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Abstract
Prediction of oligosaccharide 3D structure using genetic algorithm search methods
Abraham Nahmany and Francesco Strino
Supervisor: Per-Georg Nyholm
Examiner: Graham J.L. Kemp

In predicting oligosaccharide conformations, achieving a good trade-off between good

sampling of the conformational space and computation time is a major problem. For
example, sampling a pentasaccharide with eight torsion angles in 15° steps around
each rotatable bond results in over 100 thousand million conformations, and it would
take years to calculate the energy of these on a PC in order to find the conformation
with the lowest energy. Genetic algorithms (GAs) have been shown to achieve a good
trade-off in similar applications [1], so the aim of this project is to investigate whether
GAs can be used successfully in modeling oligosaccharides. In the present study, we
have implemented a system called GLYGAL that can perform conformational searches
using several different GA methods. The searches are performed in the torsion angle
conformational space and energy calculations are performed using the MM3 [2] force
field method. Tests on several oligosaccharide structures, such as the blood group
related oligosaccharide, the O-specific oligosaccharide of the Shigella dysenteriae type
2 and 4 were performed showing very good results. The results obtained using dif-
ferent GAs implemented in GLYGAL are compared with each other, and with results
obtained from experimental method such as NMR, as well as computational methods
such as MMS3 filtered systematic search.

Key words: Genetic algorithms, oligosaccharide, molecular mechanics, Shigella
dysenteriae, Schistosomiasis
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Chapter 1

Introduction

Saccharides linked to proteins and lipids cover a large fraction of the surface area of
most cells. Many of these saccharides are involved in specific recognition processes. To
understand their biological function it is necessary to have information about their 3D
structure. Oligosaccharide 3D structure is also important in vaccine development. For
example Schistosomiasis, also known as bilharzia, is a disease caused by the Schisto-
soma parasite. The life cycle of the parasite involves two hosts: fresh water snail and
human. It has been shown that the parasite has developed mechanisms to resist the
immune system of both hosts. In the various stages of development, oligosaccharides
at the surface of the parasite are suggested to be involved in these resistance processes
[3], and these oligosaccharides may be good targets for vaccine development.

NMR and X-Ray crystallography are two experimental techniques for determining
oligosaccharide 3D structures. Both of these techniques are expensive and time con-
suming. An alternative approach for oligosaccharide conformational analysis is to
search the space of possible conformations to find favorable low energy conformations.
One major problem using computational methods is achieving a good trade-off between
good sampling of the conformational space and computational time.

Genetic algorithms (GAs) have been shown to achieve a good trade-off in similar
applications, so the aim of this project is to investigate whether GAs can be used
successfully in modeling oligosaccharides. In the present study we have implemented
a system called GLYGAL that can perform conformational searches using several
different GA methods. The searches are performed in the torsion angle conformational
space and energy calculations are performed using the MM3 force field method.

The nature of the problem dealt with in this project provided us with several chal-
lenges. Challenges of a computing science nature which included software development
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and the analysis of GAs performance for oligosaccharide modeling, as well as of a bi-
ological /biochemical nature which dealt with the analysis of the results we got from
running the program on different structures.

In chapter 2 we give background information about basic carbohydrate biochemistry,
genetic algorithms overview and a short review on related work. In chapter 3 we give
the principles of modeling oligosaccharide using genetic algorithms and we describe the
program and algorithms that were developed in this project. In chapter 4 we present
the results achieved from running tests on several oligosaccharide structures using our
software. Here again we give results for the computer scientist and results that may
interest the biologist/chemist. We then present the conclusions we could draw after
analyzing the results, evaluation of the software created in the project and other tools
used. Some future work will also be presented in the last chapter. In appendix A we
present a prototypical genetic algorithm, appendix B illustrates the life cycle of the
Schistosomiasis disease and appendices C and D presents the user manual and the
maintenance manual for the GLYGAL software developed in this project.



Chapter 2

Background

Understanding the basics of carbohydrate conformation as well as knowing the ba-
sics of genetic algorithms is a prior requirement for understanding the work done in
this project. The last section of this chapter describes work related on saccharides
conformation analysis.

2.1 Genetic algorithms - an overview

Genetic Algorithms (GAs) are adaptive heuristic search algorithms based on the evo-
lutionary ideas of natural selection and genetics. GAs are part of what is called
Evolutionary Computing that were first introduced in the 1960s by Rechenberg in
his work “Evolutionary Strategies”. GAs were introduced in the mid 1970s by John
Holland that together with his students and colleagues have developed GAs further.
The schema theorem of Holland [4] can characterize mathematically the evolution over
time of the population within a GA.

The search for an appropriate solution begins with an initial population of solutions
(individuals). Individuals of the current population give rise to the next generation
population by means of operations such as random mutation and crossover, which
are patterned after processes in biological evolution. At each step the individuals
are evaluated using a given measure of fitness, with the most fit individuals selected
probabilistically as seeds for producing the next generation [5, 6]. In appendix A we
present a prototypical genetic algorithm.

GAs have been applied successfully to a variety of learning tasks and to other opti-
mization problems. The popularity of GAs can be motivated by number of reasons:



14 Background

e Evolution is known to be a successful method for adaptation within a biological
systems.

e GAs can search very complex search spaces.
e (GAs are relatively easy to code and parallelize.

In Section 2.1 we describe in more details the basics in genetic algorithm search meth-
ods.

2.1.1 Biological background

The ideas behind GA search methods is to mimic the biological processes known from
genetics and evolution. The chromosomes existing in all living cells consists of genes
that encodes proteins. In the recombination (crossover) process the chromosomes from
the parents will merge to create a new chromosome of the offspring. When copying
the chromosomes from the parents to the offspring a change (mutation) in one or more
genes can occur. The success of an offspring in “surviving” would be the fitness of this
organism.

2.1.2 Encoding

When a problem is to be solved using a GA the first question that comes up is how to
encode the chromosomes. In the original GA and in many applications the favorable
encoding is a binary encoding where a chromosome is represented as a bit string. This
representation will allow a straightforward application of operators, such as mutation
and crossover, on the chromosomes. Another encoding strategy which can be seen as
more ‘natural’ for some applications uses a so called value encoding. In this case the
chromosomes will consist of an array of values. These values can be integers, real-
numbers or even characters. This encoding method, although good for some specific
properties, requires special crossover and mutation operators to be designed.

2.1.3 GA operators

The generation of successors in a GA is determined by a set of operators that recombine
and mutate selected members of the current population. The most common ones are
mutation and crossover operators.
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Mutation

The mutation operator works on a single parent represented as a bit string and pro-
duces a single offspring. This operator chooses a single bit at random and changes
its value. For example given the parent represented by the bit string 1000110011 and
by choosing randomly the fourth bit from the left to be changes we get the following
offspring 1001110011.

Crossover
The crossover operator produces two offspring from two parents, by exchanging se-

lected bits between the parents. Figure 2.1 illustrates the single-point crossover oper-
ator.

Parents Offspring

100011010011

010010110100/ 010011010011

Figure 2.1: Single-point crossover. The parents to the left and the offspring to the right. The underlined parts in
the parents are the bits selected to construct the first offspring whereas the non-underlined parts construct the second
offspring.

1100010110100

In a similar way one can apply more than one crossover point. Some extensions of the
crossover operator can be applied to more than two parents and generate more than
two offspring.

