CR-PLAY

“Capture-Reconstruct-Play:
an innovative mixed pipeline for
videogames development”

Grant Agreement

C R P L a Y ICT-611089-CR-PLAY
- Start Date End Date

Capture Reconstruct Play 01/11/2013 31/10/2016
I ——

Deliverable 4.4
High-fidelity Prototypes of mixed pipeline
for videogame development

SEVENTH FRAMEWORK
PROGRAMME

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

Document Information

Deliverable number: 4.4

Deliverable title: High-fidelity Prototypes of mixed pipeline for videogame
development

Deliverable due date: 31/08/2015

Actual date of delivery: 31/08/2015

Main author(s): Ivan Orvieto, Matteo Romagnoli (TL)

Main contributor(s): George Drettakis, Fabian Langguth, Michael Goesele (TUD),
Corneliu llisescu, Gabriel Brostow (UCL)

Version: 1.0

Versions Information

Version Date Description of changes

0.1 22/07/2015 Structure and contributors

0.2 13/08/2015 Contributions integrated

0.3 21/08/2015 Pre-final version for internal review
1.0 31/08/2015 Final version

Dissemination Level

PU Public X
PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

co Confidential, only for members of the consortium (including the Commission Services)

Deliverable Nature

R Report

P Prototype X
D Demonstrator

0 Other

CR-PLAY Project Information

The CR-PLAY project is funded by the European Commission, Directorate General for Communications
Networks, Content and Technology, under the FP7-ICT programme.

The CR-PLAY Consortium consists of:

Participant Participant Organisation Name Participant Country

Number Short Name
Coordinator

1 Testaluna S.R.L. TL Italy
Other Beneficiaries

2 Institut National de Recherche en Informatique et en INRIA France

Automatique

3 University College London UCL UK

4 Technische Universitaet Darmstadt TUD Germany

5 Miniclip UK Limited MC UK

6 University of Patras UPAT Greece

7 Cursor Oy CUR Finland

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

Summary

This is the fourth deliverable of Work Package 4: “Design and Development (Requirements, Functional
Specifications, and Prototypes)”. The leader of this work package is TL, with involvement of all other
partners. The objective of this work package is focused on gathering end-user needs, forming these into
functional specifications, and creating the prototypes of the mixed pipeline for videogame development.
This WP sets into practice the user-centred design approach adopted by CR-PLAY, ensuring that the
technologies developed will result in tools that are effective and usable for professional and semi-
professional use.

This deliverable - “D4.4 High-fidelity Prototypes of mixed pipeline for videogame development” -describes
the results of Task4.4 “High-fidelity Prototypes”. The document presented here is meant to play along with
the High-fidelity software package explaining the main features developed starting from the Low-Fidelity
prototype (D4.3), their integration and communication in the common platform, risks and related
contingency actions.

The structure of this deliverable is as follows:

Section 1 describes the technological upgrade provided by Unity 5 and how it influenced the development
of this phase of the CR-PLAY mixed pipeline.

Section 2, 3 and 4 present the integration of the features from the Capture and Reconstruct (WP1), Image
Based Rendering (WP2) and Video Based Rendering (WP3) pipeline steps.

Section 5 presents the main risks and related contingency actions that are foreseeable at this stage of the
project. They will be constantly updated as long as development activities progress during the project span.

Finally, Section 6 draws conclusions and describes next steps of development activities in WP4.

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

Table of Contents

U I A Y 1ttt a e e e e 3
TabIE OF CONTENTS ...ttt st e st e b e s bt e s b e e ea st e ebeesabeenbeeesneenseesaneennneeas 4
ADDreVIiatioNs AN ACTONYIMSiiiiiiiiieeeiiteee ettt e e e s e e s s te e e e e sbaeeeesasseeeesssbaeessasseeessssnaeeessnssseessnnns 5
INEFOTUCTION <.ttt ettt ettt e st e e e ab e e e ab e e e st e e e st e e s s teeeabeeeeabbeeeabeeeeaseeesaneeesaseeeans 6
New features of the High-Fidelity Prototype.....ccuiii it e e 6

B U 1011 4V OO SO STUUUSRUPPORUSTUPRRROPRRPO 8
D O o1 {0 T T o o B 0= Yol 1) f U o PSSP 9
2.1 Creation of 3D textured objects using the Reconstruction TOO!Iccccceeiviiiieieiiiiee e, 9
2.2 Integration of the Reconstruction TOOI in UNityccccoviiiiiiiiiie e 10
2.3 Scaling the reCONSEIUCLION ..iiiiiiiiiie it e e e s e e e s eabee e e s ssbaeeeeenaaeeean 11
2.4 Use of Undistorted IMages fOr IBR.........couicuiiieiiiiieeeceiiee et ee st e e s ste e e siae e e s ssaaaeeessstaeeeesnnneeaeas 11

P R O o1 (U ¢ =l CTUT [F-] [l PSPPI 12

P 4 Tl 2 T =T I 2T o [T o V- PSRRI 13
3.1 Improvement of rendering qUAlity......cueeeiieiiiii e e e 13
Fronto-parallel Assumption Artifacts.......ccccuiiiiiiiiiie e e e 13
Camera SeleCtion ArTIfaCES.......o.ii e 13
INCONSISTENT LUMINGNCE. ..ottt e s e e s s 14

3.2 Reduction of the video memory fOOtPrint.......coovc e e 15
3.3 Further optimizations of the IBR PIUGINcccuuiiiiiiiiiie ettt e e e e e e e 16
3.4 Integration of the IBR Bayesian algorithmi.........ooooiiiiiii e e 18
3.5 DEPLN OCCIUSION «.euttriiiiei ettt ettt e e e e et e e e e e e e e e e s tbasreeeeeeeeeeaaaraareeeeeesesanntsssaneeeeeeeannnes 18
3.6 Porting of Depth SYNthesis tO CHt .o e e e e e e e r e e e e e e e e e ennnes 21
Yo [To = T =T N 2 U= o o [T oY - PSRRI 22
4.1 Integration of the Semantic LOOp iN UNityeeiiiiiiiiciiiee e 22
EXample Of USE: the CANAIEe e e e e e e e e e st e e e e e e e e e anrranees 23

5. RiskS @and CONTINGENCY PlaN c..ueuuiiieiieiee ettt ee et e e e e e s et re e e e e e e e eeeentaraareeeeeeeenansrneees 25
ST €] 4T [V 1Y [o ISP PSP 26
6.1 Plan fOr NEXE PEIIOM. ...t ee et e e e e e e e et aereeeeeesesenatrrareeeeeseensansrnaeeas 26
RETEIEINCES ...ttt et e e a e e et et e eab e e e bt e e e b b e e e be e e e bt e e e abeeesabeeesaneeeennee s 27
Annex A — High-fidelity Prototype: User Manual 1.0coooouiiiiiiee it e e sirrre e e e e e e eannes 28
Annex B — High-fidelity Prototype: Technical manual ... e 37
ANNEX C— GaMEPIaY EXAMPIES ..cci ittt e e e e e s et e e e e e e e e e seeaarrereeeeeeseesnsrrreneeaeeeeaannes 49

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

Abbreviations and Acronyms

e GLSL: OpenGL Shader Language
e GPU: Graphics Processing Unit
e |IBR: Image Based Rendering

e IL: Intermediate Language

e PMVS: Patch-based Multi-View Software
e RLE: Run Length Encoding

e SDK: Software Development Kit
e SfM; Structure from Motion

e SP: SuperPixels

e VBR: Video Based Rendering

e WP: Work Package

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

Introduction

Starting from results of Task 4.3 (that led to the release of the Low-fidelity prototype at M12), in Task 4.4 we
continued the work on integration of software modules created in WP1, WP2 and WP3 and on development
of new and improved features of the pipeline, always paying attention to quality, speed and optimizations,
and taking user feedback into account.

Based on the results of Low-fidelity prototype evaluation (MS13), an analysis and prioritization of the
feedback coming from game developers has been done, with the consequent definition of the roadmap
towards the creation of the High-fidelity prototype (MS11). The main goal was the delivery of an advanced
version of the pipeline based on Capture and Reconstruction, IBR and VBR, that allows game developers
to create game prototypes during the subsequent evaluation activities.

A constant monitoring of trending platforms (mobile in particular), technologies and products in the
videogame market, has helped the partners involved in WP4 to more precisely define how to prioritise
features and their development (in accordance with project’s requirements), towards a concrete release of
the pipeline that could appeal the community of game developers.

