
Wifi Shield V2.0

Overview

This WiFi shield features the RN171 TCP/IP module to allow your Arduino/Seeeduino to

connect with up to 802.11b/g wireless networks.

The shield's default communication protocol with the Arduino is UART/Serial, and you may

select which digital pins (D0 to D7) to use for RX and TX with two jumper rows we've

incorporated. The shield also has two on-board Grove connectors for I2C and Serial to allow the

shield to be used with any of our Grove devices.

An on-board antenna allows the shield to cover a wider range and transmit stronger signals. The

RN171 module supports TCP, UDP, FTP, and HTTP communication protocols to meet the needs

of most wireless and Internet of Things (IoT) network projects e.g. smart home networks, robots

control, personal weather stations.

The shield is very well documented with our examples below and its user manual.

http://www.seeedstudio.com/wiki/images/b/be/WiFly-RN-UM.pdf

Specification

Operate voltage 3.3~5.5 V

Compatible board directly Arduino Uno/Seeeduino

Current 25~400mA

Transmit power 0-10 dBm

Frequency 2402~2480 MHz

Channal 0~13

Network rate 1-11 Mbps for 802.11b/6-54Mbps for 802.11g

Dimension 60X56X19 mm

Net Weight 24±1 g

Secure WiFi authentication WEP-128, WPA-PSK (TKIP), WPA2-PSK (AES)

Built-in networking

applications
DHCP client, DNS client, ARP, ICMP ping, FTP, TELNET, HTTP, UDP, TCP

Certification RN171 : FCC, CE

Shield Interface and Components

The WiFi shield is compatible with any Arduino/Seeeduino development board as it only

requires two digital pins of your choice between D0-D7 for UART/serial communication. To

install, simply stack the shield on the Arduino/Seeeduino board.

Overview

1. Serial Peripheral Interface (SPI) Connections (MOSI, SCK, MISO): These pins are not connected
to any of the Arduino's pins, they are independent and the logic level output/input of them is
3.3V. They can be used to communicate with the Arduino via SPI but a 3.3V logic converter
between these pins and the Arduino's will be needed. The data rate in SPI mode can reach up to
2Mbps.
RES_Wifi: The Wifi shield has an on-board "Rest Button" for the RN-171 module, you may also
reset the RN-171 via software by sending the reset command. Additionally, if you would like to
connect this pin to the Arduino's digital 6 pin, simply solder the pad labeled "P5" on the shield.

2. RN171: a super low power consumption wireless module with TCP/IP stack built in.
3. Antenna: I.PEX connector.
4. RN171 breakout section: The RN171 module has its own analog input and GPIO pins, which the

shield provides access to via this breakout section. The GPIO pins (IO3, IO7, IO8, and IO9) are
3.3V tolerant while the analog input pins (S_0 and S_1) can read 0-400mV (Do not exceed 1.2V).
The RN171 can be configured to use these pins by software or they may connected to other pins
to use other RN171 functions such as adhoc mode. The voltage of VCC is dependent on the
supply power of the WiFi shield.

5. UART/Serial Select area: Two jumper rows to let you select which RX and TX pins you want to
use to communicate with the Arduino.

6. Grove connectors: Analog I2C Grove (if using Arduino UNO or Seeeduino) for pins A4&A5 and
Digital Serial Grove for D8&D9. The voltage VCC is dependent on the power supply of the board.

Pins Used / Shield Compatibility

The WiFi shield uses any two digital pins of your choice between D0 and D7 to communicate

with the RN171 WiFi module, however keep in mind that D0 and D1 are used by the Arduino

for programming and serial communication purposes and using them might interfere with these

two functions.

http://www.seeedstudio.com/wiki/File:Wifi_shield_v2_breakout.png

In the example codes in this page we use D2 and D3 as RX and TX for the shield. In this case,

the jumper hats should be connected as shown below:

D2 selected for WIFI_TX, D3 selected for WIFI_RX

RN171 WiFi Module

The RN-171 is a standalone complete TCP/IP wireless networking module. Due to its small form

factor and extremely low power consumption, the RN-171 is perfect for mobile wireless

applications. It incorporates a 2.4GHz radio, 32-bit SPARC processor, TCP/IP stack, real-time

clock, crypto accelerator, power management, and analog sensor interfaces.

In the simplest configuration the hardware only requires four connections (PWR, TX, RX and

GND) to create a wireless WiFi data connection. Additionally, the analog sensor inputs of the

RN171 can be used as analog input pins, their rating is 0-400 mV (Do not exceed 1.2V DC).

Power: The operating voltage of the RN-171 module is 3.3VDC typically, so a voltage regulator

and logic level translator are designed on the WiFi shield. The LD1117 regulator on the shield

converts to 3.3VDC, which supplies the RN171 module. However, due to the auto judgement

schematic of power supply, the RN-171 can be powered via both 3V3 pin and 5V pin. But the

supply power would be 5v if providing both 3.3v and 5v to the board. If using with an

Arduino/Seeeduino board simply stack the WiFi shield on the board.

http://www.seeedstudio.com/wiki/File:Wifi_shield_v1.1_pinout.png
http://www.seeedstudio.com/wiki/File:Wifi_shield_v1.1_pinout.png

Diagram of how the RN171 module is interfaced to the Arduino

GPIO_6 : The GPIO6 pin of the RN171 WiFi module is by default only connected to the LED

labeled D5 on the WiFi shield. This LED is used to display the status of the Access Point (AP)

connection. If however, you would like to connect GPIO6 to digital pin 5 of the Arduino, simply

solder the pad labeled "P6" on the WiFi shield.

LED Status Indicators

Label Description Status Hardware Connection

D5
Green LED. Indicates the

association status.

OFF: means the module is not

associated with a network.

Solid ON: indicates that it is associated

and Internet access is OK

Connected to GPIO6 of the

RN171 module

D1
Red LED. Indicates the

TCP/IP connection status.

Solid ON: connected over TCP.

Fast Toggle (2 times/second): No IP

address or module is in command

mode.

Slow Toggle (once/second): IP

address is OK.

Connected to GPIO4 of the

RN171 module

RST
Red LED. WiFi module

reset status.

