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Abstract: 
 
Currently GPS systems available are subject to inaccuracy and use signals that are easily 
obstructed by buildings, tree canopies, etc.  However, a dead reckoning positioning 
system is independent of external signals, and therefore may complement the GPS to 
create a more robust hybrid positioning system.  Seeking to create such a system for the 
Whitney Autonomous Vehicle Project, I first experimented with an accelerometer / 
compass arrangement, but found it too inaccurate for the purposes of the project.  Then, 
by implementing an odometry / compass – based system, I was successful in obtaining a 
relatively accurate position reading. 
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Introduction 
 
 

Today, many vehicle navigation systems employ Global Positioning System 

(GPS) sensing to ascertain position.  By picking up radio signals form various satellites 

orbiting earth, a GPS receiver is able to calculate its position.  However accuracy is 

relatively limited, as most commercially available systems can generally only find 

position within 20-30 feet.  Moreover, if the “line of sight” from the receiver to the 

satellites is blocked, the signal degrades, and may become unusable.  In real-world 

applications this is a common occurrence since a vehicle may move under a tree canopy, 

behind a building, or any number of things that will block vision to the sky.  The Whitney 

Autonomous Vehicle, if working off of GPS sensing alone would run into this problem 

often, navigating the dense urban terrain of New Haven.  Also, GPS is useless indoors as 

there will be no signal.  Therefore, I sought out to design another mode of ascertaining 

position that would not suffer from these problems. 

 

A dead reckoning positioning system is defined as “a method of surveying that 

measures distance and direction from one point to the next along a travel path.”  

Essentially by repeatedly recording the distance traveled and the direction, one may 

iteratively calculate approximate position.  A method such as this relies on local sensing, 

and therefore is not subject to external obstruction.  It may also be designed cheaply and 

compactly.  For these reason I decided that dead reckoning would be a good method to 

supplement GPS. 
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To implement a dead reckoning system, I first arrived at the idea of using 

acceleration and compass data as inputs to a micro-controller, where I would perform the 

positioning calculations.  After some exploration, it soon became apparent that due to the 

double integration, error would build up too rapidly, resulting in an unusable system.  

From there, I looked for a method that would not suffer this same problem, and came to 

the idea of replacing the accelerometer with an odometer, thereby acquiring distance 

directly.   This proved to work much better, and in fact was very successful.  My test runs 

resulted in errors of roughly 5% over a 40-meter travel distance. 

 

This methods section of this report will look at how I implemented both of these 

dead reckoning systems, in terms of both hardware and software.  The results section will 

present how I tested the system, and an analysis of the results.  The discussion, will 

investigate possible uses for the system and as well as such issues as manufacturability.  
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Methods 
 
 
First try: Compass/Accelerometer-based system 

  

Over the past few years, accelerometers have increased in quality, while 

decreasing in price.  Accelerometers are also very small and entirely self-contained. For 

these reasons, I felt that they would provide a good means of calculating distance 

traveled, and therefore in the first configuration, I employed a compass and an 

accelerometer as my two sensors. 

 

Equipment 

 

PIC 16F877 Microcontroller 

 

The PIC 16F877 microcontroller, manufactured by Microchip, is a 20 MHz processor 

with built-in features such as analog-digital (A/D) conversion, a counter, etc.  Its 

versatility, low-cost, and low power consumption make it ideal for embedded 

applications.  In my project, the PIC provided a mean of interfacing with external 

devices, performing calculations, and communicating with the main computer. 

 

Vector 2x Digital Compass 

 

The Vector 2x compass module, manufactured by Precision Navigation Instruments, Inc. 

is a low cost digital compass.   By making use of the earth’s magnetic field information 
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sensed by two perpendicularly-mounted magnetometers, the Vector uses on-board 

processing to calculate heading.  Heading is reported as an angle from 0° to 359°, and the 

signal is specified to be accurate within 2°.  The compass is sensitive to tilt, as 1° degree 

of tilt can lead to about 2 degrees of heading error.  Therefore the Vector 2x is really only 

suited for use on relatively flat ground.  Furthermore, the compass is very sensitive to 

external magnetic fields from nearby electrical equipment, which cause large errors.  The 

Vector 2x has a refresh rate (calculates a new heading) of roughly 5 Hz. 

 

 
 

The Vector 2x Digital Compass 
 
 
The Vector 2x communicates to the microcontroller via a serial peripheral interface (SPI) 

link.  Originally, there was significant difficulty getting this working, because we were 

trying to use the built-in SPI functions on the PIC chip.  This led to shaky performance, 

as the compass would sometimes put out garbage data.  I therefore rewrote the code, 

using a method that does not employ the SPI functions.  This has proven much more 

robust.  I include this code in the appendix (comp5.h).   Also, there are two points in the 

communication that require a delay, the duration of which the user’s manual says, 

“depends on your system.”  In our case the communication worked with the delays set to 

5 milliseconds; however, experimentation may be necessary to find the proper delay. 
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ADXL105 Accelerometer 

Analog Devices’ ADXL105 Accelerometer is a relatively high-accuracy MEMS (micro-

electro-mechanical systems) accelerometer embedded on a tiny microchip.  It determines 

the amount of acceleration felt along in a certain direction.  For a range of –5 to +5 Gs (1 

G = acceleration due to gravity = 9.8 m/s2), the ADXL105 outputs a voltage from 0 to 5 

Volts.  The voltage output is roughly proportional to acceleration, with 0 V representing  

–5 Gs and 5V representing +5 Gs. 

 
 

 
 

The compact ADXL105 Accelerometer 
 
 
Principles of Operation 
 
 
The accelerometer/compass system takes the accelerometer data into the PIC and then 

double-integrates the acceleration to arrive at position since: 

∫∫=⇔= adtx
dt

xda 2

2

 

Where a is acceleration in one direction and x is displacement in that direction.  In 

actuality, it is necessary to perform an approximate integration since the data from the 

accelerometer is not continuous (it can only be sampled by the A/D converter every 20 

microseconds).  This is done by taking time slices of the data. 
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Y  
 
 
 
 
 

 
 
 
 
 
 
 
 

X
dt  

Approximate Integration 
 
 
 

The area of the rectangles under the curve approximates the actual area under the curve; 

the smaller the time slices dt, the more accurate the approximation.  In the accelerometer 

system, the two equations for the double integration are: 

 
vf = vi + adt 
xf = xi + vdt 

 
By performing these operations every time slice, we move from acceleration to velocity, 

and then velocity to distance.  We must assume initial values for velocity and position 

(here assumed to be zero).  The first of these graphs is of data collected from an 

oscilloscope when I pushed the accelerometer a certain distance.  I then imported the data 

into Microsoft Excel, converted the acceleration voltage data into actual acceleration, and 

then performed these calculations to obtain velocity and finally position. 
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This initial test was very encouraging, since I moved the accelerometer 37 cm, and the 

calculations resulted with a distance of 36.7 cm.  However, when actually calculating on 

the PIC in real-time, and over a longer duration, the accuracy suffered severely. 

After calculating distance, it is possible to calculate x/y position given that you 

know the direction you have traveled in.  However, since I did not ultimately implement 

two-dimensional positioning with this arrangement, I will save the explanation of 

calculating x/y position for later in the report. 

 

Implementation 

 

The first thing I did when implementing the system was to look for a way to get 

clean useful data out of the accelerometer.  There were two problems with the 

accelerometer output.  First of all, the ADXL105 was specified to have a resolution of 

2mG (milliGs) over a range from –5 G to +5 G.  This means that there should be (10 G) / 

(2 mG) = 5000 possible outputs.  However, the PIC has a built in 10-bit A/D converter, 

meaning that only 210 = 1024 values may be represented.  Therefore in order to make full 

use of the resolution, it was necessary to limit the range of accelerations that the device 

could measure.  Given the operation specifications of the Whitney Autonomous Vehicle  

– it could not drive extremely fast – I assumed that it would not undergo accelerations of 

more than 1 G.   I implemented a circuit to amplify the output so that roughly –1 G to +1 

G acceleration would map to 0 V to 5 V.  This theoretically allows the PIC to use the 

maximum 2 mG resolution. 
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 The second problem with the accelerometer output was excessive noise.  Once 

again, though, the Whitney could not feel rapid acceleration changes.  Therefore, I could 

use a low pass filter to remove the high-frequency noise, while retaining the important 

information.  I accomplished both the amplification and the filtering with this circuit: 

Accelerometer Circuit 
 
In this circuit Vmid is a voltage output from the accelerometer that is roughly 2.5 Volts 

and is therefore the midpoint of the 0 V to 5 V range.  This centers the outputs around 2.5 

Volts.  The amplification provided by the circuit is equal to: 

 

7.4
k51
k240

R
R

i

f ≈
Ω
Ω

=  

 
The cutoff frequency for the low-pass filter is: 
 

Hz3.13
)F05)(.k240(2

1
CR2

1f
f

cutoff ≈
µΩπ

=
π

=  

 
The reason for including the potentiometer is to compensate for what is referred to as 

zero-G bias.  Even if the accelerometer feels no acceleration, it will not output exactly 2.5 

V.  There will be a slight bias that varies from one device to the next and also depends on 
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temperature.  Therefore, by adjusting his potentiometer, the user can calibrate the unit.  

