
Metastorm BPM®
Release 7.6

Process Orchestrator for .NET Designer's
Guide
May 2008

Metastorm Inc.
email: inquiries@metastorm.com

http://www.metastorm.com

mailto:inquiries@metastorm.com�
http://www.metastorm.com/�

Metastorm BPM Release 7.6

ii May 2008 © Metastorm Inc.,2008

Copyrights and Trademarks

© 1996-2008 Metastorm Inc. All Rights Reserved.

Copyright Notice

 Metastorm®, Metastorm BPM®, e-Work®, Process Pod®, Enterprise Process Advantage®, ProVision®, The
Best Process Wins®, Proforma®, Metastorm Knowledge Exchange™, Metastorm DNA™, Metastorm
Discovery™, STAR™, Insight™, Envision™, and Metastorm Enterprise™ are either registered trademarks or
trademarks of Metastorm in the United States and/or other countries.

 Microsoft®, Outlook®, SQL Server™, Windows®, Vista®, Active Directory®, Visual Basic®, JScript®,
SharePoint® BizTalk® and IntelliSense are either registered trademarks or trademarks of Microsoft Corporation
in the United States and/or other countries.

 Adobe® is a registered trademark of Adobe Systems, Inc.
 Netscape® is a registered trademark of Netscape Communications Corporation.
 Other trademarks are the property of their respective owners.

Disclaimer

Every effort has been made to ensure the accuracy of the features and techniques presented in this publication.
However, Metastorm accepts no responsibility, and offers no warranty whether expressed or implied, for the accuracy
of this publication.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, recording, or otherwise, without the express written permission of Metastorm Inc.
The information in this document is subject to change without notice.

Metastorm Inc.

email: inquiries@metastorm.com
http://www.metastorm.com

mailto:inquiries@metastorm.com�
http://www.metastorm.com/�

Contents

Metastorm BPM Release 7.6 May 2008 iii

Metastorm BPM Release 7.6
Process Orchestrator for .NET Designer's
Guide
Table of Contents

1 Introduction.. 5
1.1 Acronyms ..5
1.2 Terminology..6
1.3 Getting Further Information ...6

2 What is the Metastorm Process Orchestrator for .NET?... 8
3 Using the Process Orchestrator for .NET.. 9

3.1 Importing Methods via the Integration Wizard ...9
3.2 Visual Studio .NET Integration.. 10

4 Setting Up the Process Orchestrator for .NET ... 11
4.1 Supported Environments and Installation Prerequisites ... 11

4.1.1 .NET Activator.. 11
4.1.2 Enterprise Component Library for .NET Server Components....................................... 11
4.1.3 Enterprise Component Library for .NET Sample Client.. 11
4.1.4 Process Events.. 11
4.1.5 Complex Types.. 12
4.1.6 Engine support for Process Orchestrators.. 12
4.1.7 ASP.NET Web Parts... 12

4.2 Installation ... 12
4.2.1 Troubleshooting Installation.. 17

5 Calling Imported Methods via the Integration Wizard ... 18
5.1 Publishing the Library... 18
5.2 Associating the Library with a Procedure .. 20
5.3 Calling Imported Methods via the Integration Wizard.. 20
5.4 Publishing the Procedure... 21
5.5 Full Name Binding.. 21

6 Creating Process Events in Visual Studio .NET... 22
6.1 Architecture... 23
6.2 Publishing the Process Events Library.. 23
6.3 Creating and Publishing Procedures using the Designer.. 24

6.3.1 Creating a Procedure... 24
6.3.2 Exposing Process Events in Designer ... 24

Metastorm BPM Release 7.6

iv May 2008 © Metastorm Inc.,2008

6.4 Creating a Metastorm BPM Process Code-Behind Project ... 26
6.5 Using a Metastorm BPM Process Code-Behind Project... 33

6.5.1 Process Events Class Diagram.. 34
6.5.2 Procedure.. 35
6.5.3 Stages .. 36
6.5.4 Forms .. 38
6.5.5 Admin Forms .. 39
6.5.6 Actions... 40
6.5.7 Dependencies.. 40
6.5.8 CurrentVersion... 41
6.5.9 Private member declarations & Event Handler Initializations...................................... 41
6.5.10 Public Accessor Methods / Properties .. 43
6.5.11 IntelliSense.. 44

6.6 Metastorm BPM Process Code Behind Example .. 45
6.7 Configuring Process Metadata Web Service Connection Details.. 45

6.7.1 Security.. 46
6.7.2 Process Engine Database Connection Settings .. 46
6.7.3 Authentication... 47
6.7.4 Process Metadata Web Service Configuration Details Dialog...................................... 47

6.8 Add-in... 50
6.8.1 Using the Add-in: ... 51
6.8.2 Metastorm Web Service Configuration Details .. 52
6.8.3 Deploy Process... 52
6.8.4 Debug With Process Engine .. 54
6.8.5 Resynchronizing a Project ... 55
6.8.6 Solution Browser .. 57

Appendix A – Simple Type Mapping .. 59
Appendix B – Examples of Scripts Generated by .NET Activator.................................... 60

Activator [Assembly Name].. 60
AvailableFunctions [Assembly Name].. 60

Metastorm BPM Release 7.6 May 2008 5

Metastorm BPM Release 7.6
Process Orchestrator for .NET Designer's
Guide

1 INTRODUCTION

The Metastorm Process Orchestrator for .NET is a bridging technology that connects Metastorm
processes and .NET assemblies.

This document is intended to:

• Explain what the Metastorm Process Orchestrator for .NET is.
• Provide an overview of how to use the Metastorm Process Orchestrator for .NET.
• Summarize set-up information for the Metastorm Process Orchestrator for .NET.
• Describe how .NET assembly methods, imported into an Integration Wizard collection

library by the .NET Activator, can be accessed.
• Describe how custom extensions can be developed and executed in response to

Metastorm BPM process events.
• Explain Metastorm BPM Visual Studio 2005 .NET Integration - Process Events

1.1 Acronyms

The following table lists the acronyms used in this guide:

Term Meaning

DLL Dynamic Link Library
ECL Metastorm Enterprise Component Library
GAC Global Assembly Cache

Metastorm BPM Release 7.6

6 May 2008 © Metastorm Inc.,2008

IDE Integrated Development Environment
IIS Internet Information Services
XEL Metastorm XML Library file extension
XML eXtensible Markup Language

Table 1: Acronyms

1.2 Terminology

The following table lists terms that have specific meanings for this guide:

Term Meaning

.NET Activator A tool that allows a System Integrator to create a Metastorm XML Library
(XEL) file which contains an Integration Wizard Collection and a script to
expose the functions contained within the Integration Wizard Collection to
the Process Designer.

Metastorm Enterprise
Component Library for .NET

Class library that exposes a .NET component based interface to Metastorm
functionality.

Metastorm Code Behind
Project

A Visual Studio .NET 2005 project that integrates code behind to a
Metastorm Designer procedure. The project is created using Process
Events.
Refer to section 6 Creating Process Events in Visual Studio .NET

Metastorm Client Application used to access Metastorm processes.
Metastorm Designer Application used by a Process Designer to design Metastorm processes.
Metastorm Engine A single Metastorm server process.
Integration Wizard collection
library

A library that contains an Integration Wizard collection. The Integration
Wizard collection contains additional Integration Wizard function definitions
and can be viewed via Library Properties.
For further information, refer to the Designer User Manual.

Integration Wizard Collection A Set of Integration Wizard functions that are defined in a library
for use in a Metastorm procedure.

.NET Developer The person who imports a Metastorm BPM process and uses
the extended Visual Studio functionality to create .NET
assemblies containing code to be invoked in response to
Metastorm BPM Process Events.

Process Designer The person who uses the Metastorm Designer to create a
process. The Process Designer can use functions provided by
the System Integrator and delegate process events.

System Integrator The person who uses the Activator to create a set of Integration
Wizard Collection functions that will be available to a Process
Designer.

Table 2: Terminology

1.3 Getting Further Information

This manual does not cover, in detail, the Metastorm .NET Activator, the Metastorm Enterprise
Component Library (ECL) for .NET, the ASP.NET Web Parts, the Integration Wizard component

Process Orchestrator for .NET Designer’s Guide

Metastorm BPM Release 7.6 May 2008 7

of the Metastorm Designer or server-side scripting with Jscript .NET. The following table lists
where to find detailed information on these topics:

For Information on See

Metastorm .NET Activator Metastorm .NET Activator Help (accessible from the .NET Activator)
Metastorm Enterprise
Component Library for .NET

Metastorm Enterprise Component Library for .NET Usage Guide

Integration Wizard Designer User Manual
Process Events This document and the Metastorm Process Events Help (accessible from

the Process Events wizard).
Server-side scripting with
Jscript .NET

Scripting Developer Guide

Table 3: Getting further information

Metastorm BPM Release 7.6

8 May 2008 © Metastorm Inc.,2008

2 WHAT IS THE METASTORM
PROCESS ORCHESTRATOR FOR
.NET?

The Metastorm Process Orchestrator for .NET provides interoperability between Metastorm
processes and services implemented as .NET components.