In parallel, a thorough technical analysis (Task 4.6) highlighted the weaknesses and bottlenecks of the Low-
fidelity prototype of the pipeline, contributing to the definition of the (several) refactoring interventions
focused on reduction of used data and rationalisation of stored information thus leading to a significant
reduction of memory usage and disk space occupation.

Additionally, a detailed investigation pointed out the main causes of artifacts and quality loss. This allowed
the definition of lines of intervention in order to mitigate the disturbing effects and thus improving the final
quality of rendering, so as to provide a low-cost photorealistic solution for game development.

Finally, new techniques have been developed to improve the depth interaction between Image Based
Rendering and 3D objects and to integrate captured photorealistic 3D textured models in the mixed
pipeline, thus improving the interaction and integration between IBR and the traditional 3D world used in
videogames.

New features of the High-Fidelity Prototype

The work performed in Task 4.4 and 4.6 fully implemented the objectives set for this second year of the
project, leading to the implementation of a long list of new features and improvements, including (but
not limited to):

1. Unity5 support: it upgrades the current mixed pipeline to the last major version of Unity, taking
advantage of the 64bit architecture and all the new features introduced. Moreover Unity5 has a new
licensing model that provides its advanced features (needed by CR-PLAY mixed pipeline) for free to
small and independent game development studios. In addition, the prospect of direct inclusion of
C++ code in (imminent) future releases of Unity 5 will simplify future integration of new research
results.

2. Development (in WP2) and integration of the faster Bayesian IBR algorithm: this new algorithm
developed since the Low-Fidelity prototype significantly improves the quality of IBR, addressing
rendering artifacts and improving speed.

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

10.

11.

12

13.

Integration of 3D textured objects from images: following suggestions from the first review, an
extension of the reconstruction algorithms and tools provides photorealistic 3D textured objects
ready to be used along with IBR rendering and manually generated 3D models..

Reduction of video-memory and disk occupation: the refactoring of data-structures, avoidance of
duplicated information and data serialization led to an important reduction of occupied space, both
in video-memory and disk (particularly important for future deployment on mobile devices).

Improved rendering quality: a number of glitches, artifacts and noisy issues have been addressed
and removed.

Faster loading time for IBR scenes: pre-computation and serialization of specific data result in the
speed up of the initial loading phase, which has significant impact on the acceptance of the new CR-
PLAY technology.

Integration of the Reconstruction Tool in Unity Editor: it integrates the user interface of the
reconstruction tool inside Unity, in order to provide a coherent user experience from Capture to Play,
responding to user feedback.

Integration of Scale feature in the Reconstruction Tool: it gives game developers the ability to
control the scale of a reconstruction. A feature particularly requested during the first cycle of
evaluation.

Integration of Depth Occlusion on IBR scenes: it features IBR elements of the scene to occlude 3D
objects (e.g. characters of a game), by implementing a technique based on the use of the depth
information of 3D proxies placed in scene using as reference the point-cloud generated with the
reconstruction tool.

C++ version of Depth Synthesis: this provides a significant speedup in the preprocessing time (from
3-5 minutes/image to 3-5 seconds (!)/image), again responding to user feedback on the time required
for preprocessing.

Integration of VBR Semantic Loop: it extends the current VBR data structure to handle semantics
and being able to trigger specific video loops with gameplay events.

. Integration of DX11 support: it removes the previous limitation that prevents the use of the CR-PLAY

mixed pipeline outside the OpenGL platform.

Removal of external dependencies: it removes all external dependencies, (including the use of
MatLab in the Reconstruction Tool), and provides a cleaner code base ready to be further refactored
toward the full platform independence and the porting to the mobile architecture.

From a purely quantitative point of view, the High-fidelity prototype provides a significant and tangible
improvement with respect to the previous version of the pipeline. In particular, considering a typical game
made with it, we see:

A reduction of video-memory usage by around 33%.
A reduction of disk occupation by around 43%.
A reduction of loading time by around 30%.

A reduction of time spent on reconstruction by 40-50% (depending on scenes).

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

1. Unity 5

Unity 5 is the most recent major version of the game development tool developed by Unity Technologies
[UNITY]. Beyond the numerous features that enrich the new engine release, Unity 5 introduced a new
scripting technology called IL2CPP that allows the Intermediate Language (IL - compiled from C#) to be
automatically ported to native C++ code before being compiled and executed by the Unity scripting engine.

The introduction of this technology leads to several advantages in terms of performances and scalability, but
what is more important for CR-PLAY, will be the possibility (as soon as it will be fully supported) to integrate
native code directly inside the Unity’s workflow without losing the multiplatform capability provided by the
game development tool. This particular aspect will allow the direct integration of native IBR code without
creating an external plugin for each supported platform and will give an important advantage in terms of
integration effort, especially for future innovations in the rendering algorithms. Besides, it lays the
foundation for the design of a more generic IBR SDK that could be easily integrated in different game engines.
Figure 1 shows how the CR-PLAY architecture will be improved thanks to IL2CPP.

Device + Capture
Software

Images Reconstruction

Videos Tool
Extralnfo

Traditional IBR/VBR
Assets Assets

Asset Manager
Extension

IBR/VBR Behaviours

IBR native code

Rendering
Extensions

Figure 1 — Future CR-PLAY Architecture modified to handle native code thanks to IL2CPP

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

Another important feature brought by Unity 5 is the deployment on 64bit platforms. The main advantage is
the vast amount of memory that can be allocated by an application (theoretically more than 16 million
terabytes). As a consequence, the only limit will be the amount of physical memory present on the machine
running the application, with a consistent increase of number of images used for the IBR scene.

Moreover, Unity 5 is now distributed as free-to-use to those legal entities with less than $100,000 of annual
gross revenue. This new licensing model is very interesting for individuals and small independent studios and
it removes a potential obstacle to the adoption of CR-PLAY technology. It also greatly simplifies development
testing for all partners (no need for expensive licenses for all students, postdocs, interns etc.).

The process of porting the CR-PLAY mixed pipeline from Unity 4 to Unity 5 consisted of the following macro
steps:

e Building the IBR plugin for the 64bit architecture.

¢ Including the 64bit version of all the libraries and dependencies.

e Modifying the Unity Scripts following the Unity 5 guidelines [Unity5Guide].

e Refactoring the Importer Tool to organize the dataset following the Unity 5 constrains (i.e. data in
the StreamingAssets folder are no longer serializable and directly loadable in the Unity scene).

2. Capture and Reconstruct

2.1 Creation of 3D textured objects using the Reconstruction Tool

An important observation at the first CR-PLAY review was the ability to use the reconstruction
technologies of the project to create “traditional” assets using image-based technologies.

In order to provide game developers the possibility to create complex and photorealistic 3D textured
models starting from images (potentially captured in the same session of the ones for the IBR rendering),
the CR-PLAY mixed pipeline has been extended with the texturing algorithm by Waechter et al. [Waechter
14] developed by TUD (the source code for this technique is freely available on GitHub).

Figure 2 - An untextured mesh generated by surface reconstruction (left) and the final
textured object using [Waechter 14] (right)

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

Figure 3 shows the new reconstruction pipeline extended with the texturing capability.

Patch Exporter Patch File for
IBR

SfM + MVS + FSSR Surface Mesh

Input Images Reconstruction (untextured)

Texturing using Textured
[Waechter 14] Mesh

Figure 3 - The new reconstruction pipeline can create textured object using [Waechter 14]

2.2 Integration of the Reconstruction Tool in Unity

To integrate the Reconstruction Tool in Unity and provide a coherent user experience, the orchestration
of the reconstruction process has been ported to a set of Unity scripts (C#), removing the use of the
external tools used in the Low-fidelity prototype (CMake and Visual Studio). The scripts provide a simple
interface (Figure 4) where the user can select the input data, the desired output path, and set several
parameter to customize the reconstruction process.

ocal\Temp CR-PLAY

3D Textured Object IBR Dataset

Figure 4 — Unity interface of the Recontruction Tool

10

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

The output generated using this Unity tool is a batch file that provides the instructions to execute the
reconstruction steps needed to obtain IBR datasets or 3D textured object (depending on the option
chosen from the user interface). This greatly simplifies the adoption of CR-PLAY technology by game
developers.

2.3 Scaling the reconstruction

The ability to change the reconstruction scale is one of the main feedback items from the end-user
evaluation of the Low-fidelity prototype. With the implementation of this feature, game developers have
the option to rescale the reconstructed scene setting the “Scene scale” parameter present in the user
interface of the reconstruction tool.

