X

The LXR User's Manual

for version 1.2

Revision history

Author Date Rev Comment

P. Gerlier 2011-03-05 | 0.8 |Initial version (for release 0.9.8) and considered as beta release:

ajlittoz @users.sf.net chapter 1 based on INSTALL 0.9.8; following chapters, new material
Published for 0.9.9 release

P. Gerlier 2011-04-01 Adding 0.10 features

P. Gerlier 2011-04-30 Updating 0.10 after bug fixes

P. Gerlier 2011-12-23 |0.9 | Beginning revision for 0.10; changing styles

2012-01-12 End of revision

P. Gerlier 2012-01-17 Index added; changed licence to GNU FDL

P. Gerlier 2012-02-05 |0.99 |Upgrade to 0.11 features; revision 0.99 for beta status

P. Gerlier 2012-03-14 |1.0 |Index and review completed (document revision bumped at 1.0)

P. Gerlier 2012-09-22 | 1.1 New features for 1.0 (major version number switch considering the num-
ber of changes and new features)

P. Gerlier 2013-01-18 |1.2 | Adding 1.1 features

P. Gerlier 2013-01-24 |1.3 | Describing web server set-up (interactive configuration and customisa-
tion), new CSS style for disabled mode buttons

P. Gerlier 2013-03-17 |14 | Upgrading to 1.2 include syntax

This manual is released under GNU FDL (GNU Free Documentation Licence) v1.3. It is available at
http://www.gnu.org/licenses/fdl-1.3.txt.

LXR itself is distributed under GNU GPLv2 (or higher) license (http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt).

Licence statement

The code examples in this manual are also released under GNU GPL v3 (or higher) to permit their free reuse.

Copyright (©) 2011-2013 P. Gerlier.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no

Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU Free Documentation License".

This manual is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY,; without even the

implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Document name

The file name for this document is structured as T-SR-L-DR. f where:

* Tisashort title (like LXRUserManual),

* SRis the software release number associated with this document (like ©.10),

e L is the ISO 639 alpha 2 language code with optional country variant (like en_UK),

¢ DR is the document revision number (like 1. 0),

+ f is the file format or file name extension (like 0dt for Open Document Format or pdf).

mailto:ajlittoz@users.sourceforge.net?subject=LXR%20User's%20Manual%20v0
http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt
http://http://www.gnu.org/licenses/fdl-1.3.txt

Table of Contents

O FOTEWOT. ...ttt ettt e s ettt e e e et e e e e abbeeeseastteeeesasaeeeeessaaeeessssaeesessnnnnnnsnsnns 1
0.1.8. WHAL 1S LXR ...ttt ettt ettt ettt e st e st et e e s e s e st esee e e s eme et enees e s es et eneeseneeseneeseseneeseneeseneeseeseeneenseenie 1

0.1.b. What is the technology under the NOOA?...........coueiieiiiiiiiiie ettt 2

0.1.0. HOW 10 TS 1L7...cveieiiitieieeieeiteieeteet ettt sttt ettt sttt ettt st b e s bbbt bt bbbt bt b e s bt bt s bt s bt b e sb e sb e e bt e bbbt bt e e eneenee s 2

0.1.d. GEUNG REIP. ettt sttt sttt et s bttt st e s bt et st e sbe e bt s et e e bt emtesate bt easeseneesnneenanees 2

I INStalling LXR ..ottt ettt e et e et e sttt e sabt e e sabte e sabe e e e e eeaabaeeeeeas 4
L1, What 18 NEEAEAT.......eeiiiiitieiieeeee ettt ettt ettt b e st e e bt e s e e beeeaas 4
1.2. Create LXR installation dir€CIOTY.......eevuiiriiiiiiiiiieiieiieeiieeteeete sttt st e 7
1.3. Configure your INStallation.c..coouiiriiiiiiiiiicieeeeeee e e e 9
1.3.2. SIMPIE CONTIGUIALION.euiitieiieiietiete ettt ettt ettt e st e et e et e st e eateeate et e enteeneesbeenseeaeesseensesaeesseensesnseaesseennns 9

1.3.b. Multiple-trees CONFIGUIALION.c..ciiiiiiiiiiiiiieee e e 15

1.3.c. Adding a new tree to a previous CONTIZUIALION.ccc.iviirieriirierieeie ettt ettt sttt et st e e sbeesabeeeaee 18

1.3.d. Configuration for LINUX KEIMEL.........c.cciiiiiiiiiieii ettt ettt et sttt et st e st et saeesteesabeesneeeenseeenee 19

1.3.e. Configuration fOr VCS'S.......c.ooiiiiiiiii e s 20

1.3.e.1. CVS
1.3.e.2. GIT
1.3.e.3. Subversion
1.3.e.4. Mercurial
1.3.e.5. BitKeeper

1.3.£. Advanced use Of CONTIGUIALOT.........cc.couiiiiiiiiiiiiiiiiiee e st 23
1.4, Create @ database.........cocueeruiiiiiiiieeteee ettt ettt et e b st e b e st eea 24
1148, IMYSQL ...ttt ettt ekttt £ a e h stk ek Rt e Rt A e R ek etk et bt e Rt R e n ek ettt te e tene et e s e enes 24
14D, POSEEIESQLi....eiiie et ettt et sae e s 25
LLA.C. SQLIL. ..ttt ettt ettt ettt b et bbbt s bbbt b et b et b et b et e st beennen 25
LA OFACIE..... ettt ettt et ettt ettt et et a e ettt et et a et e bt bt sbee st n 25
1.5. Edit the LXR configuration file............coooiieriiiiiiiiiiieeiieeeeeee et 26
1.5.a. Global configuration section, HTML SUDSECHON.c...ccctrrueriiririenieniieiententt ettt sttt et see et saee st e 26
1.5.b. Global configuration section, file management SUDSECHON.cccuerieriirierieriieienieerie ettt etesbeeniteesbeeesbeeenes 26
1.5.c. Tree configuration section, version SEleCtion SUDSECHION.ccueeierteeieeiertieieetierteeteete st eeeeeeesaeeeeenseeeaeeesaneeas 26
1.5.d. Tree configuration section, SUDIreCtOry SUDSECTION.ccevuiriiruiriiriiriiiiiniiietcte e s 26
1.6. COPY CONTIGUIALION. .. .vteeeiiieeiieeeiieeeieeeeteeesteeesaeeestaeeesaeesseeessseeessseeeasseeesseessseesnsseessneennnns 27
L7, GENEIALE TNACX. .cc.uetieiuiieeiiieeeite ettt ettt et e et e ettt e e bt e e e bt e e eabbeesbbeesabeeesabeeeseaseeees 27
1.8. St UP the WED SEIVET.......iiiiiiiiiiiiiieee et 28
1,818, APACKHIE SEIVETeiuiiiuiieiiiiieieeite ettt ettt ettt et at e bt et s a e bt et e st e s bt e st e eat e s bt et e s st e bt eateeabesbe et e eabenbe e bt e sbbeesanaes 28

1.8.a.1. Apache 1.x specific
1.8.a.2. Apache 2.x specific

18D, LIGNIEPA SETVET.....eitiiiiiitiitieit ettt ettt ettt sttt et h ettt s bt e bt eab e sh e bt eab e she e bt eabesae e bt e bt sabenbeeatesateembaeeeabneenanees 30
1.8.C. OtNET WED SETVEIS......cueiuieutiniiatiiieitetet ettt ettt ettt et ettt et ettt ettt e s et et et et et et et enbenbeesbneemneeaneenne 31
1.O. RUIN @ TEST.ceueieiitieiteeiteeit ettt st ettt et s e ettt et e bt st e e b e et e nbe e saneenneeeseneee 32
1.10. Site-SPecific CUSTOMISALION. ..cc..vteriitieriieeriteeeite e ettt e ettt e st e e st eesibeeesabeeesbeeebteesbaeessanbeeeeeeas 32
L11. TroOUDIESHOOTING.cieeiiieeiieeeiie ettt ettt et e et e et ee st eessaeeeeeennssseaeeennnnns 33
1.12. INOEE ON SECUTILYvveeirieeiieeeitieeeitieeeiteestteeetteesseeessseesssseesssseesnsseessseesnsseesnsseessseessseeessseeesns 34
2 USING LXR ..ottt ettt e ettt e st e st e e st e e saateesasaeeansaeeansaeennseeessaeesseennnns 35
2.1 Launching LXRcooiiiiii ettt st 35
2.2. General aspect Of LXR PAZES....cccuiiruiiriiiiieiiieiieeeeeeee ettt 35
2.3. Browsing the SOUICE tIEE: SOUICE......cccuveerurierriiieeriieeeriieeeiteeeireesareesseeesseeesessnsreeeeessssseeeeens 37
2.3.2. LASHNG QITCLOTIES. ..euveveeuteeiiertieteettente et et ste et ettt e bt satesbe et e sub e st e et e ea b e sbe et e es b esbeenteeabesbeenbeeatenbeenbeeabenbeentesnnenanes 37
2,30 LISHNE fI1ES. .ttt ettt ettt sa et e e s a et e e st e sh e et e eabesa e e beea b e e bt e beeabesht e be e bt e e ebbeenabeeens 38
2.4. Comparing two source files: diff..........cocooriiiiiiiiiiiiie e 39
2.5. Looking up an identifier: 1dENL.........cevuieeriieeriieeriee ettt e e e e e e s e sinaeeeeeeas 42
2.6. Free-text Search: SEArCh.......cocuiiiiiiiiiiieeee e 43

2.6.2. GIIMPSE CINIZINE....c.uteruteteetietieteeteett et ettt et et e ett e bt eate st tebeeatesueen bt eatesbeenteeasesbeenbeeabesueenbeesbesaeenteesabbeesabeeennbeesnne 44

2.6.D. SWISN-E IIZINC....c.ueitieiiiie ittt ettt ettt st et et e s e et e e tesseebeeatesaeenseenteeaeenteeateeseenteenbeeaeenteenteeseeteenneeeanneean 45
2.7. LXR in MUIIPIE trEES CONMTEXL...ceuuviiriiieiiiieriiieiiieesieeesteeeniieeesiteessiteeeireesseeesntreeesesnnnnseeeeens 46
2.8. Checking configuration: ShOWCONTIZ..........ccoiuiiiiiiiiiiiiii e 46

3 INAEXING the SOUICE tIEE.eeueeiiieiieeiiiett ettt ettt et e st e e et et e st e e bt e sabeenbeesabeeeanneas 48
3.1, What 1S INAEXAIONT.....cueiiiiiiiieite ettt ettt et e bbb esab e e bt e sabe e et e e e eneeeean 48
3.2. HOW 10NE dOCS 1t LAKE?......eeiiiiiieeiiieeiite ettt ettt ettt e et e st esbreeeeeas 48
3.3, GENXIEE PATAIMELETS. ...ceeiuvieeriiieeeiiieeeitee et e et e ettt e ettt e ettt e ebe e e sttt e sabbeesabteesabeeeeabeeesabeessnneaeeens 48
3.4. Last petrol station before the deSErt...........ceeciiiriiiiriiieeiieeriie et arree e 50
3.5. RUNNING the INAEXATION.ccccuiiiiiieeiie ettt ettt e et e e et e e et eeesbaeeeaabaeeeeeennsneeeeeannnns 51
3.6. TrOUDIESNOOUINE.eeiiiiiiiiiieiie ettt e e 54
3.7. OptMISING TESOUICES USAZE.....veeureeurerureerureereerireareessreereesseesseesseeeseesseesneesseesneesseesneesnneeens 54

3.7.a. File revision VS. fI1€ VEISIOMS.c..cciiuiriiiiiiiiitiiieitiitetertert ettt saee e 54

3.7.D. PTOCESSING TIIMIE. ... cueeutieiieeiietieite ettt ettt ettt et e bt e e et e st e et e s bt et e eabesb e e bt eabeebte bt enbesate bt entesseebeenseesnbeeesasaeensbeaans 55

3.7.b.1. Purging the database
3.7.b.2. Changing database engine

3.7.C. DALADASE SIZE....c.ueeuiruiriiriiriiiiieiieieeteeteeee ettt bbb bbb bbb bbb bbbt sh e bbb san e e b e 56

4 Confiuring LXRcc.uoieiiiieiie ettt et e et e et e e st eestaeesnnbaeeeeeennnaeaeeeennnees 58
4.1. Understanding file references in LXR.......cccccooiiiiiiiiiiiceeececeeeee e 58
4.1.a. LXR is mainly a set of SCripts Written in Perl...........ccceoiiiiiiiiiiiieieiieeeee ettt e 58
4.1.b. LXR uses auxiliary tools or accesses Non-specific files.........cceriiririiriiniiiiiniiniiiieniceeiesteeee s 58
4.1.c. LXR emits HTIML COTE.....c.eoiriiriiriiriiitiiineneeieseste sttt sttt sttt st st sttt sb bbbt e es 59
4.2, Configuration fIlES.........ooiiiiiiiiiieie et 59
4.3, CONTIGUIALION SCIIPLS.c.uvtieetreeriieertieeeieeerteeestteeetteestteesseeesseeessseeessseeenssaeeesssnnsseeeessssnsseeesns 60
4.4, MUILIPIE-IEES COMEBXL..eeeuvieerurieeriieeeiitieeiteeetteeeteeeeteeesteeesateeessseeessseeessseeeeseasssaeeeesssnsseeeesns 61
4.5. Reloading LXR after system upgrade..........ccc.ueeeiiiiiriiiiniiiiniieenieeesieeeeeee et e 61
5 Master configuration file IXI.CONT........coouiiiiiiiiiii e 63
5.1. Master configuration file SYNEAX.......ccocuueiriiiiiiieiiiieeieeet ettt e 63
5.2. Rationale of parameter SrOUPINZ.......cccueeruieeriuieeriieerieeeriteeesreeeetteesnteessireeeessanreeeeessnnseeeeens 65
5.3. Sections in provided IXr.conf temMplate...........occueeriiiiiiiiiiiiieeieeeee e 65
5.4, GlODAl PATAIMELETS.ccuvieeeiieeiiieeitieeeitteeeteeestreesteeeseseeessaeesseeessseessseeessseeessseesnsseaeeesssssseeeens 66
5.4.8. AUXIIIATY TOOIS....eutetieiieeiieitete ettt ettt ettt et et e st e et e e atesae et e eatesbeea b e e st esbeeabeeate st enseeste bt enbeeste st ensesseenseenseaan 66
5.4.5. COMPULET DINS NAIMES........eouieiieiieiieitieie ettt eette it et e st esteetesteesteastesseenseessesseensesssasseenseassesseenseassesensseessneesnseenn 67
5.4.C. HTIML PATAIMNELETS.evtireeiieriieteeiteettenteeiteettesteeatesueesteeatesbe e bt eateebeebeeabesbeenbeeabesbeenbeeabesbtenbesasesbeenbeeabesseensaeenbneenn 68
5.4.d. FAle MANAZEIMENL.eeitiitiiiieteeie ettt ettt et ete st esteetesate s bt eabesutesbeeabesate bt easeeste bt easessee bt easeshtebeenbesutebeennaeesabeeans 70

5.4.d.1. Content of file filetype.conf

S.4.e. “ComMIMON FACLOT ...ttt ettt ettt ettt ettt et ettt sn e e b e eaeesaee s 73
5.5, TTCE PATAMEGLETS.eeeeeeiiiieeeeiiteeeeeitteeeeeittee e sttt eeeeetteeeeesasaeeeesnseeaeennssaeesannsseeeesnnseeeeaaaaaaeeennnns 74
5.5.8. SEIVET COMTIGUIATION. ..c..eutiutentitetet ettt ettt et ettt et ettt e st e st et e b et et et et et e be b esb et e st e nbenbe st enbesbenbenbesmnesabeenne 74
5.5.D. TIEE LOCALION.eiuiuiiiiiiiitieiieitctet ettt ettt ettt ettt et e at et eat et es e eae bt eaeebt st eaeeaeeaeeneenaee 76

5.5.b.1. Plain files

5.5.b.2. CVS repository

5.5.b.3. GIT repository

5.5.b.4. Subversion repository

5.5.b.5. Mercurial repository

5.5.b.6. BitKeeper repository

5.5.b.7. Optional initialisation parameters

5.5.C. OthEI PATAIMELETS. ...c.veeuteeuierteeieeiterteete ettt sat st e et sb e et e sae e s bt et e s et e sb e et e s ae e s bt e b e e ms e s bt eabeeasesbeeabeemsenseesaneeenneesanees 78
5.5.0. VEISION SEIECTION. ...ceuteruiiiieiieeiteett ettt ettt ettt et ea b e s bt et eutesbe et e e st e sbe et e eut e bt eabeea b e bt eabeeatenbeenbeeasensaeesabeeans 79
5.5.e. Exclude directories (SUDITECLOTY). ..co.eeuieiireieieeieettesteete ettt et et et et ee e bt et e sate bt et esatesseenbeestesbeenseentesaeenseeens 81
5.5.£. EXCIUAE fIles (SUDGITECIOTY). ...ceuerveruiriirtiriiriietietieiteiteteeteeteeteete st ettt et sbe b st e st st sbesbesbesbesbesbesbesbesbesbesbesbesbesbeenbeenen 83
5.5.g. Include directories (SUDITECIOTY). ..ccutrutirtiriiiriienteete sttt ettt et e st e sttt et et sbt et eabesbee bt eabesbeenbbeesabneesabeeans 84
5.5.0. AUXIHATY ALA SEOTAZE. ... verveeutieuieiteeieete st tert et te bt et ste e bt et e sbe e beeatesue et e saeesheentesatesbeenteeaeesbeentesatesaeenseesnseeenbeaans 85

6 Generic parser CONfigUration fIle..........ceeviiiiiiieiiiiieeie e e et s e e e aeeeeaes 87

6.1. Parser configuration file SYNEaAX..........ccovuiiiiiiiiiiiiiiiieeteeeeee e 87
6.2, ECLAZS PATAIMIELETS.eeeueeeeiiieeriteeeeiteeeeiteeerateeeatee ettt eebtee ettt esabteesabeeesabeeesabeeesabaeensseessaannseeeens 88
6.3. Language deSCIIPLIONS.cccuuteerereeeiiieeeiteeeiteesieeesteeesteeesebeeesabeeeaseessseessseeesesnsseeeessssnssneeens 89
6.3.2. LaNGUAZE LAZZINZ...c.eerteetiriientieieeitente ettt et sttt ettt e s bt et e sut e bt et e shte bt eabeshtesbeeabesh e e bt easeshte bt eabeshte bt enabeeebaeenn 90
(O30 o T8 [1S3 1Y 1 1S ol (1T 5 o) OSSR UUSRTRU PRSP 90
6.3.C. RESEIVEA KEYWOTMS.......oviiiiiiiiiii e e 91
6.3.d. LangUagEs attITDULES.ccveruiiriiiieriteiteeie sttt ettt et b ettt sb et e e at e s bt e bt eabesbt e bt eabesbe e bt eabesbee bt eabesaeenbeeabesaee s 91
6.3.€. Source file fragment CAtEZOTIES.cccuteruiriiertieiteeiest ettt ettt et e et e st e bt e ate s bt e bt eatesbee bt enbesbee bt ensesaeenseensesnbeeens 91
6.3.f. Describing iNCIUAE SYMEAK......c..civiiuiiiiiiiiiiieieee ettt st st se e e e sae e 94
6.3.2. Bridging ectags and LXR........cocoiiiiiiiiiiieeteeteet ettt sttt ettt et e et e st e bbeeeas 96

7 WeD SErVer CONTIZUIATION.eeiiiiiiietieeite ettt ettt ettt ettt e sat e et e e s bt e eabeesateeabeesaeeenbeesseeennee 97
7.1. A note on the interaction between URLs and LXR configuration.............cccceeeviiiinieennnnen. 97
7.2 APACKE ...ttt ettt e et e et e e abeeeabeeenaeas 98
7.2.2. LXR @S The TMNAIN STLE....c.ueietieitieiiieeie et teeetie et e sttt et ee et eesteesateestte et tesaseesaeeasseeanseesaseesaseanseeaseesnseasnseessansnaeesssannes 98
7.2.0. LXR @S @ SUD-SIO....eeuteiienieeiieeiteieet ettt ettt et ettt et et s bt e bt e st e s bt et e e st e s bt e bt e st e e bt e bt eabeshe e bt e bt e e sbneenabeeens 98
7.2.c. LXR a8 AN INAEPENACIIE STLC.....c..eeueertieiieiiertieieetesteesteete st eteeatesteestesatesteesteeaeesseenseessesseenseeseesseensesnsesseensesanesnseeenn 99
7.2.d. MUILIPIE trEES OPETALION. ...c..eeveruteriieteeiteeitenteeteettenteeteete e bt eatesbeebeeasesbeebeeasesbeeseeasesseenbesasesbeebeeaseesabeeenanaeensaeenns 99
7.3 LANEDA e s e ee e es e e s e e s ee e es e es s eee s eessee s eeseeeseee e eeeeesesereeeeses 101
7.3.a. Lighttpd aS the MAIN SILE.......c.eeiuieiieietieieetteteete et et et e et e te et e ettesteesteeaeesseessesseeseensesseenseensesseenseensesseenseesseennns 101
7.3.b. Lighttpd a5 @ SUD-SILE....c.coiiiiiiiiiiiiiice et s 102
7.3.c. Lighttpd as an indePendent SIe...........ceuerueeuerierteritertesteetesteeste ettt et et e ste e besatesaeenbessee bt esbesaaenbeenbbeessbeesabeeens 102
7.3.d. MUILIPIE rEES OPETALION. ...c..eeueieuieetietieiieeeteteeteettesteeteestesteeseesseeseensesseeseessasseenseensasstensaansasseensaansanseenseansanseensens 102

8 CustomiSing Page ArCRITECTUIE.c..ueiiiiiiiiieeriie ettt ettt e e e e ieaeeee s 104
8.1. Variable teXt N teMPIALES.......ccocuiiiiiieiiiieeiee ettt ettt e ee st e e e st e e e e enneeees 105
8.1.a. SIMPLE MATKETS. ..ottt s e et s ae e seneeneeneeae 105
81D, BIOCK IMATKETS. ...c..eeutiiiiitieieete sttt ettt st b et st b et shte s bt et s a e e s bt eab e satesb e et e eatesbeenbesabesheenbesabeesnbeeens 106
8.2. Markers fOr NEAAETS.ccuviiiieiiiee ettt e e e e e e e e s aeeeeeneaeeeesnnnnnes 106
8.2.8. KNEAAD SECLIOM.....eiuiiiiiieeieeit ettt ettt et h et e st s bt et e st e sbe et e s ab e s bt et e eabesbe et e sabesbeeasesanenbeeas 107
8.2.D. KDOAY SECLIOM.itieniieiiitietteteet ettt ettt ettt et et et e b e e st e sb e et e e st e sa e et e esbesstenbeesteestenbeenbesseanseenbesstenseeennseean 107

8.2.b.1. Titling

8.2.b.2. Navigating to other trees
8.2.b.3. Switching between modes
8.2.b.4. Setting variables

8.2.b.5. Passing state to the next script
8.2.b.6. Other markers

8.3, MArKers fO1 TOOTETS.ciiiiiiiiiieeiee ettt e e e e e ee b e e e eeaeeeaeeeeeeeseeeseaeees 115
8.4. Markers for direCtory HISTINE.......c.coeuiriiiiriiiiieieeeeeeee e 115
8.4.2. DIrECLOTY AESCTIPLION. ... eevieutiritertietieite sttt ettt et ettt e sttt e s bt et eate s bt e bt eabesbe e bt eabesbee bt eabesbe e bt eabesbeenbaeennseesnnreenn 117
84D, FILE AESCIIPHION. ...ttt ettt ettt et ettt e bt et e s bt et e eate bt e eeeatesbeenteeuee bt enseeneenbeensesntesbeenseenneeeenseeenns 118
8.5. Markers fOr fle IISTINE.ccoruuiiiiiiiiiiieiite ettt ettt e et e et e e e e e e 118
8.6. Markers for difference markup...........coooueiiiiiiiiiiiiiiie et 118
8.7. Markers for identifier SEarch............cccooueiiiiiiiiiice e 118
8.7.8. QUETY TOTTIL..c..eiiiieeiieeit ettt et b et e et bt et eab e s bt e s bt eab e s bt et e e st e sb e et e eabesbeenbeeabesbeenbeenbenaeesabeeans 118

8. 7.0, RESUILS AICA.eeueieuiieeietiee ettt ettt et ettt et e et e st e e bees b e eat e b e enteese e seenbeeseeseenseesteseenseensenseensesnsenseenseaan 120
8.8. Markers for free-teXt SEArCh..........ccoiiiiiiiiiiiie e 122
8.8.8. QUETY FOTTI.....eitiiitiiiietiee ettt ettt ettt s bt et e at e s bt et eatesh e et e e abe s bt e bt eateshe e bt eabeshee bt eabesabeeenabeesnns 123
88D, RESUILS AICA. ... eeiineieiieeiieti ettt ettt et e st et e et e e st e e st e eat e st esseestesseesseeseenseensaessenseensaensansseesnseaennseesnns 125
8.9. Markers for configuration diSPlay...........c.ceerueeriiieiriieeniieeriee et e 127
8.10. Markers fOr CUSIOM EITOT PAZE....ceevveerrreeriieeriieeriieertee ettt e ettt eeiteesbeeesibeeesabeessareesaneesnnee 128
9 Customising LXR apPEATANCE........ccccueiiriiiiiiiiiiiie ittt ettt e e e s eeeees 130
0.1, UDIQUILOUS CLASSES....c.uvteuteeutieriieaiieeiie ettt ettt et e et e et e bt e et e bt e sabeebeesabe et e eeeateeeebaeeeans 130
0.2. Header and fOOLET.........cccuviiiieeiiee ettt e ettt e e et e e e e ta e e e e eaae e e e esaaaraeeaaaaaens 130

0.2, THHNE. ..o s 130

0.2.D. IMOAE DULLOMIS. ...ttt sttt ettt sttt b e bbbt s bt e bbbt e bt e bt eb e e bt e bt e bt e bt e bt ebeeb e e st ebeebeebeemeebeenteneeseneens 131

0.2.C. VaTIaADIE DULLONS. ... eeeueieeiiieetieete ettt et et e et e et e et e e st e et e esste e steenseeeaseaasseasseensseenstennseesssaesseenseennseesnsaeesennnnes 131

0.3, DATECLOTY LISHINME. c...eeutieiiieiiieit ettt ettt et e st e e sa e e bt e sab e e bt e sabeenbeesareas 131
9.4, S0oUTCE tEXE LISTINE.....eeeiiieiiiiiierieee ettt ettt e e e sere e e s enaneees 132
9.5. DIfference Markup.........cooveeuiiiiiiiiiiieeiieeeeee ettt 133
9.6, IAeNtIIET IOOKUD. ..c..viieiiiiiiiie ettt ettt e et e et e e e s sabbaeeeesenabneeeeennnns 133
0.7, Free-teXt SEATCH....c.uiiiiiiiiiiiie ettt 134
9.8. Configuration dISPIAY......ccceeviiiiiiiiiiiiiee e 134
10 UsSIng LXR WIth SCMS.....coiiiiiiiiieeiteee ettt ettt st ettt e e 136
TO.1. LAMIEATIONS. ¢.eeuetteeiiieeitee ettt ettt ettt ettt ettt e it e et e e e bb e e eabteesabeeeeabeeeeabeeeeabeesanneeeeenns 136
10,2, VSt et et ettt et a e et sa e e bt e bt e be e sttt e et e e e e nteee e 136
0.3, Gl e a e st b et b e bt e bt e et e b st e e e aneee 137
104, SUDVETSION.eiiutiiiieette ettt ettt et e et e bt e et e e bt e sab e e bt e et e e bt e e sbbeeesaaneeas 139
1O.5. METCUITAL ...ttt ettt ettt bt e e bt e bt e s aeeebeesnbeeesabeeas 139
LO.6. BIKEEPET.....ccoutiiiiiieiiiit ettt ettt ettt e et e e st e e it e e s it e e sabeesabeeseasbnaeens 141
AIPhabEtiCal INAEX.....cccuuiiiiiiiiiiieee ettt et e st e et e s bt e st e e e bt e e sbaeeeens 1

Project LXR The LXR User's Manual Language en-UK

Software release |.2 0 Foreword Document revision |.4

m F oreword

0.l.a. What is LXR?

The acronym LXR used to stand for Linux Cross Referencer. LXR arose from a need to navigate
“comfortably” inside the Linux kernel source during its development because of lack of adequate
written documentation, constantly evolving architecture, uncoordinated user contributions, ...

The first version was really focused on the Linux kernel with an emphasis on C language parsing.
But such a tool has nothing specific to Linux or to operating system development. It can in fact be
used against any source tree. It was thus extended to accept many programming languages. It was
also extended to deal with source trees managed by some source code management' systems or
SCMs, namely CVS, Git, Mercurial, Subversion or BitKeeper, without having to extract the files to
real directories.

LXR usage can be traced back as early as 1994°. The present software is the direct descendant of
this venerable ancestor. An offset specifically dedicated to the Linux kernel (LXRng) has been
created to deal with this huge source-tree (see http://Ixr.linux.no). The technology is quite different;
source code is totally new. The product remains somewhat experimental even now and does not
offer all functionality of the main line.

It would be nice if the initial developers could contribute with a short note on LXR history.

LXR presents on-screen a source file with editing improvements:

* Display through an HTML browser

All the power of HTML and CSS is available. Moreover, no need to learn usage of a new
application, you just launch your usual web browser. You can display several source files or
directories simultaneously in different tabs or windows.

* Colour highlighting on syntactic objects
Comments, keywords, variables and functions are displayed differently to be easily identified.
* User symbols are clickable

Hyperlinks are build under these symbols to open a cross-reference page (LXR first goal), from
where you jump to any occurrence with another click.

* Explicit search for identifiers

You enter the name of a user symbol and the cross-reference page for it opens. It is really the
same feature as the previous one, which could be considered an implicit or contextual case.

* Side-by-side presentation of two versions of the same file

SCMs are also frequently referred to as version control systems or VCS's.
This date needs to be checked with the initial developers if they can show up.

Project LXR The LXR User's Manual Language en-UK

Software release |.2 0 Foreword Document revision |.4

Differences are visually indicated with background colours. Hyperlinks are kept.
» Free-text search under certain restrictions

If certain conditions are met, you can search (with pattern-matching if you like) any string of
characters in your source-tree. These limitations are imposed by the free-text search tools, not by
LXR itself.

0.1.b. What is the technology under the hood?

LXR is typical of *NIX products. It does not reinvent the wheel. It relies on “out-of-the-shelf” tools
to do its job. It is some kind of supervisor launching services and aggregating the results.

The components are:

1. a database to store the user symbols and their cross-references
2. alanguage parser

3. a web server to display and navigate the source-tree

4. a free-text search engine for arbitrary inquiries

LXR is the “glue” between these components. It is written in Perl, thus you also need a Perl
interpreter.

0.l.c. How to use it?

You meet LXR on three different occasions. Each one has a specific context and needs different
skills:

* You install LXR once. The next chapter tells you how.

* You initialise the database every time you modify the source-tree. This is done with a script
provided with LXR. You may need to update the configuration file when you add a new source-
tree or a new version to an existing one.

* You launch your web browser whenever you want to read through the source-tree.

These tasks are listed in order of increasing frequency and decreasing effort.

0.1.d. Getting help

If you can't get LXR to work then have a look on the web site http:/Ixr.sourceforge.net’, in
particular at the “Troubleshooting” page http://Ixr.sf.net/en/troubleshooting.shtml. If you do not find
your answer, check the forum archives http://sf.net/p/Ixr/discussion/?source=navbar or the mailing

3 All sourceforge.net URLs can be shortened to ST.net, e.g. 1Xr.sourceforge.net to
1xr.sf.net

http://lxr.sf.net/troubleshooting.shtml

Project LXR The LXR User's Manual Language en-UK

Software release |.2

0 Foreword Document revision |.4

list. If you are still facing difficulties, ask the developers at 1xr-general @lists.sourceforge.net.
Note:

Due to spam flooding, it has been necessary to remove public access to the mailing lists. But

you can register for free on SourceForge and you will be granted membership within a few
hours or days.

Also, help improving this manual. Report any inaccuracy, error or presentation misfit on the forum
or mailing list.

mailto:lxr-general@lists.sourceforge.net

Project LXR The LXR User's Manual Language en-UK

Software release |.2 | Installing LXR Document revision |.4

n I nstalling LXR

This chapter gives you instructions to succeed in installing LXR to display a
single source tree. This is the simplest case and LXR can do much more.
These instructions were formerly contained in the INSTALL document that
comes with every LXR distribution. Now the INSTALL document is only a
streamlined version of this section.

I.I. What is needed?

As mentioned in the foreword, LXR is based on widely available components. The majority of them
is already installed in common Linux distributions. This is a check-list of your configuration.

In all cases, the preferred method of installation of these tools is a package
download of your favourite distribution, so that you do not bother with
compiling and configuring the tool, which may require expertise beyond the
need of using LXR.

LXR depends on the following tools:

1. A Perl interpreter
LXR is written in Perl.

It is installed by default on most Linux platforms, but you must check version is at least 5.10%. To
check, type in a terminal’:

$ perl -v
This is perl 5, version 14, subversion 2 (v5.14.2) built for ..

If you get a message like Unknown command or if you read a number smaller than 10 after
version, install a new version of the interpreter.

2. Atleast version 5 of the exuberant ctags program

LXR release 0.10 needed Perl version 5.10, while earlier releases only needed version 5.8. Release 0.11 was modified
to be again compatible with 5.8 considering the widespread use of the Perl interpreter version 5.8. Unhappily,
parsing correctness requires the use of features introduced in version 5.10; it is thus impossible to maintain
compatibility with older Perl interpreters. Note that Perl 5.10 was released in December 2007 and, as of this writing,
current version is 5.16.

Technically, the parser has been modified to allow alternatives in the region delimiters (see 6.3.e Source file
fragment categories). This was mandatory for the Ruby language. But do not assume other languages will always run
without the patch. The change solves non trivial bugs in instruction handling and gives more power to describe
language constructs. Consequently, it will certainly be generalised.

As a side-effect of giving up 5.8 compatibility, programming LXR will be made easier.

> Ttalic bold text is user input, roman light is computer output.

4

Project LXR The LXR User's Manual Language en-UK

Software release |.2 | Installing LXR Document revision |.4

ctags is the language parser and dictionary builder used by LXR.

It is also generally installed by default. To be sure, type in a terminal:

$ ctags --version
Exuberant Ctags 5.8, Copyright (C) 1996-2009 Darren Hiebert

As a last resort, it is available from SourceForge at http://ctags.sourceforge.net (or
http://sf.net/projects/ctags).

3. A relational database

For performance reasons, LXR stores its dictionary (i.e. symbols and their cross-references) in a
database because they are optimised for high volume retrieval.

MySQL 4.x/5x (http://www.mysgl.com), Oracle (http://www.oracle.com), PostgreSQL
(http://www.postgresql.org) and SQLite (http://www.sqlite.org) are supported.

You will also need the right Perl DBI drivers for your particular database, usually available from
CPAN (if not in your distribution).

How do you choose between them?

You may have no choice if your site has a database policy. You only have to configure LXR
for the correct database engine.

SQLite is very easy to install, requires no configuration and does not use much resources. But
it has limitations, among which the most important is all data and indexes are stored in a
single ordinary file. This means SQLite is unlikely to be able to cross reference the Linux
kernel, even a single version. It is an adequate choice for a personal small-sized project on an
individual computer, however indexing time may grow rapidly with project size.

MySQL is widely available and supports heavy traffic. Its capabilities largely exceed LXR
needs. It is faster than SQLite and scales very well on big projects like the Linux kernel.

PostgreSQL is a good choice. It also scales very well on big projects. Its capabilities are a bit
behind MySQL (but it does not matter as far as LXR is concerned) and it is nearly as fast as
MySQL. 1t 1s also recommended for big projects, even if its configuration is not as easy as
MySQL.

Oracle is under a proprietary license. Consequently, it has not possible to the present
maintainer to test this database engine. Bug reports are welcome.

4. A web server
LXR outputs its results as HTML text to be read with any browser.

Apache httpd (http://httpd.apache.org) with mod_perl (http://perl.apache.org) is recommended.
LXR works with Apache I and Apache 2 provided mod_version is installed..

Starting with release 0.11, lighttpd, a resource friendly and very fast server, is also experimentally

Project LXR

Software release |.2

The LXR User's Manual
| Installing LXR

supported. Please send feedback to improve this support.

Language en-UK

Document revision |.4

5. For free-text searching, either Glimpse (http://webglimpse.net) or Swish-e (http://swish-e.org)

version 2.1 or later

Swish-e is fully GPL'ed, while Glimpse is only free for non-commercial use. Thus you have little
chance to find the latter among your distribution packages, but installing it is quite automated.

How do you choose between them?

They do not fulfil the same purpose. Glimpse will give you every reference and a hyperlink to
the line containing the reference. Swish-e will give you only the files containing the text
sorted by order of pertinence (according to its internal criteria, roughly the number of
occurrences). Both need pre-indexing, but the amount of data kept in the indexes varies.

As a rule of thumb, independently of personal taste, if you want very accurate references, use
Glimpse. If you are satisfied with only the file name for occurrences, or if you have a huge
source tree and you observe excessive search time with Glimpse, use Swish-e.

Glimpse is fit for in-depth source code analysis while Swish-e is more oriented towards data-
mining on the web.

Unhappily, Glimpse can handle only plain files. Swish-e is a little more generic in that it can
handle plain files and CVS repositories. But none of them can cope with Git or BitKeeper
repositories.

Glimpse builds macro-blocks to speed up searches, while Swish-e duplicates your source

files. Swish-e footprint is equal to the size of your source-tree while Glimpse footprint is a 5-
10% of that size.