The Process Orchestrator for .NET can be used by a Visual Studio .NET developer to:

• Develop application components as .NET Assemblies. The Metastorm .NET Activator
enables methods from .NET Assemblies to be stored in an Integration Wizard collection
library which, when the library is attached to a procedure, updates the Integration Wizard
in the Metastorm Designer with the methods. These methods can then be invoked by
Metastorm procedures.

• Delegate certain process events from within the Designer. Then create assemblies using
the Metastorm BPM Process Code-Behind Project template in Visual Studio to handle the
delegated process events.

In addition, .NET developers can use the Metastorm Enterprise Component Library for .NET to
access Metastorm functionality via a component based interface.

 For further information on the Metastorm Enterprise Component Library for .NET, refer to the
Metastorm Enterprise Component Library for .NET Usage Guide.

Web developers can also use the Web Client ASP.NET web parts to build websites using Visual
Studio that contain Metastorm functionality.

 For further information, refer to the Web Client ASP.NET Web Parts Developer Guide.

Process Orchestrator for .NET Designer’s Guide

Metastorm BPM Release 7.6 May 2008 9

3 USING THE PROCESS
ORCHESTRATOR FOR .NET

3.1 Importing Methods via the Integration Wizard

The Process Orchestrator for .NET is used in the following way:

1. A Visual Studio .NET Developer develops application components as .NET Assemblies.

2. A System Integrator uses the Metastorm .NET Activator to make selected .NET classes
available as functions within the Metastorm Designer’s Integration Wizard, as follows:

i. The System Integrator runs the Metastorm .NET Activator.

ii. The System Integrator uses the .NET Activator to specify a .NET Assembly Cache
(GAC), Zap Cache or downloaded Cache, browsing to another PC if necessary.

iii. The .NET Activator uses Reflection to interrogate the list of .NET components
hosted in the Cache and provides the System Integrator with a list of the classes and
methods exposed by each assembly.

iv. The System Integrator selects which methods they want to be available as Integration
Wizard functions in the Metastorm Designer.

v. The .NET Activator then creates a Metastorm library containing a script with these
functions.

vi. The .NET Activator saves the library in .XEL format.

 For information on using the Metastorm .NET Activator to import methods from .NET
assemblies into the Metastorm Designer, refer to the .NET Activator Help. This can be
accessed from the .NET Activator.

3. A Process Designer publishes the library.

4. A Process Designer can use functions exposed by .NET Assembly components from
within Metastorm procedures by including the created library within their procedures. If
the .NET Assemblies are:

Metastorm BPM Release 7.6

10 May 2008 © Metastorm Inc.,2008

 Stateless, the Integration Wizard can be used.
 Stateful, Process Designers can use these assemblies directly from the Metastorm

Designer Script Editor. A skeleton script including class declaration and instantiation
is available, but scripting of the method calls may need to be modified manually.

 Stateless assemblies are those in which a single method can be called without requiring any previous
methods to be called.

 Stateful assemblies are those which require a number of method calls. An example would be if you
were to receive a result back from a rules engine, pass the value into the assembly and then perform
other actions using different functions in the assembly.

3.2 Visual Studio .NET Integration

A Visual Studio .NET developer writes process events which are triggered by events exposed in
the Designer.

 Refer to section 6 Creating Process Events in Visual Studio .NET.

Process Orchestrator for .NET Designer’s Guide

Metastorm BPM Release 7.6 May 2008 11

4 SETTING UP THE PROCESS
ORCHESTRATOR FOR .NET

4.1 Supported Environments and Installation Prerequisites

4.1.1 .NET Activator

• Microsoft .NET framework version 2.0.
• Microsoft .NET 2.0 Software Development Kit

4.1.2 Enterprise Component Library for .NET Server Components

• Metastorm Engine 7.5 or later.
• DCOM Access permissions granted to the installing user.
• Microsoft Internet Information Services, when HTTP hosting is configured.
• Microsoft .NET framework version 2.0.

4.1.3 Enterprise Component Library for .NET Sample Client

• Microsoft Internet Information Services.
• ASP.NET 2.0.
• Microsoft .NET framework version 2.0.

4.1.4 Process Events

• Microsoft .NET framework version 2.0.
• Metastorm Process Metadata Service

The Process Metadata Service is a web service which queries the Metastorm repository and
provides calling applications with specific information about published processes. For example, it
provides a list of the available process maps. For a particular map, it can provide a list of all the
available actions within the map, together with form field definitions etc. The Metastorm Process

Metastorm BPM Release 7.6

12 May 2008 © Metastorm Inc.,2008

Metadata Service can be installed from the Metastorm BPM CD. It can be found under the
“Metastorm Process Engine” component.

 The Process Metadata Service is not installed by default.

4.1.5 Complex Types

 Metastorm BPM Designer
 Engine support for Process Orchestrators (if Metastorm Process Engine is installed)

4.1.6 Engine support for Process Orchestrators

• Metastorm Engine 7.5 or later.

4.1.7 ASP.NET Web Parts

• Visual Studio 2005
• SQL Server 2005 Express Edition

 In order to install the .NET framework version 2.0, Windows Installer version 3.0 must be installed.
This is installed as part of Windows Server 2003 or can be installed separately.

 For further details of supported environments and installation prerequisites for Metastorm
BPM, refer to the Supported Environments guide and Installation Prerequisites guide
provided with the main product.

4.2 Installation

To install the Process Orchestrator for .NET:

1. Insert the Process Orchestrator for .NET CD into your CD drive.

If the drive is:

 Configured to autorun, the installation procedure starts automatically
 Not configured to autorun:

i. Access Windows Explorer and browse to the files on the CD.

ii. Double-click the file Autorun.exe to start the installation.

The autorun screen is displayed.

2. To proceed with the installation, click on the Process Orchestrator for .NET link.

 You see the initial screen of the Process Orchestrator for .NET installation:

Process Orchestrator for .NET Designer’s Guide

Metastorm BPM Release 7.6 May 2008 13

Figure 1: Metastorm Process Orchestrator Installation Welcome Screen

3. Click on the Next button.

 The License Agreement screen of the Process Orchestrator for .NET installation is
displayed:

Figure 2: Metastorm Process Orchestrator License Agreement Screen

4. Click Print to print the installation and startup information.

5. Select the I accept the terms in the license agreement radio button.

Metastorm BPM Release 7.6

14 May 2008 © Metastorm Inc.,2008

6. Click on the Next button.

 The Custom Setup screen of the Process Orchestrator for .NET installation is
displayed.

Figure 3: Metastorm Process Orchestrator Custom Setup Screen

 The options that appear on this screen depend on the versions of the .NET framework that are
installed.

 The feature “Metastorm Process Engine support for POs” can only be installed if the Metastorm BPM
Process Engine is installed. Selecting “.NET Activator” requires the installation of “Metastorm
Process Engine support for POs”. If “Complex Types” is selected, this feature is only required if the
Engine is installed on the same machine.

 For further information on Process Orchestrator for .NET component information, refer to the .NET
Activator Help (accessible from .NET Activator) and Enterprise Component Library for .NET Usage
Guide and Web Client ASP.NET Web Parts Developer Guide. Details on Complex Types support can
be found in the Designer User Manual.

7. Select the components of the Process Orchestrator for .NET that you want to install.

8. Click on the Next button.

 The Destination Folder screen of the Process Orchestrator for .NET installation is
displayed:

Process Orchestrator for .NET Designer’s Guide

Metastorm BPM Release 7.6 May 2008 15

Figure 4: Metastorm Process Orchestrator Destination Folder Screen

9. If you want to install the Process Orchestrator for .NET to a location other than the
default location, click on the Change button and browse to a new location.

 The Destination Folder screen is only displayed if Metastorm BPM has not been installed.

10. Click on the Next button.

 The Connection Setup screen of the Process Orchestrator for .NET installation is
displayed:

Figure 5: Metastorm Process Orchestrator Connection Setup Screen

Metastorm BPM Release 7.6

16 May 2008 © Metastorm Inc.,2008

11. Set the radio buttons to select the link to the location of the Process Engine Service List
to either a Physical/UNC path or a URL.

 If the Engine is to be installed on the same machine the path defaults to the local
Engine location.

 If the Engine is installed on another machine then enter the path or browse to the
location if the Engine is already installed. Expose the folder containing
EngineServiceConfig.xml on that machine as a network share with the
appropriate permissions to access via UNC path.