The zero-G bias is also somewhat compensated for in code.  When the unit initializes, it 

samples assumes it is under no acceleration and samples 64 times and takes the average.  

This average value is then the zero-G level.  

 

Once the acceleration voltage data is in the PIC, it must be transformed into actual 

acceleration data before calculating position.  We calibrate by using gravity as a 

reference; if we point the accelerometer down it feels –1 G acceleration and if we point it 

upwards it feels +1 G.   Assuming that the accelerometer output is linear with 

acceleration, and knowing that 1 G = 9.8 m/s2, we can convert the voltage to acceleration 

 
 Acceleration 

(m/s2) 

Voltage vmin vmid vmax

 
9.8  

 
 
 
 
 
 
 
 
 -9.8 
 
 

Voltage – Acceleration Relationship 
 

Voltage)
VV

)8.9(8.9(onAccelerati
minmax

×
−
−−

=  

 
Now after the PIC calculates acceleration, it must then do the numerical 

integration with time slices as stated previously.  This is implemented through the use of 

a timer interrupt.  This interrupt occurs at a regular interval (in this case 819.2us), and 
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within this interval all the calculations must be completed.  The more frequently the 

interrupt occurs, the better the accuracy will be.  To implement this all on the PIC, I 

initially tried to actually do all calculations within the interrupt, however this caused the 

PIC to output nonsense data.  The problem is that the PIC has poor interrupt handling 

capabilities, and cannot call functions from the interrupt.  Therefore, to get the program 

to work, I simply set a flag in the interrupt that enables a function in the main program.  

In this way, the function is only called once every time slice. 

Within this time slice, the PIC samples the A/D converter – in fact it improves 

accuracy by over-sampling (samples 8 times and takes the average).  Then the PIC 

converts the voltages to acceleration, and performs the double integration. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Flag = 1? 

Flag = 0  

Yes 

Double Integrate 
vf = vi + adt 
xf = xi + vdt  

Convert average value to 
acceleration (in m/s2) 

Sample A/D Converter and 
average 

Main Program Within Timer Interrupt 

 
Accel_

 

No 
Flag = 1  

7.c Flowchart 
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In reality, this algorithm is complicated by the fact that it is difficult to represent 

the values with the necessary accuracy.  To use the PIC for floating point numbers would 

be too slow, so it is necessary to represent the numbers in a different manner.  If, when 

multiplying by dt, the program multiplies by the time slice (.0008192 s), the system 

would be useless, because the calculation vf = vi + adt would always equal zero.  

Therefore I change the time scale to ms, so dt is now (.8192ms).  This, however leads to 

rapid data overflow, since it has the effect of multiplying velocity by 1,000 and 

acceleration by 1,000,000.  Therefore counters are necessary to make the program work.  

Whenever position traveled goes above 16,000 the program increments an overflow 

counter. 

After coding the program, I experimented with the accelerometer system to test its 

effectiveness in determining distance traveled.  The system behaved extremely poorly.  

There were some errors in the acceleration signal due to a number of factors such as:  

 

• Limited resolution 

o The accelerometer has a specified resolution of 2 mG, however within the 

system it seemed more like 10 mG, perhaps due to noise in the PIC A/D 

converter.   

 
• Nonlinearity 

o Although the accelerometer ideally provides a voltage output directly 

proportional to acceleration, it is not perfect.  Therefore there are non-

linearities in the output that are difficult to account for. 
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• Zero-G Bias 

o As stated previously, the accelerometer output is not centered perfectly at 2.5 

V, and this bias shifts with temperature.  It is difficult to completely subtract 

this out of the system. 

 
• Gravity 

o When perfectly flat, the accelerometer will only sense acceleration due to 

movement.  However, when tilted, it begins to sense acceleration due to 

gravity, which could be very high.  Therefore, if the system is stationary, but 

tilted, it will conclude that it is moving very fast. 

 

The errors from these factors accumulate extremely rapidly due to the double-

integration.  If there was even a small error in the accelerometer signal, this would then 

lead into a larger error in velocity, which would in turn lead to a much larger distance 

error.  This rapid increase in error over time is called “drift,” as the calculated distance 

drifts far away from the actual distance traveled.  Due to the double-integration, this drift 

accumulates exponentially with time. 

 
 

Second try: Compass/Odometry-based system 

 

Given the failings of the accelerometer system, I moved away from any integration and 

arrived at odometry as a means of calculating distance traveled.  By putting an extra 

wheel on the vehicle and measuring rotations, it is possible to directly calculate distance 

traveled. 
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Equipment 

 

The odometry-based system uses two of the same devices as the previous method.  This 

system still uses the Vector 2x compass for directional information, and uses the 

PIC16F877 microcontroller for some processing.  The new pieces of equipment are: 

 

Grayhill 63R128 Optical Encoder 

 

The odometry system uses the optical encoder to count the number turns a wheel makes – 

or more precisely the number of fractions of turns a wheel makes.  The encoder used in 

this project was the Grayhill 63R128, which has a resolution of 128 counts/revolution. 

 

 
The Grayhill 63R128 Optical Encoder 

 
 
Essentially, the encoder works by having a series of (in this case 256) internal light and 

dark bands.  As the shaft rotates, an optical sensor pulses whenever the band underneath 

it goes from light to dark, or vice-versa.  There are actually two outputs for the encoder, 

A & B, where A leads B by 90° for clockwise rotation of the shaft. 
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Optical Encoder Outputs 

 
By using the information provided by both outputs, one may ascertain in which direction 

the shaft is turning.  For instance, if A goes high and B is still low, then the shaft is 

turning clockwise. 

 

Additional Tracking Wheel and Mount 

 

The tracking wheel is an additional wheel mounted on the vehicle to gather the odometry 

data.  The additional wheel was mounted because, since it is not a driving wheel, it is 

only reacting to the vehicle’s motion and therefore is less likely to slip. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

The Tracking Wheel Assemblage 
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The wheel is 7.7 cm in diameter, and is mounted on springs to keep constant contact with 

the ground.  It is mounted directly between the two rear wheels, so that it measures the 

actual distance traveled, even while the vehicle is turning. 

 
EBX Main Computer 

 

The EBX is the center of Whitney’s intelligence.  Essentially a small form-factor 

computer, it is powered by a 300 MHz National Geode chip.  It can communicate with 

peripherals, such as the PIC microcontrollers, through an RS232 serial data link.  For the 

positioning calculations, the EBX performs the more difficult computation so as to not 

tax the PIC’s very limited resources.   

 

Principles of Operation 

 

The general ideas governing the odometry positioning system are similar to those 

governing the accelerometer system.  The Vector 2x compass outputs data to the PIC 

roughly every 200 ms. In between compass data refreshes, the PIC counts the number of 

wheel rotations, or fraction of wheel rotations from the encoder.  Therefore the system 

has information on distance and direction.  By assuming that all the distance traveled 

over the 200 ms period was in the direction specified by the compass, it makes a linear 

approximation of the vehicle’s actual movement. 
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Vehicle Movement Approximation 

Approximate Path

Actual Path

 
 

Because the Whitney Vehicle moves relatively slowly, the linear approximation proves to 

be a relatively good proxy for the actual motion.   Given the distance and heading 

information it is now possible to calculate 2-dimensional position. 

 
     N 
 
 

y 
 d 

x 

Φ 

 
 
 
 
 
 
 
 
 
 
 
 
 

x/y Positioning Graph 
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Since the compass gives directional heading as angle clockwise from y-axis with the 

positive y-axis defined as due north, the angle Φ in this graph is actually (90° - compass 

heading).  To get the x and y positions: 

 

Φ+=
Φ+=

sindyy
cosdxx

if

if
 

 
where d is the distance traveled over the time period.  If x and y are initially defined as 

zero, this will iteratively give the vehicle’s position. 

 

Implementation 

 

The principle guiding the implementation of this algorithm was to move the more 

difficult calculations to the EBX, where they would take less time and be more accurate 

(i.e. double-precision floating point numbers).  The PIC is used solely for data 

acquisition. 
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Serial 
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Calculation 
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PIC / EBX Division of Labor 
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PIC Portion of System 

Once asking the Vector 2x compass for heading information, it takes the compass 

202 ms to return the information.  Therefore, the compass refresh rate is roughly 5 Hz. 

 

 
Compass Timing on Oscilloscope 

Between these compass refres  of “ticks” (encoder counts) 

 to the PIC’s 

externa

gram 

d 

 
hes, the PIC counts the number

that the optical encoder outputs.  Once it receives the new compass data, the PIC sends 

the heading and number of ticks to the EBX via the serial connection.   

Initially I counted the ticks by connecting the encoder’s output A

l interrupt pin.  This way, the program interrupts whenever the A output 

transitions from low to high, 128 times per rotation.  Within the interrupt, the pro

would check the B output and decide whether to increment or decrement a counter base

on the direction of rotation.  However, this caused a problem because the RS232 link is 

very time-sensitive.  Whenever the PIC was interrupted during communication with the 

EBX, the link would fail and incorrect information was sent.  I solved this by disabling 
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interrupts during the RS232 communication; however, this causes some counts to be 

missed.   