. The Perl database driver interface DBI and the relevant DBD driver for the database you're using

If not already present, they can be installed via CPAN. See http://dbi.perl.org/index.html for
more info.

7. The Perl File::MMagic module, available from CPAN

This module is used to infer the type of file from some “signatures” in its content. This allows
the cross-reference generator to discard non-text files. You really need it with Swish-e but LXR

will not compile without it.

8. If storing your source in a VCS you need to install the appropriate management system as well.

* CVS:rcs
* git: usually packaged

* Subversion: usually packaged

* Mercurial: usually packaged (experimental feature starting in 1.1)

http://dbi.perl.org/index.html
http://swish-e.org/
http://webglimpse.net/

Project LXR The LXR User's Manual Language en-UK

Software release |.2 | Installing LXR Document revision |.4

* BitKeeper: bk (availability unknown)and Digest::SHA module (available from CPAN)

Remember: always try first to get the tool from a package of your distribution!

1.2. Create LXR installation directory

Decide where you want LXR installed. Consider if you just run a personal tool or offer system-wide
service.

In the former case, you can play harmlessly in your user home directory.

In the latter case, you need administrator privileges to create files in the utility directories. A good
choice could be /usr/local/share/Ixr/. If you have no privileges, you are left with installation in your
home directory but you incur no loss in functionality.

First, download the tarball from the LXR project site at http://sourceforge.net/projects/Ixr. Then
expand the tarball in the LXR distribution into the selected directory of your choice like this:

* For a first try, in your own home directory:

$ cd ~
$ tar -zxf /path/to/downloaded/tarball/lxr-x.y.tgz
$ mv Ixr-x.y 1xr

The last command gets rid of release numbers in the LXR directory name.

* For system-wide service installation (to be attempted once you have run LXR successfully
from your home directory):

$ cd /usr/local/share
$ tar -zxf /path/to/downloaded/tarball/lxr-x.y.tgz
$ mv 1xr-x.y 1xr

(as root or with appropriate permissions through su or sudo).

Then enter this directory, hereafter called LXR root directory:

$ cd 1xr

At this point, the LXR root directory contains

$ 1s -F
custom.d/ doc/ ident* LXRimages/ scripts/ source* tests/
diff* genxref* 1lib/ robots.txt search* templates/

a set of directories:

* doc/
documentation pertaining to this release, notably INSTALL, a digest of this chapter, and
CHANGES, highlighting the main changes since the last release;

e lib/

http://sourceforge.net/projects/lxr

Project LXR The LXR User's Manual Language en-UK

Software release |.2 | Installing LXR Document revision |.4

all support routines;

* LXRimages/
graphic material specific to LXR;

* scripts/
a collection of scripts to automate installation;

* templates/
a collection of template bits for the various configuration files and HTML page lay out;

> tests/
a skeletal compatibility directory since LXR tests are now separate;

Note:
Directory custom.d/ will be created later during the configuration step; this is where you store
your customised files (configuration, templates, ...).

scripts: diff, genxref, ident, search, showconfig and source implementing the various operating
modes

and a web crawling security file robots.txt.

You can now run an optional test with an installed script. It will check Perl version and the existence
of various tools. Of course, this test errors out because you have presently no valid LXR
configuration. But you can verify that your environment allows you to proceed without trouble.

$./genxref --checkonly

ERROR: could not open configuration file 1xr.conf

[OK] Perl version ... 5.14.2

Parameter 'ectagsbin' not defined - trying to find ctags

ctags found at /usr/bin/ctags

[OK] ctags version ... 5.8

Parameter 'glimpsebin' not defined - trying to find glimpse
glimpse found at /usr/local/bin/glimpse

Checked: glimpse version ... 4.18.5

Parameter 'glimpseindex' not defined - trying to find glimpseindex
glimpseindex found at /usr/local/bin/glimpseindexg

Checked: glimpseindex version ... 4.18.5

Parameter ‘'swishbin' not defined - trying to find swish-e
swish-e not found, “command -v swish-e’ returned a null string
genxref stopped without indexing by --checkonly option

The main items to care for have been highlighted in the above computer output.
* Perl version: if FAILED is displayed, install a newer interpreter (at least 5.10);
* ctags version: if FAILED is displayed, install a newer one (at least 5);

e 'ectagsbin', 'glimpsebin', 'glimpseindex', 'swishbin': take note of the locations for
step 1.5 Edit the LXR configuration file below.

It is normal that one of 'glimpsebin' and 'swishbin' gives a not found status because LXR
needs only one free-text search engine, but having both installed on a computer does no harm.

Project LXR The LXR User's Manual Language en-UK

Software release |.2 | Installing LXR Document revision |.4

1.3. Configure your installation

Configuration is done with the configure-Ixr.pl interactive script which builds configuration file
Ixr.conf from your answers. This file may later be tuned manually. References to chapter 5 Master
configuration file Ixr.conf are given to help associate a question to the relevant parameters.

Acceptable answers for “closed” questions are shown inside square brackets. Suggested default is
shown in upper case (answers are case-insensitive). You only need to type enough characters to
make the answer unambiguous. If your answer is not acceptable, the question is asked again. Just
typing the “return” key is equivalent to the default answer.

For “open” questions, there is no limiting list in square brackets, however a reminder for the
expected type of answer may be shown between parentheses. When an answer is mandatory, just
typing the “return” key is not allowed and the question is asked again.

1.3.a. Simple configuration

This section covers the installation of a single source-tree located in a
“plain” directory (not in a VCS repository).

CAVEAT!
Configuration for the Linux kernel, even if this is the only target source-tree, is considered
advanced configuration and has a devoted section.

Our example source tree is named /home/source/tree. This directory contains several versions of the
project as:

* /home/source/tree/vl
* /home/source/tree/v2
* /home/source/tree/v3
where the files composing each version are stored.

Launch script configure-Ixr.pl. Until you are familiar with configure-Ixr.pl behaviour, option -vv (or
--verbose) is highly recommended. It prints informative text to help you choose among the
numerous possible options.

$./scripts/configure-1xr.pl --verbose
*** | XR configurator (version: 1.13) ***

LXR root directory is /where/you/installed/LXR
Configuration will be stored in custom.d/

Directory custom.d/ is created if it did not exist.

Configure for single/multiple trees? [S/m] >
Do you intend to add other trees later? [yes/NO] >

Just hit “return” to select the default S (single) and NO answer.

Project LXR The LXR User's Manual Language en-UK

Software release |.2 | Installing LXR Document revision |.4

*** | XR web server configuration ***

LXR can be configured as the default server (the only service in your
computer), a section of this default server or an independent server
(with its own host name).

Refer to the User's Manual for a description of the differences.

Web server type? [1.DEFAULT

/2.section in default

/3.1indepedent

/4.section in indepedent

1>2

This question and the following are intended to define the web server configuration. The proposed
choices covers two main categories:

¢ LXR in the default server,

* LXR in an independent site with its own host name (different from //localhost),
with two variants in each category:

* the server is completely dedicated to LXR (choices 1 and 3),

* other information is presented besides LXR (choices 2 and 4).

Choose 1 or 2 for initial simple installation.

As far as LXR is concerned, choices 3 and 4 are not more difficult, but they involve more
sophisticated configuration of DNS and web servers. Anyway, switching from 1-2 to 3-4 can be
done manually (editing 1xr.conf and xxx-lxrserver.conf) without running again the configurator
for the indexed trees.

In this guide, we choose case 2, LXR as a section of a wider site.

The computer hosting the server is described by an URL. The form is
scheme://host_name:port
where:
- scheme is either http or https (http: can be omitted),
- host_name can be given as an IP address such as 123.45.67.89
or a domain name like localhost or 1xr.url.example,

- port may be omitted if standard for the scheme.
The following question asks for a primary URL. Later, you'll have
the opportunity to give aliases to this primary URL.
--- Host name or IP? [//localhost] >

Accept the default choice. Later, you can define aliases like //127.0.0.1 or
//mycomputer.mydomain.

CAUTION!
The host name or IP MUST look like an URL, i.e. the host name or IP must be preceded by
//. The question is asked again if your entry does not follow the advertised form.

URL section name for LXR in your server? [/lxr] >

This is the name of the part of the server dedicated to LXR. It corresponds to a directory in

10

Project LXR The LXR User's Manual Language en-UK

Software release |.2 | Installing LXR Document revision |.4

DocumentRoot and to the initial URL path.

Notes:
LXR is composed of scripts and some sites may impose restrictions on the possible locations
of such scripts. For instance, scripts may only be launched from cgi-bin/ in the server
directory. In this case, answer with the allowed location like /cgi-bin.

As mentioned above, this section is the name of a subdirectory in the DocumentRoot
hierarchy and can be as long as needed, like /levell/dir2/sect3/terminal4.

Always start the section name with a slash (/).

The default choice is adequate in the majority of cases.

*** | XR database configuration ***

The choice of the database engine can make a difference in indexing
performance, but resource consumption is also an important factor.
* For a small personal project, try SQLite which do not
need a server and is free from configuration burden.
* For medium to large projects, choice is between MySQL,
PostgreSQL and Oracle.
Oracle is not a free software, its interface has not been
tested for a long time.
* PostgreSQL databases are smaller than MySQL's and performance
is roughly equivalent.
* MySQL is at its best with large-sized projects
(such as kernel cross-referencing) where it is fastest at the cost
of bigger databases.
* Take also in consideration the number of connected users.
Database engine? [MYSQL/oracle/postgres/sqlite] >

Choose the database available on your computer. If you have not yet installed a database server, you
might consider SQLite which is a sensible choice for a test since it has very few dependencies (if
any) and does not demand lots of resources. But do not use it on a big project.

Depending on auto-detection of the free-text search engine (see 5.4.a Auxiliary tools):

--- Directory for glimpse databases? > /home/myself/glimpse_databases
--- Directory for swish-e databases? > /home/myself/swish_databases

Make sure that directory /home/myself/glimpse_databases or /home/myself/swish_databases has
world-read permission since it will be accessed from the web server.

In case you installed the free-text search engine in a private location (i.e. the binary executable
cannot be detected by command command -v), you must manually tell the path to it:

ERROR: neither glimpse nor swish-e found in $PATH!
Is your source tree stored in a VCS repository? [yes/NO] >

Answer NO since the source tree is stored in plain files.

Does one of them exist in a non standard directory? [YES/no] >

Tip:

Project LXR The LXR User's Manual

Language en-UK

Software release |.2 | Installing LXR Document revision |.4

If you answer NO here, free-text search is disabled. This is a way to try LXR without the

trouble of installing a free-text search engine.

--- Which is it? [GLIMPSE/swish-e] >

For Glimpse:

--- Location? (e.g. /usr/share/glimpse-dir/glimpse) >
/home/myself/glimpse/glimpse

/home/myself/glimpse/glimpseindex

--- Location of indexer? (e.g. /usr/share/glimpse-dir/glimpseindex) >

For Swish-e:

--- Location? (e.g. /usr/share/swish-dir/swish-e) >
/home/myself/swish/swish-e

You are now back to the question about directory for the free-text search engine.
Note:

When both Glimpse and Swish-e are automatically found, the script opts for Glimpse. If you
prefer Swish- e, edit the resulting custom.d/Ixr.conf file once configuration is complete.

Script continues with:

templates directory templates/ now protected read-only

IMPORTANT:

This message means you are prevented from making direct changes inside templates/. You
must first copy any file to custom.d/ and reset its access permissions to read/write before

editing it.

Is your Apache version 2.4 or higher? [YES/no] > n

Apache access controls changed between 2.2 and 2.4, causing incompatibilities in some directives.
Answer according to your Apache version. If you install another web server, like lighttpd, any

answer is acceptable.

file .htaccess written into LXR root directory
file apache2-require.pl written into configuration directory

file apache-1xrserver.conf written into configuration directory
file lighttpd-1lxrserver.conf written into configuration directory

Important files are customised, based on your previous answers, and copied to their final
destinations. apache-Ixrserver.conf will need to be copied into the Apache configuration directory

(often Zetc/httpd/conf.d/).

Now, the real configuration may begin:

*** | XR master configuration file setup ***
Global section part

*** Configuring auxiliary tool paths

*** Configuring host name or IP (as http://...)

12

Project LXR The LXR User's Manual Language en-UK

Software release |.2 | Installing LXR Document revision |.4

*** Host name previously defined as //localhost
--- Alias name ? (hit return to stop) >

See 5.4.b Computer DNS names.
For this first trial, configure for a local server without alias names.

When you get used to LXR configuration, this is where you can add other host names for your
server, like //127.0.0.1, https://secured.access.example, efc.

CAUTION!
The alias name must look like an URL, but this is not checked here.

Chapter 7 Web server configuration is fully devoted to web server configurations from the simplest
(as here) to the most sophisticated.

*** Configuring HTML parameters
*** 'Buttons-and-menus' interface is recommended for the kernel
to avoid screen cluttering.
--- Use 'buttons-and-menus' instead of 'link' interface? [YES/no] > NO
*** Configuring file subsection
*** Configuring "common factors"
*** Marking tree section

*** | XR master configuration file setup ***
Tree section part
SQL script for database initialisation

*** Configuring LXR server parameters
*** The virtual root is the fixed URL part after the hostname.
*** You previously defined the virtual root as /lxr

Host name and virtual root define how you reference the LXR server from within your browser (see
5.5.a Server configuration). In this example, the URL is http://localhost/1xr.

--- Caption in page header? (e.g. Project XYZZY displayed by LXR) >
First example
Do you need a specific encoding for this tree ? [yes/NO] >

What you define as a caption is printed in a header area of every page displayed by LXR (see 5.5.a
Server configuration). Pages are emitted with UTF-8 encoding by default.

*** Describing tree location
How is your tree stored? [FILES/cvs/git/svn/hg/bk] >

The default answer is for “plain” files and directories. The other choices are for VCS's.

*** A source directory contains one sub-directory for every version
--- Source directory? (e.g. /home/myself/project-tree) >
/home/source/tree

Name here the directory containing the source-tree (see 5.5.b.1 Plain files).

Project LXR The LXR User's Manual Language en-UK

Software release |.2 | Installing LXR Document revision |.4

Name to display for the path root? (e.g. Project or $v for version) [$v]
>

Default answer $v is replaced by the version name in the file path displayed below the caption.
Otherwise, the text is a fixed substitute for the file path root (i.e. for /home/source/tree/version/).
See 5.5.c Other parameters.

*** Enumerating versions
Label for version selection menu? [Version] >

*** Versions can be explicitly enumerated, be read from a file or
computed by a function. The latter case is recommended for VCS-stored
trees.

Version enumeration method? [LIST/file/function] >

--- Version name? (hit return to stop) > vi

--- Version name? (hit return to stop) > v2

--- Version name? (hit return to stop) > v3

--- Version name? (hit return to stop) >

The explicit list of versions is built from the successive answers (see 5.5.d Version selection). To exit
from the loop, give an empty answer.

Note:
Since at least one version is mandatory, hitting the return key the first time does not exit the
loop. Version name is requested until one is given.

*** By default, first version in list is displayed. You may also indicate
a prefered version.

--- Default displayed version is first in 'range'? [YES/no] > n

--- Default version name? > v3

A non-default answer of no has been given to be able to choose the version displayed at start-up (v3
instead of v1, the first of the list).

Tip:
If you want to ease future version additions and always have the latest version displayed first,
list your versions in reverse order: latest first, then older and older. Later, add the new version
at the head of the list in file [xr.conf and nothing else needs to be changed.

*** Setting directory lists

*** Some directories may contain non-public project data (binaries,
compilers caches, SCM control data, ...). They can be hidden from LXR.
--- Directory to ignore, e.g. CVSROOT or .git? (hit return to stop) >

Ignore this item a first-time trial.

See 5.5.e Exclude directories (Subdirectory) for an explanation and enter the directory names, one
per line.

*** If your source code uses "include" statements (#include,
require, ...) LXR needs hints to resolve the destination file.
--- Include directory, e.g. /include? (hit return to stop) >

Ignore this item a first-time trial.

Project LXR The LXR User's Manual Language en-UK

Software release |.2 | Installing LXR Document revision |.4

The include directory list is useful to create the hyperlinks to the included files (mentioned on
#include statements in C or equivalent in other languages) if they are not located in the same
directory as the including file. All paths are relative to the source root directory, but you must write
them with an initial separator. See 5.5.g Include directories (Subdirectory) for an explanation and
enter the directory names, one per line.

*** Configuring data storage

--- Database name? > tree
--- DB user name? [1xr] >
--- DB password? [lxrpw] >
--- DB table prefix? [1xr_] >

It is suggested to give the database the same name as the source-tree. The user name and password
will be needed later for database initialisation. Take note of them. See 5.5.h Auxiliary data storage.

configuration saved in custom.d/1xr.conf
DB initialisation sript is custom.d/initdb.sh

You are done. Three files have been created: configuration file Ixr.conf, shell script initdb.sh and
internal technical file Ixr.ctxt (do not tamper with its content for reliable configure-Ixr.pl operation).

Skip now to 1.4 Create a database.

1.3.b. Multiple-trees configuration

This section covers the installation of several source-trees located in
“plain” directories (not in a VCS repository). It also applies to the case of
a single source tree if you intend to add others later.
You can configure as many trees as needed. There is no other limit than your patience and this task
can be split into several sessions (see 1.3.c Adding a new tree to a previous configuration).

Launch script configure-Ixr.pl. Until you are familiar with configure-Ixr.pl behaviour, option -vv (or
--verbose) is highly recommended but all output is not shown here.

$./scripts/configure-1xr.pl --verbose

Configure for single/multiple trees? [S/m] > m

Answer m (multiple).

If you inadvertently pressed “return’”, you can recover with the next question:

Configure for single/multiple trees? [S/m] >
Do you intend to add other trees later? [yes/NO] > y
NOTE: installation switched to multiple mode

but describe just a single tree.

Proceed with the web server configuration.

*** |LXR web server configuration ***

Project LXR The LXR User's Manual Language en-UK

Software release |.2 | Installing LXR Document revision |.4

LXR can be configured as the default server (the only service in your
computer), a section of this default server or an independent server
(with its own host name).

Refer to the User's Manual for a description of the differences.

Web server type? [1.DEFAULT

/2.section in default

/3.1indepedent

/4.section in indepedent

1> 2

We choose again case 2, LXR as a section of a wider site.

The computer hosting the server is described by an URL. The form is
scheme://host_name:port
where:
- scheme is either http or https (http: can be omitted),
- host_name can be given as an IP address such as 123.45.67.89
or a domain name like localhost or 1xr.url.example,

- port may be omitted if standard for the scheme.
The following question asks for a primary URL. Later, you'll have
the opportunity to give aliases to this primary URL.
--- Host name or IP? [//localhost] >
URL section name for LXR in your server? [/lxr] >

See

the previous section for notes and advices.

The built-in method to manage several trees with a single instance of LXR

is to include a designation of the tree in the URL at the end of the

section name.

This sequence after host name is called "virtual root".

Supposing one of your trees is to be referred as "my-tree", an URL to

list the content of the default version directory would presently be:
//localhost/1xr/my-tree/source

with virtual root equal to /lxr/my-tree

Use built-in multiple trees management with tree designation at end of
virtual root? [YES/no] >

Managing several trees with a single instance of LXR requires some “URL black magic” which
needs expertise in web server configuration. To work around this skill, a generic policy is built in
LXR. A tree identification is coded at the end of the URL path to LXR service (//localhost/1xr
in the present case) and before the script name. This is adequate for most people.

If you

answer NO, you must give the full virtual root for every tree. And, MOST IMPORTANT,

after configuration, you must write your routing policy in the xxx-Ixrserver.conf.

If you

answer YES (or accept the default answer), the built-in policy is used and the definition of

each tree virtual root is simplified to giving the tree identification.

Accept the default answer and you proceed with database configuration.

Database engine? [MYSQL/oracle/postgres/sqlite] >

Choose the database available on your computer. If you have not yet installed a database server, you

16

Project LXR The LXR User's Manual Language en-UK

Software release |.2 | Installing LXR Document revision |.4

might consider SQLife which is a sensible choice for a test since it has very few dependencies (if
any) and does not demand lots of resources. But do not use it on a big project.

The safest option is to create one database per tree.

You can however create a single database for all your trees with a
specific set of tables for each tree (though this is not recommended).
How do you setup the databases? [PER TREE/global] >

Unless you are restricted by site-local rules (such as having only one database per user), use the
default database policy. With Oracle, there is only one global database; you have no choice. The
databases for each tree are distinguished by a unique table prefix.

All databases can be accessed with the same username and can also be
described under the same names.
Will you share database characteristics? [YES/no] >

The default answer is recommended but there is strictly no performance advantage in either case.

Will you use the same username and password for all DBs? [YES/no] >
--- DB user name? [lxr] >

--- DB password ? [lxrpw] >

Will you give the same prefix to all tables? [YES/no] >

--- Common table prefix? [lxr] >

You might change the default password 1xrpw for something else. If you prefer to access the
databases without password, you need to edit the resulting Ixr.conf file since there is no way to enter
an “empty” answer. For that, locate the following line in the “Common factor” subsection before
the Tree configuration sections:

, 'dbpass' = 'Ixrpw'

to change it to:

, 'dbpass' = '!

--- Directory for glimpse databases? /home/myself/glimpse_databases
--- Directory for swish-e databases? /home/myself/swish_databases

From there on, refer to the previous section to finish global parameters set-up (up to Alias name
question).

The first tree is configured between virtual root line and database characteristics.

*** The virtual root is the fixed URL part after the hostname.
*** The tree needs to be uniquely identified as e.g. /1xr/the_tree
--- Tree designation for URL? (e.g. the_tree) > tree

We choose here to designate the tree with the same name as its directory (any designation will do as
long as it is unique among the trees, but it is good practice to use a designation related to the true
tree name to facilitate bug resolution).

Project LXR The LXR User's Manual Language en-UK

Software release |.2 | Installing LXR Document revision |.4

This identification is added at the end of the current URL path to make the effective virtual root.

--- Caption in page header? (e.g. Project XYZZY displayed by LXR) >
First tree in multiple example
Do you want a speed switch button for this tree ? [YES/no] >

The speed switch button is an hyperlink (a so-called button) added in the page header area allowing
to “jump” to another tree without the need to write the URL. If you answer YES, you are asked to
give a (short) legend to this “button”:

--- Short title for button? (e.g. XYZZY) > Project

Note:
Do not exceed approximately 10 characters for this short title since space is limited in the
header area, notably if you have many trees. See 5.5.c Other parameters ' shortcaption'.

When finished with a source tree, you can configure another one:

*** Configure another tree? [YES/no] > n

You are done. Three files have been created: configuration file Ixr.conf, shell script initdb.sh and
internal technical file Ixr.ctxt (do not tamper with its content for reliable configure-Ixr.pl operation).

Skip now to 1.4 Create a database unless you need a break before continuing with other trees in the
following section.

1.3.c. Adding a new tree to a previous configuration

The new description will be added at the end of configuration file Ixr.conf and database
initialisation script initdb.sh.

CAUTION!
initdb.sh contains commands and directives that DELETE users and databases. Consequently,
if you have already created the databases by a previous execution of this script, you MUST
NOT run it again. To prevent data loss, delete file initdb.sh before launching configure-Ixr.pl.
If the databases have not been yet created, keep initdb.sh.

Run configure-Ixr.pl with option - -add:

$./scripts/configure-1xr.pl --add --verbose

== ADD MODE ==
Initial context custom.d/lxr.ctxt is reloaded

The script first retrieves important parameters used in the initial configuration to avoid
inconsistencies. This is why you must not tamper with *.ctxt files.

Your DB engine was: MySQL

Advanced users can configure different DB engines for different trees.
This is not recommended for average users.

Use previous DB engine? [YES/no] >

Project LXR The LXR User's Manual Language en-UK

Software release |.2 | Installing LXR Document revision |.4

Unless you have a real good reason to change the database engine (such as comparing performances
of database servers on the same source tree), keep the same engine. This item is mainly for
developers.

Then you continue with the usual questions and answers.

*** | XR master configuration file setup ***
Tree section part
SQL script for database initialisation

*** Configuring LXR server parameters

*** The virtual root is the fixed URL part after the hostname.

*** The tree needs to be uniquely identified as e.g. /1xr/the_tree
--- Tree designation for URL? (e.g. the_tree) >

Note that the initial part of the virtual root is recovered from the context file.

When you are done with additions, the new tree descriptions have been added to the end of
configuration file [xr.conf and new commands for the databases to the end of script initdb.sh.

Make a break before new additions or see 1.4 Create a database.

Limitations:
* The script does not attempt to check that all virtual roots are unique.

* It does not check that if a database user name is used for different trees its associated password is
the same for the same database.

* It does not check that the combination database name/table prefix is unique.
An individual tree-database must have an unique name.

In a database shared by several trees, table prefixes must be different.

* Database users are blindly created in the database initialisation script initdb.sh when they are
new in the current session. No attempt is made to collect already existing users in the
initialisation script and detect collisions.

This requires manual editing to remove duplications in initdb.sh.

1.3.d. Configuration for Linux kernel

The Linux kernel tree can be described like any other source tree. However, to fully benefit of the
automatic “architecture” and “include” navigation feature, you need to thoroughly understand the
directory structure.

This knowledge has been transcribed in a specific configuration driver. It is valid only for a “plain
files” tree, not for VCS repositories.

To configure only for the kernel, run (omitting - -verbose option if you are now familiar with the
script output):

Project LXR The LXR User's Manual Language en-UK

Software release |.2 | Installing LXR Document revision |.4

$./scripts/configure-1xr.pl lxrkernel.conf

Script output will be in custom.d/Ixrkernel.conf (and custom.d/Ixrkernel.ctxt) and initdb.sh.

To add the kernel to an existing configuration, run:

$./scripts/configure-1xr.pl --add --conf-out=1xr.conf lxrkernel.conf

Script output is added to custom.d/Ixr.conf and initdb.sh (previous context information being
retrieved from custom.d/Ixr.ctxt).

The differences are in version enumeration and directory relationships.

Versions are identified by another script along with architectures (the Linux word for computer
family upon which the kernel has been ported) and platforms (subfamilies).

Rules for include directory relationships are computed so that clicking on a #include statement
warps you to the correct file in the selected architecture directory.

Altogether, this builds a set of buttons in the page header area to select the desired version and
architecture for browsing.

Note:
The buttons-and-menus interface (see 2.2 General aspect of LXR pages) is recommended for
kernel browsing. This interface style can be selected either by a choice during configuration or
by editing the configuration file.

Collecting version information is done with script kernel-vars-grab.sh. With the kernel source tree
in /home/source/kernel, run as:

$./scripts/kernel-vars-grab.sh --erase /home/source/kernel

It creates in custom.d/ a set of files whose names end with _1ist.txt. These files contain lists of
versions, architectures, platforms, ... Without - -erase option, results are added to the lists which
allows to gather cumulative lists across kernel versions while keeping only the last one, thus sparing
disk space.

You can build independent lists with option --suffix=_other . txt for example. But you will need
to manually update the resulting Ixrkernel.conf or Ixr.conf file.

1.3.e. Configuration for VCS's
For general information, see 10 Using LXR with SCMs.

Tree storage is selected by:

How is your tree stored? [EFEILES/cvs/git/svn/hg/bk] > ¢

1.3.e.1. CvVs
Answer C for CVS (see 5.5.b.2 CVS repository and 10.2 CVS).

20

Project LXR The LXR User's Manual Language en-UK

Software release |.2 | Installing LXR Document revision |.4

*** A CVS repository is a directory containing ,v files
--- CVS repository? (e.g. /home/myself/project-CVS) >

Answer with the name of the directory containing the ,v files, like /home/myself/project-cvs.

>

*** Enumerating versions

Label for version selection menu? [Version] >

*** Versions can be explicitly enumerated, be read from a file or
computed by a function. The latter case is recommended for VCS-stored
trees.

Version enumeration method? [LIST/file/function] > fu

Name to display for the path root? (e.g. Project or $v for version) [$v]

Use of a function gives an up-to-date list of versions on a “live” repository.

*** This template contains generic nearly-all-purpose functions.
*** Since designing such a function is not a trivial exercise,

*** you'd better choose an available one. You can later refine it
*** to fit your needs.

--- Generic or custom function? [files/cvs/git/svn/hg/custom] > cvs
*** With a function, you MUST indicate a default version.

--- Default version name? [head] >

Select the cvs function and accept the default head name.

1.3.e.2., GIT
Answer G for GIT (see 5.5.b.3 GIT repository and 10.3 Git).

*** A Git repository is a directory containing objects, refs, index,
subdirectories. It is usually named .git in some user directory and is
thus not visible.

--- Git repository? (e.g. /home/myself/project-git/.git) > /../.git

Answer with the name of the .git directory, like /home/myself/project/.git.

--- display revision-ids? [YES/no] >
--- display revision author name? [YES/no] >

>

*** Enumerating versions

Label for version selection menu? [Version] >

*** Versions can be explicitly enumerated, be read from a file or
computed by a function. The latter case is recommended for VCS-stored
trees.

Version enumeration method? [LIST/file/function] > fu

Name to display for the path root? (e.g. Project or $v for version) [$v]

The default for the display variants are appropriate for nearly everybody. Use of a function gives

an up-to-date list of versions on a “live” repository.

*** This template contains generic nearly-all-purpose functions.
*** Since designing such a function is not a trivial exercise,
*** you'd better choose an available one. You can later refine it

21

Project LXR The LXR User's Manual Language en-UK

Software release |.2 | Installing LXR Document revision |.4

*** to fit your needs.

--- Generic or custom function? [files/cvs/git/svn/hg/custom] > git
*** With a function, you MUST indicate a default version.

--- Default version name? [HEAD] >

Select the git function and accept the default HEAD name.

1.3.e.3. Subversion

Answer S for Subversion (see 5.5.b.4 Subversion repository and 10.4 Subversion).

*** A Subversion repository is a directory containing a database for the
source-tree. The present backend implementation in LXR limits access to
local repositories.

--- Subversion repository? (e.g. /home/myself/project-svn) >

Answer with the name of the Subversion directory, like /home/myself/project-svn.

--- display revision-ids? [YES/no] >

--- display revision author name? [YES/no] >

Name to display for the path root? (e.g. Project or $v for version) [$V]
>

*** Enumerating versions

Label for version selection menu? [Version] >

*** Versions can be explicitly enumerated, be read from a file or
computed by a function. The latter case is recommended for VCS-stored
trees.

Version enumeration method? [LIST/file/function] > fu

Use of a function gives an up-to-date list of versions on a “live” repository.

*** This template contains generic nearly-all-purpose functions.
*** Since designing such a function is not a trivial exercise,

*** you'd better choose an available one. You can later refine it
*** to fit your needs.

--- Generic or custom function? [files/cvs/git/svn/hg/custom] > svn
*** With a function, you MUST indicate a default version.

--- Default version name? [head] >

Select the svn function and accept the default head name.

1.3.e.4. Mercurial

CAUTION!
This support is still experimental and exhibits poor performance for directory retrieval.

Answer H for Mercurial (see 5.5.b.5 Mercurial repository and 10.5 Mercurial).

*** A Mercurial repository is a directory containing a database for the
source-tree. The present backend implementation in LXR limits access to
local repositories.

--- Subversion repository? (e.g. /home/myself/project-hg) >

Answer with the name of the directory containing .hg/, like /home/myself/project-hg.

22

Project LXR The LXR User's Manual Language en-UK

Software release |.2 | Installing LXR Document revision |.4

--- display revision-ids? [YES/no] >

--- display revision author name? [YES/no] >

Name to display for the path root? (e.g. Project or $v for version) [$v]
>

*** Enumerating versions

Label for version selection menu? [Version] >

*** Versions can be explicitly enumerated, be read from a file or
computed by a function. The latter case is recommended for VCS-stored
trees.

Version enumeration method? [LIST/file/function] > fu

Use of a function gives an up-to-date list of versions on a “live” repository.

*** This template contains generic nearly-all-purpose functions.
*** Since designing such a function is not a trivial exercise,

*** you'd better choose an available one. You can later refine it
*** to fit your needs.

--- Generic or custom function? [files/cvs/git/svn/hg/custom] > hg
*** With a function, you MUST indicate a default version.

--- Default version name? [tip] >

Select the hg function and accept the default tip name.

1.3.e.5. BitKeeper

Answer B for BitKeeper but the interface has not been tested for a long time. If you opt for it, please
share your experience. See 5.5.b.6 BitKeeper repository and 10.6 BitKeeper.

1.3.f. Advanced use of configurator

$ configure-1xr.pl [options] [template]

Options are:
-h or --help

Print a summary and quit

--version

Print version information and quit

-VV or --verbose

Print comments and progress information

Note:
-vv is strictly equivalent to --verbose, while -v (a single v) prints fewer messages.
Technically, the former prints @LOG and @MSG statement argument from the configuration
template while the latter only prints @LOG statement argument.

--root-dir=LXR_root_directory
To be used if current working directory is not equal to LXR root directory

- -tmpl-dir=templates_directory

23

Project LXR The LXR User's Manual Language en-UK

Software release |.2 | Installing LXR Document revision |.4

For alternate templates directory (default is femplates/ in LXR root directory)
- -conf-dir=output_configuration_directory
Alternate location for output file (default is custom.d/ in LXR root directory)
- -conf -out=filename
Name, without directory, of output configuration file (default equal to template name with
extension replaced by .conf); stored in - -conf-dir directory
--script-out=filename
Name, without directory, of output script (default is initdb.sh); stored in - -conf-dir directory

template is the name, without directory, of a model in --tmpl-dir directory. It contains a
skeletal Ixr.conf configuration file with directives describing interaction with the user. Interactive
data is used to customise the template.

I.4. Create a database

The previous step created an initdb.sh script (unless you changed its name with --script-out
option). Its contains all commands to create the databases and users.

$./custom.d/initdb.sh

Note:
When done, either delete this script so that future additions will not cause deletion of existing
trees or put it aside with a different name. In case of need, it can easily be regenerated from
the content of [xr.conf.

l.4.a. MySQL

User creation commands® are issued under the default master account root. If it bears another name
on your installation, edit the script to change all occurrences of -u root to the local master account
or, if you are not allowed to use it, any local user with right to create databases and users.

The password for the master account is asked at most twice’ for every tree with:

Enter password

User creation is optional (depends on global or override choice). It may fail with ERROR 1396 if
user already exists. This precludes changing password this way. To do that, drop user manually
before launching script.

SECURITY WARNING!
Users are created with ALL privileges (except CREATE), meaning they can access and
modify any other database in your installation. If this is an issue, manually drop the privileges.

6 Database initialisation templates can be configured to issue ALL commands under the master MySQL account. But
this implies you must manually enter its password twice for every user and twice for every database!
7 Calling my sl command separately is a design choice to avoid a failing step would cancel the following ones.

24

Project LXR The LXR User's Manual Language en-UK

Software release |.2 | Installing LXR Document revision |.4

In particular, you can remove all write permissions after genxref if you do not intend to run it
again.

Database creation is also optional (depends also on global or per-tree policy).

Tables are always created for a tree.

You can use phpMyAdmin to check the result if you have it installed.

1.4.b. PostgreSQL

User creation commands® are issued under the default master account postgres. If it bears another
name on your installation, edit the script to change all occurrences of -U postgres to the local
master account or, if you are not allowed to use it, any local user with right to create databases and
users.

Since there is no way to hand over the password to command createuser, you must enter it manually
after the prompt:

*** PostgreSQL - Creating global/tree user xyz
Enter password for new role:
Enter it again:

Read the line above the question to know which user (role in PostgreSQL terminology) is
concerned.

PostgreSQL issues many warnings and errors. Ignore those related to non-existent users, databases,
tables, functions ... The script plays it safe trying to delete an object before creating it.

You can use phpPgAdmin to check the result if you have it installed.

l.4.c. SQLite

There is no notion of user. The file containing the database is created when you initialise the
database. You may eventually need to create a directory for it before running the script. Make sure it
world read AND write enabled.

You can use Sqliteman to check the result if you have it installed.

1.4.d. Oracle

Script execution could not be checked on a real case because the software is proprietary. Script
generation was adapted from the original sources and evolution for the other database engines. If
you opt for this engine, please report your experience.

8 Database initialisation templates can be configured to issue ALL commands under the master PostgreSQL account.
Usually, PostgreSQL is configured in trusted mode for local access and you do not need to provide the master
password.

25

Project LXR The LXR User's Manual Language en-UK

Software release |.2 | Installing LXR Document revision |.4

1.5. Edit the LXR configuration file

Your customised Ixr.conf file (or whatever name you gave with --conf-out=) is stored in the
custom.d/ directory. There is usually no need to edit this file apart from tuning it. This can be done
any time once you have gained some practice with LXR.

The main parameters to tune are enumerated below. A full discussion on the parameters is found in
chapter 5 Master configuration file Ixr.conf.

The following titles are the same as those for the sections in the file.

1.5.a. Global configuration section, HTML subsection

Important!
All file paths in this subsection are anchored at the LXR root directory. You cannot use OS
absolute paths.
You can choose the interface style (between link and buttons-and-menus). Select the right template
with one of the following:

, 'htmlhead' => 'templates/html-head.html'
, 'htmlhead' => 'templates/html-head-btn.html'

If you change free-text search engine after configuring (e.g. adding one afterwards’), make
"htmlsearch' point to the right template with one of the following:

, 'htmlsearch' => 'templates/html-search-glimpse.html'
, 'htmlsearch' => 'templates/html-search-swish.html'

1.5.b. Global configuration section, file management subsection

This is where you specify files to ignore and custom icons for directory listing (see 5.4.d File
management).

1.5.c. Tree configuration section, version selection subsection

In case you chose custom function for computed version list, you MUST define your own function
for 'range' because the generated skeleton function returns an empty list. Consequently, without
modification, the version selection feature is disabled and LXR no longer understands the version
concept.

1.5.d. Tree configuration section, subdirectory subsection

You list here which directories or files to ignore when indexing and browsing the tree. The tree rule
takes precedence over the one defined in the global file management subsection, Consequently, do

9 If no search engine is detected during configuration, this feature is disabled and 'htmlsearch' defaults to
html-search-glimpse.html.