 If the connection is over HTTP enter the URL in the format:
http://<enginecomputer>/escripts/EngineServiceconfig.xml.

 The engine service file EngineServiceConfig.xml can be configured to contain multiple services.

 For further information on customizing EngineServiceConfig.xml refer to the Metastorm
Administration Guide.

12. Set the Web Client Base URL.

 The Metastorm Web Client Base URL is defined as:
http://<Web Server Name>/<Metastorm Virtual Folder Name>

 This option is only available is the user selected ASP.NET Web Parts in the Installation Screen.

13. Click on the Next button.

 The Database Setup screen is displayed:

Figure 6: Metastorm Process Orchestrator Database Server Screen

14. Click on the Next button.

Process Orchestrator for .NET Designer’s Guide

Metastorm BPM Release 7.6 May 2008 17

 The Ready to Install screen of the Process Orchestrator for .NET installation is
displayed:*

Figure 7: Metastorm Process Orchestrator Ready to Install Screen

15. Click the Install button.

 The Process Orchestrator for .NET is installed.
16. Click the Finish button.

17. Start the Engine service.

18. Start the ECL service.

4.2.1 Troubleshooting Installation

Unable to access the BPMEngine.Net URL

When a client using the Engine’s .NET interface attempts to connect to an engine on another
machine, the following error may be reported:

Access denied 401 error.

To resolve this problem, open the Internet Information Services administration tool, and change
the BPMEngine.Net virtual folder to turn on Integrated Windows Authentication (IWA). Connect
to the service using the machine with the web service installed via the ECL test client.

Metastorm BPM Release 7.6

18 May 2008 © Metastorm Inc.,2008

5 CALLING IMPORTED METHODS VIA
THE INTEGRATION WIZARD

You can use the .NET Activator to import functions exposed by .NET Assemblies into a
Metastorm Integration Wizard collection library.

 For details of how to import functions exposed by .NET, refer to the .NET Activator Help
(accessible from the .NET Activator).

To use functions, exposed by .NET Assemblies, in a Metastorm procedure, you must:

1. Deploy the assemblies in both the designer\dotnetbin and the engine\dotnetbin directories
using Visual Studio.

2. Publish the library.

3. Associate the library with a procedure.

4. Call imported methods via the Metastorm Designer Integration Wizard.

5. Publish the procedure.

The following subsections describe these steps in more detail.

5.1 Publishing the Library

The .NET Activator produces a Metastorm library containing an Integration Wizard collection.

To publish the library:

1. Access the Metastorm Designer.

2. Open the library by selecting the File menu then the Open menu item.

3. View the Integration Wizard collection, if required, as follows:

Process Orchestrator for .NET Designer’s Guide

Metastorm BPM Release 7.6 May 2008 19

i. Select the File menu, then the Library Properties menu item.

Figure 8: Library Properties

ii. Click on the Integration Wizard Collection tab.

Figure 9: Integration Wizard Collection

iii. Click on the OK button.

4. View or edit the scripts containing the imported functions, if required, as follows:

i. In the main Designer window, select the View menu, then the Scripts menu option.

ii. Click on the Server tab.

iii. Edit a script, if required, by selecting the script then clicking on the Edit button.

iv. Click on the Close button.

5. Publish the library by selecting the File menu, then the Publish menu option.

Metastorm BPM Release 7.6

20 May 2008 © Metastorm Inc.,2008

5.2 Associating the Library with a Procedure

To access the new Integration Wizard items that correspond to the imported .NET methods, you
must associate the new library with a procedure via Procedure Properties.

 For further information on associating a library with a procedure, refer to the Designer User
Manual.

To associate the library with a procedure:

1. Create a new procedure by selecting the File menu then the New menu option, or open an
existing procedure by selecting the File menu then the Open menu option.

2. Add the library to the procedure, by selecting the File menu then the Procedure Properties
menu option.

3. Click on the Used Libraries tab.

Figure 10: Used Libraries Tab

4. Click on the Add button and browse for the required library.

5. Click on the OK button.

5.3 Calling Imported Methods via the Integration Wizard

Once the library has been published and associated with a procedure, the imported methods are
available for selection in the Integration Wizard when that procedure is open in the Designer.

To incorporate .NET Assembly functions into a procedure:

1. For any event where you want to incorporate any of the required functions, use the
Integration Wizard to access the functions, under the specified category.

Process Orchestrator for .NET Designer’s Guide

Metastorm BPM Release 7.6 May 2008 21

2. Enter any values required, by the function, as parameters.

3. Click on the Next button.

 For further information on using the Integration Wizard, refer to the Designer User Manual.

5.4 Publishing the Procedure

To publish the procedure:

1. If the .NET assembly with the imported functions is in a DLL, ensure the DLL is in the
following location:

<Metastorm Installation Directory>\Engine\Dotnetbin

2. Select the View menu then the Options menu option.

3. On the Publisher tab, ensure the Enable versioning option is checked.

4. Click on the OK button.

5. Publish the procedure by selecting the File menu then the Publish menu option.

 The procedure can now be accessed from a Metastorm Client.

5.5 Full Name Binding

If a file is referenced from the GAC, it requires a full name binding, including a version and a
public key token, as well as the assembly name, where as before only the assembly name was
required.

For example, in an earlier Version of Metastorm BPM, the following call to an assembly method
in the GAC would be valid:

%resGet_FolderID:=%ScriptEval(JScript.NET,,%Procedure.Name,%M
apName,"eWork.Activator.TestClass.Invoker.Activate","TestClas
s","TestClass.eWorkObject","get_FolderID","Public")

Now, the function must be to the following format:

%resGet_FolderID:=%ScriptEval(JScript.NET,,%Procedure.Name,%M
apName,"eWork.Activator.TestClass.Invoker.Activate","TestClas
s, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=0fa3cc64eebf4c8b","TestClass.eWorkObject","get
_FolderID","Public")

Metastorm BPM Release 7.6

22 May 2008 © Metastorm Inc.,2008

6 CREATING PROCESS EVENTS IN
VISUAL STUDIO .NET

Process Events Integration is a method of separating Process Design from event implementation.

Process events are external events that are created via a wizard that connects Metastorm BPM
processes to Visual Studio .NET. This separates the design and coding processes.

Processes are setup in Designer and the process event handlers are created using the Designer via
the Integration Wizard and Visual Studio 2005 .NET.

Process events setup using Visual Studio 2005 enable a .NET developer to develop customized
events that respond to Metastorm BPM process events. The customized events can be written
using C# or Metastorm BPM language.

The people involved in process events are:

• Process Designer - the participant who uses the Metastorm BPM Designer to create
process maps and delegates .NET event handler assembly functionality from a Metastorm
BPM process.

• .NET Developer - the participant who imports a Metastorm BPM process and uses the
extended Visual Studio functionality to create .NET assemblies containing code to be
invoked in response to Metastorm BPM process events.

 This section goes through the steps required to create external process events in .NET:

1. The Process Designer publishes the Process Events Library using the Designer.

2. The Process Designer creates and publishes procedures setting event handler options
which call .NET events.

3. The .NET Developer creates a Metastorm BPM Process Code-Behind Project which
contains the skeleton code for creating process events.

Process Orchestrator for .NET Designer’s Guide

Metastorm BPM Release 7.6 May 2008 23

4. The .NET Developer creates C# source code inside the process events skeleton using
Visual Studio.

5. The .NET Developer builds and deploys the assemblies in the engine\dotnetbin or
engine\dotnetlib folder.

6. The Process Participant is now able to fill in the relevant forms using a browser.

In addition to the above steps, this section also explains what to do when stages, maps or events
that may have been renamed, deleted or added.

6.1 Architecture

The exposure of the Process Events has been designed as shown in the following diagram:

Figure 11: Process Events Architecture

6.2 Publishing the Process Events Library

The Process Events Library contains a script which is required for calling an external event
handler defined in Visual Studio 2005.

To use the Process Events Library the Process Designer:

Process
Designer

Metastorm
Database

DESIGN DEPLOY IMPLEMENT

.NET
Developer

Metastorm

C#,
sln

DLL

Process
Participant

Client

Process
Operation

Request

Response
Script Invokes
External Events

Metastorm BPM Release 7.6

24 May 2008 © Metastorm Inc.,2008

1. Opens the Process Events Library

2. Publishes the Process Events Library

3. Associates the Process Events Library with a new or existing process.

4. The Event Handler category is now available in the Integration Wizard.

 For further information, refer to 6.3.2 Exposing Process Events in Designer.

6.3 Creating and Publishing Procedures using the
Designer

6.3.1 Creating a Procedure

A Metastorm procedure is created using the Designer to automate business processes using maps,
folders, stages and actions.

The Metastorm process is represented by maps, stages, forms and actions in the Designer. The
Process Designer can insert formula and script code in the Designer to execute events. The events
can be created in Designer or the events can be exposed using the Integration Wizard. The
exposed events call external event handlers created in .NET.