2.1.4 Fitness function and selection

Natural selection, in its most general form, means the differential survival of indi-
viduals: some individuals live and some die. For this to happen there must be a
population of individuals that are capable of reproduction. Natural selection prunes
this population according to the criterion of survivability (fitness). The fitness function
defines this criterion for ranking individuals and for probabilistically selecting them
for inclusion population of the next generation.
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In the standard GA the probability that an individual will be selected is given by the
ratio of its fitness to the fitness of other members of the population. This method is
called roulette wheel selection. Other selection methods have been suggested such as
rank selection and steady-state selection.

2.1.5 Variants of GAs

The standard GA described above can be extended or changed to create a slightly
different genetic algorithm. We describe here the three variants that have been imple-
mented in the GLYGAL system described in chapter 3.

Parallel GA

In the parallel GA, which is an extension of the standard GA, several populations will
evolve in parallel usually on different processors with individuals migrating between
the different populations. This simulation provides resembles “real life” evolutionary
processes. Using several different populations one can avoid the so called crowding
problem where some individual that is more highly fit than others in the population
quickly reproduces and takes over a large fraction of the population. That isolation
can be a requisite for evolution. This was pointed out by Darwin in his report about
the evolution of finches in the Galapagos islands. By allowing some migration be-
tween the different populations, successful genes -“new blood”- can be spread into the
populations.

The algorithm itself changes only slightly with comparison to the standard GA. Here,
each population will run on one node using the standard GA search with the standard
mutation and crossover operators. The different thing happening here is that “best”
individuals will “migrate” between the populations. This migration operation can be
done in different ways, and the most common way is that a fixed number of “best”
individuals from each population will move to another population every fixed number
of generations.

Evolutionary programming

Evolutionary programming is another variant of the standard GA. Here, the population
evolve using only the mutation operator. This method simulates asexual reproduction.
In this algorithm one parent will mutate to create one offspring. The best individuals
from the parents and the offspring are chosen to create the next generation.
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Lamarckian GA

As we saw above most of the GA method simulate Darwinian evolution and Mendelian
genetics. This is shown in the left side of Figure 2.2 where an individual is evolving
from one generation to the next. Another model of evolution, Lamarckian evolution,
is based on the theories proposed by the nineteenth century scientist Jean Batiste de
Lamarck [7]. His theory suggests that experiences of a single individual could directly
affect the genetic makeup of their offspring. One example is the giraffe neck. According
to Lamarck, since the giraffe had to stretch its neck to reach the higher branches for
the leafs its neck got longer and this feature was inherited to its offspring.

Although the Lamarckian theory is not accepted as a model of biological evolution, it
has been shown to improve the effectiveness of the computerized GA [11, 12]. Figure
2.2 illustrates the difference between the Lamarckian and the standard Darwinian
approaches. The idea behind the Lamarckian approach is that an individual will
“improve” during its lifetime by finding the nearest local minimum.

The Lamarckian GA is similar to the standard GA with one basic difference. The
geometry of an individual after local minimization and evaluation will be directly used
by the offspring.

The Lamarckian GA search method can be parallelized in a similar way to the standard
GA. Thus several populations are running a Lamarckian GA search in parallel with
individuals migrating between the populations.



18 Background

1)

i Phenotypes

Local search mutation

Genotypes
Child Parent  Child

Figure 2.2 The difference between Lamarckian and Darwinian GA approaches. The space of the genotype and
phenotypes are represented by the upper and lower horizontal lines respectively. The fitness function is f(x). On
the right-hand side we see the behavior of the Darwinian GA when applying the mutation operator on a parent’s
genotype. On the left-hand side we see the behavior of the Lamarckian approach where a local search is performed on
the phenotype space. Adapted from [12].

2.2 Basics in carbohydrate conformation

Carbohydrates constitute one of the most abundant types of biomolecules occurring
widely in all living matter and, as the name suggests, are mainly composed by carbon,
hydrogen and oxygen atoms. They function as structural or protective materials and
as an energy store. In addition, carbohydrates perform much broader biological roles
[9]. For example, they appear to be essential in the process of infection by certain
pathogenic species; they specify human blood group types and are intimately involved
in the immunochemistry of blood; they determine cell-cell recognition; they function
as receptors in the antigen-stimulated lymphocyte antibody immune response, and
they may have an important role in cancer pathology. The role of carbohydrates in
biological processes is to a large extent determined by their conformational properties
[10].
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2.2.1 Monosaccharide as building blocks

Saccharides are composed of several units, called monosaccharides, that cannot be
divided by hydrolization. There are many different monosaccharides in nature, de-
pending on the position of some residue groups in the chain and their orientation.
Each monosaccharide can assume different conformations.

Monosaccharides can assume either a linear or a ring form (Figure 2.3), the latter
being more common and stable. In this work we concentrate on ring conformations,
as chain conformation increase significantly the complexity of the search space since
these have greater flexibility and more rotatable bonds to consider.

| CHO
|
H—C —0OH
2

HO—C—H  p.olucose
H_4,:| _ oy hinear form)

H—Sr;|~—0H
CHOH

& CHpOH / \ECH;_,DH

H —9_ H H /- OH
H H

W OH H A i 0 !

OH OH OH H
3 2
H OH H OH
o-D-glucose p-D-glucose

Figure 2.3: An example of the linear and ring forms of glucose. In the upper part linear form and in the lower
part two presentations of a ring form. Figure taken from [8].

2.2.2 Oligosaccharides
Oligosaccharides are chain carbohydrates connecting up to 20 monosaccharide units.
They can be either linear or branched chains.

Two monosaccharides can be connected together through glycosidic linkages, in which
a so called bridge oxygen connects two carbon atoms belonging to the different rings.
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Such link can have a considerable flexibility whereas the rings themselves are very
rigid. Thus to describe the overall conformation of an oligosaccharide it is usually
sufficient to use the torsion angles of the C1-O and the O-CX bonds of the glycosidic
linkage.

Several ways of defining torsion angles are suggested in the literature. The most
common one used is known as the light atoms definition. In most cases the linkage is
defined by the torsion angle ¢, identified by H1-C1-O-CX’ and ), identified by C1-O-
CX’-HX illustrated in the upper part of Figure 2.4. In some cases additional bonds are
involved in the linkage and more torsion angles needs to be considered. For example,
in order to describe the 1—6 linkage shown in lower part of Figure 2.4, we need to
define additional torsion angle x (or w), identified by O-C6’-C5’-H5’. In this case, the
definition of ¢ and v are changed to H1-C1-O-C6 and C1-O-C6’-C5’ respectively.

HO6
/ H{Q’
H4 ny _-HO®
l ‘L’{" Hez C||1 | Tf H6Y'
04/(:4“\“\@//11?5 H—f “‘Hoy/ \ G’
l \ | | \ ¢ v / H61'
Hs o o4
AL 3 CZ\"““-::L MC? / ~ i
] 02 l | ] ’
03 ] Hl o' | He
N\ HO2 HO3
HO3
HOS
/
H4
| (L{:_. H62 o FO¥
\ 05 H3' HO¥'
“x, / c% =03 poy
AR & 61 M “ T 1 \ 1
H4' o o2
‘l3 l Hl H61 H62 o5 \""‘“— "
N\ HO2 or l
HO3 | H
HO

Figure 2.4: Definition of the glycosidic linkages. In most cases, ¢ and v are defined as H1-C1-O-CX’ and C1-
O-CX’-HX’ where x=1,2,3 or 4 (upper part). In the case of 1—6 linkage ¢,1) and x are defined as H1-C1-O-C6,
C1-0-C6’-Cb5’and O-C6’-C5-H5’ (lower part). Figure adapted from [10].
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2.3 Oligosaccharide conformational analysis

2.3.1 Experimental techniques

NMR and X-ray crystallography are two experimental techniques for determining
oligosaccharide 3D structures. Both of these techniques are expensive and time con-
suming. Crystallizing saccharides with more than two-three residues is very difficult
due to their flexibility and their hydrogen bonding properties. Determining oligosac-
charide structure by NMR is difficult due to the small number of relevant signals in
the spectra. This is why most NMR work on oligosaccharides is combined with 3D
structure predictions using computational methods.