I also re-implemented the program, using the PIC’s on board hardware counter to 

count the number of ticks during each time period, thereby avoiding the use of any 

interrupts at all.  This implementation is somewhat deficient however, in that it is unable 

to discern forward from reverse motion.  Both programs also increment another variable 

called packnum, each cycle.  This numbers each data packet sent to the EBX, so that the 

EBX does not double-count any data.  Also, to ease in communication, the data packets 

are all set to a fixed length of 17 bytes. 
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Flowcharts for both implementations of Compass/Odometer sampling program 
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Each of these implementations has both an advantage and a disadvantage.  The counter-

based program does not work if the vehicle is moving in reverse.  The interrupt-driven 

program will miss some counts.    In theory, since the PIC is sending 17 bytes at 19.2 

kbits/sec, the interrupt disabling should occur for: 

ms1.7
bits19200

ondsec1
byte1
bits8bytes17 =××  

 
plus some time to disable and then re-enable the interrupts.  The first of these graphs 

shows the overall loop duration of the program, while the second shows the actual length 

of time for which interrupts are disabled. 

 
 

Total Loop Duration Of Program 
 

Duration of Interrupt Disabling during RS232 communication 
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The total loop takes 210ms to complete, of which the interrupts are actually disabled for 

9ms.  Therefore the system is missing counts for (9 / 210) = 4.3% of the time.  This can 

be somewhat corrected for by just taking this into account and multiplying the number of 

counts by a scaling factor 1/(1-.043) = 1.045.  This essentially assumes that the vehicle is 

moving at a constant speed over each 210ms period, which is actually quite a realistic 

estimation.  Since this is an accurate adjustment, I feel it is worthwhile to use the 

interrupt-driven program so that it will still function with reverse motion. 

 

EBX Portion of System 

 

The job of the EBX is to calculate position based on the data it receives from the 

PIC.  The first part of this is actually receiving the information from the PIC.  This is not 

a trivial task, since the two devices are asynchronous, and it is crucial not to miss any 

data packets.   

As data comes in to the EBX from the PIC it is stored in a buffer.  If the EBX 

program is to pull data from the buffer before a packet has finished sending, then it loses 

the packet.  Therefore the method used to collect the data is to poll the buffer every 50ms, 

and then check if it contains 17 bytes of data (each packet is a fixed length of 17).  The 

program only checks the buffer every 50ms so as to not eat up too many system 

resources.  If there are not 17 bytes in the buffer, then the program loops through.  If 

there are 17 bytes, then the program pulls that data from the buffer.  The information 

from the packet (direction, distance, packet number) is then extracted and the program 
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makes sure that the packet number is different from the previous packet, to ensure that 

there is no double-counting of data. 

If the data packet is new, then the program updates its positioning data with the 

new information.  It also keeps track of total counts and overall distance traveled.  To 

obtain distance: 

 

)counts(#
rotation/counts#

diametercetanDis ×
×π

=  

 
Given the previous calculation for the interrupt-driven program, there should be 128 * (1 

- .043) = 122.5 counts/rotation.  I tested this by spinning the wheel 10 times and then 

dividing the counts by 10.  I did this 20 times and the average was 122 counts/rotation – 

almost exactly the calculated value.  For this value the distance traveled per count equals: 

count/m001983.
rotation/counts122
m077.count/cetanDis =

×π
=  

 

Performing the same experiment on the non-interrupt system, I found an average 

counts/rotation of 126.55.  This is not the full 128 counts because one or two counts can 

be missed during the time lag between reading the counter and resetting it to zero.  The 

distance per count for this system is therefore .001911m/count. 

 From the actual distance data and the compass data, the program calculates x/y 

position using the formulas stated previously.  The angles must be converted to radians, 

for the C program to perform the trigonometry operations.  For each new packet, all 

navigation data is updated and then printed to the vehicle’s LCD screen.  The program 
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also provides the ability for user reset by pressing the “#” button on the vehicle keypad, 

as it checks for the key hit every cycle. 

 EBX Positioning Program (Pos.c) 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Yes 

No 

“#” button 
hit? 

No 

Yes 

17 Bytes in 
Buffer? 

Yes 

Yes 

No 

No 

New Packet?

50 ms 
elapsed? 

Re-initialize Variables 

Update Positioning 
information 
Total Counts 

Total Distance 
X,Y Position

Extract Data

 
EBX Positioning Program: Pos.c 
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Results 
 
 

After the final implementation of the compass and odometry-based positioning 

system I began testing to ascertain system performance.  The tests provided positive 

results, as the position estimation remained relatively accurate even over long distances. 

 The first trials were to test both inputs to the system, the accelerometer and 

odometer, in isolation and therefore get an idea of the reliability of each on its own.  I 

tested the compass for accuracy and also its susceptibility to magnetic fields.  As far as 

accuracy was concerned, I looked for self-consistency.  By taking a reading, turning the 

unit 180°, and looking at the new output, I tested whether the Vector 2x was accurate in 

keeping a constant reference frame.  Ideally, the two readings should be precisely 180° 

separated from each other.  Four tests resulted in errors off this ideal ranging from 0° to 

12°.  The compass therefore has some inherent inaccuracies. 

 The second compass trial tested the effects of external magnetic fields on the 

compass reading.  Moving Whitney down the Becton hallway in a constant direction, I 

noticed that the compass readings varied up to 50° for the same actual heading.  This 

error was by far the greatest when passing an electrical equipment cabinet, as the large 

magnetic field totally invalidated the reading. 

  

The odometer tests consisted of pushing the vehicle exactly 10 meters and then 

checking the reading that the EBX outputs.  These tests showed that the odometer is 

extremely accurate. 
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Trial Odometer Output Error (m) Error (%) 
1 10.02 0.02 0.2% 
2 10.04 0.04 0.4% 
3 10.03 0.03 0.3% 
4 9.99 0.01 0.1% 
5 10.02 0.02 0.2% 

 
Odometer Performance 

 
The odometer error measures in fractions of percents.  Slippage proved to be an 

insignificant issue. 

 

Due to the large indoor magnetic fields, I decided to conduct the overall system 

performance tests outdoors on Becton plaza.  This however did not entirely remove the 

issue of magnetic fields, as compass readings were still off by up to 15º at times.  Becton 

plaza runs directly over Becton Lab, so the field due to electrical equipment may still 

have been causing the issues.   

  

I used two methods to test the positioning system.  Both tests involved rolling 

Whitney from an initial starting point, and arriving at the starting point at the end of the 

path.  Since the vehicle starts at (0,0), it should ideally end at (0,0).  Any deviation from 

this is due to the error of the system. 

 The difference between the two tests was that one involved long straight paths 

with sharp turns while the other involved freeform vehicle movement.  Theoretically, the 

system should be more accurate for the former, since it will be performing a linear 

approximation of a straight path. 
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Test 1 Test 2 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

The Test Tracks 
 

(0,0) 
 

10m

10m10m

10m
(0,0) 
 

 
The second test consisted of moving the vehicle in curves rather than straight lines.  In 

both these tests, error is measured as the absolute distance from the final calculated 

position to the origin. 

 
2

f
2

f )y()x(Error +=  
 

Percentage error is the ratio of error to total distance traveled, which is determined by the 

odometer. 

Results: Test 1 
 
Trial Distance Traveled 

(m) 
Final Position 

(x,y) 
Error 
(m) 

Error 
(%) 

1 39.86 (-2.3, 0.7) 2.40 6.03% 
2 39.85 (-2.6, 0.5) 2.65 6.64% 
3 40.06 (-2.4, -0.7) 2.50 6.24% 
4 40.05 (-2.3, -0.8) 2.44 6.08% 
5 39.83 (1.5, -2.1) 2.31 5.80% 
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Results: Test 2 
 
Trial Distance Traveled 

(m) 
Final Position 

(x,y) 
Error 
(m) 

Error 
(%) 

1 32.62 (-0.6,0.8) 1.00 3.07% 
2 40.27 (-1.5, -0.8) 1.70 4.22% 
3 20.37 (0.3, -0.9) 0.95 4.66% 
4 43.74 (1.9, -3.7) 4.16 9.51% 
5 40.38 (1.5, -2.1) 2.58 6.39% 

 
 

It is interesting to note that the errors for the random path are not higher than 

those of the straight path.  The average percent error for test 1 is 6.16 %, while it is only 

5.57 % for test 2.  This goes against the intuition that a more curved path will result in 

greater inaccuracy.  However, the results of the second test have a much higher standard 

deviation – 2.51 % as opposed to .31 %. 

These results imply that the vast majority of the error was due to external 

magnetic field interference.  When moving over a fixed course, the compass would feel 

the same distortions each time, resulting in a similar error.  Note that the test 1 results are 

all incorrect in almost exactly the same way.  On the other hand, moving the vehicle 

randomly causes very different interference patterns, and therefore a higher variance in 

results.  The errors in this system are roughly what we would expect to see with the 

magnetic field disturbances on Becton Plaza.  Under these conditions, the dead reckoning 

positioning system performed quite well, but it could certainly perform much better in an 

area more isolated from external fields. 
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Conclusion 
 
 

Initially, while beginning the accelerometer-based system, I held high hopes for 

its possible uses in navigation.  However, it soon became apparent that a system using 

double-integration would lead to huge errors.  By simplifying the system and obtaining 

distance traveled through the most direct means possible, I was able to achieve greater 

success than with the more complex system.  Through odometry, I was able to obtain 

extremely accurate distance information, and the limiting factor in the system became the 

compass as opposed to the accelerometer.  