After taking into consideration different possibilities, a single parameter option proved to be more
effective from both a development and a usability point of view. By setting this parameter, the end-user
indicates the distance in meters between the cameras that took the first two images, allowing the
reconstruction tool to adjust camera positions and reconstructed 3D points accordingly (by multiplying
the scene with a scaling matrix after the Structure-From-Motion process).

2.4 Use of Undistorted Images for IBR

Another feature that helps reduce visual artifacts and improves overall rendering quality is the use of
undistorted images for the IBR scene. In these images the radial distortion from the camera lens is
removed increasing the quality of IBR renderings.

The distortion is described as a displacement of image points p according to their distance from the image
center r(p):

Pdistorted = Pundistorted (1 +7T- r(pundistorted))

The parameter 7 is estimated during the Structure-From-Motion step and the undistorted image positions
are easily computed afterwards. A simple resampling of the original images with the undistorted positions
then leads to an undistorted image. Figure 5 shows an example of an original and an undistorted image.
This step is particularly important when using low-end cameras, such as GoPro’s or mobile phone
cameras.

Figure 5 - The distortion of the camera lens warps points towards the image center. Straight objects in the original image
(left) are therefore warped at the borders of the image. The undistortion process removes the image artifacts (right), as
shown by the orange reference line.

11

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

2.5 Capture Guidance

As part of the work done on the mixed pipeline for the High-fidelity prototype, the capture guidance has
been improved by developing a prototype application that support the end-user during the capture
phase. The prototype has been developed on the Google Tango [TANGO], a high performance tablet
device that allows a real-time rough reconstruction of the captured scene.

More details on prototype and results achieved are reported in D1.2 v.2.

12

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

3.

Image Based Rendering

3.1 Improvement of rendering quality

Quality improvement for the IBR algorithm was based on the comments and feedback gathered from
users and from the various partners of the consortium. We addressed three main issues that were
identified as significant visual artifacts:

e Artifacts due to the fronto-parallel assumption of the warping IBR approach [Chaurasia 13]
e Artifacts due to camera selection
e Artifacts due to inconsistent luminance

Fronto-parallel Assumption Artifacts

The warping algorithm of [Chaurasia 13] implicitly assumes that every superpixel is oriented in a fronto-
parallel manner, since the warp is performed in the 2D image plane. While this restriction is often not
very problematic, it does affect results if we have surfaces which are at an angle (worst case 90 degrees)
with the image plane (e.g., floor plane in a scene). In the new Bayesian rendering algorithm (reported in
detail in D2.1) we address this issue by fitting local planes to each superpixel; in the cases where the
superpixel planes are successfully fitted, we greatly improve the quality of rendering.

Camera Selection Artifacts

For camera selection we tested the following idea based on the intersection of projected camera frusta.
It relies on two main features: the clipped frustum and the used frustum.

The clipped frustum is the screen area occupied from a selected input camera and it is defined as:

. _ clipped convex hull
clipped frustum = ===

(0 < clipped frustum < 1)

Figure 6 shows the clipped convex hull in red, whereas the screen area is the whole rectangle on the right.

Figure 6- Clipped Frustum: on the left, the red polygon represents the frustum of the input camera projected and then clipped in the 2D
camera space. On the right a representation of the clipped polygon in camera space.

13

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

On the other hand, the frustum used is the fraction of the input camera projected frustum that is actually
clipped in the screen view and is defined as:

__ clipped convex hull
MSEdf rustum = convex hull

(0 < used frustum < 1)

In the image below (Figure 7) the clipped convex hull is highlighted in red, whereas the whole convex hull
isin blue.

Figure 7 - Used Frustum: on the left, the red polygon represents the frustum of the input camera projected and then clipped in the 2D
camera space. On the right, the blue polygon represents the whole projected frustum

Inthe end, the idea is to select those input cameras that maximize the product of the two previous values.

camera value = clipped frustum % used frustum

The conclusion of this test is that we need to work further on this problem in the context of the new
Bayesian rendering algorithm. With the new algorithm the ability to treat slanting planes and the increase
in speed (reported in D2.1) gives us significant leverage to determine new camera selection approaches,
notably due to the fact that we can use more cameras and that we can project accurately from cameras
far away if they project onto planes, which was not the case in the original warp-based algorithm.

Inconsistent Luminance.

Even when taking photographs over a short period of time with fixed exposure, illumination does change
over the time required to take a few hundred images, i.e., the sun changes position which leads to shifts
in shadow boundaries and in overall illumination levels. These changes are small and rather subtle when
looking at each individual image, but are visible in the resulting IBR experience since these images are
blended together and even small change become visible and annoying. To address these problems, we
developed a solution to harmonize colors across the images. The process proceeds as follows.

1. We loop through all the PMVS points in the patch file and store all the colors corresponding to each
point in all images in which the points are visible.
2. We take the median color for each point.

14

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

3. We then set up a linear system to compute a 3x3 color conversion matrix which will find the best
color transformation transforming the color of these points to their corresponding median color in
a least squares sense.

4. The solution of this system is the color transformation that we then apply to each image.

Since this is a single global transformation for each input image, in some cases we have colors out of
range. In this case we clamp the LAB values to the correct range, which give satisfactory results. It may be
necessary to provide special treatment for the sky pixels to avoid residual artifacts, or adopt a more local
approach.

Thanks to this process it is possible to correct the small changes caused by the inconsistent luminance
and improve the IBR rendering quality, but changing the light information will need significant
development work to apply the research results achieved in WP2. Due to the amount of development
work done to deliver a stable and reliable High-fidelity prototype, the development work on delighting-
relighting feature is still in progress and its integration in the CR-PLAY mixed pipeline has been shifted to
Year 3.

3.2 Reduction of the video memory footprint

Video memory was one of the main bottlenecks observed in the Low-fidelity prototype, so the work of
this WP in the second year of the project started by performing a memory footprint analysis that shown
that the 60% of the total used video memory was used by the superpixels textures, a set of ARGBFloat
textures that, for each pixel of the input images, store the superpixel ids and the three superpixel
neighbours ids on 16 bytes (4 bytes for each id). Due to the relevant number of superpixels in an image,
as the number of images increase, the video memory consumption grows very quickly.

The first idea to reduce the video memory footprint was to avoid storing the three neighbour superpixels
ids allowing data to be stored on smaller RGBA32 textures. This allowed to reduce the video memory used
by superpixel textures from 60% to 26%, but induced a quality loss due to the missing information about
neighbours.

The second idea was to compress the superpixels information using a RLE algorithm that would allow to
use two RGBA32 textures for each input image to store the compressed information. This approach would
allow to reduce the video memory used by superpixel textures from 60% to 27% without any quality loss,
but needed the implementation of a real-time RLE decoder on GPU that is a complex and time demanding
task.

The third and final approach solved the issue by implementing a simpler solution, withvery minor quality
loss, called MedDepth Inclusion. The idea behind the MedDepth Inclusion was to avoid storing all the
neighbour superpixel ids, keeping just a smaller value that will allow the IBR algorithm to easily compute
neighbours at runtime. This value is the superpixel’s median depth that is the same value used by the
pre-process IBR phase while computing neighbour’s superpixels.

Since the median depth is a float value between -1.0 and 1.0, it was possible to store its quantized form
in 1 byte, with a quantization error of 0.004 (small enough to get the same precision of the neighbours
ids computation in the IBR pre-process). Moreover, the superpixel id was stored on only 3 bytes (reducing
the global maximum numbers of superpixels from 4 billion to 16 million) allowing the entire data structure
to be stored in 4 bytes (3 bytes for the superpixel id and 1 byte for the median depth) and use one RGBA32
texture, as proposed above, that will reduce the video memory used by superpixel textures from 60% to
26% withvery minor quality-loss (that translates in a reduction of 33% of total video memory used by the

15

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

application). The potential quality loss can occur in the case where the warped superpixels create a
different set of neighbors compared to the input images. We have not observed this effect visually.

The process to implement the MedDepth Inclusion proceeds as follow:

e Serialize the superpixel’s data storing the superpixel id in the first 3 bytes and the quantization of
median depth value in the last byte of a RGBA32 texture. Moreover, splitting these values between
color and alpha channels allowed the Unity Editor to automatically be able to show superpixel or
depth information by simply switching the texture visualization from color to alpha channel and
vice versa, which was useful for debugging.

e The modified warp shader masks the superpixel by comparing the median depth information of
its 8 neighbors (top-left, top, top-right, left, right, bottom-left, bottom, bottom-right). This is
where the error in neighbors can potentially occur.

The direct result of the reduction of used video memory is the quality improvement brought by the
possibility of using more images in a specific IBR dataset. For example, in the Silver Arrow scene it is now
possible to use twice the number of input images on the same target machine and thus improving the
rendering quality as shown in Figure 8.