2.3.2 Computational methods

An alternative approach for oligosaccharide conformational analysis is the use of com-
putational methods to search the space of possible conformations to find favorable low
energy conformations.

One very popular approach of evaluation is the use of force field methods to calculate
the conformational energies. The underlying assumption is that a molecule has its
native conformation in the state of lowest conformational energy. There are several
different methods for calculating molecular energy. The force field methods define the
energy of the molecule as a sum of terms, concerning the ideal geometry of the molecule.
One typical potential energy function of the force field, is shown in formula 2.1, consists
of terms considering bond length, bond angles, van der Waals interactions etc. FEj
stands for the deviation from the ideal bond length, Ej, for the bond angles, E},,. for
the torsion angles, [E,,,] stands for the out-of plane deformations of planar systems,
Eygaw for the Van der Waal interactions, E,; for the electrostatic interactions, [FEp)
for the hydrogen bonding and [Fy,] for the solvation energy. The terms in brackets
are only formal in certain force fields.

E = Ey + Ep + Eior + [Eoop] + Evaw + Eo + [Enp) + [Esal (2.1)

Related work

Some computational methods using different force field calculation has been proposed
for conformational analysis. The Glycan program, developed by Nyholm et al. [13],
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based on extensions of the truncated force field HSEA calculations, considers mainly
van der Waals interactions resulting in rough estimates of the conformational energy.
These estimates, though rough, are calculated at high speed and can be useful as a
starting point for conformational studies of large systems.

Another method shown to be successful mainly on small structures is based on a filtered
systematic search using MM3 force field calculation [14]. The search starts with a
minimized conformation obtained by Glycan followed by a systematic ¢/ search using
MMS3 for energy calculations and local minimization. The structure is investigated in
fragments of disaccharides and trisaccharides where energy maps with 15° step size
are generated for the favorable ¢/1 angles. The structure is then constructed and
minimized as whole using a filter based on the favorable angles found in the systematic
search. This method provides a good overview of the ¢ /1) search space of each linkage
and is useful especially for branched saccharides. However, the method suffers from
some disadvantages. Pre and post-processing work is needed to be able to perform the
search. Another problem with the filtered systematic search is the fact that it requires
a large amount of CPU time. Performing such a search on a pentasaccharide structure
demands several hundreds of hours of CPU time.

The goal of this application is not only to find the single optimal conformation of an
oligosaccharide based on a force field fitness function but also to be able to find a set
(if exists) of different favored conformations.

Why then use genetic algorithms? One reason would be that GAs have been shown
to give good results in similar applications [1]. In this chapter we reviewed the main
features of GAs. Using that knowledge combined with the understanding of the char-
acteristics of the problem of modeling oligosaccharide it seems like GAs would be a
suitable tool.



Chapter 3

Materials and methods

In chapter 2 we saw that there are still problems in obtaining the 3D structure of
oligosaccharides using experimental techniques like NMR spectrometry and X-Ray
crystallography as well as with existing computational methods. In an attempt to
overcome some of these difficulties we have used genetic algorithm search methods.
We will here give the basic principles for doing that and present the GLY GAL software
developed during this project.

3.1 Modeling oligosaccharide using genetic algo-
rithms

The basic ideas of modeling oligosaccharide using genetic algorithms are:
e Initial population of randomly generated conformations of an oligosaccharide.

e Evaluation using a fitness function based on molecular mechanics calculations
using the MM3 force field and selection using a roulette wheel selection method.

e Standard genetic operators like mutation and crossover to generate offspring.

e Termination criteria satisfied either after a fixed number of generation or when
no improvement has occurred during several generations.
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3.1.1 Initial population

In the case of oligosaccharides we need a randomly generated initial population of con-
formations each representing a possible solution of the problem. For every application
of a genetic algorithm one has to decide on a representation for the “genes”. In the
case of oligosaccharide modeling, a hybrid approach is used [15]. In this approach
the genetic algorithm operates on numbers, not bit strings as in the original genetic
algorithm. The representation of oligosaccharide using the hybrid approach can be
done in several ways including Cartesian coordinates and torsion angle representation.

In the Cartesian coordinates representation the 3-dimensional coordinates of all the
atoms in an oligosaccharide are recorded. This representation though easily converted
to and from the 3-dimensional conformation of the oligosaccharide has the disadvan-
tage that a mutation operator would be difficult to perform. This difficulty comes
from the fact that the mutation operator might create “irrelevant” conformations
where some atoms lie too far apart or collide. These conformations will have to be
filtered resulting in an unnecessary extra CPU time.

Another representation presented in Figure 3.1 is using torsion angles. This represen-
tation is more natural for conformational studies in which the genetic operators work
on torsion angles. For the hybrid representation here we use a torsion angle vector.
Each glycosidic linkage of an oligosaccharide contains two torsion angles phi (¢) and
psi () (in some special cases a third angle chi () or omega (w) can be found). The
torsion angle vector will be a vector containing the ¢ and ¢ angles.
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Figure 3.1: A hybrid representation of an oligosaccharide using a torsion angle vector. The torsion angle vector in

this case will be [(¢1,%1), (2, 92)].

3.1.2 Genetic algorithm operators

The above hybrid representation using a torsion angle vector makes it an easy task to
apply the GA operators.

Mutation

The mutation operator now simply changes the value of one or several torsion angles
in the vector randomly. For example, the glycosidic torsion angles of the structure in
Figure 3.2a are defined in the vector [(¢1,%1), (¢2,12), (¢3,13)]. We now apply the
mutation operator choosing randomly to mutate one angle, in this case ¢o. We get the
vector [(é1,v1), (¢g, 1), (63, 13)] representing the offspring structure in Figure 3.2b.

Figure 3.2: Mutation operator. a) The structure before mutation with the values [(—24, —19), (—19, —27), (—42, 30)]
b) The structure after mutation (offspring) with the values [(—24, —19), (25, —27), (—42, 30)].
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Crossover

In the crossover operator we will select two structures to be the parent structures. We

now choose one crossover point randomly and apply the crossover operations resulting

in two offspring. For example, let the first parent be the vector [(38,19), (—25, —25), (—41, 29)]
representing the structure in Figure 3.3a and the second parent be the vector

[(39,25), (=19, —26), (—47, —11)] representing the structure in Figure 3.3b. Let the
crossover point be between the first and second glycosidic bonds. The result will be

the two following offspring [(38,19), (—19, —26), (—47, —11)] shown in Figure 3.3c and
[(39,25), (—25, —25), (—41,29)] shown in Figure 3.3d.