The odometry/compass-based dead reckoning system proved to be a very able 

positioning system that could successfully be used to supplement GPS under certain 

conditions.  Even with external magnetic field interference, the system behaves well, 

accruing only about 2.5 meters of error over a 40 meter run.  While the error tends to 

increase linearly over distance traveled, this system can still outperform GPS over a 

relatively long duration. Given that a GPS only has an accuracy of 6 to 9 meters, the dead 

reckoning system can travel over 120 meters before it becomes less accurate than the 

GPS. 

The optimal navigation configuration is a hybrid between GPS and dead 

reckoning.  Such a hybrid system collects data from the two modes of positioning as 

inputs, and uses some intelligent algorithm to decide how heavily to weigh each piece of 

information.  The GPS can be used to periodically correct the local sensing system if it 

has accumulated too much error.   
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An example of an intelligent synthesis algorithm would be to use the information of how 

many satellites the GPS sees to determine how heavily to weigh the two systems.  If there 

is clear sight of many satellites, the hybrid could look exclusively at GPS; if many 

satellites are obstructed, the intelligence would turn over to dead reckoning.  This kind of 

redundancy achieves a much more robust system, since each positioning method 

complements the other’s weaknesses. 

Either the hybrid system or dead reckoning alone lends itself to many possible 

applications.  The system could benefit any wheeled vehicle that needs to know its 

position in order to guide itself autonomously.  For instance, as the project’s origins 

indicate, it could be used as an aid to the handicapped in wheelchairs.  Robots equipped 

with such technology could navigate through tunnels or any difficult to reach area for 

search and rescue operations.  Robots could use this positioning to perform farming tasks 

or lawn-mowing in an autonomous manner.   Eventually self-guiding cars will likely use 

hybrid positioning such as this in order to navigate. 

Given that the instruments used in the final positioning system are the odometer 

itself, the PIC chip, and the Vector 2x compass, the system itself could be manufactured 

relatively efficiently and inexpensively.  It does not require much in the way of hand 

calibration.  Each part is standard and mass produced, except for the wheel, which easily 
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could be.  The whole unit could be designed as a small self-contained package, which 

links to a main computer system.  To keep costs down, the system could sacrifice some 

quality in the optical encoder, since very high resolution is not really necessary.  One of 

the main problems that would occur in manufacturing is the fact that not all Vector 2x 

compasses are specified to work the same way.  As discussed previously, there are certain 

parts of the communication protocol that are said to vary from compass to compass.  

Therefore, another digital compass may be a better choice for a mass-produced system. 

In terms of ethics, when selling a positioning device such as this, it is extremely 

important not to misrepresent its performance.  One must clearly state the system’s 

limitations, or else users may rely on it to perform tasks that it cannot do.  For instance 

the facts that the system performs poorly on steep inclines and in heavy magnetic fields 

must be made clear to any customer.  Otherwise, the customer may use it believing it is 

reliable, and end up colliding into another object, harming their vehicle or themselves.  

One must keep these ethical issues in mind when marketing a device as crucial to many 

systems as a navigation tool. 

A compass and odometry-based dead reckoning system is built of easily-available 

devices and can be manufactured at a low cost.  For the dollar, it provides useful 

information reliably, especially under low external magnetic field conditions.  It 

complements the Global Positioning System very well. Overall, it is an interesting and 

practical tool, for the Whitney autonomous vehicle project as well as many other 

applications.   
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Vector 2x Digital Compass Circuit 
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Accelerometer Circuit 
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Optical Encoder Circuit 
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Comp5.h 
 

/*=====================================================================
== 
• First PIC16F877 program for the Whitney chair robot functions 
• This file contains the basic functions needed to get the robot to 

function. 
* 
• Rev 0 2/14/2002 EWJ JS  
*/ 
 
#include “16f877.h” 
#device PIC16F877 
 
#use delay (clock=10000000) // Robot with 20 MHz crystal oscillator        
                            // Use HS selection in MPLAB ICD               
                            // This sets up correct delay times  
 
// Define serial communication to computer  
                         
#use rs232(baud=19200, xmit=PIN_c6, parity=N, bits=8) 
 
 
#define ALL_OUT 0           // Used for data direction register                   
#define ALL_IN  0xff        // Used for data direction register                   
 
/* 
• --------------------------------------------------------------------

------ 
• functions 
• --------------------------------------------------------------------

------ 
*/ 
 
long int read_bit(long int d) 
 { 
 delay_us(1); 
  output_low(pin_c3); 
  delay_us(1); 
  output_high(pin_c3); 
  d = (d<<1) | (input(pin_c4)); 
  return(d); 
  } 
   
 
//----- Reset vector compass  
void reset_compass()            
{ 
  output_high(pin_b1);    // Make P/C high 
  output_high(pin_b4);    // Make sure ss high 
  output_low(pin_b3);     // bring reset low 
  delay_ms(20);           // Delay at least 10 ms 
  output_high(pin_b3);    // return high 
  delay_ms(1000);         // Delay at least 500 ms 
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} 
 
//----- Get heading  
long int get_compass() 
{  
  int i; 
  long int heading; 
  output_low(pin_b1);     // Pulse P/C low 
  delay_ms(15);           // Delay at least 10 ms 
  output_high(pin_b1);  
  while(!input(pin_b2)){} // Wait for EOC to go high 
  delay_ms(15);           // Delay at least 10 ms 
  output_low(pin_b4);     // take SS low 
  delay_ms(5); 
   
  for (i=0;i<=7;++i) 
   { 
  heading = read_bit(heading); 
    } 
  delay_ms(5); 
  for (i=0;i<=7;++i) 
   { 
  heading = read_bit(heading); 
    } 
  output_high(pin_b4);    // take SS high 
  return(heading); 
} 
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Alan.h 
 

///////////////////////////////////////////////////////////////////////
///// 
////                             alan.h                                 
//// 
///////////////////////////////////////////////////////////////////////
///// 
// 4/13/02 
// Rev 0 
 
#include “16f877.h” 
#device PIC16F877 
 
#use delay (clock=20000000) // Robot with 20 MHz crystal oscillator        
                            // Use HS selection in MPLAB ICD               
                            // This sets up correct delay times            
 
 
/* Set Up LCD ---------------------------------------------------------
-- */ 
// As defined in the following structure the pin connection is as 
follows: 
//     D0  D0 
//     D1  D1 
//     D2  D2 
//     D3  D3 
//     D4  D4 
//     D5  D5 
//     D6  D6 
//     D7  D7 
 
//     E0  RS 
//     E1  R/W 
//     E2  E 
 
#byte PortD = 8              // LCD connected to port D                
 
#define E   pin_E2 
#define RW  pin_E1 
#define RS  pin_E0 
#define all_out 0x00 
#define all_in 0xff 
 
byte lcd_busy_flag() 
{ 
  byte di; 
  output_low(RS);            // Set to instruction 
  output_high(RW);           // Set to read 
  delay_cycles(1);           // Clock / 4 for each cycle .2uS @ 20 MHz 
  output_high(E);            // enable display 
  delay_cycles(3);            
  di=portD & 0x80; 
  output_low(E);             // when enable brought read over 
  return di; 
} 
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void lcd_write_byte(byte a,byte n)  
{ 
  set_tris_D(all_in); 
  while (lcd_busy_flag() > 0); 
  set_tris_D(all_out); 
  output_bit(RS,a);         // Set to write instruction or data 
  output_low(RW);           // Set to write 
  delay_cycles(1);               
  PortD = n;                // put data out 
  output_high(E);           // enable display 
  delay_cycles(3);               
  output_low(E);            // when enable brought low data written 
} 
 
void init_LCD()  
{ 
  lcd_write_byte(0,0x30);   // software reset sequence 
  delay_ms(5); 
  lcd_write_byte(0,0x30); 
  delay_us(200); 
  lcd_write_byte(0,0x30);   // 8 bit mode  
  lcd_write_byte(0,0x38);   // 8 bit 2 lines (1x16 is really 2x8)   
  lcd_write_byte(0,0x08);   // Display off 
  lcd_write_byte(0,0x01);   // Clear display 
  delay_us(50); 
  lcd_write_byte(0,0x06);   // Moving cursor not display 
  lcd_write_byte(0,0x0c);   // Display on no cursor 
  lcd_write_byte(0,0x02);   // Return Home 
} 
 
void lcd_goto( byte x, byte y)  
{ 
   byte address; 
 
   if(y!=1) 
     address=0x40; 
   else 
     address=0; 
   address += x-1; 
   lcd_write_byte(0,0x80|address); 
   delay_us(50); 
} 
 
void lcd_putc( char c)  
{ 
   switch I  
   { 
     case ‘@’: 
       lcd_write_byte(0,1);  
       break; 
     case ‘\a’: 
       lcd_goto(1,1);        
       break; 
     case ‘\b’: 
       lcd_goto(1,2);  
       break; 
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     default: 
       lcd_write_byte(1,c);  
       break; 
   } 
} 
 