Events are found in the Do This properties tab and typically are:

• When Action Started
• When Action Completed
• When Stage Started
• When Stage Completed
• When Form Loaded
• When Form Completed
 Form control events, for example buttons and text fields, are not supported.

 For further information on creating procedures refer to the Designer User Manual.

6.3.2 Exposing Process Events in Designer

Each process in a procedure can have its event exposed to Visual Studio .NET solutions. Process
events can be exposed:

• Locally
• Globally

In order to use exposed process events and customized extensions, Process Events
Library.xel should be published and associated with the procedure. This library contains the
External Event Handler Integration Wizard function which contains a generic event for for local
and global exposed processes.

Process Orchestrator for .NET Designer’s Guide

Metastorm BPM Release 7.6 May 2008 25

Locally

The events can be exposed process by process by placing a call to a formula which inserted
manually or using the Integration Wizard.

The Integration Wizards Collections Library contains a %ExecuteExtensionEval call to
invoke a JScript.NET to handle process events. The External Event Handlers item identifies the
Procedure Name and invokes the correct action, form or stage event.

Each action, form and stage can have process events exposed as required. These are exposed as
follows:

1. Associate Process Events Library.xel with the procedure.

2. Select the action, form or stage.

3. Select the Do This tab in the Properties window.

4. Select the event, for example, When Action Started.

5. Click the Integration Wizard button

6. Select the Event Handlers category and the External Event Handler item

7. Click Finish

8. The following syntax is automatically created:

%ExecuteExtensionEval(JScript.NET, %Procedure.Name, %MapName,
"Metastorm.ProcessEvents.HandleExternalEvents.DelegateEvents"
,)

9. The process can then be published.

 This script will run the relevant .NET code. This function call should not be modified.

Globally

All Process Events can be exposed using the Map property tab of the map. This tab contains two
options which globally expose process events:

• Delegate all external events for map
• Perform delegated events before local event

Metastorm BPM Release 7.6

26 May 2008 © Metastorm Inc.,2008

Figure 12: Map Properties highlighting Process Events options

Delegate all external events for map

This is a check box property which defines whether all the events of a process will be delegated
to an external .NET assembly. Local events can still be defined if required. When checked, this
option implies that each event has the External Event Handler script applied to it.

Perform delegated events before local event

This defines when the process engine will invoke the delegated events when all processed events
are delegated. The default value (unchecked) performs delegated events after the local event. The
property is only active if the Delegate all external events for map is checked.

 The Process Events Library.xel needs to be associated with the procedure for these
options to have an effect.

 If the user has also delegated external events in a local reference, the external event will be fired twice.

 Admin Forms are not included by the Delegate all external events for map option. To include Admin
Form, for each Admin Form apply local events to the forms (When Form Loaded and When Form
Saved) for them to be included.

6.4 Creating a Metastorm BPM Process Code-Behind
Project

Metastorm BPM provides a Process Events Wizard which is a custom Visual Studio project
wizard. It allows the developer to create a new solution based on data retrieved from a Metastorm
database via a user selected Web Service. The solution will contain one or more projects with

Process Orchestrator for .NET Designer’s Guide

Metastorm BPM Release 7.6 May 2008 27

each project corresponding to each procedure retrieved from the database and selected by the
user. For each project a class library is automatically generated by the wizard.

Figure 13: Process Events Workflow

The Process Events Wizard takes the user through a set of serial steps via a standard ‘wizard’
interface, a sequence of dialog windows, where information will be entered and/or approved by
the user before proceeding to the next step. Help is provided from the Wizard.

 Please be aware that the Process Events Help may be displayed behind Visual Studio when the Help
button is clicked in the Wizard.

The steps for creating a Process Events project are:

1. Open Visual Studio .NET.

2. Select File | New | Project from the menu.

3. Select Project Type Visual C#.

4. Select Metastorm BPM Process Code-Behind Project template.

VS 2005

Start New Metastorm
Process Events Wizard

Wizard Opens a VS
2005 Metastorm
BPM Process Events
Solution

Invoke a
Wizard

Build & Deploy
to Engine
Machine

Metastorm BPM Release 7.6

28 May 2008 © Metastorm Inc.,2008

Figure 14: Metastorm BPM Process Code-Behind Wizard – New Project

5. Enter the location and solution name.

 Any project name entered will be overwritten by the wizard.

 The location name of the project plus the file name should not exceed 248 characters. It is
recommended that the .NET Developer does not use the default Visual Studio path as the
dynamically created map classes may exceed this limit.

6. Click OK.

7. An introductory window is displayed to the user, explaining the wizard functionality.

Process Orchestrator for .NET Designer’s Guide

Metastorm BPM Release 7.6 May 2008 29

Figure 15: Metastorm Process Events Code Behind Wizard – Welcome

8. Check Auto connect to default process metadata web service if you have already have
a default process metadata web service. The default configuration is set in the Metadata
Web Service Connection Details. The default configuration is automatically moved to the
top of the service list.

 Checking this option, skips steps 10 and 11.

9. Click the Next button.

10. Choose the desired Metadata service to connect to by using the drop down, filling in the
URL and authentication type if required.

Metastorm BPM Release 7.6

30 May 2008 © Metastorm Inc.,2008

Figure 16: Metastorm Process Events Code Behind Wizard - Web Service Connection Details

 The Metastorm Process Metadata Service should be installed on the same machine as the engine and it
is only used in a development environment.

 For configuration details refer to section 6.7 Configuring Process Metadata Web Service
Connection Details.

11. Click Next.

12. Select and import procedures from the displayed list. All procedures in the list contain
exposed events.

Process Orchestrator for .NET Designer’s Guide

Metastorm BPM Release 7.6 May 2008 31

Figure 17: Metastorm BPM Process Events Code Behind Wizard – Import Procedures

13. Click Next.

14. A hierarchical ‘tree view’ of the selected procedures is displayed.

Metastorm BPM Release 7.6

32 May 2008 © Metastorm Inc.,2008

Figure 18: Metastorm BPM Process Events Code Behind Wizard – Review External Events

15. Click Next.

16. The wizard generates a new Visual Studio solution based on the procedures selected by
the user.

Process Orchestrator for .NET Designer’s Guide

Metastorm BPM Release 7.6 May 2008 33

Figure 19: Metastorm Process Events Code Behind Wizard - End

17. Click Finish.

The default project created has the name
Metastorm.ProcessEvents.<ProcedureName>. The solution name is defined by the user
in the first screen of the wizard.

Each project consists of C# files relating to each Map and each Admin Form group containing
External Events.

 Non alphanumeric characters (except _)that are accepted by Designer in Stage, Form, Actions or
Event names, are replaced with the corresponding character code. For example a Stage named
Process & Review in Designer will be amended to Process_chr32_chr38_chr32_Review in Visual
Studio, where chr32 =space and chr38=ampersand.

6.5 Using a Metastorm BPM Process Code-Behind
Project

A project created using the Metastorm BPM Process Code-Behind Project template consists of:

• The solution name, defined in the Process Events Wizard.
• The project name which is Metastorm.ProcessEvents.<ProcedureName>
• The files within the project. A single component is created for each Map and each Admin

Form which contains two partial classes for each process. The files are named
<MapName>.cs and <MapName>.Fields.cs

Metastorm BPM Release 7.6

34 May 2008 © Metastorm Inc.,2008

• A tree view of the processes including action, stages, forms, custom variables and events.
The tree view is for informational usage only so that the developer can determine the
process context of the events.

• Events skeletons which are created using the procedure, map, form, action and stage
names defined in Designer.

• Resynchronization option.
The code skeleton has two dependencies:

• Metastorm.Engine.Interface75

• Metastorm.ProcessEvents.CodeBehindSupport

The first dependency gives access to the IFolder Interface. The second provides support for
the auto generated code in the skeleton.

The IFolder Interface provides access to functions exposed by the Metastorm BPM language.

Metastorm BPM Code-Behind Project comes with IntelliSense to assist the .NET developer.

 Refer also to When Formulas are evaluated in the Designer User Manual for a
description of the order in which process events are fired.

6.5.1 Process Events Class Diagram

The Process Events Wizard generates a skeleton for the code. The diagrams below show a
published procedure with the corresponding .NET code. The Delegate all external events for
map property has been checked in Designer.

Process Orchestrator for .NET Designer’s Guide

Metastorm BPM Release 7.6 May 2008 35

Procedure Explorer in Designer

Main Pane in Designer

Class Diagram in Visual Studio

Figure 20: Procedure in Designer and Visual Studio 2005

 Non alphanumeric characters accepted by Designer in names are replaced with the corresponding
character code. For example a Stage named First Stage in Designer will be amended to
First_chr32_Stage in Visual Studio, where chr32 =space.

