
Innovative::X5_400M Module;
Module.Target(0);
Module.Open();

// Create reference to thermal management object on module
const LogicTemperatureIntf & Temp(Module.Thermal());

// Read current temperature
float t = Module.LogicTemperature();

// Read/write current warning temperature
float t = Module.LogicWarningTemperature();
Module.LogicWarningTemperature(70.0);

// Read current failure temperature
float t = Module.LogicFailureTemperature();

// See if the module is in thermal shutdown
bool state = Module.Failed();

X5-RX User's Manual 44

About the X5 XMC Modules

Thermal Failures
The X5 modules will shut down if the Virtex-5 die temperature exceeds 85 degrees Celsius. This means that something is
wrong either with the module or with the system design. Damage may occur if the module temperature exceeds this limit. If
your software was monitoring the alert packets, you will receive a temperature warning alert prior to failure. Otherwise, the
temperature reading in the application may provide information pointing to overheating.

The most important thing to do is to determine the root cause of the failure. The module could have failed, the system power
is bad, or the environment is too harsh.

The first thing to do is inspect the module. Is anything discolored or do any ICs show evidence of damage? This may be due
to device failure, system power problems, or from overheating. If damage is noticed, the module is suspect and should be
sent for repair. If not, test the module outside the system in a benign environment such as on an adapter card in a desktop PC
with a small fan. It should not overheat. If it does, this module is is now bad.

Now consider what may have caused the failure. A bad module could be the cause, but it could have went bad due to system
failure or overheating. The system power supply could cause a failure by not providing proper power to the module. This
could be too little power resulting in the module failing or power glitches causing the temp sensor to drop out. Did other
cards in the system fail? If so, this may indicate that a system problem must be solved.

If the module did overheat, you should review the thermal design of the system. What was the ambient tmeprature when
failure occurred? Is the air flow adequate? Is air flow blocked to the card? Did a fan fail? If conduction cooling is being
used, what is the temperature of the surrounding components? The heat must be dissipated either through conduction or
convection for the module to keep from overheating.

You should also review application and be sure that you have taken advantage of any power saving features on the module.
Many of the X5 modules have power saving features that allow you to turn off unused channels, reduce clock rates or stop
data when the module is not in use.

Led Indicators
The X5 modules have two LEDs available for use by application logic. By default, the Framework Logic image lights both
LEDs light when the Virtex-5 finishes configuration.

Custom logic designs can use it for any purpose. When using the stock firmware, the state of user logic LEDs can be
controlled using the Innovative::X5_400M::Led() property.

LEDs NOT Lit with FrameWork Logic Installed

If the two LEDs do not light up with the FrameWork Logic installed, that means the PCI Express bus did not connect. This is
a bus error. The card cannot communicate with the system . Check installation and contact technical support.

X5-RX User's Manual 45

About the X5 XMC Modules

JTAG Scan Path
X5 modules have a JTAG scan path for the Xilinx devices on the module. This is used for logic development tools such as
Xilinx ChipScope and System Generator, and for initial programming of the PCI FPGA configuration FLASH ROM.

Nominally, there are two devices in the scan chain: the Virtex-5 device and the Coolrunner CPLD used to implement the
configuration support. Optionally, the SRAM devices may be included in the scan chain if JTAG access is needed for
debugging purposes.

Table 13. X5 JTAG Scan Path

JTAG Device
Number

Device Function

0 Virtex-5 Application logic

1 Coolrunner-II Configuration control

FrameWork Logic
Many of the standard X5 XMC features are implemented in the application logic. This feature set includes a data flow,
triggering features, and application-specific features. In many cases, this logic provides the features needed for a standard
data acquisition function and is supported by software tools for data analysis and logging. In this manual, the FrameWork
Logic features for each card are described in in general to explain the standard hardware functionality.

The X5 FrameWork Logic User Guide provides developers with the tools and know-how for developing custom logic
applications. See this manual and the supporting source code for more information. The X5 modules are supported by the
FrameWork Logic Development tools that allow designs to be developed in HDL or MATLAB Simulink. Standard features
are provided as components that may be included in custom applications, or further modified to meet specific design
requirements.

Integrating with Host Cards and Systems
The X5 XMCs may be directly integrated PCI Express systems that support VITA 42.3 XMC modules. The host card must
be both mechanically and electrically compatible or an adapter card must be used.

The XMC modules conform to IEEE 1386 specification for single width mezzanine cards . This specification is common to
both PMC and XMC modules and specifies the size, mounting, mating card requirements for spacing and clearances.

There are several adapter cards that are used to integrate the XMC modules into other form-factor PCI Express systems, such
as desktop systems.

X5-RX User's Manual 46

About the X5 XMC Modules

There are also adapter cards to electrically adapter the PCI Express XMC modules in older PCI systems that use a bridge
device between the two buses. PCI is not electrical

Host Type Bus Mechanical Form-
factor

Adapter
Required

Example card

XMC.3 module
slot

PCI Express 1.0a XMC, single width None Kontron CP6012

www.kontron.com

Diversified Technology CPB4712

http://www.diversifiedtechnology.com/p
roducts/cpci/cpb4712.html

Desktop PC PCI Express 1.0a PCI Express Plug-in
card, x8 lane

PCIe-XMC.3
adapter

Innovative 80173

Desktop PC PCI 2.2 PCI Plug-in card PCI-XMC.3
adapter

Innovative 80167

Compact PCI PCI Express 1.0a 3U CPCI-XMC.3
adapter

Innovative 80207

VPX VPX with PCI
Express
Slot Profiles:
SLT3-PAY-1D-14.2.6

SLT3-PER-1F-14.3.2

SLT3-PER-1U-14.3.3

3U VPX VPX 3U
adapter
Air or
conduction
cooled

Innovative
Air Cooled : 80260-7
Conduction Cooled: 80260-6RC

Cabled PCI
Express

PCI Express 1.0a Cabled PCI Express
to remote IO

Cable PCIe
Adapter and
XMC.3 carrier

Innovative 90181

Embedded PC
Host

PCI Express to local
PC core

~10x7x3 inches None Innovative 90200 or 90201

Table 14. XMC Adapters and Hosts

X5-RX User's Manual 47

http://www.diversifiedtechnology.com/products/cpci/cpb4712.html
http://www.diversifiedtechnology.com/products/cpci/cpb4712.html
http://www.kontron.com/

About the X5 XMC Modules

Standalone Operation
The X5 modules can be run “standalone” for embedded applications using a carrier card such as Innovative 90181. The host
card provides power to the module and cooling. Custom carrier cards have been created for specific applications that provide
Ethernet ports,

Figure 19. eInstrument Node Enclosure (P/N 90181) Supports Standalone Operation

The logic must be modified for standalone operation to remove the PCIe host interface and controls and substitute local
controls and logic. Other changes vital to system operation are detailed in the Framework Logic manuals.

Updating the XMC logic Configuration EEPROM
Virtex-5 configuration data is stored in an onboard flash EEPROM which may be updated using software provided by
Innovative. Logic images may come as updates from Innovative, or be generated by a user developing custom functionality.

The applet provided by Innovative, VsProm.exe, programs the FLASH using a .bit or .exo image file generated by the Xilinx
toolset.

X5-RX User's Manual 48

About the X5 XMC Modules

Figure 20. XMC EEProm Programmer

The EEPROM application is straightforward to use: a Target board is selected, then a .BIT file is selected for reprogramming.
The Target number tells the software which XMC module to program. If you have multiple XMC modules in the system,
each has a unique Target number assigned by the software. If you don't know which card is which target, you can use the
Finder program to blink the LED on each Target.

Once you have selected the .BIT file, press the load button to begin programming. The progress bar shows that the
programming is underway and when it is completed. Programming a few minutes due to the size of the configuration
bitstreams used by the Virtex-5 device. DO NOT TURN OFF THE HOST COMPUTER OR RESTART IT UNTIL
PROGRAMMING IS SUCCESSFULLY COMPLETED.

Once the EEPROM is reprogrammed, the X5 module must be power-cycled for reconfiguration to take place and the new
bitstream loaded into the Virtex-5 device.

Rescuing the Card When the Logic Image is Bad

If an invalid image is programmed into the EEPROM, or the process is interrupted before completion for any reason, the
Virtex-5 may no longer configure properly or may not communicate properly on the PCIe bus. If this occurs, then the card
can be booted from the backup image or can be programmed using a JTAG cable.

The backup image, or “golden” image, may be used to boot the X5 card by installing a jumper on JP3. This forces the logic
loader to load the X5 logic with the backup image. The card should boot with the backup image, then allowing the primary
image to be reprogrammed using the EEPROM applet.

If the backup image is bad or not available, then the card can be programmed with a Xilinx JTAG using a known good image,
followed by a warm-boot of the host system to allow the host OS to recognize the X5 module on the PCIE bus. Once this is
accomplished, a known-good image may be reprogrammed into the EEPROM using the EEPROM.exe tool.

X5-RX User's Manual 49

Writing Custom Applications

Chapter 3: Writing Custom Applications

Most scientific and engineering applications require the acquisition and storage of data for analysis after the fact. Even in
cases where most data analysis is done in place, there is usually a requirement that some data be saved to monitor the system.
In many cases a pure data that does no immediate processing is the most common application.

The X3 and X5 XMC card families are high bandwidth analog capture modules with an advanced architecture that provides
ultimate flexibility and speed for the most advanced hardware-assisted signal processing and ultrasonic signal capture. The
maximum data rate from these module are often above 250 Msamples/s. This means that a simple logger that saves all of the
data to the host disk is not feasible using standard operating system disk I/O calls, as the slower disk writes eventually cause
overflow and data loss in the streaming system.

Some modules support decimation so that long duration samples can be taken without data. Also quick snapshots of analog
data can be taken without loss as long as the amount of data is less than the net capacity of system memory and what the
baseboard holds. The example program provided for nearly all cards is this limited capacity data logger, called the Snap
example

The Snap Example
The Snap example in each software distribution demonstrates this logging functionality. It consists of a host program in
Windows, which works with the logic provided on the board's flash to stream data to the host. It uses the Innovative Malibu
software libraries to accomplish the tasks.

Tools Required

In general, writing applications for the X5 family requires the development of host program. This requires a development
environment, a debugger, and a set of support libraries from Innovative.

Table 15. Development Tools for the Windows Snap Example

Processor Development Environment Innovativ
e Toolset

Project Directory

Host PC Codegear Developers Studio C++

Microsoft Visual Studio 2008

Common Host Code

Malibu Examples\Snap\Bcb11

Examples\Snap\VC9

Examples\Snap\Common

On the host side, the Malibu library is provided in source form, plus pre-compiled Microsoft, Borland or GCC libraries. The
application code that implements the entirety of the board-specific functionality of example is factored into the
ApplicationIo.cpp/h unit. All User Interface aspects of the program are completely independent from the code in
ApplicationIo, which contains code portable to either compilation environment (i.e., it is common code). While each

X5-RX User's Manual 50

Writing Custom Applications

compiler implements the GUI differently, each version of the example project uses the same file to interact with the hardware
and acquire data.

Program Design

The Snap example is designed to allow repeated data reception operations on command from the host. As mentioned earlier,
received data can be saved as Host disk files. When using modest sample rates, data can be logged to standard disk files.
However, full bandwidth storage of multiple A/D channels can require up more capacity, so a dedicated RAID0 drive array
partitioned as NTFS for data storage may be required, or data may have to be cached online and stored after stopping data
flow. The example application software is written to perform minimal processing of received data and is a suitable template
for high-bandwidth applications.

The example uses various configuration commands to prepare the module for data flow. Parametric information is obtained
from a Host GUI application, but the code is written to be GUI-agnostic. All board-specific I/O is performed within the
ApplicationIo.cpp/.h unit. Data is transferred from the module to the Host as packets of Buffer class objects.

The Host Application
The picture to the right shows the main window of an X5 example (for the X5-400M). This form is from the designer of the
MSVC 9.0 version of the example, but the Borland version is similar. It shows the layout of the controls of the User
Interface.

User Interface

This application has five tabs. Each tab has its
own significance and usage, though few are
interrelated. All these tabs share a common
area, which displays messages and feedback
throughout the operation of the program.

Configure Tab
As soon as the application is launched, the
Configure tab is displayed. In this tab, a combo
box is available to allow the selection of the
device from those present in the system. All X5
family devices of whatever type share a
sequence of target number identifiers. The first
board found is Target 0, the second Target 1,
and so on.

Click the Open button to open the driver. To
change targets, click the Close button to close the driver, select the number of the desired target using the Target # combo
box, then click Open to open communications with the specified target module. The order of the targets is determined by the

X5-RX User's Manual 51

Writing Custom Applications

location in the PCI bus, so it will remain unchanged from run to run unless the board is moved to a different slot or another
target is installed.

Setup Tab
This tab has a set of controls that hold
the parameters for transmission. These
settings are delivered to the target and
configure the target accordingly. This
tab has several sections.

Clock section offers configurations and
routing of the clock. The clock for the
FPGA can come from an external clock
or from an internal crystal. The selection
can be made at upper right corner of this
section.

The clock rate of the clock source is
specified in the Output field in MHz.

The Communications section controls
the Alert features and the input data
packets size. Checking the box next to
an alert will allow the logic to generate
an alert if the condition occurs. This
alert can then be left in the data stream,
or extracted to notify the application.

In the Channels section, we can specify number of channels to activate. Selecting a channel will flow data from that data
source.

The Trigger selection box controls the way that data streaming is started. It can be started by an external signal or by the
software. Data can also be collected into frames. In this mode a trigger will collect multiple samples before checking the
trigger again. By default trigger source is set to software triggering, though external trigger can be provided once selected.