/* Set Up PWM ---------------------------------------------------------
-- */ 
void init_PWM() 
{ 
  setup_ccp1(CCP_PWM);   // Configure CCP1 as a PWM 
  setup_ccp2(CCP_PWM);   // Configure CCP2 as a PWM 
 
  // The cycle time will be (1/clock)*4*t2div*(period+1) 
  setup_timer_2(T2_DIV_BY_16, 255, 16); 
  // 1/20000000 * 4 * 16 = 3.2uS timer 2 rate 
  // overflow = 3.2uS * 255 =.816mS 
  // interrupt every .816mS * 16 = .013 sec (If timer2 software 
interrupt enabled)  
} 
 
/* Setup A/D ----------------------------------------------------------
---- */ 
void init_AD()            
{ 
  setup_adc(adc_clock_div_32); 
  setup_adc_ports(RA0_RA1_RA3_ANALOG); 
} 
 
/* Input A/D ----------------------------------------------------------
---- */ 
long int in_ad(byte ch) 
{ 
  set_adc_channel(ch); 
  delay_us(100); 
  return read_adc(); 
} 
 
/* Timer interrupt setup-----------------------------------------------
---- */ 
void init_Timer0() 
{ 
  set_rtcc(0);           // initialize timer0 
  // select internal .2uS clock with prescaler set to divide by 16 = 
3.2uS 
  setup_counters(RTCC_INTERNAL, RTCC_DIV_16);  
} 
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Accel_7.c 
 

/*=====================================================================
== 
• Accelerometer Software 
• by Alan Ghelberg 
• Converts Acceleration to Distance 
• Rev 1 5/5/02  
* 
*/ 
 
#include “alan.h” 
 
/* 
• --------------------------------------------------------------------

------ 
• Definitions 
• --------------------------------------------------------------------

------ 
*/ 
 
//Multiplier calculated as (slope of Voltage-Accleration (in cm) 
Graph)*timeslce (in ms) 
 
#define multiplier .4 // ((431-(-525))/1960)*.8192 
 
 
/* 
• --------------------------------------------------------------------

------ 
• Global Variables 
• --------------------------------------------------------------------

------ 
*/ 
  // Zero-G Bias, Acceleration, velocity, velocity counter,  
  // velocity differential term, position counter  
  signed long zeroG, accel, vel, velCounter, velDif, posCounter;  
  long int pos;        //position 
   
  short flag1, test;  //flag set in interrupt to run main, test flag 
for interrupt duration 
  byte count1; //counter to decide when to divide vel by 1000 and reset 
to zero 
 
  char StringOut[55];  // LCD out string 
  byte in_index; 
  byte out_index; 
  byte i, outflag, CharNum; 
 
/* 
• --------------------------------------------------------------------

------ 
• Interrupts 



 Alan Ghelberg 45  

• --------------------------------------------------------------------
------ 

*/ 
// Specify Timer 0 as interrupt                                            
// An interrupt occurs when timer0 overflows 
// timer0 setup is init_Timer0() from yale.h 
// 
// If more tasks are to be done during the interrupt then the �llotted 
time, then a flag can 
// be used to divide the interrupt into time slices.   
// Clock to timer0 is 20MHz/4 or .2 uS  
// Div by 16 prescaler or 3.2 uS 
// Since timer0 must go from 0  to 256 or 819.2 uS 
 
#INT_RTCC               // This must be just before clock_isr()   
clock_isr() 
{ 
 
//--------------------------- 
// Test code to create high/low signal output for scope examination of 
timing 
// It is helpful in an interrupt driven system.  This signal can be 
used along with others  
// for each task to verify that all code is executing in the �llotted 
time.  
// This code can be eliminated  
  if (test)             // Each time interrupt is called C7 is output 
high or low 
  {                     // so for this timing 409.6 uS high and 409.6 
uS low 
    output_low(pin_c7);   
    test=0;               
  } 
  else  
  { 
    output_high(pin_c7); 
    test=1;   
  } 
//--------------------------- 
// Get A/D reading 
 
  //output_high(pin_c6);  // Test code to time A/D with scope on C6 
high during conversion 
 
  flag1 = 1;   //set flag high in interrupt to run functions in main 
 
  //output_low(pin_c6);   // Test code to time A/D with scope return 
low 
 
//--------------------------- 
// Output one character to LCD display if new message in buffer 
 
  //output_high(pin_c5);  // Test code to time LCD out with scope on C5 
high during output 
 
  if (outflag) 
  { 
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    lcd_putc(StringOut[out_index]);       // send to LCD 
    if (out_index < CharNum) out_index++; // Check if last character in 
message 
    else  
    { 
      outflag = 0;                        // If last one reset flags 
for new message 
      out_index = 0; 
    } 
  } 
  //output_low(pin_c5);   // Test code to time LCD out with scope 
} 
 
/* 
• --------------------------------------------------------------------

------ 
• functions 
• --------------------------------------------------------------------

------ 
*/ 
 
//--------------------------- 
// Initialize LCD message buffer 
void init_string()   
{ 
  for (i=0; i<55; i++) 
  { 
    StringOut[i]=’ ‘; 
  } 
} 
 
//--------------------------- 
// Setup buffer for output to display 
void LCDmessage(char s) 
{ 
  if (in_index < 55)            // Don’t do if over buffer limit 
  { 
    if (s == ‘\r’)  // If end of transmission get number of 
characters  
    { 
      CharNum = in_index-1;     // Get total number of characters 
      in_index = 0;             // Reset for next time 
      outflag = 1;              // We have complete message. Set flag 
so output can happen  
    } 
    else                        // Not finished yet so add character to 
buffer 
    { 
      StringOut[in_index]=s;    // Build up string for sending 
      in_index++; 
    } 
  } 
  else  
  { 
    CharNum = 48;               // Beyond buffer size with no end so 
cut to 48 
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    in_index = 1;                
    outflag = 1;                // Set flag so we send what we have 
  } 
} 
 
//This function initializes the accelerometer variables for maximum 
accuracy 
//It finds the zeroG bias by taking 64 samples and averaging 
 
void init_accel() 
{ 
 // Assume vehicle is stopped and remember zeroG voltage 
 for (i=0; i<64; i++) 
   { 
     zeroG = zeroG + read_adc(); 
   delay_ms(20); 
   } 
 zeroG = zeroG>>6;  //shift right by 6 same as divide by 64 
} 
 
/* 
• --------------------------------------------------------------------

------ 
• Main Program 
• --------------------------------------------------------------------

------ 
*/ 
 
main() 
{ 
  init_AD();                       // Set up A/d converter 
  set_adc_channel(0);       // Set up 
Channel 0  
  delay_us(100); 
  init_string(); 
  init_LCD();                      // Set up LCD display 
  init_Timer0(); 
  outflag=0; 
  flag1 = 0; 
  in_index=1; 
  zeroG = 0; 
  vel = 0; 
  velCounter = 0; 
  pos = 0; 
  posCounter = 0;  
  count1 = 0; 
  init_accel(); 
 
 
  // Enable interrupts on timer 0  
  enable_interrupts(RTCC_ZERO); 
   
  // Activate enabled interrupts                                           
  enable_interrupts(GLOBAL); 
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  if (!outflag) printf(LCDmessage,”@\r”); 
                                   // @ clears the display 
                                   // \a is start of first LCD line 
                                   // \b is start of second LCD line 
                                   // \r is end of transmission MUST be 
included 
  while(outflag){}                 // wait for last message if needed 
 
  if (!outflag) printf(LCDmessage,”\a**Welcome EE350**\b 16F877 Robot 
\r”); 
  while(outflag){} 
  delay_ms(1500);                  // delay time for welcome message 
  printf(LCDmessage,”@\r”); 
  delay_ms(100); 
   
  while(1)                          
  { 
  if (flag1 == 1) 
  { 
 // Input acceleration A/D input on channel 0 from 0 to 5V on A/D 
input  
 // Oversample 8 times and take average 
 accel = 0; 
 for (i=0; i<8; i++) 
   { 
     accel = accel + read_adc(); 
    } 
  
 //take average and subtract out the zero G bias, centering around 
zero 
  
 accel = (accel>>3) – zeroG; 
  
 //assume velocity remains under 32 cm/s, else overflow problem 
 
 vel = vel + multiplier * (accel); 
  
  
 pos = pos + .8192 * vel;   //differential term for velocity(vel * 
time interval (in ms)) 
  
  
 //System to protect from position overflows.  Position will 
overflow regularly, 
 //since it is measured in millionths of centimeters (to keep 
accuracy in integration 
 //Position overflow counter should be incremented if velocity 
goes above 16000 
 //It should be decremented if velocity goes below –16000 
 //Therefore the actual position is (1/1000000)*(16000 velcounter 
+ vel) cm  
 
 
 if ((pos >= -16000) && (pos <= 16000)){}  //position does not 
overflow 
 else 
 { 
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   if (pos > 16000)                        //overflow increment 
   { 
     pos = pos – 16000; 
     posCounter++;} 
  else 
  {pos = pos + 16000;    //overflow decrement 
      posCounter--;} 
 } 
 
     
 flag1 = 0;                                //reset flag to zero so 
code does not rerun 
        //until next interrupt 
  };   
           
  //output values to LCD 
  if (!outflag) printf(LCDmessage,”\aacc=%6ld vel=%6ld\bpC=%6ld 
pos=%6ld\r”, accel, vel, posCounter, pos);  
 
