
EMERALD-P CPU MODULE SK-86R12-CPU01

USERGUIDE

Revision History

Date	Issue
30 Nov 2011	V1.0 Herbert Hönig First release
07 Dec 2011	V1.01 Herbert Hoenig Corrected typo
12 Jan 2012	V1.1 Herbert Hönig Added PSMODE information

This document contains 11 pages.

Warranty and Disclaimer

To the maximum extent permitted by applicable law, Fujitsu Semiconductor Europe GmbH restricts its warranties and its liability for **all products delivered free of charge** (eg. software include or header files, application examples, target boards, evaluation boards, engineering samples of IC's etc.), its performance and any consequential damages, on the use of the Product in accordance with (i) the terms of the License Agreement and the Sale and Purchase Agreement under which agreements the Product has been delivered, (ii) the technical descriptions and (iii) all accompanying written materials. In addition, to the maximum extent permitted by applicable law, Fujitsu Semiconductor Europe GmbH disclaims all warranties and liabilities for the performance of the Product and any consequential damages in cases of unauthorised decompiling and/or reverse engineering and/or disassembling. **Note, all these products are intended and must only be used in an evaluation laboratory environment**.

- 1. Fujitsu Semiconductor Europe GmbH warrants that the Product will perform substantially in accordance with the accompanying written materials for a period of 90 days form the date of receipt by the customer. Concerning the hardware components of the Product, Fujitsu Semiconductor Europe GmbH warrants that the Product will be free from defects in material and workmanship under use and service as specified in the accompanying written materials for a duration of 1 year from the date of receipt by the customer.
- 2. Should a Product turn out to be defect, Fujitsu Semiconductor Europe GmbH's entire liability and the customer's exclusive remedy shall be, at Fujitsu Semiconductor Europe GmbH's sole discretion, either return of the purchase price and the license fee, or replacement of the Product or parts thereof, if the Product is returned to Fujitsu Semiconductor Europe GmbH in original packing and without further defects resulting from the customer's use or the transport. However, this warranty is excluded if the defect has resulted from an accident not attributable to Fujitsu Semiconductor Europe GmbH, or abuse or misapplication attributable to the customer or any other third party not relating to Fujitsu Semiconductor Europe GmbH.
- To the maximum extent permitted by applicable law Fujitsu Semiconductor Europe GmbH disclaims all other warranties, whether expressed or implied, in particular, but not limited to, warranties of merchantability and fitness for a particular purpose for which the Product is not designated.
- 4. To the maximum extent permitted by applicable law, Fujitsu Semiconductor Europe GmbH's and its suppliers' liability is restricted to intention and gross negligence.

NO LIABILITY FOR CONSEQUENTIAL DAMAGES

To the maximum extent permitted by applicable law, in no event shall Fujitsu Semiconductor Europe GmbH and its suppliers be liable for any damages whatsoever (including but without limitation, consequential and/or indirect damages for personal injury, assets of substantial value, loss of profits, interruption of business operation, loss of information, or any other monetary or pecuniary loss) arising from the use of the Product.

Should one of the above stipulations be or become invalid and/or unenforceable, the remaining stipulations shall stay in full effect

Contents

Revisi	sion History	2
Warra	anty and Disclaimer	3
	ents	
0 In	Introduction / Features	
	System Overview	
	Startup CPU Module	
3.1	<u> </u>	
3.2	DIP Switches	8
3.3	Power presets	10
3.4	USB HOST	10
3.5	LEDs	10
4 A	Appendix	11
4.1	Used literature	11
4.2	Figures	11

0 Introduction / Features

Here you will find a short summary and overview of the features that the SK-86R12-CPU01 Module offers.

It provides

- 3x APIX2 Video Outputs, 1x APIX2 Video Input
- 1x USB Host
- JTAG/Trace Debug Connectors (20 Pin + Mictor Connector)
- NOR Flash 1GBit
- DDR3 2x 2GBit (= 512MByte)
- NOR Flash usage with 16 oder 32 Bit access
- Base Connectors for use with Emerald European Base Board SK-86R11-BASE and Japanese Baseboard MB86R11EVB-BASE01

Mechanical dimensions:

- PCB: 117 x 127 mm

For details about interfaces refer to the Emerald-P Hardware Manual (see appendix).

1 System Overview

The Emerald-P system consists of three modules:

- CPU module (Emerald-P chip, USB connector): SK-86R12-CPU01
- Base board (supplies interfaces and power): SK-86R11-BASE
- Additional Addon board (from Jade-L system), provides 2x DVI output and 2x CVBS input: SK-86R03-VIDEO

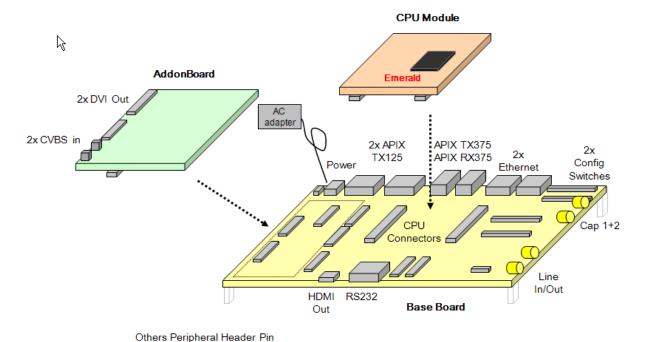


Figure 1-1: System Overview

2 Startup CPU Module

- Connect the CPU Module to the baseboard
- Connect appropriate cables (HDMI, RS232, Power etc) to baseboard (Please refer here to the Baseboard Manual – see appendix)
- Set switches SW1, SW11 and SW12 according to your needs (please refer here to the Hardware Manual see appendix)
- Power on baseboard
- Demo starts up on HDMI output