26

Project LXR The LXR User's Manual Language en-UK

Software release |.2 | Installing LXR Document revision |.4

not forget to copy first this global rule (so that its general exclusions are kept) before extending or
tuning it.

'ignorefiles' => regexp
, 'ignoredirs' => list of directories
Parameters 'filterdirs' and 'filterfiles' may also be specified to exclude designated files
(instead of families of files) but their use should be avoided as much as possible for performance
reason.

1.6. Copy configuration

Copy the configuration file where LXR expects to find it:

$ cp custom.d/1xr.conf .

Do not forget the final dot.

I.7. Generate index

It is now time to generate the index. This is done using the program genxref. genxref takes two
arguments - -url=and - -version=.

* urlis the URL where the LXR web front-end appears.

It must be identical to the concatenation of 'host_names' and 'virtroot' (or, for
compatibility, to 'baseurl' or one of the 'baseurl_aliases').

You can drop http: from the URL; however the argument MUST look like an URL and at
least begin with / /.
* version is the name of a directory in your 'sourceroot' directory.
It is identical to one tag in the 'range' list for parameter variable 'v' (see 5.5.d Version

selection). It is worth noting that one [xr.conf file can be used for several different source-trees.
Which configuration block to use is selected according to the url argument.

You can also use the --allversions argument to automatically index all the versions defined in
the version variable.

But before running the indexing for real, you have the opportunity to check your installation with
argument - -checkonly:

$./genxref --url=//localhost/1xr --checkonly
[OK] Perl version ... 5.14.2

[OK] ctags version ... 5.8
Checked: glimpse version ... 4.18.5
Checked: glimpseindex version ... 4.18.5

27

Project LXR The LXR User's Manual Language en-UK

Software release |.2 | Installing LXR Document revision |.4

Parameter 'swishbin' not defined - trying to find swish-e
swish-e not found, “command -v swish-e” returned a null string
genxref stopped without indexing by --checkonly option

If an error is reported, review the previous steps.

You can now roll the indexing.

$./genxref --url=http://localhost/your_lxr_virtual root --version=v2

Note that genxref can be a very slow process the first time it is run, for example on a 4Gb source tree
a full run can take several days'’. However, on future runs it will only index changed files, thus
speeding the process.

1.8. Set up the web server

Storing the LXR root directory somewhere else than the traditional web server directory (usually
/var/www/) may lead to security warnings or access denials on security enhanced OS's like SELinux.
The solution to this problem is to label appropriately the LXR root directory. Under SELinux, to
copy the correct label use:

$ chcon --reference /var/www/cgi-bin/ -R /LXR/root/directory/

1.8.a. Apache server

Configuration traditionally goes into httpd.conf/, but you are advised to take benefit from the
conf.d/ include feature and use a separate configuration file for your server. In this way,
global Apache configuration and yours are independent.

Step 1.3 Configure your installation above created an apache-Ixrserver.conf configuration file. This
file handles automatically all known cases (mod_perl or bare CGI scripts, Apache 1 or 2).

If you configured LXR as an independent server (i.e. not the default //localhost), apache-
Ixrserver.conf contains a <VirtualHost> section where only the primary host name is listed. The
primary host name is the one given to answer --- Host name? question. You need to manually
add the aliases into the ServerAlias directive:

ServerName //primary.server.example
ServerAlias 1xr.server.example Ixr.lan 192.168.1.1
Note:

The configurator kept // in the primary server name, but these characters are not accepted in
the aliases.

If you declared a specific port, a Listen directive is created. However, you may encounter
incompatibility if this port is already listed in another configuration file. In this case, remove the

10" Note from the editor: as usual, the original author of this assertion omitted to quote the technical environment to
permit to predict the time needed on one's configuration (clock frequency, main memory, disk channel speed, ...).

28

Project LXR The LXR User's Manual Language en-UK

Software release |.2 | Installing LXR Document revision |.4

offending port. Apache expects at most one Listen directive per port.

When done adjusting configuration, copy the file into the Apache directory:

$ cp custom.d/apache-1xrserver.conf /etc/httpd/conf.d

Note:
You need administrator privileges to access this directory.

If you configured for Apache 2.2 or earlier and later upgrade to Apache 2.4 without reinstalling
LXR from scratch, uncomment the 2.4-specific lines in apache-Ixrserver.conf and in .htaccess.

1.8.a.l. Apache |.x specific

You must manually put the Perl modules that LXR uses into a directory on your system that will be
searched by mod_per1 when the LXR scripts are executed (typically site_perl):

$ cp -r 1ib/* /usr/lib/perl5/site perl/

Note:
You may need administrator privileges to access this directory.

1.8.a.2. Apache 2.x specific
No other step is necessary.

Note:
Apache 2 can run either as unthreaded or threaded server. This should now be transparent to
LXR. However, if you meet difficulties, report to the LXR maintainer with the following
information.

You can tell which Multi-Processing Module (MPM) is active with the following command:

$ apachectl* -V

Server version: Apache/2.2.21 (Unix)
Server built: Sep 13 2011 12:26:57
Server's Module Magic Number: 20051115:30
Server loaded: APR 1.4.5, APR-Util 1.3.12
Compiled using: APR 1.4.5, APR-Util 1.3.12
Architecture: 64-bit

Server MPM: Prefork
threaded: no
forked: yes (variable process count)

Server compiled with....

Look at the line beginning with Server MPM.
If it reads Prefork, you are unthreaded.

If it reads Worker, you are threaded.

1" Depending on your distribution, the command name may be apache2 or apache.

29

Project LXR The LXR User's Manual Language en-UK

Software release |.2 | Installing LXR Document revision |.4

1.8.b. Lighttpd server

Though lighttpd configuration has been integrated into the common
configuration frame, this is still experimental. Please report any difficulty or
work around so that this part can be improved.
Step 1.3 Configure your installation above created a lighttpd-Ixrserver.conf configuration file. But it
needs to be edited. Paths are based on Fedora distribution architecture where lighttpd configuration
is stored in /etc/lighttpd/ (notably modules configuration in conf.d/).

Open the file with your favourite editor (vi, emacs, Kwrite, gedit, ...) and change the relevant
values. It is divided in sections for easy navigation.

In “Variable definition”, var .server_root is the location of servers directory, var.conf_dir is
the configuration directory:

"/var/www/"
"/etc/lighttpd"

var.server_root
var.conf_dir

In “Load the modules”, the following directive will load a minimal set of lighttpd modules required
by LXR.

include "LXR_root_dir/templates/lighttpd/lighttpd-1xr-modules.conf"

Should you need a different set, copy templates/lighttpd/lighttpd-Ixr-modules.conf to custom.d/ and
edit the file. Then change the directive to:

include "LXR_root_dir/custom.d/lighttpd-1xr-modules.conf"

In “Basic configuration”, you can change the port lighttpd is listening to if LXR service is
answering on a non-standard port. This is normally forwarded by the configurator.
server.port = 80

Scroll down to the bottom of the file at “LXR section”. server.document-root and
cgi.assign have been set for LXR operation.

server.document-root = "LXR _root_dir/"
cgi.assign += ("/source" => ""
, "/ident" => ""
"/diff" => "n

Il/searchll => nn
"/showconfig" => ""

~— N~

You may add here the host names you defined in Ixr.confs 'host_names' as (one line per host
name):

$HTTP["host"] = "127.0.0.1" {server.document-root = "LXR_root_dir/"}
$HTTP["host"] = "mycomputer.outside.domain.example.com" {
server.document-root = "LXR_root_dir/"}

SHTTP["host"]

"192.168.12.34:56" {

30

Project LXR The LXR User's Manual Language en-UK
Software release 1.2 | Installing LXR Document revision |.4
server.document-root = "LXR_root_dir/"}

Save the modified file and make it checked by lighttpd:

$ lighttpd -t -f custom.d/lighttpd-l1xrserver.conf

If you pass the test, you are ready to launch lighttpd. For a private test, run command:

$ lighttpd -D -f custom.d/lighttpd-1xrserver.conf

Note:
This may require editing configuration file custom.d/lighttpd-Ixrserver.conf to change value of
var.state_dir to a user-write enabled directory.

To stop the server, type ct1-C.

For system-wide service, use script lighttpd-init with command (on a single line — document
processor breaks line at dash):

$ LIGHTTPD_CONF_PATH="LXR _root_directory/custom.d/lighttpd-
Ixrserver.conf" ./scripts/lighttpd-init start

Lighttpd will daemonise and run in the background. To stop, type:

$./scripts/lighttpd-init stop

Note:
You may also copy this script in /etc/init.d/ as lighttpd and use it with the standard start,
stop and status argument:

$ cp scripts/lighttpd-init /etc/init.d/lighttpd

$ LIGHTTPD _CONF_PATH="LXR root _directory/custom.d/lighttpd-
Ixrserver.conf" /etc/init.d/lighttpd start

$ /etc/init.d/lighttpd stop

$ /etc/init.d/lighttpd status

Integrating LXR service as part of an existing web site is left as an exercise.

Read next section about icons.

1.8.c. Other web servers

Most web servers should be capable of supporting the CGI script versions of LXR - consult the
server documentation for information on how to configure this.

If you are using a web server other than Apache, you need to provide the following icons (their name
in HTML-absolute form):

* Jicons/back.gif
* Jicons/folder.gif
* Jicons/c.gif

31

Project LXR The LXR User's Manual Language en-UK

Software release |.2 | Installing LXR Document revision |.4

/icons/text.gif

* /Jicons/compressed.gif
* Jicons/image2.gif

* /Jicons/generic.gif

LXR works perfectly without these icons; they only have an aesthetic role. Starting with release 0.10
a versatile feature is incorporated to allow the use of any icon of your choice (see 5.4.d File
management).

1.9. Run a test

LXR should now work. Fire up your web browser and go to http://localhost/1xr/source (or
replace localhost by any of your 'host_names') and you should see the listing for the top of
your source tree.

If you don't see the LXR page, first check that you configured correctly your web server. Try to go
to //1localhost/1xr/ to display the content of the LXR root directory.

To enable directory listing by Apache server, you need to change a line in the .htaccess file. It
is the first directive in the “Access restrictions” section. Replace the minus sign by a plus:

Options +Indexes

Directory listing is enabled by default in lighttpd.

If nothing still appears, check your logs, especially the error and access logs to see what's
happening. Problems are often caused by the web server not being able to access the LXR files —
make sure all the paths and file permissions are correct.

1.10. Site-specific customisation

LXR has a wealth of parameters giving it flexibility and allowing control over many aspects of its
behaviour.

The places to look for customisation are:

* [xr.conf: controls most basic settings, including how file names are mapped to languages, tab
settings, efc. See chapter 5 Master configuration file Ixr.conf.

* templates/html*, templates/Ixr.css: templates and CSS for the HTML display.

This is where you can change how the website looks like, e.g. by adding site logos, links, or
changing colours, fonts, efc. See chapters 8 Customising page architecture and 9 Customising
LXR appearance.

» templates/ectags.conf: advanced configuration for ectags when parsing various language files -

32

Project LXR The LXR User's Manual Language en-UK

Software release |.2 | Installing LXR Document revision |.4

this 1s one place to look if you want to add support for another language.

* [lib/LXR/Lang/generic.conf: configures the generic language support module that handles most of
the languages LXR recognises. Configuration here enables support for new languages. See
chapter 6 Generic parser configuration file.

* [lib/Local.pm: various routines that may need to be customised to provide useful file summaries
in the directory and file listing views.

Remember the golden rule:
Always copy first any template file to custom.d/ directory before editing it. Do not forget to
change the location of any customised file in Ixr.conf.

I.11. Troubleshooting

Common errors are listed on the web site at http:/Ixr.sf.net/en/troubleshooting.shtml. Only the most
frequent for a first installation are mentioned here.

** Fatal: Couldn't open configuration file Ixr.conf

The configuration file [xr.conf does not exist, is not in the LXR root directory (it might have been
left in the templates/ or custom.d/ directory) or cannot be accessed (check the file permissions: it
must be world readable).

** Fatal: Can't find config for URL_of_your_LXR_tree

The value of the --url argument (or URL given to your browser) matches none of the
"hostnames'/'virtroot' combinations. Check the spelling of the URL or Ixr.conf.
** Fatal: Can't create index xxx

This message is usually preceded by others about DB, lock or socket. Check the data base
description in [xr.conf and your access permissions to the data base.
** Fatal: Can't find database

This message comes from the Perl DB backend. The likely cause is that the web server URL
passed to the browsing scripts does not match any URL in Ixr.conf. This means the configuration
will not be found, and thus the database will not be found.

You see HTTP headers (such as Content-Type) appearing in the page or output not being
interpreted as HTML

This can be caused by warning messages output before the script sends the right headers to tell
the browser that the output is HTML. This can normally be solved by changing the value of
$wwwdebug to O in Common.pm. But please report the warning message as a bug at
http://sourceforge.net/projects/Ixr first! The developers left debugging features in the release
version, which should never happen.

33

http://sourceforge.net/projects/lxr

Project LXR The LXR User's Manual Language en-UK

Document revision |.4

Software release 1.2 | |nsta||ing LXR

I.12. Note on security

The footer of every page generated by LXR exhibits an HTML-compliant logo which is a link to the
W3C verification service. If you click on it, you can verify that LXR or the modifications you made

to its standard appearance are really compliant.

But, intentional or result of a security breech, within 24 hours, robots will try to index your site.
Good job if it is intended to be public. Rather bad if you want to stay in the shadow. To alleviate
this, LXR has now a very restrictive robots.txt file which asks well-behaved robots to stay away.
Adapt it to suit your need or remove it (simply change its name) to allow full access.

34

Project LXR The LXR User's Manual Language en-UK

Software release |.2 2 Using LXR Document revision |.4

U sing LXR

This chapter covers only every day use of LXR so that you can get the best of
LXR. Tuning the installation is dealt with in another chapter.

2.1. Launching LXR

You navigate through the source tree with your favourite web browser. Just fill-in the address bar
with one of the 'host_names' followed by your 'virtroot' and add /source, you will be
transported to the root of the source-tree. From that point, you have access to all LXR functions and
all files in the tree.

From the example configuration in the previous chapter:

http://localhost/1xr/source

You can also access directly the identifier or free-text search pages with /ident or /search
respectively.

2.2. General aspect of LXR pages

The pages are all displayed with a common layout. They have a header, a body and a footer.

The header looks like this:

The LXR Cross Referencer [SoirEEaigaie |

[Identifier search]

[general search]
actif/

Version: [0.98][0.5.9][actif][CVs][LxRng]

or like this, with the buttons-and-menus interface:

A .
IX LXR Project: self cross-references =
entifier search
0.10/ General search

Version: |0.10 x| [Revert Change_

The logo in the upper left is a customisation of the template.

The upper centre displays the content of 'caption' as a title and the path to the current file or
directory from 'sourceroot' with the prefix given in 'sourcerootname'. Every component of
this path may be individually clicked to transport you directly to this node of the tree.

35

Project LXR The LXR User's Manual Language en-UK

Software release |.2 2 Using LXR Document revision |.4

The upper right contains a set of “buttons” to switch between the different modes. The selected
mode is highlighted.

The lower part displays the states of the 'variables'. In this example, only variable 'v' with
name Version is defined. Its possible values are in the lower right, with the current value enhanced.
Note that 'sourceroot' has been configured to reflect the current value of this variable.

Independently of personal taste, when is it preferable to use the buttons-and-menus interface or
the link interface?

The link interface opens a new line for every variable. All the values are then displayed, which
may necessitate many lines (think of all the versions for the Linux kernel). This in turn leaves
little room for the real information you are interested in: the source-tree. The following figure
show a typical bad choice of the link interface.

[Identifier search]
[general search]

] LXR under CVS [Source navigation]

head

[0 L T2 L 200 [12] 202] 1122 10 1123][124][1125][112601027][1128][1129][1.10]

Cro2d T 0 e 2 I 0220 L3032 0 0 a2 JLas 10520 10 e 10 1ne2 Iz L e[e[e]f12]

[1220]0 1240 (120 [120 [122][123] 124][12420 Tf 125][126 10127 J[128 [129 T[13][130 [130 I[132][133][134][1.35][1.3¢]

Show attic v [1362.0][137][138][13][|4][\40][\4|][\42][\43][\44][\442|][\4422][\4 RIS RECAIAECH I AECRIMED | REENR AN
fles oOn [1.502.0][15022][151][152][153 156 [157 [1587 159 1.6 10 162l][160 J[161][162][1,637 1.4][165 [166]
[ler][res][16][\7][|70][|7\][|72][|73][|74][|7 Ji7e1l 17711810 1821 JT 1822 [182.3][1824 [1825 1.9] bledev-

branch][head][merge-to-mainline][new-datastructure][release-0-8][release-0-9][release-0-5-1][release0-92][release-0-3-3][release0-9-4 J[release-0-9-5]

[release0:3-6][release-0-9-7 [release 038][release-0-9-9 [rolling-cleanup][start]

When you meet this case, prefer the buttons-and-menus interface. The variables will occupy a
single line (unless you really defined many) and their value will rest in a drop-down menu which
displays only the selected value until you click it.

With the buttons-and-menus interface, you can change several variables before asking LXR to
show the new version with the Change button. The Revert button restores the value of the
variable to their initial state (when entering this view, not their default value). With the provided
Ixr.css, initial values are displayed bold black.

The only annoyance with the buttons-and-menus interface is: you need one more click than with
the link interface. You preset the values of the variables with a click, then you activate these
changes with a click on the Change button. In the link interface the individual changes of the
variables take effect immediately, but that means you receive an HTML page after each click,
which might be time-consuming on lower performance computers.

The footer looks like this:

[Source navigation] [Identifier search] [general search]

This page was automatically generated by the 0.10 LXK engine o ~ HTML
The LXR team Wil g W3C Sor

The switching “buttons” are repeated at the bottom of the window. There is a link to the LXR
project on SourceForge and links to the W3C HTML validation service under the logos at right.

The body presents data related to the task requested by the command in the URL (source, ident, diff
or search). It is described in the following sections.

36

Project LXR

Software release |.2

The LXR User's Manual Language en-UK

2 Using LXR Document revision |.4

2.3. Browsing the source tree: source

2.3.a.

Listing directories

You initially enter this mode. You can always get back to it by clicking on the Source navigation
button in the header or footer.

Size Date (UTC) Last indexed

n and HTML synthesis.

Description

a Parent directory’ - 20120827 08:50:13|

Z‘ Files/ - 2012-11-10 16:04.07|

E Index/ - 2012-1107 16:47:38

B Lang/ 2012-1108 08:40,55|

¢ Commonpm |23909 bytes| 2012-09-16 12:1231| 20121107 |6:14:41
¢ Configpm [27096 bytes| 20121021 180121] 20121107 161441
77 | Files pm 13468 hytes. 2012-1102 09:49:32| 20121107 |6:14:41
¢ Index pm 35429 bytes| 2012-11-07 16:43:28| 20121107 16:4%:11
¢ Langpm | 8459 bytes| 2012-1107 18:12:24 Not valid

/¢ Markup pm 10867 bytes| 2012-10-30 1824:15| 2012-1107 |6:14:41
7| README 157 bytes| 201 1-05-08 16:2024|

v SimpleParse pm| 12471 bytes| 2012-10-30 182353 20121107 |6:14:41

¢ | Template. pm

Name

40447 bytes| 2012-11-11 14:50:17| Mot valid
Size Date (UTG) Last indexed

dered an exter

Description

The text above the directory content table is supposed to be a description for this directory. It is
extracted from README files (README.txt, README or README.html in that order, first match

wins).

You can take advantage of this feature for your own source trees. By providing such files, an
excerpt of their content is displayed and a link created to access the full text.

The icon and the name columns contain links to the directory or file.

Size and date columns show informative data for the file.

For files, column Last indexed gives the state of the cross-references relative to this file:

* the date and time when genxref was run against this file,

* Not valid, a warning flag for files added or modified since last genxref,

* adash for not indexed files (because there is no parser for this kind of file).

Note:

This information is of primary interest for developers to remind them that references into the
modified files may point to the wrong line. To remove the flag, run genxref. For stable or
archive trees, this column may confuse the user. It is possible to hide it by requesting a
different template in the configuration file (see section 8.4 Markers for directory listing).

Text in the Description column is extracted from README files for a directory or from the initial

37

Project LXR The LXR User's Manual Language en-UK

Software release |.2 2 Using LXR Document revision |.4

comment for a source file.

2.3.b. Listing files

To list a file, you click on its name or icon in the directory content. To open the file in another tab or
window of your browser, right-click the icon or name.

You also enter this mode if you click on the hyperlink for an include file.

Note:
Every component of the include path file is clickable to transport you directly to this node of
the path.

hat it will be useful
ylied warranty of
URPOSE, See the

0027 $CVSID = '$Id: source,v 1.49 2011/03/26 12:45:48 ajlittoz Exp § ';

0829 use strict;
0030 use lib '.'; # for Local.pm
0031 use lib do { $0 =~ m{(.*)/} 7 "§1/1ib" : "1lib" }; # if LXR nmodules are in ./lib

use LXR:

0038 sub diricon {
0039 my (§templ, $node, §dir) = @;
0e40 ny §img;

0042 if ($node eq '../') {
0043 $img = "/icons/back.gif";

0044 } else {

0045 if (exists $config->{'iconfolder'}

0046 && exists $config->{'diricon'}

0047)Rt

0048 $ing = gconfig->{'iconfolder'} . $config->{'diricon'};
0049 } else {

0050 $img = "/icons/folder.gif";

0051

0052 1

0853

0054 return fileref(

0055 "",
0056 “v, §dir . $nodel;

0057 }

0058

0059 sub dirname {

Jolelcle] my ($templ, $node, $dir) = @ ;

0061

If the file was modified or added since last indexation, the Warning, cross-references need to be
fixed reminder is printed at the top of the page. Brand new symbols will not be highlighted nor
hyperlinked because they are not recorded in the LXR dictionary.

LXR colours the words according to its known classification. The colours are defined in [xr.css and
can be adapted to your taste. Here user variables and functions are displayed green, reserved words
dark red, strings blue, comments light grey ... Note that some variables are black, meaning LXR
does not know anything about them. Blame ctags for that. It happens to miss some declarations
generally because its language of the given language is too much rudimentary.
Tip:
If you want to display the file without any highlighting, add ?_raw=1 at the end of the URL
in the navigation bar of your browser. With this query parameter, you enter raw mode. In
particular, it can be used to prevent LXR from considering HTML files as “development” files
so that they are sent “as is” to the browser to be displayed with HTML layout.

The magic of LXR is: there is a hyperlink under all variables and functions that leads you to the

38

Project LXR The LXR User's Manual Language en-UK

Software release |.2 2 Using LXR Document revision |.4

references of that symbol (see section 2.5 Looking up an identifier: ident).

When displaying files, you see a new “button” in the header upper right: diff markup. See section
2.4 Comparing two source files: diff for its use.

_Saurce navigation |

I & The LXR Cross Referencer _Diff markup |
N Identifier search
actif/source General search

Version: |actif =| [Revert Change

LXR can also display graphic files under rather limited conditions. The file must be considered
graphic material (this is a matter of configuration in Ixr.conf), can be accessed through HTML and
its format is handled by your browser.

Note:
This feature does not work if your source tree resides in an SCM.
The screen is slightly different if LXR takes the file in a VCS repository:

0150

1.47 adrianisso*@151 enodes = $files->getdir(gdir, §releaseid);
1.42 brondsen@l52 unless (@nodes) {
1.45 mbox 0153 print{ “<p align=\"center\">\n<i>The directory * . $dir
1,48 ajlittoz0154 . " does not exist.</i>\ne/p>in");
0155 if (§files->isa("LXR::Files::CVS")
0156 and [$HTTP->{'param'}->{'showattic'})
0157 {
0158 print("\ep align=\"center\"=\n"};
0158 print("<i=This directory might exist in other versions,");
0160 print (" try 'Show attic files' or select a different",
0161 . $config->{'variables'}{'v'} 'name'}
0162 . "as/ix\nt
0163)
0164 print("</p>\n");
0165 1

1.42 brondsen0166
0167 return;
1.9 argggh DOl68 }
1.42 brondsen0169
1.43 brondsen0170 unshift(@gnodes, '../') unless §dir eq '/';

A new column is added to the left of the source text. It contains annotation information from the
CVS or Git repository: the revision number the line was added or modified and the author. This
field is truncated if it is too long to fit'? (currently 16 characters) and truncation is shown with an
ellipsis at right or left according to the VCS to keep the most distinctive fragment. A white field
means “same data as in previously marked line”.

All lines belonging to the same commit group share the same background colour”. Strong orange
background means the lines were added in the latest revision.

2.4. Comparing two source files: diff

If you want to know the differences about a source file between two versions, just click on Diff
markup when you display that file. You will be asked first to choose the target version:

12" The revision number displayed under Git is already truncated since it is the 8-hexadecimal digits prefix of the 40-
characters SHA1 tag.
13 This is only local. No effort is attempted to give the same background to different line groups of a single commit.

39

Project LXR The LXR User's Manual Language en-UK

Software release 1.2 2 Using LXR Document revision |.4
Source navigation
IX‘; The LXR Cross Referencer L [DHF mc;!rltmp%
\ [Identifier search]
0.9.9/lib/LXR/Common.pm [general search |
Version. [098][0.9.9][0.10][actif][V5][LXRng]

Please indicate the version of the file you wish to compare to by clicking on the appropriate Version button.

[Source navigation] [Diff markup] [Identifier search] [general search]
This page was automatically generated by the 0.11-beta-PG LXR engine W3t css ~ HTML +
The LXR team ol
or:
lx I I | The LXR Cross Referencer Source navigation | |
N\ EEC [[| dentifier search | General search |
0.9.9/lib/LXR/Common.pm
Version: [0.92 ~| [Revert Change
Flease indicate the version of the file you wish to compare to by clicking on the appropriate Version button
[Source navigation] [Diff markup | [Identifier search] [general search |
This page was automnatically generated by the 0.11-beta-PG LXR engine r css * r HTML
The LXR team wac WBC aan

The user is currently focused on version 0.9.9. Let him click on the 0.9.8 link or select 0.9.8 from
the menu and click on the Change button.

Notes:

diff uses the shell command diff but does not give access to all its functionality. It allows to
compare only two versions of a file with a given name, i.e. the differences will be computed
against two file having the same name in different directories.

With the link interface, the files may differ by the value of only one “characteristic”. A
characteristic correspond to one 'variable' in the source-tree description of Ixr.conf. At
least, you can request a Version difference as in the pictures above. Usually, you find an
Architecture choice in the kernel LXR. You may have more if you find a use for them.

With the buttons-and-menus interface, you can set as many “characteristics” as you want by
selecting a choice in the menus. Then, click on the Change button.

After this selection, you are shown both files side by side.

Diff markup

Differences between /lib/LXR/Common.pm (Version 0.9.8) and /lib/LXR/Common.pm
(Version 0.9.9)

0001 # -*- tab-width: 4 -*- # BOBT # -+- tab-width: 4 -¥- fesesessssssssses s s s asesasesesesasasesesesss
0002 = 0002 =

0003 # $Id: Common.pm,v 1. n [BBO3 # $Id: Common.pm,v 1.73 2011/03

0004 = 0004 =

0805 # FIXME: java doesn't su 0805 # FIXME: java doesn't support super

0006 0006

0007 = 0007 # Th gram is

0oo8 = 0008 # 1t the ter

0808 # th are sic 0809 # th are
0816 # (at your option) any later version. 0816 # (at your option) any later version.
oMl o= oMl o=

LXR is kind enough to remind you the name and versions of the files. The most recently selected
file is in the left column, the initial file in the right column. This was chosen on the assumption that

40

Project LXR The LXR User's Manual Language en-UK

Software release |.2 2 Using LXR Document revision |.4

you are working on a “live” source-tree and you want to compare the current version of a file against
an older one. Thus, the wider column is offered to the “live” version. If you want it the other way
round, reverse the order of the choices.

The differences are marked with red symbols <<, !'! or >> between the two sources. << means new
line at left, ! ! different lines and >> new lines at right. Here is an example:

B 0940)

b 0941

B 0042 print(

e 0943 expandtemplate(

1dtenplate
B 0944 stemplate,
(
0886 'banner* => sub { bannerex [0948 'tree’ == sub { $ = $ENV{'SCRIPT NAME' }. m!$treeextract!: return $1. },
0887 "thisurl' == sub { 0947 ‘stylesheet' == sub { stylesheet{@) }.
ogsg 'modes’ == sub {1
0889 ‘variables' == sub { i<
0830 ‘devinfo’ = sub { devinfol &§
089l) 094g)
0882) 0949)

i
B 0951 $config = undef;
B 0952 $files = undef;:
= 0953 $index = undef;
4 }

The background colours help identifying the changes: pink for new lines at left, yellow for differing
lines and light green for new lines at right. All colours are defined in [xr.css for you to play with.
Tip:
The left text column may not show what you are interested in. It can be stretched or shrunk
from the URL box of your browser. You only have to set argument _diffleftwidth to an
appropriate value.

If the URL" of the above page is:

http://localhost/diff/1ib/LXR/Common.pm?v=0.9.9&~v=0.9.9&!v=0.9.8

add at the end & diffleftwidth=100 to get a 100-characters left column:

http://localhost/diff/1ib/LXR/Common.pm?v=0.9.98&~v=0.9.9&!
v=0.9.8& diffleftwidth=100

Note:
Do not forget the underscore (_) at the beginning of the argument name.

If you want to permanently use a given width for the left column, consider configuring parameter
'diffleftwidth' in Ixr.conf.

You can request a new difference comparison, but it will be computed against the most recently
selected version, not the initial version. If you want to run through a series of comparisons against
the same base version, you must back up to display that base version before selecting another target
version.

Tip:
Alternatively, you can play with the URL. The base version is defined by argument ~v (or
only v with the link interface). Do not alter it. Change the target version after !v= from:

http://localhost/diff/1ib/LXR/Common.pm?v=0.9.9&~v=0.9.9&!v=0.9.8

to, for instance:

14 Tt is written on a single line in your browser, but the document processor justifies it on two lines.

41

Project LXR

Software release |.2

The LXR User's Manual
2 Using LXR

Language en-UK

Document revision |.4

http://localhost/diff/1ib/LXR/Common.pm?v=0.9.9&~v=0.9.9&!v=0.9.7

If the difference was requested against another “characteristic” than Version associated to
variable v, you find the name of the variable after ~ and !.

Note:

In the buttons-and-menus interface, the base “characteristics” are described by variables
prefixed with a tilde character (~), while the target variables are prefixed with an exclamation

mark (!). The variables without prefix are taken into account only if there is no corresponding
I'variable (! means “override”).

In the link interface, the base “characteristics” are given by variables without prefix character.

2.5. Looking up an identifier: ident

Click on Identifier search to get:

Identifier search

Type the full name of an identifier to summarize (a function name, variable name, typedef, etc)

Matches are casesensitive. Check "Definitions only" to find only definitions of the symbol (unchecked, all references).

Identifier: \

Results for

Definitions only | Find

Fill-in the name of the identifier and click Find.

An alternate way is to click on an enhanced name in a source display. The form will be preset and

the results will appear instantly. If the name is not “decorated”, that name is not recorded in LXR
dictionary and this occurrence will not be found by ident.

The results are displayed as follows:

Results for gettemplate

Definitions
| Type Member of File Line ‘
[subroutine | [/ib/LXR/Templatepm] 35|

| declarations in | files

References:

One or more files may contain inaccurate references.

File

Line

/ident

/lik

KR/ Template pm

95 1492 1565 1626

/search

showconfig

/source

9 references in 5 files

One or more files may contain inaccurate references

The first table displays the definitions of the identifier, the second the references. Either table may
be absent if there is no occurrence in its category.

42

Project LXR The LXR User's Manual Language en-UK

Software release |.2 2 Using LXR Document revision |.4

Coloured background highlights results for modified files since last indexation. The associated
references may not be accurate and a reminder is printed after the table.

There may be many definitions because LXR makes no difference between a local and a global
symbol, nor between symbols in different languages. There is no way to limit search to one of these
types. Some definitions may also be missing if ctags did not found them.

All the line numbers are hyperlinks to the lines in the files. Click to go there.

Note:
A line number prefixed with a symbol® (defined through CSS) denotes a case-insensitive
match. This may help spot misspellings or identify related usages such as variable name and
its all-capitals initialisation constant in C. It is is also necessary in case-insensitive languages
like Fortran or SQL.

If you click on the file name, you go to the first line of that file.
Tip:
A better use is to right-click to open the destination in a new browser tab so that you have
multiple views (usually files) on the identifier with a single query.

Sometimes, the identifier you are looking for is so heavily used that LXR may run into memory
shortage when gathering the references (e.g. printk in the 3.1 kernel occurs more than 55 000
times). If you are only interested in the definitions, you can limit the search to these definitions by
clicking the Definitions only check box.

Identifier: [gettemplate | ¥ Definitions only [Find

Results for gettemplate

Definitions
‘ Type Member of File Line |
‘subrourinel | lib/LXE./ Template m'“‘ 95|

1 declarations in 1 files

2.6. Free-text search: search

CAVEAT!
Free text search is not available if your tree is managed by a VCS.
In case you stumble on the limitations of the built-in simple parsing of identifiers or you want to
query something inside a wider unmanaged unit such as a string or a comment, you must use
General search.

15 The default symbol has been chosen to be clearly visible. Unhappily, this Unicode symbol does not reside in the part
common with 8-bit character sets. If your tree uses a specific encoding (e,g, ISO-8859-1), you must change this
symbol to get correct display. Some alternatives are suggested in the provided CSS style sheet. All you need to do is
to add a comment prefix /* on the Unicode symbol line and remove the comment prefix /* on an alternate line.

43

Project LXR The LXR User's Manual Language en-UK

Software release |.2 2 Using LXR Document revision |.4

2.6.a. Glimpse engine

Free-text search with Glimpse

Type a string to find

1) all filenames matching the filter (fop input field only),

2) all occurrences of the string across all files (bottom input field enly),

3) the occurrences of the string in the files matching the filter (both input fields)

Matches are case-insensitive unless you check the box below:
To use fullfledged Perl regex in the filename filter, check the other box below:
Files ending in " v" (GVS internal) or "~" (editor backup) are excluded from the search

Files named: Advanced (allows usage of perl regez)

Or containing:

Characters “$ \[]() | ,; ~ have special meaning for Glimpse and can be used for building simple regex
Case-sensitive Search

Powered by Glimpse. (Tips for search syntaz)

Fill-in Containing with the text you are searching. Use Files named to find a file whose name
contains the given string. Both fields may be combined to look for a “string present only in the
designated files”.

The Files named string is compared to the name of the file. If it occurs in any position, the file is
retained for content scanning. When the Advanced box is checked, the string is considered a Perl
regular expression and can be as selective or complex as desired (e.g. with A or $ to anchor the
string at the beginning or end of the name).

The Containing text is always a Glimpse regular expression. The Glimpse regular expressions are
simpler than Perl's and have different writing rules and more reserved characters. Consequently,
when in doubt, escape your target character with a backslash (\). Consult the Glimpse manual for
details on pattern syntax.

As is usual with free-text query, search is case-insensitive. This helps to catch typing errors but may
result in a excessive number of hits in computer related text (think, for instance, of C style coding
where a variable is lowercase and the associated constant is uppercase). Check the Case sensitive
box to force exact match, both for file name and text.

The results appear after a click on the Search button, but are limited to 1000 occurrences'® to avoid
memory problems.

16 Releases prior to 0.11 had a flaw in their algorithm when both fields where used. The file information was used only
after having gathered the results. The 1000 limit could be reached before the free-text search engine scanned the
relevant files. From release 0.11 on, the algorithm has a correct behaviour where the file filter is applied first.

44

Project LXR

Software release |.2

The LXR User's Manual
2 Using LXR

Or containing: |:read

Advanced (allows usage of perl regex)

Powered by Glimpse. (Tips for search syntax)

Casesensitive Search

Language en-UK

Document revision |.4

138 occurences found.

Results for read

File Line Text

CHANGES 13| File restructured for more legical reading => no impact
66 If you made modifications, read manual before merging your

source 288 # elsif ($node =~ /README}/) {

lzr.conf 432 # code can write and read files.
488 # , 'range' => [readfile('src/versions') |
513 # my @files = grep { -f "$some_dir/$_" } readdir (DIR):
527 # my @files = grep { -f "$some_dir/§_" } readdir (DIR);

The first column gives the file where the occurrences are found. The second column is the
occurrence line number. Finally, the third column shows the line with highlighting of the target.

The file name and line number are hyperlinks to the corresponding locations.

As you can see, with a read target, this sequence is found in words such as reading, readdir,
README, efc. Search is case-insensitive unless you check the Case sensitive box.

Note:

As expected, the search operates only on the selected version.

File name and line number are specifically highlighted to warn against possible inaccurate
references to a modified-since-last-indexation file as:

genzref 284 | our $filetype = File::MMagic-=new(-f 'lib/magic.mime'? ('lib/magic.mime') : ());:
295 $config = LXR::Config-=new($url);
303 gconfig = LXR::Config-=new($url);
321 $files = LXR::Files-=new($$config{'sourceroot'}, $$config{'sourceparams'});
324 findex = LXR::Index-=new($config->{'dbname'}, O _RDWR | O_CREAT):
55 ny $glinpse = IO::Handle->new();
569 my $swish = I0::Handle-=new():
572 my $filelist = I0::File-=new(§config->swishdir . "/§releaseid.filenames", "w")
22| # counts decrement to zero because the new file version will
lib/LXR /Common pm 867 fconfig = LXR: :Config->new(§script_path);
884 $files = LXR::Files-=new($config->sourceroot, $config-=sourceparams);
886 $index = LXR::Index->new($config->dbname);
980 | When adding new languages. check that the definition of "unusual® in

2.6.b. Swish-e engine

The results are poorer with the Swish-e engine.