Figure 3.3: Single-point crossover operator. a and b illustrates the parent structures whereas ¢ and d represents
the offspring structures. The dotted line on the parents shows the crossover point. The black dotted arrows coming
from the parents structures a and b showing the parts of the parents that construct the offspring c. In a similar way
the red dotted arrows are for the construction of offspring d.

The crossover operator can be modified in different ways. One such modification could
be choosing more than one crossover points and thus the possibility of generating more
than two offspring. Another modification could be to choose more than two parents.

3.1.3 Fitness function and selection

As described in chapter 2, one important feature of genetic algorithm methods is
selection. How do we select the individuals of a population on which we will apply the
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genetic operators? We will have to, in some way, set a value for each individual in the
population. We use a so called fitness function that will evaluate the individuals. In
our case the individuals in the population are oligosaccharide structures. How do we
evaluate their “fitness”? What is a “good” structure? and what is a “bad” one?

Force field methods are widely used for predicting favored conformations. Also in the
case of modeling oligosaccharides using GA search and force field methods seems to
be a good choice.

The MM3 program is one of the best force fields available today for saccharides. Energy
minima calculations done using MM3 have been shown to fit well with experimental
data on disaccharide structures obtained by X-ray crystallography.

We chose to base our fitness function on energy calculations using the MM3 force field
program. Using the roulette wheel selection, the fitness of a structure is calculated
using the scoring function presented in formula 3.1 where E,,;, is the energy of the
best structure and F,,., = Min(worststructure, E,;, + threshold).

Sbest—structure = 10
Sworst—st’ruature = 1
E —F .
S, = 1 10 — 1)——_—m» 31
+ ) E L (3.1)

Constructing the next generation

The construction of the next generation in a GA is fairly simple after the structures
were evaluated using the fitness function and the GA operators were applied on the
present generation according to the selection criteria. One would normally use the
mutation operator on 5 percent of the population where structures with “better”
fitness have a higher probability of being selected. The mutated structures will be
copied to the next generation. We would usually use the crossover operator on 85
percent of the population where the selection of the parents can be decided in different
ways. One way is to choosing at most one of the parents that has “good” fitness. In
that way one can prevent the so called crowding problem where many copies of only
“good” structures will be generated and the population will converge too fast. The
remaining 10 percent of the next generation are the best 10 percent structures from
present generation copied directly.

The structures in the newly constructed generation are now evaluated using the fitness
function and the process will continue until termination criteria will be achieved.
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3.2 The GLYGAL program

The major goal of this project was to turn all the above theory into easy to use software
for oligosaccharide conformational search using GAs and MM3 force field for energy
calculations.

The GLYGAL software developed in this project is the fulfillment of this goal. The
program implements three different GAs for the purpose of oligosaccharide confor-
mational search. The algorithms implemented are standard GA, parallel GA and an
evolutionary programming algorithm as well as one simple Monte Carlo implementa-
tion used mainly for comparison. All the GAs implemented can be used with local
minimization (e.g. Lamarckian GA) performed by the MM3 program. Some default
GA parameters, such as population size, number of iterations etc. are suggested by to
the user and those can easily be set using the GLYGAL graphical user interface (GUI).
Some snapshots of GLYGAL can be seen in the GLYGAL user manual presented in
Appendix C.

Given that a structure was chosen for a conformational search and the GA search
algorithm was also chosen. A file containing a representation of the structure is used
as a template file. A simplified series of steps describing the conformational search
would look like this:

1. The torsion angles of the structure to be adjusted in the search are identified.

2. The template structure file is copied as many times as the size of the first pop-
ulation of the GA.

3. The copied structures are modified randomly by adjusting torsion angles to create
the first randomly generated population of the GA.

4. The files are then sent to the MM3 program for evaluation and local minimization
and the results are sent back to GLYGAL.

5. The selection process in GLYGAL picks the structures to be manipulated by the
genetic operators.

6. Genetic operators, such as mutation and crossover, are performed on the struc-
tures and the next generation is created.

7. Evaluation of the structures is done and termination criteria are checked. If not
fulfilled resume process from step 4.

In this section we describe the algorithms developed in GLYGAL and the environment
GLYGAL is working in. More detailed information about the use and development of
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the software is given in appendices C and D.

3.2.1 The “wrapper” program SugaRun

As mentioned, GLYGAL uses the MM3 force field program for the energy evaluation
and local minimization. The SugaRun program, developed by Jimmy Rosen, is a
“wrapper” program used by GLYGAL and mainly takes care of the connection with
the MM3 program. The MM3 program requires a .mma3 file as input. Apart from the
Cartesian representation of the molecule and atom connectivities this file, also has some
parameter lines. SugarRun is also responsible for the distribution of “jobs” generated
by GLYGAL to the different nodes in the cluster. Each “job” is a request generated
by GLYGAL for energy calculation from MM3 and performs energy evaluation and
minimization on one or more structures.

The cluster used is a Linux cluster of eight nodes with dual 2200+ AMD processors on
each node. GLYGAL can submit jobs and get the results from the server in parallel.
GLYGAL can also resubmit jobs that generated malformed results and restart the
server when it is not responding.

3.2.2 Identifying rotatable bonds

One of the main problems with the computational methods existing for oligosaccha-
ride modeling is the need of preprocessing work, both manual and computational.
In the filtered systematic search described in chapter 2, manual and computational
preprocessing is needed before one can start the search.

One such problem was identifying the torsion angles. To be able to adjust the torsion
angles one needs to identify them first. Until now one would need to locate manually
the torsion angles using a 3D molecular viewer. In GLYGAL we solved this problem
by developing an algorithm for identifying the torsion angles automatically.

This algorithm creates a connection matrix containing the torsion angles of all the
glycosidic linkages and a ring vector containing all the torsion angles needed to identify
the position of all atoms within a certain ring. The outline of the algorithm is:

1) identify the groups of connected carbon atoms and finds the oxygens that are
connected to two carbon atoms (Figure 3.4a).

2) An oxygen connected to two carbons belonging to the same carbon group identifies
a ring. The rings are numbered as shown in Figure 3.4b.
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The procedure is as follows:

e The carbon atom which is not connected to any other carbons is numbered
carbon 1. If both carbons are connected to other carbons (e.g. furanoses), the
program assigns the label 1 to one of those two carbons.

e The chain that links the first carbon to the ring oxygen is found using a back-
tracking approach, in order to take into account possible residue substitutions in
the ring. Once the chain is identified, the carbon atoms belonging to this chain
are numbered in ascending order.

e Adds the carbon 6 and possible other carbons connected.

3) the oxygens connecting carbons belonging to two different rings identify the glyco-
sidic linkages (Figure 3.4c). The torsion angles defining the bond are then identified
according to the light atom definition and added to the connection matrix.

4) the carbon atoms in the ring and the atoms in the bonds are marked as determined.
While the position of an atom directly connected to those is determined, the position
of an atom whose “distance” is two bonds or more, depends on the values of one or
more torsion angles.