Solid ON: The reset button (WIFI_RST) is

been pressed.

Connected to Reset of the

RN171 module.

PWR

Green LED. Indicates WiFi

module's power up

status.

Solid ON:The module/shield is powered

up.

Connected to the 3.3V output

of the LD1117 voltage

regulator.

http://www.seeedstudio.com/wiki/File:Wifi_shield_v1.1_communicate.png
http://www.seeedstudio.com/wiki/File:Wifi_shield_v1.1_communicate.png

WiFi Library

We have created a library to help you interface with the shield, in this section we'll show you

how to set up the library and introduce some of the functions.

Setup

1. Download the library code as a zip file from the Wifi Shield github page.
2. Unzip the downloaded file into your …/arduino/libraries/ folder .
3. Rename the unzipped folder "WifiShield"
4. Start the Arduino IDE (or restart if it is open).

Functions

These are the most important/useful function in the library, we invite you to look at the .h files

yourself to see all the functions available.

join()

 Description:
 Used to join a WiFi access point

 Syntax:
 join(const char *ssid, const char *phrase, int auth)

 Parameters:
 ssid: The name of the access point you want the shield to connect to
 phrase: The password/phrase of the access point you want the shield to connect to
 auth: The authentication type of the access point you want the shield to connect to. Can

be one of the following constants:
 WIFLY_AUTH_OPEN
 WIFLY_AUTH_WEP
 WIFLY_AUTH_WPA1
 WIFLY_AUTH_WPA1_2
 WIFLY_AUTH_WPA2_PSK
 WIFLY_AUTH_ADHOC

 Returns:
 boolean: true if the connection to the access point was successful, false otherwise.

 Example:
 #include <SoftwareSerial.h>

 #include "WiFly.h"



 SoftwareSerial uart(2, 3); // create a serial connection to the WiFi

shield TX and RX pins.

 WiFly wifly(&uart); // create a WiFly library object using the serial

connection to the WiFi shield we created above.



 void setup()

 {

 uart.begin(9600); // start the serial connection to the shield

 Serial.begin(9600); // start the Arduino serial monitor window

connection

 wifly.reset(); // reset the shield

 while(wifly.join("mySSID","mySSIDpassword",WIFLY_AUTH_WPA2_PSK) ==

false)

 {

https://github.com/Seeed-Studio/WiFi_Shield

 Serial.println("Failed to connect to accesspoint. Will try

again.");

 }

 Serial.println("Connected to access point!");

 }



 void loop()

 {



}

receive()

 Description:
o Can be used to read data from the shield, an alternative for the Arduino's read()

function.
 Syntax:

o receive(uint8_t *buf, int len, int timeout)
 Parameters:

o buf: A buffer array where the bytes read from the shield is stored.
o len: The length/size of the buffer array
o timeout: A timeout value to know when to stop trying to read.

 Returns:
o int: The number of bytes read from the shield.

 Example:
 char c;

 while (wifly.receive((uint8_t *)&c, 1, 300) > 0) {

 Serial.print((char)c);

 }

See File->Examples->WiFi_Shield->wifly_test sketch for a complete example.

sendCommand()

 Description:
o Some our functions (e.g. join(), reboot(), save()) act as wrappers for the text commands

listed in the user manual of the RN171 module. The function sendCommand() allows
you to come up with your own wrapper function if ours do not meet your needs.

 Syntax:
o sendCommand(const char *cmd, const char *ack, int timeout)

 Parameters:
o cmd: Any command from the RN-171's user manual.
o ack: The expected return string from the command
o timeout: The time allowed before considering the output a bad request/response

 Returns:
o boolean: true if the WiFi shield responded with the ack string, false otherwise.

 Example:
 // our join() function is wrapper for the join command, as seen below.

 //The string "Associated" is what the user manual says the RN171 will

return on success.

 if(sendCommand("join\r", "Associated",DEFAULT_WAIT_RESPONSE_TIME*10))

 {

 // joined

 }else{

 // not able to join

 }

See File->Examples->WiFi_Shield->wifly_test sketch for a complete example.

WiFi Shield Examples/Applications

Example 1: Send Commands to WiFi Shield and Receive Response Via The Arduino Serial

Monitor Window

The WiFi shield's RN-171 module is configured by sending it the commands found in its

datasheet. You may write a sketch to send the commands automatically, but this is a great

example that we recommend you go through because it will teach you exactly how the WiFi

shield and RN-171 works.

To proceed follow the steps below, we have also created a video if you prefer to watch that

Video - Getting Started With Seeeduino's WiFi Shield.

Step 1: WiFi Shield Jumpers Configuration

Position the jumpers in the WiFi shield such that digital pin 2 (D2) is selected for WIFI_TX, and

digital pin 3 (D3) is selected for WIFI_RX as shown in the photo below. These are the pins we

will use to send and receive information from the RN-171.

http://www.seeedstudio.com/wiki/images/b/be/WiFly-RN-UM.pdf
http://www.seeedstudio.com/wiki/images/b/be/WiFly-RN-UM.pdf
https://www.youtube.com/watch?v=8dCrAaN16lE
http://www.seeedstudio.com/wiki/File:Wifi_shield_v1.1_front.png

Pins D2 for TX, and D3 for RX

Step 2: Software/Code

In the sketch below we have created a UART object to allow us to send and receive data from

the RN-171/WiFi Shield. We then use this object in conjunction with the WiFly library to send

data to the shield. The Arduino's Serial object is used to print the data we receive from the shield,

and to receive the commands we want to send to the shield via the WiFly/UART object.

Upload the following code to your Arduino board:

 #include <Arduino.h>

 #include <SoftwareSerial.h>

 #include "WiFly.h"

 // set up a new serial port.

 SoftwareSerial uart(2, 3); // create a serial connection to the WiFi shield

TX and RX pins.

 WiFly wifly(&uart); // create a WiFly library object using the serial

connection to the WiFi shield we created above.

 void setup()

 {

 uart.begin(9600); // start the serial connection to the shield

 Serial.begin(9600); // start the Arduino serial monitor window connection

 delay(3000); // wait 3 second to allow the serial/uart object to start

 }

 void loop()

 {

 while (wifly.available()) // if there is data available from the shield

 {

 Serial.write(wifly.read()); // display the data in the Serial monitor

window.