Figure 8 - On the left the Silver Arrow scene rendered with 60 images, on the right the same scene rendered using 120
images.

3.3 Further optimizations of the IBR Plugin

The analysis of the Low-fidelity prototype of the pipeline highlighted three additional major disadvantages
related to games based on IBR, namely:

e A considerable usage of disk space.
e A non-negligible loading time.
e Support of the OpenGL rendering platform only.

16

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

To deal with the first two problems, a benchmark scene (constituting the Silver Arrow game prototype
created in the first year of the project) has been analyzed and consequent solutions have been elaborated.

Unity binaries (EXE and Unity files) 6%
External dependencies (DLLs) 1%
MVS files for depth data-structure (ascii) 1%
SP files for superpixel data-structure (binary) 17%
SP-GRAPH file for superpixel graph data-structure (ascii) 3%
Superpixel textures (RGBA32) 68%
Superpixel graph textures (RGBA32) 4%

Table 1 — Percentage subdivision of the disk space occupation of the Silver
Arrow scene.

Table 1 shows the results of the disk space occupation analysis and highlights the elements that take more
space on disk, with respect to the entire IBR scene, providing an indication on the priorities of the
optimization interventions.

Reduce the size of Superpixel textures — The MedDepth Inclusion approach descripted above
(implemented to save video-memory during runtime execution), automatically shrinks the data-structure
and reduces the disk space needed by superpixel textures by 75%.

Remove the SP-GRAPH file and reduce the size of SP files — The current format of these data-structure
contains duplicate information, already stored in the superpixel textures. The data-structure refactoring
allows to remove the SP_GRAPH file and reduces the SP file to a non-significant size (less than 1MB for all
the input images) without any quality loss.

Reduce the size of Superpixel graph textures — During the analysis, additional test were made to check if
current data-structure was designed in an effective way. Superpixel graph was stored on 1024x1024
textures allowing to contain more than 3 million nodes, but considering a typical IBR dataset, the number
of nodes is smaller and most of the texture space was not used. Superpixel graph textures now contains
only the significant data reducing the space needed without any quality loss. (i.e., in Silver Arrow scene,
the texture size has been reduced by more than 75%).

Get rid of External dependencies — Integration of the Eigen C++ template library [EIGEN] and removal of
the SuiteSparse linear algebra package [CHOLMOD] to implement the Cholesky decomposition. This
operation removes the need of any external dependency.

Serialize Eigen sparse matrices and warp meshes — At the beginning of the IBR process, the warping mesh
(and the associated linear system) is created for each superpixel of each input image. This operation is

17

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

time demanding and so it has been moved to a pre-process phase where the warped meshes and the
Eigen sparse matrices are serialized to a file to be loaded at the beginning of the IBR process. Thanks to
this simplification the loading time of the Silver Arrow scene has been reduced by 30% without any quality
loss on the final result.

The third problem introduced by the use of the IBR plugin is the support limited to the OpenGL platform.
The reason of this limitation is the use of GLSL as language to write shaders needed by the IBR algorithm.
To make the algorithm able to take advantage of the multiplatform capabilities of Unity, all shaders have
been translated in the ShaderlLab language that is automatically ported to the target platform by the
deployment procedures of Unity, allowing, for example, to run the Silver Arrow scene on the modern
DirectX 11.

Summarizing, the optimization phase allowed to improve the entire disk space occupation (of a game)
by around 43%, to speed-up the loading phase by around 30% and to provide a wider compatibility
towards all rendering platforms supported by Unity.

Beyond the general improvement, the IBR optimization makes an important step towards the porting of
the IBR technology on mobile devices, where the limited amount of memory and the low performance
play a relevant role.

3.4 Integration of the IBR Bayesian algorithm

As introduced above, the Bayesian algorithm (described in detail in D2.1) improves the previous Spixel
Warp algorithm by introducing the possibility of selecting a different rendering approach, for each
superpixel, between following options: warp, planar and front-planar.

From the integration perspective, the Bayesian algorithm extends the current approach on both data
preparation and rendering phase.

The data preparation phase is extended by adding the data structures that describe the planar regions
and the rendering approach for each superpixel of each input image. This is integrated as an additional
step of the Reconstruction Tool pipeline.

In the rendering phase, the planar data coming from the data preparation phase are used to update the
rendering data structure with the selected rendering approach and to create the additional plane for each
superpixel of each input image. Thanks to these data, Unity is able to orchestrate the rendering pipeline
by calling the new IBR feature implemented in the native plugin.

The integration of the IBR Bayesian algorithm provides improvements on the final rendering quality by
fitting local planes to superpixels that avoids the fronto-parallel assumption and potentially allows the
use of more than four input cameras to compute a more precise novel view from the virtual camera.

3.5 Depth Occlusion

One of the interesting features for game developers dealing with CR-PLAY pipeline is the possibility of
having parts of IBR scene occlude traditional 3D objects. To achieve this, it is possible to use the depth
information inside the superpixels and render them on different depths in order to let them occlude the
objects in the 3D world. Despite of the simplicity of these rendering operations, this approach suffers

18

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

from evident artifacts caused by two different problems: low accuracy on the depth information
associated with superpixels and low accuracy on superpixels’ segmentation (Figure 9).

— =

CR=PLAY

TECHNOLOGY

.”v*\ 5 0
Aor.
- —

Figure 9 - Superpixel depth artifacts

Both are complex problems that need a significant research and development effort to be solved, which
is currently under way. After analysis, a simpler and effective way to simulate the depth information in
the traditional 3D world has been elaborated.

The Depth Occlusion bases its operating principle on the use of 3D proxy models. Despite the effort
needed to create proxies is directly proportional to the shape’s complexity, depth proxies can potentially
approximate any shape and provide precise information about object depth in specific scenes. Figure 10
provides an example of how the system works.

19

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

A
Figure 10 — The proxy-column and the 2 characters are the only 3D objects in the scene. 3D objects are
placed in the space using the spatial reference provided by the point-cloud in the Unity Editor.

In the example, the column’s models have a dedicated shader that tells the rendering pipeline to consider
only their depth information (making them invisible), and brings the IBR backdrop on top of other objects
using their accurate depth. Additionally, those models that need to be “masked” by the IBR scene need
to have a specific behavior attached that allows them to be moved on the proper position in the rendering

qgueue. The final result can be seen in Figure 11.

Figure 11 — Characters are rendered taking into account the depth information provided by the proxy-
columns, allowing the IBR background to be rendered on top of them where needed.

This approach simulates the depth information of the IBR scene by using the point cloud as reference to

place the depth proxies in the 3D world. Since this method is completely decoupled from superpixels, it
20

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

is not affected by the problems explained above. Future research will eliminate this problem, allowing
proper depth interaction for various shapes in the scene; evidently some cases are particularly hard, such
as thin structures like fences, and will require specific treatment.

3.6 Porting of Depth Synthesis to C++

The depth synthesis code was a significant bottleneck in the Low-fidelity prototype, since the
implementation was done in MatLab. This is a complex piece of code, with several interdependent
modules and functions involved. To convert the code to C++, we first identified software libraries suitable
to replace those in MatLab, in particular we chose to use OpenCV [OPENCV] for image and color handling,
and boost [BOOST] for its tree/graph representation and its Dijkstra algorithm implementation.

The conversion process started by translating the MatlLab functions to C++ and building the data
structures for the tree structure used to propagate depth.

We wrote three main classes:

e DepthSynthesize, which groups and manages the main functionalities: reading data, identifying
source and target pixels, setting up the graph/tree structure, performing the propagation step,
creating median depth and saving data;

e DepthSynthesisUtil, which performs the actual synthesis and saves the median depth and the new
mvs files;

e SpGraph, which encodes the graph/tree structure used for the propagation step and provides the
wrapper for the Dijkstra algorithm functionality of boost.

Several difficulties were encountered in the development of the C++ solution, notably in the different way
C++/MatLab handles color histograms and their chi-square comparisons, color conversions and initial
binning for depth, including for non-synthesized pixels. This was not well documented in the initial MatLab
code, and required extensive debugging to become operational.

Despite of the technical difficulties, the native implementation of the current Depth Synthesis brought a
significant improvement by taking only 2-3 seconds per image to perform this task (the previous MatLab
implementation took about 5 minutes per image). This provides a resulting speedup of over the 100x and
the significant decrease of time needed by the end-user to get a working IBR dataset from the captured
images. As an example, the depth synthesis of the Silver Arrow scene (60 images) took about 4 hours in
the Low-fidelity prototype, whereas it takes only 2 minutes in the High-fidelity prototype.