The residue chains are thus parsed according to the minimum number of bonds needed
to connect all atoms to the root (normally one of the ring carbon atoms). In the exam-
ple in Figure 3.4d, this value is equal to three for the linkage C5-C6: C5 (determined),
C6, O6 and H6 (furthest edge). It is interesting to note that in case of glycosidic
linkages 1 — 6 the carbon 6 will be determined by the bond and the maximum chain
length will be just two C6 (determined), O6 and H6 (furthest edge). In NAc group
the value assumed is four for the CX-N connection, three for the N-C connection,
etc. GLYGAL selects all the bonds where the minimum number of required bonds is
greater than a specified threshold (the default value is two and includes every possible
torsion angle) and adds a torsion angle to the ring vector.
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Figure 3.4: Analysis of the structure B-D-GalpNAc-(1—4)-D-Glc. a) Identification of the carbon groups. b)
Numbering of the carbon atoms of the Gal. ¢) Identification the bond torsions in the glycosidic linkage. d) Identification
of the torsion angle in the the rings. On the left side, the minimum number of bonds needed to connect all the atoms
of the subtree are shown for the NAc group and for the sixth carbon. On the right side, the torsion angles needed to
determine the position of all the Glc atoms are shown.

After the connection matrix and the ring vector have been created, a “Glyco-structure”
vector is created as follows:

Initialization: Find a ring that is connected to just one other sugar ring.
Recursive step:

e add the bonds to the vector from the branch that has more rings to the one that
has less.

e if there is one or more branches, add bond bonuses to the bond genes for each
branch. The number of branches is simply defined as
max (0, numberO fConnectedRings — 2).
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e calls the recursive function on the linked rings if they have not yet been processed,
from the branch that has less rings to the one that has more.

This method keeps related genes as close as possible in the “genome”. The bonds in
a branching point, which are the most important genes for the search, are grouped
together tightly with the branching ring, as these elements interact significantly. The
choice to add the smaller sub-branch first keeps the rings as close as possible from the
branching point.

3.2.3 Graphical user interface

One important task when creating the software was providing a user-friendly GUI.
The GUI was created mainly using the Java swing components is used for convenient
parameters setting as well as for molecule visualizing purposes with the Jmol molecular
viewer [16]. More information about the use of the GUI is given in the user manual
presented in Appendix C.



Chapter 4

Results

In this chapter we present the results obtained in this project. We first present a sum-
mary of the performance of GLYGAL in comparison to the MM3 filtered systematic
search. We then give the results obtained concerning some of the more biologically
significant oligosaccharide structures we investigated using GLYGAL.

4.1 Program performance

One of the main problems in predicting oligosaccharide conformations with the help
of computational methods is finding a good trade-off between sampling of the confor-
mational space and computational time. In systematic search for example, one would
have to cover the search space in a more thorough way having to pay a high price in
the run time of the search. For example, sampling a pentasaccharide with eight torsion
angles in 15° steps around each rotatable bond results in over 100 thousand million
conformations. It would take years to calculate the energy of these conformations on
a PC in order to find the conformation with the lowest energy. On the other hand one
can ignore certain features of the oligosaccharide energy in the force field, when using
a truncated force field as in Glycan, to achieve a faster result but with a less accurate
value calculated of the molecular energy giving a less accurate prediction.

In this section we present a summary of the performance of GLYGAL. This summary
is mainly a comparison with the filtered systematic search in terms of search speed.
The filtered systematic search is a good comparison measurement since it also uses
the MM3 program for molecular energy calculations.
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4.1.1 Performance summary

What we were interested in investigating, apart from the performance of GLYGAL in
comparison to other methods, was the behavior of different GAs implemented within
GLYGAL. Is there any advantages using a certain GA for a certain structure size? To
answer this question conclusively one would need to perform very extensive testing
using different GAs on different sizes of structures. This type of testing was not
possible in the time frame of this project so the results, or let us say observations, we
present here are based on the testing we performed combined with a gut feeling we
acquired during this time.

We have looked at the performance of the three GAs: standard GA, parallel GA and
evolutionary programming. These were tested on different oligosaccharide structures
having 2-7 residues, linear or branched. The performance is measured by the number
of structures needed to be sampled in order to find the best conformation.

We observed the following:

e almost no difference between the different GAs when investigating disaccharides.
On average we need to sample about 100 structures.

e for larger structures, linear or branched, the parallel GA is preferable. We would
need to sample fewer structures using a parallel GA.

e the number of structure we need to sample for a branched oligosacchride is larger
than the number needed for a linear structure when both have the same number
of residues.

e using any GA we could observe that an increase of the number of structures in
the initial population would not necessarily result in a faster convergence to the
minima.

In Table 4.1 we summarize the performance of GLYGAL compared to the filtered
systematic search. The comparison is done on the number of structures needed to be
sampled in order to get the best conformation. Observe that the number of structures
needed to be sampled by GLYGAL is an average number whereas the numbers used
in the filtered systematic search are constant. For example, we need to sample 576
structures with the filtered systematic search for a disaccharide and only 100 (on
average) using GLYGAL.
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Search method Saccharide type | Sampled structures
Filtered systematic search Disaccharide 576
Trisaccharide 150000

Tetrasccharide too many

Pentasaccharide too many

Genetic algorithms Disaccharide 100
Trisaccharide 1000

Tetrasccharide 5000

Pentasaccharide 10000

Table 4.1: The number of structures needed to be sampled to find best conformation, using MM3 filtered systematic
search (FSS) versus genetic algorithm search.

4.2 Results of biological importance

In this section we will concentrate on some examples with a biological /chemical sig-
nificance. In the first part will presents the results on the blood group A related
oligosaccharide structure and compare these to the experimental and computational
data available. In the second part we investigate fragments of the O-specific oligosac-
charide found on the Shigella dysenteriae type 2 and 4 for which computational data
is available. The third part we present our results on the oligosaccharide found on
the surface of the cercariae of the Schistosoma mansoni where no published data is
available.

4.2.1 Blood group and related oligosaccharide

The ABO blood group system was first discovered by Landsteiner in 1901. The
ABO(H) type blood system has been shown to be specified by carbohydrate present
on human red blood cells. This system consists of three antigens H, A and B and is
highly important in blood transfusions. More antigens, some protein dependent and
some carbohydrate dependent, have been identified since.

The medical importance of blood groups and the related oligosaccharides have led
many researchers to study the preferred conformation of these molecules using com-
putational methods as well as experimental methods [17, 18, 19].

The existence of experimental as well as computational data on the ABO(H) antigens
was a good reason to start our tests on these oligosaccharide structures. We chose to
perform the tests on probably the most investigated one, the blood group A antigen.
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The A antigen is a trisaccharide with the sequence o« — L — Fuc— (1 — 2) — [a — D —
GalNAc— (1 — 3)] = 8 — D — Gal — 1. We performed tests using different GAs with
different sets of the GA parameters to see that the most favorable conformations we got
were coherent with the results in the literature [17, 18]. The favorable conformation
is shown in Figure 4.1. The ¢, for the linkage & — L — Fuc — (1 — 2) — Gal is =
28,-50° and for the @« — GalN Ac — (1 — 3) — Gal linkage is ~ -40,-44° .

Figure 4.1: A antigen trisaccharide favorable conformation.

4.2.2 Shigella dysenteriae

Shigellosis is an infectious disease caused by a group of bacteria called Shigella. It
is endemic in many developing countries with approximately 170 million cases in the
world. It is estimated that around one million people die each year from Shigella in-
fections. Shigella dysenteriae (Sd), which accounts for around 5 percent of all cases of
shigellosis, has been classified in 10 different serotypes going from 1 — the most severe
one — to 10. Investigating the 3 dimensional structures of the O-specific oligosaccha-
ride of Shigella bacteria is of a great interest for the development of glycoconjugate
vaccines [20].