 }

 while (Serial.available()) // if we typed a command

 {

 wifly.write(Serial.read()); // send the command to the WiFi shield.

 }

 }

Step 3: Entering Command Mode

The WiFly RN-171 module in the WiFi shield can operate in two modes: data, and command.

When in data mode, the shield is able to receive and initiate connections. When in command

mode, we are able to configure the module using the commands listed in its datasheet.

To enter command mode, follow these steps:

1. Open the Arduino Serial monitor.
2. Set the serial monitor to “No line ending”, baud rate to 9600.
3. Type "$$$" into the Arduino Serial Monitor and press enter.
4. The module will respond with the letters “CMD”, indicating that it has entered command mode.

http://www.seeedstudio.com/wiki/File:Wifi_shield_v1.1_front.png

Let's go ahead and test some commands, do the following:

1. In the Arduino Serial monitor window, select “Carriage return” and a baud rate of 9600.
2. Now type each of the commands in the table below into the Arduino Serial Monitor and press

enter.
3. The module will output a response, as described in the table, for each command.

Commands Description

scan

This command performs an active probe scan of access points on all 13 channels.

When you use this command, the module returns the MAC address, signal strength,

SSID name, and security mode of the access points it finds.

get ip This command displays the IP address and port number settings

For a complete list of configuration commands, please see the RN-171 Reference Guide starting

on page 11.

Example 2: Connect to An Access Point / Internet Router

In this example we will show you how to connect the WiFi shield to an access point (your

internet router) with and without you typing the commands required:

Connecting By Typing Commands

This section will teach you how to connect the WiFi shield to an access point using commands

from the RN-171 datasheet, by going through this section you will then know exactly what is

happening in the background when you use our WiFi Arduino libraries.

Do the following:

1. Upload the code in Example One to your Arduino board
2. Enter command mode:

1. Set the serial monitor to “No line ending”, baud rate to 9600.
2. Type $$$ into the Arduino Serial Monitor and press enter.

3. Set the serial monitor to “Carriage return”.
4. Scan for available access points:

1. Type scan and press enter. The Arduino serial monitor window will output a list of
comma separated values for each access point the WiFi shield has found. From left to
right the third value is the security mode, the last value is the SSID. This example shows
a security mode of 4 with an SSID name MySSID: 01,01,-
88,04,1104,1c,00,45:56:78:be:93:1f,MySSID

5. From the list of access points found, find the one which corresponds to your internet router and
note the security mode, and SSID as we will need these two values to connect to it.

6. Set the security mode in the shield:
1. Type set wlan auth m. Replace m with the security mode number (in this example that

would be 4) of the access point you wish to connect to.
2. The security modes supported by the WiFi shield are listed in Figure 1 below.

7. Set the access point phrase

http://www.seeedstudio.com/wiki/images/b/be/WiFly-RN-UM.pdf

1. Type set wlan phrase myPhrase. Replace myPhrase with your access point's
password/security key. Note: if your access point's security type is WEP use key instead
of phrase in the command above.

2. The access point's (internet router) phrase is the password you use to connect to it from
your PC. In Windows you can find it as shown in the animated image below:

How to find a networks' security key/password

8. Join the access point
1. Now that we have set the security type and phrase of the access point, we may connect

to it.
2. Type join MySSID. Replace MySSID with your access point's broadcast name.
3. The word "Associated!" will be displayed in the Arduino serial monitor window if

successful.

A description of the commands you entered in the steps above is available in the table below. A

more detailed description of each command can be found in the RN171's user manual.

Number Commands Description

1 scan

This command performs an active probe scan of access points on all 13

channels. When you use this command, the module returns the MAC

address, signal strength, SSID name, and security mode of the access

points it finds.

http://www.seeedstudio.com/wiki/File:How_to_find_network_security_key_password.gif
http://www.seeedstudio.com/wiki/File:How_to_find_network_security_key_password.gif

2
set wlan auth

4

Find the value that corresponds to the security protocol on your access

point. Then, tell the WiFly what security protocol to use, it is the

number shown in Fijure 1 that corresponds to the access point's

security protocol. Here we choose “4”.

3

set wlan

phrase seeed-

mkt

Tell the WiFi shield your passphrase.

4
join SEEED-

MKT

Tell the WiFi shield to join, “SEEED-MKT“ is the name of the access

point we choose to connect. After sending the command the module

should now connect and print out information about the connection. (If

the connection is failed, try to send the command again until it works)

Figure 1

Value Authentication Mode

0 Open (Default)

1 WEP-128

2 WPA1

3 Mixed WPA1 and WPA2-PSK

4 WPA2-PSK

5 Not used

6 AD hoc mode (join any ad hoc network)

8 WPE-64

Connecting Using Our WiFi Libraries

Now that you know how to connect to an access point by typing each command it's time to use

the libraries and examples we provide.

To see code required to connect to an access point go to “File -> Examples -> Wifi_Shield ->

wifi_test”. Change the code to use your own SSID (access point name), and KEY (your access

point's password), then upload the sketch to your Arduino IDE.

 #define SSID " SEEED-MKT "

 #define KEY " seeed-mkt "

With the sketch uploaded to your Arduino board, open the serial monitor window. If the shield

was successful in joining the access point an "OK" message will be displayed along with the

connection information resulting from the "get everything" command. If the shield failed to join

the access point a "Failed" message will be displayed.

Configuring The Shield to Connect On Power-Up

The shield can be configured to connect on power up, you only have to do this once:

1. Send the "set wlan ssid mySSID" command replacing mySSID with your SSID
2. Send the "set wlan join 1" command.
3. Send the "save" command.

Now the shield will connect to the access point automatically on power up.

A description of what each command does can be found in the RN-171 datasheet and in the table

below.

Number Commands Description

1
set wlan ssid

<ssid>

"<ssid>" is the name of the access point you'd like to connect to

automatically

2 set wlan join 1
This tells the module to try and connect to the SSID stored in

memory automatically.