21

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

4. Video Based Rendering

4.1 Integration of the Semantic Loop in Unity

In the Low-fidelity prototype, VBR was integrated by loading each video-frame of a video loop and playing
it from the beginning to the end, simulating a moving object with a realistic look and feel. In the High-
fidelity prototype, VBR has been expanded to make the technology able to switch between video loops
when specific events are triggered from the gameplay.

To achieve this result, VBR data-structures have been expanded by representing each video-frame as a
node of a directed graph structure (Figure 12).

Figure 12 — Example of a direct graph representing the VBR frames and their
relationship. Different colors means different semantic labels. Loops own
their incoming branches.

The graph is structured in connected loops where each loop represents a video-loop connected to other
loops by branches. Thanks to this data-structure the video-texture can switch between different loops by
simply following the link to the next node until a branch to another loop is found.

In terms of integration, the VBR pre-processing pipeline produces a set of video-frame textures and a file
containing the definition of the graph. These files are serialized in Unity thanks to the extended importer
tool (Figure 13).

22

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

¥ VBR Behaviour (Script)

Script B VERBehaviour

VBR Material ®*VBERMat3

Dataset Name candlel_standing3

Dataset Textures

Graph Definition
ad VBR Dataset

Current Vide

Debug events
vent 01
vent 02

vent 03

Figure 13 - Snapshot of the VBR Unity Editor interface

Once VBR data are loaded in Unity, the VBRBehaviour component is responsible to take the video-frame
textures and the graph definition and manage the VBR objects by reacting to external events triggered by
the gameplay.

Example of use: the candle
To explain the use of the VBR Semantic Loop in Unity, we will consider the example of a candle moved by
the wind.

The candle has three different behaviors:

e Straight: the candle stays straight, i.e. no wind is present.
e Left: the candle leans to the left, i.e. a wind from right is applied.
e Right: the candle leans to the right, i.e. a wind from left is applied.

Each of three behaviors is represented by a video-loop and each loop is connected to each other, in both
directions, with one or more connection branches (Figure 14).

23

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

=

Figure 14 - Representation of video-loops in the candle example

Once the video-frame textures and the graph definition are loaded in Unity by the VBR importer,
VBRBehaviour has all the information to play the available loops.

The straight loop is played by navigating the graph, following the next node with the blue semantic label.
Once the gameplay triggers the “wind from right to left” event, the VBRBehaviour catches the event and
looks for the next node with the orange semantic label. When the node is found, the graph navigation
continues following the next orange node and playing the frames in the connection branch and then the
frames in the left loop.

Since all loops are multiple-connected between each other, it is always possible to go from one loop to
another and play the candle video loop accordingly to the current gameplay behavior.

24

CR-PLAY Project no. 661089 | Deliverable 4.4

High-fidelity Prototypes for mixed pipeline

5. Risks and contingency plan

Risks and contingency actions table

Risk description

Probability

(low, med, high)
- Comment

Impact
(low, med, high)
- Comment

Contingency action

further research in
Year 3.

Risk 4.1 | Camera selection work will | Med/High — it is | Med — | In the worst case, we will be
not provide improvements | still not completely | improvements on | able to simply use more
on the rendering quality. clear how to | quality will be | cameras which will improve

implement the | lower than | the quality in most cases.
new selection | expected.
approach.

Risk 4.2 | IBR Bayesian algorithm will | Low - testingis not | Med — | The end-user will be able to
not work as expected when | complete, but the | improvements on | switch to the previous Spixel
used to create game | algorithm has been | quality will be | warp algorithm.
prototypes. used on several | lower than

scenes in a | expected.

research context. However the
speed increase is
significant.

Risk 4.3 | Game developers could | Low/Med — design | Med- additional | User feedback will be
provide disruptive feedbacks | and development | work will be | addressed in the
on usability and technical | choices have been | required to modify | development of Final
choices taken during the | guided by | the pipeline | prototype.
development of the High- | feedback from | toward the Final
fidelity prototype game developers | prototype.

and market
orientations.

However visual
artifacts remain;
these will be
addressed with

25

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

6. Conclusion

The High-fidelity prototype of CR-PLAY pipeline represent a major advancement with respect to the previous
release, in terms of new features, improvements, optimizations and quality. Most of the research
achievements of WP1, 2 and 3 are now part of the pipeline, with a coherent user interface. Game developers
are now able to create better and richer games, using Unity 5 as main development tool.

6.1 Plan for next period

Following the three-tier schema that defines development tasks in WP4 (Low-fidelity, High-fidelity and
Final prototypes of mixed pipeline), the next step is to collect feedback coming from MS14 "Results of
High-fidelity prototype evaluation and recommendations for next design iteration" (WP5), so as to
organize and prioritize the integration and development tasks that will lead to the creation of the Final
prototype in Year 3.

In addition, research continues in the development of the new algorithmic solutions for IBR and VBR;
some of these (better depth synthesis, semi-automatic removal of distracting objects in input images,
multi-view VBR for vehicles, handling of indoor scenes, rendering of thin objects, better render of
“midground” objects such as parked cars), may be integrated in the final prototype, while others will
remain research proof-of-concepts. Any of the above advancements will result in significant improvement
in visual quality and the overall CR-PLAY experience.

Partners involved in development WPs will have specific roles, and the work will be performed according
to the plan developed first in the DoW and then in D4.2. More detailed activities will be defined within
sub-groups and depending on specific needs within the shell of main tasks of the WPs, towards the
achievement of the main project objectives.

26

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

References

[BOOST] http://www.boost.org/

[Chaurasia 13] Chaurasia, G., Duchene, S., Sorkine-Hornung, O., &Drettakis, G. (2013). Depth synthesis
and local warps for plausible image-based navigation. ACM Transactions on Graphics (TOG), 32(3), 30.

[CHOLMOD] http://faculty.cse.tamu.edu/davis/suitesparse.html

[EIGEN] http://eigen.tuxfamily.org

[OPENCV] http://opencv.org/

[TANGO] https://www.google.com/atap/project-tango/

[UNITY] http://unity3d.com/

[Unity5Guide] http://docs.unity3d.com/Manual/UpgradeGuide5.html

[Waechter 14] Michael Waechter, Nils Moehrle, Michael Goesele, Let There Be Color! Large-Scale
Texturing of 3D Reconstructions, In: Proceedings of the European Conference on Computer Vision (ECCV
2014), Part V, LNCS 8693, pp. 836—850, 2014.

27

http://www.boost.org/
http://faculty.cse.tamu.edu/davis/suitesparse.html
http://eigen.tuxfamily.org/
http://opencv.org/
https://www.google.com/atap/project-tango/
http://unity3d.com/
http://docs.unity3d.com/Manual/UpgradeGuide5.html

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

Annex A - High-fidelity Prototype: User Manual 1.0

1. CR-PLAY Technology in a nutshell

CR-PLAY is an innovative mixed pipeline for videogame development that allows the integration of Image
Based Rendering, Video Based Rendering and 3D Textured Objects generated from images, together with
traditional 3D contents, in the videogame development process. The pipeline is composed by three main
phases:

e Capture: the User takes pictures of the scene/object that he wants to insert in the game.

e Reconstruct: the User use specific tools to create IBR Assets, VBR Assets and 3D Textured Objects
generated from images.

e Edit and Play: reconstructed assets are integrated with traditional contents and the game is
created and deployed.

Each asset created with the CR-PLAY mixed pipeline have specific characteristics that can be exploited in
the creation of a game.

IBR Assets are detailed representations of outdoor and indoor environments, created from a set of input
images. They are mainly suited for advanced backdrops thanks to their intrinsic parallax and the possibility
of simulating occlusion on traditional 3D objects.

Figure 15 — Images taken during the Capture phase (above) and example of IBR scene (derived from the images) with
occlusion from different views (below)

VBR Assets allow the detailed simulation of dynamic elements (moving and animated objects) and
represent them in advanced video-textures, able to reproduce specific video sequences according to
external gameplay events.

28

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

Figure 16 — Example of VBR assets (moving candles) in the Unity Editor

3D Textured Models are traditional polygon models with high-res photorealistic textures, captured and
created from a high number of images. They can be used as traditional assets and provide a full interaction
with the 3D world.

Figure 17 - 3D Textured Model (left) with different optimization levels (right)

Next image (Figure 18) introduces the main steps characterizing the use of the CR-PLAY Technology (next
sections of the document provide a detailed explanation of each step).