The Digital I/O field configures the onboard digital I/O. The Data Logging option determines if data streaming stops after
collecting points (a Snapshot of data) or streams forever until manually stopped.

The module supports a test mode for module debugging and system test. The Test Counter Enable is used to turn on test
mode and substitutes a ramp signal with channel number in the upper byte of the data. The Decimation section sets up the
decimation logic to discard data, reducing the incoming data rate.

Stream Tab
The two buttons in the button bar start and stop data streaming. Press the running man button to start streaming data. Press
the stop button to stop streaming, unless the stream has stopped itself. When streaming, the status bar data is collected and

X5-RX User's Manual 52

Writing Custom Applications

displayed. This includes a count of the data blocks received, the data rate, the measured temperature of the board logic, and
the digital I/O value.

Host Side Program Organization
The Malibu library is designed to be rebuildable in each of three different host environments: Codegear Developer's Studio
C++ , Microsoft Visual Studio 2008, and on Linux. Because the library has a common interface in all environments, the code
that interacts with Malibu is separated out into a class, ApplicationIo in the files ApplicationIo.cpp and .h. This class acts
identically in all the platforms.

The Main form of the application creates an ApplicationIo to perform the work of the example. The UI can call the methods
of the ApplicationIo to perform the work when, for example, a button is pressed or a control changed.

Sometimes, however, the ApplicationIo object needs to 'call back into' the UI. But since the code here is common, it can't use
a pointer to the main window or form, as this would make ApplicationIo have to know details of Borland or the VC
environment in use.

The standard solution to decouple the ApplicationIo from the form is to use an Interface class to hide the implementation. An
interface class is an abstract class that defines a set of methods that can be called by a client class (here, ApplicationIo). The
other class produces an implementation of the Interface by either multiple inheriting from the interface, or by creating a
separate helper class object that derives from the interface. In either case the implementing class forwards the call to the UI
form class to perform the action. ApplicationIo only has to know how to deal with a pointer to a class that implements the
interface, and all UI dependencies are hidden.

The predefined IUserInterface interface class is defined in ApplicationIo.h. The constructor of ApplicationIo requires a
pointer to the interface, which is saved and used to perform the actual updates to the UI inside of ApplicationIo's methods.

ApplicationIo

Initialization
The main form creates an ApplicationIo object in its constructor. The object creates a number of Malibu objects at once as
can be seen from this detail from the header ApplicationIo.h.

X5-RX User's Manual 53

Writing Custom Applications

//
// Member Data
Innovative::X5_400M Module;
IUserInterface * UI;
Innovative::PacketStream Stream;
IntArray _Rx;
unsigned int Cursor;
ii64 BlocksToLog;

bool Opened;
bool Stopped;
bool StreamConnected;
Innovative::StopWatch Clock;
Innovative::DataLogger Logger;
IntArray DataRead;
Innovative::BinView Graph;
Innovative::Scripter Script;
float ActualSampleRate;
std::string Root;
Innovative::AveragedRate Time;
double FBlockRate;
std::string FVersion;
Innovative::SoftwareTimer Timer;
...

In Malibu, objects are defined to represent units of hardware as well as software units. The X5_400M object represents the
board. The PacketStream object encapsulates supported, board-specific operations related to I/O Streaming. A Scripter object
can be used to add a simple scripting language to the application, for the purposes of performing hardware initialization
during FPGA firmware development. The Buffer class object is used to access buffer contents.

When the Open button is pressed, the application io object begins the process of setting up the board for a run. The first thing
done is to link Malibu software events to callback functions in the applications by setting the handler functions:

 // Hook script event handlers.
 Script.OnCommand.SetEvent(this, &ApplicationIo::HandleScriptCommand);
 Script.OnMessage.SetEvent(this, &ApplicationIo::HandleScriptMessage);

This code attaches script event handlers to their corresponding events. Malibu has a method where functions can be 'plugged
into' the library to be called at certain times or in response to certain events detected. Events allow a tight integration between
an application and the library. These events are informational messages issued by the scripting and logic loader feature of the
module. They display feedback during the loading of the user logic and when script is used.

 //
 // Configure Module Event Handlers
 Module.OnBeforeStreamStart.SetEvent(this, &ApplicationIo::HandleBeforeStreamStart);
 Module.OnBeforeStreamStart.Synchronize();
 Module.OnAfterStreamStart.SetEvent(this, &ApplicationIo::HandleAfterStreamStart);
 Module.OnAfterStreamStart.Synchronize();
 Module.OnAfterStreamStop.SetEvent(this, &ApplicationIo::HandleAfterStreamStop);
 Module.OnAfterStreamStop.Synchronize();

Similarly, HandleBeforeStreamStart, HandleAfterStreamStart and HandleAfterStreamStop handle events issued on before
stream start, after stream start and after stream stop respectively. These handlers could be designed to perform multiple tasks
as event occurs including displaying messages for user. These events are tagged as Synchronized, so Malibu will marshal the
execution of the handlers for these events into the main thread context, allowing the handlers to perform user-interface
operations.

 //

X5-RX User's Manual 54

Writing Custom Applications

 // Alerts
 Module.Alerts().OnTimeStampRolloverAlert.SetEvent(

this, &ApplicationIo::HandleTimestampRolloverAlert);
 Module.Alerts().OnSoftwareAlert.SetEvent(this, &ApplicationIo::HandleSoftwareAlert);
 Module.Alerts().OnWarningTemperature.SetEvent(this, &ApplicationIo::HandleWarningTempAlert);
 Module.Alerts().OnInputFifoOverrun.SetEvent(this, &ApplicationIo::HandleInputFifoOverrunAlert);
 Module.Alerts().OnInputTrigger.SetEvent(this, &ApplicationIo::HandleInputTriggerAlert);
 Module.Alerts().OnInputOverrange.SetEvent(this, &ApplicationIo::HandleInputFifoOverrangeAlert);

This code attaches alert processing event handlers to their corresponding events. Alerts are packets that the module generates
and sends to the Host as packets containing out-of-band information concerning the state of the module. For instance, if the
analog inputs were subjected to an input over-range, an alert packet would be sent to the Host, interspersed into the data
stream, indicating the condition. This information can be acted upon immediately, or simply logged along with analog data
for subsequent post-analysis.

 //
 // Configure Stream Event Handlers
 Stream.OnDataAvailable.SetEvent(this, &ApplicationIo::HandleDataAvailable);

The Stream object manages communication between the application and a piece of hardware. Separating the I/O into a
separate class clarifies the distinction between an I/O protocol and the implementing hardware.

In Malibu, high rate data flow is controlled by one of a number of streaming classes. In this example we use the events of the
PacketStream class to alert us when a packet arrives from the target. When a data packet is delivered by the data streaming
system, OnDataAvailable event will be issued to process the incoming data. This event is set to be handled by
HandleDataAvailable. After processing, the data will be discarded unless saved in the handler. Similarly,
“OnDataRequired” event is handled by HandleDataRequired. In such a handler, packets would be filled with data for output
to the baseboard. The Snap application does not generate output, so the event is left unhandled.

 Timer.OnElapsed.SetEvent(this, &ApplicationIo::HandleTimer);
 Timer.OnElapsed.Thunk();

In this example, a Malibu SoftwareTimer object has been added to the ApplicationIo class to provide periodic status updates
to the user interface. The handler above serves this purpose.

An event is not necessarily called in the same thread as the UI. If it is not, and if you want to call a UI function in the handler
you have to have the event synchronized with the UI thread. A call to Synchronize() directs the event to call the event
handler in the main UI thread context. This results in a slight performance penalty, but allows us to call UI methods in the
event handler freely. The Timer uses a similar synchronization method, Thunk(). Here the event is called in the main thread
context, but the issuing thread does not wait for the event to be handled before proceeding. This method is useful for
notification events.

Creating a hardware object does not attach it to the hardware. The object has to be explicitly opened. The Open() method of
the baseboard activates the board for use. It opens the device driver for the baseboard and allocates internal resources for
use. The next step is to call Reset() method which performs a board reset to put the board into a known good state. Note that
reset will stop all data streaming through the busmaster interface and it should be called when data taking has been halted.

The size of the busmaster region is changeable by using the BusMasterSize() property before opening the board. Larger
values allow more overlap between the board and application, at the cost of slower allocation at startup time.

 //
 // Open Devices
 FBusmasterSize = 1 << (Settings.BusmasterSize + 22);
 Module.BusMasterSize(FBusmasterSize);

X5-RX User's Manual 55

Writing Custom Applications

 Module.Target(Settings.Target);
 Module.Open();
 Module.Reset();
 UI->Status("Module Device Opened...");
 Opened = true;

This code shows how to open the device for streaming. Each baseboard has a unique code given in a PC. For instance, if
there are three boards in a system, they will be targets 0,1 and 2. The order of the targets is determined by the location in the
PCIe bus, so it will remain unchanged from run to run. Moving the board to a different PCIe slot may change the target
identification. The Led() property can be use to associate a target number with a physical board in a configuration.

 //
 // Connect Stream
 Stream.ConnectTo(&Module);
 StreamConnected = true;
 UI->Status("Stream Connected...");

Once the object is attached to actual physical device, the streaming controller associates with a baseboard by the
ConnectTo() method. Once connected, the object is able to call into the baseboard for board-specific operations during data
streaming. If an objects supports a stream type, this call will be implemented. Unsupported stream types will not compile.

Lastly we capture and display some information to the screen. This includes the logic version, bus informaiton, and the
number of input channels.

 FHwPciClk = Module.Debug()->PciClockRate();
 FHwBusWidth = Module.Debug()->PciBusWidth();
 DisplayLogicVersion();

 FChannels = Module.Input().Info().Channels().Channels();
}

Similarly, the Close() method closes the hardware. Inside this method, first we logically detach the streaming subsystem from
its associated baseboard using Disconnect() method. Malibu method Close() is then used to detach the module from the
hardware and release its resources.

//---
// ApplicationIo::Close() -- Close Hardware & set up callbacks
//---

void ApplicationIo::Close()
{

Stream.Disconnect();
StreamConnected = false;
Opened = false;

 UI->Status("Stream Disconnected...");
}

Starting Data flow
After downloading interface logic user can setup clocking and triggering options. The stream button then can be used to start
streaming and thus data flow.

//---
// ApplicationIo::StartStreaming() -- Initiate data flow
//---

void ApplicationIo::StartStreaming()

X5-RX User's Manual 56

Writing Custom Applications

{
 if (!StreamConnected)
 {
 UI->Log("Stream not connected! -- Open the boards");
 return;
 }

 //
 // Make sure packets fit nicely in BM region.
 if (FBusmasterSize/16 < (unsigned int)Settings.PacketSize)
 {
 Log("Error: Packet size is larger than recommended size");
 return;
 }
 //
 // Set up Parameters for Data Streaming
 // ...First have UI get settings into our settings store
 UI->GetSettings();

Before we start streaming, all necessary parameters must be checked and loaded into option object. UI-> GetSettings() loads
the settings information from the UI controls into the Settings structure in the ApplicationIo class.

if (SampleRate() > Module.Input().Info().MaxRate())
 {
 UI->Log("Sample rate too high.");
 StopStreaming();
 UI->AfterStreamAutoStop();
 return;
 }

We insure that the sample rate specified by the GUI is within the capabilities of the module.

 if (Settings.Framed)
 {

 if (Settings.FrameCount < Settings.PacketSize)
 {
 UI->Log("Error: Frame count must exceed packet size");
 UI->AfterStreamAutoStop();
 return;
 }
 }

The module supports both framed and continuous triggering. In framed mode, each trigger event, whether external or
software initiated, results in the acquisition of a fixed number of samples. In continuous mode, data flow continues whenever
the trigger is active, and pauses while the trigger is inactive. The code above issues a warning if the trigger mode is framed
and ill-formed.

 FBlockCount = 0;
 FBlockRate = 0;
 FTriggered = -1;

The class variables above are used to maintain counts of blocks received, reception rate and whether the module is currently
triggered. These values are initialized prior to each streaming run.

 //
 // Channel Enables
 Module.Output().Info().Channels().DisableAll();

X5-RX User's Manual 57

Writing Custom Applications

 Module.Input().Info().Channels().DisableAll();
 for (int i = 0; i < Channels(); ++i)
 {
 bool active = Settings.ActiveChannels[i] ? true : false;
 if (active==true)
 Module.Input().Info().Channels().Enabled(i, true);
 }

 X5_400M::IIClockSource src[] = { X5_400M::csExternal, X5_400M::csInternal };
 Module.ClockSource(src[Settings.SampleClockSource]);

 int ActiveChannels = Module.Input().Info().Channels().ActiveChannels();
 if (!ActiveChannels)

{
UI->Log("Error: Must enable at least one channel");
UI->AfterStreamAutoStop();
return;
}

The module supports up to 2 channels of simultaneous data. The previous call to GetSettings populated the Settings object
with the number of channels to be enabled on this run. That information is used to enable the required channels via the
Channels object within the Module.Input().Info() object. The clock source is also programmed using its property.

 // Packets scaled in units of events (samples per each enabled channel)
 int SamplesPerWord = 1;
 Module.ReturnPacketSize(Settings.PacketSize*ActiveChannels/SamplesPerWord + 2);

The size of the data packets sent from the module to the Host during streaming is programmable. This is helpful during
framed acquisition, since the packet size can be tailored to match a multiple of the frame size, providing application
notification on each acquired frame. In other applications, such as when an FFT is embedded within the FPGA, the packet
size can be programmed to match the processing block size from the algorithm within the FPGA.