3 save Store/Save these settings in the Wifi's config file

Setting a Static IP Address

To have the shield obtain a static IP address from the access point, once connected to the access

point, send the following commands:

Number Commands Description

1 set ip dhcp 0 Turn of DHCP .

2 set ip address <address> Set the IP address you want .

Example 3: Communicating With the Network (Introduction)

This example will show you how a device such as your PC and/or phone may talk to the WiFi

shield.

Follow these steps:

1. Configure the module with step1-7 in Example 2's section Connecting By Typing Commands
2. Set the listening IP port to "80" by sending the commands "set ip local 80"
3. Connect/Join your shield to an access point as shown in the step 8 in Example 2's section

Connecting By Typing Commands
4. Save these setting by sending the "save" command
5. Get the IP address of your shield with the command "get ip". The IP address and port will be

displayed to the right of "IP=" in the response (e.g. IP=192.168.0.10:80)
6. Open your web browser and type your shield's IP address in your web browser's URL bar and

press Enter to visit it.
7. Your Arduino's serial monitor window will display an HTTP response similar to the one below.

This is the information that your browser sent to the shield to request data.

*OPEN*GET / HTTP/1.1

Host: 192.168.0.10

Connection: keep-alive

Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML,

like Gecko) Chrome/39.0.2171.95 Safari/537.36

Accept-Encoding: gzip, deflate, sdch

Accept-Language: en-US,en;q=0.8

The browser is now waiting for data, the Wifi module can send sensor values, serve web pages,

or any other data straight back to the browser! In this case, the browser is waiting for a web page.

If the Wifi module responds with an HTML-formatted page, the browser will display it. The next

examples will teach you how to do all this fun stuff.

Example 4: Using the WiFi Shield as Webserver (Serving Webpages From the Shield)

As you saw in Example 3, an internet/web browser is able to connect to the WiFi shield. Once a

connection has been established (when the browser sends its HTTP request), the WiFi shield

may then send back HTML code for the browser to display as a webpage. In this example you

will learn what is needed for the shield to reply to a web browser.

Step One: Arduino Code

Upload the following code to your Arduino board replacing "myssid" and "mypassword" with

your accesspoint's values respectively:

#include <SoftwareSerial.h>

#include "WiFly.h"

#define SSID "myssid"

#define KEY "mypassword"

// check your access point's security mode, mine was WPA20-PSK

// if yours is different you'll need to change the AUTH constant, see the

file WiFly.h for avalable security codes

#define AUTH WIFLY_AUTH_WPA2_PSK

int flag = 0;

// Pins' connection

// Arduino WiFly

// 2 <----> TX

// 3 <----> RX

SoftwareSerial wiflyUart(2, 3); // create a WiFi shield serial object

WiFly wifly(&wiflyUart); // pass the wifi siheld serial object to the WiFly

class

void setup()

{

 wiflyUart.begin(9600); // start wifi shield uart port

 Serial.begin(9600); // start the arduino serial port

 Serial.println("--------- WIFLY Webserver --------");

 // wait for initilization of wifly

 delay(1000);

 wifly.reset(); // reset the shield

 delay(1000);

 //set WiFly params

 wifly.sendCommand("set ip local 80\r"); // set the local comm port to 80

 delay(100);

 wifly.sendCommand("set comm remote 0\r"); // do not send a default string

when a connection opens

 delay(100);

 wifly.sendCommand("set comm open *OPEN*\r"); // set the string that the

wifi shield will output when a connection is opened

 delay(100);

 Serial.println("Join " SSID);

 if (wifly.join(SSID, KEY, AUTH)) {

 Serial.println("OK");

 } else {

 Serial.println("Failed");

 }

 wifly.sendCommand("get ip\r");

 char c;

 while (wifly.receive((uint8_t *)&c, 1, 300) > 0) { // print the response

from the get ip command

 Serial.print((char)c);

 }

 Serial.println("Web server ready");

}

void loop()

{

 if(wifly.available())

 { // the wifi shield has data available

 if(wiflyUart.find("*OPEN*")) // see if the data available is from an open

connection by looking for the *OPEN* string

 {

 Serial.println("New Browser Request!");

 delay(1000); // delay enough time for the browser to complete sending

its HTTP request string

 // send HTTP header

 wiflyUart.println("HTTP/1.1 200 OK");

 wiflyUart.println("Content-Type: text/html; charset=UTF-8");

 wiflyUart.println("Content-Length: 244"); // length of HTML code

 wiflyUart.println("Connection: close");

 wiflyUart.println();

 // send webpage's HTML code

 wiflyUart.print("<html>");

 wiflyUart.print("<head>");

 wiflyUart.print("<title>My WiFI Shield Webpage</title>");

 wiflyUart.print("</head>");

 wiflyUart.print("<body>");

 wiflyUart.print("<h1>Hello World!</h1>");

 wiflyUart.print("<h3>This website is served from my WiFi module</h3>");

 wiflyUart.print("Yahoo! Google");

 wiflyUart.print("
<button>My Button</button>");

 wiflyUart.print("</body>");

 wiflyUart.print("</html>");

 }

 }

}

Step Two: Get the Shield's IP Address

Open the serial monitor window and wait for the "Web server ready" message to display. The

serial monitor will also display the WiFi shield's IP address:

http://www.seeedstudio.com/wiki/File:Wifi-shield-led-control-serial-comm-window.png

Arduino program serial comm output. The IP address of the shield is highlighted.

Step Three: Visiting the webpage

Now visit that IP address in your web browser. The webpage below should be displayed, it

contains a link to Yahoo! and Google and a button that doesn't do anything (yet):

A simple webpage with two links and one button served from the WiFi shield.

When the webpage is visited the serial monitor window will also display a "New Browser

Request!" string as shown below:

http://www.seeedstudio.com/wiki/File:Wifi-shield-simple-webserver-page.png
http://www.seeedstudio.com/wiki/File:Wifi-shield-simple-webserver-arduino-serial-window-response.png

The Arduino serial comm window showing that it detected a new browser connection/request.

Note: In the case of some browsers, like Google Chrome, even typing the URL in the bar sends a

webpage request, this is because these browsers try to get the webpage's title for the user's

convenience even before he/she visits the webpage.