  }                                 
} 
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Comp06.c 
 

/*=====================================================================
== 
* First program to implement positioning on PIC using compass data and  
* odometer data.  This program uses interrupts to count odometer 
cycles. 
* 5/9/02 Alan Ghelberg  
*/ 
 
#include "comp5.h"   /* include file */. 
#include "stdlib.h"   /* for absolute value function */ 
 
long int degrees;    //heading 
signed long counter =0;   //odometer Count 
long int count =0;   //used as absolute value of counter 
int packnum=0;    //data packet numbering 
short countsign;     //the sign of counter (+/-) 
 
/* 
* ---------------------------------------------------------------------
----- 
* Main Program 
* ---------------------------------------------------------------------
----- 
*/ 
 
/* 
* ---------------------------------------------------------------------
----- 
* Interrupts 
* ---------------------------------------------------------------------
----- 
*/ 
 
 
#INT_EXT           
void odometer() 
{   
  if (input(pin_b5))   //Wheel counterclockwise ---> 
reverse 
    {counter--;}             
  else 
    {counter++;}    //clockwise ---> forward 
} 
   
 
 
 
main() 
{ 
   
  enable_interrupts(INT_EXT);   //enable external interrupt 
  enable_interrupts(GLOBAL);   //enable global interrupt 
  reset_compass();     
  while(1)          // Endless loop                      
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    { 
    degrees = get_compass();     //poll compass for heading 
    packnum++;     //increment packet number 
 
    //counter is broken up into sign and absolute value so that a 
fixed- 
    // width packet may be sent 
    if (counter >= 0)   //countsign is 1 if count is positive 
 {countsign = 0;} // Print for positive case 
    else    //countsign is 0 if count is negative 
 {countsign = 1;}   
    count = abs(counter); 
    counter = 0;     //reset odometer counter 
 
 
    disable_interrupts(GLOBAL);  //disable interrupts for 
RS232 
    printf("(%3lu|%1u|%5lu|%3u)",degrees, countsign, count,packnum);   
    enable_interrupts(GLOBAL);  //re-enable interrupts 
  
  } 
} 
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Comp07.c 
 

/*=====================================================================
== 
* Second program to implement positioning on PIC using compass data and  
* odometer data.  This program uses the PIC's internal counter to count  
* odometer cycles.  Therefore, it only works for forward motion. 
* 5/9/02 Alan Ghelberg  
*/ 
 
#include "comp5.h"   /* include file */. 
#include "stdlib.h"   /* for absolute value function */ 
 
long int degrees;   //heading 
long int counter =0;  //odometer counter 
 
int packnum=0;    //data packet number 
 
/* 
* ---------------------------------------------------------------------
----- 
* Main Program 
* ---------------------------------------------------------------------
----- 
*/ 
 
 
 
 
main() 
{ 
  setup_timer_1(T1_External);   //Initialize timer to count 
external source 
   
  reset_compass();    // Initialize compass 
  while(1)          // Endless loop                      
    { 
    degrees = get_compass();   // Poll compass for heading 
    packnum++;     // Increment Packet number 
    counter = get_timer1();   // Pull odometer count from 
counter 
    set_timer1(0);    // reset count to zero 
    
    printf("(%3lu|0|%5lu|%3u)",degrees, counter,packnum);  // Print 
for positive case 
  
  } 
} 
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Pos.c 
 

/* Position Calculation Program for EBX                             
    */ 
/* This prgram recieves compass and odometry data from a PIC and calculates x/y 
position  */ 
/* Alan Ghelberg 5/8/02         
    */ 
/* RS232 protocol initially from Get Compass SubProgram Mike Liu 4/13/02   
  */          
             
            
            */ 
/* COM1: Compass/Odometer          
   */         
       
/* COM2: LCD Display          
    */        
          
/* COM3: Motor Control           
   */         
        
/* COM4: GPS/Sonar             
    */        
         
 
 
/* Main Header File that contains other include files     
   */ 
#include "full.h" 
 
/* GLOBAL VARIABLE DEFINITIONS        
   */ 
double total_distance; 
double x_coordinate; 
double y_coordinate; 
signed long total_count; 
 
/* EXTERNAL VARIABLE DECLARATIONS        
   */ 
extern double total_distance; 
extern double x_coordinate; 
extern double y_coordinate; 
extern long total_count; 
 
void main(void) 
{ 
 
 int Seg1, Seg2, Seg3, j, i, sec=0, hund=0; 
 unsigned long newtime=0,oldtime=0; 
 unsigned long deg; 
 short sign; 
 signed long int count; 
 unsigned int packnum; 
 unsigned int oldpacknum = 0; 
 char string[50]=""; 
 char *strptr; 
 char LCDstring[21]; 
 char far *Ptr1, *Ptr2, *Ptr3; 
 struct time timebuf; 
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/* !!! SETUP Simultaneous COM Port Stuff !!! */ 
 
 SioPorts(4,4,0,PC_PORTS); 
 SioUART(COM1,0x03f8);  
 SioUART(COM2,0x02f8);  
 SioUART(COM3,0x03e8);  
 SioUART(COM4,0x02e8);  
 SioIRQ(COM1,4); 
 SioIRQ(COM2,3); 
 SioIRQ(COM3,11); 
 SioIRQ(COM4,10);  
 
/* !!! SETUP COM1 !!! */ 
 // setup 128 byte receive buffer  
 Ptr1 = (char far *)RxBuffer1; 
 Seg1 = FP_SEG(Ptr1) + ((FP_OFF(Ptr1)+15)>>4); 
 SioRxBuf(COM1,Seg1,Size128); 
        // setup 128 byte transmit 
buffer  
 Ptr1 = (char far *)TxBuffer1; 
 Seg1 = FP_SEG(Ptr1) + ((FP_OFF(Ptr1)+15)>>4); 
 SioTxBuf(COM1,Seg1,Size128); 
        // set port parmameters & 
reset port  
 SioParms(COM1,NoParity,OneStopBit,WordLength8); 
 SioReset(COM1,Baud19200); 
 
 
/* !!! SETUP COM2 !!! */ 
        /* setup 128 byte receive 
buffer */ 
 Ptr2 = (char far *)RxBuffer2; 
 Seg2 = FP_SEG(Ptr2) + ((FP_OFF(Ptr2)+15)>>4); 
 SioRxBuf(COM2,Seg2,Size128); 
        /* setup 128 byte transmit 
buffer */ 
 Ptr2 = (char far *)TxBuffer2; 
 Seg2 = FP_SEG(Ptr2) + ((FP_OFF(Ptr2)+15)>>4); 
 SioTxBuf(COM2,Seg2,Size128); 
        /* set port parmameters & 
reset port */ 
 SioParms(COM2,NoParity,OneStopBit,WordLength8); 
 SioReset(COM2,Baud19200); 
 
/* !!! SETUP COM3 !!! */ 
         /* setup 128 byte receive 
buffer */ 
 Ptr3 = (char far *)RxBuffer3; 
 Seg3 = FP_SEG(Ptr3) + ((FP_OFF(Ptr3)+15)>>4); 
 SioRxBuf(COM3,Seg3,Size128); 
        /* setup 128 byte transmit 
buffer */ 
 Ptr3 = (char far *)TxBuffer3; 
 Seg3 = FP_SEG(Ptr3) + ((FP_OFF(Ptr3)+15)>>4); 
 SioTxBuf(COM3,Seg3,Size128); 
         /* set port parmameters & 
reset port */ 
 SioParms(COM3,NoParity,OneStopBit,WordLength8); 
 SioReset(COM3,Baud19200); 
 
 
 fflush(stdin); 
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         // Set auto line 
wrapping on 
 SioPutc(COM2,'\xfe');        
    
 SioPutc(COM2,'\x43'); 
         // Set auto scroll 
on 
 SioPutc(COM2,'\xfe'); 
 SioPutc(COM2,'\x51'); 
         // Set underline 
cursor off 
 SioPutc(COM2,'\xfe'); 
 SioPutc(COM2,'\x4b'); 
         // Clear Screen    
 SioPutc(COM2,'\f'); 
 
// Initialize variables to zero        
            
 // INITIALIZE VARIABLES 
 total_distance=0; 
 x_coordinate=0; 
 y_coordinate=0; 
 total_count=0; 
 oldtime = hund; 
  
 while (1)  
  { 
 
  gettime(&timebuf); 
  hund = timebuf.ti_hund; 
  newtime = hund; 
   
  if ((newtime > oldtime+5) || (newtime < oldtime))  //Only run 
every 50ms or whenever hundredths overflows 
   {  
   oldtime = newtime; 
   if (SioRxQue(COM1) == 17)      //Only run if 
whole 17byte packet is in bufffer 
    { 
    SioGets(COM1, string, 34);     // get packet 
from buffer   
   
    sscanf(string, "(%3lu|%hd|%5ld|%3u)", &deg, &sign, 
&count, &packnum); //Extract info from packet 
     
    if (packnum != oldpacknum)     //If packet is 
new   
     { 
     printf("String = |%s|\n",string); 
     oldpacknum = packnum;     // reset 
oldpacknum to new packnum 
   
     if (sign)       //if sign 
is one odometry count is negative 
      count = count * -1; 
     
     total_count = total_count + count;  // update 
total odometer count 
     update_position(count,deg);  // 
call update position function 
      