 //
 // Start Loggers on active channels
 if (Settings.PlotEnable)

Graph.Quit();

 if (Settings.LoggerEnable || Settings.PlotEnable)
Logger.Start();

 BlocksToLog = Settings.SamplesToLog/Settings.PacketSize
+ ((Settings.SamplesToLog%Settings.PacketSize) ? 1 : 0);

 Stopped = false;

The example illustrates logging data to a disk file, with post-viewing of the acquired data using BinView. The code fragment
above closes any pending instance of BinView and logger data files.

 Module.Dio().DioPortConfig(Settings.DioConfig);

The module supports programmable bit I/O, available on connector JP16. The code fragment above programs the direction
of these DIO bits in accordance with the settings from the GUI.

X5-RX User's Manual 58

Writing Custom Applications

 // Set test mode
 Module.Input().TestEnable(Settings.TestCounterEnable);

 // Set Decimation Factor
 int factor = Settings.DecimationEnable ? Settings.DecimationFactor : 0;
 Module.Input().Decimation(factor);

For test purposes, the FPGA firmware supports replacement of analog input samples with ascending ramp data. If the test
counter is enabled in the GUI, it is applied to the hardware using the preceding code fragment.

The logic has a decimation feature, where samples are discarded to reduce the sample rate. If used, all but one of every N
samples are discarded. If no decimation is desired, the default value of 1 should be used.

 // All channels trigger together
 Module.Input().ExternalTrigger((Settings.ExternalTrigger == 1));

Samples will not be acquired until the channels are triggered. Triggering may be initiated by a software command or via an
external input signal to the Trigger SMA connector. The code fragment above selects the trigger mode.

 // Frame count in units of packet elements
 if (Settings.Framed)
 Module.Input().Framed(Settings.FrameCount);
 else
 Module.Input().Unframed();

The module supports framed triggering, where a single trigger enables many data samples to be taken before rechecking the
trigger. This code enables framed mode, or disables it depending on the settings.

 enum IUsesX5Alerts::AlertType Alert[] = {
 IUsesX5Alerts::alertTimeStampRollover, IUsesX5Alerts::alertSoftware,
 IUsesX5Alerts::alertWarningTemperature,
 IUsesX5Alerts::alertInputFifoOverrun,
 IUsesX5Alerts::alertInputTrigger, IUsesX5Alerts::alertInputOverrange };

 for (unsigned int i = 0; i < Settings.AlertEnable.size(); ++i)
 Module.Alerts().AlertEnable(Alert[i], Settings.AlertEnable[i] ? true : false);

The fragment above enables alert generation by the module. The GUI control includes check boxes for each of the types of
alerts of which the module is capable. The enabled state of the check boxes is copied into the Settings.AlertEnable array.
This code fragment applies the state of each bit in that array to the Alerts() sub-object within the module. During streaming,
an alert message will be sent to the Host tagged with a special alert packet ID (PID), to signify the alert condition.

 //
 // Start Streaming
 Stream.Start();
 UI->Log("Stream Mode started");
 UI->Status("Stream Mode started");

The Stream Start command applies all of the above configuration settings to the module, then enables PCI data flow. The
software timer is then started as well.

 FTicks = 0;
 Timer.Enabled(true);
}

X5-RX User's Manual 59

Writing Custom Applications

Handle Data Available
Once streaming is enabled and the module is triggered, data flow will commence. Samples will be accumulated into the
onboard FIFO, then they are bus-mastered to the Host PC into page-locked, driver-allocated memory following a two -word
header (data packets). Upon receipt of a data packet, Malibu signals the Stream.OnDataAvailable event. By hooking this
event, your application can perform processing on each acquired packet. Note, however, that this event is signaled from
within a background thread. So, you must not perform non-reentrant OS system calls (such as GUI updates) from within
your handler unless you marshal said processing into the foreground thread context.

//---
// ApplicationIo::HandleDataAvailable() -- Handle received packet
//---

void ApplicationIo::HandleDataAvailable(PacketStreamDataEvent & Event)
{
 if (Stopped)
 return;

 static Buffer Packet;
 //
 // Extract the packet from the Incoming Queue...
 Event.Sender->Recv(Packet);

 IntegerDG Packet_DG(Packet);
 PacketBufferHeader PktBufferHdr(Packet);

When the event is signaled, the data buffer must be copied from the system bus-master pool into an application buffer. The
preceding code copies the packet into the local Buffer called Packet. Since data sent from the hardware can be of arbitrary
type (integers, floats, or even a mix, depending on the board and the source), Buffer objects have no assumed data type and
have no functions to access the data in them. Instead, a second class called a datagram wraps the buffer, providing typed or
specialized access to the data in the buffer.

The above code associates 2 datagram classes with the packet. IntegerDG provides access to the data in the packet as if it
were an array of 32-bit integers. The PacketBufferHeader datagram class provides access to the header of the packet, and
defines access methods to the fields in the header of a Packet Stream buffer.

 //
 // Process the data packet
 int Channel = PktBufferHdr.PeripheralId();

 // Discard packets from sources other than analog devices
 if (Channel >= Channels())
 return;

Each Packet Stream Buffer consists of a header and a body of data. The header contains a field that specifies the source of
the data packet. This can be interrogated to provide different processing for packets from each source. In the fragment above,
packets containing peripheral IDs greater than the number of enabled channels are discarded. Consequently, alert packets are
not retained or processed.

 // Calculate transfer rate in KB/s
 double Period = Time.Differential();
 if (Period)
 FBlockRate = Packet_DG.SizeInBytes() / (Period*1.0e6);

X5-RX User's Manual 60

Writing Custom Applications

The code fragment above calculates the nominal block processing rate. The AveragedRate object, Time, maintains a moving
averaged filtered rate. This rate is stored in FBlockRate for use by display method of the GUI.

 if (Settings.LoggerEnable && !Logger.Logged())
 {
 // Start counter
 Clock.Start();

 std::stringstream msg;
 msg << "Packet size: " << Packet.Size() << " samples";
 UI->Log(msg.str());
 }

 // If enabled, log the data stream
 if (Settings.LoggerEnable || Settings.PlotEnable)
 if (FBlockCount < BlocksToLog)
 Logger.LogWithHeader(Packet);

 //
 // Count the blocks gone by on each Channel...
 ++FBlockCount;

In this example, each received packet is logged to a disk file. The packet header and the body are written into the file, which
implies that a post-analysis tool (such as BinView) will be used to parse channelized data from the file. Alternately, custom
applications may use the Innovative::PacketDeviceMap object to conveniently extract channelized data from a packet data
source.

 //
 // Stop streaming when both Channels have passed their limit
 if (Settings.AutoStop && IsDataLoggingCompleted() && !Stopped)
 {
 // Stop counter and display it
 double elapsed = Clock.Stop();

 StopStreaming();
 UI->AfterStreamAutoStop();
 UI->Log("Stream Mode Stopped automatically");
 UI->Log(std::string("Elasped (S): ") + FloatToString(elapsed));
 }

 // Auto-analyze and retrigger in framed mode
 if (!Settings.Framed)
 return;

Packets are processed until a specified amount of data is logged or the GUI Stop button is pressed.

 if ((Settings.ExternalTrigger == 0) && Settings.AutoTrigger)
 {
 __int64 samples = FBlockCount * Settings.PacketSize;
 int triggers = static_cast<int>(samples/Settings.FrameCount);

 if (triggers != FTriggered)
 SoftwareTrigger();
 }
}

In the event that were operating in framed trigger mode, the example code re-asserts a software trigger each time a frames-
worth of data packets have been received. If we're in continuous mode, no action need be performed to sustain data flow.

X5-RX User's Manual 61

Writing Custom Applications

EEProm Access
Each PMC module contains an IDROM region that can be used to read or write information associated with the module. In
the next line of code we make a call to Malibu method IdRom(), which returns an object that acts as interface to that region.
We further can query the ROM for its contents. Additional methods can be used to get more specific information.

//---
// System::Void LoadFromRomButton_Click()
//---

private: System::Void LoadFromRomButton_Click(System::Object^ sender, System::EventArgs^ e)
{
Io->ReadRom();
// Then test the information.
...
}

//---
// ApplicationIo::ReadRom() -- Read rom using relevant settings
//---

void ApplicationIo::ReadRom()
{
 Module.IdRom().LoadFromRom();

 Settings.ModuleName = Module.IdRom().Name();
 Settings.ModuleRevision = Module.IdRom().Revision();

 for (int ch = 0; ch < Channels(); ++ch)
 {
 Settings.AdcGain[ch] = Module.Input().Gain(ch);
 Settings.AdcOffset[ch] = Module.Input().Offset(ch);
 }

 Settings.Calibrated = Module.Input().Calibrated();
}

There is also a mechanism to write to the on-board EEPROM.

//---
// ApplicationIo::WriteRom() -- Write rom using relevant settings
//---

void ApplicationIo::WriteRom()
{
 Module.IdRom().Name(Settings.ModuleName);
 Module.IdRom().Revision(Settings.ModuleRevision);

 for (int ch = 0; ch < Channels(); ++ch)
 {
 Module.Input().Gain(ch, Settings.AdcGain[ch]);
 Module.Input().Offset(ch, Settings.AdcOffset[ch]);
 }

X5-RX User's Manual 62

Writing Custom Applications

 Module.Input().Calibrated(Settings.Calibrated);

 Module.IdRom().StoreToRom();
}

The application code should test for NAN and in general for the validity of the received data. Please see Form1.h for
MSVC .NET 2005 projects or Main.cpp for Borland 10 projects.

 //---
 // System::Void LoadFromRomButton_Click()
 //---

 private: System::Void LoadFromRomButton_Click(System::Object^ sender, System::EventArgs^ e)
 {
 Io->ReadRom();

 for (int i = 0; i < Io->Channels(); ++i)
 {
 if (!_isnan(Io->Settings.AdcGain[i]) && _finite(Io->Settings.AdcGain[i]))
 {
 AdcCoefGrid[0, i]->Value = gcnew String(

Innovative::FloatToString(Io->Settings.AdcGain[i], 4).c_str());
 }
 else
 {
 AdcCoefGrid[0, i]->Value = gcnew String("NAN");
 }
 if (!_isnan(Io->Settings.AdcOffset[i]) && _finite(Io->Settings.AdcOffset[i]))
 {
 AdcCoefGrid[1, i]->Value = gcnew String(

 Innovative::FloatToString(Io->Settings.AdcOffset[i], 4).c_str());
 }
 else
 {
 AdcCoefGrid[1, i]->Value = gcnew String("NAN");
 }
 }

 PllCorrectionEdit->Text = gcnew String(

Innovative::FloatToString(Io->Settings.PllCorrection, 4).c_str());
 CalibratedCheckBox->Checked = Io->Settings.Calibrated;
 ModuleNameEdit->Text = gcnew String(Io->Settings.ModuleName.c_str());
 ModuleRevisionEdit->Text = gcnew String(Io->Settings.ModuleRevision.c_str());
 }

The Linux Snap Example
With the release of Linux support for Malibu and for Innovative products, there are versions of the example programs for
this platform. This section discusses the Linux Snap example.

The ApplicationIo Class
Because we designed the original examples to separate Malibu and Baseboard functionality into a portable class, this code
can move to the Linux example unchanged. So the above discussion of the features of the ApplicationIo class is directly
applicable to the Linux example. In fact, the code itself is shared between the platforms.

X5-RX User's Manual 63

Writing Custom Applications

User Interface

The Linux OS supports a number of different windowing systems. We have chosen WxWidgets and DialogBlocks as an
inexpensive, easy to use library and environment. Again, since the ApplicationIo object holds all the “program logic” for an
application porting to a new environment is relatively straightforward.

This application has five tabs. Each tab has its own significance and usage, though few are interrelated. All these tabs share a
common area, which displays messages and feedback throughout the operation of the program.

X5-RX User's Manual 64

Writing Custom Applications

Configure Tab
As soon as the application is launched,
the Configure tab is displayed. In this
tab, a combo box is available to allow
the selection of the device from those
present in the system. All X5 family
devices of whatever type share a
sequence of target number identifiers.
The first board found is Target 0, the
second Target 1, and so on.

Click the Open button to open the driver.
To change targets, click the Close
button to close the driver, select the
number of the desired target using the
Target # combo box, then click Open
to open communications with the
specified target module. The order of
the targets is determined by the location
in the PCI bus, so it will remain
unchanged from run to run unless the
board is moved to a different slot or
another target is installed.

X5-RX User's Manual 65

Writing Custom Applications

Setup Tab
This tab has a set of controls that hold
the parameters for transmission. These
settings are delivered to the target and
configure the target accordingly. This
tab has several sections.

The Clock section offers configurations
and routing of the clock. The clock for
the FPGA can come from an external
clock or from an internal crystal. The
selection can be made at upper right
corner of this section.

The clock rate of the clock source is
specified in the Output field in MHz.

The Communications section controls
the Alert features and the input data
packets size. Checking the box next to
an alert will allow the logic to generate
an alert if the condition occurs. This
alert can then be left in the data stream,
or extracted to notify the application.

In the Channels section, we can specify
number of channels to activate.
Selecting a channel will flow data from
that data source.

The Trigger selection box controls the way that data streaming is started. It can be started by an external signal or by the
software. Data can also be collected into frames. In this mode a trigger will collect multiple samples before checking the trigger
again. By default trigger source is set to software triggering, though external trigger can be provided once selected.

The Digital I/O field configures the onboard digital I/O. The Data Logging option determines if data streaming stops after
collecting points (a Snapshot of data) or streams forever until manually stopped.