6.5.2 Procedure

Each map and each Admin Form in a procedure is split into two partial classes.

• <MapName>.Fields.cs which contains:
 Private members of the map class
 The initialization of the map owned objects.
 Actions

Metastorm BPM Release 7.6

36 May 2008 © Metastorm Inc.,2008

 Forms
 Stages
 CurrentVersion, metastormFolderInstance, WarnMode, IsAdmin

• <MapName>.cs which contains:
 Properties: - CurrentVersion, metastormFolderInstance, WarnMode,

IsAdmin
 Methods – Events, Initialize Component, MapName
 Nested Types – Warning Status.
 Public properties of the map class.
 Initialization of user configurable values.

The structure is created mirroring the Designer naming conventions and structure.

 Map Segments are integrated into the parent map so that the segment belongs to the parent’s map’s
class file when added to a Code-Behind project.

 Stages, Forms and Action do not provide access to the Metastorm Object Model via
metastormFolderInstance, this means that the developer is able to use
metastormFolderInstance.Action.StartsStage but unable to use
ActionName.StartsStage.

6.5.3 Stages

Each stage has private variable and public accessor methods. Private stage names are prefixed
with “m_”. Variable Names are prefixed with the object type.

Stage Names

private Stage m_<ObjectType:Stage><StageName>;
public Stage <ObjectType:Stage><StageName>
 {
 get
 {
 return m_<ObjectType:Stage><StageName>;
 }
 set
 {
 m_<ObjectType:Stage><StageName>= value;
 }
 }

Events related to stages are in the format:

Start Event

public bool <ObjectType:Stage><stageName>WhenStageStarted()
{
 return true;
}

Finish Event

Process Orchestrator for .NET Designer’s Guide

Metastorm BPM Release 7.6 May 2008 37

public bool <ObjectType:Stage><stageName>WhenStageCompleted()
{
 return true;
}

 Non alphanumeric characters that are accepted by Designer in Stage names that are accepted in
Designer are replaced with the corresponding character code. For example a Stage named Process &
Review in Designer will be amended to Process_chr32_chr38_chr32_Review in Visual Studio, where
chr32 =space and chr38=ampersand.

 Rule stages: OnInvokeRule is executed via the preceding When Action Completed.

Common Stages

Common stages are not included by name in a Code-Behind Project. Instead, all actions from a
common stage are assigned to the corresponding stage.

For example, there is a common stage called “MyCommonStage” which has a common action
“MyCommonAction”. The “MyCommonStage” is applied to “MyFirstStage” and
“MySecondStage” resulting in the following code:

public Action ActionMyCommonActionFromStageMyFirstStage
{
 get
 {
 return m_ActionMyCommonActionFromStageMyFirstStage;
 }
 set
 {
 m_ActionMyCommonActionFromStageMyFirstStage = value;
 }
}

public bool
ActionMyCommonActionFromStageMyFirstStageWhenActionStarted()
{
 return (true);
}

public bool
ActionMyCommonActionFromStageMyFirstStageWhenActionCompleted(
)
{
 return (true);
}

public Action ActionMyCommonActionFromStageMySecondStage
{
 get
 {
 return m_ActionMyCommonActionFromStageMySecondStage;

Metastorm BPM Release 7.6

38 May 2008 © Metastorm Inc.,2008

 }
 set
 {
 m_ActionMyCommonActionFromStageMySecondStage = value;
 }
}

public bool
ActionMyCommonActionFromStageMySecondStageWhenActionStarted()
{
 return (true);
}

public bool
ActionMyCommonActionFromStageMySecondStageWhenActionCompleted
()
{
 return (true);
}

6.5.4 Forms

• Each form will have Private variable and public accessor methods. Private form names
are prefixed with “m_”.

• Variable Names are prefixed with the object type so that the variable is not overloaded.

Form names

private Form m_<ObjectType:Form><FormName>;
public Form <ObjectType:Form><FormName>
 {
 get
 {
 return m_<ObjectType:Form><FormName>;
 }
 set
 {
 m_<ObjectType:Form><FormName>= value;
 }
 }

Events related to forms will be in the format:

Start Event

public bool <ObjectType:Form><FormName>WhenFormLoaded()
{
 return true;
}

Process Orchestrator for .NET Designer’s Guide

Metastorm BPM Release 7.6 May 2008 39

Finish Event

public bool <ObjectType:Form><formName>WhenFormSaved()
{
 return true;
}

 Non alphanumeric characters that are accepted by Designer in Form names are replaced with the
corresponding character code. For example a Form named Process & Review in Designer will be
amended to Process_chr32_chr38_chr32_Review in Visual Studio, where chr32 =space and
chr38=ampersand.

6.5.5 Admin Forms

• Admin Forms are created with their own partial classes with isAdmin set to True.
• Each form will have Private variable and public accessor methods. Private form names

are prefixed with “m_”.
• Variable Names are prefixed with the object type so that the variable is not overloaded.

Form names

private Form m_<ObjectType:Form><FormName>;
public Form <ObjectType:Form><FormName>
 {
 get
 {
 return m_<ObjectType:Form><FormName>;
 }
 set
 {
 m_<ObjectType:Form><FormName>= value;
 }
 }

Events related to forms will be in the format:

Start Event

public bool <ObjectType:Form><FormName>WhenFormLoaded()
{
 return true;
}

Finish Event

public bool <ObjectType:Form><formName>WhenFormSaved()
{
 return true;
}

Metastorm BPM Release 7.6

40 May 2008 © Metastorm Inc.,2008

6.5.6 Actions

• Each action has private variable and public accessor methods. Private form names are
prefixed with “m_”.

• Variable Names are prefixed with the object type.
• Creation actions do not have preceding stage names and are differentiated from blank or

admin forms.
Start Events

public void
<ObjectType:Action><actionName>FromStage<[StageName]
/[BlankForms, AdminForm]>WhenActionStarted()
{
 return true;
}

public void
<ObjectType:Action><actionName>FromStage<[StageName]
/[BlankForms, AdminForm]>OnlyStartActionIf()
{
 return true;
}

Finish Event

public void
<ObjectType:Action><actionName>FromStage<[StageName]
/[BlankForms, AdminForm]>WhenActionCompleted()
{
 return true;
}

 Action names will be a combination of the StartsWithStageName and the action name

 Non alphanumeric characters that are accepted by Designer in Actions names are replaced with the
corresponding character code. For example a Stage named Processing & Reviewing in Designer will
be amended to Processing_chr32_chr38_chr32_Reviewing in Visual Studio, where chr32 =space and
chr38=ampersand.

6.5.7 Dependencies

The code skeleton is dependent on:

• Metastorm.Engine.Interface75 which gives access to the IFolder Interface.
• Metastorm.ProcessEvents.CodeBehindSupport which provides support for the

auto generated code in the skeleton.
The IFolder Interface provides access to functions exposed by the Metastorm BPM language.

Process Orchestrator for .NET Designer’s Guide

Metastorm BPM Release 7.6 May 2008 41

6.5.8 CurrentVersion

The CurrentVersion is updated when no changes have been made to the procedure and the
procedure is re-published in the Designer and resynchronized in Visual Studio 2005.

For example:

A procedure is published with Delegate all external events for map checked. The Process
Events Integration Wizard is run in Visual Studio 2005 to create code behind. A constructor is
automatically created:

public <MapName>()
{
 InitializeComponent();
 currentVersion = 1;
 // Set warn mode for version conflicts
 // WarnOnError
 // IgnoreOnError
 // StopOnError
 warnMode = WarningStatus.WarnOnError;
 }

The procedure is published with no changes and in Visual Studio the code is resynchronized. The
code is updated:

public <MapName>()
{
 InitializeComponent();
 currentVersion = 2;
 // Set warn mode for version conflicts
 // WarnOnError
 // IgnoreOnError
 // StopOnError
 warnMode = WarningStatus.WarnOnError;
 }

The current version is checked by the invoker at runtime.

The warn mode control the behavior. For example, this may be a warning in the Designer log, or
StopOnError may throw an actual exception or add an error.

6.5.9 Private member declarations & Event Handler Initializations

This section shows examples of C# code (<MapName>.Fields.cs) automatically generated
through the Process Events wizard.