     //Print all information to string 
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     sprintf(LCDstring,"Count = %5ld\nDir  = 
%3lu\n(X,Y) = (%2.1f,%2.1f)\nTotal = %2.2f\n",  
      total_count, deg, x_coordinate, 
y_coordinate, total_distance); 
      
     //Print to monitor 
     
     printf("|%s|",LCDstring); 
 
     //Print to LCD display 
 
     SioPuts(COM2,LCDstring,strlen(LCDstring)); 
 
      
     SioRxClear(COM1);   
 //Clear Buffer 
     strcpy(string,"");   //Clear 
String  
     } 
    } 
  
   } 
  if ((i=SioGetc(COM2,0)) > -1)     /* was key 
pressed ? */ 
   {    
   switch (i)  
    { 
    case 'O':      // "#" 
Pressed? 
     total_distance=0;   
 //reset all variables 
     x_coordinate=0; 
     y_coordinate=0; 
     total_count=0;      
     SioPutc(COM2,'\f');      
    break; 
    } 
   } 
  
   
  
  
  if (kbhit())        //CTRL+z 
exits program 
   { 
   j = getch(); 
   if ((char) j == CTLZ)  
    { 
    SioPutc(COM1,'\f'); 
    SioDone(COM1); 
    SioDone(COM2); 
    SioDone(COM3); 
    SioDone(COM4); 
    exit(0); 
    } 
   return; 
   } 
  }   
 
 return; 
} 
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/*  Function: updatePosition        
            
     */ 
/*  Input: current odometer reading, current compass reading   
      */ 
/*  Output: void          
            
         */ 
/*  Purpose: Subfunction to update global position variables     
     */ 
/*       double total_distance, x_coordinate, 
y_coordinate;        */ 
/*                                                                            
*/ 
void update_position(signed long int count, long int degrees) {  
  
 double distance; 
 float theta; 
 distance = .001983 * count; //convert count into distance measurement
 in meters 
 theta = 90 - degrees;       //shift reference 
frame such that 0 degrees is y-axis 
 theta= .01745*theta;          
        //convert to radians 
 x_coordinate = x_coordinate + distance*cos(theta);    //recalculate x 
 y_coordinate = y_coordinate + distance*sin(theta);    //recalculate y 
 total_distance += distance; 
 
} 
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Appendix C: Weekly Reports 
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Hybrid GPS/Accelerometer Navigation System 

Alan Ghelberg 
January 29, 2002 

 
 

Why do we need an additional navigation method? 
 
Currently our navigation system includes a GPS system.  However, problems with GPS 
include the facts that: 
 

• Signal is easily degraded or lost due to obstructions such as buildings or trees 
 
• Excessive granularity of reading, i.e. often cannot obtain position more precisely 

than within 20 feet 
 
Given these limitations, it is useful to supplement GPS-based navigation with some mode 
of local sensing.  A system using accelerometers has the following advantages: 
 

• Entirely self-contained and therefore not subject to external obstructions 
 
• Possible to obtain high accuracy for limited time periods 

 
• Not subject to wheel slippage error, such as velocity measurements 

 
Given these facts, an ideal navigation system will contain both GPS sensing and the local 
sensing provided by accelerometers.  This hybrid navigation system will intelligently 
switch between both position acquisition techniques.  For instance, if the system feels 
that not enough GPS satellites are available it may switch to local sensing. 
 
 
 

Idea behind Accelerometer-based navigation: 
 
I will use at least two accelerometers, one for the x-direction, and one for the y-direction 
(and possibly a third z-component as well).  By taking the acceleration signals and 
double-integrating them (on a PIC), I will obtain position.  The accelerometers may be 
mounted on a gyroscope in order to keep a constant reference frame.  If the 
accelerometers are not on a gyroscope, the reference frame will be constantly changing, 
which must be accounted for.   
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Accelerometer System 

 
 
 
 
 CURRENT  
 
 POSITION 
 
 
 
 
 

Hybrid System 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

x- acceleration 

y- acceleration 

z- acceleration 

 
 
PIC Chip ∫ ∫ 

Local Signal (accel.) 

Accurate/Robust 
Hybrid Position 

 
On-board computer 
(National GEODE) 
 
Use intelligent logic to 
decide how heavily to 
weigh each signal 

Global Signal (GPS) 

 
Next Steps 

 
• Research and experiments on current accelerometers (Analog Devices) 

ADXL05EM-1 to determine suitability for task 
 

• Explore the pros and cons of using gyroscope system.  Decide if necessary or not. 
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Mobile Wheelchair Project – Hybrid Navigation System 
Week 2 Handout 

 
 

This Week 

 

• Experimented with current accelerometers (ADXL05EM-1) 

o Give a response in acceleration Range we will look at 

o Need more tests to determine accuracy within this range 

 

• Explored issues to be dealt with when using accelerometers 

o Granularity of acceleration data (10mG) 

o Noise 

o Stationary Drift (Even when not moving, an acceleration signal occurs 

 This Drift changes with temperature, etc. 

• Nonlinearity in accelerometer signal 

 

 Next Week 

• Explore means of compensating for these issues 

• Use low pass filter to filter out noise 

• Figure out how to remove stationary drift 

• Investigate precise nature of nonlinearity, so can be compensated for on PIC  
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YAV 
Alan Ghelberg 
Week 3 

 
 
 

This Week 
 
• Attempts to improve accelerometer signal 
• Signal was full of high-frequency noise (so applied low-pass filter) 
 
• Tested use of accelerometer to obtain position 
• Ran a controlled test by using one accelerometer and moving it in the direction of the 

accelerometer’s sensitivity 
• Take accelerometer’s voltage output and transform into actual acceleration reading 

• First test +g and –g voltage and then assume linearity between these points 
• Acceleration = 9.8*[(Vout – 2.5)/.5] 

• Moved accelerometer straight 37 cm, and read on oscilloscope 
• Imported onto computer, then calculate for position (take numerical integrals) 

• Vf = VI + Adt 
• Xf = XI + Vdt 
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Whitney 
Alan Ghelberg 
Week 4 

 
This Week 

 
• Implemented a velocity-calculating program on PIC 
• From AD converter, acceleration signal is scaled from 0 to 1024 

• Want to rescale to get acceleration data 
• Subtract out Zero-G bias (averaged over 10 samples) 
• Extrapolate multiplying factor to get acceleration value 

• Vf = VI + Adt 
• Use interrupts to call subroutine at known interval dt 

• Must therefore make sure that calculations within this interval complete 
before next interrupt is called 

• Use timing diagrams 
 

 
 

Issues 
 
• Currently error increases very rapidly 

• Must explore means of reducing error, such as over-sampling 
• The program currently runs slowly, which doesn’t present such a problem now but as 

complexity increases, will need to be streamlined.  Otherwise the time intervals will 
be too long and accuracy will suffer. 
• Currently using floating-point numbers because I need decimal accuracy, but this 

is difficult for PIC to process. 
• I eventually need to convert to integers, but will need a means of keeping 

accuracy, such as basing times on 1 ms 
•  

Next week 
• Calculate Position on PIC 
• Increase accuracy of program 
• Begin integrating Compass into system 
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Project Whitney 
Alan Ghelberg 
Week 5 

 
This Week / Issues: 

 
This week I did more work on the implementation of the position-sensing algorithm on 
the PIC chip.  There was work to be done in terms of working around the PIC’s 
limitations in order to get the program somewhat operational. The PIC could not handle 
any math done within an interrupt call, as I had previously implemented the code.  To fix 
this I only set a flag within the interrupt to 1, which tells the code in the main program to 
run (so that it only runs once every interrupt) 
 
I also developed a method of handling numbers that will allow the level of accuracy I 
need in my numbers, without using floating point.  The issue is that the PIC takes in a 
voltage value form the A/D converter which ranges from zero to 1027.  Then the program 
has to implement the algorithm that: 
• Vf = VI + A∆t 
• Xf = XI + V∆t 
However, since the time scale is small, on the order of 1 millisecond, then for each time 
slice, multiplying by ∆t will be equivalent to dividing by 1000 and therefore destroy the 
accuracy, since I am not using decimals.  The solution is to let ∆t = 1, and keep in mind 
that the actual velocity value is 1/1000th of the stored value and the actual position is 
1/1000000th of the stored value.  The problem that this creates is that the values will 
overflow all the time since they are long signed integers which can range from –32768 to 
+32768.  Therefore, within 32 time increments, the variables will overflow.  The method 
I’ve decided to use to correct for this is to increment a counter to count the number of 
overflows.  In this case: 
• V = m * 32768 + n * 1         and 
• Xf = (s * 32768 + t * 1) + (m * 32768 + n * 1)∆t 
where m,n,s, and t are integers themselves ranging from –32768 to +32768.  Therefore 
the calculation of Xf can be factored out into: 
• sf = sI + m      and 
• tf = tI + n 
I also need to account for when s overflows, by putting some conditions into the code. 
Using these algorithms will not require any multiplication or division, only addition and 
subtraction.  This will allow each cycle to be completed more quickly. 
 