The module supports a test mode for module debugging and system test. The Test Counter Enable is used to turn on test mode
and substitutes a ramp signal with channel number in the upper byte of the data. The Decimation section sets up the decimation
logic to discard data, reducing the incoming data rate.

X5-RX User's Manual 66

Writing Custom Applications

Stream Tab
The two buttons in the button bar start
and stop data streaming. Press the
running man button to start streaming
data. Press the stop button to stop
streaming, unless the stream has
stopped itself. When streaming, the
status bar data is collected and
displayed. This includes a count of the
data blocks received, the data rate, the
measured temperature of the board
logic, and the digital I/O value.

The Wave Example
The Wave example in the software distribution demonstrates output streaming. It will only be included if the board supports
streaming out to a DAC or similar device or devices.

In many ways the Wave example is similar to the Snap example. Differences are highlighted in this section.

Stream Initialization
Setup of the stream is much like the Snap example. We have similar error checking code and rate guarding.

//---
// ApplicationIo::StartStreaming()
//---

X5-RX User's Manual 67

Writing Custom Applications

void ApplicationIo::StartStreaming()
{
 if (!FStreamConnected)
 {
 UI->Log("Stream not connected! -- Open the boards");
 return;
 }

 //
 // Make sure packets fit nicely in BM region.

if (FBmSizeWords/8 < (unsigned int)Settings.StreamPacketSize)
 {
 UI->Log("Error: Packet size is larger than recommended size");
 return;
 }
 //
 // Set up Parameters for Data Streaming
 // ...First have UI get settings into our settings store
 UI->GetSettings();

 if (Settings.TestEnable)
{
Module.Output().TestEnable(Settings.TestEnable);
Module.Output().TestMode(Settings.TestMode);
Module.Output().TestFrequency(Settings.TestFrequency);
}

 if (SampleRate() > Module->Output().Info().MaxRate())
 {
 UI->Log("Sample rate too high.");
 StopStreaming();
 UI->AfterStreamAutoStop();
 return;
 }

 FBlockCount = 0;
 FBlockRate = 0;
 FTriggered = -1;

The first difference is that we configure the Output() sub-object instead of Input(). The X5 Family divides the interface
functions for Input and Output devices into separate configuration sub-objects. This allows Input and Output to be
independently configured.

 //
 // Channel Enables
 Module.Output().Info().Channels().DisableAll();
 for (int i = 0; i < Channels(); ++i)
 if (Settings.ActiveChannels[i]==true)
 Module.Output().Info().Channels().Enabled(i, true);

 int ActiveChannels = Module->Output().Info().Channels().ActiveChannels();
 if (!ActiveChannels)
 {
 UI->Log("Error: Must enable at least one channel");
 UI->AfterStreamAutoStop();
 return;
 }

 FStreaming = true;

 // Set Decimation Factor
 int factor = Settings.DecimationEnable ? Settings.DecimationFactor : 0;

X5-RX User's Manual 68

Writing Custom Applications

 Module.Output().Decimation(factor);

 // All channels trigger together
 Module->Output().ExternalTrigger((Settings.ExternalTrigger == 1));
 // Frame count in units of packet elements
 if (Settings.Framed)
 Module->Output().Framed(Settings.FrameCount);
 else
 Module->Output().Unframed();

Alerts and starting the Stream are the same as in Input only mode.

 enum IUsesX5Alerts::AlertType Alert[] =
 {
 IUsesX5Alerts::alertTimeStampRollover,
 IUsesX5Alerts::alertSoftware,
 IUsesX5Alerts::alertWarningTemperature,
 IUsesX5Alerts::alertOutputFifoUnderrun,
 IUsesX5Alerts::alertOutputTrigger
 };

 for (unsigned int i = 0; i < Settings.AlertEnable.size(); ++i)
 Module->Alerts().AlertEnable(Alert[i], Settings.AlertEnable[i] ? true : false);

 // Start Streaming
 Stream->Start();
 UI->Log("Stream Mode started");
 UI->Status("Stream Mode started");

 FTicks = 0;
 Timer.Enabled(true);
}

//---
// ApplicationIo::StopStreaming()
//---

void ApplicationIo::StopStreaming()
{

if (!FStreaming)
return;

if (!FStreamConnected)
 {
 UI->Log("Stream not connected! -- Open the boards");
 return;
 }

 //
 // Stop Streaming
 Stream->Stop();
 FStreaming = false;
 Timer.Enabled(false);
}

Data Required Event Handler
When the output stream needs additional data, the Data Required event is signalled. The Wave application uses this call to
generate new blocks for each channel and send them to the output via the SendOneBlock() method.

X5-RX User's Manual 69

Writing Custom Applications

//---
// ApplicationIo::HandleDataRequired()
//---

void ApplicationIo::HandleDataRequired(PacketStreamDataEvent & Event)
{
 SendOneBlock(Event.Sender);
}

//--
// ApplicationIo::SendOneBlock()
//--
const int HeaderTagValuePostPacketizer = 0x00000000;
const int HeaderTagValueOriginal = HeaderTagValuePostPacketizer;

void ApplicationIo::SendOneBlock(PacketStream * PS)
{
 static Buffer Packet;
 ShortDG Packet_DG(Packet);

 if (!FBlockCount)
 {
 Packet_DG.Resize(Settings.StreamPacketSize);

 PacketBufferHeader PktBufferHdr(Packet);
PktBufferHdr.PacketSize(Settings.StreamPacketSize);
PktBufferHdr.PeripheralId(Module.Output().PacketId());
PktBufferHdr[1] = HeaderTagValueOriginal;

 //
 // Builds a one or 2 channel buffer

BuildWave(Packet, Settings.WaveType);
 }

For speed, the packet is created on the first call only. After that, the same data wave is sent to all channels. Note that it is
allowed to send more than one output packet per notification. If no packets are sent, however, it is possible that further
notifications may stop until the application starts sending data again. This decoupling of notification from sending allows
different models of data generation to exist in Malibu. An application may send packets asynchronously and not handle
notifications at all.

 // Calculate transfer rate in kB/s
 double Period = Time.Differential();
 if (Period)
 FBlockRate = Packet_DG.SizeInBytes() / (Period*1.0e6);

 //
 // No matter what channels are enabled, we have one packet type
 // to send here
 PS->Send(Packet);

 ++FBlockCount;
}

X5-RX User's Manual 70

Writing Custom Applications

The Wave Example for Linux
With the release of Linux support for Malibu and for Innovative products, there are versions of the example programs for
this platform. This section discusses the Linux Wave example.

The ApplicationIo Class
Because we designed the original examples to separate Malibu and Baseboard functionality into a portable class, this code
can move to the Linux example unchanged. So the above discussion of the features of the ApplicationIo class is directly
applicable to the Linux example. In fact, the code itself is shared between the platforms.

User Interface

Again, much of the Wave example's interface is the same as that of the Snap example described above. An exception is the
“Waveform Data Source” section that configures the output waveform.

There are two potential sources for a waveform. The first is the FPGA can generate a test waveform internally that is either a
ramp or the sum of two sine waves. The FPGA group allows this to be configured. If the Enable box is checked the logic
generator will be used.

X5-RX User's Manual 71

Writing Custom Applications

Alternatively the software can generate a waveform to be played. This is configured by the “Software” section. The
frequency and amplitude of the wave can be controlled, or the data can be read from a file.

A single block is pre-calculated with this waveform and sent when data is needed. This avoids issues with the speed of
calculation of a buffer when data is required, at the cost of some flexibility.

X5-RX User's Manual 72

Developing Host Applications

Developing Host Applications

Developing an application will more than likely involve using an integrated development environment (IDE) , also known as
an integrated design environment or an integrated debugging environment. This is a type of computer software that assists
computer programmers in developing software.

The following sections will aid in the initial set-up of these applications in describing what needs to be set in Project Options
or Project Properties.

Borland Turbo C++
BCB10 (Borland Turbo C++) Project Settings

When creating a new application with File, New, VCL Forms Application - C++ Builder

Change the Project Options for the Compiler:

Project Options
 ++ Compiler (bcc32)
 C++ Compatibility
 Check ‘zero-length empty base class (-Ve)’
 Check ‘zero-length empty class member functions (-Vx)’

In our example Host Applications, if not checked an access violation will occur when attempting to enter any event function.

i.e.
Access Violation OnLoadMsg.Execute – Load Message Event

Because of statement
Board->OnLoadMsg.SetEvent(this, &ApplicationIo::DoLoadMsg);

Change the Project Options for the Linker:

Project Options
 Linker (ilink32)
 Linking – uncheck ‘Use Dynamic RTL’

In our example Host Applications, if not unchecked, this will cause the execution to fail before the Form is constructed.

Error: First chance exception at $xxxxxxxx. Exception class EAccessViolation with message “Access Violation!”
Process ???.exe (nnnn)

X5-RX User's Manual 73

Developing Host Applications

Other considerations:

 Project Options
 ++ Compiler (bcc32)
 Output Settings
 check – Specify output directory for object files(-n)
 (release build) Release
 (debug build) Debug
 Paths and Defines
 add Malibu
 Pre-compiled headers
 uncheck everything
 Linker (ilink32)
 Output Settings
 check – Final output directory
 (release build) Release
 (debug build) Debug
 Paths and Defines
 (ensure that Build Configuration is set to All Configurations)
 add Lib/Bcb10
 (change Build Configuration to Release Build)
 add lib\bcb10\release
 (change Build Configuration to Debug Build)
 add lib\bcb10\debug
 (change Build Configuration back to All Configurations)

 Packages
 uncheck - Build with runtime packages

X5-RX User's Manual 74

Developing Host Applications

Microsoft Visual Studio 2005
Microsoft Visual C++ 2005 (version 8) Project Properties

When creating a new application with File, New, Project with Widows Forms Application:

X5-RX User's Manual 75

Developing Host Applications

 Project Properties (Alt+F7)
 Configuration Properties

 C++
 General
 Additional Include Directories

Malibu
PlotLab/Include – for graph/scope display

 Code Generation
 Run Time Library

Multi-threaded Debug DLL (/Mdd)

 Precompiled Headers
 Create/Use Precompile Headers

Not Using Precompiled Headers

 Linker
 Additional Library Directories

Innovative\Lib\Vc8

If anything appears to be missing, view any of the example sample code Vc8 projects.

X5-RX User's Manual 76

Developing Host Applications

DialogBlocks

DialogBLocks Project Settings (under Linux)

Project Options
[Configurations]
Compiler name = GCC
Build mode = Debug
Unicode mode = ANSI
Shared mode = Static
Modularity = Modular
GUI mode = GUI
Toolkit = <your choice wxX11, wxGTK+2, etc>
Runtime linking = Static or Dynamic, we use Static to facilitate execution of programs out of the box.
Use exceptions = Yes
Use ODBC = No
Use OpenGL = No
Use wx-config = Yes
Use insalled wxWidgets = Yes
Enable universal binaries = No
...
Debug flags = -ggdb -DLINUX
Library path = %INNOVATIVE%/Lib/Gcc/Debug, %WINDRIVER%/lib
Linker flags = %AUTO% -Wl, @%PROJECTDIR%/Example.lcf
IncludePath= -I%INNOVATIVE%/Malibu -I%INNOVATIVE%/Malibu/LinuxSupport %AUTO%

[Paths]
INNOVATIVE= /usr/Innovative
WINDRIVER= /usr/Innovative/WinDriver
WXWIN= /usr/wxWidgets-2.8-7 provided that this is the location where you have installed wxWidgets.

Summary
Developing Host and target applications utilizing Innovative DSP products is straightforward when armed with the appropriate
development tools and information.

X5-RX User's Manual 77

Applets

Chapter 4: Applets

The software release for a baseboard contains programs in addition to the example projects. These are collectively called
“applets”. They provide a variety of services ranging from post analysis of acquired data to loading programs and logic to a
full replacement host user interface. The applets provided with this release are described in this chapter.

Shortcuts to these utilities are installed in Windows by the installation. To invoke any of these utilities, go to the Start Menu |
Programs | <<Baseboard Name>> and double-click the shortcut for the program you are interested in running.

Common Applets

Registration Utility (NewUser.exe)

Some of the Host applets provided in the Developers Package are keyed to
allow Innovative to obtain end-user contact information. These utilities allow
unrestricted use during a 20 day trial period, after which you are required to
register your package with Innovative. After, the trial period operation will be
disallowed until the unlock code provided as part of the registration is entered
into the applet. After using the NewUser.exe applet to provide Innovative
Integration with your registration information, you will receive:

The unlock code necessary for unrestricted use of the Host applets

A WSC (tech-support service code) enabling free software maintenance
downloads of development kit software and telephone technical hot line
support for a one year period.

X5-RX User's Manual 78

Applets

Reserve Memory Applet (ReserveMemDsp.exe)

Each Innovative PCI-based DSP baseboard requires 2 to 8 MB of memory to be reserved for
its use, depending on the rates of bus-master transfer traffic which each baseboard will
generate. Applications operating at transfer rates in excess of 20 MB/sec should reserve
additional, contiguous busmaster memory to ensure gap-free data acquisition.

To reserve this memory, the registry must be updated using the ReserveMemDsp applet. If at
any time you change the number of or rearrange the baseboards in your system, then you
must invoke this applet to reserve the proper space for the busmaster region. See the Help
file ReserveMemDsp.hlp, for operational details.

Data Analysis Applets

Binary File Viewer Utility (BinView.exe)

BinView is a data display tool specifically designed to
allow simplified viewing of binary data stored in data
files or a resident in shared DSP memory. Please see the
on-line BinView help file in your Binview installation
directory.