Forms, stages and action methods.

this.m_FormForm1 = new Form();
this.m_FormForm1.Name = "Form1";

Metastorm BPM Release 7.6

42 May 2008 © Metastorm Inc.,2008

this.m_StageFirst_chr32_stage = new Stage();
this.m_StageFirst_chr32_stage.Name = "First_stage";

this.m_ActionFirst_chr32_actionFromStageBlankForms = new
Action();
this.m_ActionFirst_chr32_actionFromStageBlankForms =
"First_chr32_action";

When Action Completed

this.m_ActionFirst_chr32_actionFromStageBlankForms.WhenAction
Completed +=
 new
BaseObject.FinishEventHandler(this.ActionFirst_chr32_actionFr
omStageBlankFormsWhenActionCompleted);

When Action Started

this.m_ActionFirst_chr32_actionFromStageBlankForms.WhenAction
Started +=
 new
BaseObject.StartEventHandler(this.ActionFirst_chr32_actionFro
mStageBlankFormsWhenActionStarted);

When Stage Completed

this.m_StageFirst_chr32_stage.WhenStageCompleted +=
 new
BaseObject.FinishEventHandler(this.StageFirst_chr32_stageWhen
StageCompleted);

When Stage Started

this.m_StageFirst_chr32_stage.WhenStageStarted +=
 new
BaseObject.StartEventHandler(this.StageFirst_chr32_stageWhenS
tageStarted);

When Form Loaded

this.m_FormForm1.WhenFormLoaded +=
 new
BaseObject.StartEventHandler(this.FormForm1WhenFormLoaded);

When Form Saved

this.m_FormForm1.WhenFormSaved +=
 new
BaseObject.FinishEventHandler(this.FormForm1WhenFormSaved);

Process Orchestrator for .NET Designer’s Guide

Metastorm BPM Release 7.6 May 2008 43

6.5.10 Public Accessor Methods / Properties

public bool StageFirst_chr32_stageWhenStageStarted()
{
 return true;
}

public bool StageFirst_chr32_stageWhenStageCompleted()
{
 return true;
}

public bool
ActionFirst_chr32_actionFromStageBlankFormsWhenActionStarted(
)
{
 return true;
}

public bool
ActionFirst_chr32_actionFromStageBlankFormsWhenActionComplete
d()
{
 return true;
}

public Stage StageFirst_chr32_stage
{
 get
 {
 return m_StageFirst_chr32_stage;
 }
 set
 {
 m_StageFirst_chr32_stage = value;
 }
}

public bool StageFirst_chr32_stageWhenStageStarted()
{
 return true;
}

public bool StageFirst_chr32_stageWhenStageCompleted()
{
 return true;
}

 public Form FormForm1
 {

Metastorm BPM Release 7.6

44 May 2008 © Metastorm Inc.,2008

 get
 {
 return m_FormForm1;
 }
 set
 {
 m_FormForm1 = value;
 }
 }

 public bool FormForm1WhenFormLoaded()
 {
 return true;
 }

 public bool FormForm1WhenFormSaved()
 {
 return true;
 }

6.5.11 IntelliSense

To assist the .NET Developer, Metastorm BPM Code-Behind Project has IntelliSense for its
properties and methods.

For example:

Figure 21: IntelliSense example

 All Integration Wizard functions are available in C# except functions which run VBScript or
JScript.NET. These functions can be used in Designer in conjuction with
%ExecuteExtensionEval.

Process Orchestrator for .NET Designer’s Guide

Metastorm BPM Release 7.6 May 2008 45

6.6 Metastorm BPM Process Code Behind Example

The following worked example shows how to populate a dropdown is created in the Designer
which contains a list of names.

1. Associate Process Events Library.xel with procedure.

2. Set up text custom variables:

 txtNames
 txtListOptions

3. Add a dropdown to a form and set the following properties

Component Property Tab Properties Value

Drop-down Drop-down Variable txtNames
Drop-down Options List options %txtListOptions
Form1 Do This When user loads

form
In the Integration Wizard select: Event Handlers and
External Event Handler.

Table 4: Component Property Settings

4. Publish the procedure

5. In Visual Studio 2005, create a Metastorm BPM Process Code-Behind Project using the
published procedure.

6. Find public bool FormForm1WhenFormLoaded()

7. Amend as follows:

public bool FormForm1WhenFormLoaded()
{
 metastormFolderInstance.CustomVariable("txtListOptions",
 "Richard,Katherine,Pedro,Bami");
 return true;
}

8. Build the project

9. Deploy the project

10. In Internet Explorer, view the form and the dropdown is populated with the list defined in
Visual Studio .NET.

6.7 Configuring Process Metadata Web Service
Connection Details

Internet Information Services (IIS) is configured to include the Process Metadata Web Service
called Metastorm.Common.ProcessMetadataService which sets its default authentication
method as Integrated Windows Authentication. The URL is defined in a Visual Studio

Metastorm BPM Release 7.6

46 May 2008 © Metastorm Inc.,2008

Integration configuration files. The Visual Studio Integration requires the Metastorm Process
Metadata Service.

Before the Process Metadata Web Service can be configured the following need to be set:

• Security
• Process Engine Database connection settings

6.7.1 Security

The Visual Studio 2005 .NET Developer requires access to the Metastorm Database (SQL or
Oracle) using normal authentication methods.

The web service that is invoked has to have the necessary Internet Information Services (IIS)
security set by an IIS administrator.

Figure 22: Metastorm Process Metadata Service Security

When the Visual Studio 2005 .NET developer deploys the dll to the engine machine, the
developer will need to have the necessary NTFS permissions to deploy an assembly in relevant
folder.

6.7.2 Process Engine Database Connection Settings

The Metastorm Process Metadata Service uses the Process Engine’s database connection settings.
For the service to have access to the configuration information, certain user accounts need to have
read permission to the following registry keys:

• HKLM\Software\Metastorm\Engine

• HKLM\Software\Metastorm\Engine\Database

• HKLM\Software\Metastorm\Engine\Database Connectors & sub
keys.

By default, the service uses Integrated Windows Authentication. This means that the service
impersonates the currently logged on user, so all Visual Studio users must have read access to
these keys.

Metastorm Process
Metadata Service

VS 2005
Developer

Authentication
required for

Registry
Access

IIS
Authentication

required
Database

Authentication
Required

Metastorm
Database

Process Orchestrator for .NET Designer’s Guide

Metastorm BPM Release 7.6 May 2008 47

6.7.3 Authentication

When installing the service the currently logged on user is added by default. In development
environments where there is more than one person accessing the service each developer will need
to have read permissions for the registry. The best practice would be to create a user group, such
as Metastorm Developers and grant permissions to this group. Further users can be added to this
group as required.

Alternatively, the service can be accessed using Anonymous authentication. This can be changed
in the IIS administration console. In this case permissions are given to the Anonymous user only.
This typically is the I_USR<machinename user>.

There are some issues to be aware with regard to service and database configurations:

1. The service authentication type (Integrated Windows Authentication, Basic and
Anonymous) is not important, when access to the Metastorm database is configured as
SQL Authentication.

2. When accessing a SQL Server database using trusted connections (Integrated
Authentication) the following apply:

i. Integrated Windows Authentication – all users accessing the service must be
authenticated by SQL Server.

ii. Anonymous – You will need to make sure the I_USR<machinename user> can be
authenticated by SQL Server

iii. Basic Authentication - prompts the user for their credentials.

 Basic Authentication credentials are sent via clear text.

3. SQL Authentication (nominating a user id and password to connect to the database) is the
only mode supported when accessing Oracle databases from the Metastorm Process
Metadata Service.

 The Metastorm Process Metadata Service is required during development and is not used in
production. It is recommended that customers test their development on non-production machines.

6.7.4 Process Metadata Web Service Configuration Details Dialog

The Metastorm Process Metadata Service can be accessed from the Metastorm Process Events
Code-Behind Wizard or through the Process Events add-in in Visual Studio.

Metastorm BPM Release 7.6

48 May 2008 © Metastorm Inc.,2008

Figure 23: Metastorm Process Metadata Service Configuration Dialog in the Wizard

In Visual Studio:

1. Tools | Add-in Manager

2. Select Process Events Solution Support

3. Click OK

4. View | Metastorm Process Events Web Service Details

Process Orchestrator for .NET Designer’s Guide

Metastorm BPM Release 7.6 May 2008 49

Figure 24: Web Service Configuration Details accessed from the menu

Connection Parameters

Option Summary Remarks

Alias (string) This is a user defined name for the Web Service.

URL (string)

The location of the Process Metadata Service. The
default service name is displayed. It is obtained
from the Process Activator’s and VS Integration
configuration files.

The Metastorm Process Metadata Service can
run on a separate engine machine. If this is
the case, the URL will reference the engine
machine.

Type

The authentication used by the Metastorm
Process Metadata Service.

The following authentication methods are
supported:
• Anonymous - a dedicated local account is

used to server the request.
• Basic Authentication (requires User

name, Password and Domain)
• Integrated Windows Authentication, the

default. The service impersonates the
credentials of the user accessing the
service.

Refer to 6.7 Configuring Process Metadata
Web Service Connection Details for more
details.

User name
(string)

Sets the user name used for basic authentication.

Password
(string)

Sets the password used for basic authentication.