The O-specific oligosaccharide 3D structures of Sd1 has been the subject of experimen-
tal as well as computational studies [13, 21]. The O-specific oligosaccharides of Sd2
and Sd4 were, among other structures, the subject of a computational study within
our structural biochemistry group [14]. Using filtered systematic search Rosen et al.
could predict favorable conformations of those O-specific oligosaccharides.
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Here we present the results, obtained using the GLYGAL program, concerning these
structures and compare them with the results obtained by the filtered systematic
search.

Shigella dysenteriae type 2

Rosen et al. investigated the O-specific oligosaccharide of Sd2. They started by in-
vestigating one repeating unit of the polysaccharide. The sequence of the repeating
unit is illustrated in Figure 4.2. This pentasaccharide was first divided into fragments
of disaccharides. A systematic search on the ¢/ space with 15° step size using the
MM3 force field was performed on each of the disaccharides. The results were energy
maps providing a nice overview of the ¢/ search space of each of the disaccharides.
The energy maps for the different disaccharides are presented in the left column of
Figure 4.3. The energy maps were then used as filters for the systematic search per-
formed on the trisaccharide and partially on a tetrasaccharide on the branching point
for favorable ¢ /1 angles. The new energy maps for the trisaccharide at the branching
point are shown on the right column of Figure 4.3. They could then construct the
whole structure manually using the minimized fragments to get the favorable confor-
mation shown in Figure 4.4. In total the filtered systematic search had to sample
approximately 150000 structures for this prediction.

OH
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Figure 4.2: One repeating unit of the O-specific polysaccharide of Shigella dysenteriae type 2. a, b, ¢ and d
represents the different linkages.
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Figure 4.3: MM3 Adiabatic energy maps generated by filtered systematic search for the different disaccharide
moieties (left column) as well as for the trisaccharide at the branching point (right column) of the repeating unit of
the Sd2 O-antigen. The arrows mark the minima found using the GLYGAL program. The enumeration a to d refers

to the linkages in Figure 4.2.
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Figure 4.4: The 3D structure of the repeating unit of the O-specific polysaccharide of sd2 predicted by the filtered
systematic search (Rosen et al., in press).

For comparison purposes we used the GLYGAL program with a similar search scheme
to the search scheme suggested by Rosen et al.(in press). We first divided the repeating
unit oligosaccharide to fragments of disaccharides and used GLYGAL to search for
favorable conformations. The GA runs showed excellent convergence to the minima
found in the systematic search. The arrows on the left column of Figure 4.3 mark
the minima found using GLYGAL. For the searches we used a Lamarckian GA with
10 structures in the initial population. On average 10 generations were needed to
complete the search and find the minima. The searches were performed using the
cluster in a couple of minutes each.

We then tested the trisaccharide and tetrasaccharide on the branching point and ob-
tained excellent results. Here again, all minima found using systematic search, were
found by the GA (marked with arrows in right column of Figure 4.3). In this case
a Lamarckian parallel GA was used with 4 initial populations each with 40 initial
structures. After only 10 generations over 70 percent of the populations converged to
the low energy minima found in the systematic search.

The complete repeating unit pentasaccharide was not tested using the filtered system-
atic search due to the huge CPU time needed for this kind of search. Using GLYGAL,
on the other hand, we could conduct a search on the repeating unit as a whole and the
result showed a very good fit to the structure constructed by Rosen et al. (see Figure
4.5). Using the GLYGAL program we sampled approximately 8000 structures for the
prediction.
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Figure 4.5: Superimposition of the 3D structure of the Sd2 repeating unit obtained from GLYGAL and the filtered
systematic search.
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Shigella dysenteriae type 4

The O-specific oligosaccharide of the Sd4 was investigated in a similar way to the O-
specific oligosaccharide of the Sd2. Here again we used the filtered systematic search
for comparison. Figure 4.6 illustrates Sd4 MM3 adiabatic energy maps generated
by the filtered systematic search. The arrows represent the minima found using the
GLYGAL program. We observe that GLYGAL detected the minima for the linkage
a—D —GleNAc — (1 —3) — a — D — GleN Ac shifting from one favorable minima
when investigating the disaccharide (energy map A in lower row) to another minima
when investigating the trisaccharide (energy map A in upper row) on the branching
point. The minima found when investigating the trisaccharide is the favorable minima
even when investigating the structure as whole using GLYGAL. We observe also that
GLYGAL detected the change in minima for the linkage o« — L — Fuc— (1 —4) — f —
D — GleN Ac (energy map B in lower and upper rows). Investigating the trisaccharide
at the branching point three distinct minima were found using GLYGAL.
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Figure 4.6: MMS3 Adiabatic energy maps generated by filtered systematic search for the different disaccharide
moieties (lower row) as well as for the trisaccharide at the branching point of the repeating unit of the Sd4 O-antigen.
The arrows mark the minima found using the GLYGAL program.
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4.2.3 Schistosoma mansont

As mentioned in the introduction chapter Schistosomiasis is a parasitic disease, caused
by blood flukes of the genus Schistosoma affecting 200 million people worldwide. There
are number of species of Schistosoma that can affect humans, but most humans are
affected by one of the three following species: Schistosoma mansoni, Schistosoma
haematobium and Schistosoma japonicum.

The life cycle of the parasite, presented fully in Appendix B, involves two hosts: fresh
water snail and human. After the intermediate host (snail) is infected the cercariae
are released from the snails. The cercariae can penetrate the human body through
the skin and the human is infected. The fact that the parasites remain in both hosts
for some time, suggests that they have developed mechanisms to avoid the immune
systems of the hosts.

In this section we present results obtained for a highly specific oligosaccharide structure
existing on the surface of the cercariae of the Schistosoma mansoni. This structure,
among other structures, is proposed to elicit the formalin of protective antibodies [3].

The sequence representation of the oligosaccharide is shown in Figure 4.7 where the
hexasaccharide highlighted in red is the subject of our minimization. Within this
hexasaccharide there is a tetrasaccharide that has been shown to be highly specific for
the parasite [22] and is hence a good target for vaccine development.

+Fucal-2Fucal-[3GalNAcb1-4GlcNAcbh1-3Galal-ln3GalNAc

|

3
+Fucal-2Fucal-2Fucal

Figure 4.7 Sequence representation of the oligosaccharide existing on the surface of the cercariae of the Schistosoma
mansoni. The highlighted tetrasaccharide is specific for the parasite i.e. it does not occur in humans.
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For the search performed by GLYGAL we used a parallel GA with 4 populations of 60
structures each running for 40 generations which gives approximately 10000 structures
that were sampled. The predicted structure is shown in Figure 4.8.

B-GIcNAc

B-GalNAc
a-Gal

a-Fuc

a-Fuc

Figure 4.8: The predicted 3D structure of the studied oligosaccharide of Schistosoma mansoni.

The structure presented here is a novel model for a biologically important oligosaccha-
ride from Schistosoma mansoni. At present, no experimental nor computational data
on this structure are available in the literature. It is hoped that this model might give
insights into the molecular mechanism of this disease.






Chapter 5

Conclusions

5.1 Achievements and evaluation

The main aim of this project was to investigate the performance of genetic algorithm
search methods for predicting oligosaccharide 3D structures based on the MM3 force
field for energy calculations. For that we developed GLYGAL, a program coded in
JAVA that implements different genetic algorithms. GLYGAL includes an “easy to
use” GUI incorporating a three dimensional molecular viewer and uses the SugaRun
program for the communication with the MM3 program.