X5-RX User's Manual 79

Applets for the X5-RX Baseboard

Chapter 5: Applets for the X5-RX Baseboard

These support applets are used by all X5 cards.

Logic Update Utility (VsProm.exe)

The Logic Update Utility applet is designed to allow field-
upgrades of the logic firmware on the X5 module. The
utility permits an embedded firmware logic update file to
reprogrammed into the baseboard Flash ROM, which stores
the "personality" of the board.

Note that this utility should only be used after firmware
development and debugging has been completed. During the
development cycle, it is much more efficient to download
and debug firmware using the Xilinx Bit-Blaster JTAG cable.

To use the applet, select the instance of the 400M module to
be updated. This will be target zero in single-target
installations.

Then, click the browse button (...) to select the logic bit file
image containing the updated firmware image. Typically,
this is located in the Innovative\X5-
module\Hardware\Images folder on your default drive.
The module is 400M, 210M, RX, GSPS, COM or TX.

Finally, click the Write button to program the firmware into
the on-board FLASH rom. Programming typically takes
about five minutes. After rebooting the PC, the new
firmware will take effect.

X5-RX User's Manual 80

Applets for the X5-RX Baseboard

Finder

The Finder is designed to help correlate board target numbers
against PCI slot numbers in systems employing multiple
boards.

Target Number

Select the Target number of the board you wish to identify
using the Target Number combo box.

Blink

Click the Blink button to blink the LED on the board for the
specified target. It will continue blinking until you click
Stop.

On/OFF

Use the On and Off buttons to activate or deactivate
(respectively) the LED on the baseboard for the specified
target. When you exit the application, the board’s LED will
remain in the state programmed by this applet.

X5-RX User's Manual 81

X5-RX XMC Module

Chapter 6: X5-RX XMC Module

Introduction
The X5-RX is a member of the X5 XMC family that has four channels of 16-bit 200 MSPS A/D conversion with wide
bandwidth analog inputs.

The X5-RX has a high performance computing core for signal processing, data buffering and system IO is built around a
Virtex-5 FPGA. Supporting peripherals include 512MBytes of DDR2 DRAM, 4MBytes of QDR2 SRAM, conversion
timebase and triggering circuitry, 16 bits of digital IO, and a PCI Express interface. The module format is a single slot XMC
and is compatible with XMC.3 host sites.

Figure 21. X5-RX Module (analog cover and heat sink installed)

Custom application logic development for the X5-RX is supported by the FrameWork Logic system from Innovative using
VHDL and/or MATLAB Simulink. Signal processing, data analysis, and application-specific algorithms may be developed
for use in the X5-RX logic and integrated with the hardware using the FrameWork Logic.

X5-RX User's Manual 82

X5-RX XMC Module

Software support for the module includes host integration support including device drivers, XMC control and data flow and
support applets.

Figure 22. X5-RX Block Diagram

X5-RX User's Manual 83

X5-RX XMC Module

Hardware Features

A/D Converters

The X5-RX has four channels of 16-bit A/D sampling at up to 200 MSPS. Minimum sample rate is 1 MHz, below which
severely degraded performance occurs. The X5-RX implements an AC-coupled input with a secondary channel for DC
information, 50 ohm terminated SMA connector-based front end.

Feature Description

Inputs 4

Input Range +1.5V to -1.5V single-ended

Maximum Input Current 30 mA

Input Coupling AC with secondary DC level (0 to fs/8192)

Input Impedance 50 ohm

A/D Devices Texas Instruments ADS5484

Output Format 2's complement, 16-bit

Number of A/D Devices 4 simultaneously sampling

Sample Rate 200 MSPS

Calibration Factory calibrated. Gain and offset errors are
digitally corrected in logic. Non-volatile EEPROM
coefficient memory.

Table 16. X5-RX A/D Features

Conversion clocking is provided by either a low jitter programmable clock source or an external clock input. The clock
buffering is designed to minimize jitter and maximum acquired signal quality. See the clock discussion for more details.

A/D Front End

Front end circuitry for the A/D converters includes a 50 ohm terminated SMA input connector followed by a transformer into
the A/D inputs. Impedance matching networks are used to provide the 50 ohm input. The ADC input also drives a high
impedance input for digitizing the DC and low frequency band.

X5-RX User's Manual 84

X5-RX XMC Module

Figure 23. X5-RX A/D Channel Front End

The other 3 analog inputs are identical.

Input bandwidth measurement is shown in the data section of this chapter.

Input Range and Conversion Codes

Each high speed A/D input has a +1.5V to -1.5V single-ended input with 50 ohm input impedance. Other input ranges may be
custom ordered.

Data output codes from the high speed A/D channels are 2's complement, 16-bits. The following table gives the transfer
function.

Input voltage (V) High Speed A/D Conversion Code (hex)

1.5 0x7FFF

0.75 0x3FFF

0 0x0000

-0.75 0xC000

-1.5 0x8000

X5-RX User's Manual 85

X5-RX XMC Module

Table 17. High Speed A/D Conversion Coding

DC and Low Frequency Band Digitizing

The X5-RX has a secondary A/D channel for each input that digitizes the DC and low frequencies information on the signal.
The secondary channel digitizes at rates up to fs/8192, resulting in a bandwidth of about DC to 60 kHz. This does NOT
overlap with the high speed channel, which has negligible response below 500 kHz.

The low speed secondary channel are time-synchronous with the the high speed channels, using a sample clock derived from
the high speed sample clock. The data is available as a separate data source that is time-aligned with the high speed data. If
the secondary channel is not used, it can be simply ignored.

The secondary channel inputs are DC-coupled copies of each input. The secondary channel has very high input impedance,
>1M ohm, to minimize signal loading.

Data output codes from the secondary (low speed) A/D channels are 2's complement, 16-bits. The following table gives the
transfer function.

Input voltage (V) Secondary A/D Conversion Code (hex)

1.5 0x7FFF

0.75 0x3FFF

0 0x0000

-0.75 0xC000

-1.5 0x8000

Table 18. Secondary (Low Speed) A/D Conversion Coding

Note: The A/D converter inputs are DC coupled to the secondary input channel, but are 50 ohm terminated for high speed
signals. You will observe that low frequency signals are NOT 50 ohm terminated because the transformer blocks the low
frequency inputs. Therefore, if your 50ohm signal source is calibrated for a 50 ohm termination, the signal will appear to be
twice the magnitude that is expected for low frequency tests.

Driving the A/D Inputs

The X5-RX has single-ended inputs that are 50 ohm terminated. The 50 ohm termination is used to match the input cable and
connector characteristic impedance. The source signal must be able to drive this input impedance to achieve the best signal
quality over the input voltage range. The signal source must be able to drive +/- 30mA for a full scale input. DC current limit
is 30 mA.

X5-RX User's Manual 86

X5-RX XMC Module

Overrange Detection

The high speed A/D detects when an analog overrange occurs and generates an overrange flag. The logic receives this
overrange detection and can trigger a system alert to notify the application when this error condition has occurred. The alert
message shows when the overrange occurred in system time and which channels overranged.

Overrange on the secondary channel is indicated by a full-scale output (0x8000 or 0x7FFF). The secondary channel can show
an overrange due to DC signal level even when the high speed A/D is within it range since it is AC coupled to the input.

Custom logic has access to the overrange bits in the A/D interface component. Each data sample indicates when an overrange
occurs as part of its status byte appended to the data. This allows implementation of automatic gain controls for auto-ranging
external front end signal conditioning.

Sample Rate Generation and Clocking Controls
Conversion clock sources on the X5-RX are on-card PLL or an external clock/reference input.

CLKIN

PLL SPI port

Ref Osc
10-280 MHz

Virtex-5

J6 External
Clock or Ref
Input

TI CDCE72010
PLL/Clock
Mux/Buffer

OUT 5 To A/D 0 CLK

50
ohms

Y6

VCXO
10-280MHz

I2C I2C

Divider

 PLL

 REF MUX

OUT 6

OUT 7

To A/D 1 CLK

To FPGA

OUT 8 To A/D 3 CLK

Divider

Divider

Divider

OUT 0Divider

To A/D 2 CLK

Figure 1. Sample Clock Generation and Distribution Block Diagram

Sample clocks are either generated by the PLL or are derived from an external input clock. Specialized clock circuitry is
used on the X5-RX for clock generation and distribution since these clocks must be extremely low noise to achieve the best
digitizing accuracy. This means that the clocks are NOT generated by the FPGA, but rather the specialized clock circuitry.
The clocks are copied to the FPGA with separate copies go to each A/D device. Programmable controls for the clock
circuitry are mapped to the host PCI Express bus through the FPGA.

X5-RX User's Manual 87

X5-RX XMC Module

Custom FPGA implementations can control the clocks without host involvement by commandeering these interfaces.

External Clock/Reference Input

The external clock/reference input at connector J6 is on the front panel and has the following electrical requirements for the
clock input.

Characteristic Description

Input Impedance 50 ohm

Input Coupling AC

Input Connector SMA

Minimum Input Amplitude 200mVp-p (-20.8 dBm)

Maximum Input Amplitude 2.0Vp-p (-0.8 dBm)

DC input range +/-20V max

Maximum Frequency 500 MHz

Input waveform Sine or square

Figure 2. Input Clock/Reference Electrical Specifications

This signal can be used as either a sample clock or as a PLL reference.

Sample Rate Generation

The PLL is used to generate sample clocks on the X5-RX using either an on-card programmable reference clock or an
external reference input.

Parameter Specification

PLL Clock Range 1 to 200 MHz

PLL Output Clock Resolution 0.01 Hz

PLL Output Jitter <200 fs RMS

Table 19. PLL Specifications

Setting the Sample Rate in the SNAP Example

 The example software for the X5-RX illustrates the use of the sample clock controls and features.

The clock is selected internal (PLL) or external input. A frequency should be specified even when an external clock is used
because the software uses this to estimate the data rate and size buffers appropriately. The external clock must be input on
front panel connector J6.

X5-RX User's Manual 88

X5-RX XMC Module

The PLL reference is also selected to be internal (10 to 280 MHz reference) or external. For external reference the frequency
must be exactly specified so that the PLL is programmed properly. External reference connector is J6 on the front panel.

Figure 3. SNAP Example Sample Clock Controls

Controlling the PLL

How To Set the Sample Rate Generator to a Specific Frequency

To generate the settings for a desired sample rate, the PLL and VCXO are configured generate the closest possible frequency
while meeting several restrictions.

PLL Parameter Constraint

On-card PLL reference Programmable 10 to 280 MHz, 0.01 Hz resolution

External Reference Input Range 10 to 250 MHz

VCXO Center Frequency Ranges Programmable, 0.001 Hz resolution
10 to 280 MHz

X5-RX User's Manual 89

X5-RX XMC Module

Phase Comparator Set point 100 kHz

Table 1. Sample Rate Generation Parameters

Step Calculation

1 Find an integer multiple, even numbers only, of the desired sample rate that is within the tuning range of the
VCXO, where D = 1,2,4,6,8,10,12,14,16,18,20,24,28,32,64,80
FVCO = D*Fs

2 Calculate the VCXO internal frequency to check operating mode.
FDCO = FVCO * HS_DIV*N1
select
 HS_DIV = 4,5,6,7,9 or 11
 N1 = 1 to 128, even only
so that
 4850 < FDCO < 5670 MHz
 HS_DIV*N1 > = 6 for 10 < FVCO < 280 MHz

3 Set the VCXO center frequency.
RFREQ = FDCO /114.285 MHz
Use 38-bit math with 10 decimal places and 28 fractional bits.

4 Calculate PLL settings to generate the sample frequency Fs. The PLL analog loop filter is set for a phase
comparator frequency of 1 MHz. Therefore, select R,P,B and A to satisfy these equations:
FREF /R = 1 MHz
FVCO /(PB+A) = 1 MHz
where
R= 1 to 16383
P= 1,2,2/3,4/5,8/9,16/17,32/33/ or 3
A= 0 to 63

Note: R=100 for on-card 100 MHz reference.
Table 2. Steps to Configure the VCXO and PLL

Driver code in the Malibu support libraries implements these calculation steps to program the PLL and VCXO. When these
library functions are used, the software checks to verify that all restrictions for VCXO and PLL programming are met and
that the output frequency is as close as possible to the desired result.

Using An External PLL Reference

The PLL can use an external clock input as its reference. This allows the sample clocks to be synchronous with the external
clock. Many applications use this to synchronize multi-channel systems to sample simultaneously. Distributed applications
can input time reference from GPS or other network time sources to synchronize systems.

The external clock must be low phase noise and stable to use as a PLL reference. Phase noise on the reference will directly
result in phase noise on the generated clock. This means that the phase noise must be very low, typically less than 200 fS
RMS, to be clean enough not to influence the acquired signal. The following graph shows the effect of jitter on the sample
accuracy and noise level.

X5-RX User's Manual 90

X5-RX XMC Module

Table 3. Effect of Sample Clock Jitter on Digitizing Accuracy (Courtesy Analog Devices, Inc.)

The PLL reference clock multiplexer device also adds jitter to the input reference clock. This noise must be root-sum-
squared (RSS) with the reference clock jitter.

Parameter Worst

Additive Jitter 50 fs

Delay 1.15 ns (typical)
1.45 ns (max)

Table 4. External PLL Reference Additive Jitter and Delay

The external clock must also be stable within the tracking range of the PLL/VCXO. This requirement limits the amount of
low frequency wander and drift that external clock can have without making the PLL lose lock.