29

CR-PLAY Project no. 661089 | Deliverable 4.4

High-fidelity Prototypes for mixed pipeline

1. INSTALLATION

firsttime only

UNITY EDITORTOOLS

_omamonnons <

3. RECONSTRUCT

4. EDIT AND PLAY

P A%
CR-PLAY (P>

Figure 18: CR-PLAY Use Case schema

30

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

2. CR-PLAY System Requirements

The features listed in this section are intended to describe the target developer machine, which will allow
the CR-PLAY mixed pipeline to work smoothly. Less powerful machines can give unexpected errors and
hinder user experience, especially in configurations with less video memory than the value suggested.

e Processor: Intel i5 4590 3.3 GHz or higher
e Memory: RAM 8GB or higher
e Video card: ATI Radeon R9 200, 3GB VRAM or NVIDIA equivalent or higher

CR-PLAY needs Unity 3D 5.x version.

3. Installation of the CR-PLAY mixed pipeline

In this section the User will install the Reconstruction Tool and all Unity components needed to use CR-PLAY
Technology to create games.

3.1 Setup of Unity project and installation of CR-PLAY packages

3.1.1 The User creates a batch file in the project's root folder, in order to start CR-PLAY
Unity project in DX11 mode.

Example of batch command:

"<path to Unity Editor>/Unity.exe" -force-d3dll -projectPath %~dp0

v/ By running the batch command Unity will start in DX11 mode.

3.1.2 The User opens Unity 5 using the batch file created (double-click on it), sets
building parameters and game resolution, and creates the "IbrProxy" layer.

' Unity is ready to be used.

3.1.3 The User downloads the CR-PLAY Reconstruction Tool Unity Package from

http://www.cr-play.eu/download _sw/ and installs it in the Unity project (username and
password required).

' Unity is ready to use Reconstruction Tool features.

& If the download is not available due to server or credentials problems, the User can contact
support@cr-play.eu to get assistance [Error 1].

3.1.4 The User downloads the CR-PLAY Unity Package http://www.cr-
play.eu/download_sw/ and installs it in the Unity project (username and password
required).

' Unity is ready to use IBR features.

& CR-PLAY Unity package cannot be installed. Unity provides a very detailed output log that can
be used in order to fix specific issues, if he/she cannot fix the issue. He/she could contact
support@cr-play.eu to get assistance [Error 2].

31

http://www.cr-play.eu/download_sw/
mailto:support@cr-play.eu
http://www.cr-play.eu/download_sw/
http://www.cr-play.eu/download_sw/
mailto:support@cr-play.eu

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

4. Use of CR-PLAY mixed pipeline for videogame creation

This section explains how to use CR-PLAY technology to create games. Various phases are described:
Capture, Reconstruct, Edit and Play, Deploy on Windows platform.

4.1 CAPTURE the scene

4.1.1 The User takes pictures of the scene following the provided capture guidelines.

|See instruction manual, page 47: Guidelines for capturing datasets|

¥/ The scene has been captured.

4.1.2 User copies the pictures from the camera memory to the computer where the
Reconstruction Tool is installed.

/' Pictures are available for Reconstruction.

4.2 RECONSTRUCT the scene

4.2.1 User opens Unity and click on the “CR-PLAY/Reconstruction Tool” menu item, sets
the “Image folder” and creates the batch file.

|See instruction manual, page 37: How to use the Reconstruction Tool in UnityI

v/ The batch script is present in the temporary folder.

& The batch file is not present. Unity can show errors in the console that user can use in order to
fix specific issues. He/she could contact support@cr-play.eu to get assistance [Error 3].

4.2.2 User runs the batch script from the command prompt and waits for the process to
finish correctly.

v/ After a while the dataset has been generated in the output folder. NOTE: this can take up to

several hours, so please plan ahead

&K Reconstruction process fails, the User can contact support@cr-play.eu to get assistance [Error
4].

4.3 (EDIT and) PLAY the scene - IBR

4.3.1 User moves the "<ibr_dataset>.zip" file generated in the Reconstruction Tool
output folder to the "Assets/IBRDatasets" folder.

' IBR scene is ready to be imported.

4.3.2 User selects the "CR-PLAY/Import IBR" menu item.

|See instruction manual, page 40: How to use CR-PLAY mixed pipeline in UnityI

32

mailto:support@cr-play.eu

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

¥ ImportDataset window opens.

4.3.3 User checks the <ibr_dataset> item and clicks on "Import" button, waiting until the
importing is completed.

It can take some time depending on the machine and on the number of images in the dataset.

|See instruction manual, page 40: How to use CR-PLAY mixed pipeline in UnityI

' IBR dataset is imported in the project.

4.3.4 User instantiates the IBRscene prefab in the scene and selects it in order to open its
properties in the Inspector window.

¥ Unity is ready to show the IBR scene in its scene view.

4.3.5 User sets the text field "Dataset Name Folder" to <ibr_dataset>, checks the "VSFM
Coord Sys" and clicks the "Load IBR Scene" button to load the IBR in the Unity scene.

|See instruction manual, page 40: How to use CR-PLAY mixed pipeline in UnityI

¥ IBR scene is loaded in the Unity scene.

& Unity can raise an error in case the "Dataset Name Folder" is not set to a valid folder or if the
Import operation (step 4.3.3) has not yet been done. For any other case, the User can contact
support@cr-play.eu to get assistance [Error 5].

< Unity (64bit] - ibrloadScene_TLunity - spixel_warp_5 - PC, Mac & Linux Standalone* <DX11> - o K

Figure 19 - The IBR scene is loaded in Unity

33

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

4.3.6 [Only the first time a specific dataset is imported or modified] User clicks on
"Prepare IBR Scene” in order to create superpixel intermediate textures and all needed
data.

|See instruction manual, page 40: How to use CR-PLAY mixed pipeline in UnityI

& Intermediate superpixel textures and other data are generated and placed in
"Assets/Resources/", “Assets/IBRAssets/” and “Assets/StreamingAssets” folders. This operation
can take time depending on the machine.

& Unity can crash if, due to the high number of input images, the texture generation uses all the
available video memory. In this case the User can contact support@cr-play.eu to get assistance
[Error 6].

4.3.7 User PLAYS the Unity scene.

& Unity scene is played and the IBR scene is shown after a loading phase.

& Unity scene can give errors depending on the specific gameplay code. Unity provides a very
detailed output log that the User can use in order to fix specific issues, if the User cannot fix the
issue and it is related to CR-PLAY, he/she can contact support@cr-play.eu to get assistance
[Error 7].

e Unity (64bit) - ibrloadScene_TLunity - spixel_warp_5 - PC, Mac & Linux Standalone® <DX11> - oEa

Figure 20 - The IBR scene is played in Unity

4.4 (EDIT and) PLAY the scene — VBR

In case you plan to use animated content in your game that could be done with the VBR technology, please
contact support@cr-play.eu to receive assistance.

4.4.1 User moves the <vbr_dataset>.zip in the "Assets/VBRDatasets" folder.
& VBR scene is ready to be imported.

34

mailto:support@cr-play.eu

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

4.4.2 User moves the focus on Unity 5 and selects the "CR-PLAY/VBR Import" menu item.
¥ ImportDataset window opens.

4.4.3 User checks the <vbr_dataset> item and clicks on the "Import" button, waiting
until the importing has been completed.

& VBR dataset is imported in "Assets/VBRAssets" folder.

4.4.4 User instantiates the VBRObject prefab in the scene and selects its child
"VideoTexture" in order to open its properties in the Inspector window.

& Unity is ready to show VBR object in its scene view.

4.4.5 User sets the textfield "Dataset Name" to <vbr_dataset> and clicks the "Load
Dataset" button to load the VBR video textures.

¥ Video textures are loaded in the scene.

& Unity can raise an error in case the "Dataset Name" is not set to a valid folder or if the Import
operation (step 4.4.3) has not yet been done. For any other case, User can contact support@cr-
play.eu to get assistance [Error 8].

4.4.6 User sets playback parameters depending on his/her needs.

& VBRObject is ready to be played.

4.4.7 User PLAYS the Unity Scene.
& Unity scene is played and VBR object is shown.
& Unity scene can give errors depending on the specific gameplay code. Unity provides a very

detailed output log that User can use in order to fix specific issues, if User cannot fix the issue
and it is related to CR-PLAY, he/she can contact support@cr-play.eu to get assistance [Error 9].

35

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

4.5 Deploy the game

4.5.1 The User clicks "Edit/Project Settings/Graphics" menu item and adds shaders in
"Assets/Shaders" folder in the "Always Included Shaders" list.

& IBR shader will be linked to deployed packet.

