GRTS Model Training

US EPA: Andrea Matzke (Matzke.Andrea@epamail.epa.gov) Tetra Tech: Sabu Paul (<u>sabu.paul@tetratech.com</u>)

TETRA TECH, INC.

What Will You Learn?

- STEPL model
 - 1. Create an Excel Model
 - 2. Use BMP calculator
- R5 model (a simple Excel model not just for Region 5)
- Special discussion
 - BMP Efficiency Estimator
 - Online data server

Part 1: STEPL

What is STEPL?

- Calculates nutrient (N, P, and BOD pollutants) and sediment loads by land use type and aggregated by watershed
- Calculates load reductions as a result of implementing BMPs
- Data driven and highly empirical
- A customized MS Excel spreadsheet model
 - Simple and easy to use
 - Formulas and default parameter values can be modified by users (optional) with no programming required

STEPL Users?

- Basic understanding of hydrology, erosion, and pollutant loading processes
- Knowledge (use and limitation) of environmental data (e.g., land use, agricultural statistics, and BMP efficiencies)
- Familiarity with MS Excel and Excel Formulas

Process

Sources

STEPL Web Site

Temporary URL: http://it.tetratech-ffx.com/stepl until moved to EPA server

STEPL Main Program

X

 Run STEPL executable program to create and <u>customize</u> spreadsheet dynamically

STEPL: Spreadsheet Tool for the Estimation of Pollutant Load

Version 4.0 with BMP cal Developed for US Enviro Agency by Tetra Tech, Ir October, 2006

About STEPL

culator		and a
nmental Protection nc., Fairfax, VA.	Number of Subwatersheds Select the number of subwatersheds:	
	Number of Special Sediment Sources in the Subwatersheds Gully formations: Impaired streambanks:	
	Option for Initialization • Set initial land use areas and animal numbers to zeros • Test STEPL model with non-zero initial numbers	
	Spreadsheet tool creation progress: O 50 100 OK Cancel Click OK to create the spreadsheet tool in MS Excel	
	Click OK to create the spreadsheet tool in MS Excel	

👯 Main

STEPL Spreadsheet

M	licros	oft Exce	el – Tr	ainingDe	:mo.:	ĸls															_	
ंष्य	<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	Insert	F <u>o</u> r	mat	<u>T</u> ools	<u>D</u> ata	<u>W</u> ind	ow <u>H</u> e	slp 🔮	TEPL					Туре	e a ques	tion for	help		ð ×
	2	🖬 🔒		🖪 🖪	ABC	° 📖	X	b 🛍	- 🛷	9 -	с.	. 😣	fx 1	Σ.	Az↓	Z↓	1	3 85%	•	0		
1	2	2 🖾	G.	313	S	🏹	📜 i Ari	ial		-	10	• B		1	•a•	\$	% 🕈	.00 .00 •.0	•	🔕 -	<u>A</u> -	
	A1		•	fx																		
	A	В		С		l	D	E		F		G			Н			1		J		
1		STEPL	Input	Sheet:		Values	s in RED) are rec	uired ir	nput. Cha	ange v	vorkshe	ets by	/ click	ing or	h taba	s at the	bottom.		You en	tered	
2)	This she	eet is c	omposed	of ei	ght inp	ut table	s. The fi	rst foui	r tables r	require	e users t	o cha	inge ir	hitial v	alues	s. The n	ext four	tables	(initially	hidden)) CO
3		Step 1:	Selec	t the state	e and	count	y where	e your w	vatersh	ieds are	locate	d. Selec	tane	arby	weat	her s	tation. T	his will a	automa	tically sp	becify N	/alu
4		Step 2:	(a) En	ter land u	se ar	eas in	acres II	n Table 1	l;(b)e 	nter total	i numb	er of ag	ricultu	ural ar	nimals	by t	ype and	number	of mor	nths per	year th	nat r
6		Stop 2	CJent	er values Sou stop k	TOPS	eptic s	ystem p	aramete the BM	ers in i De ebe	able 3; a et lf vou	ina (a) Lihava	n desire	ea, ma toilad	Daity (Lipfori	USLE motion	para	meters	associat	ea witr Io oliok	the Ver	ected (our:
		Step 3.	(a) Sr	ecify the	renre d	anu pro sentat	ive Soil	Hydrolo	ns sne aic Gro	et in you sub (SHG) and	soil outr	ient c	oncer	ntratio	non in	your wa Table 4	itersneu ⊽(h) mo	is, click Idify the	e curve i	s pullor number	tak
8		ocep a	(c) mo	dify the nu	utriem	t conce	entratio	nsíma/L) in rur	noff in Ta	able 7:	and (d)	speci	ifv the	e deta	iled la	and use	distribu	tion in t	he urbai	n area	in T
9		Step 5:	Select	BMPs in	BMPs	sheet			Step	6: View	/ the e	stimates	of lo	ads a	nd los	ad re	ductions	in Total	Load a	and Grap	ohs she	ets
10 11	·	Show o	option	al input 1	able	s?	Yes	N	o	🗆 Treat	t all ti	ne subw	ater	sheds	sasp	varts	ofasiı	ngle wa	tershe	d 🗹	Groun	dw
12	_	State			_	Count	ty		_	Weathe	er Stat	tion (fo	r rain	i corr	ectio	on fa	ctors)					
13		Alabam	a	-		Bald	win		Ψ.	0 Defa	ult				-							
14					-																	
15																						Rai
16		1. Input	t wate	rshed la	nd u	se are	ea (ac)	and pre	ecipita	tion (in)												_
								Pastur	elan			User					Feedlo	t Perce	ent			An
17		Waters	hed	Urban	200	Cropi	and	d		Forest		Define	d	Fee	diots	3	Paved			Total	04.0	Rai
10		W1 W2			200		200		200		200			4—		10	0.2	4%		<u> </u>	810	—
20		143			200		200		200		200			1		10	0.2	4%			810	—
20		110			200		200		200		200			-		10	0.2	10		L	010	-
II I	+ 1	Input	t / BM	Ps / Tot	al Loa	ad / G	Graphs															
	~						~			-		4				• -						
					_				mno	sed of	f for	Ir wo	rke	hee	te							