Next week 
• Finish coding linear position calculation on PIC 
• Start using new accelerometer (ADXL105) 

• Filtering and rescaling of signal 
• Begin integrating Compass into system 
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Project Whitney 
Alan Ghelberg 
Weeks 6 & 7 

 
 
 

This Week: 
 
This week I completed a program for linear position sensing on the PIC.  Also, I began 
using the ADXL105 accelerometer instead of the ADXL05.  The ADXL105 
accelerometer has a resolution of 2 mG as opposed to 10 mG for the ADXL05.  This 
should hopefully the system’s accuracy.  However, the PIC’s AD converter is 10-bit, (0 
to 1023) and the accelerometer’s range is –5G to +5G.  The effective resolution of the 
system would still only be 10G/1024 ≅ 10mG.  Therefore I limited the accelerometer’s 
range to only –1G to +1G by amplifying the signal, since the wheelchair should not 
undergo any accelerations outside this range.  The result is that the system should 
theoretically make use of the 2mG resolution. 
 

Issues / Next Steps: 
 
Using the accelerometer causes several problems that are difficult to avoid.  Inherently 
the system has some accuracy problems due to limited resolution, noise, etc..  Because of 
the double-integration, errors in the signal are compounded very rapidly.  Even if the 
integration from acceleration to velocity leads to relatively small error, the error in 
calculating position may be to great.  I have and will try more methods to minimize these 
problems.  My current system uses oversampling as well as some filtration, but the errors 
are still significant. 
 
Another problem with the use of accelerometers is that they are highly sensitive to any 
tilt.  The current system uses one accelerometer oriented in the x-direction.  However, if 
the wheelchair were to tilt down, the accelerometer would feel a strong acceleration due 
to gravity, which is not related at all to the actual wheelchair movement.  As I show on 
the next page, if I use another accelerometer oriented vertically, it is theoretically 
possible to compensate for this, however in practice this would add another degree of 
inaccuracy into the system. 
 
Given these limitations of the accelerometer-based system, I want to explore using 
velocity (as obtained from wheel rotation), along with the compass, in order to calculate 
position.  This method, although subject to slippage, will likely be more robust.  This 
week I intend to implement such a system and test it’s reliability. 



 Alan Ghelberg 67  

 
 

Project Whitney 
Alan Ghelberg 
Week 8 

 
This Week: 

 
This week I began work on a new navigation method which will use wheel rotation 
instead of acceleration in order to determine position.   Wheel rotation will be determined 
either by using a strip of light/dark bands placed around the wheel, along with an IR LED 
and photo-detector to sense the bands.  Therefore, by using the detector as an input to the 
PIC I can count the number of pulses and translate this into distance traveled.   
 
The other means of measuring wheel rotation is to use an optical encoder, which Ed has 
ordered a sample of.  This is essentially a self-contained box which attaches to the axle 
and counts turns.  The advantages of this are that first, the encoder is enclosed and 
therefore not subject to interference from sunlight.  Second, the resolution is very high on 
these devices, such as 128 steps per rotation.  Lastly, these encoders can tell forward from 
reverse motion. 
 
If the system gets a reliable angular turn count, along with compass data, then the x/y 
movement can be determined.  The system counts wheel turns and whenever the direction 
from the compass refreshes (4 or 5 times per second), it is assumed that those turns 
occurred in the direction specified by the compass.  Then the process begins again and 
the new movement is added to the previous. 
 
This method should provide a relatively robust approximation of the actual vehicle 
movement, and hopefully slippage will not be huge factor.  The strength of this method 
as opposed to the use of accelerometers is that no integration is necessary and therefore 
errors should be accumulated at a much slower rate. 
 
 

Next Steps: 
 
In the next few days I hope to implement a trial version of the system I have described.  
The PIC will take data from the compass and for wheel rotation, and send it to the main 
computer via RS232, where the actual navigation calculations will occur.  
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Project Whitney 
Alan Ghelberg 
Week 9 

 
 

This Week: 
 
This week I began the new navigation system using odometry along with the compass.  
Ed ordered an optical encoder which I will use for the odometry, the Grayhill 63R128.  
This encoder is highly accurate, with up to 128 cycles per revolution.  It is also very 
durable with a life of 300 million revolutions.   
 
Andy N. and I began work on the third wheel upon which the odometer will be mounted.  
It will have a spring to ensure that the wheel is always in contact with the ground. 
 
I coded a test program which sends the compass heading, along with the odometry data to 
the computer via RS 232.  The PIC counts how many encoder cycles occur in between 
each compass refresh.  Since the encoder is not yet hooked up, I am simulating this with 
timer overflow interrupts, instead of external interrupts triggered by the encoder.   
 
Problems: 
 
I have run into the problem however that by adding these interrupts, the compass 
readings are sometimes garbage.  This is due to the fact that the communication between 
compass and PIC is time sensitive, and the interrupts are throwing off the timing.  I will 
need to find ways to make the compass code more resistant to the timing errors.  The 
problem is worse in the test code than it will be in the final code because the interrupt is 
being called more often.  Currently it is called 152 times per second.  With the encoder at 
32 cycles / revolution and a roughly 3 inch diameter wheel, assuming a maximum speed 
of 10 miles/hour the rate will be: 
 
10 mph * 5280 feet/mile * 12 in/foot * 1/3600 hrs/sec = 176 in/sec 
 
176 in/sec / (2 * 3 * 3.14 in) = 9 cycles/sec 
 
This interrupt rate should affect the compass communication far less, but must still be 
considered. 
 

Next Week: 
 
In the next few week I will mount the tracking wheel and encoder onto the robot.  I will 
finish the code for the PIC, and then use the information the PIC sends to the main 
machine to calculate the robot’s position. 
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Project Whitney 
Alan Ghelberg 
Week 10 

This Week: 
 
This week I progressed further in implementing the odometry and compass-based 
navigation.  I implemented the odometer algorithm on the PIC such that it can tell 
forward motion from reverse.  The way this works is that the optical encoder has two 
outputs, A and B, which are separated by a 90 degree phase shift.  Therefore, by calling 
an interrupt on A, and checking B in the interrupt, one can tell forward motion from 
reverse.  
 
After running into some trouble concerning the external interrupt pins on the PIC, I was 
able to code a program that sends the main computer the odometer and compass data via 
RS232.  
 
I also worked with Andy N. on the additional motion tracking wheel for the vehicle.  It is 
mounted on a spring so that it maintains constant contact with the ground and resists 
slippage.  
 
 

Next Week: 
 
Now, with the PIC sending correct data to the main computer, I want to write a 
navigation program on the EBX, that will actually track this position.  It will convert the 
# of cycles from the encoder into distance.  Then, given an initial position x,y over a 
certain time the compass records an angle of θ, and the wheel travels a distance d. 
 
 dsinθ 
 
 
 
 
 d   dcosθ 

θ 
 
 
 
 

(x,y) 
 
Therfore the final position over one period is: 

• x = x + dsinθ 
• y = y + dcosθ 

 
By repeating this algorithm over relatively small time slices, the system should be able to 
approximate position. 
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Project Whitney 
Alan Ghelberg 
Week 11 

 
This Week: 

 
This week Mike and I were able to get the compass/odometer PIC to interface with the 
EBX computer, and have the readings display on the LCD screen.  From there, we 
attempted to have the robot turn to a certain direction.  Un fortunately, we were not able 
to get the motor controllers to work properly and as such weren’t able to get it moving 
straight. 
 
Almost completed wheel mount for odometer. 
 
Getting the compass and odometry readings onto the EBX brings me one step closer to 
calculating position, however certain problems remain. 
 
 
Problems: 
 
Difficulties getting serial input working properly on EBX. 

• Needed to set up asynchronous communication and can’t lose any data packets. 
 
Problems with interrupts on PIC chip.  
 
 Currently the odometry system works by calling interrupts on the optical encoder output.  
This may call several hundred interrupts per second.  Although each interrupt only last 
about 6 microseconds, they caused severe problems on the RS232 connection.  I was able 
to fix this by disabling the interrupts during the communication (which lasts about 7 ms 
of the 200 ms total cycle).  This brings about the problem of missed “clicks.”  This 
should not be too severe since the interrupts will only be disabled 7 ms/ 200 ms = 3.5% 
of the time.  This may be helped by some extrapolation to fill the time in. 
 
Beyond messing up serial communication, the interrupt is also hurting the 
communication with the compass, which is very time sensitive.  This is odd considering 
how short each interrupt really is, but there are certain compass readings which are huge 
outliers. 
 
Possible solutions: 

• Throw away compass readings deemed to be garbage 
• Try to disable some interrupts during compass SPI communication. 

 
Problems with compass 
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It has become apparent that the vector 2x compass has some problems that will be 
difficult to work around.  As previously stated, the lack of robustness in communication 
protocol makes it difficult to use interrupts.  Also the compass is relatively inaccurate, a 
problem which is exacerbated by the presence of external magnetic fields.  A trial test 
found a difference in reading of over 15 degrees while pointed in the same direction 
within the same room.  There are also problems with tilting and slow refresh rate.  These 
limitations may make it difficult to obtain an accurate position reading over an extended 
period of time. 
 
 

Next Week: 
 

• Mount wheel 
• Finish position sensing algorithm 
• Finish turn to specified heading program 
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