Example 5: Controlling The Arduino Digital Pins From a Webpage (Toggling LEDs From an

Webpage)

In this example we will create a webpage with three buttons to control three different digital pins

in the Arduino.

For this tutorial follow the steps below. We have also created a video where we explain the code

in more detail.

Video - WiFi Shield Arduino Digital Pin Control From Webpage

Step 1: Hardware

Connect three LEDs and resistor to digital pins 11, 12, and 13 as shown in the schematic below:

https://www.youtube.com/watch?v=ek63patAl80
http://www.seeedstudio.com/wiki/File:Wifi-shield-led-control-schematic.png

Three LEDs and 1k resistors connected to pins 11, 12, and 13.

Step 2: Arduino Sketch

Upload the following code to your Arduino board but replace "mySSID" and "myPassword"

with your access point's SSID name and password:

#include <SoftwareSerial.h>

#include "WiFly.h"

#define SSID "mySSID"

#define KEY "myPassword"

// check your access point's security mode, mine was WPA20-PSK

// if yours is different you'll need to change the AUTH constant, see the

file WiFly.h for avalable security codes

#define AUTH WIFLY_AUTH_WPA2_PSK

int flag = 0;

// Pins' connection

// Arduino WiFly

// 2 <----> TX

// 3 <----> RX

SoftwareSerial wiflyUart(2, 3); // create a WiFi shield serial object

WiFly wifly(&wiflyUart); // pass the wifi siheld serial object to the WiFly

class

char ip[16];

void setup()

{

 pinMode(11,OUTPUT);

 digitalWrite(11,LOW);

 pinMode(12,OUTPUT);

 digitalWrite(12,LOW);

 pinMode(13,OUTPUT);

 digitalWrite(13,LOW);

 wiflyUart.begin(9600); // start wifi shield uart port

 Serial.begin(9600); // start the arduino serial port

 Serial.println("--------- WIFLY Webserver --------");

 // wait for initilization of wifly

 delay(1000);

 wifly.reset(); // reset the shield

 delay(1000);

 //set WiFly params

 wifly.sendCommand("set ip local 80\r"); // set the local comm port to 80

 delay(100);

 wifly.sendCommand("set comm remote 0\r"); // do not send a default string

when a connection opens

 delay(100);

 wifly.sendCommand("set comm open *OPEN*\r"); // set the string that the

wifi shield will output when a connection is opened

 delay(100);

 Serial.println("Join " SSID);

 if (wifly.join(SSID, KEY, AUTH)) {

 Serial.println("OK");

 } else {

 Serial.println("Failed");

 }

 wifly.sendCommand("get ip\r");

 wiflyUart.setTimeout(500);

 if(!wiflyUart.find("IP="))

 {

 Serial.println("can not get ip");

 while(1);;

 }else

 {

 Serial.print("IP:");

 }

 char c;

 int index = 0;

 while (wifly.receive((uint8_t *)&c, 1, 300) > 0) { // print the response

from the get ip command

 if(c == ':')

 {

 ip[index] = 0;

 break;

 }

 ip[index++] = c;

 Serial.print((char)c);

 }

 Serial.println();

 while (wifly.receive((uint8_t *)&c, 1, 300) > 0);;

 Serial.println("Web server ready");

}

void loop()

{

 if(wifly.available())

 { // the wifi shield has data available

 if(wiflyUart.find("*OPEN*")) // see if the data available is from an open

connection by looking for the *OPEN* string

 {

 Serial.println("New Browser Request!");

 delay(1000); // delay enough time for the browser to complete sending

its HTTP request string

 if(wiflyUart.find("pin=")) // look for the string "pin=" in the http

request, if it's there then we want to control the LED

 {

 Serial.println("LED Control");

 // the user wants to toggle the LEDs

 int pinNumber = (wiflyUart.read()-48); // get first number i.e. if

the pin 13 then the 1st number is 1

 int secondNumber = (wiflyUart.read()-48);

 if(secondNumber>=0 && secondNumber<=9)

 {

 pinNumber*=10;

 pinNumber +=secondNumber; // get second number, i.e. if the pin

number is 13 then the 2nd number is 3, then add to the first number

 }

 digitalWrite(pinNumber, !digitalRead(pinNumber)); // toggle pin

 // Build pinstate string. The Arduino replies to the browser with

this string.

 String pinState = "Pin ";

 pinState+=pinNumber;

 pinState+=" is ";

 if(digitalRead(pinNumber)) // check if the pin is ON or OFF

 {

 pinState+="ON"; // the pin is on

 }

 else

 {

 pinState+="OFF"; // the pin is off

 }

 // build HTTP header Content-Length string.

 String contentLength="Content-Length: ";

 contentLength+=pinState.length(); // the value of the length is the

lenght of the string the Arduino is replying to the browser with.

 // send HTTP header

 wiflyUart.println("HTTP/1.1 200 OK");

 wiflyUart.println("Content-Type: text/html; charset=UTF-8");

 wiflyUart.println(contentLength); // length of HTML code

 wiflyUart.println("Connection: close");

 wiflyUart.println();

 // send response

 wiflyUart.print(pinState);

 }

 else

 {

 // send HTTP header

 wiflyUart.println("HTTP/1.1 200 OK");

 wiflyUart.println("Content-Type: text/html; charset=UTF-8");

 wiflyUart.println("Content-Length: 540"); // length of HTML code

 wiflyUart.println("Connection: close");

 wiflyUart.println();

 // send webpage's HTML code

 wiflyUart.print("<html>");

 wiflyUart.print("<head>");

 wiflyUart.print("<title>WiFi Shield Webpage</title>");

 wiflyUart.print("</head>");

 wiflyUart.print("<body>");

 wiflyUart.print("<h1>LED Toggle Webpage</h1>");