45

Project LXR The LXR User's Manual Language en-UK

Software release |.2 2 Using LXR Document revision |.4

You get the file name where the occurrences were found and a “score” which is an indication of the
relevance of the hit, roughly it is related to the number of occurrences in this file.

Swish-e is more oriented toward general information retrieval than toward technical text browsing.
Consequently, its search is always case insensitive (the Case sensitive check box is effective only
against file name matching).

The Containing text may be a “bibliographic equation”. Consult the Swish-e manual for details.

Since Swish- e is only interested in file hits, there is no line sample.

2.7. LXR in multiple trees context

A single LXR installation may control several source-trees without duplication of its scripts.

If configured so, you can navigate from tree to tree with a single click. The header is modified as
shown in the following picture:

Avalsbi tess: | 11 | [| | RN () (o]
LX@ The LXR Cross Referencer v

[general search]

Cvs/

At the very top of the page, a row of clickable hyperlinks transports you to the root of the advertised
tree. The current tree is specifically highlighted.

2.8. Checking configuration: showconfig

The tree-maintainer may sometimes be in trouble to correctly configure LXR. Script showconfig
shows what LXR understood from configuration file Ixr.conf. Type in the browser address bar:

http://localhost/1xr/showconfig

Source navigation | Identifler search |
I I \ LXR Configuration Senera serch
Configuration parameters from /home /source/lxr/Ixr.conf Force all
Previous: #5 /lzr/construct Now showing /lxr /lxrplain configured in parameter group # & Wext: #7 /lar/ctags
Parameter Type Tree-specific Global
alternate_stylesheet array 1xrconf.d/zotov.css
baseurl string
caption string | The L¥R Cross Referencer
cwspath string /bin: fusr/local/bin: /usr/bin: fusr/sbin
dbname string | dbi:mysql:dbname=lxr
dbpass string | Hey, that's supposed to be a secret! Hey, that's supposed to be a secret!

46

Project LXR The LXR User's Manual Language en-UK

Software release |.2 2 Using LXR Document revision |.4

This page gives the OS-absolute path of the configuration file and allows to navigate among the
parameter groups: previous group hyperlink at left, 'virtroot' for display group at the centre and
next parameter group hyperlink at right.

The table shows the parameter name, its type, its value in the current parameter-group and in the
global parameter-group. If two values are displayed, the tree-specific value overrides the global one.

Some lines may show no value, because the existing parameter is not defined in any parameter
group. Think, for instance, of 'filetype' or 'interpreters' who may be fetched from a file.
To force display, click on Force all button.

Note also that the database password 'dbpass' is concealed. In this preliminary version, array
content is not dumped if the array lies inside another structure.

Parameters are listed alphabetically, which may prove inconvenient to correlate with Ixr.conf.

Finally, remove this script if you think it betrays information facilitating attacks against your site.

47

Project LXR The LXR User's Manual Language en-UK

Software release |.2 3 |ndexing the source tree Document revision |.4

Indexing the source tree

This chapter is intended for the maintainer of a source tree. It describes the
steps and tips to succeed in bringing a source tree to operational life.

3.1. What is indexation?

Indexation of a source tree feeds the internal LXR data base with information about the symbols in
the files. It involves detecting and classifying the symbols (as variables, functions, ...), collecting
their occurrences and preparing the auxiliary data for free text search.

This task is done when the source tree is first installed and every time it is modified.

Note:
If the internal data base is not synchronised with the source tree, files can still be displayed
with correct highlighting (with the exception of newer symbols). However, the references
given by Identifier lookup are usually erroneous.

Indexation is done from the command line with script genxref.

3.2. How long does it take?

Quite difficult to answer a not so naive question.

It depends on many factors: the characteristics of the computer running genxref, the size of the
source tree, its structure (few huge files or numerous small files in various subdirectories), ...

As an example, indexing 0.10 LXR on a high-end computer with MyISAM storage'” MySQL
(3.3GHz 4-processor, 4 GiB memory, fast I/O channels) takes 3.8 seconds (elapsed time). Indexing
the same 0.10 LXR on a low-end computer (650 MHz PIII, 512 MiB memory, standard PATA) takes
about 39 seconds (elapsed time).

Always launch a sample job before the real big one to get an estimate of the needed time. Indexing a
Linux kernel is known to necessitate many hours (with LXR 0.11: 4 hours 15 minutes for kernel 3.1
under MySQL InnoDB, 2 hours 33 minutes under MySQL MyISAM and 2 hours 51 minutes under
PostgreSQL on the above fast computer — see below release 1.0 figures).

3.3. Genxref parameters

You invoke the indexing script with the command:

17 Default storage engine changed from MyISAM to InnoDB between MySQL 5.1 and 5.5 with big impact on
performance. It is thus necessary to explicitly specify MyISAM in the table descriptions.

48

Project LXR The LXR User's Manual Language en-UK

Software release |.2 3 |ndexing the source tree Document revision |.4

$./genxref options

and the following options:
--help

Print a summary of the command and its options.
--checkonly

Verify critical configuration parameters and stop.
--url=URL

Defines the target source tree. The URL must match a combination of one of the 'host_names'
followed by 'virtroot' as they are recorded in configuration file Ixr.conf. Alternatively, for
compatibility with older LXR releases, the URL may be one of 'baseurl' or
'baseurl_aliases’'.

--allurls

Apply genxrefto all URLs defined in the master configuration file.

Note:
This option should not routinely be used. You have a much better control over the indexing
process with repeated applications of - -url=. It is reserved for special circumstances where it
is known that the whole process will terminate without errors in a definite time, such as
general database reloading after a system upgrade.
--version=version_id

Generate the index only for the given version of the source tree. version_id is equal to one of
the version contained in parameter 'range' for variable 'v'. It is also the name of a
subdirectory in the source tree directory.

--allversions

Generate the index for all versions of the source tree (This is the default operating mode of
genxref).

When genxref s applied to a CVS source-tree, it gathers all encountered versions in a file written
in custom.d/ with name CVSvirtroot. virtroot is URL-encoded (i.e. all non-alphanumeric
characters are replaced by an hexadecimal 3-character sequence %xx) to avoid potential conflict
with path separators. This file may then be used to force variable 'v' 'range’ attribute.

To suppress file creation, use - -allversions=noauto.
--reindexall

Necessary to remove the previous index; otherwise, if genxref notices the index already exists for
a file, it skips that file.

Note:
The default behaviour without this option was defined to allow to add a new version to a
source-tree or a few files to a version and save time indexing only new material (remember,
that step is very time-consuming, so why waste time on something which did not change?).
--accept

49

Project LXR The LXR User's Manual Language en-UK

Software release |.2 3 Indexing the source tree Document revision |.4

When a minor configuration error is detected during the initial tests, genxref suggests fixes. You
may experiment the effect of these fixes with this option.

Note:
Since the fixes are applied on the memory copy of the configuration parameters, there is no
guarantee that they will be effective: the configuration file is reread before processing a source
tree and the parameters are restored with their saved values. The fixes work well for undefined
or missing parameters.

3.4. Last petrol station before the desert

It is always wise to launch genxref with option - -checkonly before the real indexation job. This is
a very short task (less than 10 seconds) with a high value return.

The status information is not lost among the progress messages. You quickly identify the potential
problems needing an eventual revision of the installation.

Genxref output now uses colour to draw attention onto important information. To improve
readability, set your terminal background colour to black or, better, to light grey (HTML #BBBBBB
should do fine).

$./genxref --url=//localhost/l1xr --reindexall --version=1.0 --checkonly

[OK] Perl version ... 5.14.2
[OK] ctags version ... 5.8

Checked: glimpse version ... 4.18.5
Checked: glimpseindex version ... 4.18.5

Parameter 'swishbin' not defined - trying to find swish-e
swish-e not found, “command -v swish-e” returned a null string
genxref stopped without indexing by --checkonly option

genxref performs a test on the needed tools. If the tool is found, a line displays the test result. It may
read:

* Checked: the tool exists and there is no version requirement;
e [OK] the tool exists and satisfies the version constraint;
e [FAILED] the tool exists but does not pass the version constraint.

The last case is a fatal error. Indexing will not be done until you (or your system administrator)
install the adequate version.

Note:
LXR runs also with privately installed tools provided the files are world readable and their
locations are correctly given in configuration file [xr.conf. This is a work around if you cannot
get your system administrator install ctags, glimpse or swish-e.
If a tool is not found, the printed message explains the cause: either a parameter is not defined or the
tool does not exist in the system. This may or may not be a fatal error depending on the tool.

The last line reminds you you launched genxref with - -checkonly, which is a good reason for it to

50

Project LXR The LXR User's Manual Language en-UK

Software release |.2 3 |ndexing the source tree Document revision |.4

Stop now.

It is not an error to have only one of glimpse or Swish-e. One must be present for free text search.

But configuration parameters 'glimpsebin' and 'swishbin' cannot be both simultaneously
defined.

3.5. Running the indexation

Genxref output now uses colour to draw attention onto important information. To improve
readability, set your terminal background colour to black or, better, to light grey (HTML #BBBBBB
should do fine).

The command to launch the indexation is similar to:

$./genxref --url=//localhost/lxr --reindexall --version=1.0

Use of the - -reindexall option is recommended for “small”"® trees since it involves an exhaustive
scan of the sources.

If you do not use the --reindexall option, the existing index is kept and only the changed files
are indexed, but the tree must be traversed anyway. There is a small penalty with the data base
growing: the information related to the previous state of the changed files is not fully purged.

The genxref script does its jobs in four passes for every version.

The first optional pass erases LXR database base information (files, definitions and references).
Depending on the source structure, it is either quasi-instantaneous or takes a time between those of
the third and fourth passes since it must query the state of every file description in the LXR
database.

This pass prints something meaningful only when indexing a single version without option
--reindexall. In the others cases, everything happens in the database engine (usually running
as a daemon).

It reports the files (and their revisions) which will be erased from the database:

%%% version path_to_directory

* path_to_directory is a pathname relative to 'sourceroot' where the following files need
processing

--- version filename revision status

* version is the version name as listed in 'range'
* filename is the name relative to the current directory as printed in a %%% line

“Small” is to be understood as a source-tree size giving an acceptable indexing time on your computer. Many factors
compete to give the final time. If you are working on a huge project, such as the Linux kernel, running genxref every
day with - -reindexall is clearly unacceptable since it means several hours of processing (on high-end
computers). On the other hand, if complete reindexing only takes a few minutes (up to, say, two minutes), it is much
safer to use this option.

51

Project LXR The LXR User's Manual Language en-UK

Software release |.2 3 |ndexing the source tree Document revision |.4

* revision is an internal code uniquely identifying the base file for this version
* status is one of the following:

not purgeable yet
purged

The first status means the base revision file is still referenced from an other version and cannot
be removed. However all definitions and references pertaining to the current version are erased
from the database.

The second status indicates that the base revision file has successfully been removed from the
database. The following parsing passes will add symbols for a consistent result®.

The second pass generates the search database with glimpseindex or swish-e. What is printed is the
output of the relevant search engine.

With swish- e, the following line is printed before processing a directory or file:

&&& path_to_file_or_directory version

While swish-e needs a copy of each file with some header information added with its internal
index files, glimpse undertakes a specific processing of the tree as a whole involving creating
macro block indexes and arranging a private database.

The third pass collects symbol declarations in the LXR database with the help of ctags.

The following message is printed when entering a directory® *:

*** version path_to_directory

* path_to_directory is a pathname relative to 'sourceroot'
Processing of a file is logged as:

--- version filename revision status

* version is the version name as listed in 'range'

* filename is the name relative to the current directory® as printed in a *** line
* revision is an internal code uniquely identifying the base file for this version

* fileid is a short number identifying the file

* status is one of the following:

fileid

was already indexed

20

21

22

This solves a bug filed since 2002! Reindexing a file without - - reindexall left previous definitions and
references to a symbol as “ghost” occurrences resulting in false duplicates in cross-references reports.

As long as no processing is done in the directory, this line is overwritten with the next directory. This is done to
minimise scrolling. This results in unprocessed directories being erased from the log.

This line is repeated every now and again, so that the current directory is kept in view despite of scrolling even in
very populated directories.

With source trees residing in a CVS repository, files in the Attic are not correctly attributed to the parent directory if
it contains sub-directories. This will not be corrected because it would a negative impact on performance on all other
cases.

52

Project LXR The LXR User's Manual Language en-UK

Software release |.2 3 |ndexing the source tree Document revision |.4

FAILED

The first status means “normal” processing.

The second status indicates that this file has already been indexed in a previous run or version
and is not parsed again. Reindexing may be forced with - -reindexall option.

The third status is used if index files could not be created during initialisation.

Messages like Warning: Unknown type [etfer may follow the - - - line. This means you have

not fully configured 'typemap' for the language in generic.conf (discrepancy between this
section and 'ectagsopts') preventing the symbols for the letter-category from being indexed.

The fourth pass parses the files to get references to symbols detected in the third phase. These
references are entered in the LXR database. This pass is the one taking the longest time.

The following message is printed when entering a directory:

version path_to_directory

Processing of a file is logged as:

--- version filename revision status

where status is one of the following:

fileid +++ number_of_lines_in_file
was already referenced
FAILED

The meaning of these statuses is the same as in the third phase.

Note:
fileid is printed before entering the file and +++ number_of_lines_in_file when the parser
reaches the end of file. You may then perceive a delay between these two data.

What looks like an identifier and is not in the reserved symbol list is referenced if it has been
seen during the third pass.

You may get messages BTYPE was: some_category after the - - - line. It means a fragment of
the source file could not be classified as a managed category (like comment, string, include or
code) and was ignored.

IMPORTANT NOTICE!
The internal LXR parser has been deeply changed between versions 0.9.8 and 0.9.9. You
should no longer get this message with atom for some_category. If it ever happens®, please
report it immediately as a bug with as thorough context related to your source tree as you can.

If some_category is something else than atom, this means you made modifications to the

language specifications in generic.conf without adapting the parser. If you did not, report it
also as a bug with a copy of file generic.conf.

23 Experience has taught the author you can never say never with computers.

53

Project LXR The LXR User's Manual Language en-UK

Software release |.2 3 |ndexing the source tree Document revision |.4

3.6. Troubleshooting

With the PostgreSQL data base engine, the optional selective erasure pass prints commit
ineffective with AutoCommit enabled at ... Ignore this warning. It is caused by the
inability to change the commir mode dynamically*.

Error messages issued by the free-text search engines during the second pass are often caused by
non-existing private directories (those defined by configuration parameters 'glimpsedir' and
"swishdir') or incorrect access permissions (user and group writeable and world readable is
recommended).

During the third pass, ctags: No files specified. Try "ctags --help" means the
directory defined by configuration parameter 'tmpdir' cannot be written into. Check the access
permission (user and group writeable and world readable is recommended).

Message Can't call method "getline" on an undefined value at ..during the fourth
pass is also caused by incorrect access permissions on subdirectory 'tmpdir'.

3.7. Optimising resources usage

3.7.a. File revision vs. file versions

A file version is what you see in the different directories of the tree. However the VCS's try to
minimise the number of different versions they store. If two versions are identical, they will keep
only one, named a revision, which will be known under two different version names.

Internally, LXR converts file version into revision and makes a note when a revision is processed.
This is how genxref skips files with the file was already indexed message, even if you are
indexing a seemingly brand new version whose files where never submitted to LXR. LXR simply
determined that the file was already present in another version.

For plain files (as opposed to a VCS), there is no storage engine. The base revision factor associates
last modification date and size of the file. Two files (with the same name) in two versions refer to
the same revision if their factors are equal. Thus when copying files to open a new version directory,
it is worth keeping the last modification date unchanged.

When option - -reindexall is not given to genxref:

$./genxref --url=//localhost/lxr --version=current

changed files are recorded under a new revision (either defined by the VCS or a change in
modification date and/or file size). These new revisions are indexed. The older revision information
is deleted if no other file version refers to this revision. However, the database may grow a bit*. It is

24 This seems to be a specific Perl issue when using object-oriented programming.
25 As the erased file is supposed to be immediately reindexed, the symbol dictionary is not erased because it is
anticipated it will be little different in the new version. This spares time needed to rebuild the dictionary. Some

54

Project LXR The LXR User's Manual Language en-UK

Software release |.2 3 |ndexing the source tree Document revision |.4

recommended to periodically run the following command on a “live” working version to prune
inaccessible stale data:

$./genxref --url=//localhost/1xr --version=current --reindexall

3.7.b. Processing time

3.7.b.1. Purging the database
There are two methods for purging the database: brute force or detailed analysis.

Brute force is very fast and can be used only when it is known to keep database integrity. This is
the case when both --reindexall and --allversions options are simultaneously given to
genxref. It is also used without - -allversions where there is only one version in the tree:

$./genxref --url=//localhost/lxr --allversions --reindexall
$./genxref --url=//localhost/lxr --version=sole_version --reindexall

In the other cases, genxref must carefully analyse the file descriptors to identify the purgeable
records:

$./genxref --url=//localhost/lxr --allversions
$./genxref --url=//localhost/lxr --version=one_version_among_others

Purge time is closely related to the number of file versions and number of symbol occurrences.

The Linux kernel 3.x is composed more than 36 800 files out of which 32 000 are indexed,
contains roughly 1 300 000 different symbols for 2 500 000 definitions and 18 500 000 usages.
Delicately purging a single version may take 1 hour 45 minutes on the aforementioned high-end
computer. Indexing is not included in this figure. It is worth considering twice on such projects
before deciding for - -reindexall.

Not specifying - -reindexall allows to parse only the changed files since the last indexation.

If only one version needs to be indexed, explicitly spare file state analysis on the other versions:

$./genxref --url=//localhost/lxr --version=one_version

The same is true if you have few versions to update. genxref them individually one after the other.

3.7.b.2. Changing database engine

All database engines are not equivalent and their performance make a big difference on indexing
time. The difference is less noticeable on browsing where time is dominated by HTML generation.

From “quick and dirty” comparisons on a medium size test case (7 versions of LXR), MySQL is a
bit faster than PostgreSQL (about 20%). MySQL is roughly 4 times as fast as SQLite, while
PostgreSQL is about 3 times. This differs little from previous estimates®.

symbols will not be present in the new text but their dictionary entry is kept. The result is a marginal database size
growth.
26 Version 0.11 stated “default MySQL storage engine (InnoDB) is approximately twice as fast as SQLite and

55

Project LXR The LXR User's Manual Language en-UK

Software release |.2 3 |ndexing the source tree Document revision |.4

The database interface has been heavily worked upon in release 1.0, but the difference in MySQL
between InnoDB and MyISAM remains the same: MyISAM is still twice as fast as InnoDB.

On the aforementioned high-end computer, the real times (in minutes:seconds) are 1:48 SQLite,
0:55 MySQL InnoDB, 0:32 PostgreSQL and 0:28 MySQL MyISAM.

The 1.2 ratio increases to 1.6 on large-scale projects: Linux 3.1 indexing times are 4:09:47 with
PostgreSQL* and 2:39:30 with MySQL MyISAM.

3.7.c. Database size

The main contributions to database size are in decreasing order usages, symbol names and
definitions. Depending on language parser analysis depth, total stored information may be several
times bigger than the source-tree itself (counting the access indexes). Project programming style is
also an important factor (comment density, symbol use frequency, ...).

The Perl scanner (in present ctags) captures only procedures. Database has roughly the same
size as source code.

On the opposite, C-family parsing is rather exhaustive. The expansion factor is always greater
than one. It reaches 5 on complex projects.

When the number of files is important, the files dictionary may also be a figure to take into
consideration. The stored file names contain the full path starting from 'sourceroot'. With deep
directory nesting, these paths can be quite long (maximum length around 100 in the Linux kernel
tree). There is also at least one version string per revision file.

Index size is roughly the same as data size, but for the symbol dictionary where indexes may need
up to twice as much space as data.

All put together, under MySQL InnoDB, an empty LXR database is 256 kbytes. A small user
project (about 400 kbytes) results in a 1.4M database. At the other end of the scale, a Linux 3.1
kernel (450 Mbytes) needs a 2.7G database.

Under MySQL MyISAM, an empty LXR database is 77 kbytes. The small 400k project results in a
630k database and Linux 3.1 kernel leads to a 915M database.

Under PostgreSQL, an empty LXR database is 6.0 Mbytes. The small 400k project results in a
7.8M database and Linux 3.1 kernel leads to a 1.8G database.

Under SQLite, the small 400k project results in a 500k database. And do not ever try to index a
Linux kernel under SQLite.

Once these figures are collected, it is possible to optimise database organisation for size through
tuning the initdb-x-template.sql (after copying them from templates/ to custom.d/) or the initdb.sh
script if it has been kept. This requires SQL and database knowledge.

PostgreSQL is in turn twice as fast as MySQL InnoDB or as fast as MySQL MyISAM”. The times were 1:48 SQLite,
1:08 MySQL InnoDB, 0:32 PostgreSQL and 0:30 MySQL MyISAM. Note that the newer test case is bigger than for
0.11 and 1.0 does a lot more things.

Time can be marginally improved by playing with the internal PostgreSQL sequence generator cache. Considering
there are 1.3 million symbols, setting cache factor in Symnum sequence to 1 000 makes sense and resulted in a 10
minutes gain. However using higher values is likely to have a very limited impact.

27

56

Project LXR The LXR User's Manual Language en-UK

Software release |.2 3 |ndexing the source tree Document revision |.4

Notes:

Being too conservative on table column sizes may hamper future version addition if names
(files and symbols) are longer than the new limit.

la After tuning an initdb-x-template.sql template, a full re-installation of the tree into LXR must
be done, but you can spare some pain in multiple-trees context to avoid having to describe all

the other trees: take care not to modify your existing [xr.conf if you want to tune only one
database. Run configure-Ixr.pl as:

$./scripts/configure-1xr.pl --tmpl-dir=custom.d --conf-out=mylxr.conf

Option - -tmpl-dir tells to take templates in custom.d/ and - -conf-out gives a user name
to this configuration file, which will be discarded anyway.

1b Tuning initdb.sh requires to purge the script from commands and SQL statements not related
to the relevant tree. Make the changes in the database description.

2 Recreate the database with:

$./custom.d/initdb.sh
$./genxref --url=//localhost/1xr/tree

57

Project LXR The LXR User's Manual Language en-UK

Software release |.2 4 Conﬁguring LXR Document revision |.4

Configuring LXR

This chapter is an introduction to fine tuning LXR to satisfy one's personal
taste or need. The intended audience is the advanced user, the tree
maintainer and the developer.
LXR needs to know its environment to find all the required auxiliary tools and the various
directories. It must be fed with the parsing rules for the supported languages. Its raw results must be
edited before being displayed for the user.

This sums up what can be changed to obtain dramatic differences with the same base engine.

4.1. Understanding file references in LXR

File references are passed LXR to serve different purposes. LXR is an hybrid “object” running in
three environments.

CAUTION!
Remember to check that all the paths are “world readable” because LXR is run by the web
server under its own user-id. Most difficulties arise from incorrect file permissions.

4.1.a. LXR is mainly a set of scripts written in Perl

The scripts use service routines grouped in Perl packages®™. Seen from the OS, a package is simply a
file. To avoid maintenance problems when moving LXR from a directory to another, the packages
are referenced using a relative form. The only constraint is to define the root of this relative form.

When an LXR script is launched, it defines its storage directory as the working directory. This
working directory is the root of all file references from within the script. Since the service packages
are shared among all the LXR scripts, the scripts must be stored in the same directory, called the
LXR root directory.

Note:
Well, it is not that simple. Apache I.x mod_perl module has some limitation which prevents
calling the service packages with this uniform mechanism. Under Apache 1.x, the service
packages must be copied in the site_perl directory of the standard library.

To summarize, files needed by the scripts must be located in the LXR root directory or one of its
subdirectories.

4.1.b. LXR uses auxiliary tools or accesses non-specific files

These tools, such as ctags or glimpse, or files, like a source-tree, are totally unrelated to LXR. They

28 Packages here means those written specifically for LXR, not the standard library packages which are supposed to be
always available.

58

Project LXR The LXR User's Manual Language en-UK

Software release |.2 4 Conﬁguring LXR Document revision |.4

can reside anywhere in the computer.

There is no other choice than naming them with an OS absolute path.

4.1.c. LXR emits HTML code

This HTML code may reference utility files, e.g. CSS style sheets. The rules for HTML
environment are applied. These files, to be accessed, must reside in the DocumentRoot directory or
one of its subdirectories.

On first sight, HTML-relative and HTML-absolute path forms can be used. However, the HTML-
relative form is based on the current page position in the DocumentRoot hierarchy. Consequently,
this relative form cannot be used because it would be different for pages in different branches of the
hierarchy.

In simple cases, the DocumentRoot directory and the LXR root directory are the same and the
distinction between HTML and LXR does not matter.

In complex cases, such as LXR service being integrated in a wider site or site-specific security
rules®, DocumentRoot is totally separated from the LXR root directory. This implies a copy of
some files from the distribution LXR directory to some directory under DocumentRoot.

4.2. Configuration files

First thing first, LXR reads its master configuration file [xr.conf from the LXR root directory.

Note:
At this stage, LXR has yet no information on its user-environment. It is kind of bootstrapping.
The file name [xr.conf cannot be user-customised without script modification.

This file contains the paths for all the other files needed for operation. To select the correct
designation as stated above, one must understand which use LXR has for the file.

The principal other files to have an impact on LXR behaviour or appearance are generic.conf for
language definitions, the templates for the HTML page architecture and the CSS style sheets.

Note:
The default CSS style sheet has always been named [xr.css but its name is defined in Ixr.conf
and can be changed to whatever you like.

These files are covered in the next chapters.

Golden rule reminder:
Always copy original files from the templates/ directory to the custom.d/ directory before
editing. templates/ has been made “read-only” to avoid accidental loss of reference files.

Note:

2 For instance, SourceForge.net forbids CGI scripts in “normal” DocumentRoot. All scripts are segregated in
cgi- bin directory.

59

Project LXR

Software release |.2

The LXR User's Manual
4 Configuring LXR

Language en-UK

Document revision |.4

Do not forget to reset permissions on the copy, otherwise it stays “read-only”.

4.3. Configuration scripts

The scripts in the scripts/ directory are provided to facilitate the configuration process. For these
scripts to be successful, the current working directory must be the LXR root directory.

* ANSI-escape.sh, LCLInterpreter.pm, QuestionAnswer.pm, Tagger.pm and VTEscape.pm

contain definitions and procedures to be used by other scripts.

configure-Ixr.pl

Main configuration script, see 1.3 Configure your installation for usage and 1.3.f for options.
kernel-vars-grab.sh

This script is a companion to template [xrkernel.conf. It scans a Linux source tree (only when
stored as plain files — does not work with VCS's — to discover values to set in 'range' attribute
of variables ('v' version variable, 'a' architecture variable and others to drive the #include
resolution engine). The output is a set of files with suffix _1ist.txt in custom.d/ directory.

$./scripts/kernel-vars-grab.sh kernel directory

The output is added to the end of these files. To restart from scratch, not keeping values from
other directories, add option - -erase:

$./scripts/kernel-vars-grab.sh --erase kernel directory

To change the default suffix, use option --suffix and edit custom.d/Ixrkernel.conf to reflect the
change:

$./scripts/kernel-vars-grab.sh --suffix=_my suffix.txt kernel _directory

lighttpd-init
This is an /etc/init.d/-like script to control the lighttpd web server. See 1.8.b Lighttpd server.
recreatedb.sh

This script recreates database descriptions from the master configuration file (see 4.5 Reloading
LXR after system upgrade).

set-Ixr-version.sh

When you modify LXR (its internal Perl scripts or templates), use this script to identify your
copy as a customised one. The command is:

$./scripts/set-1xr-version.sh --user "-ajl-1.0"

The string is added at the end of the release number.

60

Project LXR The LXR User's Manual Language en-UK

Software release |.2 4 Conﬁguring LXR Document revision |.4

The - -user option is mandatory because this script is also used during the release procedure to
set the release version number. If you do not specify --user, your custom identification will not
be added (because the Perl version subroutine looks different in the development stage — it is a
template — and in the public release) and you get no error indication (blame sed).

4.4. Multiple-trees context

Configuring for multiple trees is hardly more difficult than configuring for single tree.
Installation (1.2) is independent from usage. You can proceed with the following steps at any time.

In configuration step (1.3), answer m (for multiple) instead of s (for single) and proceed along with
the questions.

Depending on the database engine, you have the choice of creating a database per tree (MySQL,
PostgreSQL and SQLite) or creating tables dedicated to a tree in a single database (MySQL, Oracle,
PostgreSQL and SQLite).

Be careful when adding the trees in several sessions not to erase the already existing databases: this
involves deleting initdb.sh script or moving it under a different name after use.

Run genxref (see 1.7) for every tree.

Configuring the web server is the hardest step. Read carefully chapter 7 Web server configuration
and its sections on multiple-trees operation.

4.5. Reloading LXR after system upgrade

Some system upgrades may lead to LXR databases loss. Among others, consider installing a new
LXR version or fresh installation of the next system distribution release.

There is a solution to avoid the painful reconfiguration of LXR, above all when you manage many,
many trees.

In the first case, save the master configuration file Ixr.conf and its context file custom.d/Ixr.ctxt. Save
also the web-server related files (.htaccess and in custom.d/ apache2-require.pl, apache-
Ixrserver.conf and lighttpd-Ixrserver.conf). Install the new LXR version (step 1.2 Create LXR
installation directory) and reload the saved files. Do not configure this new installation, proceed to
the procedure below.

In the second case, before upgrading your computer, save the LXR root directory and the source
directories (more generally, save /home content — easily done if it is a separate partition). Do the
upgrade and reload what you have saved. Then follow the procedure below.

Note:
Ideally, you could also save the databases but that requires knowledge of the directories where
they are stored and of the companion configuration files. But you have no guarantee that after

61

Project LXR

Software release |.2

reload, the data will still be compatible with the database engine.

The LXR User's Manual
4 Configuring LXR

Language en-UK

Document revision |.4

» Step 1.3 Configure your installation is replaced by the invocation of script recreatedb.pl:

$./scripts/recreatedb.pl --verbose
*** | XR DB initialisation reconstruction

LXR root directory is /home/source/1xr
Configuration read from lxr.conf

Initial context custom.d/1xr.ctxt is reloaded
Your DB engine was: MySQL
Configuration file 1lxr.conf loaded

*** scanning global configuration section ***

*** scanning /l1xr/treel tree configuration section ***
*** scanning /1xr/tree2 tree configuration section ***

(version:

Al il ses

Note:

Advanced uses of this script can be hinted by option - -help.

configuration file was already operational.

Step 1.7 Generate index is replaced by:

Do step 1.4 Create a database normally, executing script custom.d/initdb.sh.

Skip steps 1.5 Edit the LXR configuration file and 1.6 Copy configuration since the master

$./scripts/genxref --allurls

Note:

This is the only instance where the use of --allurls is recommended because indexation is
supposed to have been previously done with success. However, since it can be very lengthy, it
is wise to launch this command in a separate terminal so that it runs in the background. Of
course, indexation can also be split into independent sub-tasks with --ur1=.

done.

Copy the web-server related files to their final destination. Restart the web server and you are

62

Project LXR The LXR User's Manual Language en-UK

Software release |.2 5 Master configuration file Ixr.conf Document revision |.4

EM aster configuration file Ixr.conf

This chapters covers in detail the content of the master configuration file. Its
content is central to flawless operation.
The master configuration file /xr.conf must be located in the LXR root directory. It contains generic
parameters needed for any LXR operation.

5.1. Master configuration file syntax

The master configuration file contains a list of key/value pairs.

Note:
If you are familiar with Perl, it is a list of anonymous hashes. It is read in at initialization time
and evaluated. What this means is: you get all the power of Perl and all its idiosyncrasies.

Comments can be added to the file to give explanations or take note of modifications. A comment
starts with a pound sign (#) followed by a blank (space or tab) and extends to the end of line.

Examples:

This a comment starting in col. 1
'relevant' => 'data' # This comment follows meaningful configuration data

The configuration parameters are enclosed in a (parenthesised) list:

* opened by a left-parenthesis (
* separated by a comma ,
* closed by a right-parenthesis)

(parameter-group-0 , parameter-group-1 ... , parameter-group-n)

or, with a nicer presentation™:

(parameter-group-0
, parameter-group-1

, parameter-group-n

)

30 The concept of nice is a matter of personal taste, of course. However, the author of this manual has found by
experience that programming in languages where separators are used, it is safer to write them at the beginning of
the line, so that they are not omitted by mistake. Moreover they align neatly with the opening and closing symbols.
Delimiters (or 'terminators') are written at the end of the line. In Perl, commas are separators and semi-columns are
traditionally used as delimiters, though they really are separators.

The wise rule is: in lists, always write a symbol at start of line: the opening one of the list, the continuation separator
or the closing symbol of the construct on its own line.

63

Project LXR The LXR User's Manual Language en-UK

Software release 1.2 5 Master configuration file Ixr.conf Document revision |.4
Notes:
The ellipsis ... above only denotes the presence of more parameter-groups with their

preceding comma.
Each parameter-group is list of key/value pairs (with a hash syntax for the technically minded):

* opened by a left-curly-brace {
* separated by a comma ,
* closed by a right-curly-brace }

{ key/value-0
, key/value-1

, .I;éy/value-m

}
In these pairs, the key is a string (delimited with single-quotes ' to avoid funny things from
happening when evaluating the parameter). The value may be a (single-quote delimited) string, an
array or even another list of key/value pairs. Each pair contains:

* the quote-delimited key

* the operator => (equals sign followed by right-angle-bracket, also named greater than,
without any intervening space)

* the value as one of:

© a single-quote delimited string for single value parameters

o an array of values opened with a left-square-bracket [separated by a comma and closed
with a right-square-bracket]

o a list of key/value pairs (see above)

Example:

(# First parameter group
{ 'number_0' => '0'

, ‘'array' =>
['elem@'
, 'elem1'’
, 'elem2'

]

, 'secondary_hash' =>
{ 'sec_key_a' => 'a'
, 'sec_key b' => 'b'
3
3
, # Second parameter group
{ 'another_key' => 'as_an_example'

}

)

Note:
This gets evaluated by Perl. Thus, there is a more elegant and less error-prone way of writing

64

Project LXR The LXR User's Manual Language en-UK

Software release |.2 5 Master configuration file Ixr.conf Document revision |.4

the array above by using the Perl function qw() (meaning quote word):
, 'array' => [gw(elem0® eleml elem2)]

We are thus spared the trouble of writing the quotes and forgetting one. qw() splits its
argument list at white space.

5.2. Rationale of parameter grouping

Now we know how to write the configuration file. Let us see how it is structured.

The first parameter-group (at index 0) is always read in and contains general parameters needed to
have LXR functional. This group is required.

The subsequent parameter-groups (at indices 1 and above) are akin to a source tree and one is read
in only when that source-tree is displayed. At least, one such parameter-group must be present and
matched to the tree lest LXR dies (silently in the standard version, leaving you with a blank screen).

That's the original story. But you can improve on it.

1. The parameters are all stored in a single dictionary whether they are read from group O or
others. It means that, if you have several trees with identical tree-parameters, you can
“common-factor” the identical tree-parameters by writing them only once in parameter-
group-0.

2. The tree-parameters are read after the group-O parameters. It means you can override a
general value with a tree-specific value by issuing the same key with a different value in a
parameter-group-1 or above.

For instance, these two tricks can be used if you want to customise one of the HTML templates for a
tree only, instead of listing them repetitively (with the risk of a typing error).

5.3. Sections in provided Ixr.conf template

Directory femplates/ located in the LXR root directory contains a commented template for the
master configuration file Ixr.conf which can no longer be directly tailored to one's needs due to the
expansion directives interspersed with the parameters. As explained in chapter 4 Configuring LXR
(see mostly 4.1.a and 4.2), the resulting expanded file MUST be located in the LXR root directory.
You can of course customise this template but make a copy of it:

$ cp templates/lxr.conf custom.d/my_lxr_template.conf
$ chmod u+w custom/my_lxr_template.conf

Note:
This command is valid if your working directory is the LXR root directory.

65

Project LXR The LXR User's Manual Language en-UK

Software release |.2 5 Master configuration file Ixr.conf Document revision |.4

You can now adapt it to your needs with your favourite text editor. When you are done, generate the
effective configuration file with (on a single line):

$./scripts/configure-1xr.pl -vv --tmpl-dir=custom.d --conf-out=1xr.conf
my_1lxr_template.conf

Eventually tune the resulting file. Copy it to its final location:

$ cp custom.d/1xr.conf .

Comments in the file are used to provide reference marks. Parameter group O follows the Global
configuration section header. Parameter group 1 after the Tree configuration section header is a
parameter group dedicated to a tree. If you want to manually add another source tree, duplicate this
section (including its comma, from the opening left-curly-brace to the closing right-curly-brace) just
before the #@here_tree: tag and final right parentheses (see 5.1 Master configuration file syntax).
Edit this new section as necessary.

Note:
It is easier and more reliable to run script configure-Ixr.pl with option --add which also
generates directives to create the associated database.

Global parameters define the global environment and are independent of the source trees, save for
eventual common factoring of tree parameters.

Tree parameters are focused on characteristics of a tree.

CAUTION!
In the following parameter descriptions, the comma separating two consecutive parameters is
not shown but MUST be written to avoid syntax errors.

5.4. Global parameters

These parameters are found in parameter group O after the Global configuration section header at
the top of the file.

They are thought to have a rather universal or permanent value independent of a specific tree. This
is not a marble-carved rule. You can deviate without harm. As explained above, you can override
their value by repeating them in a tree section.

Adapt the values to reflect your configuration.

5.4.a. Auxiliary tools
Notes:

1. Parameters in this section are mandatory (meaning LXR will not execute if their value is not
defined). This is checked by genxref. During operation, you may have a diagnostic in the error
log of the web server.