Using GLYGAL we were able to investigate different oligosaccharide structures show-
ing that genetic algorithm search methods, though based on heuristics, are a very
good tool for predicting oligosaccharides 3D structures. Our results showed that using
GAs is faster since at least fifteen times fewer conformations need to be sampled in
comparison to the filtered systematic search.

Identifying torsion angles is now done automatically using an algorithm developed in
this work and is implemented in GLYGAL.

The MM3 program used for force field energy calculations and local minimization is
probably the most established program existing today for this type of work. On the
other hand MM3 is highly sensitive and would crash often when doing large scale
tasks. The SugaRun “wrapper” program developed by Jimmy Rosen deals mainly
with communication with the MM3 program. It has evolved significantly during the
course of this project and is now a stable and reliable program for its task.

Incorporating the 3D molecular viewer Jmol into GLYGAL main desktop was a good
design decision taken during this project. For a modeler, being able to look at a
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structure prediction in three dimensions is a necessity.

5.2

Future work

“Contrary to the outstanding work of art, outstanding theory is susceptible to im-
provements” x. popper

The list below includes the main points for future extensions to GLYGAL:

e Start with a sequence. In its current version GLYGAL cannot start a search

provided with an oligosaccharide sequence but only with a 3D template repre-
sentation of the oligosaccharide. Since all the parts needed to complete this task
are available only an integration task remains.

Filters. As in the filtered systematic search, one could even reduce the search
space explored by the GA using filters. There are different possible ways of
achieving this, one of which is using the potential energy maps generated using
systematic search.

Better statistics for GA parameter setting. An extensive testing of many dif-
ferent structures may enable us to establish better default values for the GA
parameters.

Other fitness functions. Since the MM3 program has been sensitive , we would
like to try connecting GLYGAL to other molecular mechanics software, such as
the free open source program MM3-TINKER.
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Appendix A

A prototypical genetic algorithm

This prototypical GA was proposed by Tom M. Mitchell [4].

GA (fitness, fitnessThreshold , p, r, m)
fitness: A function that assigns a score to a solution
fitnessThreshold:
p: The number of solutions in the population
r: The fraction of the population to be replaced by Crossover at each step.
m: The mutation rate.

e Initialize population: P « generate p solutions at random
e Evaluate: For each s in P, compute fitness(s)
e While [max fitness(s)] < fitnessThreshold do

create a new generation, P,:

1. select: Probabilistically select (1—r)p members of P to add to P,. The proba-
bility Pr(s;) of selecting solution s; from P is given by
fitness(s;)

Pr(s;) = SP_, fitness(s))

2. Crossover: Probabilistically select
rp
2
pairs of solutions from P, according to Pr(s;) given above. For each pair sy,ss,
produce two offspring by applying the Crossover operator. Add all offspring to
P,.
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A prototypical genetic algorithm

. Mutate: Choose m percent of the members of P, with uniform probability. For

each, invert one randomly selected bit in its representation.

. Update: P «— P,.

. Evaluate: for each s in P, compute fitness(s)

Return the solution from P that has the best fitness.
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Schistosomziasis life cycle
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Figure B.1: The 10 stages in the Schistosomiasis life cycle.






Appendix C

GLYGAL user manual

C.1 About GLYGAL

Welcome to GLYGAL - GLYcosidic bonds Genetic ALgorithm. The GLYGAL soft-
ware, coded in JAVA, implements different genetic algorithm search methods using
MMS3 force field calculations to predict the 3D structure of oligosaccharides.

GLYGAL in its present form, though can be used as a stand-alone program, is depen-
dent on a “wrapper” program SugaRun created by Jimmy Rosen and, among other
things, takes care of the the communication with the MM3 program.

The GLYGAL software was developed by Francesco Strino and Abraham Nahmany
as part of a master thesis project in bioinformatics at Chalmers Tekniska Hogskola in
Goteborg, Sweden.

The project was supervised by Per-Georg Nyholm from the Department of Medical
Biochemistry at Goteborg University and Graham J.L. Kemp from the Department
of Computing Science at Chalmers Tekniska Hogskola.

Version 1.1 January 2004.
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C.2 Executing the program

C.2.1 Important facts about GLYGAL

1. GLYGAL is coded in JAVA using the NetBeans IDE 3.5.1 editor which is free
software created by SUN. For more information about JAVA and NetBeans please
check SUNs homepage on http://java.sun.com

2. GLYGAL runs on a Linux CSOL HOBORG cluster which is gentoo based developed
by Jimmy Rosen and is using several computers (since written in JAVA it can by easily
work on any other platform including UNIX, windows or Mac).

3. The program uses the “wrapper” program SugaRun developed by Jimmy Rosen
for communication with the MM3 program and the cluster distribution work. These
programs are necessary for the function of GLYGAL but using a different molecular
energy evaluator GLYGAL could easily do without the MM3 program.

C.2.2 Program execution

The execution of GLYGAL is very simple when the glygal.jar file is available. One
should keep in mind that GLYGAL in its present form is dependent on two programs
mentioned above. The calculations were carried out on the Linux cluster running at the
structural chemistry group at the Department of Medical Biochemistry at Goteborg
University.

For execution type: java -jar glygal.jar [options/ in a shell window from the glygal.jar
file directory.

If no option are specified, a GLYGAL main desktop is created. Otherwise the first
argument should be the molecule template file. More options are available from the
command line in the form of flags:

-s to start the search directly.
-0 [directory name] to set the output directory.
-p [parameter file] to set the parameter file.

-¢ to start without showing the GLYGAL desktop on the screen. This methods sup-
ports only .mm3 input files.
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C.3 Using GLYGAL in four simple steps

C.3.1 Step one: Getting started

After executing the program (see Section C.2.2 “Program execution”) GLYGAL main
desktop window shown in Figure C.1 will appear:

Figure C.1: GLYGAL main desktop.

To create a new project press the new project button from the button toolbar (alter-
natively use the new item in the Project menu). A project refers to a search performed
on a structure and will include all files that are generated as a result of the search.
(see more about program output in section C.7: Program output).

To open an existing project press the open project from file button from the toolbar
(alt. use the open item in the Project menu). An existing project includes the output
files of a search.
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C.3.2 Step two: Creating a new project

When choosing to create a new project the dialog window shown in Figure C.2 will
show:

Figure C.2: Create a new project dialog window shown on top of the main desktop.

Press the “Open file” button to open a molecule file (see Section C.4 “GLYGAL -
molecule files”). When “Open file” button was pressed the dialog frame shown in
Figure C.3 will appear:
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Figure C.3: Open a molecule file dialog frame.

Choose a molecule file and press “Open”. A project name will be suggested by the
program in the “Project name” text field. To choose another project name type in a
new project name in the “Project name” text field as shown in Figure C.4.
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Blood Grown |

bigza-2 1. wye

Figure C.4: New project dialog window after choosing a project name.

Press the “Create” button to create the new project.
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C.3.3 Step three: Choosing a search method and setting the
parameters

When a new project is created a three dimensional representation of the molecule to
be optimized appears on the upper left side of the main desktop (see also Section C.6
“Visualizing the molecule”).

To choose an optimization method use the “Choose optimization method” combobox
marked in Figure C.5 (see also Section C.5 “GLYGAL - Search Methods”).

Project Run  Help

BEIEIER ]

I 7ing : 13ns |’

T e e T T I]

Figure C.5: GLYGAL main desktop. The red circle mark the “Choose optimization method” combobox.