 // In the <button> tags, the ID attribute is the value sent to the

arduino via the "pin" GET parameter

 wiflyUart.print("<button id=\"11\" class=\"led\">Toggle Pin

11</button> "); // button for pin 11

 wiflyUart.print("<button id=\"12\" class=\"led\">Toggle Pin

12</button> "); // button for pin 12

 wiflyUart.print("<button id=\"13\" class=\"led\">Toggle Pin

13</button> "); // button for pin 13

 wiflyUart.print("<script

src=\"http://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js\"></scr

ipt>");

 wiflyUart.print("<script type=\"text/javascript\">");

 wiflyUart.print("$(document).ready(function(){");

 wiflyUart.print("$(\".led\").click(function(){");

 wiflyUart.print("var p = $(this).attr('id');"); // get id value (i.e.

pin13, pin12, or pin11)

 // send HTTP GET request to the IP address with the parameter "pin"

and value "p", then execute the function

 // IMPORTANT: dont' forget to replace the IP address and port with

YOUR shield's IP address and port

 wiflyUart.print("$.get(\"http://");

 wiflyUart.print(ip);

 wiflyUart.print(":80/a\", {pin:p},function(data){alert(data)});");//

execute get request. Upon return execute the "function" (display an alert

with the "data" send back to the browser.

 wiflyUart.print("});");

 wiflyUart.print("});");

 wiflyUart.print("</script>");

 wiflyUart.print("</body>");

 wiflyUart.print("</html>");

 }

 Serial.println("Data sent to browser");

 }

 }

}

Step 3: Serial Monitor Window

Open the serial monitor window and wait for the "Web server ready" message to display. The

serial monitor will also display the WiFi shield's IP address:

http://www.seeedstudio.com/wiki/File:Wifi-shield-led-control-serial-comm-window.png

Arduino program serial comm output. The IP address of the shield is highlighted.

Step 4: Visit The Webpage

Visit the IP address in a web browser. A webpage with three buttons, like the one below, should

display. Click on the buttons to control the LEDs.

LED control webpage served from the WiFi shield.

The Arduino will also respond back to the web browser with the pin's state, the browser will

display this in an alert window.

Alert dialog displaying the state of Pin12, The string Pin12 is ON was sent from the Arduino.

The serial monitor window will also show when a browser sends a request to either visit the

webpage or control the LED pins.

http://www.seeedstudio.com/wiki/File:Wifi-shield-led-control-webpage.png
http://www.seeedstudio.com/wiki/File:Wifi-shield-led-control-arduino-response.png

Arduino serial comm output when an HTTP request is sent to the shield.

Example 6: WiFi Shield and Android App

The Android app you can use to control the Arduino's pins through the WiFi or Ethernet Shield.

http://www.seeedstudio.com/wiki/File:Wifi-shield-led-control-serial-comm-response.png
http://www.seeedstudio.com/wiki/File:Androidapp-ethernet-shield-led-toggle.png

Android Application

We've created an Android app that can toggle the digital pins in the Arduino through the WiFi

shield, to see how the app works and learn about the code watch the video in this link:

Video - WiFi Shield Android App for Arduino Pin Control

Software

Download the Android Studio project/source form this link:

File:WiFiShieldLEDControl.zip

Example 7: Sending Data To and Retrieving Data From an External Server

The RN-171 module in the WiFi shield has the ability to act as an HTML client (a text based

web browser essentially), this means that we can use the shield to send and receive data from a

web server. In this example you will learn to use the shield with a web Application Programming

Interface (API) that displays any city's weather data (i.e. temperature, humidity, etc).

The name of the API we'll use is OpenWeatherMap, when you send the name of a city and

country to this website it returns a JSON string with weather information. If you want to display

the weather for London UK for example you would visit the following URL

http://api.openweathermap.org/data/2.5/weather?q=London,uk which would return a JSON

string like the following, where the weather data and other information is embedded.

{

"coord":{"lon":-0.13,"lat":51.51},

"sys":{"type":3,"id":60992,"message":0.0079,"country":"GB","sunrise":14213950

87,"sunset":1421425352},

"weather":[{"id":802,"main":"Clouds","description":"scattered

clouds","icon":"03n"}],

"base":"cmc stations",

"main":{

 "temp":277.25,"humidity":79,"pressure":998.4,

 "temp_min":277.25,"temp_max":277.25

},

"wind":{

"speed":2,"gust":5,"deg":180},

"rain":{"3h":0},"clouds":{"all":32},

"dt":1421372140,"id":2643743,"name":"London","cod":200

}

Step 1: The URL

Let us go ahead and retrieve the weather JSON string for San Francisco, US. The URL our WiFi

shield needs to visit is the following (you may test it in your web browser):

http://api.openweathermap.org/data/2.5/weather?q=San%20Francisco,US

Step 2: The Arduino Code

https://www.youtube.com/watch?v=0R709uGvkWM
http://www.seeedstudio.com/wiki/File:WiFiShieldLEDControl.zip
http://openweathermap.org/api
http://api.openweathermap.org/data/2.5/weather?q=London,uk

Section 13 of the WiFly manual teaches you different ways to connect to a web server, but in all

cases we need to specify the name of the server (or IP address if the server does not have a

domain name), and then the data we wish to send.

The commands we need to send to the WiFi shield to receive the JSON string from the

OpenWeatherMap server are the following:

set ip proto 18 //enable html client

set dns name api.openweathermap.org //name of your webserver

set ip address 0 // so WiFly will use DNS

set ip remote 80 // standard webserver port

set com remote 0 // turn off the REMOTE string so it does not interfere with

the post

open // to open the connection

GET /data/2.5/weather?q=San%20Francisco,US \n\n // to send the data

This is the arduino code that will send the commands:

#include <SoftwareSerial.h>

#include "WiFly.h"

#define SSID "mySSID"

#define KEY "myPassword"

// check your access point's security mode, mine was WPA20-PSK

// if yours is different you'll need to change the AUTH constant, see the

file WiFly.h for avalable security codes

#define AUTH WIFLY_AUTH_WPA2_PSK

// Pins' connection

// Arduino WiFly

// 2 <----> TX

// 3 <----> RX

SoftwareSerial wiflyUart(2, 3); // create a WiFi shield serial object

WiFly wifly(&wiflyUart); // pass the wifi siheld serial object to the WiFly

class

void setup()

{

 wiflyUart.begin(9600); // start wifi shield uart port

 Serial.begin(9600); // start the arduino serial port

 Serial.println("--------- OpenWeatherMap API --------");