66

Project LXR The LXR User's Manual Language en-UK

Software release |.2 5 Master configuration file Ixr.conf Document revision |.4

2. All paths must be given in OS absolute form.

The first auxiliary tool is the search engine. Your choice is between glimpse and Swish-e through
the following parameters. Use only OS absolute paths.

'glimpsebin' => '/usr/local/bin/glimpse’
'glimpseindex' => '/usr/local/bin/glimpseindex'
'glimpsedirbase' => '/home/myself/glimpse_databases

'glimpsebin' and ‘'glimpseindex' are paths to the components of glimpse.
'glimpsedirbase' is a path to a directory where sub-directories named after 'virtroot'
will be created to store the search database for this tree. This directory must grant write
permission to the user launching genxref.

'swishbin' => '/usr/local/bin/swish-e'
'swishdirbase' => '/home/myself/swish_databases

"swishbin' is the path to Swish-e binary. 'swishdirbase' is a path to a directory where
sub-directories named after 'virtroot' will be created to store the search database for this tree.
This directory must grant write permission to the user launching genxref.

CAUTION!

Only one of 'glimpsebin' or 'swishbin' must be defined. Comment out or erase the
other.

Note:
The free-text search engines also uses parameters 'glimpsedir' and 'swishdir' setin the
tree parameter groups if 'glimpsedirbase' and 'swishdirbase' are not defined.

The second tool is the language parser ctags.

'ectagshin' => '/usr/bin/ctags’
'ectagsconf' => '/absolute_LXR _root_dir/templates/Lang/ectags.conf'

You must also define several paths to allow LXR to achieve its job.
"tmpdir' = '/tmp'
Directory for temporary files (needs write access, of course)
The third tool (optional) is the CVS utility.
'cvspath' => '/bin:/usr/local/bin:/usr/bin:/usr/sbin'

Path for CVS module (may be omitted if CVS not used)

5.4.b. Computer DNS names

This is where you tell LXR the host names used in the URL to access your computer. This will form
part of the key to identify the requested source-tree. The other part is found in tree parameter
'virtroot'.

67

Project LXR The LXR User's Manual Language en-UK

Software release 1.2 5 Master configuration file Ixr.conf Document revision |.4
"host_names' => ['http://mycomputer.example.com:8080"'
'//localhost'
'//127.0.0.1'

"https://myPC.localdomain'

—_~ N~

The form of the parameter is:

protocol: / /host-name : port
protocol: is optional if it is http. :port can also be omitted if it is the standard port for the protocol
(80 for http, 443 for https).

The web server hands over to LXR whatever URL was used, without translation nor DNS magic. If
a numeric IP is used, you get a numeric host name. This is why you must list all the anticipated
names to access your computer.

54.c. HTML parameters

LXR fills in HTML templates with variable data extracted from source documents and its internal
database. These templates can be adapted to satisfy personal taste and needs. A certain number of
them are provided in the standard release. The following parameters are used to map the internal
feature names to the templates.

"htmlfatal' => path to optional template for 'tree not found' error
"htmlhead' => path to generic template for page header

"htmltail' => path to template for page footer

"htmldir' => path to template for directory display

"htmlident' => path to template for ident inquiry form

"htmlsearch' => path to template for search inquiry form
"htmlconfig' => path to template for configuration display

These files are read only by LXR scripts. Their paths may be expressed as relative to the LXR root
directory or as OS absolute paths. The first form is preferred when the templates are located in a
subdirectory in LXR (like the release templates), the second when the templates reside in a
directory unrelated to LXR.

The templates/html directory that ships with each release contains files with names html-* html
corresponding to parameter 'html*' above. The exception is "htmlsearch' since the free-text
search engines produce different results. You must then choose between html-search-glipmse.html
and html-search-swish.html.

If you use these templates without modifications, you can write parameters like this:

"htmlhead' => 'templates/html/html-head.html’'

Note:
The standard release also provides an html-head-btn.html with buttons-and-menus interface
which is a replacement for html-head.html using the more traditional /ink interface.

If you feel like changing some part of these default templates, it is highly recommended you copy
them first and work on the copy.

68

Project LXR The LXR User's Manual Language en-UK

Software release |.2 5 Master configuration file Ixr.conf Document revision |.4

You can use “specialised” version of 'htmlhead' and "htmltail' for the different LXR modes
by providing user-customised templates where html in the parameter names is replaced by source,
sourcedir, diff, ident, search or showconfig as in 'sourcehead'. These specialised
parameters (and templates) are optional. LXR reverts to 'htmlhead' and "htmltail' if they are
not defined.

Note:
In the standard Ixr.conf release, htmlhead, sourcehead and sourcedirhead all point to
the same template.

To give maximum flexibility to source text display, LXR outputs its HTML without any embedded
style. The HTML elements are class-attributed. The display decoration is achieved through a CSS
style sheet defined by:

'stylesheet’ => HTML path to css style sheet

CAUTION!
This style sheet is served to your browser through HTML. This may involve copying this file
to some location under your DocumentRoot. In the simple case where DocumentRoot is the
LXR root directory and you are satisfied with the default style sheet, you may write:

'stylesheet’ => 'templates/lxr.css'

Other style sheets may optionally be defined. In a compatible browser, such as Firefox, the user can
select the active style sheet from a menu.

'alternate_stylesheet' => [list of css style sheet]

Source trees may be written with character sets other than plain ol' ASCII. To have them correctly
displayed, the character encoding must be transmitted to your browser in a Content-Type HTTP
header for every HTML page with:

'encoding' => 'iso0-8859-1'

Value may be any IANA-defined character set. Possible choices are, among others, 'iso-8859-15'
for Euro sign or 'utf-8"' for Unicode. This parameter is also frequently given in tree parameter
groups.

If not defined, it defaults to the above character set to preserve backward compatibility.

The following parameters do not really configure LXR's HTML behaviour but they are passed as
dynamic arguments in the URL with an underscore (_) preceding their name.

'diffleftwidth' => '50'

Set it to the number of characters to display in the left column when comparing two files with
diff.

If not defined, it defaults to the above width.

'identdefonly' => '0'

69

Project LXR The LXR User's Manual Language en-UK

Software release |.2 5 Master configuration file Ixr.conf Document revision |.4

Set it to '1' if you want to limit identifier search to definitions only. If not defined, it is
equivalent to 'Q'. Values other than '@' or '1' lead to unspecified behaviour.

5.4.d. File management

The parameters of this subsection guide LXR in handling the files and their content. Modification
of their value may have very adverse effects on LXR behaviour. As a fail-safe rule, DO NOT fiddle
with them unless you ABSOLUTELY need it.

Source tree directories usually contain files besides the source text. These files may not be relevant
for the purpose of displaying and studying the source tree. It is then worth to shadow them so that
they do not appear in directory listing. Moreover, they can be excluded from indexing, which results
in a performance improvement for this step. This is done by filtering files with a regular expression
whenever LXR enters a directory:

'ignorefiles' => 'regular_expression'

The released value for the regular expression discards invisible (aka. “dot”) files, editor backups,
binary files and core dumps:

'ignorefiles' => '"A\\.|~$|\\.(o|a|orig)$|Acore$’

It can be extended to fit your needs, preferentially overriding this global exclusion rule by a specific
one in a tree section.

Note:
See the Perl manual for modification and pay special attention to the double backslashes (\)
when you need one. This is a consequence of evaling the string.

Some files in source trees may have graphic content. LXR will avoid processing them if the file
extension matches its definition of a graphic file defined by:

'graphicfile' =>
"bitmap|bmp|gif|icon?|jp2|jpe?g|pjpe?g|png]|tiff?|xbm|xpm'
The value is a list of alternatives with Perl regular expression meta-characters. The outer

parentheses are automatically provided by LXR. Pattern is case-insensitive and is constrained to
match only at the end of the file name (both rules are hard-coded in LXR).

This allows to tag a file entry in the directory listing with an adequate default icon.

LXR also has a limited capacity to display graphic files. It relies on the source tree accessibility
under DocumentRoot and the ability of your web browser to understand the file format. See
parameter 'sourceaccess' in the tree parameter group for the first condition. If one of the
conditions is violated, the browser will display a text message instead (the alt attribute of the
 element).

Note:
See the Perl manual for modification.

The default icons in directory listing are rather poor and ugly. You can replace them with your own

70

Project LXR The LXR User's Manual Language en-UK

Software release |.2 5 Master configuration file Ixr.conf Document revision |.4

icons with the following parameter:

'"iconfolder' => '/some_dir_containing_icons/'
CAUTION!
Do not forget the trailing slash!
The 'iconfolder' value points to a directory under DocumentRoot. It is an HTML-absolute
path. It contains graphic files sent as elements to your browser.

You do not need to design your own icons. You may use the ones you like on your system. For
instance, if you want to display the Oxygen theme icon, you only have to create a symbolic link to
the appropriate directory (path below for Fedora Linux):

$ cd /DocumentRoot_directory # often equal to LXR root directory
$ 1In -s /usr/share/icons/oxygen/22x22/mimetypes/ small-icons-dir

and

'iconfolder' => '/small-icons-dir/"'

Which image is used is defined by an association list in parameter 'icons' (small example for the
Oxygen theme):

'icons' =>
{ 'c|pc' => 'text-x-csrc.png'
, "h|hh' => 'text-x-chdr.png'
, 'c\+\+]|cc|cpp|cxx' => 'text-x-c++src.png'
}

You list as many lines as needed. The key is a regular expression without the outer parentheses.
Matching is case-insensitive and restricted to the file extension.

You must also provide default icons in case no key matched the file extension, notably for
directories:

'graphicicon' => 'image-x-generic.png'
'defaulticon' => 'unknown.png'
'diricon' => 'inode-directory.png'
'parenticon' => 'go-up.png'

Note:

The feature involving 'iconfolder' is optional. If '"iconfolder' is not defined, LXR
reverts to the historical display based on default Apache icons. If 'iconfolder' is defined,
you must define the other parameters otherwise LXR errors out.

When LXR is instructed to list a file, it passes its content to a parser. How to associate a parser with
a file is defined by a set of rules located in a file pointed to by parameter 'filetypeconf':

'filetypeconf' => 'templates/filetype.conf'
Note:

71

Project LXR The LXR User's Manual Language en-UK

Software release |.2 5 Master configuration file Ixr.conf Document revision |.4

This file is used by the Perl scripts. Its path is relative to the LXR root directory. An OS-
absolute form is all right also but less convenient if you move the LXR root directory:

'filetypeconf' => '/path/to/templates/filetype.conf’

The parser role is to isolate what looks like an identifier. The candidate is then compared to the
symbols in the data base. If found, its display will be enhanced in a special way. Remember that
symbols are collected during the genxref step only and classified by ctags. If you modify the source
file afterwards or ctags did not label correctly the symbol, you will not see this enhancement.

The internal LXR generic parser is configured by a file pointed to by parameter 'genericconf':

'genericconf’ => 'lib/LXR/Lang/generic.conf’

Note:
This file is used by the Perl scripts. Its path is relative to the LXR root directory. An OS-
absolute form is all right also but less convenient if you move the LXR root directory:

'genericconf' => '/path/to/1lib/LXR/Lang/generic.conf'

5.4.d.1. Content of file filetype.conf

In releases prior to 0.11, this file did not exist. Its content was inlined in 1xr.conf. But this content
was enriched release after release and it grew to a size such that readability and navigation
convenience was lost. It was then decided to move the content to an independent file. You may
remove the 'Tfiletypeconf' parameter and replace it with ' filetype' and 'interpreters'
parameters. LXR knows how to handle both cases.

The list defined by parameter 'filetype' associates a file extension with a language and a parser:

'filetype' => list of key/value pairs

Each pair in the list has the following form:

Ixr_lang =>
[ctags_lang
, file_selector
, parser
, tab hint

]

* Ixr_lang is a unique language name. There is no reserved value, you can use whatever
meaningful name you wish.

* ctags_lang is the language name used in file generic.conf. It is the same as the one used by ctags.
It creates the link between these two configurations. It is considered good practice to have the
same name so as not to upset the reader.

* file_selector is a pattern (regular expression) to be matched for the files belonging to that
language. It is not restricted to the extension only since some files may bear reserved names
without extension.

72

Project LXR The LXR User's Manual Language en-UK

Software release |.2 5 Master configuration file Ixr.conf Document revision |.4

* parser is the Perl module implementing the parser for that language (Perl syntax).

* tab hint may be omitted; in this case, an internal default of 8 is used. If LXR finds an emacs tab
width specification in the first line of a source file, it will use it instead of the tab hint or default.

Example for a single language:

'filetype' =>

{ ICI =>
['C' # generic.conf name
, '\.c$|\.h$' # pattern with 2 targets
, 'LXR::Lang::Generic' # Perl module containing the parser
, 4! # tab hint (optional)
]

¥

Source files may fail the 'filetype' tests for various reasons (non standard file extension,
operational convention like the LXR sources, ...). In that case, the first line of the file is read. If it
starts with #! or contains an emacs mode specification, it is considered a shell script and the
“command” is used to associate the file to a 'filetype' (which means this 'filetype' exists).
This is done with the help of the 'interpreters' parameter:

'interpreters' => list of key/value pairs

where each pair is of the form

command => Ixr_lang

Note:
command is used in a regular expression; you can then elaborate a rather intricate criteria if in
need.
Example:
{ 'bash' => 'shell' , 'csh' => 'shell' }

and take care that 'filetype' => { 'shell' => ...} exists.

5.4.e. “Common factor”

This is an optional section where parameters common to several trees can be listed. This allows to
change these parameters in one location only and have them effective for all the trees (unless the
parameter is overridden in a specific tree).

"treeextract' and database parameters are usually found here.

When you practice “black magic” to constraint several source-trees to share a single LXR root
directory, a single instance of the scripts, LXR needs to know how to extract the part of the URL
identifying a specific tree to give you meaningful information when something goes wrong. You do
it through:

73

Project LXR The LXR User's Manual Language en-UK

Software release |.2 5 Master configuration file Ixr.conf Document revision |.4

'treeextract' => '([A/]*)/[N/]FS!

This parameter provides a regular expression to extract the source tree name from the URL
(considered up to the script component — for the technically minded, it is the string contained in
environment variable PATH_INFO). The string captured in the first pair of parenthesis (known as $1

in the substitution rules) becomes the value of the $target substitution marker for the
"htmlfatal' template.

See the appropriate Perl manual for the details on pattern matching.

The example above gets $target from the second-to-last part of the script URL. Stated otherwise,
it is the last component of 'virtroot'. The example is the default regular expression used in case
"treeextract' is not defined.

CAUTION!
"treeextract' must be consistent with web server configuration for multiple-trees

operation. See chapter 7 Web server configuration, notably 7.2.d for Apache and 7.3.d for
lighttpd.

Overriding this parameter in tree sections is possible but needs careful design because of the
complex impact on web-server configuration.

5.5. Tree parameters

The parameters below define the source tree and what processing LXR should apply to it. Some are
very tricky; so, at first, you should stick with their default value, the better off if you are not familiar
with Perl.

Duplicate this section if you serve several trees.

5.5.a. Server configuration

First of all, you must tell LXR how this tree is referenced from the web. This may include some
URL demangling to separate strict LXR-service addressing from tree designation in case your
server may manage several trees. A generic URL looks like:

protocol: //host_name : port/some/directory/script/path/for/file?varl=vall&var2=val2

* protocol://host_name: port
is covered by parameter 'host_names' (see 5.4.b Computer DNS names)
* /some/directory/script

is the HTML-absolute designation of the script to launch (i.e. source, ident, diff, search or
showconfig). If your LXR root directory is the same as your DocumentRoot, you simply write
/script.

Note:

/some/directory/ may be more than a mere path; it may involve some web server rewriting
magic to allow invoking a single LXR instance for several trees. In that case, there is no longer

74

Project LXR The LXR User's Manual Language en-UK

Software release |.2 5 Master configuration file Ixr.conf Document revision |.4

one-to-one correspondence between this HTML path and the OS path to the script.

* /path/for/script
has meaning only for the script. In the source case, it names the file to display.

* ?varl=vall&var2=val2
are optional arguments for the script.

To uniquely identify the source script, LXR uses the protocol://host_name : port/some/directory
part as a key. protocol: //host_name: port is described by parameter 'host_names' in the global
parameter group. The tree specific part is defined by parameter 'virtroot':

'virtroot' => '/some/directory'

Note:
In the simplest case (a single source-tree and a server dedicated to LXR only, i.e.
DocumentRoot equal to the LXR root directory), 'virtroot' isreducedto '/"'.

The string formed by concatenation of 'host_names' and 'virtroot' is used to match the initial
part of the URL. The match is considered successful if the value of this string is an exact prefix
(case sensitive) of the browser request.

The value of this parameter is used to build the requests associated to the different links in the LXR-
synthesised pages. It is also present in the <base> tag of the <head> section of every page.

Note:
An alternate identification of the source-tree is kept for backward compatibility with former
versions of LXR. It is deprecated because it is more error-prone and requires more user checks
due to the duplication of the virtual root. The new identification method with 'host_names'
and 'virtroot' is strongly recommended.

The older identification is based on parameters 'baseurl', 'baseurl_aliases' and
'virtroot'. Of course, 'virtroot' has the same semantics as above.

'baseurl' => 'http://site.url.example/lxr'

"baseurl' is the primary URL from which LXR is served. You are strictly limited to http:.
Due to the present programming, you cannot use https:.

CAUTION!
The full URL from the browser request (including the port if it is different from :80) is used in
the selection of the source-tree. You must consequently also write here the full URL starting
with the protocol. The match is considered successful if the value of the 'baseurl' is an
exact prefix (case sensitive) of the browser request.

In case your server can be reached under different names (e.g. with the above URL from the
Internet and with localhost on your computer or site.url for short on your local
network, you can identify these aliases with the following key 'baseurl_aliases'
(incurring the same constraints as 'baseurl"').

Of course, if you are using a numeric I[P address instead of a host name, e.g. on a small local
network, you must provide either 'baseurl' or one 'baseurl_aliases' with this numeric

75

Project LXR The LXR User's Manual Language en-UK

Software release 1.2 5 Master configuration file Ixr.conf Document revision |.4
IP address.
'baseurl_aliases' =>
["http://localhost/1xr' # local computer
, 'http://site.url/1xr' # local network

, 'http://another.url.example:43210/1xr' # with unusual port
]
"baseurl' and/or 'baseurl_aliases' select the tree parameter-group to activate. More

on that later to uncover some tricks to have several trees under (apparently) the same URL and
a single directory for LXR.

CAUTION!
Since the links built by LXR does not use the host part of the request URL, you'd better care
that the 'virtroot' is the same among 'baseurl' and all the 'baseurl_aliases’',
otherwise LXR will die when presented a synthesised request containing 'virtroot' from
an inconsistent alias.

Look-up for a tree ends on first match. If no match is found among all tree parameter groups, LXR
displays the 'htmlfatal' page.

The following two parameters are not really related to server configuration, but they are so general
that it is better to list them early in a description of a tree in order not to forget them.

'caption’ => string
'shortcaption' => very short_string

"caption' is atitle displayed in the header area of every page. Be descriptive, so every reader will
know at once the purpose of the software contained in the source-tree.

'shortcaption' is used only when you have several trees and you want a “button” to quickly
jump to the root of the tree. If 'shortcaption' is present, a hyperlink with this name will be
created. If there is no 'shortcaption', you must type the URL of your tree in the address bar to
access your tree. You can then offer public and “private®” trees through coding a 'shortcaption'
or intentionally omitting it.

5.5.b. Tree location
Mandatory parameter 'sourceroot' defines both the method to access the tree and its location.

This location is an OS-absolute path. Check that it is “world readable” (remember that LXR is
executed from the HTTP server under its own user-id).

5.5.b.1. Plain files

'sourceroot' => 'directory_with_version_subdirectories'

3 Do not take the word private too literally here. The feature offers no security. Only, you must know the tree URL
instead of clicking on a speed link. Your tree is as public as your web server.

76

Project LXR The LXR User's Manual Language en-UK

Software release |.2 5 Master configuration file Ixr.conf Document revision |.4

5.5.b.2. CVS repository

'sourceroot' => 'cvs:path_to_CVS_directory'
The CVS directory is real directory on your computer. Remote access does not work.

LXR offers an experimental feature to access the CVS history of the currently displayed file. This
requires defining two parameters:

'cvswebprefix' => string
'cvswebpostfix' => string

The strings are concatenated in order 'cvswebprefix', file name, 'cvswebpostfix' as a link
under the “button” View CVS Log. Together they constitute a query to a CVS browser (cvsweb,
viewcvs or other). This feature is rather rudimentary: the only host name used is the one coded in
'cvswebprefix'. Presently, there is no mechanism like 'host_names' above to access the CVS
browser under different names (own computer, local network or web). Moreover, this service could
be hosted in a different server than the LXR server.

The strings cannot contain variable substitution.

Examples:

, 'cvswebprefix' => 'http://cvs.myhost.com/cgi-bin/cvsweb.cgi'
, 'cvswebpostfix' => '?cvsroot=rootname'

, 'cvswebprefix' => 'http://cvs.myhost.com/cgi-bin/viewcvs.cgi/myroot'
, 'cvswebpostfix' => "'

5.5.b.3. GIT repository

'sourceroot' => 'git:path_to_Git_directory'

The Git directory hosts the objects, refs, index, ... directories. Git access needs to pass parameters
when initializing the library (see 'sourceparams' below).

5.5.b.4. Subversion repository

'sourceroot' => 'svn:path_to_Subversion_directory'
The Subversion directory hosts the database for the source-tree.

Note:
This preliminary implementation limits access to local directories. Do not try to define
something like svn:http://svn.remote.net/project-A. The initialisation code is not
prepared to handle the http: prefix.

77

Project LXR The LXR User's Manual Language en-UK

Software release |.2 5 Master configuration file Ixr.conf Document revision |.4

5.5.b.5. Mercurial repository

'sourceroot' => 'hg:path_to_Mercurial _directory'
The Mercurial directory hosts the database for the source-tree.

Note:
This preliminary implementation limits access to local directories.

5.5.b.6. BitKeeper repository

'sourceroot' => 'bk:path_to_BK_repository'

BitKeeper®® access needs to define an auxiliary working directory when initializing the library (see
'sourceparams' below).

CAUTION!
This access method has not been tested for a long time. You are on your own. The present
maintainer does not even know if it works or not. Development stopped at the end of 2005.

5.5.b.7. Optional initialisation parameters
Some access methods need extra parameters when initialising their library. Parameters are passed
through 'sourceparams':

'sourceparams' => list of key/value pairs

See chapter 10 Using LXR with SCMs for the parameters related to the chosen access method.

5.5.c. Other parameters

'sourcerootname' => 'text to display for the source root'

All file paths displayed in the header area of every HTML page are relative to 'sourceroot'. The
text provides a reminder for this root. It can be a simple string (such as '/"' or even '' but in the
latter case you can then no longer navigate directly to root since you are unable to click on an
invisible link). It can also contain variable substitution (one declared in the 'variables' list only)
like '$v' to have the version name (or more precisely the name of the directory containing the
version).

'sourceaccess' => symbolic link inside LXR directory

This optional parameter is needed only if you want LXR to display graphic files. It points to the
same directory as 'sourceroot' but it is relative to DocumentRoot. It cannot contain any . .
(parent directory) partial path (which is removed for security reasons), thus the need for a symbolic
link from DocumentRoot to the 'sourceroot' directory.

Example:

32 BitKeeper is a proprietary software. Since April 2005, there is no more free version for community developed open
software. The interface developed for LXR is left as it was at that date in case someone needs it.

78

Project LXR The LXR User's Manual Language en-UK

Software release |.2 5 Master configuration file Ixr.conf Document revision |.4

, 'sourceroot' => '/home/source/tree'
, 'sourceaccess' => 'bypasslink'

if you have defined:

$ cd /DocumentRoot _directory # often equal to LXR root directory
$ 1n -s /home/source/tree bypasslink

The 'sourceaccess' link is necessary to access files from HTML which is rooted at
DocumentRoot in the web server. The scripts, written in Perl, have access to any “world readable”
file through an absolute path. On the other hand, the web server is granted access only to its
DocumentRoot hierarchy through a relative path. LXR adds a further security restriction that this
path cannot contain any /../ part. When issuing HTML tags, the image is retrieved
under the server paradigm and must reside somewhere under DocumentRoot.

Note:
Since you activate this feature only when you need it, no care is taken to make sure that the
parameter is defined when issuing an HTML tag. If it is not, the tag link will be
faulty and you will get a “filename cannot be displayed from this browser” message as if the
browser did not support the graphics format, whereas the link does not contain the valid file
name.

CAUTION!
There is presently no way to display graphic files when the source tree is managed by an SCM
because there is no real file.

5.5.d. Version selection

The exact version of a file you display in LXR is defined through a set of so-called “variables”.
Since they offer a choice, they will appear on the screen as a set of clickable fields in the top of the
page. The LXR script (diff, ident, search or source) uses their values if it has been programmed to
do so.

'variables' =>]ist of key/value pairs

A variable definition has the form:

'variable' =>

{ 'name' => text to display
, 'when' => valid context for variable
, 'range' => array containing the set of accepted values

, 'default' => default value
}

A variable name may contain alphanumeric characters (a through z, A through z, 0 through 9) and
underscores (_). The first character must not be an underscore.

The 'when' key is optional. If omitted, the variable is always displayed in the version selection
area. The value is a Perl boolean expression whose effect is to show (if true) or hide (if false) the
variable setting buttons or menu. The expression may contain strings or reference variables by

79

Project LXR The LXR User's Manual Language en-UK

Software release |.2 5 Master configuration file Ixr.conf Document revision |.4

prefixing their name with a dollar sign ($).

lwhen 1 => 1 ||$a|| eq llarmll 1

CAUTION!
Use single quotes (") to delimit the value and surround the operator arguments with double
quotes (") in the expression. Odd as it may seem, double quotes are mandatory around
variable names because their value is substituted before Perl evaluation: the expression is
effectively computed against string constants, which require delimiters.

The 'when' key is useful to hide irrelevant choices under defined circumstances. For instance,
the kernel source-tree allows to choose between different architectures which, in turn, offer sub-
architectures. The choice of these sub-architectures makes sense only when their primary
architecture is active.

Evaluation of 'range' results in an array of strings. These strings are the names of sub-directories
in 'sourceroot'. In its simplest form, this key is expressed as:

Irangel = ["1.0" ||1.1|| ||2.0||]

or, more user-friendly:

'range’ = [gw(1.0 1.1 2.0)]
Advanced users (Perl gurus) might initialise 'range' dynamically, like:
'range’ => [readfile('/0S/absolute/path/versions_file')]

readfile is an LXR-provided function to read any file in the system. Text file versions_file
(or any other name you like) is best located in the source tree. It consists of the names of the
versions, separated by spaces or newlines, without quote characters (unless the name contains
spaces). Reading from a file reduces the necessity to update Ixr.conf but does not remove any
genxref processing.

You can even write a function to compute the array:

'range' => sub
{ return grep {/(release|head)/}
($files->allreleases($LXR: :Common: :pathname)
,$files->allrevisions($LXR: :Common: : pathname)

)

}
This example is frequently used to extract all CVS tags and keep only those containing head or
release.
The 'default' key is optional. It defines the initial value displayed for the variable. If omitted, the
variable defaults to the first value in 'range'.

CAUTION!
'"default' is mandatory if 'range' is a function and your tree is stored in an SCM
repository because 'range' is no longer a real array.

80

Project LXR The LXR User's Manual Language en-UK

Software release |.2 5 Master configuration file Ixr.conf Document revision |.4

You can define as many variables as you want. Unless you modify the scripts, do not expect any
change of behaviour due to these new variables.

Variable 'v' is mandatory. It is the main vehicle for choosing the version. Its name is hard-coded
in all the scripts.

IVI :>
{ 'name' => 'Version'
, 'range' = [gw(1.0.0 1.0.2 1.1)] # example
, 'default' => '1.1' # if omitted, takes 1.0.0 from 'range'
}

Some source-trees (such as the Linux kernel tree) have a variable 'a'. It is not managed by the
LXR scripts directly but may be used in "maps' rules to do wonderful things on links to files.

'a' => { 'name => 'Architecture', 'range' => .. }

You can freely define any other other variables if you have a use for them in "maps'.

5.5.e. Exclude directories (Subdirectory)

'ignoredirs' => array of partial names for directories

These directories are not displayed nor indexed thus speeding up the process. They might be the
directories where your Integrated Development Environment stores the intermediate forms of the
sources or the binary objects.

A directory is ignored if any part of its path is equal to one of the strings. Stating it otherwise, the
test 1s case sensitive, cannot contain a path separator (/ on Unix-like OS's) to designate a sub-
directory™, is not level specific in the hierarchy of directories.

Example:

'ignoredirs' => ['CVSROOT'

, 'build'’
, 'CmakeTemp'
]

Notes:
If for any reason, LXR processes DocumentRoot and this directory contains
'sourceaccess' links, add them in the 'ignoredirs' list to avoid funny things from
happening.
“Dot” directories (such as .git) are always ignored; this is an internal hard-coded rule which
cannot be overridden by a carefully crafted 'ignoredirs' parameter.

Tip:
Technically, 'ignoredirs"' is applied only on the last segment of the path when traversing
the source tree. Consequently, if you manually provide an URL to your browser (you do not
traverse the tree, you jump straight to the final node), you can bypass the exclusion rule and

3 The “path separator” will be considered as part of the name as if it had been escaped.

8l

Project LXR The LXR User's Manual Language en-UK

Software release |.2 5 Master configuration file Ixr.conf Document revision |.4

display a file or subdirectory from the excluded directory. However, no highlighting of proper
procedures or variables will be exhibited since indexing was skipped.

'ignoredirs' excludes all directories sharing the advertised fragment. For instance, if include
is listed, include/specific cannot be kept. In case you need very detailed control on the
excluded directories, parameter 'filterdirs' acts on the full path:

'filterdirs' => array of regexp for directories

Rules:

DO NOT USE IT unless there is no simpler way with other parameters.

Directory names are NOT terminated by a separator (/). If you want to match exactly your
pattern (i.e. not as a prefix), use the end anchor $ to terminate the pattern.

Paths always begin with a separator (/). To match at the beginning of the path, force the first
separator with the start anchor » as /.

Regular expressions have a cumulative effect: what has not been excluded by the first is filtered
by the second, etc.

Use regular expressions defined with Perl operator qr//. Beware of the path separator!

Read carefully the Perl manual since first-shot regular expressions can very easily end up in
excluding everything.

Example:

'filterdirs' =>[qr!/build/CMakeFiles$!
, qr!A/include\b!
, qr{/include/(?!specific)%$}
1

The first pattern excludes all subdirectories ending in /build/CMakeFiles.

The second one excludes directory /include at the root of the tree, but also /include%other
because of the \b delimiter. To strictly exclude only /include, use the $ anchor instead.

The third one excludes any directory in /include which is different from /include/specific. Note
that if this subdirectory is at the root of the tree, it cannot be kept because of the second pattern.
Tip:
Like 'ignoredirs', 'filterdirs' is applied only when traversing the source tree.
Consequently, if you manually provide an URL to your browser (you do not traverse the tree,
you jump straight to the final node), you can bypass the exclusion rule and display a file or
subdirectory from the excluded directory. However, no highlighting of proper procedures or
variables will be exhibited since indexing was skipped.

IMPORTANT NOTICE:
Use of parameter 'filterdirs' is strongly discouraged because of performance
consideration, mostly on huge projects such as the Linux kernel. Depending on the number of
regular expressions and their complexity, application of this parameter may have adverse

82

Project LXR The LXR User's Manual Language en-UK

Software release |.2 5 Master configuration file Ixr.conf Document revision |.4

effect on indexing time.

5.5.f. Exclude files (Subdirectory)

'ignorefiles' => regular expression

This exclusion rule (for file names) complement 'ignoredirs' to provide fine-grained control
about what is indexed and displayed.

Reminder:
A tree-section parameter overrides the corresponding global parameter. Consequently, you
must copy the global rule in the tree-specific rule or else the previously discarded files
reappear.

Tip:
Technically, 'ignorefiles' is applied only on the last segment of the path when traversing
the source tree. Consequently, if you manually provide an URL to your browser (you do not
traverse the tree, you jump straight to the final node), you can bypass the exclusion rule and
display an excluded file. However, no highlighting of proper procedures or variables will be
exhibited since indexing was skipped.

"ignorefiles' excludes all files matching the pattern in any directory. For instance, if bad is
listed, specific/bad cannot be kept. In case you need very detailed control on the excluded files,
parameter 'filterfiles' acts on the full path:

'filterfiles' => array of regexp for files

Rules:

DO NOT USE IT unless there is no simpler way with other parameters.

If you want to match the filename fragment of the path, use the end anchor $ to terminate the
pattern.

Paths always begin with a separator (/). To match at the beginning of the path, force the first
separator with the start anchor A as /.

Regular expressions have a cumulative effect: what has not been excluded by the first is filtered
by the second, etc.

Use regular expressions defined with Perl operator qr//. Beware of the path separator!

Read carefully the Perl manual since first-shot regular expressions can very easily end up in
excluding everything or have undesirable side-effects.

Note:
'filterfiles' is targeted towards specific files; it is a tree-specific parameter by essence.
It makes little sense to specify it in the global section of the configuration file.

Example:

83

Project LXR The LXR User's Manual Language en-UK

Software release |.2 5 Master configuration file Ixr.conf Document revision |.4

'filterfiles' =>[qr!/specific/asm-.*$!
, qr!/me8k/(.*/)?[~/]1*\.S$!

The first pattern excludes all files starting with asm- in any /specific directory.

The second one excludes all . S assembler files in the /m68k subtree.

Tip:
Like 'ignorefiles', 'filterfiles' is applied only when traversing the source tree.
Consequently, if you manually provide an URL to your browser (you do not traverse the tree,
you jump straight to the final node), you can bypass the exclusion rule and display a file
otherwise excluded. However, no highlighting of proper procedures or variables will be
exhibited since indexing was skipped.

IMPORTANT NOTICE:
Use of parameter 'filterfiles' is strongly discouraged because of performance
consideration, mostly on huge projects such as the Linux kernel. Depending on the number of
regular expressions and their complexity, application of this parameter may have even worse
effect on indexing time than 'filterdirs'.

5.5.g. Include directories (Subdirectory)

The following parameters allow LXR to build direct links to files mentioned in “include” sentences
(such as C #include or Perl use). For the link to be successfully built, the “included” file must
exist, be located in an accessible subdirectory and have been indexed by genxref. If any of these
conditions is not satisfied, the file name will be treated as a string, a symbol, ... according to its
appearance.

When parsing an include sentence, LXR prefixes the file name found in the text with each directory
from the optional 'incprefix' list in turn, starting implicitly with the current directory. The
resulting file name is subject to transformations from 'maps' before determining if the file really
exists. The process succeeds when a match is found or fails at the end of the list.

"incprefix' => [directories where to look for included files]
Directory names are relative to 'sourceroot'.

If 'incprefix' is omitted, it defaults to the current directory only.

'maps' => [reg-exp => replacement , ..]

CAUTION!
Though => is used as separator between reg-exp and replacement, the whole list of rules is
contained in an array, not a Per/ hash. This change has been introduced in release 1.0 to
allow a precise order for 'maps' rule application.
This optional parameter is an attempt to mimic compiler behaviour where include directory
locations are given by command line options. It contains a list of substitution rules written as pairs
pattern to match/replacement (in the syntax above, => is a synonym for comma (,) to insist upon the

84

Project LXR The LXR User's Manual Language en-UK

Software release |.2 5 Master configuration file Ixr.conf Document revision |.4

fact that the array must contain an even number of strings). All rules are applied sequentially in the
given order and their effect is cumulative.

replacement may contain variable substitution requests in the form $variable. This symbol is
replaced by the current value of the designated variable. If there is an ambiguity risk with what
follows the request, use form ${variable} to strictly delimit the name.

See the Per/ manual for regular expression writing.

Example taken from the kernel introducing variable a:

"incprefix' =>['/include', '/arch/%-ARCH-%/include']

, 'maps' => ["\/arch\/%-ARCH-%\/' => '/arch/$a/"',
]
With #include 'inc.h' directive, the list of include prefix produces successively the
following names current_directory/inc.h, /include/inc.h and /arch/

%-ARCH-%/include/inc.h which are then transformed. The first and second ones are used as
is since no 'maps' rule matches. The third will give /arch/ppc/include/inc.h if the
current value of variable a is ppc.

Note:

%-ARCH-% is used as a temporary surrogate for the effective architecture name inserted by the
"maps' rule. If %-ARCH-% happens to be a real directory, change the name to something not
existing otherwise there may exist cases in which the "maps' rule will be wrongly applied.

This is where you can find a use for custom variables without modifying LXR.

5.5.h. Auxiliary data storage
LXR needs to store its internal data somewhere for retrieval. Your choice is between MySQL,
Oracle, PostgreSQL and SQLite database engines.

'"dbname' => identifier of the database
'dbuser' => username for the database
'dbpass' => user password for the database

These mandatory parameters tell LXR which database to use and how to connect to it.

For MySQL, the formatis dbi:mysql:dbname=data_base_name

For PostgreSQL, it is dbi:Pg:dbname=data_base_name;host=localhost™

For SQLite, it is dbi:SQLite:dbname=file_name

For Oracle, it is dbi:0racle:host=localhost; sid=DEVMMS; port=1521
CAUTION!

The driver name after dbi: is case-sensitive and must be written as above.

'"dbprefix' => 'Ixr_'

3% host=1localhost forces connection to the database through TCP socket (seemingly more reliable than default).

85

Project LXR The LXR User's Manual Language en-UK

Software release |.2

5 Master configuration file Ixr.conf Document revision 1.4

This optional parameter defines the prefix for the tables in the database. It allows to store separate
data for different trees in a single database. The example above displays the default prefix.