Domain
(string)

Sets the domain used for basic authentication.

Remember that password information is sent
in plain text over the network when using basic
authentication.

Default
Configuration
(boolean)

Sets the displayed Web Service as the default
Process Metadata Web Service. The alias name
of the default configuration is moved to the top of
the Alias dropdown.

Metastorm BPM Release 7.6

50 May 2008 © Metastorm Inc.,2008

Proxy Details

Option Summary Remarks

Use Proxy
(boolean)

Sets the information for the proxy server used for
all web services calls.

Type

Sets the proxy type.

• The proxy server can be configured into
two ways:

• CURRENT_USER - the current user’s IE
settings are used to determine the proxy.

• host:port -the proxy at host:port is used
(for example. http://93.13.17.2:8080).
These settings override the IE settings.

Host

The host port of the proxy. For example:
http://93.13.17.2:8080.

Http must be used in front of definition.

User name
(string)

Sets the username used when accessing the
proxy server.

Password
(string)

Sets the password used when accessing the
proxy server.

Bypass if
local address
(boolean)

Determines whether the proxy server is bypassed
when calling local resources.

If checked, requests to local Internet resources
do not use the proxy server. Local requests
are identified by the lack of a period (.) in the
URI, as in http://webserver/ or access the local
server, including http://localhost,
http://loopback, or http://127.0.0.1 .
If not checked, all Internet requests are made
through the proxy server.

Buttons

Options Remarks

Connect

This button checks if the defined web service exists and uses this connection. An error message is
displayed if the web service fails to connect.

 The Connect button is only available when using the Process Events Solution Support
Add-in. In the wizard, the web service connection is tested when the user clicks Next.

Update This button updates the displayed web service configuration details.

Delete This button deletes the displayed web service configuration details.

6.8 Add-in

Process Events is distributed with a Process Events Solution Support Add-in. The Add-in
provides Visual Studio 2005 support for Metastorm BPM Code Behind Process Events Solutions
and contains the following menu options:

• Metastorm Web Service Configuration Details.
• Deploy Process.
• Debug With Process

http://93.13.17.2:8080/�
http://93.13.17.2:8080/�

Process Orchestrator for .NET Designer’s Guide

Metastorm BPM Release 7.6 May 2008 51

• Resynchronizing a Project
• Solution Browser.

 When Process Events is installed the Add-in is stored in the current user’s My Documents\Visual
Studio 2005\AddIns folder. If a different user uses Process Events, the file
Metastorm.ProcessEvents.SolutionSupportAddin.AddIn will need to be copied to
the current user’s My Documents\Visual Studio 2005\AddIns folder.

6.8.1 Using the Add-in:

1. Select Tools | Add-in Manager

2. Select Process Events Solution Support

3. Click OK.

4. The View menu contains two new options:

i. Browse Process Events – this option displays the Solution Browser depicting
Designer’s Procedure Explorer in graphical format.

ii. Metastorm Process Events Web Service Details – this option displays the
Metastorm Web Service Configuration Details which set the location of the Web
Service.

5. Solution Explorer contains two new options in the project context menu:

i. Deploy Process – this option copies a built project’s assemblies (DLL’s) to a
location (by default engine\dotnetbin) for use with the published procedure.

ii. Resynchronizing a Project – this option resynchronizes the .NET process events
code with the published procedure.

iii. Debug With Process – this option enables a .NET developer to debug a process
events project.

Figure 25: Process Events Menu Options

Metastorm BPM Release 7.6

52 May 2008 © Metastorm Inc.,2008

6.8.2 Metastorm Web Service Configuration Details

Each of the features requires a connection to the process metadata service. The solution Add-in
attempts to auto connect to a process metadata xml file, which is loaded on first attempt. If none
of the features work, you can reconfigure the web service to a valid connection.

To view the Web Service Configuration details:

1. From the View menu select Metastorm Process Events Web Service Details.

2. The Web Service Configuration Details dialog is displayed.

Figure 26: Web Service Configuration Details Dialog

This screen displays a list of available Metastorm Process Metadata Services.

It is assumed that the web service is installed on the same machine as the engine.

6.8.3 Deploy Process

The Deploy option requires the project to be built. The assembly files are then copied from the
project’s bin\build folder to the Deployment Target Path. The default paths are
C:\Program Files\Metastorm BPM\Engine\donetbin or
C:\Program Files\Metastorm BPM\Engine\donetlib.

The assembly cache uses the engine defined in the Metadata Service Configuration file.

The Deploy option, stops and restarts the engine if it running. An “Engine Status” label indicating
progress is displayed in the Deploy Project Files dialog. The engine is restarted if a procedure has
been run before and the assembly is loaded in the script hosts appdomain assembly cache. The
cache is flushed by stopping the engine, deploying the new assembly and restarting the engine.

Process Orchestrator for .NET Designer’s Guide

Metastorm BPM Release 7.6 May 2008 53

 The Deploy option is recommended for use on a developers machine and not in a production
environment.

To deploy a project:

1. Load the Process Events Add-in

2. Open Solution Explorer.

3. Right click the Project Name.

4. Select Build.

5. Right click the Project Name.

6. Select Deploy Process.

7. The Deploy Process dialog is displayed.

8. Check the Files to Deploy and the Deployment Target Path.

9. Click Deploy.

Figure 27: Deploy Project Files dialog

Metastorm BPM Release 7.6

54 May 2008 © Metastorm Inc.,2008

Deploy Project Files

Deployment Target Paths

The target path of the assembly files which are copied from the project’s bin\build folder to the
defined Deployment Target Path. The default paths are
C:\Program Files\Metastorm BPM\Engine\donetbin or
C:\Program Files\Metastorm BPM\Engine\donetlib.

Overwrite existing files

Overwrites existing files in the Deployment Target Path folder.

Files to deploy

The files needed to deploy Process Events are the dll and pdb file for the appropriate project.

Buttons

All

This button selects all files in Files to deploy.

None

This button unchecks all selected files in Files to deploy.

Deploy

This button deploys the selected files to the defined Deployment Target Path.

Close

This button closes the dialog.

6.8.4 Debug With Process Engine

The Debug With Process Engine option enables a .NET developer to debug a process events
project. If the engine is running the Debug With Process Engine menu option will attempt to
attach the code behind the dll to the engine process. Users can then detach from the process using
the Detach All menu option.

To debug the Process Engine:

1. Deploy the Project

2. In the Solution Browser, right click and select Debug With Process Engine

When the .NET developer has finished debugging they should select from the menu, Debug |
Detach All.

Process Orchestrator for .NET Designer’s Guide

Metastorm BPM Release 7.6 May 2008 55

 Debug With Process Engine is not supported with Split deployment.

 The Debug With Process Engine option is not accessible using Vista. In order to attach to an
engine in Vista, you must attach to process using the standard Visual Studio Attach to Process
option.

6.8.5 Resynchronizing a Project

When a process designer changes a procedure and republishes the procedure, the Visual Studio
2005 developer should resynchronize a project to include or exclude any methods that may have
changed.

The Solution Add-in, Resynchronization obtains a data set from the database and uses it to amend
an existing Visual Studio solution which was previously generated by the Process Events Wizard.

The resynchronization process displays the following information:

• An updated version of the project against the latest published data.
• New forms, actions or stages events (from local or global).
• Any stages, actions, forms or maps that have been removed or renamed in the published

procedure are marked as obsolete. Obsolete stages are not removed from the Metastorm
database as stages (folders) may be on Users’ To Do / Watch list.

 A Metastorm Services Administrator can purge stages that are no longer being used, using the purge
stages option on a map using the Metastorm Services Manager tool.

 For further information on purging stages, refer to the Administration Guide

There are three conditions that must be met to assume that a code element represents a data set for
Stage, Form or Action entities, past or present.

• The code element must be a function whose name can be deconstructed into components.
• These components can be used to construct a variable name and property name, both of

which must exist in the corresponding class.
 At invocation time, if the Visual Studio 2005 developer has set to WarnMode.StopOnError and there is
a procedure that has not been resynchronized, the procedure will fail to execute.

Steps to Resynchronize a Project

To resynchronize a project:

1. Open Solution Explorer.

2. Right click the Project Name.

3. Select Resynchronize Project.

4. The Resynchronize Project dialog is displayed.

Metastorm BPM Release 7.6

56 May 2008 © Metastorm Inc.,2008

Figure 28: Resynchronize Project dialog

5. Check Mark redundant event handler methods as ‘Obsolete’ as required.

6. Click the Resynch button.

7. Rebuild the project.

8. Redeploy the project.

 If the Procedure no longer exists, the .NET Developer will be warned that a project in a solution is no
longer valid.

 If a Procedure is already in use it may be necessary to stop the process engine before redeploying the
process.

 By default, clicking the Resynch button automatically saves the solution.