 // wait for initilization of wifly

 delay(3000);

 wifly.reset(); // reset the shield

 Serial.println("Join " SSID);

 if (wifly.join(SSID, KEY, AUTH)) {

 Serial.println("OK");

 } else {

 Serial.println("Failed");

 }

http://www.seeedstudio.com/wiki/images/b/be/WiFly-RN-UM.pdf

 wifly.sendCommand("set ip proto 18\r"); //enable html client

 delay(100);

 wifly.sendCommand("set dns name api.openweathermap.org\r"); // name of the

webserver we want to connect to

 delay(100);

 wifly.sendCommand("set ip address 0\r"); // so WiFly will use DNS

 delay(100);

 wifly.sendCommand("set ip remote 80\r"); /// standard webserver port

 delay(100);

 wifly.sendCommand("set com remote 0\r"); // turn off the REMOTE string so

it does not interfere with the post

 delay(100);

 wifly.sendCommand("open\r"); // open connection

 delay(100);

 wiflyUart.print("GET /data/2.5/weather?q=San%20Francisco,US \n\n");

 delay(1000);

}

void loop()

{

 //As soon as the data received from the Internet ,output the data through

the UART Port .

 while (wifly.available())

 {

 Serial.write(wifly.read());

 }

}

Step 3: Result

Open the serial monitor window, you should be able to see the same JSON string you saw in the

browser.

JSON weather string shown in the Arduino serial monitor window.

Example 8: TCP Communication With Terminal

In this example we'll show you how to send information from the WiFi shield to a PC terminal

program. We'll make a simple Arduino console with menus that will give you the option to see

the Arduino digital pin's state and toggle them.

Step 1: Download a TCP Terminal

Download and install RealTerm, a utility terminal that will allow us to connect to the WiFi

shield.

Step 2: Arduino Code

Upload the code below to your Arduino board replacing "mySSID", "myPassword", and

authentication code with your own access point's information:

#include <SoftwareSerial.h>

#include "WiFly.h"

http://sourceforge.net/projects/realterm/files/Realterm/2.0.0.70/Realterm_2.0.0.70_setup.exe/download
http://www.seeedstudio.com/wiki/File:Open-weather-api-json-string.png

#define SSID "mySSID"

#define KEY "myPassword"

// check your access point's security mode, mine was WPA20-PSK

// if yours is different you'll need to change the AUTH constant, see the

file WiFly.h for avalable security codes

#define AUTH WIFLY_AUTH_WPA2_PSK

#define FLAG_MAIN_MENU 1

#define FLAG_SUB_MENU_2 2

int flag = FLAG_MAIN_MENU;

// Pins' connection

// Arduino WiFly

// 2 <----> TX

// 3 <----> RX

SoftwareSerial wiflyUart(2, 3); // create a WiFi shield serial object

WiFly wifly(&wiflyUart); // pass the wifi siheld serial object to the WiFly

class

void setup()

{

 // define the pins we can control

 pinMode(11,OUTPUT);

 digitalWrite(11,LOW);

 pinMode(12,OUTPUT);

 digitalWrite(12,LOW);

 pinMode(13,OUTPUT);

 digitalWrite(13,LOW);

 pinMode(7,OUTPUT);

 digitalWrite(7,LOW);

 wiflyUart.begin(9600); // start wifi shield uart port

 Serial.begin(9600); // start the arduino serial port

 Serial.println("--------- TCP Communication --------");

 // wait for initilization of wifly

 delay(1000);

 wifly.reset(); // reset the shield

 delay(1000);

 wifly.sendCommand("set ip local 80\r"); // set the local comm port to 80

 delay(100);

 wifly.sendCommand("set comm remote 0\r"); // do not send a default string

when a connection opens

 delay(100);

 wifly.sendCommand("set comm open *\r"); // set the string or character that

the wifi shield will output when a connection is opened "*"

 delay(100);

 wifly.sendCommand("set ip protocol 2\r"); // set TCP protocol

 delay(100);

 Serial.println("Join " SSID);

 if (wifly.join(SSID, KEY, AUTH)) {

 Serial.println("OK");

 } else {

 Serial.println("Failed");

 }

 wifly.sendCommand("get ip\r");

 char c;

 while (wifly.receive((uint8_t *)&c, 1, 300) > 0) { // print the response

from the get ip command

 Serial.print((char)c);

 }

 Serial.println("TCP Ready");

}

void loop()

{

 if(wifly.available())

 {

 delay(1000); // wait for all the characters to be sent to the WiFi shield

 char val = wiflyUart.read(); // read the first character

 if(flag == FLAG_MAIN_MENU)

 {

 switch(val)

 {

 case '*': // search for the new connection string

 printMainMenu();

 break;

 case '1': // the user typed 1, display the pin states

 printPinStates();

 printMainMenu();

 break;

 case '2': // the user typed 2, display the sub menu (option to

select a particular pin)

 printSubMenu2();

 flag = FLAG_SUB_MENU_2; // flag to enter the sub menu

 break;

 default:

 wiflyUart.print("INVALID SUBMENU\r\n");

 break;

 }

 }

 else if(flag == FLAG_SUB_MENU_2)

 {

 int pinNumber = val-48; // get first number i.e. if the pin 13 then

the 1st number is 1

 int secondNumber = (wiflyUart.read()-48);

 if(secondNumber>=0 && secondNumber<=9)

 {

 pinNumber*=10;

 pinNumber +=secondNumber; // get second number, i.e. if the pin

number is 13 then the 2nd number is 3, then add to the first number

 }

 // Create the "You want to toggle pin x ? OK..." string.