This parameter is relevant mainly for Oracle which apparently serves a single database. It is also
useful in multiple-trees context.
CAUTION!
Changing the prefix is best done with initdb-config.pl script.
The search engines can store their index files in a tree-specific location. This avoids mixing symbols

from different trees. Unless you defined 'xxxdirbase', you must create a read/write directory for
the search engine and tell LXR its name with:

'glimpsedir' => directory
'swishdir' => directory
Note:
Having both specified causes no harm.
Reminder:

From release 1.0 on, it is easier to define 'glimpsedirbase' and 'swishdirbase' in the

global section (auxiliary tools) without defining 'glimpsedir' nor 'swishdir' in a tree-
specific section.

86

Project LXR The LXR User's Manual Language en-UK

Software release |.2 6 Generic parser configuration file Document revision |.4

Generic parser configuration file

This chapters covers the content of the embedded parser configuration file.
Its content describes the essential features, from LXR point of view, of each
supported language.
The generic parser contained in Generic.pm can parse a wide variety of languages, at least for the
purpose of cross-referencing symbols. Its sole purpose is to split the input file into sequences
representative of categories of the language. These categories are rather coarse-grained but a
sequence contains tokens pertaining to a single category.

Next, finding the names (i.e. strings) inside a sequence is a simple matter of comparing the strings
to a dictionary.

How Generic.pm is driven is a matter of tuning generic.conf. The path to this file is stored in
parameter 'genericconf' of [xr.conf.

6.1. Parser configuration file syntax

The parser configuration file contains a list of key/value pairs.

Note:
If you are familiar with Perl, it is an anonymous hash. It is read in at initialization time and
evaluated. What this means is: you get all the power of Per/ and all its idiosyncrasies.

Comments can be added to the file to give explanations or take note of modifications. A comment
starts with a pound sign (#) followed by a blank (space or tab) and extends to the end of line.

Examples:

This a comment starting in col. 1
'relevant => 'data' # This comment follows meaningful configuration data

The list of key/value pairs (with a hash syntax for the technically minded) is:
* opened by a left-curly-brace {

* separated by a comma ,
* closed by a right-curly-brace }

{ key/value-0
, key/value-1

, key/value-m

3

In these pairs, the key is a string (delimited with single-quotes ' to avoid funny things from
happening when evaluating the parameter). The value may be a (single-quote delimited) string, an

87

Project LXR The LXR User's Manual Language en-UK

Document revision |.4

Software release 1.2 6 Generic parser configuration file

array or even another list of key/value pairs. Each pair contains:

* the quote-delimited key

* the operator => (equals sign followed by right-angle-bracket, also named greater than,
without any intervening space)

* the value as one of:

o a single-quote delimited string for single value parameters

© an array of values opened with a left-square-bracket [separated by a comma and closed
with a right-square-bracket]

o a list of key/value pairs (see above)

Example:

{ 'number_0' => '0'

, ‘'array' =>
['elem@'
, 'eleml'’
, 'elem2'

]

, 'secondary_hash' =>
{ 'sec_key_a' => 'a'
, 'sec_key b' => 'b'
3

3

Note:
This gets evaluated by Perl. Thus, there is a more elegant and less error-prone way of writing
the array above by using the Perl function qw() (meaning quote word):

'array' => [gw(elemO® eleml elem2)]

4

We are thus spared the trouble of writing the quotes and forgetting one. qw() splits its
argument list at white space.

The configuration file has the following structure:

{ 'ectagsopts' => [list of options]
, 'eclangnamemapping' => { list of key/value pairs }
, '"langmap' => { list of key/value pairs }

The first two parameters tune ectags behaviour. The last one configures the parser for a language.

6.2. ectags parameters

When asked to parse the tree files by genxref, LXR launches ectags with the command:

ectagsbin ectagsopts -excmd=number --language-force=1lg -f - path to file

88

Project LXR The LXR User's Manual Language en-UK

Document revision |.4

Software release 1.2 6 Generic parser configuration file

ectagsbin comes from Ixr.conf. 1g is the language forced name (see below). ectagsopts is
defined as:

'ectagsopts' =>

"--options=" . $config->ectagsconf
"--c-types=+plx"
"--eiffel-types=+1"
"--fortran-types=+L"

—_~ N N

Any needed option can be defined. The above example is the default configuration. All options from
this array are concatenated before being written to the command.

Note:
You see on the first line an example of Perl eval'ing the whole configuration: global
configuration parameter 'ectagsconf' is concatenated to string "--options" without
pain.

See the ectags manual if you need more information.

'eclangnamemapping' =>

{ ICI = ICI

, 'C++! => 'c++'

, 'Python' => 'python'
, 'SQL' => 'sQL2'

4

'shell' => 'sh'
}

This “table” defines the mapping between the LXR language names in the key and those used by
ectags in the value column when option - -language-force is used. That is, always, since LXR
always launches ectags with this option to make sure ectags will not infer a different language
name. The table is rather short because it contains only the differences between the two
environments. When a language name is not in the table, it is used as is.

6.3. Language descriptions

"langmap' is a table where each managed language has an entry. Each entry is key/value pair. The
key is the language name. It must be identical to the value of first sub-parameter of 'filetype'in
filetype.conf (or Ixr.conf if parameter ' filetypeconf' is not used) from which it is referenced.

'"langmap' =>

{'c’ = { .}
g G = { .}
, 'Perl' = { .}
, 'shell' = { ..}
5

The entry for a language defines the list of reserved keywords, how to “parse” a file, the names
of symbol classes and an internal numeric id:

89

Project LXR The LXR User's Manual Language en-UK
Software release 1.2 6 Generic parser configuration file Document revision |.4

{ 'identdef' => string

, 'reserved' => [1list of reserved keywords]

, 'flags' => [list of flags]

, 'spec' => [list of parsing rules]

, 'include' => { list of key/value pairs }

, 'typemap' => { list of key/value pairs }

, 'langid' => 'numeric id'

}

Let us have a look to each one.

6.3.a. Language tagging
'langid' => numeric string

This gives a numeric id to the language for indexing purpose. Every language must have a unique
"langid'. This allows to discriminate two variables or functions with the same “names” in two
languages so that they appear as two different entities.

What happens if '1langid' is not unique has not been tested.

6.3.b. Identifier detection

'identdef' => pattern

This partial pattern defines the lexical form of identifiers and reserved words. A default pattern of
"[-\w~\#][\w]*"' is built inside LXR to cover as many languages as possible. It has the adverse
effect of capturing part of expressions (if operators - and ~ precede an identifier without
intervening space) which would prevent the bare identifier from being recognised in the database.
You must then design a pattern to match the strict language definition.

Note:
It is said partial because the LXR engine surrounds this string with ancillary sub-patterns to
“navigate” inside the source text. In particular, the 'identdef' pattern is immediately
followed by \b (symbol boundary). Do not bother to enclose the whole pattern in parentheses,
it will be done for you.

Examples:
"identdef' => '"([\w~]|\#\s*)[\w]*' # C and C++
"identdef' => '[\w]+' # Pascal
"identdef' => '[-\w][\w]*' # Perl

The first example captures strings formed of letters, digits or underscores optionally preceded by
a tilde (for destructors) or #directives with optional spaces between the pound sign and the name.
Perl identifiers may have an initial dash.

90

Project LXR The LXR User's Manual Language en-UK

Software release |.2 6 Generic parser configuration file Document revision |.4

6.3.c. Reserved keywords

'reserved' => [list of reserved names]

These names will not be considered as identifiers and will be tagged as reserved words. They can
thus be displayed with nice decoration if you feel like playing with Ixr.css. The pattern for
'identdef' must be able to describe them. Any form not captured by 'identdef' will not be
recognised.

Note:

Strictly speaking, it is useless to list the include keywords because they are captured in the
independent category 'include' (see below). Anyway, it is harmless to include them in the
list and that avoids questions about listing them or not and puts aside the risk of omitting an
otherwise needed keyword in another context.

May be empty, meaning no reserved word.
Example:
'reserved' => ['for', 'do', 'done', 'case']

CAUTION!
String comparison is case-sensitive unless modified by flags.

6.3.d. Languages attributes

'flags' => [list of flags]

The flags change the standard behaviour of the language parser. Adding a flag in the list puts it in
the “on” state; omitting it is equivalent to the “off” state.

The implemented flags are:

* 'case_insensitive' causes comparisons to be done independent of case (look-up in symbol
dictionary, keywords).

Reminder:
Regular expressions for 'identdef' and 'spec' must capture both case variants.

6.3.e. Source file fragment categories

'spec' => [list of key/value pairs]
Each element of the list defines a rule for breaking the file into fragments belonging to a category.
The rule consists of:

{ 'category' => [list_of_patterns] }

1. the name of the category,
a pattern (regular expression) matching the beginning of the fragment,
a pattern (regular expression) matching the end of the fragment,

w0

91

Project LXR The LXR User's Manual Language en-UK

Software release |.2 6 Generic parser configuration file Document revision |.4

4. an optional pattern (regular expression) matching any token which should be kept inside
this fragment, though it could be identified as the end delimiter without this rule.

As of version 0.9.8, recognized categories are 'atom', 'comment', '"include' and 'string'.
Category 'code' is reserved for future extension.

Note:
"atom' is very specific and should be defined only when no other solution is feasible with
the present parser. In versions prior 0.9.8, it was used to prevent leaving the current parsing
state when matching construction was encountered. The parser has been restructured to have a
more reliable and flexible behaviour. The feature will change without notice in relation with
'code' category.
A category is normally described by at least two patterns: one for the “start” delimiter, one for the
“end” delimiter. It contains anything between the delimiters. Sometimes, it is difficult to design
neatly separated delimiter pattern because they are interdependent. In that case, the category may be
described by a single pattern capturing the whole fragment; there is no “end” nor “‘stay' pattern.

The parser follows the following algorithm:

* The state-machine starts in the no-category state. It leaves this state on any “start” delimiter. At
this point, the already parsed fragment is passed for generic processing (tagging reserved words
and identifiers by processcode).

* When a “start” delimiter is found, the state-machine enters the category state. It remains in this
state even if category “stay” tokens (described by the optional pattern 4 above) are encountered
until its category “end” delimiter is found. The parsed fragment, including the delimiters, is
passed to the category processing.

The state-machine is then restarted in the no-category state.

Dispatching is based solely on the “start” delimiters. But, as is common in language grammars, you
may meet ambiguities (some delimiters may be prefix of others). To solve this difficulty, you should
sort your categories with the most specific and longest “start” delimiters first, followed by more and
more generic and shorter delimiters. The patterns are used in the order in which they appear in
'spec'.
CAUTION!
Remember that generic.conf is eval'ed by Perl. Consequently, if you need to backslash-escape
characters in the pattern, backslash \ must be repeated twice.

The categories are defined are as:
* 'comment' is used to capture comments in the file.

It will be tagged as such and its content will not be scanned for reserved words nor identifiers.
* 'include' is used to capture references to other files.

It will be processed with the 'include' specification before being manipulated with [xr.conf
parameters 'incprefix' and 'maps’' to associate the file name with an hyperlink to the file.

92

Project LXR

The LXR User's Manual Language en-UK

Software release |.2

Document revision |.4

6 Generic parser configuration file

'string' is used to capture strings.

They will be tagged as such and the content will not be scanned for reserved words nor
identifiers.

'atom' is used to “lock” the state-machine in the no-category case if that effect cannot be
obtained otherwise. It has no “start”, nor “stop” delimiters. To insist upon its difference, its
syntax is not the same as the others. It contains a single pattern, not an array.

'atom' => pattern

A more precise and controlled effect is obtained with pattern 4 in the other categories. Stated
otherwise, you do not release control from the other categories until you know for sure you must
leave them.

Example:
'spec' => [{ 'comment' => ['/*', '"*/'] }# See note

, { 'comment' => ['//', "\$"]]
, { 'String' :> [IIII, IIII, I\\\\.I] }
, { 'String' = [nln, nln, AN] }
, { 'include' => ['#\s*include', "\$"] }
]

Note:

\ is not repeated, because we want * (and not the pattern operator), which is what we get after
eval. A frequent pattern in the standard file is "\\\\.'; after eval, we get '\\.' which
means “match a \, then any character”, quite tricky to get it right!

The 'string' definitions exhibit how to stay within a string when encountering \". Without
the “stay” pattern, the string "A string with \" inside" would have been split as a
string "A string with \", a code fragment containing a variable inside and the
beginning of a new string with the last ". The rest of the source text would have been out of
sync.

IMPORTANT NOTICE!
In case you need to describe alternatives in some patterns, use (?:...]...) instead of (...]|
...). The latter form “captures” the alternative item inside its parentheses and breaks the
internal sequencing of the source file. In the former form, the parentheses are made
“transparent” by ?: which does not cause spurious capture. For an example, see the HTML
description in file generic.conf.

For some languages, “standard” parentheses must be used. This has required modification to
the parser to make this sub-pattern independent from the pattern in which it is incorporated.
The patch brought better parsing correctness but caused incompatibility with Perl version 5.8
because the needed feature was introduced in Perl 5.10.

Do not be overconfident with the “stay” pattern. There are still shortcomings because pattern-
matching will never compete with a true finite state automaton.

Sometimes, categories need to be anchored at the beginning of lines. But since the LXR parser
considers the source file as a simple stream of characters, the start of the internal buffer does not

93

Project LXR The LXR User's Manual Language en-UK

Software release |.2 6 Generic parser configuration file Document revision |.4

coincide with the start of line. A specific processing is needed to “understand” the A anchor at the
beginning of the pattern. Due to the simplistic nature of this processing, there can be only one
anchor as the first character in the pattern. If the pattern describe alternatives, you must then
“common factor” the anchor.

Example for Fortran 77 comment:

F77 comments are characterised by C or * in column 1 (beginning of line).

'spec' => [{ 'comment' => ['"(AC|M*)', '\$'] } # won't work
, { 'comment' => ['A(C|*)', '\$'] } # correct
1

In the first definition, the anchors are not in first position and are not detected by pre-
processing. The second definition will be successfully transformed to allow comment parsing.

6.3.f. Describing include syntax

'"include' => { 'directive' => directive_syntax
, 'separator' => string
, 'pre'® => [substitution_pair]
, 'global’ => [substitution_pair]
, 'post's® => [substitution_pair]
}

This group is used against an 'include' fragment to break it into components (instruction name,
target file, efc.) and transform the language form for the target file into an OS path when the default
processing is not fit.

'"directive' must provide the following 5 components through pattern-matching:

the instruction name,

the spacer between 1 and 3,

the left delimiter for the target file,
the target file name,

the right delimiter.

PR S

Any of these components may be the empty string if it does not exist in the language syntax. The
pattern is internally constrained to match at the start of the fragment; you do not need to specify it
with an initial A.
Examples:
"directive' => "([\w]+)(\s+)()([\w:]+\b)()' # Perl

Lo liiao--
1 2 3 4 5

use or require is captured by the first pair of parentheses, spaces by the next. There is no
delimiter, hence the empty pair of parentheses. We find next the target module with the colon
separator. Finally, there is no right delimiter.

35 Prior to 1.2 release, this parameter was named ' first'.
36 Prior to 1.2 release, this parameter was named 'last'.

94

Project LXR The LXR User's Manual Language en-UK

Software release |.2 6 Generic parser configuration file Document revision |.4

Note:

Starting in 0.11 release, Perl is processed by a dedicated parser with built-in include rules.
This is also the case for Python and Ruby from 1.0 release, for Java from 1.1 release. They no
longer use 'include' specification.

"directive' => ([\W\#]\s*[\w]*)(\s+)(?| (\")(.+?2)(\")](\O<)(.+?)(\0>))
mmmmmemmmmeee with or
1 2 3 4 5 3 4 5

This complex example covers both forms of C/C++. Note the usage of (?| to keep the same
numbering of components across alternatives. \0< and \@> are used instead of < and >
because LXR marks all characters which have a special meaning in HTML to distinguish
them from the tags LXR adds to the source text. The following shorter form:

directive' => ([\w\#]\s*[\w]*)(\s+)(\"|\0<)(.+?)(\"|\0>)

H# oo oooo-o---- ooo-o-o- oo

1 2 3 4 5

is not correct from the language point of view because it does not guarantee a match between
the corresponding delimiters. However, you can use it if you are sure the source text compiles
without error’’ and a file name will not contain a non matching delimiter.

CAUTION!

(?| ..) is Perl 5.10 syntax; it allows to keep the same number for corresponding
parenthesised groups in alternatives. If you use it, check the version of your Per! interpreter.
Dedicated C and Perl parsers have been created in 0.11 release to work around this
dependency.

"pre' is an optional transformation applied first on the original target file name. Then the optional
"global' is repeatedly applied until it matches no more. Finally, if it exists, 'separator' causes
all language-specific separators to be replaced by the default OS path separator (/) and the optional
"post' is applied once.

Example (Perl):

no 'pre'
, 'separator' => '::'
, 'post’ = ['s$', ".pm']

'separator' will replace all :: Perl delimiters by the OS / delimiter. The last step by
'post' adds file extension . pm at the end of the resulting path.

An equivalent result can be obtained with a “global” substitution rule, but less efficiently:

no 'pre'

, 'global' => ['::', '/']

, 'post' => ['$', '.pm']
"global' explicitly cites the ':: ' substitute. 'global' is more general than 'separator'

and can operate on something different from the path separator.

3 LXR is not a compiler; it does not aim to detect language errors. Source text under analysis is supposed to be
language-compliant. Consequently, LXR parsing need not mimic compiler parsing accurately.

95

Project LXR The LXR User's Manual Language en-UK

Software release |.2 6 Generic parser configuration file Document revision |.4

When no 'include' description is provided and an include region must be processed, the
following defaults apply:

* ‘'directive' is equivalent to an identifier, parseable by 'identdef', followed by white space,
followed by the bare file name, i.e. without delimiters such as quotes or double quotes,

* 'separator' is the OS path separator,

* 'pre', 'global' and 'post' are omitted.

6.3.g. Bridging ectags and LXR

'"typemap' => dictionary

This parameter is used to associate the classification of symbols as determined by ecfags to a human
readable class. The dictionary is a list of key/value pairs. The key is a letter and the value a string for
the symbol class name. This string is displayed in the identifier and search pages.

See the ectags man page for the list of letters and their meaning.
Example:
'"typemap' =>
{ 'c' => 'class'

, 'd'" => 'macro (un)definition'
, 'e' => 'enumerator'

96

Project LXR The LXR User's Manual Language en-UK

Software release |.2 7 Web server configuration Document revision |.4

Web server configuration

This chapters gives hints on how to smoothly integrate LXR into a web-site
respecting local conventions. This starts with individual single-tree LXR and
tops with multiple-trees subsite within a wider server.

7.1. A note on the interaction between URLs and LXR configuration

How do we translate a URL into an LXR edited display of a file?

The answer to this question addresses two issues.

1. How do we transfer control to the LXR script?

2. How do we designate the source root?

Let's have a look at a typical LXR URL:
http://site.url.example/hierarchical_path/script/path_to_file?query

The last part /path_to_file?query is usually generated by LXR and contains the file to manage
(path relative to 'sourceroot') and the parameters for the script in ?query. That part is highly
variable and is the way to drive LXR into expressing its valuable power. This is LXR estate and we
can do nothing with it. Or rather, we must not interfere with it, lest LXR goes into trouble.

The part /script selects the script (source, diff, ident, search) to execute. No fancy to play with it.

The first part http://site.url.example/hierarchical_path must give an answer to the
above two issues. But the answers are intermixed.

Huge organisations could devote individual site names to pairs server/source root. All there is to do
is to configure DocumentRoot (in Apache) or server.document-root (in lighttpd) to point to
the per-organisation unique LXR directory. Ixr.conf will take care of the rest.

Individual users with a single site name can play a similar game by adding a prefix to their host
name. For instance, if they own site.url.example, they can use tree.site.url.example.
But they will have to create a VirtualHost for each tree to point to the unique directory. Relying
on the default VirtualHost in order to handle undefined host names (catch-all) is not a good
practice and could route non-LXR request to LXR by mistake.

An Apache alternative is to use the AliasMatch directive (which scans only the
/hierarchical_path) to send a matching path to a different directory than one resulting from
literal reading of the URL. The lighttpd equivalent alternative uses alias.url but requires more
manual configuration.

The author of this note uses the URL prefix

97

Project LXR The LXR User's Manual Language en-UK

Software release |.2 7 Web server configuration Document revision |.4

http://site.url.example/1xr

to route the request to LXR. It is followed by the tree name as in:

http://site.url.example/1xr/1xr
http://site.url.example/1xr/kernel

http://site.url.example is coded in 'host_names'. /1xr/1xr and /1xr/kernel are put
into 'virtroot' for two trees.

Yet another alternative needing no change in the web server configuration makes use of symbolic
links in DocumentRoot. This may be the only alternative if you have no administrator access to the
server configuration directory, e.g. if only ~user web sites are allowed on the system.

7.2, Apache

File .htaccess as copied by script configure-Ixr.pl does not need to be customised.

7.2.a. LXR as the main site

DocumentRoot points to the LXR root directory which is usually /var/www/html/. Parameter
'virtroot' reducesto '/"'. Access LXR with URL:

http://site.url.example/source

Some site administrators may restrict CGI scripts to /var/www/cgi- bin/ directory. In that case, install
everything in /var/www/cgi- bin which will behave as DocumentRoot. You may need to manually
merge LXR-specific file .htaccess with existing .htaccess. Parameter 'virtroot' is equal to
'/cgi-bin'. Access LXR with URL:

http://site.url.example/cgi-bin/source

If file robots.txt is tentatively interpreted as a script, remove it.

7.2.b. LXR as a sub-site

The LXR root directory is a sub-directory of DocumentRoot, e.g. Ixr/. Parameter 'virtroot'
becomes '/1xr'.

When CGI scripts are restricted to /var/www/cgi- bin directory, install everything there if LXR is the
only CGI service or in a subdirectory, e.g. [xr/, if several services must coexist. In the latter case,
there is no need to merge .htaccess. Then create symbolic links from DocumentRoot:

$ 1n -s /var/www/cgi-bin /var/www/html/1xr

or

$ 1n -s /var/www/cgi-bin/1xr /var/www/html/1xr

98

Project LXR The LXR User's Manual Language en-UK

Software release |.2 7 Web server configuration Document revision |.4

In both cases, access LXR with URL:

http://site.url.example/1xr/source

7.2.c. LXR as an independent site

LXR service appears to be issued from another site coexisting with the “normal” site. Instead of
being served from //site.url.example, it comes from, say, //1xr.url.example. For that,
you need to create a VirtualHost in file apache-Ixrserver.conf:

<VirtualHost *:80>

ServerName 1xr.url.example
DocumentRoot /0S_absolute_path_to_LXR_root_directory
</VirtualHost>

The Directory record is already configured by script configure-Ixr.pl.

<Directory /0S_absolute_path_to_LXR_root_directory
Options FollowSymLinks
AllowOverrride AuthConfig FileInfo Limit Options
up to Apache 2.2
Order allow,deny
Allow from all
from Apache 2.4
Require all granted
</Directory>

The LXR root directory can now be located anywhere and is no longer restricted to /var/www/html/.

If you are running under a security enhanced OS, like Security Enhanced Linux (SELinux), you may
get security alerts preventing LXR scripts execution. In this case, type the following command:

$ chcon --reference /var/www/cgi-bin/ -R /LXR/root/directory/

Parameter 'virtroot' reducesto '/"'. Access LXR with URL.:

http://1xr.url.example/source

Having LXR as a part of an independent site is only a matter of playing with 'virtroot' asin the
previous section.

7.2.d. Multiple trees operation

The first trivial solution creates a site per tree with the technique exhibited in the previous section.
However, this leads to have as many copies of the LXR root directory as there are trees. In fact, you
duplicate single-tree operation.

The second solution uses symbolic links inside DocumentRoot. Install LXR into subdirectory
Ixr/treel/*. Create as many links to this subdirectory as you need:

38 Using a subdirectory allows to have other HTML pages besides LXR service without mixing them with CGI scripts
which could cause problems. Of course, you can have LXR in DocumentRoot/treel/ instead of

99

Project LXR The LXR User's Manual Language en-UK

Software release |.2 7 Web server configuration Document revision |.4

cd /path/to/DocumentRoot
mkdir 1xr

mkdir 1xr/treel

cd 1xr/treel

-- 1install LXR in treel --
cd .. # back to I1xr

In -s treel tree2

In -s treel tree3

R e e A A T

Ixr.conf will contain three source-tree descriptions with 'virtroot' equal to 'lxr/treel’,
"Ixr/tree2' and '1xr/tree3’. Source-tree treel is accessed with URL:

http://site.url.example/1xr/treel/source

The drawback of this second solution is the necessity to change the DocumentRoot architecture
whenever you add or remove a tree: you must add or remove a link.

The third solution installs LXR in subdirectory [xr/ and will have the URL processed by Apache to
route all requests with URL like

http://site.url.example/1xr/treel/source

to DocumentRoot/Ixr/.

The needed directive in apache-Ixrserver.confis AliasMatch:

AliasMatch A/1xr/[~/]+/(.*) "0S_absolute path_to_DocumentRoot/1xr/$1"

The net effect of this AliasMatch directive is to strip off the tree name from the server routing
information, but the LXR scripts still receive the original URL and can retrieve the target tree from
the fragment not used for routing.

This directive is activated when you answer m to the Configure for single/multiple
trees? question and yes to Use built-in multiple trees management? in script
configure-Ixr.pl .

With this scheme, no modification is needed in the DocumentRoot architecture no matter how
many trees are present. Adding a tree or deleting a tree resolve to modifying only Ixr.conf. With the
addition of 'htmlfatal', a nice message can be displayed if someone references a non-existent
tree.

CAUTION!
This scheme requires that you can copy file apache-Ixrserver.conf into /etc/httpd/conf.d. If you
have no administrator rights, you are limited to the second solution.

To implement an alternate scheme, replace the above AliasMatch directive in apache-
Ixrserver.conf and write the corresponding 'treeextract' parameter in [xr.conf.

AliasMatch A/1xr/[N/]+/(.*) "0OS_absolute_path_to_DocumentRoot/1xr/$1"
a---- <- tree designation removed from routing

DocumentRoot/lxr/treel/ if you do not need HTML pages.

100

Project LXR The LXR User's Manual Language en-UK

Software release |.2 7 Web server configuration Document revision |.4

AliasMatch is applied to the URL path. Remember to capture the rest of the path after the match
and to copy it into the rewritten path. This explains the parentheses (..) in the pattern and the $1 in
the replacement to transfer the script name and its arguments.

, 'treeextract' => (NI [M]FS

This is the mirror of AliasMatch. The pattern is applied to SCRIPT_NAME. It is anchored at the
end of the path. It ignores the script (ident, diff, search or source) and captures the preceding part
representing the tree identification.

A subtle difference is the use of * instead of + so that the pattern matches even when LXR is the
only service in the server (single tree, LXR at root of server), but this is not necessary because, in
this case, routing should always succeed unless you damaged your Ixr.conf.

7.3. Lighttpd

Since this support is experimental, configuration file lighttp-Ixrserver.conf needs to be manually
tailored. Apart from the final LXR section, it is fairly identical to “standard” lighttpd.conf with the
exception that directories have been suffixed with /. This could cause incompatibility if files from
conf.d/ or vhosts.d/ are included.

var.state_dir has been changed to /var/run/lighttpd to solve a compatibility issue with script
lighttpd-init.

mimetype.assign has been extended to allow .shtml files as text/html.

In the final LXR section, the OS-absolute path of LXR root directory has been inserted by script

configure-Ixr.pl.

Note:
Remember that you can run lighttpd as a private task if you have no administrator privilege to
launch it as a daemon or to access the configuration directory. Do not forget to fix the
configuration to reference only directories with sufficient permissions, notably state_dir.

7.3.a. Lighttpd as the main site

server.document-root points to the LXR root directory. Parameter 'virtroot' reduces to
'/"'. Access LXR with URL:

http://site.url.example/source

Add as many $HTTP["host"] == or $HTTP["host"] =~ (with pattern matching) paragraphs to
describe all the aliases for the primary host name.

Note:
The primary host name is written by the configurator with initial double slashes // (URL
form). If this causes trouble, remove the //.

101

Project LXR The LXR User's Manual Language en-UK

Software release |.2 7 Web server configuration Document revision |.4

7.3.b. Lighttpd as a sub-site

The LXR root directory is a sub-directory of server.document-root, e.g. Ix7/. Parameter
'virtroot' becomes '/1xr'.Itis necessary to wrap cgi.assign in:

SHTTP["url"] =~ "A/1xr" {
cgi.assign += ("/source" => "", "/ident" => "", ..)
}
Access LXR with URL:

http://site.url.example/1xr/source

Note:
The generated server.document-root may conflict with the definition for the effective
site root. If this is the case, remove the line. The same is true for the $HTTP["host"]
descriptions. They are likely to have already been given in the site root definitions.

7.3.c. Lighttpd as an independent site

LXR service appears to be issued from another site coexisting with the “normal” site. Instead of
being served from //site.url.example, it comes from, say, //1xr.url.example. For that,
you tell lighttpd how to route the URL in file lighttpd-Ixrserver.conf:

$HTTP["host"] == "1Ixr.url.example" {
server.document-root = "/0S_absolute_path_to_LXR_root_directory"
}

This replaces the unnested server.document-root for the main site case. You do not need to
modify cgi.assign.

Add as many $HTTP[“host”] == or $HTTP[“host”] =~ (with pattern matching) to describe
your aliases.

'virtroot'is '/'. Access LXR with URL:

http://1xr.url.example/source

Having LXR as a part of an independent site is only a matter of playing with 'virtroot' and
$HTTP["url"] as in the previous section.

7.3.d. Multiple trees operation

The first trivial solution creates a site per tree with the technique exhibited in the previous section.
However, this leads to have as many copies of the LXR root directory as there are trees. In fact, you
duplicate single-tree operation.

The second solution installs LXR in subdirectory /xr/ and will have the URL scanned by lighttpd to
route all requests with URL like

http://site.url.example/1xr/treel/source

102

Project LXR The LXR User's Manual Language en-UK

Software release |.2 7 Web server configuration Document revision |.4

to Ixr with alias.url directives.

There is already an example commented out alias.url directive (corresponding to the built-in
policy) in lighttpd-Ixrserver.conf. Remove the pound sign (#) and adapt them to fit your needs:

alias.url += ("lxr/treel" => "/0S_absolute_path_to_LXR _root_directory"
"Ixr/tree2" => "/0S_absolute_path_to_LXR_root_directory"
"Ixr/tree3" => "/0S_absolute_path_to_LXR _root_directory"

4

4

)
In this case, Ixr.conf contains three source-tree descriptions with 'virtroot' equal to
"IXr/treel’', '1xr/tree2' and '1xr/tree3’.

To implement an alternate scheme, replace the $HTTP["url"] pattern and alias.url rules in
lighttpd-Ixrserver.conf and write the corresponding 'treeextract' parameter in [xr.conf.

SHTTP["url"] =~ "A/1xr/[A/]+/ {
----- <- tree designation here, but ignored
alias.url += { "/1lxr/tree_designation/"
=> "/0S_absolute path_to_LXR _root_directory/"

}

There is no URL or path rewriting here, only a match to decide how to route. Consequently, it is not
necessary to copy anything beyond what is matched. The pattern above for the built-in policy is
redundant, only to illustrate the similarities with Apache. It could be reduced to A/1xr/ since the
tree identification is not used in routing.

Unhappily, there is no wild card rule for alias.url. Every tree must be listed. The configurator
takes care of that. Remember to enumerate all the trees in manual configuration.

Note the trailing slash after the tree designation. It is used to force matching only when it is
followed by a script name.

, 'treeextract' => NOYA R VARYA R S

This is the mirror of $HTTP["url"]. The pattern is applied to SCRIPT_NAME. It is anchored at the
end of the path. It ignores the script (ident, diff, search or source) and captures the preceding part
representing the tree identification.

A subtle difference is the use of * instead of + so that the pattern matches even when LXR is the
only service in the server (single tree, LXR at root of server), but this is not strictly necessary
because, in this case, routing should always succeed unless you damaged your Ixr.conf.

103

Project LXR The LXR User's Manual Language en-UK

Software release |.2 8 Customising page architecture Document revision |.4

Customising page architecture

LXR provides a very flexible way of adapting its display to one's taste

through two features: templates and CSS styles.

Pages synthesized by LXR are based on filling templates fields. They all

share a common structure: a header, a body and a footer.

Composing a new template requires HTML knowledge.
Templates are merely HTML fragments of a page. An LXR page is divided in a head, a content and
a tail. Head and tail are composed from a template while the content may or may not be under
template control. The head template contains the beginning of the synthesised page with the
<html> tag, the <head> section, the <body> tag and the beginning of the content for the top of the
page (the header). The tail template closes the page with the footer row and the </body> and
</html> tags.

Template content is a valid HTML fragment. Comments can be inserted. Two forms are supported:

* regular comments, which are removed from the result to preserve bandwidth when page is sent to
the browser

<!-- regular comment, note the space before the first word -->

This is how the template licence statement is removed from the generated page: the licence
applies to the template, not to the result since the sent HTML page essentially contains user data
which might be covered by a specific intellectual property right.

* sticky comments, which are kept in the final result (amongst them are SSI directives)

<!--sticky comment: no space before first word -->
<!--#include virtual="/some/file.shtml" -->

The templates that ship with each release present two user interfaces: the classical one based on
links and the new one providing buttons and menus.

When your tree has lots of versions, links consume an excessively large space in the header area,
which gives a cluttered aspect to the header. In this case, it is nicer to use buttons-and-menus. You
may however mix links and buttons-and-menus without harm.

The example header for buttons-and-menus style is html-head-btn.html. You must then configure
your [xr.conf as:

, 'htmlhead' => 'templates/tpml/html-head-btn.html'

CAUTION!
Buttons-and-menus style composition is very tricky. Study thoroughly the provided examples
before attempting to create new ones. You must also review Ixr.css to achieve the desired
layout. And, remember, always work on a copy in custom.d/.

104

Project LXR The LXR User's Manual Language en-UK

Software release |.2 8 Customising page architecture Document revision |.4

The templates are identified by a conventional name which is transformed into a file name through
the parameters in /[xr.conf HTML subsection. The components of LXR send a prefix to the template
engine: diff, ident, search or source. A suffix is added and the result is the key for the
parameter. If it does not exist in Ixr.conf, prefix html replaces the provided one and a new lookup is
attempted. If it does not exist, a very simple internal template (without any substitution capability) is
used.

Some components of LXR do not use body templates, namely file display and difference markup.

The template definition syntax in Ixr.conf is:

template_key => path_to_template

path_to_template is either a path relative to the LXR root directory or an OS absolute path. If you
want to use directly the templates from the templates/ directory, which is not recommended, you
must use a directive like:

, 'htmlhead' => templates/tmpl/html-head.html

Note:
As a fail-safe rule, always customise a copy of the examples provided, so that you can revert to
a working template if something goes wrong.

8.1. Variable text in templates

Insertion of LXR enhanced data is done through substitution of special markers. They are
recognised by the appearance of $simple_name in the HTML code where simple_name is composed
of alphanumeric or underscore characters (a through z, A through Z, © through 9 or _). If the marker
does not exist (really does not exist or is used in a wrong context), nothing is substituted and the
marker is left unchanged in HTML code.

There are two types of markers:
* simple markers
¢ Dblock markers
Tip:
A simple marker might need to be followed by alphabetic text without any intervening space

after the marker name. This situation prevents correct detection of the marker name. The
solution is to use a block marker syntax with an empty block.

8.1.a. Simple markers
Simple markers are replaced by a single value. They are associated with a scalar LXR data.

Note:
There is inherently no difference between a simple marker and a block marker with an empty

105

Project LXR The LXR User's Manual Language en-UK

Software release |.2 8 Customising page architecture Document revision |.4

block. It is only a convenient short-hand notation.

Example:

<tr>
<td class="banner">$banner</td>
</tr>

8.1.b. Block markers

Block markers are followed by a block delimited by curly braces ({}) without any intervening
spaces. They are usually associated with an iterative function allowing for repetitive substitution
according to some rule.

The content of the block between the curly braces is arbitrary. It may even contain markers. The
only constraint is that block markers be properly nested. Their blocks are fully contained inside the
outer pair of curly braces. Substitution starts from the outermost block, thus giving complete
freedom to the associated function to expand or not an inner block.

CAUTION!
The rule of balanced braces prevents insertion of isolated braces anywhere in a template. The
workaround for HTML code is the use of character references { and } (or
hexadecimal { and }).

Example:

<table class="header'">
$variables{ <tr>
<td class="leftmost">
$varname:
</td>
<td class="rightmost">
$varlinks{[$varvalue]}
</td>
</tr>
}</table>

This results is a line for each variable, thanks to the <tr> tag. All the values defined in 'range'
are edited in this line.

8.2. Markers for headers

The default header template is defined by:

"htmlhead' => 'templates/tmpl/html-head.html’

But you can have more: sourcehead (for file header), sourcedirhead (for directory), diffhead
(for differences between files), identhead (for identifier search), searchhead (for free text
search), showconfighead (for configuration display).

106

Project LXR The LXR User's Manual Language en-UK

Software release |.2 8 Customising page architecture Document revision |.4

These templates MUST open an HTML-compliant page with a <!DOCTYPE>, the opening <html>,
the complete <head> section, the opening <body> and any desired fixed header decoration.

The following paragraphs describe the available markers with typical application.