Default settings for the CPU Module:

- Clock PLL set to 533MHZ
- NOR Flash boot activated
- Bootloader and Linux system flashed in NOR and NAND Flash

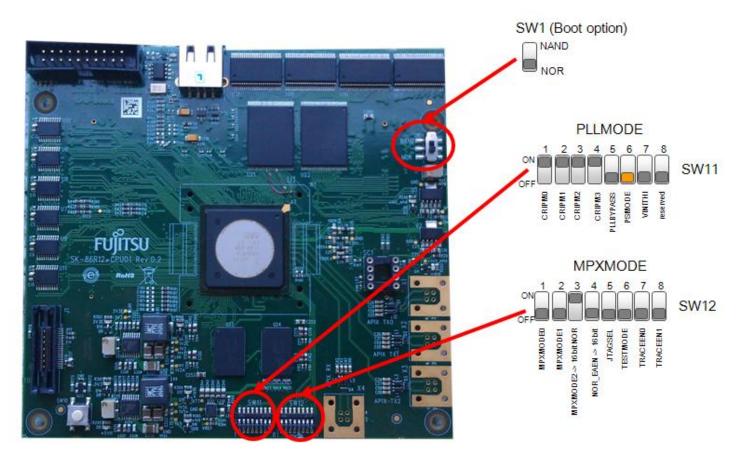


Figure 2-1: Board Layout

3 Detailed Settings

3.1 NAND / NOR Boot Option

For NAND/NOR Boot Option SW1 is used

NAND SELFL = HIGH Boot from NAND

NOR SEFLL = LOW Boot from onboard NOR (default)

3.2 DIP Switches

SW11 - PLL Mode

SW11	Signal	Description	Default
1	CRIPM0	ON = 0, OFF = 1	ON
2	CRIPM1	ON = 0, OFF = 1	ON
3	CRIPM2	ON = 0, OFF = 1	ON
4	CRIPM3	ON = 0, OFF = 1	ON
5	PLLBYPASS	ON = PLL Clock is bypassed OFF = PLL Clock is not bypassed	OFF
6	PSMODE	OFF = PLL clock frequency divider ratio = 0 ON = PLL clock frequency divider ratio = 1	OFF
7	VINITHI	ON = Exception Vectors located at 0xFFFF0000 OFF = Exception Vectors located at 0x00000000	OFF
8	-	Unused	OFF

Notes:

CRIPM[0:3] default settings results in 533 MHz clock frequency

SW12 - MPX Mode

SW12	Signal	Description	Default
1	MPXMODE0	ON = 1, OFF = 0	OFF
2	MPXMODE1	ON = 1, OFF = 0	OFF
3	MPXMODE2	ON = 1, OFF = 0	OFF
4	NOREAN	NOR Flash Bus Width Select	ON
		ON = 32 Bit = 0 (Default)	
		OFF = 16 Bit = 1	
5	JTAGSEL	JTAG Select	OFF
		ON = DFT	
		OFF = Normal (Default)	
6	TESTMODE	Test Mode Select	OFF
		ON= Test Mode	
		OFF = Normal (Default)	
7	TRACEEN0	Pin Group B ETM	OFF
		ON = use	
		OFF = not in use (Default)	
8	TRACEEN1	Pin Group H ETM	OFF
		ON = use	
		OFF = not in use (Default)	

Notes:

MPX Mode Settings also available on Main Connector A

Attention: Do not set SW12-7 and SW12-8 to ON at the same time!

3.3 Power presets

R24	1.2V APIX Power Supply Adjustment	Set to 1.2V at Test Point TP8
R269	1.2V Power Supply Adjustment	Set to 1.2V at Test Point TP4
R275	1.5V Power Supply Adjustment	Set to 1.5V at Test Point TP13

3.3V APIX Power Supply : Dedicated LDO: R19 = OPEN, R20 = 0R 1.2V APIX Power Supply: Dedicated LDO: R21 = DNI, R22 = 0R

3.4 USB HOST

Settings:

Chip Select : used MEM_nCS2 -> R205 = 0R, R204 = OPEN

Interrupt: IRQ = INT_A0 -> R206 = OR, R209 = OPEN

3.5 LEDs

D8	Global 5V Supply from base board connector
D9	1.2V supply to MB86R12 (APIX)
D10	3.3V supply to MB86R12 (APIX)
D12	1.2V supply to MB86R12 (general)
D13	5V Supply to USB bus
D14	Global 3.3V Supply from base board connector
D15	3.3V supply to MB86R12 (general)
D16	1.5V supply to DDR3 memory
D15	3.3V supply to MB86R12 (general)

4 Appendix

4.1 Used literature

- Emerald-P Hardware Manual:
 http://www.fujitsu.com/emea/services/microelectronics/gdc/gdcdevices/mb86r12-emerald-p.html
- Emerald-P CPU Module Schematics:
 http://www.fujitsu.com/emea/services/microelectronics/gdc/evalbds/emerald-p-starterkit.html
- Emerald-L Base Board Schematics:
 http://www.fujitsu.com/emea/services/microelectronics/gdc/evalbds/emerald-p-starterkit.html
- Software Update: Please check Website regularly for updates of the used Linux system http://www.fujitsu.com/emea/services/microelectronics/gdc/swtools/gdc-software-index.html

4.2 Figures

Figure 1-1: System Overview	. 6
Figure 2-1: Board Layout	. 7