 String response = "\r\nYou want to toggle pin ";

 response+=pinNumber;

 response+="? OK...\r\n";

 wiflyUart.print(response);

 digitalWrite(pinNumber, !digitalRead(pinNumber)); // toggle pin

 wiflyUart.print("Pin Toggled!\r\n"); // let user know the pin was

toggled.

 printMainMenu();

 flag = FLAG_MAIN_MENU;

 }

 }

}

/**

* Prints the main menu options

*/

void printMainMenu()

{

 wiflyUart.print("\r\n\r\n");

 wiflyUart.print("Arduino Console Menu: \r\n");

 wiflyUart.print("1. Show digital pin states\r\n");

 wiflyUart.print("2. Toggle a digital pin's state\r\n");

 wiflyUart.print("\r\n\r\n");

}

// displays the pin states

void printPinStates()

{

 String pinState = "Pin 7 is ";

 pinState+=getPinState(7);

 pinState+="\r\n";

 pinState += "Pin 11 is ";

 pinState+=getPinState(11);

 pinState+="\r\n";

 pinState += "Pin 12 is ";

 pinState+=getPinState(12);

 pinState+="\r\n";

 pinState += "Pin 13 is ";

 pinState+=getPinState(13);

 pinState+="\r\n";

 wiflyUart.print(pinState);

}

// prints the option to enter a pin number

void printSubMenu2()

{

 wiflyUart.print("\r\nEnter the pin number you wish to toggle: ");

}

// get a pin state as a string.

String getPinState(int pinNumber)

{

 if(digitalRead(pinNumber)) // check if the pin is ON or OFF

 {

 return "ON"; // the pin is on

 }

 else

 {

 return "OFF"; // the pin is off

 }

}

Step 3: Obtain the Shield's IP Address and Port

Open the Arduino serial monitor window to obtain the WiFiShield's IP address and port number,

highlighted in the image below.

Arduino serial monitor window output from TCP example, the ip address and port number are

highlighted.

In the image above the IP Address and Port would be the following:

192.168.0.10:80

http://www.seeedstudio.com/wiki/File:Tcp-arduino-serial-comm.png

Step 4: Configure The TCP Terminal and Connect to The Shield

Open RealTerm and in the "Display" tab enter "30" for "Rows" and select the "Scrollback"

option:

RealTerm window: rows = 30, and Scrollback option checked.

In the "Port" tab of the RealTerm program, type your shield's IP address and port e.g.

192.168.0.10:80, then click the "Open" button, the Arduino's hard coded main menu should

display in the terminal.

http://www.seeedstudio.com/wiki/File:Realterm-display-tab.png

RealTerm window. Port field has WiFi shield's IP address and port number. The Arduino's menu is

displayed

In the "Send" tab select one of the options from the menu either "1" or "2", enter it in the text

box and press "Send ASCII" to send the value.

For example, to toggle pin 13 enter "2" and press "Send ASCII", then when prompted "Enter the

pin number you wish you toggle" enter "13" and click "Send ASCII". The Arduino should reply

"Pin Toggled!" and go back to the main menu, now enter "1" and press "Send ASCII" to see the

present state of the pins.

http://www.seeedstudio.com/wiki/File:Realterm-port-tab.png

RealTerm window. The state of pin 13 was changed from OFF to ON as shown in the yellow text.

Example 9: WiFi Shield and Relay Shield

Now that you know how to send and receive information to and from the WiFi shield you can

see how easy it would be to control any kind of device via the web.

If you wish to control high power devices such as your desk lamp, a motor, or a water pump via

a webpage or phone application we recommend our Relay Shield V2.0.

The Relay Shield V2.0 uses pins 4, 5, 6, and 7 so it is fully compatible with the code in the

examples in this page.

http://www.seeedstudio.com/wiki/Relay_Shield_V2.0
http://www.seeedstudio.com/wiki/File:Realterm-send-tab.png

Example 10: Adhoc Mode

To use the shield in Adhoc mode, as an access point, simply connect pin IO9 from the shield to

the 3.3V pin in the Arduino, as shown below, and reset the shield if it was on.

Shield connection required for adhoc mode. Pin IO9 of the shiled connected to 3.3V.

To obtain the shield's SSID upload the code in Example 1 to your Arduino and open the serial

monitor, the shield will respond with it's SSID as in the example below, where in this case

WiFly-EZX-1b is the SSID.

AP mode as WiFly-EZX-1b on chan 1

You should now be able to connect to your WiFi shield as an access point, for example the SSID

should be visible in your PC's list of WiFi networks available.

To learn more about adhoc mode check out the WiFly RN User Manual section 16 "Adhoc

Networking Mode"

Related Reading

 What is a Seeeduino
 w3schools Great website to learn HTML, Javascript, and JQuery

http://www.seeedstudio.com/wiki/images/b/be/WiFly-RN-UM.pdf
http://www.seeedstudio.com/wiki/Seeeduino_v3.0
http://www.w3schools.com/
http://www.seeedstudio.com/wiki/File:Wifi-shield-adhoc-mode-hardware-connection.png

Version Tracker

Here lists the comparison between various versions of WiFi Shield:

Parameter
Wifi Shield

V1.0

Wifi Shield

V1.1(v1.2)
Wifi Shield V2.0

Voltage +3.5V~+5V +3.5V~+5V +3.5V~+5V

Standard Shield Yes Yes Yes

Communication Mode Serial port Serial port Serial port

Standard Shield No Yes Yes

Antenna Type mast antenna PCB antenna onboard antenna

Library File
Wifi Shield

Library V1.0

New Wifi

Shield Library

New Wifi Shield

Library the same to

v1.2

Resources

 WiFi Shield V2.0 Eagle Files
 Schematic PDF
 RN-171 Datasheet
 Wifi Shield Library
 WiFi Module User Manual -- This is where you'll find all the commands for the RN-171 module in

the shield.

http://www.seeedstudio.com/wiki/images/b/b8/WifiShield.zip
http://www.seeedstudio.com/wiki/images/b/b8/WifiShield.zip
https://github.com/Seeed-Studio/WiFi_Shield
https://github.com/Seeed-Studio/WiFi_Shield
https://github.com/Seeed-Studio/WiFi_Shield
https://github.com/Seeed-Studio/WiFi_Shield
http://www.seeedstudio.com/wiki/File:Wifi_Shield_v2.0.zip
http://www.seeedstudio.com/wiki/File:Wifi_shield_v2_schematic.pdf
http://www.seeedstudio.com/wiki/File:WiFly-RN-171.pdf
https://github.com/Seeed-Studio/WiFi_Shield
http://www.seeedstudio.com/wiki/images/b/be/WiFly-RN-UM.pdf