8.2.a. <head> section

Marker Provides Replaced by
Example
Content of the <title>element |Current path for source and diff, the
concatenation of 'sourcerootname' and the
$title search target for ident and search
<title>$title</title>
Character set name of charset=|Value of configuration parameter 'encoding'
attribute in a <meta> tag
$encoding
<meta http-equiv="content-type" content="text/html;
charset=$encoding">
Reference URL in a <base> tag|Concatenation of 'host_names' and
to resolve relative links 'virtroot' orthe real 'baseurl’
$baseurl
<base href="$baseurl">
Location of the CSS style sheet in | Value of configuration parameter
<link rel="stylesheet">tag | 'stylesheet’
$stylesheet y £
<link rel="stylesheet" type="text/css" href="$stylesheet">
Note:

Parameter 'stylesheet' is not transformed in any way. It can be written HTML-absolute or
HTML-relative in [xr.conf according to the global site configuration. HTML-relative is
convenient for single-tree operation with LXR root directory equal to DocumentRoot.
HTML-absolute is preferred when LXR is only a sub-site.

8.2.b. <body> section

8.2.b.1. Titling

Following markers are intended for composing an informative titling section for the page.

107

Project LXR The LXR User's Manual Language en-UK

Software release 1.2 8 Customising page architecture Document revision |.4
Marker Provides Replaced by
Example
Fixed general title for the page Value of configuration parameter 'caption'
$caption

<h1l class="main">$caption</h1>

Path to the current file for pages |Clickable hyperlinks in every component of the
dealing with files (i.e. source or|path or an empty string
$banner diff)

<p class="banner'">$banner</p>

Path to the current file for source | Value of Perl variable $pathname (see marker
or diff, reduces to / otherwise $banner if hyperlinks desired)

$pathname

<p>Current target is $pathname</p>

LXR release version id LXR version as set by script set-Ixr-version.sh

$LXRversion
<p>LXR version is $LXRversion</p>

If your tree is stored in a CVS repository, you can add a “link” button to display files in the current
directory that were put aside in the “Attic” (recall that CVS does not manage directory version; the
“attic” feature is the nearest equivalent for directory versioning).

Toggling state “‘show/hide files in | Empty string if source tree is not managed by
attic” hyperlink when current| CVS
$atticlink |scriptis source

<$div>$atticlink</div>

8.2.b.2. Navigating to other trees

When LXR manages several source trees, it is convenient to have hyperlinks to the other trees
instead of manipulating the URL, with the risk of a typing mistake. The set of hyperlinks is
generated by the $forest{}* block marker:

3 Tip: a forest is made up of many trees.

108

Project LXR The LXR User's Manual Language en-UK

Software release 1.2 8 Customising page architecture Document revision |.4
Marker Provides Replaced by
(context)
$forest{} An area for the trees|The expanded block if there exists at least one
hyperlinks tree with a 'shortcaption' parameter
$trees{} Repeated application of | Concatenation of all expansions

($forest{} block) block to each tree

$treelink Hyperlink to the root of a|An <a> tag or a block for the
($trees{} block) tree currently displayed tree

$caption Reserved for future extension

$1link

($trees{} block)

Example:

<td class="treelink">

$forest{
$trees{$treelink​ }

}</td>

8.2.b.3. Switching between modes

Headers usually offer a set of links or buttons to switch between the LXR operating modes. This
avoids manipulating directly the URL, which is inconvenient and error-prone. The set is generated
by the $modes block marker:

Marker Provides Replaced by
(context)
Example

Repeated application of block to|Concatenation of all expansions

each mode
$modes{}
$modes{<!--individual mode layout-->
}
Note the
 tag to stack the links one above the other.
$modelink A ready-to-use hyperlink An <a> tag for the mode
(note 1)

$modes{[$modelink J
}

$modeaction | URL to jump to if submit button| An action= attribute for <form> tag
is clicked

109

Project LXR The LXR User's Manual Language en-UK

Software release 1.2 8 Customising page architecture Document revision |.4

Marker Provides Replaced by

(context)
Example

(note 2) <form method="get" action="$modeaction">
$modename | Mode name Internally generated string naming the mode
(note 2)
smodeoff Mode current operating status disabled or an empty string
(note 2)

<button type="submit" $modeoff>$modename</button>

A means to change button modes, modes-sel if this is the active mode
appearance according to mode | or modes-dis if the mode is disabled
current operating status

$modecss

(note 2)

<form method="get" class="$modecss" .. > .. </form>

$urlargs{} |A means to pass LXR state to the| This common block marker is explained
(note 2) next script further below

Context notes:
1. inside $modes{} block for /ink interface
2. inside $modes{} block for buttons-and-menus interface
Example:

$modes{<form method="get" class="$modecss" action="$modeaction">
<div class="compact">
$urlargs{ <input type= "hidden"
name= "$urlvar"
value="$urlval"
>
} <button type="submit" $modeoff>$modename</button>
</div>
</form>

}

8.2.b.4. Setting variables

IMPORTANT ADVICE
Do not include this feature in showconfig header. Changing variable values has no meaning
there and may have unexpected effects when switching mode or tree. Stated otherwise, do not
use the shareable 'htmlhead', design a specific 'showconfighead' without the markers

110

Project LXR The LXR User's Manual Language en-UK

Software release |.2

8 Customising page architecture Document revision 1.4

described in this section.

Variables defined by 'variables' in [xr.conf constitute the basis for file version selection.
Headers usually offer a means of manipulating variable values through a set of links or menus.
This avoids manipulating directly the URL, which is inconvenient and error-prone. The set is

generated by the $variables block marker and two specific markers in case of buttons-and-menus
interface:

Marker Provides Replaced by
(context)
$variables{} Repeateq application of the block to | Concatenation of all expansions
each variable
$varname Purpose of variable Value of attribute 'name' in the
($variables{} block) 'variables' definition

* For link interface, use the following inside the $variables{} block:

Marker Provides Replaced by
(context)
$varlinks{} Repeated apphcatlon of thc? block to | Concatenation of all expansions
each value in 'range' attribute
$varvalue Display of one value One value of attribute 'range'’
($varlinks{} block) in the 'variables"' definition
Example:

<table class="header">

$variables{ <tr>
<td class="leftmost">$varname:</td>
<td class="rightmost">

$varlinks{[$varvalue]}
</td>

</tr>
}</table>

The possible values in 'range’' follow one another on a line and every variable is set on its own
table row.

* For buttons-and-menus interface, use the following OUTSIDE the $variables{} block:

Marker Provides Replaced by

$varbtnaction [iRII; (tio jump to if submit button is| Target URL without query string
clicke

Project LXR

Software release |.2

The LXR User's Manual

8 Customising page architecture

Language en-UK

Document revision |.4

Marker

Provides

Replaced by

$urlargs{}

next script

A means to pass LXR state to the

This common block marker is
explained further below

* For buttons-and-menus interface, use the following INSIDE the $variables{} block:

($varmenu{} block)

<option> element

Marker Provides Replaced by
(context)
Purpose of variable Value of attribute 'name' in the
$varname : .
'variables' definition
$varid The variable identifier Name of the variable in the
(see note) 'variables' definition
Repeated application of block to|Concatenation of all expansions
$varmenu{} each variable value defined in
'range’ attribute
$varvalue A possible menu choice for an|A value of attribute 'range’ in the

'variables' definition

$itemsel

($varmenu{} block)

“Current” status for

variable value

a possible

selected if the choice matches the
current value of the variable or an
empty string

$itemclass

($varmenu{} block)

A means to change the menu item
appearance according to its
“current” status

varlink or var-sel if this is the
“current” value

CAUTION!
Due to the LXR HTTP state transition rules, the $varid replacement MUST be preceded by
an exclamation mark (!) which means “override the variable value on page load”. This
convention simplifies handling of conflicting variable values between $urlargs{} and

$varid.
Example:
<form method="get"
class="vars"
action="$varbtnaction"
>

<p class=compact>
$urlargs{ <input type="hidden" name="$urlvar" value="$urlval">
}$variables{ <label>$varname:

112

Project LXR The LXR User's Manual Language en-UK

Software release |.2 8 Customising page architecture Document revision |.4

<select name="!$varid">

$varmenu{ <option class="$itemclass"

$itemsel>$varvalue</option>

} </select>
</label>

} <button type=reset>Revert</button>
<button type=submit>Change</button>

</p>
</form>

Notes:
Do not forget the exclamation mark before $varid

The variables menus are all side-by-side since there is no
 tag

Provide a submit button to activate the preselected changes

8.2.b.5. Passing state to the next script

Since the HTTP protocol is stateless, any attempt to implement clear state transitions must transfer
the needed information through the query string part of the URL. This is how LXR passes its
commands from one invocation of its scripts to the next. State transition is usually transparent to the
user. However, creating buttons or menus is not as straightforward as coding a link.

Transition through a link is easy because <a> tags contain all the needed information in a single
location, the href attribute.

On the other hand, buttons or menus are included in a <form> construct. The target script is
designated in the action attribute of the <form> tag. The desired set of variable values is
determined from <select> tags and <option> elements, while the present state of variables and
query arguments is memorised in <input type="hidden"> tags. This creates an intricate
interaction between both sets. To solve it, one must examine the modified variables and filter the
current state in order not to send back a variable with two values. There is a simpler and more
elegant solution suggested by one of LXR design goals. LXR tries to stay “minimalist” and avoids
as much it can scripting functions e.g. Java or JavaScript. The modified variable value is submitted
with a marking character, a “sigil”, affixed to the variable name to mean “override this variable with
this value”. That way, the two sets become independent and the programmer does not need to worry
about the interaction.

As mentioned, the desired value is transmitted through <select>/<option>. The current state is
summarised with $urlargs block marker.

Marker Provides Replaced by
(context)
surlargs{} Repeated application of block to each|Concatenation of all

query argument to report the present state |expansions

$urlvar Name of a query argument Name string
($urlargs{} block)

113

Project LXR The LXR User's Manual Language en-UK

Software release 1.2 8 Customising page architecture Document revision |.4
Marker Provides Replaced by
(context)
$urlval Value of a query argument Value string

($urlargs{} block)

Typical usage:

$urlargs{ <input type="hidden" name="$urlvar" value="$urlval"> }

8.2.b.6. Other markers

The $dotdoturl and $thisurl markers have probably no usage. They have been offered by LXR
for ages but are not reliable.

Marker Provides Replaced by
sdotdoturl URL for the parent directory |Concatenation of 'host_names' and
of 'virtroot' 'virtroot' with the last directory removed
CAUTION!

This marker is not protected: it removes blindly what it thinks to be the last directory. If your
'virtroot' is /, it will strip the host name! It is also unaware of any DNS magic you may
apply to your URL (see 7.1 A note on the interaction between URLs and LXR configuration),
which may invalidate the URL.

There is also no guarantee that this “dot dot URL” may be accessed by the web server. No
access is possible above DocumentRoot!

Marker Provides Replaced by

URL of current page Complete copy (query string included) of the

$thisurl
URL used to request this page

The last block marker is of interest only to developers:

Marker Provides Replaced by
(context)
$devinfo{} Repeated application of block for| Concatenation of all expansions
every LXR Perl module
$moduleid CVS information for this module Value of Perl variable $CVSID from
($devinfo{} block) this module
$modpath Path to module Perl module path

|14

Project LXR The LXR User's Manual Language en-UK

Software release |.2 8 Customising page architecture Document revision |.4
Marker Provides Replaced by
(context)

($devinfo{} block)

$modtime Last modification time UTC time and date string
($devinfo{} block)

8.3. Markers for footers

The default footer template is defined by:

"htmltail' => 'templates/tmpl/html-tail.html’

But you can have more: sourcetail (for file footer), sourcedirtail (for directory), difftail
(for differences between files), identtail (for identifier search), searchtail (for free text
search), showconfigtail (for configuration display).

These templates MUST close an HTML-compliant page with any desired fixed footer decoration,
the closing </body> and the closing </html1>.

Basically, the same markers as those for headers are available, with the exception of those related to
the <head> section.

It has been thought unnecessary to make the $atticlink marker available.

8.4. Markers for directory listing

The body for listing directory contents with the source script is controlled by the template:

"htmldir' => 'templates/tmpl/html-dir-indexing.html'

or, without the Last indexed column:

"htmldir' => 'templates/tmpl/html-dir.html'
If not found, it defaults to showing an icon and the file name.

It should define the elements of the directory listing, usually with a <table>. Two block markers
can be used:

Marker Provides Replaced by
(context)
$description{} Directory description Expansion of block
$files{} Repeated application of || Concatenation of all expansions

115

Project LXR

Software release |.2

The LXR User's Manual

8 Customising page architecture

Language en-UK

Document revision |.4

($files{} block)

“line” appearance

Marker Provides Replaced by
(context)
block to each file or|This marker is preferentially used in a
subdirectory to report file| <table> to generate one row per file.
characteristics
$dirclass A means to change this file|Alternatively dirrowl and dirrow?2

every 3 files

$iconlink
($files{} block)

A clickable image
representative of the file
extension

An tag

$namelink
($files{} block)

File name

An <a> link to the file

$filesize{}
($files{} block)

Template for file size

A dash for a directory or block expansion

$bytes
($filesize{} block)

File size

File size (in bytes or kilobytes depending
on the size)

$modtime
($files{} block)

Last modification date and
time for file

An UTC date string

$indextime

($files{} block)

Last indexation date and
time for file

An UTC date string, Not valid warning or
a dash; void for directories

$dirindexclass

($files{} block)

HTML class attribute
allowing to decorate
$indextime with CSS
styles

Either dirindex or dirindexinvalid
according to indexation state for file.

$description{}
($files{} block)

Description of subdirectory
or file

Block expansion

$desctext

blocks)

(both $description{}

Descriptive text

Text extracted from README files for
subdirectories, some guessed descriptive
text for files or an empty string

Example:

116

Project LXR The LXR User's Manual Language en-UK

Software release |.2 8 Customising page architecture Document revision |.4

<div class="dirdesc">
$description{$desctext}
</div>

<table class="dircontent">
<thead>
<tr class="dirheader">
<th class="diricon"> </th>
<th class="dirname">Name</th>
<th class="dirsize">Size</th>
<th class="dirtime">Date (UTC)</th>
<th class="dirindex">Last indexed</th>
<th class="dirdesc">Description</th>

</tr>
</thead>
<tbody>
$files{
<tr class="$dirclass">
<td class="diricon">$iconlink</td>
<td class="dirname">$namelink</td>
<td class="dirsize">$filesize{$bytes bytes}</td>
<td class="dirtime">$modtime</td>
<td class="$dirindexclass">$dirindex</td>
<td class="dirdesc">$description{$desctext}</td>
</tr>
</tbody>
</table>

8.4.a. Directory description

LXR tries its best to help understand the meaning of a source-tree. It tries to find README.txt,
README or README.html files in the displayed directory. The first file found is scanned in the
hope of finding something “interesting”. Considering the developer freedom and the variety of
comment formats, the heuristics is not guaranteed to hit a meaningful bit of text.

Once the possible licence paragraph is stripped from text README files, a small number of
paragraphs® from the beginning of the file is kept. These paragraphs are returned as the directory
description.

Note:
If you are fluent enough in Perl, you can customise the heuristics to your commenting habits
by modifying Local.pm.
If README.html was selected, a clement is looked for. This
element may contain a nested element. If this latter element
does not contain any other element, its content (without the and tags) is
used as the directory description. Otherwise, the content (without the tags) of the "1xrlongdesc"
element is returned, once again if it contains no nested element.

40 A paragraph is defined as a sequence of consecutive lines preceded and followed by at least a blank line.

117

Project LXR The LXR User's Manual Language en-UK

Software release |.2 8 Customising page architecture Document revision |.4

This feature may be used to provide some insight information to the reader of a public LXR server.

8.4.b. File description

Trying to extract descriptive information from files is even more arbitrary. The default Local.pm
attempts this endeavour only on C, C++ or Java files.

The heuristics operates from the beginning of the file to roughly the first entity declaration. Licence
paragraph and borders are stripped from this fragment. A preferred target is some text preceded by
the file name or the word “Description”.

After pruning what is considered as “noise”, the remaining text is returned as the file description.

Notes:
Happily enough, you often get an empty string instead of garbage.

Once again, there is no guarantee to extract the real description.

8.5. Markers for file listing

File content listing is not driven by templates.

8.6. Markers for difference markup

Difference markup is not driven by templates.

8.7. Markers for identifier search

The body for identifier search with the ident script is controlled by the template:

"htmlident' => 'templates/tmpl/html-ident.html’

It provides the <form> for the identifier query. It uses method GET and script ident is invoked again
when the submit button is clicked. It also contains the mask for the results.

8.7.a. Query form

The <form> returns the identifier name in query variable _i (note the underscore), the “definitions
only” check box state in query variable _identdefonly. Query variable _remember is set to 1 if
you want to preset the <input> fields to their previous value.

Marker Provides Replaced by

$variables State passing data (version|A series of <input type="hidden">
selection) from one script |tags; to be used as is inside the <form>

118

Project LXR

Software release |.2

The LXR User's Manual

8 Customising page architecture

Language en-UK

Document revision |.4

Marker Provides Replaced by
invocation to the other
Check status of the|<input> tag attribute depending on the
$checked “definitions only” check value of configuration parameter
box 'identdefonly' and the previous value
of this attribute
The looked-for identifier;| HTML-safe identifier name where the
. i to be used outside the|eventual angle brackets <> are replaced by
$identifier

<form>

HTML character references* (see the next
one and the note)

$identifier_escaped

The unchanged looked-for
identifier for the value of
an <input> field only

Identifier name where non alphanumeric
characters are replaced by their %-encoded
equivalent, ready to be transmitted to the
LXR server (see the previous one)

CAUTION!

The distinction between $identifier and $identifier_escaped results from the effort

to protect against

Cross-site

scripting (XSS) attacks.

In the provided template,

$identifier_escaped is locked inside quotation marks, so that a smartly crafted search
name including some (JavaScript or other) script functions cannot get executed by your
browser. Do not use $identifier_escaped in any other context.

$identifier is secure because the “trigger” characters, the angle brackets (needed to code
tags) are replaced by HTML character references which are always considered as pure text.

Example:

<form method="get" action="ident">

<p>
$variables
<label>
Identifier:
<input

>
</label>
<label>

<input

>

41

id="focus"
type="text"
name="_1i"

value="$identifier_escaped"

size="15"

type="checkbox"

name="_identdefonly"
value="1" $checked

This mapping cannot be reversed since no one can tell if &1t ; was the intended 4-character string or if it was <.

119

Project LXR

Software release |.2

The LXR User's Manual

8 Customising page architecture

 Definitions only

</label>

Language en-UK

Document revision |.4

<input type="hidden" name="_remember" value="1">
 <input type="submit" value="Find">

</p>
</form>

8.7.b.

Results area

The markers offer three choices of editing a reference from a very simple combined string (but
dangling from line to line) to a very sophisticated layout possibility.

Marker Provides Replaced by
(context)

$defs{} Identifier definitions Expapgon of block or empty string if no
definition

$uses{} Identifier references Expansion of block or empty string if no
reference

$occurs Number of occurrences Total number of occurrences (definitions

($defs{}/$uses{}) or references depending on context)

. : Number of files Number of files where the identifier was

$filehits .
found (as a definition or a reference

($defs{}/$uses{}) according to context)

$refs{} Repeated application of block to|Concatenation of all expansions

(sdefs{}/suses{}) each occurrence of the identifier

$type Identifier type, e.g. variable,| 'typemap' string from a language

($refs{} block)

class, procedure ...

description in generic.conf

$rel
($refs{} block)

Extra information for
categories

some

Entity name of which this identifier is a
member

$fileref
($refs{} block)

Occurrence location
choice #1 (historical)

String combining the file name and the
line number as a link with this
occurrence as target

$file or $fileonce
and $1ine

($refs{} block)

Occurrence location
choice #2 (recommended for
definitions)

Respectively a clickable link to the file
and the line number as a link to the
occurrence

$file or $fileonce

Occurrence location

Respectively a clickable link to the file

120

Project LXR The LXR User's Manual Language en-UK

Software release 1.2 8 Customising page architecture Document revision |.4
Marker Provides Replaced by
(context)
and $1lines choice #3 (recommended for|and a string containing all the links to the
references) lines of occurrence

($refs{} block)

$refinvalid to decorate $fileonce, $file, been modified since last indexation;
($refs{} block) $line and $lines with CSS|empty otherwise.
styles

HTML class attribute allowing|Expands to identinvalid if file has

$indexwarning{} |Warning block for inaccurate Expansion of block or empty string if no

($defs{}/suses{} references inaccurate reference
but must occur after Currently, block is not expanded in its
$refs{} block) turn; it contains only fixed HTML text.
Notes:

1. The $type and $rel markers are intended for definitions. As a safety measure, they return an

empty string for a reference.

. Usually, an occurrence “costs” one line. This can lead to a very long page where scrolling is

necessary. Also the $fileref string has by nature a varying length. The file name portion is
ragged and the line numbers do not line up. The visual effect of choice #1 is poor.

. Separating file and line number information in choices #2 and #3 allows a neatly aligned

tabular form. Using choice #2 for references will “cost” one line per occurrence.

. $fileonce is the same as $file for the first reference in a file, then an empty string for the

second and following references.

. Choice #3 makes no difference between $file and $fileonce because the $refs{} block

is expanded only once per file. It results in a very compact presentation, suitable for
displaying in a <table> cell.

Example for definitions:

<h2>Results for $identifier</h2>
$defs{

<h3>Definitions</h3>

<table class="identdef">

<tr>
<th>Type</th>
<th>Member of</th>
<th class="identfile">File</th>
<th class="identline">Line</th>
</tr>
$refs{
<tr>

<td class="identtype">$type</td>

121

Project LXR The LXR User's Manual Language en-UK

Software release |.2 8 Customising page architecture Document revision |.4

<td class="identrel">$rel</td>

<td class="identfile $refinvalid">$file</td>

<td class="identline $refinvalid">$line</td>
</tr>

</table>
<p>
$occurs declarations in $filehits files.
</p>
$indexwarning{
<p class="error">0ne or more files need reindexing</p>
}

}

Example for references:

$uses{
<h3>References:</h3>
<table class="identref'">

<tr>
<th class="identfile'">File</th>
<th class="identline">Line</th>
</tr>
$refs{
<tr>
<td class="identfile $refinvalid">$fileonce</td>
<td class="identline $refinvalid">$lines</td>
</tr>
</table>
<p>
$occurs references in $filehits files.
</p>
$indexwarning{

<p class="error">0ne or more files need reindexing</p>

}
}

8.8. Markers for free-text search

The body for free-text search with the search script is controlled by the template:

"htmlsearch' => 'templates/tmpl/html-search-engine.html'

where engine is replaced by the name of the search engine, glimpse or swish. Though they are
basically the same, this allows to have the name of the search engine inserted and links to the
adequate documentation.

It provides the <form> for the free-text query. It uses method GET and script search is invoked again
when the submit button is clicked. It also contains the mask for the results.

122

Project LXR

Software release |.2

8.8.a. Query form

The LXR User's Manual

8 Customising page architecture

Language en-UK

Document revision |.4

The <form> returns the searched string in query variable _string (note the underscore), the file
name in query variable _filestring, the “case sensitive” and “advanced search” check box states
in query variables _casesensitive and _advanced respectively.

($variables{} block)

Marker Provides Replaced by
State passing data (version Concatenation of all expansions for
$variables{}* selection) from one script each 'variables' giving a series of
invocation to the other <input type="hidden"> tags
$variable Variable name Variable name

$value
($variables{} block)

Variable value

Current value of variable

$advancedchecked

Check status of the
“advanced search” check
box

A ready-to-use attribute for the
<input> tag reflecting the checked
state

$casesensitivechecked

Check status of the “case
sensitive” check box

A ready-to-use attribute for the
<input> tag reflecting the checked
state

$searchtext

The looked-for text; to be
used outside the <form>

HTML-safe text where the eventual
angle brackets <> are replaced by
HTML character references® (see the
next one and the note)

$searchtext_escaped

The unchanged looked-for
text; to be used in an
<input> field only

Text where all non alphanumeric
characters are replaced by their %-
encoded equivalent, ready to be
transmitted to the LXR server

$filetext_escaped

Note:

The unchanged looked-for
file name; to be used in an
<input> field only

File name where all non alphanumeric
characters are replaced by their %-
encoded equivalent, ready to be
transmitted to the LXR server

42 This is not consistent with script ident which offers a simple marker instead of this block marker. This should be
corrected in a future version after pondering on the best choice (trade-off between ease-of-use and flexibility).
43 This mapping cannot be reversed since no one can tell if &1t ; was the intended 4-character string or if it was <.

123

Project LXR The LXR User's Manual

Language en-UK

Software release |.2 8 Customising page architecture Document revision |.4

There is no $filetext intentionally.
CAUTION!

The distinction between $xxx and $xxx_escaped results from the effort to protect against
cross-site scripting (XSS) attacks. In the provided template, $xxx_escaped is locked inside
quotation marks, so that a smartly crafted search string including some (JavaScript or other)
script functions cannot get executed by your browser. Do not use $xxx_escaped in any other

context.

$xxx 1s secure because the “trigger” characters, the angle brackets (needed to code tags) are
replaced by HTML character references which are always considered as pure text.

Example:

<form method="get" action="search">

$variables{<input type="hidden" name="$variable" value="$value">}

<table>
<tr>
<td>
<p>Files named:</p>
</td>
<td>
<input type="text"
name="_filestring"
value="$filetext_escaped"
size="50"
>
</td>
</tr>
<tr>
<td>
<p>0r containing:</p>
</td>
<td>
<input id="focus"
type="text"
name="_string"
value="$searchtext_escaped"
size="50"
>
</td>
</tr>
<tr>
<td></td>
<td>
<label>
<input type="checkbox"
name="_advanced"
$advancedchecked
value="1"
>
Advanced (allows usage of regex)
</label>

124

Project LXR

Software release |.2

<label>
<input
>
Case-sensitive
</label>
</td>
<td>

The LXR User's Manual

8 Customising page architecture

Language en-UK

Document revision |.4

type="checkbox"
name="_casesensitive"
$casesensitivechecked
value="1"

<input type="submit" value="Search">

</td>
</table>

</form>

8.8.b. Results area

The markers offer two choices of editing a reference as a very simple combined string (but dangling

from line to line) or a more flexible layout possibility.

Marker Provides

(context)

Replaced by

: Error indication
$maxhits_message

Error message if the overflow condition is
met, an empty string otherwise

Number of hits reported by the

Hits number (limited to the overflow

$resultcount search engine (occurrences for |condition)
Glimpse, files for Swish-e)
$results{} Repeatqd a}pphcatlon of block|Concatenation of all expansions
to each individual result
Hit text from the search engine | Glimpse: line containing the string;
$text Swish-e: relevance factor for the whole

($results{} block)

file, roughly related to the number of
occurrences or “density” of string in file

Occurrence location
choice #1 (historical)

$fileref
($results{} block)

String combining the file name and the
line number as a link with this occurrence
as target

Occurrence location
choice #2

$file or $fileonce
and $1line

($results{} block)

Respectively by a clickable link to the file
and the line number as a link to the
occurrence

125

Project LXR The LXR User's Manual Language en-UK

Software release |.2 8 Customising page architecture Document revision |.4
Marker Provides Replaced by
(context)

HTML class attribute allowing | String searchfile or searchfilevoid
to decorate $fileonce with|depending on whether $fileonce is a file
($results{} block) |CSS styles name or an empty string

$tdfile

HTML class attribute allowing |[Expands to searchinvalid if file has
$searchinvalid to decorate $fileonce, been modified since last indexation; empty
($results{} block) $file and $line with CSS|otherwise.

styles

Notes:
1. Overflow is reported if the requested string is too common and results in excessive hits*. The
maximum number of hits is hard-coded in LXR.

2. $fileref string has by nature a varying length. The file name portion is ragged and the line
numbers do not line up. The visual effect of choice #1 is poor.

3. Separating file and line number information in choice #2 allows a neatly aligned tabular form.
4. $fileonce is the same as $file for the first reference in a file, then an empty string for the
second and following references.
5. $line returns an empty string in the Swish-e case, since this search engine never returns line
numbers.
Example:
<p>

$maxhits_message
$resultcount occurrences found.

</p>
<h2>Results for $searchtext</h2>
<table>
<tbody>
$results{
<tr>
<td class="$tdfile $searchinvalid">$fileonce</td>
<td class="searchline $searchinvalid">$line</td>
<td>$text</td>
</tr>
</tbody>
</table>

44 This is unlikely to happen with swish-e since it reports only the files containing the requested text, not the
occurrences. It may nevertheless happen if your source-tree contains thousands of files.

126

Project LXR

Software release |.2

The LXR User's Manual

8 Customising page architecture

Language en-UK

Document revision |.4

8.9.

Markers for configuration display

The body for configuration display with the showconfig script is controlled by the template:

"htmlconfig' => 'templates/tmpl/html-config.html'

The template may provide a title area and should define the elements for the configuration
parameters contained in a selected parameter group, usually with a <table>.

Marker Provides Replaced by
(context)

$conffile Name of master configuration | OS-absolute path of master configuration
file file

$virtroot Designation of tree wunder| Value of parameter 'virtroot'
scrutiny

$parmgroupnr Index of parameter group Index within configuration file (global
under scrutiny parameter group is always excluded)

$previous Switch to previous group <a> link to show previous group

$next

Switch to next group

<a> link to show previous group

$conf_parm{}

Repeated application of block
to each parameter

Concatenation of all expansions

$parm
($conf_parm{} block)

Parameter name

Name

$type
($conf_parm{} block)

Perl Parameter type

String equal to hash, array or string

$val
($conf_parm{} block)

Tree-specific value

Ready to use HTML sequence

$global
($conf_parm{} block)

Global value

Ready to use HTML sequence

The template may eventually provide a <form> to force display of all known parameters, even if not
defined in Ixr.conf. It uses method GET and script showconfig is invoked again when the submit
button is clicked. The <form> returns the “force” flag in query variable _confall (note the
underscore).

Example:

127

Project LXR The LXR User's Manual Language en-UK

Software release |.2 8 Customising page architecture Document revision |.4

<p>
Now showing $virtroot
configured in parameter group # $parmgroupnr
</p>

<table>
<thead>
<th>Parameter</th>
<th>Type</th>
<th>Tree-specific</th>
<th>Global</th>
</thead>
$conf_parm{ <tr>
<td>$parm</td>
<td>$type</td>
<td>$val</td>
<td>$global</td>
</tr>
}</table>

8.10. Markers for custom error page

When something goes wrong during initialization of LXR, if Ixr.conf does not provide the required
parameters, if the source root cannot be found, ... LXR dies silently. Oh well! Not so silently.
Anyway, it is not user-friendly. You may apparently stay stuck on your present page or get a totally
blank screen (which is worse). Your only resort is to have a look at the server error log. But if the
server is not on your computer or you have no administrator rights, you stay in the blue!

The author of this note has a page with links to many trees. In fact, it is rather a catch-all page where
all the links are present, whether the tree exists or not, so that the page is written once and not
modified every day. But it is very frustrating to be confronted to a white screen instead of getting a
proper message when you click on a “waiting” link. You do not get a 404-error because the links
drive you into LXR and later LXR discovers that it cannot serve the request (non-existent
sourceroot) and dies away.

To alleviate this bothersome event, LXR has been modified as of release 0.9.9 to display an error
page with the name of the tree. The error page is described by an HTML template:

"htmlfatal' => 'templates/tmpl/html-fatal.html'
If omitted, a very simple page is internally generated.

Very few markers are available since this a response to a serious configuration mishap:

Marker Provides Replaced by

Guessed desired tree Tree name as extracted from the URL by

$target
parameter 'treeextract'

$stylesheet Location of the CSS style| Value of configuration parameter

128

Project LXR The LXR User's Manual Language en-UK
Software release 1.2 8 Customising page architecture Document revision |.4
Marker Provides Replaced by
sheet 'stylesheet’
SLXRversion LXR release version id LXR version as set by script set-Ixr-
version.sh

Example:

<html>

<head>

</head>
<body>
<hr>

</body>
</html>

<meta http-equiv="content-type" content="text/html; charset=iso-8859-1">
<title>Error - no tree</title>
<link href="$stylesheet" rel="stylesheet" type="text/css">

<h1 class="main">Unrecoverable error</hi1>
<h2>No known root for source-tree $target</h2>

<p>Page automatically generated by the $LXRversion LXR engine</p>

129

Project LXR The LXR User's Manual Language en-UK

Software release |.2 9 Customising LXR appearance Document revision |.4

Customising LXR appearance

CSS styles allow for a precise control of the layout and display appearance
of LXR output.
Composing a style sheet requires CSS knowledge.
When LXR outputs its HTML, it cares to tag important data with a class=".." attribute. Style
decoration can then be applied with CSS style sheet 'stylesheet'.

This section lists all CSS classes with their intended usage. A suggested style is given in the
parentheses.

This list is not authoritative. You can define additional attributes in your custom templates. Simply,
try to avoid conflict with the built-in attribute usages.

9.1. Ubiquitous classes

These so-called classes may be issued by any script under various circumstances. They are not tied
to a specific context.

compact

Used to tag <p> or <div> when expecting a very compact layout (reduce margins and paddings).
error

Used to tag a message, usually a <p>, after an error condition (centred, red).

warning
fatal

When debugging enabled, used on an <h4> to pass debugging output.

9.2. Header and footer

header
footer

Used to tag a <table> as having this meaning (centred).

leftmost
rightmost

Used to tag the outer <td> cells of the <table> (respectively left and right aligned).

9.2.a. Titling

treelink

Used to tag a <td> cell containing links to other trees; marks an <a> tag as targeting another

130

Project LXR The LXR User's Manual Language en-UK

Software release |.2 9 Customising LXR appearance Document revision |.4

tree.
tree-sel

Used to tag a element containing the name of the currently displayed tree.
main
Used to tag an <h1> element containing the main title of the tree from marker $caption (bigger

sized bold characters).
banner

Used to tag a <td> element containing the path to the file or directory from markers $banner
and $target (centred, moderate sized colour characters).

9.2.b. Mode buttons
modes

Used to tag an <a> or <form> element containing a link to another mode, i.e. a different script.
modes-sel

Used to tag a or <form> element containing the name of the current mode.
modes-dis

Used to tag a or <form> element containing the name of a disabled mode.

An example of disabled mode is General search (free-text search) when no search text engine is
present or when tree is stored in a VCS.

9.2.c. Variable buttons
varlink

Used to tag an <a> or <option> element setting the variable to a different value than the current
one.
var-sel

Used to tag a or <option> element containing the current variable value.

9.3. Directory listing

dirdesc

Used to tag a <div> or <td> cell containing tentative descriptive text.
dircontent

Used to tag the <table> containing the directory listing.
dirheader

Used on the <tr> header line of the previous table (centred).

dirrowl
dirrow?2

131

Project LXR The LXR User's Manual Language en-UK

Software release |.2 9 Customising LXR appearance Document revision |.4

Used alternatively (every 3 lines) on the <tr> content line of the table (may provide different
background colours to subdivide the table in small blocks where the eye can easily follow a line
of information).

diricon

dirname

dirsize

dirtime

dirindex

dirindexinvalid

dirdesc

Used in the <td> row cells for the icon, the name of the file, its size, modification time,
indexation time and description.

dirfile

dirfolder
Used in the <a> link to a file or folder.

desctext

Used to tag a <div> containing descriptive text extracted from README. * files.

For README or README.txt, the text itself is contained in a <p class="1xrdesc"> element
to distinguish it from the “See also” plain <p> paragraph.

For README.html, the element may include a element. If it
does not, it is also tagged 1xrlongdesc.

Note:

Descriptive text for files is contained in plain <p> elements, without class attribute. This
may change in a future version.

9.4. Source text listing

filecontent

The text of the source file is edited inside a <pre class="filecontent"> .. </pre> block
(fixed-pitch font).

annot-cur
annoto
annotl

Used to mark the .. block for the line annotation (revision number
and author). annot-cur highlights the latest revision. annot® and annotl are used
alternatively for other revisions.

fline

Used for the source line number in an <a> tag, creating an anchor only, not a hyperlink.
fid

Used to mark the .. block containing a known identifier.

132

Project LXR The LXR User's Manual Language en-UK

Software release |.2 9 Customising LXR appearance Document revision |.4

comment
include
reserved
string

Used to mark the .. block containing the corresponding category
fragment of text.
offshore

Used for the <a> links to http:, mailto:, ... addresses found in comments.

9.5. Difference markup

See 9.4 Source text listing for the attributes within the source text.
diff-fref

Used in the <a> links to the compared files in the header (colour, bold, moderate size).
diff-mark

Used in the block containing the difference markers (bold, foreground and background
colours).

diff-left
diff-both
diff-right

Used in blocks to delimit the file portions which differ: in the right, left or both files
(background colours).

9.6. Identifier lookup

identident

Used in a block to highlight the looked-up identifier name.
identdef
identref

Used to tag the <table> for definition and use locations respectively.
identtype

Used to tag <th> and <td> cells containing the symbol type in the results table.
identrel

Used to tag <th> and <td> cells containing the symbol extra information in the results table.
identfile

Used to tag <th> and <td> cells containing the file name and <a> links to the file in the results
table.
identline

133

Project LXR The LXR User's Manual Language en-UK

Software release |.2 9 Customising LXR appearance Document revision |.4

Used to tag <th> and <td> cells containing the file line number and <a> links to the line in the
results table.

identapprox

Extra style to augment identline when matching against a case-folded version of the identifier
(i.e. they are case-insensitive).

identinvalid

Extra style to augment identfile and identline when file has been modified since last
indexation.

9.7. Free-text search

searchident

Used in a block to highlight the looked-up text.
searchref

Used to tag the <table> for the location results.

searchfile
searchfilevoid

Used to tag <th> and <td> cells containing the file name and <a> links to the file in the results
table.
searchline

Used to tag <th> and <td> cells containing the file line number and <a> link to the line in the
results table.

searchinvalid

Extra style to augment $searchfile, $searchfilevoid and $searchline when file has
been modified since last indexation.

searchtext
Used to tag <td> cells containing the line text of a hit.
Used to tag the <pre> element, inside the previous cell, containing the hit line text.
Used to tag a block within the line surrounding the searched text.