External Reference Clock Parameter Limit

Frequency Stability +/-3000 PPM

Jitter 200 fs RMS
(recommended for analog input signals with < 500
MHz bandwidth)

Table 5. External PLL Reference Requirements

X5-RX User's Manual 91

X5-RX XMC Module

The following diagram shows the clock path when an external reference is used. The reference clock multiplexer is
configured to select the external clock input as the reference to the CDCE72010 device.

CLKIN

PLL SPI port

Ref Osc
10-280 MHz

Virtex-5

J6 External
Clock or Ref
Input

TI CDCE72010
PLL/Clock
Mux/Buffer

OUT 5 To A/D 0 CLK

50
ohms

Y6

VCXO
10-280MHz

I2C I2C

Divider

 PLL

 REF MUX

OUT 6

OUT 7

To A/D 1 CLK

To FPGA

OUT 8 To A/D 3 CLK

Divider

Divider

Divider

OUT 0Divider

To A/D 2 CLK

Figure 1. Clock Path Using External Reference Input

To use the external clock input as a reference, the CDCE72010 reference must be set to secondary input. This can be done
using either a Malibu library function in software, from a script in the example programs, or set by the FPGA in custom logic.

Using An External Clock for Sample Clock

The external clock input on J4 (front panel) can be used as a sample clock. In this mode, the sample clock is buffered and
distributed, with an option for clock division, to the DAC devices and FPGA.

X5-RX User's Manual 92

X5-RX XMC Module

CLKIN

PLL SPI port

Ref Osc
10-280 MHz

Virtex-5

J6 External
Clock or Ref
Input

TI CDCE72010
PLL/Clock
Mux/Buffer

OUT 5 To A/D 0 CLK

50
ohms

Y6

VCXO
10-280MHz

I2C I2C

Divider

 PLL

 REF MUX

OUT 6

OUT 7

To A/D 1 CLK

To FPGA

OUT 8 To A/D 3 CLK

Divider

Divider

Divider

OUT 0Divider

To A/D 2 CLK

Figure 1. Clock Path Using External Clock Input

Configure the CDCDE72010 device to use the auxiliary clock input, then program the dividers for each output clock. These
controls are mapped to the CDCDE72010 SPI port, mapped to the PCI Express bus in the Framework Logic. Custom logic
implementations can control the PLL directly from the FPGA as well.

The Malibu libraries provide software functions for configuration of the CDCDE72010 device. This software configures the
device for the clock selection and programs the output dividers.

External Clock Requirements

The external clock input has the following requirements. This signal is an AC-coupled input. Larger input amplitudes
usually result in better A/D performance.

X5-RX User's Manual 93

X5-RX XMC Module

Parameter Min Typ Max Comments

Input Frequency 1 MHz 500 MHz

Input Common Mode Input Voltage -20V 0 +20V

Input Amplitude 0.15 V 1.3 V Peak-to-peak.

Input Termination 50 Ohms

Input Capacitance 15 pF Excludes cabling.
Table 6. External Clock Input Requirements

CDCDE72010 SPI Port

The CDCDE72010 PLL/Buffer device is configured through its SPI serial port. This port is mapped to the PCI Express bus as
a memory mapped register at address BAR1 + 0x801. Writes to this register transmit to the CDCDE72010 device, reads
from this address first transmit an address to the CDCDE72010 device then receive the current value. Before any read/write
is performed, the SPI READY bit should be read to and must be true ('1').

Bits Function
31..0 SPI write data
Table 7. PLL SPI interface – 0x801 (r/w)

The CDCDE72010 has an extensive set of registers in the device for configuration and status. Consult the CDCDE72010
data sheet for details.

VCXO I2C Port
This register is an an I2C port that programs the VCXO for the PLL. The VCXO is a Silicon Labs SI571 device, offering a
programmable center frequency controlled over its I2C port. Software functions in Malibu tools provide support for
programming this device, including calculation of its register settings for use.

This I2C port is implemented using software controlled protocol. This means that the I2C port SDA and SCL connections
must be controlled with the software to implement the I2C interface timing and commands. The control register is a simple
pair of registers to control each signal and read back the pin. All device addressing, commands and data are read using the
I2C software driver through the controls in this register.

VCXO I2C Port - 0x80F (r/w)
Bit Direction Definition
0 W SDA serial data bit
1 W SCK bit for serial clock
2 R Readback for I2C data pin
3 R Readback for I2C clock pin
6..4 - Unused
7 R/W VCO output enable

'0' = disabled (default)

X5-RX User's Manual 94

X5-RX XMC Module

31..8 - Unused
Table 8. VCXO control and I2C register – 0x801 (r/w)

The I2C SDA (data) output is set using bit 0 and the pin is readback on bit 2. The I2C SCL (clock) is set using bit 1 and the
pin readback is on bit 3. These signals must emulate the I2C pin functions for the protocol.

Triggering
The X5-RX has a trigger control component in the FPGA that controls the data acquisition process. The sample clock
specifies the instant in time when data is sampled, whereas triggering specifies when data is kept. This allows the application
to collect data at the desired rate, and keep only the data that is required.

 On the X5-RX module, all A/D channels operate synchronously using the same clock and trigger. The trigger controls
allows data to be acquired continuously, or during a specified time, as triggered by either a software or external trigger. Data
can also be decimated to reduce data rates.

Trigger Mode Data Collected/Played Back Start Trigger Stop Trigger

Continuous All enabled channel pairs Software or rising edge of
external trigger

Software or falling edge of
external trigger

Framed N sample points for each of
the enabled channel pairs

Software or rising edge of
external trigger

Stops when N samples are
collected back

Decimation M points are discarded for
every point kept. May be
used with either trigger
mode.

- -

Table 1: Trigger Modes

X5-RX User's Manual 95

Fs

Analog
Input

Trigger

Samples are acquired when trigger is true on
rising edges of Fs when trigger is true.

X5-RX XMC Module

Figure 2. Analog Triggering Timing

As shown in the diagram, samples are captured on the rising edges of the sample clock when the trigger is true. The trigger is
true in continuous mode after a rising edge on the trigger input, software or external, until a falling edge is found. The trigger
is timed against the sample clock and may have a 0 to +1 A/D conversion clock uncertainty for an asynchronous trigger input.
To guarantee exact triggering no triggering uncertainty, the input trigger MUST be synchronous to the sample clock.

Trigger Source

A software trigger or external trigger can be used by the trigger controls. Software trigger can always be used, but external
triggering must be selected. The trigger source is level-sensitive for the continuous mode or edge-triggered for the framed
mode triggering.

The Malibu software tools provide trigger source configuration and methods for software triggering, re-triggering in framed
mode and trigger mode controls.

Framed Trigger Mode

Framed trigger mode is useful for collecting data sets of a fixed size each time the input trigger is fired. In framed mode, the
trigger goes false once the programmed number of points N have been collected. Start triggers that occur during a frame
trigger are ignored.

The maximum number of points per frame is 16,777,216 (2^24) points, while the minimum number of points is 8. Frame size
must be a multiple of 8 on the X5-RX.

Data flow to the host is independent of the framed triggering mode. In most cases, packet sizes to the host are selected to be
integer sub-multiples of the frame size to allow the entire data set to flow to the host. That way, the entire data frame can be
moved immediately to the host without waiting for the next trigger frame.

Decimation

The data may be decimated by a programmed ratio to reduce the data rate. This mode is usually used when the data rate is less
than the minimum master clock rate of the A/D. A/D performance is not specified and will degrade (sometimes with
unpredictable results) if the converter is operated below its minimum sample rate.

The decimation simply discards M points for every point kept – no averaging or filtering is used. When decimation is true, the
number of points captured in the framed mode is the number of decimated points, in other words the discarded points do not
count. Maximum decimation rate is 1/4095.

When decimation is used in the framed trigger mode, the number of points captured is after decimation. The frame count is
always the actual number of points inserted into the FIFO.

X5-RX User's Manual 96

X5-RX XMC Module

Trigger Controls in SNAP Example

The SNAP example application demonstrates the triggering modes and controls for the X5-RX. The trigger controls on the
SETUP tab select the trigger source, mode and decimation.

Figure 3. X5-RX SNAP Example Triggering Controls

The trigger source is either external or software External trigger input is the differential pair signal on J5 and J6 front panel
connections. Both inputs must be driven. In external trigger mode, the data collection begins on rising edges. If you are in
framed mode, then the number of points collected is set by the Frame Size number you enter. In unframed mode, the data is
collected until the trigger is false.

One often misunderstood point about framed mode triggering is that it is best if the data packet size is set to the same, or
integer sub-multiple packet size so that data will flow as expected. If the packet size is equal to the frame size, then the data
packet will transfer to the system when the frame is complete. When this is mismatched, some or all of the data is “stuck”
waiting for the packet to be completed. If multiple triggers are expected, then the next trigger may push the data out. If you
have only one trigger, the data will not move to the host because the packet is not complete. It is best in most cases to just
make the data frame that same as packet size so as to avoid this confusion.

X5-RX User's Manual 97

X5-RX XMC Module

External Trigger Input Requirements

The external trigger input has the following requirements. This signal is an AC coupled, single-ended input on connector J5.

Parameter Min Typ Max Comments

Input Frequency 1 200 MHz

Input Common Mode Input Voltage -20V 0 +20V

Input Amplitude 0.15 V 1.3V

Input Termination 50 Ohms

Input Capacitance 15 pF

DC Input Voltage +/-10V
Table 9. External Trigger Input Requirements

Multi-A/D Synchronization

To synchronize multiple X5-RX cards, there are several requirements

• All cards must receive a synchronous clock or reference clock that is low jitter.

• All cards must receive a trigger signal that is a precisely time aligned to the input clock.

• All cards must be ready to take data when the trigger is fired. This means that all A/D have completed timing
calibration and ready to take data.

Provided that these requirements are met, multiple cards can be synchronized for system expansion.

Achieving precise alignment of the clock and trigger can be difficult because of variations in the clock source and circuitry
on the X5-RX. Therefore, the X5-RX Framework Logic provides programmable time delays on the trigger input relative to
the A/D sample clock so that the system can be calibrated for timing alignment. The programmable timing alignment has a
timing resolution of about 78 ps, with a range of 5000 ps.

Bits Function
5..0 IDELAY tap setting (0 = min delay, 63 = max delay). ~78 ps per tap
31..6 unused
Table 10. External Trigger IDELAY Control – 0x80A (r/w)

During system test, the trigger delay is adjusted so that the data capture on all cards is synchronous. This requires a precisely
synchronized trigger, clock and input signal so that the digitized signal can be used to tune the trigger timing.

FrameWork Logic Functionality
The FrameWork Logic implements a data flow for the X5-RX that supports standard data acquisition functionality. This data
flow, when used with the supporting software, allows the X5-RX to act as a data acquisition card with 512MB of data

X5-RX User's Manual 98

X5-RX XMC Module

buffering and high speed data streaming to the host PCI Express. The example software for the X5-RX demonstrates data
flow control, logic loading and data logging.

Figure 4. X5-RX FrameWork Logic Data Flow

The data flow is driven by the data acquisition process . Data flows from the A/D devices into the A/D interface component
in the FPGA as controlled by the triggering. The data is then corrected for gain and offset errors associated with the analog
inputs. After error correction, the enabled channels flow to the data buffer. The data buffer implements a data queue in the
DRAM. The packetizer pulls data from the queue, creates data packets of the programmed size and sends those to the PCIe
interface logic or out the host link. From here, the Velocia packet system controls the flow of data to the host. Data packets
flow into host memory for consumption by the host program.

The Board Basics and Host Communications chapters of this manual discuss the use of the packet data system used on the
X5 module family. The X5-RX module FrameWork Logic connects the data from A/D interface to the packet system by
forming the data into 32-bit words of consecutive enabled channels. Status indicators for the A/Ds are integrated with the
alert log to provide host notifications of important events for monitoring the data acquisition process, some of which are
unique to the X5-RX.

The complete description of the FrameWork Logic is provided in the X5-RX FrameWork Logic User Guide including the
memory mapping, register definitions and functional behavior. This logic is about 30% of the available logic in the
application FPGA (Virtex5 SX95T device). In many custom applications, unused logic functions can be deleted to free up
gates for the new application.

X5-RX User's Manual 99

X5-RX XMC Module

Power Controls and Thermal Design
The X5-RX module has temperature monitoring and power controls to aid in system integration. Also, the module has been
designed to include conduction cooling to improve heat dissipation from the module. These features can make the module
more reliable in operation and also reduce power consumption.

System Thermal Design

The X5-RX can dissipate upwards of 25 watts depending on the features in use and details of the logic design, such as the
rate of data processing. Forced air cooling may be required depending on the power dissipation and the ambient operating
temperatures. This requirement is highly application dependent and must be evaluated for each application and installation.

If forced air cooling is not used, conduction cooling is another method of dissipating the module heat. A thermal plane in the
card is attached to thermal conduction surfaces on each side of the module. The card can then be cooled by mounting the
card on host card that supports conduction cooling per VITA specification 20. The conduction cooling method allows the
module heat to be flowed out to the chassis. The thermal plane has NO electrical connection in the module and cannot be
used as a ground.

Temperature Sensor and Over Temperature Protection

The Virtex-5 System Monitor temperature sensor is described in detail in the Board Basics chapter of this manual. The
temperature sensor is used to monitor the Virtex-5 junction temperature and deactivate board power supplies to protect the
logic device from overheating.

Alert Log

Overview

X5 modules have an Alert Log that can be used to monitor the data acquisition process and other significant events. Using
alerts, the application can create a time history of the data acquisition process that shows when important events occurred
and mark the data stream to correlate system events to the data.. This provides a precision timed log of all of the important
events that occurred during the acquisition and playback for interpretation and correlation to other system-level events. Alerts
for critical system events such as triggering, data overruns, analog overrange, and thermal warnings provide the host system
with information to manage the module.