 The Start Page recent projects are not currently supported with resynchronization .The VS2005
developer will need to refresh their events after loading a project using the Start Page.

Renaming a Map

If the map has been renamed, a new code behind unit is created.

Process Orchestrator for .NET Designer’s Guide

Metastorm BPM Release 7.6 May 2008 57

Renaming a Stage or Action

When a project is resynchronized the option Mark redundant event handler methods as
‘Obsolete’ in the Resynchronize Project dialog can be used to mark any stages or actions that
have been renamed. As the stage or action is no longer available to a process any related events
are marked as obsolete in the code left behind and new stages and actions are added to the
project..

The code behind class creates new events for the renamed form and places Obsolete around
the existing code.

[Obsolete("Event Handler is obsolete, event no longer
valid")]
public bool
ActionAction1FromStageFirst_chr32_stageWhenActionStarted()
{
 return true;

}

The old stage, form or action events are not deleted, for backwards compatibility because a
procedure may already be in use and therefore data may be held in the database against a specific
stage or action.

Deleting a Stage

If a stage has been deleted from the procedure, the stage will remain in the Metastorm database if
a User’s To Do or Watch Lists is populated with the deleted stage unless the folder is purged
using the Metastorm System Administrator.

Deleting an Action

If an action has been deleted from the procedure, the action will be marked as obsolete.

Creating a new Stage, Action or Form

When a project is resynchronized, any new stages, actions, forms and their associated events are
added to the project.

6.8.6 Solution Browser

The solution browser provides an option to view a tree-view displaying a Metastorm BPM view
of Procedures, Maps, Stages, Forms and Actions and events. A Visual Studio 2005 developer can
navigate to a function by double clicking on an event.

The tree view also displays the available custom variables for each map (project), which the
developer can access via the metastormFolderInstance member variable, for example:

metastormFolderInstance.CustomVariable(“txtCustomVariableName”,
“Text to set the variable”);

Metastorm BPM Release 7.6

58 May 2008 © Metastorm Inc.,2008

To view the Solution Browser:

1. From the View menu select Browse Process Events.

2. The Solution Browser is displayed.

Solution Browser in Visual Studio .NET Procedure Explorer in Designer

Figure 29: Tree hierarchy in Visual Studio .NET and Designer

 On resynchronizing a project the Solution Browser will refresh its window with the new populated
Maps, Actions, Stages, Forms and Events added by the resynchronization.

Process Orchestrator for .NET Designer’s Guide

Metastorm BPM Release 7.6 May 2008 59

Appendix A – Simple Type Mapping
The following table summarizes the simple type mapping that is applied when .NET functions are
imported.

 At present, the Metastorm Process Orchestrator for .NET supports only simple types.

.NET Type Metastorm Type

System.Int32
System.Int16

Integer

System.Decimal Currency

System.Single
System.Double

Real

System.Boolean Check

System.DateTime Date-time

System.Char Text

System.String Memo

Figure 30: Simple Type Mapping

Metastorm BPM Release 7.6

60 May 2008 © Metastorm Inc.,2008

Appendix B – Examples of Scripts Generated by .NET
Activator

The .NET Activator creates 2 scripts containing the functions to access the assembly which are
stored in a Metastorm library. The scripts are called:

• Activator [Assembly Name] - a class to invoke an assembly using data from a Metastorm
process.

• AvailableFunctions [Assembly Name] - a proxy class containing all available functions,
but commented out.

Activator [Assembly Name]

/* (C) 2005 Metastorm Inc
 JScript.NET Activation Script
*/

import System;
import eWork.Engine.ScriptObject;
import eWork.Engine.Activator;
import System.Reflection;

package eWork.Activator.TestClass
{
 public class Invoker
 {
 public static function Activate(
ework:SyncProcessData, args: Object[]) : Object
 {
 var retval : Object = null;
 retval = ClassActivator.Activate(ework,
args);
 return retval;
 }
 }

}

AvailableFunctions [Assembly Name]

The commented code is intended to be a template for developers, containing the available
functions of the class in JScript.NET. It is not intended to be used directly. Due to JScript.NET
limitations, it may have to be altered to compile correctly.

The following are supported:

• Public Methods
• Property accessor & mutator methods
• Indexed properties

Process Orchestrator for .NET Designer’s Guide

Metastorm BPM Release 7.6 May 2008 61

• Hidden constructors
• Multiple constructors
• Multiple Namespaces
• Delegates
• Static and non static functions and properties
• Depreciation
• Nested classes

The Activator makes use of the Metastorm synchronous process data object to activate .NET
classes. Using the commented code, it is possible to use asynchronous scripts, if necessary.

This example of a generated script uses a complex type. The script is based on the following
object:

Figure 31: TestClass Object used in the Example Script

* (C) 2005 Metastorm Inc
JScript.NET Activation Script
import System;
import TestClass;
import System.Reflection;

package Activator.TestClass
{
 public class TestClassComplexObjectProxy
 {

Metastorm BPM Release 7.6

62 May 2008 © Metastorm Inc.,2008

 private var m_AssemblyComplexObject :
TestClass.ComplexObject;
 public function TestClassComplexObjectProxy()
 {
 m_AssemblyComplexObject = new
TestClass.ComplexObject()
 }
 public function GetHashCode(): Int32
 {
 return m_AssemblyComplexObject.GetHashCode();
 }

 public function Equals(obj : Object): Boolean
 {
 return m_AssemblyComplexObject.Equals(obj);
 }

 public function ToString(): String
 {
 return m_AssemblyComplexObject.ToString();
 }

 public function get UsersAddress():
TestClass.UserAddress
 {
 return m_AssemblyComplexObject.UsersAddress;
 }

 public function set UsersAddress(value :
TestClass.UserAddress)
 {
 m_AssemblyComplexObject.UsersAddress = value;
 }

 public function GetAnAddress(): TestClass.UserAddress
 {
 return m_AssemblyComplexObject.GetAnAddress();
 }

 public function GetType(): Type
 {
 return m_AssemblyComplexObject.GetType();
 }

 }
}
*/

	1 INTRODUCTION
	1.1 Acronyms
	1.2 Terminology
	1.3 Getting Further Information

	2 WHAT IS THE METASTORM PROCESS ORCHESTRATOR FOR .NET?
	3 USING THE PROCESS ORCHESTRATOR FOR .NET
	3.1 Importing Methods via the Integration Wizard
	3.2 Visual Studio .NET Integration

	4 SETTING UP THE PROCESS ORCHESTRATOR FOR .NET
	4.1 Supported Environments and Installation Prerequisites
	4.1.1 .NET Activator
	4.1.2 Enterprise Component Library for .NET Server Components
	4.1.3 Enterprise Component Library for .NET Sample Client
	4.1.4 Process Events
	4.1.5 Complex Types
	4.1.6 Engine support for Process Orchestrators
	4.1.7 ASP.NET Web Parts

	4.2 Installation
	4.2.1 Troubleshooting Installation

	5 CALLING IMPORTED METHODS VIA THE INTEGRATION WIZARD
	5.1 Publishing the Library
	5.2 Associating the Library with a Procedure
	5.3 Calling Imported Methods via the Integration Wizard
	5.4 Publishing the Procedure
	5.5 Full Name Binding

	6 CREATING PROCESS EVENTS IN VISUAL STUDIO .NET
	6.1 Architecture
	6.2 Publishing the Process Events Library
	6.3 Creating and Publishing Procedures using the Designer
	6.3.1 Creating a Procedure
	6.3.2 Exposing Process Events in Designer

	6.4 Creating a Metastorm BPM Process Code-Behind Project
	6.5 Using a Metastorm BPM Process Code-Behind Project
	6.5.1 Process Events Class Diagram
	6.5.2 Procedure
	6.5.3 Stages
	6.5.4 Forms
	6.5.5 Admin Forms
	6.5.6 Actions
	6.5.7 Dependencies
	6.5.8 CurrentVersion
	6.5.9 Private member declarations & Event Handler Initializations
	6.5.10 Public Accessor Methods / Properties
	6.5.11 IntelliSense

	6.6 Metastorm BPM Process Code Behind Example
	6.7 Configuring Process Metadata Web Service Connection Details
	6.7.1 Security
	6.7.2 Process Engine Database Connection Settings
	6.7.3 Authentication
	6.7.4 Process Metadata Web Service Configuration Details Dialog

	6.8 Add-in
	6.8.1 Using the Add-in:
	6.8.2 Metastorm Web Service Configuration Details
	6.8.3 Deploy Process
	6.8.4 Debug With Process Engine
	6.8.5 Resynchronizing a Project
	6.8.6 Solution Browser

	Appendix A – Simple Type Mapping
	Appendix B – Examples of Scripts Generated by .NET Activator
	Activator [Assembly Name]
	AvailableFunctions [Assembly Name]