4.5.2 The User clicks on "File/Build Settings" menu item.

& Building Settings window appear.

4.5.3 The User clicks "Build" button, select the final executable location and start
building.

& Building process is started. NOTE: Only a Windows build target is supported for now.

& The building process can fail while compiling the scripts due to code errors. Unity provides a
very detailed output log that User can use in order to fix specific issues, if User cannot fix the
issue and it is related to CR-PLAY, he/she can contact support@cr-play.eu to get assistance
[Error 10].

4.5.4 User creates a batch file in order to start the created exe in DX11 mode.

¥ The batch file is created.

4.5.5 User double-clicks on the batch file and starts the game.

& The game runs showing CR-PLAY technology.

&K Deployed game can crash for several reasons. Unity deployed applications provide a very
detailed output log that the User can use in order to fix specific issues, if the User cannot fix the
issue and it is related to CR-PLAY, he/she can contact support@cr-play.eu to get assistance
[Error 11].

36

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

Annex B — High-fidelity Prototype: Technical manual

How to use the Reconstruction Tool in Unity

Installation

To install the Reconstruction Tool in Unity, it is necessary to import the unity package cr-play-
reconstruction-tool.unitypackage, that automatically installs all needed resources in the
selected Unity project.

Usage

From Unity click on the “CR-PLAY / Reconstruction Tool” menu item.

CR-PLAY | Window Help

Import IBR

Import VER
Importer Options

Reconstruction Taol

The Reconstruction Tool window will appear presenting the options to the user.

ocal\Temp CR-PLAY

3D Textured Object IER Dataszet

The user sets the “Image directory” field with the path of the folder containing the images captured
and the “Temporary directory” and “Output directory” with the path to the temporary folder and the
folder where the output archive will be copied respectively.

Imaage directory D:'\datasets'external_arena

Tempoarary directory D\ datasets'tmp

D:'datasets'out

The user sets the “Scene scale” field to set the final size of the reconstruction. The scale value is
indicated as the distance in meters between the first two pictures of the dataset. Modifying this
value will allow the user to scale the size of the resulting reconstruction up or down. Example: setting

37

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

the scale value to 2, will provide a reconstruction where the cameras that took the first two pictures
are at 2 meters from each other.

Max. image width/height: 0

e Other fields can be left as they are.

e Onceall needed parameters are set, the user can proceed by clicking the “3D Textured Object” button
to create a traditional 3D textured model (typically for an isolated object for which photos have been
taken all around) or by clicking the “IBR Dataset” button to generate the IBR dataset (typically for
backdrops).

3D Textured Object IBR Dataset

Once one of the buttons is clicked, a batch script is created inside the “Temporary Directory”.
To run the reconstruction process the batch file needs to be executed from the command prompt.

In the table below you we show the description of all the parameters available through the Reconstruction
Tool interface and their explanation.

Image directory Path of the folder that contains the captured images.
Temporary directory Path of the temporary folder used by the different steps
of the reconstruction pipeline.
Output directory Path of the folder that will contain the output archive.
Scene scale Scaling factor applied during the reconstruction pipeline

(i.e., the distance in meters between the cameras that
took the first two pictures of the captured image set).

MVE scale * Scale used for the whole reconstruction.

Max. image width/height * Maximum pixel size the captured images will be resized
to. 0 means no resizing. Use only even values, since
otherwise some of the IBR steps won’t work properly.

meshclean options: Minimum number of vertices per component on the
Component size * mesh reconstruction step.
meshclean options: Threshold on geometry confidence: N in a range
Threshold * between 0 and the image number. Takes into account
3D points for surface recognition only if visible from N
cameras.

38

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

Depth extraction options: The minimum MVS point confidence threshold, useful
min MVS threshold * for back-projection. Try 0.0 if black depth-maps are
generated.
Superpixel options: Number of threads used to compute superpixels.
Threads *
Superpixel options: Defines the number of superpixels you want for the
Num superpixels * oversegmentation's step.
Superpixel options: Defines the compactness factor, in range for the
Compactness weight * oversegmentation's step.
DepthSynth options: Indicates how many additional depth samples will be
Samples * found in depth maps images.

(*) Advanced parameter: please do not use unless you know what you are doing.

39

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

How to use CR-PLAY mixed pipeline in Unity

Installation

To install the CR-PLAY Mixed Pipeline in Unity, it is necessary to import the unity package cr-
play.unitypackage, that automatically installs all needed resources in the selected Unity project.
This package contains both IBR and VBR scripts and resources.

Import IBR(VBR) datasets

Before working with IBR(VBR), datasets must be imported to the Unity project using the dedicated tools
provided. Importing operations automatically take the dataset zip coming from the Reconstruction Tool
and import the needed assets in the Unity project folders.

o Copy and paste the dataset file coming from the reconstruction tool in the
Assets/IBRDatasets(VBRDatasets) folder (create this folder if needed)
[Default datasets folder can be changed by selecting the CR-PLAY/Options menu.]

« Select the CR-PLAY/Import IBR(Import VBR) menu to open the Import window.
o Check the dataset you want to import and click Import to import the IBR(VBR) datasets.

40

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

Import

IBR(VBR) datasets are automatically imported in Assets/StreamingAssets/<dataset_name> folder
and Assets/IBRAssets(VBRAssets)/<datase_name>, depending the asset nature.

[StreamingAssets is a special Unity folder that is automatically copied in the deployment packet, IBR
asseets need to be copied in the deployment packet because IBR C++ Plugin needs to use them during
rendering]

Setup IBR scene
To setup the IBR scene it is necessary to load the pre-configured IBRScene prefab (Assets/Prefabs/) in
the current scene and initialize the associated behaviors to let the IBR scene to load a particular dataset.

o Drag and drop the IBRScene prefab in the scene view (or in hierarchy view).

» Attach the IBRRender behavior to the Main Camera by drag and drop the IBRRenderer.cs script on
the main camera game object.

« Select the IBRScene game object in the Hierarchy View to open its Inspector View.

» Go to the IBRSceneLoader behaviour and set the "Dataset Name Folder" field with the
<dataset_name> to be loaded.

41

CR-PLAY Project no. 661089 | Deliverable 4.4

High-fidelity Prototypes for mixed pipeline

Default

S 1 T
¥ IBR Manager (Script)
Script B IERManager

General settings

IBR_cameras_in

In BEu
In List Im:

Scene Tools

IBR Scene Loader (Script)
B IBRScensLoader

= clipping_planes

To generate the superpixel textures and all the needed data, click on the "Prepare IBR scene" button
in the IBRSceneLoader behaviour; this step may take some time depending on the number of input

images. [This operation need to be performed only the first time a dataset is loaded or every time a
dataset is changed].

42

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

IBR Scene Loader (Scrip
B IER

® clipping_planes

Zhow Debug Tools

Add Component

Use of proxies for Physics Collisions and Depth Occlusion on IBR scene

Thanks to the point cloud generated by the Reconstruction Tool, it is possible to have an overall
representation of the theoretical virtual spatial occupation of the IBR scene and use 3D models as
proxies to simulate specific behavior, such as physics collision and depth occlusion.

Physics Collisions can be simulated by placing an invisible collision mesh where the point cloud indicates
that a specific portion of the IBR scene will be rendered. The image below show an example of collision
mesh in green.

To do this the user has to place the appropriate mesh in the scene, add a MeshCollider component and
set an invisible material to its MeshRenderer behaviour.

Depth Occlusion simulates depth information in an IBR scene by using 3D depth proxies placed in the
3D world using the spatial reference provided by the point cloud.

The procedure to set a depth occlusion proxy is more complex, so let us consider the example of a 3D
character model placed behind the column of a small temple rendered using IBR.
43

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

In order to simulate the IBR depth information, a 3D proxy cylinder is placed where the column will be
rendered (using the point cloud as a spatial reference).

The next step is to ignore the geometric information of the cylinder by applying the DepthMask material
that can be found in folder Assets/Materials.

44

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

Additionally to the User must change the Render Queue position of the 3D model that needs to be
masked. This operation can be performed by adding the script behavior SetRenderQueue to the target
model. The script can be found in the Assets/Scripts/Utils folder.

Y 180
- X3 Y&
Punk Girl (Mesh Filter)
M PunkGirl

Component

As a result, the proxy model pulls the background (the IBR scene) in front of the 3D target model
according to the depth information provided by the proxy.

45

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

The same 3D proxy model can be used for both the Physics Collision and Depth Occlusion purposes.

Setup of the VBR scene

To setup the VBR scene it is necessary to load the pre-configured VBRBehaviour prefab Assets/Prefabs/
in the current scene and initialize the associated behaviors to let the IBR scene to load a particular
dataset.