The Alert Log creates an alert packet whenever an enabled alert is active. The packet includes information on the alert, when
it occurred in system time, and other status information. The system time is kept in the logic using a 32-bit counter running
at the sample clock rate. Each alert packet is transmitted in the packet stream to the host , marked with a Peripheral Device
Number corresponding to the Alert Log.

The Alter Log allows X5 modules to provide the host system with time-critical information about the data acquisition to allow
better system performance. System events, such as over-ranges, can be acted on in real-time to improve the data acquisition

X5-RX User's Manual 100

X5-RX XMC Module

quality. Monitoring functions can be created in custom logic that triggers only when the digitized data shows that something
interesting happened. Alerts make this type of application easier for the host to implement since they don't require host activity
until the event occurs.

Types of Alerts

Alerts can be broadly categorized into system, IO and software alerts.

System alerts include monitoring functions such as temperature, time stamp rollover and PLL lost. These alerts just monitor
that the system is working properly. The temperature warning should be used increase temperature monitor and to prepare to
shut down if necessary because thermal overload may be coming. Better to shut down than crash in most cases. The
temperature failure alert tells the system that the module actually shut itself down. This usually requires that the module be
restarted when conditions permit.

The data acquisition alerts, including over ranges, overflows and triggering, tell the system that important events occurred in
the data acquisition process. Overflow is particularly bad – data was lost and the system should try to alleviate the problem by
unclogging the data pipe, or just start over. If you get an overrange alert, then the data may just be bad for a while but
acquisition can continue. Modules with programmable input ranges can use this to trigger software range changes.

Software alerts are used to tag the data. Any message can be made into an alert packet so that the data stream logged includes
system information that is time-correlated to the data.

Table 11. Alert Types

Alert Purpose
Timestamp rollover The 32-bit timestamp counter rolled over. This can be used to extend the

timestamp counter in software.
Software Alert The host software can create alerts to tag the data stream.
ADC Queue Overflow The ADC data queue overflowed indicating the the host did not consume

the data quickly enough.
ADC Trigger The ADC trigger went active.
ADC Overrange An ADC channel was overranged

Alert Packet Format

Alert data packets have a fixed format in the system The Peripheral Device Number (PDN) is programmable in the software
and is included in the packet header, thus identifying the alert data packets in the data stream. The packet shows the
timestamp in system time, what alerts were signaled and a status word for each alert.

X5-RX User's Manual 101

X5-RX XMC Module

Dword # Description
0 Header 1: PDN & Total #, N, of Dwords in packet (e.g. Headers + data payload)
1 Header 2: 0x00000000
2 Alerts Signaled
3 Timestamp
4 0
5 Software Word
10..6 0
12 X"1303000" & "000" & mq_overflow(0);
35..13 unused
Table 12. Alert Packet Format

Since alert packets contain status words such as temperature for each packet, a software alert can essentially be used to read
temperature of the module and so that it can be recorded.

Software Support for Alerts

Applications have different needs for alert processing. Aside from the bulk movement of data, most applications require some
means of handling special conditions such as post-processing upon receipt of a stop trigger or closing a driver when an
acquisition is completed.

When the alert system is enabled, the module logic continuously monitors the status of the peripheral (usually analog)
hardware present on the baseboard and generates an alert whenever an alert condition is detected. It's also possible for
application software to generate custom alert messages to tag the data stream with system information.

The Malibu software provides support for alert configuration and alert packet processing. See the software manual for usage.

Tagging the Data Stream

The Alert Log can be used to tag the data stream with system information by using software alerts. This helps to provide system-
level correlation of events by creating alert packets in the data stream created by the host software. Alert packets are then created by
the X5 module and are in the stream of data packets from the module. For example it is often interesting when something happens
to the unit under test, such as a change in engine speed or completion of test stimulus.

Calibration
Each X5-RX is calibrated as part of the production testing. The calibration results are provided on the production test report
with each module. The results of the calibration are stored in the on-board EEPROM memory. These calibration values are
used by the logic to correct the analog errors for both the high speed and secondary channels. Each input has a four
calibration coefficients that are loaded by the software at initialization: high speed offset and gain correction factors, and
secondary offset and gain correction factors.

X5-RX User's Manual 102

X5-RX XMC Module

The calibration technique determines the high speed A/D errors by first measuring with ground connected, then a +/-1.4V 10
MHz source. The measurements are the average of 64K samples at each test voltage. From these three points across the
input range, the gain and offset errors are calculated.

The secondary channel is calibrated separately from the high speed channel. The input is connected first to ground, then to
1.4V DC and -1.4V. From these measurements the gain and offset errors are calculated.

All factory calibrations limit gain correction to +-5% and offset to +/-2 mV.

All test voltages are measured as part of the procedure with NIST traceable equipment. Production calibration is performed at
room temperature (~24C) with the module operating temperature at about 65C.

Under normal circumstances, calibration is accurate for one year. For recalibration, the module can be sent to Innovative or
re-calibrated using a similar test procedure.

Updating the Calibration Coefficients

A software applet for writing the calibration coefficients to the EEPROM is provided (EEPROM.exe). New coefficients are
simply typed into the offset and gain field for each channel.

Calibration coefficients for gain should not be outside the range of 0.95 to 1.05, and offset should not be outside the range of +/-
1000 counts for the A/Ds . If the calculated coefficients are larger than this, they are either wrong or the channel is damaged.

Using the X5-RX

Where to start?

The best place to start with the X5-RX module is to install the module and use the SNAP example to acquire some data. This
program lets you log data from the module and use all the features like triggering, clocks, alerts and calibration ROM. You
can use this program to acquire some data and log it to disk. This should let you verify that the module can acquire the data
you want and give you a quick start on deciding what sample rates to use, how to trigger the data acquisition best for your
application, and just get familiar with using the module.

The program also shows how to use BinView, a data analysis and viewing program by Innovative, that will let you see what
you acquired in detail. Both time domain and frequency domain data can be viewed and analyzed. Data can also be exported
to programs like Excel and MATLAB for further analysis.

Before you begin to write software, taking a look at SNAP will allow you see everything working. You can then look at the
code for SNAP and modify it for your application or grab code from it that is useful.

X5-RX User's Manual 103

X5-RX XMC Module

Getting Good Analog Performance

The X5-RX is capable of digitizing very high frequency signals. To maximize signal to noise ratio and spur performance, it
is important to use do the following

● Use only low jitter clock sources. The higher the input/output frequency, the more sensitive the system will be
to clock jitter.

● Band limit input signals if possible. This avoids noise contributions and aliasing caused by out-of band energy
in the input signal

● Scale your input signals to take advantage of the full scale input ad output ranges of the converters. This will
maximize signal to noise in most cases. Custom input and output ranges can be ordered if necessary.

● Use high coax cables at all times, and terminate all signals to 50 ohms. Cables should be RG-179 or better.

● Reference input signals to the module ground. Be sure not to introduce ground loops.

● Provide sufficient signal strength to drive the input. The X5-RX terminates its inputs to 50 ohms, so signals
sources must be able to drive the DC termination effectively.

If you decide to test the X5-RX to verify its performance, be aware that most signal sources are not good enough without
additional filtering and careful use. Most single-ended lab instruments are limited by their distortion, especially at higher
frequencies, to about 70 dB. It is usually necessary to bandpass filter lab signal sources to improve the quality of the test
signal before the X5-RX input. The filter reduces out-of-band noise and harmonic distortion from the signal source.

Figure 5. Typical Performance Evaluation Setup

X5-RX User's Manual 104

Signal
Generator

Bandpass
Filter

UUT
X5 Module

Host
Computer

X5-RX XMC Module

Performance Data

Power Consumption

The X5-RX requires the following power for typical operation with when using the FrameWork Logic. This typical number
assumes a 225 MHz system clock rate and 200 MSPS A/D sample rates for the application logic.

Voltage Maximum Allowed
Current (A)

Typical Current
Required (A)

Typical
Power (W)

Derived from Supplies these Devices

3.3V 15 6.1A 20.1 Direct connect to the
PCIe host

FPGA, clock controls, and
analog power supplies

12V 4 0.7 8.4 Direct connect to the
PCIe host (VPWR
pins)

FPGA

Total
Power

28.5

Table 13. X5-RX Power Consumption

Surge currents occur initially at power-on and after application logic initialization. The power-on surge current lasts for
about 10 ms at several amperes on both 3.3V and 12V. This surge is due primarily to charging the on-card capacitors and the
startup current of the FPGAs. After initial power-up, the logic configuration will also result in a step change to the current
consumption because the logic will begin to operate. In our testing and measurements, this has not been a surge current as
much as a just a step change in the power consumption.

Power consumption varies and is primarily as a function of the logic design. Logic designs with high utilization and fast
clock rates require higher power. Since calculating power consumption in the logic requires many details to be considered,
Xilinx tools such as XPower are used to get the best estimates.

It is important that any custom logic design have a substantial safety margin for the power consumption. Allowance for
decreased power supply efficiency due to heating can account for 10% derating. Also, dynamic loads should be considered so
that peak power is adequate. In many cases a factor of 2 for derating is recommended.

Environmental

The X5-RX is available for environmental rating levels from L0 (office, lab environment) to L4 (military and heavy
industry).

Environment Rating
<ER>

L0 L1 L2 L3 L4

Environment Office, controlled
lab

Outdoor, stationary Industrial Vehicles Military and heavy
industry

Applications Lab instruments, Outdoor monitoring Industrial Manned vehicles Unmanned vehicles,

X5-RX User's Manual 105

X5-RX XMC Module

research and controls applications with
moderate vibration

missiles, oil and gas
exploration

Cooling Forced Air
2 CFM

Forced Air
2 CFM

Conduction Conduction Conduction

Operating Temperature 0 to +50C -40 to +85C -20 to +65C -40 to +70C -40 to +85C

Storage Temperature -20 to +90C -40 to +100C -40 to +100C -40 to +100C -50 to +100C

Vibration Sine - - 2g
20-500 Hz

5g
20-2000 Hz

10g
20-2000 Hz

Random - - 0.04 g2/Hz
20-2000 Hz

0.1 g2/Hz
20-2000 Hz

0.1 g2/Hz
20-2000 Hz

Shock - - 20g, 11 ms 30g, 11 ms 40g, 11 ms

Humidity 0 to 95%,
non-condensing

0 to 100% 0 to 100% 0 to 100% 0 to 100%

Conformal coating Conformal coating Conformal coating,
extended
temperature range
devices

Conformal coating,
extended
temperature range
devices,
Thermal conduction
assembly

Conformal coating,
extended
temperature range
devices,
Thermal conduction
assembly,
Epoxy bonding for
devices

Testing Functional,
Temperature cycling

Functional,
Temperature cycling,
Wide temperature
testing

Functional,
Temperature cycling,
Wide temperature
testing
Vibration, Shock

Functional,
Temperature cycling,
Wide temperature
testing
Vibration, Shock

Functional,
Testing per MIL-
STD-810G for
vibration, shock,
temperature,
humidity

Table 14. X5-RX Environmental Limits

Testing for each unit is performed to verify compliance with the specified requirements. For levels above L0, functional
testing is performed over the specified temperature range and functional testing is verified during vibration tests. Shock
testing is non-operation, with post-shock functional testing.

Analog Input

A summary of the analog performance follows for the X5-RX module.

All tests performed at room temperature, with no forced air cooling unless noted. Test environment was PCIe adapter card in
PC running testbed software using FrameWork Logic.

X5-RX User's Manual 106

X5-RX XMC Module

Table 15. X5-RX Analog Performance Summary

Test Group Parameter Measured Units Test Conditions

Analog Input Impedance 50 Ohms

Input Range 3 Vp-p Standard on X5-RX, calibration results may limit input
range to 0.95 of full scale nominal.