BMPs Worksheet

1. BMPs an	d efficiencie	s for differe	nt pollutants	on CROPLA	٩ND), ND=No Data						
Watershed	ershed Cropland											
	N	Р	BOD	Sediment	BN	1Ps	% Area BMP Applied					
W1	0.485	0.55	ND	0.405	0	Contour Farming 🗧 🗧	100					
W2	0.1	0.3	ND	0.35	0	Diversion 🗧	100					
W3	0	0	0	0	0	0 No BMP 🗧	100					

Each land use type within each watershed can have a separate BMP. Also it can be partial application.

Total Load Worksheet

	1. Total load	by subwater	shed(s)						
	Watershed	N Load (no	P Load (no	BOD Load	Sediment	N Reduction	P Reduction	BOD	Sediment
		BMP)	BMP)	(no BMP)	Load (no BMP)			Reduction	Reduction
		lb/year	lb/year	lb/year	t/year	lb/year	lb/year	lb/year	t/year
	W1	39888.8	5615.6	60882.3	342.9	8.6	3.3	17.1	4.7
-	W2	39879.8	5612.2	60864.2	338.0	0.0	0.0	0.0	0.0
	W3	39879.8	5612.2	60864.2	338.0	0.0	0.0	0.0	0.0
	Total	119648.4	16839.9	182610.8	1018.8	8.6	3.3	17.1	4.7

• Each row of results corresponds to a different watershed or project.

Graphs Worksheet

STEPL BMP Calculator

 Calculates combined efficiency of a BMP train for a given land use. The use of BMP calculator requires the understanding of BMPs and their placement in the watershed.

Customized Menu

🔣 M	🔀 Microsoft Excel - Sample.xls										
	<u>File E</u> dit	<u>V</u> iew <u>I</u> nsert	F <u>o</u> rmat <u>T</u> ool	s <u>D</u> ata <u>W</u> ir	ndow <u>H</u> elp	STEPL					
	൙ 🔒	2 4 🗟	💱 🐰 🖻	n 🛍 🝼 💧	Σ - Σ	Hide/Unhide Other STEPL Sheets					
	A1	-	=			Precipitation/Runoff Data					
	Α	В	С	D	E	USLE Parameters by Land Use					
1						<u>V</u> iew/Edit BMP List					
2						BMP <u>C</u> alculator					
3						Precipitation Correction Factors					
4						Soil N and P					
5						– About					
6											

Tip: To ensure that files are linked to the customized menu, set Excel **Default file location** to C\STEPL or D:\STEPL