» Dragand drop the VBRObject prefab in the scene view (or in hierarchy view).
« Select the VBRObject/VideoTexture game object in the Hierarchy View to open its Inspector View.

¥ VBR Behaviour (Script)

rial

t Name

Graph Definition
Load VBR Dataset

Show Debug Oj

+ Go to the VBRBehaviour behaviour and set the "Dataset Name" field with the <dataset_name> to
load and the "Video Framerate" field with the frame-rate of videotextures.
« To load videotextures, click on the "Load Dataset" button in the VBRBehaviour behaviour.

¥ VBR Behaviour (Scrip

Textures
vefinition
Load VER Dataset

Show Debug Options

46

High-fidelity Prototypes for mixed pipeline

CR-PLAY Project no. 661089 | Deliverable 4.4

Guidelines for capturing datasets

Camera settings
If your camera has a resolution setting, choose the highest resolution possible. If needed, the

algorithms will downscale the images later.
Set a fixed aperture, either using aperture priority or manual mode (consult the camera manual if

necessary).
» Take images that are well-exposed (neither too dark nor too bright). This might require you to

change the exposure time or ISO speed if you are in manual mode. In aperture priority mode, check
that the camera selected sensible values for these settings (consult the camera manual if
necessary). Make sure that the exposure time DOES NOT CHANGE from one picture to another.

If the depth of field is too small, try setting a larger f-Number (smaller aperture) but be aware that

this might darken the image if the exposure time is not increased accordingly.
Focus! If the scene or object are out of focus, reconstruction will fail. It is ok to refocus in each of

the images.

Camera placement
e Take pictures with sufficient overlap. If in doubt, just capture images at small intervals. This takes

more time but ensures that everything has been seen with sufficient overlap. Each point on the
surface should be visible in at least four images.

1
1
AY 1
! | y
| 4 L I
1
]

i
\
\ ; . B
\ 1
\

i
i

’,
’
’
s
’ ’ i
’ s \\ i v
. ’
. \ ; P \ ’ Y ’
'r ' ' v 5 \] ‘

Do not take panoramas. The reconstruction will not work if you just rotate the camera while
standing still. The algorithms need to observe the surface from different viewpoints. The further

away from the object, the larger the translation between shots can be.

It makes sense to take “connecting shots”. For example if you take images from farther away and
then move closer to capture some details, the algorithm might not be able to connect the details to
the large scale surface even though they overlap. Try to take some additional shots while moving

towards the details.

47

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

. i
i / i

£ 1
| / |
1 . i .
L o
I . l .

NO

It is allowed (and can actually be quite beneficial) to take images from different heights. So, if you
have the chance to climb on a nearby wall, do not hesitate to do so.

Scene content

The reconstruction is based on the assumption of a static scene. Try to avoid moving parts such as
leaves, shadows, or pedestrians as much as possible. A certain amount of movement is tolerable
but those parts will be reconstructed less accurately or not at all.

Surfaces with texture variation work well. If your object does not display a lot of texture, it can help
if at least some other textured surfaces are visible in the images. In the case of blank walls, it will
help if you add a poster for example.

Transparent and mirroring objects do not work. It is possible to have a car in a scene as long as the
light is not too bright (for example on a cloudy day or in shadow) and the car does not cover a large
part of the image.

Best practices (if possible) and additional information

Try to do (at least) two (semi-) circles with different radii around the object. Don’t forget to add
transitions pictures if you want a smoother experience in specific regions.

Surface points that are observed under grazing angles in all images are hard to reconstruct.
Reconstruction might work better on overcast days (even illumination, no moving shadows, ...).
Take overview images as well as close-ups for specific details (but remember the connecting shots).

48

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline
Annex C — Gameplay examples

Fighting Games

The first example for usage is a fighting game with left-right movements. The game camera can move left-

right, but also rotate a bit around Y-axis. If more rows of cameras are captured, zoom in-out can be done as
well.

Figure 21 - (example from Mortal Kombat X): fighters are facing each other moving from left to right and vice-versa. Camera does the
same movement, keeping them in the centre of the screen.

TROOPER

N

Figure 22 - (example from Mortal Kombat X): while doing special moves, camera
rotates around Y-axis to emphasize the particular moment of gameplay.

49

CR-PLAY Project no. 661089 | Deliverable 4.4

High-fidelity Prototypes for mixed pipeline

For such a scenario, the capture of environment should be done by moving on a line, taking pictures from
left to right (or vice-versa), with sufficient overlap of the environment between two consecutive photos.

In order to obtain the rotation of the camera as in Figure 22, the same line of capture should be done, but
keeping the camera rotated (as it is intended to be in the game).

Doing multiple lines at different distances from the environment allows for a zoom in-out effect in the game.

Lder ToSan Sl T S R S

Tog VIEW |

Gameplay
area

- - - -
ch 4t g g e -

>4
/Close-up on capture cameras to show
their direction when photos were taken

Figure 23 — A snapshot from Unity showing a scene being prepared for a fighting game. Photos were taken from two parallel lines, with
cameras facing forward and slightly left-right.

50

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

2D (2,5D) Platformers

The second example of games is for 2D platformer games. The idea is to capture a scene from a frontal point
of view, and create the gameplay taking advantage of the captured area. Thus platforms, obstacles etc. will
be created in 3D and integrated with the captured scene. Imagine a Rayman level (where movement is
possible in four directions left-right-up-down) where the environment is done with CR-PLAY technology.

Camera can also rotate a bit to obtain the 2,5D effect.

Figure 24 - mockup inspired by RAYMAN

In this type of game, character can jump, run, hit objects etc. by using 3D objects added on scene by game
dev. The captured environment is bigger than just one screen, so the camera will pan to keep the character
in the centre of the screen, maximizing the 3D effect.

Capture of the environment should be done by covering the entire game area, keeping in mind the type of
different cameras that are needed in the game (i.e. just frontal or also slightly rotated).

51

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

Angry Birds-like games

Similar to 2D platformers, with a different gameplay.

Figure 25 - snapshot from Angry Birds 2

Imagine substituting the background in Figure 25 with a scene captured from a real environment. Of course
platforms, birds, pigs will be created using traditional 3D assets.

Camera will pan in four directions, emphasizing the 3D feeling of the scene.

52

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

FPS

Gameplay is a FPS, where players can rotate limited to certain degrees. The movement of the character is
also restricted to avoid having the camera go outside the capture field.

B

NI ED
‘L —-v"‘l

SRERLAY

rErunon'oo

Figure 26 - snapshot from Silver Arrow, game prototype made with low-fidelity prototype of CR-PLAY Technology — Video is available at
https://youtu.be/mKXsoB30pKU

Capture cameras should be placed accordingly with the intended rotation of game camera and space of
movement of the character.

53

https://youtu.be/mKXsoB3OpKU

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

Railway shooters

Similar to FPS, but camera movement is controlled by the game, typically along a rail. The player moves the
crosshair with the mouse to hit targets.

Figure 27 - snapshot from Rage HD

The design of the rail along which the camera moves should be accurately thought out in advance and used
as a reference when capturing the environment.

54

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

Point&Click Adventures

The player interacts with the mouse on objects/parts of the screen that can be either 3D or captured. The
captured scene allows for camera movements managed by the game (i.e. controlled pan/rotate).

AHH! PEOPLE LIKE yOou, Miss WALKER, END LP NEVER GOING HOME.

Figure 28 - snapshot from Syberia Il

55

CR-PLAY Project no. 661089 | Deliverable 4.4

High-fidelity Prototypes for mixed pipeline

Multidirectional shooters

Imagine a far-west scenario where outlaws appear from windows, behind a corner etc. Players can move the
camera left-right-up-down, and control the crosshair with the mouse to shoot them down.

Figure 29 - mockup image showing a possible scenario for multidirectional shooter

56

CR-PLAY Project no. 661089 | Deliverable 4.4 High-fidelity Prototypes for mixed pipeline

Urban sports

Games such as Basketball and Squash can be done in a captured urban scenario, with some 3D elements like
the basket, player etc. The camera can move to some extent.

I0SGAMEPLAY VIDEOS , VIV MIPR IOSGAMEPLAY VIDEOS VIV MIPR A

8® ' 0 e G}

9,
QORNRF

Q
S

IO
5
SR

»,
0,
%!

S
o0
%!

&
006

..0'0
® <

.'

\/
)

9,
O
0‘:.0

5
9,
oo .'v%’o.

VoY,
S5

N/

;"

Figure 30 - snapshots from SuperHoops, iOS game

57