Note:
Due to discrepancy in regular expression syntax between Perl and free-text search engines, it
is not guaranteed that every hit can be -highlighted. However, all occurrences are
exhaustively accounted for in the hits.

9.8. Configuration display

conf_title

134

Project LXR

Software release |.2

The LXR User's Manual
9 Customising LXR appearance

Used to tag a <table> or <div> containing a title for the page.

conf_section

Used to tag a <table> describing the parameter group.

conf_prev
conf_next

Language en-UK

Document revision |.4

Used to tag cells in this table containing hyperlinks to previous or next parameter groups.

config

Used to tag a <table> showing the parameters.

conf_parm

Used to tag the cell for the parameter name.

conf_type

Used to tag the cell for the parameter type.

conf_val

Used to tag a value cell, whether tree-specific or global.

conf_force

Used to tag a parameter name not used in the tree-specific nor in the global group.

135

Project LXR The LXR User's Manual Language en-UK

Software release |.2 10 Using LXR with SCMs Document revision |.4

MUsing LXR with SCMs

Replacing a plain directory by a version control system repository is simply
a matter of adequate 1xr.conf configuration.
Initial configuration is done as usual through script configure-Ixr.pl (see 1.3.e Configuration for
VCS's).

10.1. Limitations

Since the source code management systems do not store source trees as plain files, not all LXR
features are available.

* No free-text search with Glimpse

* Very limited free-text search under CVS with Swish-e
* No versioning on directories with some VCS's.

* No display of graphic files

However, you have a drastic improvement on the size of the source tree since the differences
between one version and another are very efficiently stored.

10.2. CVS

Prefix cvs: designates a CVS repository. If it is stored in /path/to/cvs/repository and the
CVS module is called project then set

, 'sourceroot' => 'cvs:/path/to/cvs/repository/project’
, 'sourcerootname' => 'cvs:$v'

Change 'range' parameter so that it becomes a subroutine instead of the explicit version list.

'range' =>
sub { return
($files->allreleases($LXR::Common: :pathname)
, $files->allrevisions($LXR: :Common: :pathname)
)
}

You may eventually keep only the line allreleases since the individual file revision numbers are
not synchronised in a release.

You may also filter the versions returned to keep a smaller relevant number of these. Change the

136

Project LXR The LXR User's Manual Language en-UK

Software release |.2 10 Using LXR with SCMs Document revision |.4

first line of the subroutine to:

'range' =>
sub { return grep {/(some_pattern|head)/}
($files->allreleases($LXR::Common: :pathname)
, $files->allrevisions($LXR: :Common: :pathname)

)

Note:

some_pattern is a regular expression to match against the revision tags. Since revision tags are
arbitrary, there is no general rule. Check the naming convention for the project, e.g. by
running LXR unfiltered and displaying a file if you have no developer documentation. The
'version' variable line or menu will list all available versions for THIS file. This will give
you an idea on the release identifier structure.

Alternatively, genxref --allversions collects a cumulative list of all possible versions in
text file custom.d/CVS%encoded_virtroot unless option - -allversions=noauto is used. In
the file name, %encoded_virtroot is replaced by the value of parameter 'virtroot' with
any non alphanumeric character %-URL encoded to avoid potential conflict with path
separators. The content of this file will help you design a relevant filter.

CAUTION!
Always keep head in your filter, otherwise you will not be able to list directories, causing
LXR to be totally useless!

You should also set the default version retrieved to a version that really does exist otherwise you will
receive errors when generating your index.

A good value for the default version is head.

'default' => 'head'

CAUTION!
You MUST provide a 'default' value because CVS does not manage directory versions.
The above function returns an empty list in the directory case; therefore, LXR cannot recover
its first value since it does not exist.

10.3. Git

Prefix git: designates a Git repository. If it is stored in /path/to/git/repository then set

, 'sourceroot' => 'git:/path/to/git/repository/.git'
, 'sourcerootname' => 'git:$v'

Change 'range' parameter so that it becomes a subroutine instead of the explicit version list. The
subroutine will collect all commit tags from the internal Git files:

'range' => sub

137

Project LXR

The LXR User's Manual Language en-UK

Software release |.2

Note:

10 Using LXR with SCMs Document revision |.4

my $git_dir = "/path/to/git/repository/.git/refs/tags";
opendir (DIR, $git_dir)

| | die "cannot opendir $git_dir: $!'";

my @files = grep { -f "$git_dir/$_" } readdir (DIR);
closedir DIR;

unshift (@files, "HEAD");

return sort @files;

HEAD is added to guarantee one version exists at least.

You may eventually consider the branch heads. To add them, modify the subroutine as follows:

'range' => sub

{

}

my $git_dir = "/path/to/git/repository/.git/refs/tags";
opendir (DIR, $git_dir)

| | die "cannot opendir $git_dir: $!'";

my @files = grep { -f "$git_dir/$_" } readdir (DIR);
closedir DIR;

$git_dir = "/path/to/git/repository/.git/refs/heads";
opendir (DIR, $git_dir)

|| die "cannot opendir $git_dir: $!'";

my @files = grep { -f "$git_dir/$_" } readdir (DIR);
closedir DIR;

unshift (@files, "HEAD");

return sort @files;

You should also set the default version retrieved to a version that really does exist otherwise you will
receive errors when generating your index.

A good value for the default version is HEAD.

'default' => 'HEAD'

CAUTION!

Version names are case-sensitive.

You can limit the amount of service information in file display with two parameters:

'sourceparams' =>

{

by

'git_annotations' => '1'
'git_blame' = '1'

'git_annotations' prints the revision tag (at least, some right-end characters) and
'git_blame' the revision author name. 'git_blame' equal to 1 automatically sets
'git_annotations' to L.

138

Project LXR The LXR User's Manual Language en-UK

Software release |.2 10 Using LXR with SCMs Document revision |.4

10.4. Subversion

Prefix svn: designates a Subversion repository. If it is stored in /path/to/svn/repository then

set

'sourceroot' => 'svn:/path/to/svn/repository’
'sourcerootname' => 'svn:$v'

l4

4

Change 'range' parameter so that it becomes a subroutine instead of the explicit version list. The
subroutine will collect all releases from trunk, branches and tags lines from the database:

'range' =>
sub { return grep {defined}
($files->allreleases($LXR: :Common: :pathname)

, $files->allbranches($LXR: :Common: :pathname)
, $files->alltags ($LXR: :Common: :pathname)

)
b

To decrease the number of displayed versions, you can remove some of the allxxx lines provided
you leave at least one.

Note:
allreleases automatically adds head to provide a release number independent access to

the latest revision of a file. If you remove allreleases, do not forget to list head.

A good value for the default version is head.

'default' => 'head'

CAUTION!
Version names are case-sensitive.

You can limit the amount of service information in file display with two parameters:

'sourceparams' =>
{ 'svn_annotations' => '1'
'svn_blame' = '1'

l4

}

'svn_annotations' prints the revision tag and 'svn_blame' the revision author name.
'git_blame' equal to 1 automatically sets 'svn_annotations' to I.

10.5. Mercurial

IMPORTANT NOTICE!
To use a Mercurial repository, you need to configure Ixr.conf as required by this storage
engine and also to provide some extension commands to Mercurial. The configurator takes

care of both issues, but if you prefer to build manually your own configuration, do not forget

139

Project LXR The LXR User's Manual Language en-UK

Software release |.2 10 Using LXR with SCMs Document revision |.4

Mercurial customisation.
Prefix hg: designates a Mercurial repository. If it is stored in /path/to/hg/repository then set

'sourceroot' => 'hg:/path/to/hg/repository'
'sourcerootname' => 'hg:$v'

l4

4

Change 'range' parameter so that it becomes a subroutine instead of the explicit version list. The
subroutine will collect all releases from branches and tags lines from the database:

'range' =>
sub { return
($files->allbranches($LXR: :Common: :pathname)
, $files->alltags ($LXR: :Common: :pathname)

)
b

To decrease the number of displayed versions, you can remove some of the allxxx lines provided
you leave at least one.

Note:
alltagss automatically adds tip to provide a release number independent access to the

latest revision of a file. If you remove alltags, do not forget to list tip.

A good value for the default version is tip.
'default' => 'tip'

CAUTION!
Version names are case-sensitive.

You can limit the amount of service information in file display with two parameters:

'sourceparams' =>
{ 'hg_annotations' => '1'
'"hg_blame' = '1'

4

¥
"hg_annotations' prints the changeset number and 'hg_blame' the change author name.
"hg_blame' equal to 1 automatically sets 'hg_annotations' to 1.
Since the built-in commands in Mercurial do not provide the required information to LXR, it is
necessary to extend Mercurial capabilities. templates/hg-Ixr-ext.py contains two new commands

necessary for LXR operation. This file must be copied into configuration directory custom.d/ since
Python requires it to be located in a writeable directory (because it will be compiled).

File hg.rc acts as an enabling trigger for the commands. It must also be copied into custom.d/ where
it is customised to reflect your configuration. Two parameters must be adjusted: the file location of

the new commands and a security attribute.
1. Command location

With your favourite text editor, change line

140

Project LXR

The LXR User's Manual Language en-UK

Software release 1.2 10 Using LXR with SCMs Document revision |.4

Ixr-ext = %LXRroot%/%LXRconfdir%/hg-1xr-ext.py

where LXRroot is your LXR root directory and LXRconfdir is custom.d. With the examples
from 1.2 Create LXR installation directory, this line becomes one of the following:

1xr-ext
1xr-ext

/home/myself/1xr/custom.d/hg-1xr-ext.py
/usr/local/share/1xr/custom.d/hg-1xr-ext.py

2. Command security attribute

Mercurial exhibit a defensive behaviour to prevent security breach. New commands are allowed
only if the user executing the command and the command file owner match, unless the command
file is declared trustworthy. With your favourite text editor, change line

users

%LXRconfUser%

to the name of custom.d/ owner (who is usually the same as the file). This is easy if you installed
LXR in your home directory but check if you installed in /usr/local/share. This leads to one of
the following alternatives:

users
users

myself
root # (or something else)

10.6. BitKeeper

You are on your own. The present maintainer has not checked this SCM.

BitKeeper is a proprietary software. The LXR interface is frozen in its 2005 state more or less.

The prefix for 'sourceroot' is bk:.

141

Alphabetical Index

AliasMatch.........covvieiiiiiiniiiiiiiiceeees 97, 100
Apache MPM.........coooiiiiiiiiiiecceeeee
Prefork.. .o 29
WOTKET ..o 29
Configuration parameters...........ceceeerruveeennneen.
Bttt e aeaaaaes 81
alternate_stylesheet...........ccceevvuvveeernnnnne. 69
DASEULL.....oieiiiiiieee e 75, 107
baseur]_aliases.......eeeeeeeeeneeeiieeeeieeeeeenn.. 76
CAPLION....eeeiiieeieeeite e 76, 108
CVSPAth.cceiiiiiiiiiee e 67
CVSWEDPOSHIIX...eeeviiiiiiiiiiieeiiceeeen 77
CVSWEDPIETIX. oo oiiieeiieciieciee e 77
dbname...........ccooviiniiiiiiinien 85
dDPass.....cceeriiiiiiieeen 85
dbPrefiX...ooeerieniieiieieeeceee 85
ADUSET.....eeiiiiiiiiiececceen 85
default.......ccooveenneenne. 79, 137, 138, 139, 140
defaultiCon......cccvvveeeeriiee e, 71
diffleftwidth........cccoiiiiiiii, 69
dITICON. .t 71
€CtaZSDIN...cciiiiiiiieiiieeece e 67
eCtagsCoNt......coouiiiiiiiiieee e 67
ENCOAING...c.veiiiriiiiiiiieieeeiereeeeeeeeee 69
FIELYPE. .o 72
filetypecont.........ccocoveeriieinniiiiiiiiiieeee, 71
FAterdirsS....oooveenieeieeieeen 82
filterfiles. ... coovenieniiiieeee, 83
ENEriCCONT.......eiviiiiiiiiiieeeicceeeeeen 72
limpsebin........coocveeviiriiiiienieeeee 67
ElimMPSedir.......ccccveevvieeiiiieeeeeiieeee e 86
glimpsedirbase..........ceeevuvieeeeiiniiiieeeennnns 67
glimpSeINdeX.......coovuveeviiieniieeiiniiiieeeene 67
graphicfile.........ccooeiiiiiiniiine, 70
GraPhICICON. ..c.uvieeiieiiieeiee e 71
host_names.........eeeeeeeeeveveinnnnnns 68, 107, 114
htmlconfig.......cceevvveeviiieniieeeeeee, 68, 127
htmldir......oooieiiiiee, 68, 115
htmlfatal........cccccooiiiiiiniiii, 68, 128
htmlhead..........coceeviiniiiie. 26, 68, 106
htmlident......coooeeveeiiieeeeeeeeeeeieeeeee 68, 118
htmlsearch.......ccccooeveeeveeiieeeeinns 26, 68, 122
htmltail.......coooooeiienii e, 68, 115
1confolder.........oocvveeeeieiiiiiieeeeeeeeeee, 71
ICOMS..eeeiiieeiieeeeiee ettt 71

1ENOTEAITS....coveiriieiiieieeiceeeee e 27, 81
ignorefiles.......ccocoevveevienicnniennennns 27,70, 83
INCPIEIIX it 84
INEETPIELETS. ot 73
INAPS. ..eeevrieiiree ettt e e 84
NAMEC....ceeeeieeieiiieeeeeeeeeeereeeeerinns 79, 111, 112
JORT TS 118 1610) 1 FO SRR 71

range....79, 80, 111, 112, 136, 137, 138, 139,
140

ShortCcaption.........cceevveeriiieeniieeniiccnieeeene 76
showconfighead............ccocoveeviiiiniiennnn. 110
SOUICEACCESS..eeeeeeeereurrrrreeeeeeeeneerrrrrnnnnnnnnes 78
SOUTCEPATAIMNS. ...evvveeeernerreeeenirreeesnireeeeennnns 78
sourceroot....... 76, 77,78, 136, 137, 139, 140
sourcerootname...78, 107, 136, 137, 139, 140
stylesheet........ccoccueevvueennne 69, 107, 129, 130
SWISHDIN....ceeviiiiiiiiiiiiieec e 67
SWISHAIT...eevveiiiiiiiiieeeee e, 86
swishdirbase.........ccccoeeeeeeeiiieiiiiiiieieeeeee, 67
EMPAIT. .o 67
trEEEXITACT......ceveeurrrreeeeeeeeeeeiiirreeeeeeeeeeeernnns 74
Vet e et ee e e e e e e e e a e e e e eeeeearrrrara 81
variables..........cooovvueeeeienenn. 79, 111, 112, 123
VITETOO . ceeeeeeeeeee e eeeennn 75, 107, 114
WHeN. .ot 79
CSS CLaSSES.uuvveiieeeeecciieeeeeee e,
ANNOL-CUL....eeeeeeeeieeeeeeeeeeeeeeeeeriieeeeeeeennns 132
2101000 1L 0SSR PP 132
P21 01000 1 (PP 132
banner........ccccoeeeiiiiiii 131
[10)1111815) 1 | SRR 133
COMPACL....eeeererieeeieeerieeerireeniareeeeenaneeeas 130
CONE _TOTCE..eeeeeeeeeeeeeeeeeeeeeeeeee e, 135
CONT NEXE..iiieeeeeieee e 135
conf_parm.........cccceeeeveeviiieiniiiieeeeniieeen, 135
CONE_PIreV..ccuviiiiiieiiieeeeieeeeeeeeen 135
CONE _SECHION. . .ceeeiieeeeeeeeeeeeeeeeeeeeeeeeeannn. 135
CONE _tItIE.eeeeeneeee e, 134
CONE_EYPE..reriiriierieiiiiiececeeeee e 135
conf val.......ooovuuiiieiiiiiiiee 135
CONTIZ i 135
AESCLEXT...coiieeirieeeeeeeeeeeerreeeeeeeeeeerreens 132
diff-bOth.....eevveeeiiiiiiiiieee e, 133
Aiff-fref.. e 133
Aiff-left. e 133
diff-mark.......ccoovvveeiiiiiiiiiiiiiieee 133

diff-right. ..o,
AITCONTENL. et

AIrINAEX...oiiiiiiiiieeeee e 116,
dirindexinvalid.........cccoeeveveivneeennnnn.. 116,

1dENLAPPIOXK..eeruerieiirieeiieeriieeriee e
identdef........ooooeiieiiiiiciceeeeee e
1161 115 51 (R
1dentident.......cccuvveeeiieeiiiiiiiiieeeeeee e
identinvalid.........cccoeeeiiiiiiiiiinnnnennnnn, 121,
1dentline.........ooovvvvveveeeiiiiiiiiiiiiiiieeeeeeeee,
116 1S3 111 1<)
1dentrel.....cvvveeeiieeiee e
1AENLLYPE...veeeieieeiiieeiieeee e
INCIUAE.....evvieeiiieiiieeeee e
LeftmMOS . eeeeeeeeeeeeerreeeee e
IXTARSC. e
Ixrlongdesc........eeevveeiniecinieiiiee. 117,
IXrShOrtdesc.. .. vevueneeeieeeeeeeieeeee, 117,

TIZHEMOSE. et
searchfile.......cooovvevvvuoeeiiiieniiiieneen, 126,
searchfilevoid...........ccooeevvveiiiinnnnn. 126,
searchident............ccccoevvvvieeieiiiiiiiiieeeeeee,
searchinvalid............ccooevvvueveeereeennn. 126,
searchline..........ccooceeeeeveevveeviriiiiiiicceeennn,
SEArChIef..........covvviiieiiiieieee

132
132

SEATCHLEX L. .vvvvveeieeeeeiiiiieeieee e 134
(] (11 <6 IO RPN 112
SELIIE oottt 133
trEE-S€Luuvrriiiiiiiieiiieeeee e 131
treelinK....coovvvveeeeeieeieeceeeeeeeeeeeeeeee 130
VAL-SEL. et 112, 131
VArlINK oo 112, 131
WATNINEZ. .eeeeeiiieeeiieenirteeeeeriieeeeeeeiieeeeens 130
CLAZS ettt eieee et et ettt e et e et e e e innaeee s
MINIMUIM VETSION...evvvvviieeeeeiieiieeeeeeeeeeeeennnn 4
DocumentRoot....................... 59, 70, 75,79, 97
free-text search.........occovvveeeieiieiniiiiiiieeeeeeeee, 6
Generic parser parameters.........cceeveeeeeeruveeeennn.
F2170) 10 VOUURU TR PR 93
COMIMCTIL. ... enennns 92
QITECHIVE. ..vvveeeeeeeieeeeeeeeieeesasssaaaes 94
eclangnamemapping........cccccceeeeeveeennneeen. 89
ECLAZSOPLS. cuvveeenereerireeeireeeieeenreeereee e 89
F1agS.ee e 91
global.......oooiiiiiii 94
1dentdef........ooooviiiiiie 90
INCIUAE.ccovvieeeeeieeeeiieeeee e 92,94
langid.......coooueeiiiiiiiiee e 90
1angmap.......cceeeviieeiiieeieeee e 89
POSE ittt 94
PIC.iiieiiee ettt 94
TESEIVEd. .. 91
<] 0121 £21(0) SRR 94
SPEC et euiitteeeeittee e ettt e e et e e st e st e e e 91
SEIIIZ ottt 93
tYPEMAP....cooviiiiiiiiiiiecee e 96, 120
ENEriC.CONF.....cooiiiiiiiiiiiiiiee e 87
ENETICCONT......iiiiiiiiiiiiiiieeieee e 87
ENXTEL...uiiiiiiiiiiice e 27,49
==ACCEPL. ettt 49
——@lIUTIS. ... 49
——allVETISIONS.uvvvreeeeeeeeeiiiireeeeeeeeeeeeiians 49
--checkonly.........ccccovvvviniennnnnnn. 8, 27,49, 50
1151 USSR 49
--reindexall.........ovvvvvieiiiiieiiiiiiinn. 49, 51
11 SO 49
—=VEISIONT...cciieeeeieeiirrreeeeeeeeeeeeerareeeeeeeernenns 49
GlMPSE....vveeiiieiieeiieeeeeeeeee e 6, 136
Global parameters...........ccoceeeriieiniieeinieeennnes 66
HTML-absolute path..........ccceeeeennnnae 59, 71
HTML-relative path........ccccoooviiiiiienniennen. 59
htmlfatal..........ccoovevivieiieiieeiiieeeeeeeee, 100
LXR root directory............. 7,28, 58, 63,72, 74

IXr.conf......oooovviiiiiiiiiiiiiii 26, 59, 63, 104
IXT.CSSuuunnnnnnnneeieeeeeei e e e e e eaannns 59
100121 0 (< U
DIOCK. ..o 105
SIMPIE...eieeiiieeiieeeiieeeeeeeee e 105
OS absolute path........cccoeeceriiiniiiiiiiinee. 59
Parser f1ags.......coooveeviiiiniiiiiie
CaSe_INSENSILIVE.....coeevrrreeeeeeeeeerinrrrrerrrranns 91
Perl...eeeeeeeieieeeeee e
MINTMUIM VETSION. ...uuueeneeeiiiiineeeens 4,95
Perl interpreter.......covveveveeeeeccvieeeeeeeiiieenen 4
Prefork. .. 29
relational database............ccccveeeeeeeeeeiiiiiiiinnnnnn. 5
J40) 0101 1SN b SRR 34
SCIIPLS.ceiieeeiie ettt et aaeee e
configure-IXr.pl.........coooveeniiennnnnn 9, 15, 60
GENXTEL . .eiiiiiiiiii 27
kernel-vars-grab.sh..........cccccoeeiiiiiennnnnnen. 60
lighttpd-init.........cccceevieeiiienieniieiieen, 31, 60
recreatedb.Sh.........coovvvvvvviiiiiiiiiiiiiiiinn 60
Set-1Xr-version.sh.......cccccceeevevvenvvveeeeennnnnns 60
security enhancedccccoveeeeeiiniiiiiennnnns 28
Substitution markers.........cccccceeeeeeeeiieiieeeeeeennnn..
$advancedchecked..........ccccoovvveenninnnnnnnn. 123
SAttICIINK. ..o 108
$banner........coooveviiiiiiii e, 108
$baseurl.......ccoovviiiiiiiii, 107
BDYLES. .. 116
$CaAPLON....cvieiiiieiiceeeee e 108
$casesensitivechecked...........ccccoeeuveneeee. 123
$checked.....oovvviveiiiiieieieeceeeeeee 119
$conf_parm{}.....cccceviiniiiiiieiee 127
Sconffile......oooveveveieiiiiiiieceeee 127
SAELS{ J oo 120
$description{ }......c.cccevrevrreviiirennen. 115, 116
BAESCLEX L. it 116
$AeVINfO] }.veieeieeiieeeeee e 114
SAIrClaSS...eeieevieeceiieeeeeeeeeee e 116
$dirindexclass........cooovvevvviiiiiieeiiiiiieeenn. 116
$dotdoturl.........ooouvvieeiiiiiiiieeeeeee 114
$encoding.......ccoeevveeeeereneieee e 107
N § 1 (SRR 120, 125
SEIENILS. .o, 120
SILEONCE. .o, 120, 125
$fAleref......cooovviiiiiiieeeeeeee 120, 125
SELES] J e 115
$filesize{ }..ooeiiniiieeeeeeeee 116
$filetext_escaped.......c.ccevrrevrereerreennennne. 123

N (0) (S SRRSO URRURRR 109

$IODAL.... i, 127
Ficonlink.....ccoeveivviiiiiiiieccceeeees 116
$identifier.......ccocoevveeiieiieeeeeeeeeeeee, 119
$identifier_escaped.........ccceovevieeienieennns 119
PINAEXtIME.....oeeeeieieeieeeeeeeeeeeeeeeeee 116
$indexwarning{ }.......ccoccevveverierieniennnnnn 121
FitemClass.oeveveeeeiieieeeeeeeeeeee 112
Fitemsel....oooveiiiiiiiee e 112
SHNE. .o, 120, 125
BINES. .o 121
SLXRVErSION.....cevveeeeiiiiieieeeeeeeenn. 108, 129
$maxhits_message........cceevvveerereenereennnenn 125
$modeaction.........cccoeevviieeiiiiiiiieieee, 109
PMOAECSS....evviiiiiieceieceeceee e 110
$modelink.......ccocevvvviviiiiiiieeieeeee, 109
$modename........cccoeeuveiieiiiiiieiiiieee. 110
$modeofT......ccovvviiiiiiiiee 110
$modes{ . .uviiiiiiiie e 109
$modpath........cceeeveririeiiieiee e 114
SMOdEME...coeeeeeeeeeeeeeeeeeeen 115, 116
$moduleid........ccveeveiiiiiieeieeeeee 114
$namelink.........ooovvevvviiiiiiieiieeeeee, 116
N 115 SHTT TR 127
FOCCUTS. ..o 120
SPparM...ceeeeieieieeeee e 127
$parmgroupnr..........cceceeevervieierieieenne 127
$pathname..........ccoccveeeevrievieiieeiieeieeene 108
SPreVIOUS. ...eovvieereveeieeeeeeee e 127
$refinvalid.......cccovevvviviieiiiiiiieeeeee, 121
N (=1 £F (SRR 120
Brel.. e 120
$resultcount..........ooeveeeeeeeevieeiieeeieeee, 125
BresultS{ } ..o 125
$searchinvalid..........ccooovvevviiiiieiiiieeenen, 126
$searchteXt........cceevveeeeveeeieerieeieeeieeeenans 123
$searchtext_escaped.........ccceevevrrereereeenen. 123
$stylesheet......ccvevvrerveeeiieeiiecien, 107, 128
Btarget. . vicreeieieeieeeee e 74, 128
FEALTLE. .. 126
BEEXL e 125
Sthisurl...c..ooovviiieiiiieececeeeee e 114
N 18 (<SRRI 107
$treelinK......oovveveeeiiiiieeeeeeee e 109
BrEes{ }onreoieiieieeeeee e 109
BEYPC. e 120, 127
Surlargs{}.....ccocevieveniiienieeen. 110, 112, 113
Surlval......cooooviiiiiiii 114

BUSES{ } i 120
BVal.oi 127
Bvalue....cccoovieiiiiie 123
$varbtnaction..........ccceeeevveiiiiiniiiieie. 111
$variable.......cccoooeviiiiiiiii 123
$variables........ccoeevviiiiiiiiiieeeee 118
$variables{ }.......ccoovevviiiiiiiiiiie, 111, 123
BVALTd. e 110, 112
$varlinks{ }..ccooovveeieeee e 111
$varmenu{ J....cooovveiiiiieeeeeeee 112
Svarname......ooeeeeeeeeeeeeeeeeeeeeeeeeeen. 111, 112
$varvalue.........oooovvveiiiiiiiiiiies 111, 112
SVIFrOOt. .o 127
SWISHC.eeeee e 6, 136

tEMPIALES....eveeeirieeiiee et 104
Tree parameters.........cooceeeevviiiieeeinniiieneeenns 66
A2V g T:15) (ORI 79
VirtualHOSE.....vvveeieiceiieiiieeeeeeeeeeeeeeee 97
WED SEIVET ...cevitteeeeeeeeeeeeeeeeeeeeeeeeeeneeeeennns 5,28
WOTKET....ccooeeeeeeeeeeeeeeeeeeeeeeee e, 29
_adVaANCEd.. .o, 123
_CASESENSILIVE....cceeeurrrrreeeeeeeeiiiirrreeeeeeeeeennns 123
_confall.......oooeiiiiiiiiiei, 127
_AleStrING. .o 123
S U 118
_identdefonly.........cocceeviiniiiiiiniiiie 118
_TEMEIMNDET.....vveiieieeeieiiiiceeeeeeeeeeeeeeeeeennn, 118

SETINE. ot eeiteeeeiiieeeteeerteeeireeeareeeeabeeeeeeeeenes 123

GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

<http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense
of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either
commercially or non commercially. Secondarily, this License preserves for the author and publisher a way to get credit
for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the
same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free
documentation: a free program should come with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it
is published as a printed book. We recommend this License principally for works whose purpose is instruction or
reference.

I. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder
saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license,
unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such
manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy,
modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied
verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the
relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and
contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant
Sections, in the notice that says that the Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the
notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a
Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is
available to the general public, that is suitable for revising the document straightforwardly with generic text editors or
(for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and
that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been

arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not
Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX
input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML,
PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF
and JPG.

Opagque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold,

legibly, the material this License requires to appear in the title page. For works in formats which do not have any title

page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the
beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ
in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name
mentioned below, such as "Acknowledgements", "Dedications"”, "Endorsements”, or "History".) To "Preserve the
Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this
definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the
Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or non commercially, provided that this
License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all
copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to
obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the
conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more
than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry,
clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover.
Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these
conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a
machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-
network location from which the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must
take reasonably prudent steps, when you begin distribution of Opagque copies in quantity, to ensure that this Transparent
copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opagque
copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large
number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above,
provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of
the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of

previous versions (which should, if there were any, be listed in the History section of the Document). You may

use the same title as a previous version if the original publisher of that version gives permission.

List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications

in the Modified Version, together with at least five of the principal authors of the Document (all of its principal

authors, if it has fewer than five), unless they release you from this requirement.

State on the Title Page the name of the publisher of the Modified Version, as the publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

Include, immediately after the copyright notices, a license notice giving the public permission to use the

Modified Version under the terms of this License, in the form shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the

Document's license notice.

H. Include an unaltered copy of this License.

Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new

authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled

"History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on

its Title Page, then add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the
Document, and likewise the network locations given in the Document for previous versions it was based on.
These may be placed in the "History" section. You may omit a network location for a work that was published at
least four years before the Document itself, or if the original publisher of the version it refers to gives permission.

mEoO w

a

—

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in
the section all the substance and tone of each of the contributor acknowledgements and/or dedications given
therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or

the equivalent are not considered part of the section titles.
M. Delete any section Entitled "Endorsements”. Such a section may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled "Endorsements” or to conflict in title with any Invariant Section.
0. Preserve any Warranty Disclaimers.
If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain
no material copied from the Document, you may at your option designate some or all of these sections as invariant. To
do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled "Endorsements”, provided it contains nothing but endorsements of your Modified
Version by various parties--for example, statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text,
to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-
Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a
cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on
behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher
that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity
for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4
above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the
original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and
that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be
replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the
title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher
of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one
section Entitled "History'; likewise combine any sections Entitled "Acknowledgements"”, and any sections Entitled
"Dedications". You must delete all sections Entitled "Endorsements’.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace
the individual copies of this License in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided
you insert a copy of this License into the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a
volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is
not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less
than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of
section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but
you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and the original version of this License
or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications"”, or "History", the requirement (section 4)
to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your rights under

this License.

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if
the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you
of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for
any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or
rights from you under this License. If your rights have been terminated and not permanently reinstated, receipt of a copy
of some or all of the same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to
time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems
or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular
numbered version of this License "or any later version" applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been published (not as a draft) by the Free
Software Foundation. If the Document does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation. If the Document specifies that a proxy can decide
which future versions of this License can be used, that proxy's public statement of acceptance of a version permanently
authorizes you to choose that version for the Document.

1. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes
copyrightable works and also provides prominent facilities for anybody to edit those works. A public wiki that anybody
can edit is an example of such a server. A "Massive Multiauthor Collaboration" (or "MMC") contained in the site means
any set of copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons
Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California, as well as
future copyleft versions of that license published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in part, as part of another Document.

An MMC is "eligible for relicensing" if it is licensed under this License, and if all works that were first published under
this License somewhere other than this MMC, and subsequently incorporated in whole or in part into the MMC, (1) had
no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at any
time before August 1, 2009, provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the following
copyright and license notices just after the title page:

Copyright (©) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with... Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the
Back-Cover Texts being LIST.
If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives
to suit the situation.

If your document contains non trivial examples of program code, we recommend releasing these examples in parallel
under your choice of free software license, such as the GNU General Public License, to permit their use in free
software.

	0 Foreword
	0.1.a. What is LXR?
	0.1.b. What is the technology under the hood?
	0.1.c. How to use it?
	0.1.d. Getting help

	1 Installing LXR
	1.1. What is needed?
	1.2. Create LXR installation directory
	1.3. Configure your installation
	1.3.a. Simple configuration
	1.3.b. Multiple-trees configuration
	1.3.c. Adding a new tree to a previous configuration
	1.3.d. Configuration for Linux kernel
	1.3.e. Configuration for VCS's
	1.3.e.1. CVS
	1.3.e.2. GIT
	1.3.e.3. Subversion
	1.3.e.4. Mercurial
	1.3.e.5. BitKeeper

	1.3.f. Advanced use of configurator

	1.4. Create a database
	1.4.a. MySQL
	1.4.b. PostgreSQL
	1.4.c. SQLite
	1.4.d. Oracle

	1.5. Edit the LXR configuration file
	1.5.a. Global configuration section, HTML subsection
	1.5.b. Global configuration section, file management subsection
	1.5.c. Tree configuration section, version selection subsection
	1.5.d. Tree configuration section, subdirectory subsection

	1.6. Copy configuration
	1.7. Generate index
	1.8. Set up the web server
	1.8.a. Apache server
	1.8.a.1. Apache 1.x specific
	1.8.a.2. Apache 2.x specific

	1.8.b. Lighttpd server
	1.8.c. Other web servers

	1.9. Run a test
	1.10. Site-specific customisation
	1.11. Troubleshooting
	1.12. Note on security

	2 Using LXR
	2.1. Launching LXR
	2.2. General aspect of LXR pages
	2.3. Browsing the source tree: source
	2.3.a. Listing directories
	2.3.b. Listing files

	2.4. Comparing two source files: diff
	2.5. Looking up an identifier: ident
	2.6. Free-text search: search
	2.6.a. Glimpse engine
	2.6.b. Swish‑e engine

	2.7. LXR in multiple trees context
	2.8. Checking configuration: showconfig

	3 Indexing the source tree
	3.1. What is indexation?
	3.2. How long does it take?
	3.3. Genxref parameters
	3.4. Last petrol station before the desert
	3.5. Running the indexation
	3.6. Troubleshooting
	3.7. Optimising resources usage
	3.7.a. File revision vs. file versions
	3.7.b. Processing time
	3.7.b.1. Purging the database
	3.7.b.2. Changing database engine

	3.7.c. Database size

	4 Configuring LXR
	4.1. Understanding file references in LXR
	4.1.a. LXR is mainly a set of scripts written in Perl
	4.1.b. LXR uses auxiliary tools or accesses non-specific files
	4.1.c. LXR emits HTML code

	4.2. Configuration files
	4.3. Configuration scripts
	4.4. Multiple-trees context
	4.5. Reloading LXR after system upgrade

	5 Master configuration file lxr.conf
	5.1. Master configuration file syntax
	5.2. Rationale of parameter grouping
	5.3. Sections in provided lxr.conf template
	5.4. Global parameters
	5.4.a. Auxiliary tools
	5.4.b. Computer DNS names
	5.4.c. HTML parameters
	5.4.d. File management
	5.4.d.1. Content of file filetype.conf

	5.4.e. “Common factor”

	5.5. Tree parameters
	5.5.a. Server configuration
	5.5.b. Tree location
	5.5.b.1. Plain files
	5.5.b.2. CVS repository
	5.5.b.3. GIT repository
	5.5.b.4. Subversion repository
	5.5.b.5. Mercurial repository
	5.5.b.6. BitKeeper repository
	5.5.b.7. Optional initialisation parameters

	5.5.c. Other parameters
	5.5.d. Version selection
	5.5.e. Exclude directories (Subdirectory)
	5.5.f. Exclude files (Subdirectory)
	5.5.g. Include directories (Subdirectory)
	5.5.h. Auxiliary data storage

	6 Generic parser configuration file
	6.1. Parser configuration file syntax
	6.2. ectags parameters
	6.3. Language descriptions
	6.3.a. Language tagging
	6.3.b. Identifier detection
	6.3.c. Reserved keywords
	6.3.d. Languages attributes
	6.3.e. Source file fragment categories
	6.3.f. Describing include syntax
	6.3.g. Bridging ectags and LXR

	7 Web server configuration
	7.1. A note on the interaction between URLs and LXR configuration
	7.2. Apache
	7.2.a. LXR as the main site
	7.2.b. LXR as a sub-site
	7.2.c. LXR as an independent site
	7.2.d. Multiple trees operation

	7.3. Lighttpd
	7.3.a. Lighttpd as the main site
	7.3.b. Lighttpd as a sub-site
	7.3.c. Lighttpd as an independent site
	7.3.d. Multiple trees operation

	8 Customising page architecture
	8.1. Variable text in templates
	8.1.a. Simple markers
	8.1.b. Block markers

	8.2. Markers for headers
	8.2.a. <head> section
	8.2.b. <body> section
	8.2.b.1. Titling
	8.2.b.2. Navigating to other trees
	8.2.b.3. Switching between modes
	8.2.b.4. Setting variables
	8.2.b.5. Passing state to the next script
	8.2.b.6. Other markers

	8.3. Markers for footers
	8.4. Markers for directory listing
	8.4.a. Directory description
	8.4.b. File description

	8.5. Markers for file listing
	8.6. Markers for difference markup
	8.7. Markers for identifier search
	8.7.a. Query form
	8.7.b. Results area

	8.8. Markers for free-text search
	8.8.a. Query form
	8.8.b. Results area

	8.9. Markers for configuration display
	8.10. Markers for custom error page

	9 Customising LXR appearance
	9.1. Ubiquitous classes
	9.2. Header and footer
	9.2.a. Titling
	9.2.b. Mode buttons
	9.2.c. Variable buttons

	9.3. Directory listing
	9.4. Source text listing
	9.5. Difference markup
	9.6. Identifier lookup
	9.7. Free-text search
	9.8. Configuration display

	10 Using LXR with SCMs
	10.1. Limitations
	10.2. CVS
	10.3. Git
	10.4. Subversion
	10.5. Mercurial
	10.6. BitKeeper

	Alphabetical Index