Accuracy Offset <10 mV Factory calibration, average of 64K samples

Gain 0.02 % Factory calibration, average of 64K samples

Analog Input Ground Noise 24 mVp-p Input Grounded, Fs = 200 MSPS, 128K samples

Ground Noise
Floor

-117 dB Input Grounded, Fs = 200 MSPS, 64K sample FFT, non-
averaged

Analog Input Crosstalk -95 dB Worst case, Fin = 70.1 MHz, 2V p-p input

Analog
Response

Bandwidth 450 MHz -3 dB

Amplitude
Variation

1 dB 1 to 200 MHz

Figure 6. Frequency Response for 1 MHz to 1.2GHz span

X5-RX User's Manual 107

0 200 400 600 800 1000 1200

-16

-14

-12

-10

-8

-6

-4

-2

0

2 Amplitude vs Frequency

Amplitude (dB)

MHz

dB

X5-RX XMC Module

Figure 7. Frequency Response for 5 MHz to 400 MHz span

Table 16. A/D Signal Quality vs Input Frequency

X5-RX User's Manual 108

0.4 4 40 400

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Amplitude vs Frequency

Amplitude (dB)

MHz

dB

Fin (MHz) SNR (dB) SINAD (dB) SFDR (dB) THD (dB) Noise (-dB)
5 77.8 73.3 85.6 81.1 122.5
70 72.6 68.7 84.9 77.6 117.5
99 69.3 67.4 84.7 81.7 113.5
165 66.7 64.7 81.1 78.1 107

X5-RX XMC Module

Figure 8. A/D Signal Quality vs. Input Frequency

Figure 1. Wideband Signal Quality, Fin = 5 MHz, 1.3Vp-p, Fs = 200 MSPS

X5-RX User's Manual 109

SFDR = 86.9 dB
SNR= 76.5 dB
ENOB= 12.0 bits
THD = -85.6 dB
Noise = -121 dB
Fin = 5 MHz, 1.3Vp-p
Fs = 200MSPS
FFT=64K

0 20 40 60 80 100 120 140 160 180
50

60

70

80

90

100

110

120

130

X5-RX Signal Quality

SNR (dB)
SINAD (dB)
SFDR (dB)
THD (dB)
Noise (-dB)

Fin (MHz)

dB

X5-RX XMC Module

Figure 1. Wideband Signal Quality, Fin = 70 MHz, 1.4Vp-p, Fs = 200 MSPS

X5-RX User's Manual 110

SFDR = 71.1 dB
SNR= 71.1 dB
ENOB= 11.2 bits
THD = -82.0 dB
Noise = -118 dB
Fin = 70 MHz, 1.3Vp-p
Fs = 200MSPS
FFT=64K

X5-RX XMC Module

Figure 2. Narrowband Signal Quality, Fin = 70 MHz, 1.4Vp-p, Fs = 200 MSPS

X5-RX User's Manual 111

Fin = 70 MHz, 1.3Vp-p
Fs = 200MSPS
FFT=64K

X5-RX XMC Module

Figure 3. Wideband Signal Quality, Fin = 99 MHz, 1.3 Vp-p, Fs = 200 MSPS

X5-RX User's Manual 112

SFDR = 84.4 dB
SNR = 69.3 dB
ENOB =10.9 bits
THD = -80.2 dB
Noise = -113 dB
Fin = 99 MHz, 1.3Vp-p
Fs = 200 MSPS
FFT=64K

X5-RX XMC Module

Figure 4. Wideband Signal Quality, Fin = 165 MHz, 1.3Vp-p, Fs = 200 MSPS

X5-RX User's Manual 113

SFDR = 78.6 dB
SNR = 69.0 dB
ENOB =10.5 bits
THD = -79.2 dB
Noise = -116 dB
Fin = 99 MHz, 1.3Vp-p
Fs = 200 MSPS
FFT=64K

X5-RX XMC Module

Figure 5. Narrowband Signal Quality, Fin = 165 MHz, 1.3Vp-p, Fs = 200 MSPS

X5-RX User's Manual 114

X5-RX XMC Module

Connectors

Front Panel Connectors J1-J6

J1-J2connectors are positioned on the front panel for analog input, clock and trigger signals to be connected to the module.

Connector Type: SMA 50 ohm

Number of Connections: 1 per signal

Connector Part Number Amphenol 901-143

Mating Connector: Amphenol 901-9511-3 or equivalent

Cable Innovative part number 67048
SMA to BNC cable

 Connector Function

J1 A/D channel 0

J2 A/D channel 1

J3 A/D channel 2

J4 A/D channel 3

J5 Trigger

J6 Sample / Reference Clock Input

Figure 6. Connectors J1-J6 Functions

X5-RX User's Manual 115

X5-RX XMC Module

XMC P15 Connector

P15 is the XMC PCI Express connector to the host.

Connector Types: XMC pin header, 0.05 in pin spacing, vertical mount

Number of Connections: 114, arranged as 6 rows of 19 pins each

Connector Part Number Samtec ASP-105885-01

Mating Connector: Samtec ASP-105884-01

Figure 7. P15 XMC Connector Orientation

X5-RX User's Manual 116

X5-RX XMC Module

Column

Row A B C D E F

1 PET0p0 PET0n0 3.3V PET0p1 PET0n1 VPWR

2 GND GND GND GND MRSTI#

3 PET0p2 PET0n2 3.3V PET0p3 PET0n3 VPWR

4 GND GND GND GND MRSTO#

5 PET0p4 PET0n4 3.3V PET0p5 PET0n5 VPWR

6 GND GND GND GND +12V

7 PET0p6 PET0n6 3.3V PET0p7 PET0n7 VPWR

8 GND GND GND GND -12V

9 VPWR

10 GND GND GND GND GA0

11 PER0p0 PER0n0 MBIST# PER0p1 PER0n1 VPWR

12 GND GND GA1 GND GND MPRESENT#

13 PER0p2 PER0n2 3.3VAUX PER0p3 PER0n3 VPWR

14 GND GND GA2 GND GND MSDA

15 PER0p4 PER0n4 PER0p5 PER0n5 VPWR

16 GND GND MVMRO GND GND MSCL

17 PER0p6 PER0n6 PER0p7 PER0n7

18 GND GND GND GND 3.3V

19 PEX REFCLK+ PEX REFCLK- LED_N** WAKE# ROOT# FAN**

Table 17. X5-RX XMC Connector P15 Pinout

Note: All unlabeled pins are not used by X5 modules but may defined in VITA42 and VITA42.3 specifications.

**Note:LED_N and FAN are special purpose pins that support Innovative adapter card functions. These are reserved pins on
the VITA42.3 specification.

X5-RX User's Manual 117

X5-RX XMC Module

Signal Description

PET0px/PET0nx PCI Express Tx +/-

PER0px/PER0nx PCI Express Rx +/-

PEX REFCLK+/- PCI Express reference clock, 100 MHz +/-

MRSTI# Master Reset Input, active low

MRSTO# Master Reset Output, active low

GA0 Geographic Address 0

GA1 Geographic Address 1

GA2 Geographic Address 2

MBIST# Built-in Self Test, active low

MPRESENT# Present, active low

MSDA PCI Express Serial ROM data

MSCL PCI Express Serial ROM clock

MVMRO PCI Express Serial ROM write enable

WAKE# Wake indicator to upstream device, active low

ROOT# Root device, active low

LED_N# Host LED control output, active low. (May be used with eInstruments)

FAN Host fan control. (May be used with eInstruments)

Table 18. P15 Signal Descriptions

X5-RX User's Manual 118

X5-RX XMC Module

XMC P16 Connector

P16 is the XMC secondary connector to the host and is used for digital IO, data link and triggering functions.

Connector Types: XMC pin header, 0.05 in pin spacing, vertical mount

Number of Connections: 114, arranged as 6 rows of 19 pins each

Connector Part Number Samtec ASP-105885-01

Mating Connector: Samtec ASP-105884-01

Figure 8. P16 XMC Connector Orientation

X5-RX User's Manual 119

X5-RX XMC Module

Table 19. X5-RX XMC Secondary Connector P16 Pinout
Column

Row A B C D E F

1 TXP0 TXN0 TXP1 TXN1

2 DGND DGND DIO0 DGND DGND DIO1

3 TXP2 TXN2 TXP3 TXN3

4 DGND DGND DIO2 DGND DGND DIO3

5 TXP4 TXN4 TXP5 TXN5

6 DGND DGND DIO4 DGND DGND DIO5

7 TCP6 TXN6 TXP7 TXN7

8 DGND DGND DIO6 DGND DGND DIO7

9

10 DGND DGND DIO8 DGND DGND DIO9

11 RXP0 RXN0 RXP1 RXN1

12 DGND DGND DIO10 DGND DGND DIO11

13 RXP2 RXN2 RXP3 RXN3

14 DGND DGND DIO12 DGND DGND DIO13

15 RXP4 RXN4 RXP5 RXN5

16 DGND DGND DIO14 DGND DGND DIO15

17 RXP6 RXN6 RXP7 RXN7

18 DGND DGND DGND DGND

19

Note: All unlabeled pins are not used by X5 modules but may defined in VITA42 and VITA42.3 specifications.

Table 20. P16 Signal Descriptions
Signal Description

DIO0-15 Digital IO 0-15

TXP0-7 SERDES transmit positive

TXN0-7 SERDES transmit negative

RXP0-7 SERDES receive positive

RXN0-7 SERDES receive negative

DGND Ground

X5-RX User's Manual 120

X5-RX XMC Module

Xilinx JTAG Connector

JP1 is used for the Xilinx JTAG chain. It connects directly with Xilinx JTAG cables such as Parallel Cable IV or Platform
USB.

Connector Types: 14-pin dual row male header, 2mm pin spacing, right angle

Number of Connections: 14, arranged as 2 rows of 7 pins each

Connector Part Number Samtec TMM-107-01-L-D-RA or equivalent

Mating Connector: AMP 111623-3 or equivalent

Figure 9. X5-RX JP1 Orientation, board face view Figure 10. X5-RX JP1 Orientation, board top edge view

X5-RX User's Manual 121

JP1
Pin 1 end

Board edge

Pin 1

Pin 2

Pin 13

Pin 14

Board

X5-RX XMC Module

Pin Signal Direction

1,3,5,7,9,11,13 Digital Ground Power

2 1.8V Power

4 TMS I

6 TCK I

8 TDO O

10 TDI I

12,14 No Connect -

Table 21. X5-RX JP1 Xilinx JTAG Connector Pinout

FLASH Boot Image Select

JP3 is used to select the logic image used to boot the module.

JP3 Strapping Boot Image

None Application Logic Image

1-2 Backup Image (Golden Image)

Table 22. X5-RX JP3 Boot Image Select

Mechanicals
The following diagrams show the X5-RX connectors and physical locations. The XMC conforms to IEEE 1386 form factor,
75mm x 150mm. The spacing to the host card is 10 mm and consumes a single slot in desktop and Compact PCI/PXI
chassis. An EMI shield over the analog section is normally installed.

Detailed drawings for mechanical design work are available through technical support.

X5-RX User's Manual 122

X5-RX XMC Module

Figure 11. X5-RX Mechanicals (Top View)

X5-RX User's Manual 123

JP1 - JTAG

J1- A/D 0

J2- A/D 1

J5- TRIGGER

J6- EXT CLK

M2 TH (6 PL)

M2.5 TH (3 PL) Jp3 – Boot
Image Select

J3- A/D 2

J4- A/D 3

X5-RX XMC Module

Figure 12. X5-RX Mechanicals (Bottom View)

X5-RX User's Manual 124

	Table of Contents
	List of Tables
	List of Figures
	Chapter 1: Introduction
	Real Time Solutions!
	Vocabulary
	Online Help
	Innovative Integration Technical Support
	Innovative Integration Web Site

	Typographic Conventions

	Chapter 2: Windows Installation
	Host Hardware Requirements
	Software Installation
	Starting the Installation
	The Installer Program

	Tools Registration
	Hardware Installation
	After Power-up
	Installation on a Deployed System
	Running MalibuRed

	Chapter 1: Installation on Linux
	Prerequisites for Installation
	The Redistribution Package Group - MalibuRed
	Malibu
	Other Software
	Baseboard Package Installation Procedure
	Board Packages
	Unpacking the Package
	Completing the Board Install
	Linux Directory Structure
	Chapter 2: Hardware Installation
	Compatible Host Cards
	System Requirements
	Power Considerations
	Mechanical Considerations

	Chapter 1. About the X5 XMC Modules
	X5 XMC Architecture
	X5 Computing Core
	X5 PCI Express Interface
	Data Buffering and Memory Use
	Serial EEPROM Interface
	Digital I/O
	Available Bit I/O
	Software Support
	Digital IO Electrical Characteristics
	Notes on Digital IO Use

	P16 SERDES I/O
	Thermal Protection and Monitoring
	Thermal Failures
	Led Indicators
	LEDs NOT Lit with FrameWork Logic Installed

	JTAG Scan Path
	FrameWork Logic
	Integrating with Host Cards and Systems
	Standalone Operation
	Updating the XMC logic Configuration EEPROM
	Rescuing the Card When the Logic Image is Bad

	Chapter 3: Writing Custom Applications
	The Snap Example
	Tools Required
	Program Design

	The Host Application
	User Interface
	ApplicationIo

	The Linux Snap Example
	User Interface

	The Wave Example
	The Wave Example for Linux
	User Interface

	Developing Host Applications
	Borland Turbo C++
	Other considerations:

	Microsoft Visual Studio 2005
	DialogBlocks
	Summary

	Chapter 4: Applets
	Common Applets
	Registration Utility (NewUser.exe)
	Reserve Memory Applet (ReserveMemDsp.exe)

	Data Analysis Applets
	Binary File Viewer Utility (BinView.exe)

	Chapter 5: Applets for the X5-RX Baseboard
	Logic Update Utility (VsProm.exe)
	Finder

	Chapter 6: X5-RX XMC Module
	Introduction
	Hardware Features
	A/D Converters
	A/D Front End
	Input Range and Conversion Codes
	DC and Low Frequency Band Digitizing
	Driving the A/D Inputs
	Overrange Detection

	Sample Rate Generation and Clocking Controls
	External Clock/Reference Input
	Sample Rate Generation
	Setting the Sample Rate in the SNAP Example
	Controlling the PLL
	How To Set the Sample Rate Generator to a Specific Frequency
	Using An External PLL Reference
	Using An External Clock for Sample Clock
	External Clock Requirements
	CDCDE72010 SPI Port
	VCXO I2C Port

	Triggering
	Trigger Source
	Framed Trigger Mode
	Decimation
	Trigger Controls in SNAP Example
	External Trigger Input Requirements
	Multi-A/D Synchronization

	FrameWork Logic Functionality
	Power Controls and Thermal Design
	System Thermal Design
	Temperature Sensor and Over Temperature Protection

	Alert Log
	Overview
	Types of Alerts
	Alert Packet Format
	Software Support for Alerts
	Tagging the Data Stream

	Calibration
	Updating the Calibration Coefficients

	Using the X5-RX
	Where to start?
	Getting Good Analog Performance

	Performance Data
	Power Consumption
	Environmental
	Analog Input

	Connectors
	Front Panel Connectors J1-J6
	XMC P15 Connector
	XMC P16 Connector
	Xilinx JTAG Connector
	FLASH Boot Image Select

	Mechanicals