For example, choosing a parallel GA as the optimization method as demonstrated in
Figure C.6:
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<{Chaose optimization method> |
<Choose optimization method> L
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Maortte Carlo ]

Figure C.6: GLYGAL main desktop. Choosing parallel GA as the optimization method in the “Choose optimiza-
tion method” combobox.
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When the optimization method is chosen, a set of default values for the parameters in
the panels general GA parameters and genetic operators are shown. This is illustrated
in Figure C.7 Those parameters can easily be changed by the user (see Section C.5
“GLYGAL - Search Methods”). The “Run”, “Stop” and “Pause” buttons will also be

activated as shown in Figure.

Project Run Help

%

Figure C.7: GLYGAL main desktop after choosing the optimization method.

C.3.4 Step four: Running a search

To run search simply press the “Run” button marked in the figure bellow. To kill/pause
the running program press the “Kill” /“Pause” buttons respectively.

Output information about the parameters chosen and basic information about the
structures (e.g. angle values and energy value) will be written in the textbox in the
lower left side of the main desktop as shown in Figure C.8. More output files with
information about the structures evaluated by the program, the parameters, the results
ete. will be generated by GLYGAL (see Section C.7 “GLYGAL - Output”).
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Figure C.8: GLYGAL main desktop. The red circle mark the “Run” button. On the left bottom corner - output
of GLYGAL.

While the program is running the structure shown in the molecule viewer will al-
ways be updated with the best structure found (see also “GLYGAL - Visualizing the
Molecule”). When the search is completed a message box will appear asking the user
if to perform the search from the point the last search ended or to finish. To continue
the search press “Continue”, to finish press “Finish” in the message box.
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C.4 GLYGAL - molecule files

GLYGAL can read in three different molecule file types: .pdb, .mm3 and .xyz.

C.5 GLYGAL - search methods

Four search methods are available in GLYGAL. Three of methods standard GA, paral-
lel GA, evolutionary programming are genetic algorithm methods. The fourth method,
a simple Monte Carlo search is also implemented mainly to allow comparison with the
other methods.

C.5.1 Setting the parameters

When the optimization method is chosen by the user a set of default parameters
suggested by the creators of the program are suggested. Changing the parameters is
done in a simple way using the parameters setting panels on the right side of the main
desktop.

C.6 Visualizing the molecule

To be able to visualize the best molecule found, during and after the search, we
incorporated the three dimensional molecule viewer Jmol in GLYGAL’s main desktop.
Using the option within the Jmol program we can label and view the torsion angles
we rotate. To learn more about Jmol ¢ see Jmol help facility. In the Figure C.9 we
see a trisaccharide where the four torsion angles values in the two glycosidic linkages
are shown.
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Figure C.9: Jmol 3D viewer.

C.7 Program output

The GLYGAL program has a simple printout on the bottom-left side of the main
desktop. This printout presents the parameters chosen by the user and the torsion
angle vectors with the corresponding molecular energy.

Except for the simple printout on the main desktop GLYGAL generates a set of
output files. When a project is created, say with the name “testproject”, and a search
was performed, a “testproject” directory will be created (in case such project already
exists a directory with the name “testproject[1]” will be created and so on). Under this
directory we find parameter files, the results on the search in the shape of subdirectories
for each generation and .mma3 files of all structures calculated. In the project folder a
search.txt is created containing all the desktop printouts and including the parameters
used for the search.

The best non-redundant structures are stored in the directory “interesting”.
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Maintenance manual

This appendix contains some basic information about the architecture of the program.
More information can be found in the Javadoc documentation included in the code.

D.1 Development environment

The code and the user interface have been written using NetBeans 3.5.1, a free in-
tegrated environment for Java Developers. More information are available on the
NetBeans website at http://www.netbeans.org/.

D.2 Files and directory structure

As SugaRun works only on the cluster in medkem, GLYGAL is installed only in the
computers belonging to this net. The positions of all the directories needed for the
execution of the program are included in the file ~/Glygal/globalParameterFiles.par.
A static reference to this file is included in the class GUI.GlygalMainDesktop. This
reference can be changed and the jar file recompiled if the location of this file needs
to be changed.

This files contains the location of the server directory, which must also contain a file
containing periodic table data and the two files mm3.org and para.org, which are
needed for MM3 calculations. It is also possible to specify the directories where the
parameter and molecule files are located and the directory where the results will be
saved.
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D.3 Packages

The program is divided into two main packages: GLYGAL, which contains the main
system, and GUI, which contains the graphical user interface.

D.3.1 GLYGAL

The package GLYGAL contains the main class GLYGAL, which handles the command
line input of the program. All the other classes are grouped into sub-packages:

o GA: contains all the classes needed for the GA algorithm and the Monte Carlo
search. Subclasses of Controller control the execution of a search job. Sub-
classes of Gene represent the components of the GlycoStructure vector which is
manipulated by the operations included in the class GeneticOperators.

e energy: contains the interface with MM3 and some “toy” scoring functions for
energy evaluation.

e filter: contains tools for filtering the most interesting conformations. The Picker
class allows to choose elements in an array according to a scoring function spec-
ified by a subclass of PickerScoringFunction.

e param: reads, writes, modifies and groups conveniently the parameters needed
in the program.

e util: contains the torsion angle identifier, an utility to convert MM3 files into
xyz format and an utility to create energy maps for test purposes.

D.3.2 GUI

The package GUI contains all the classes composing the user interface. Its function
is to generate inputs for the GLYGAL package and to show graphically the results.
GLYGALMainDesktop is the main class of the interface and is executable.

D.3.3 External packages included in GLYGAL

e sugarun: developed by Jimmy Rosen, handles the molecule manipulations and
the interface with MM3 and the cluster.



D.4 Interaction between the packages

67

e jmol: the open-source molecule viewer and editor JMol 8.0. Jmol is written
in Java and provides means of viewing 3D molecular models produced by vari-
ous software packages (ACES II, ADF, GAMESS, PC GAMESS, Gaussian 9x,
XYZ, PDB, and CML). More information can be found in the Jmol Web site at
http://jmol.sourceforge.net /.

D.4 Interaction between the packages

The package GLYGAL is independent from the GUI, which is used only to initialize
the parameters and visualize the results in a convenient way. The package Jmol is
just used by the GUI package. Similarly, the package SugaRun is required only by
the GLYGAL.energy package and by the utility that converts MMS3 files into XYZ
files. The MM3/cluster interface is implemented by the class MM3Evaluator and
the related classes (ServerWrapper, JobThread and JobGroup). The substitution of

MM3Evaluator with a different energy evaluator could make GLYGAL portable.

The interactions between the packages are shown in Figure D.1, where each arrow
mean a dependency between two packages:

sugarun

jmol

i

[

/ GLYGAL
VSRR .

energy

-

J

GA

f;‘\\

GUI

v,

Figure D.1: Schematic representation of the interactions between the packages.
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GLYGAL sub-packages and the GUI package play well defined roles in the dataflow
of the program. The GUI initially collect informations of what the users wants the
the program to do. This information is passed to GLYGAL and processed in order to
initialize the search controller in the GA package. The search controller now interacts
with the filter and the energy packages. Eventually it returns the results to the GUI.
The dataflow is shown in Figure D.2:

GLYGAL

search

parameters

ser’s input

Figure D.2: Schematic representation of the program dataflow.
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