Step: Tools menu > Options submenu > General tab

STEPL BMP Calculator

- Describe schematically BMP configuration
- Use source area or original load as the Number and linkages weighting factor BMP type and efficiency **Delete Connection** Land use area Calculate combined BMP Calculator - 🗆 × File Edit View Help 💼 🖨 🗖 🛗 🗅 🚄 🔛 8 efficiency Load/Area=20.000 Load/Area=30.000 N Eff=0.700 N Eff=0.550 P Eff=0.750 P Eff=0.450 COD Eff=0.294 COD Eff=0.000 Sed Ett=0.650 Sed Eff=0.750 Add BMP box Draw Connection Load/Area=40.000 N Eff=0.550 P Eff=0.450 COD Eff=0.000 Calculate combined Move BMP box Sed Eff=0.750 efficiency Total Load/Area=90.000 N Eff=0.702 P Eff=0.624 COD Eff=0.088

Ready

Sediment Eff=0.849

NUM

New Features in 4.0

- Ability to specify different ways (by Subwatersheds or Individual Project Area vs. the Entire Watershed) to calculate sediment delivery
- Calculation of Gully and stream bank erosion
- Calculation of groundwater and pollutant output

 \square Treat all the subwatersheds as parts of a single watershed \square Groundwater load calculation

1. (Gully dimensions	in the diff	ferent wa	ntersheds						
	Watershed	Gully	Тор	Bottom	Depth (ft)	Length	Years	BMP	Soil Textural Class	
			Width	Width		(ft)	to Form	Efficiency		
			(ft)	(ft)				(0-1)		
٥	W1 🗧	Gully1	5	5	5	5	1	0.95	O Clay	÷

2. I	mpaired streamb	ank dime	nsions in							
	Watershed	Strm	Length	Height	Lateral Recession	Rate	Rate	BMP	Soil Textural	Class
		Bank	(ft)	(ft)		Range	(ft/yr)	Efficiency		
						(ft/yr)		(0-1)		
0	W1 🗧	Bank1	5	100	🗿 1. Slight 🛛 🚍	0.01 - 0.05	0.03	0.95	O Clay	-

Hands-on Exercises

Sample Problem Exercises

- Exercise #1
 - Estimate total annual load for a specific farm, and total load reduction resulting to implementation of a (single) BMP on croplands
 - Hypothetical watersheds based on Agricultural Statistics and NRCS data
- Exercise #2
 - Similar to Exercise #1 but with multiple BMPs
- Exercise #3
 - Similar to Exercise #1 but BMP trains implemented on croplands, and a single BMP on urban land
- Exercise #4
 - Similar to Exercise #1 but for multiple subwatersheds and BMP trains implemented on croplands, and pasture land
- Exercise #5
 - Hypothetical watersheds for demonstrating gully and streambank erosion

Sample Problem Exercise #1

Estimate total annual load for a farm in Cullman County in Alabama

Agricultural Statistics of Alabama

Summary 2002		Animals	
Number of Farms	45126	Cattles and calves (farms)	27094
Acreage of farms	8904387	Cattles and calves (number)	1437795
Average size of farm (ac)	197	Beef cows (farms)	23558
Median Size of farm (ac)	90	Beef cows (number)	765901
Total Cropland Number	34073	Milk cows (farms)	223
Totat Cropland Area (ac)	3732751	Milk cows (number)	18939
Hanorstod Cropland Number	23327	Hogs and pigs (farms)	576
	20027	Hogs and pigs (number)	168013
Harversted Cropland Area (ac)	1995139	Sheep and lambs (farms)	445
		Sheep and lambs (number)	11374

Based on 2002 Census of Agriculture, USDA National Agricultural Statistics Service

Agricultural Statistics of Cullman County

Land Information		
Average Farm Size (ac)	101	
Average Cropland Size (ac)	64.2	
Animal Information		
Animal	Total	Average
Beef Cattle	39,018	28.58
Dairy Cattle	1,962	140.14
Swine (Hog)	152	11.69
Sheep	508	25.4
Chicken	1,572,552	14427.08

Based on 2002 Census of Agriculture, USDA National Agricultural Statistics Service

Sample Problem Exercise #1

- Generate a new custom spreadsheet. Note that you may reuse a spreadsheet you created previously for a different project.
 - Click Start button (e.g., normally located at the Windows bottom left corner), then Program, STEPL, and STEPL to run the STEPL main executable program (stepl.exe in /STEPL folder) and display main interface
 - Select options. For Exercise #1, specify the following:
 - Specify number of watershed = 1
 - Select first option under Option for Initialization (default selection Set initial land use areas and animal numbers to zeros)
 - Click ok to create new spreadsheet
 - Click ok to the following message box
 - Save the spreadsheet using a new file name
 - For this example, you may save it to exercise1.xls
 - When the new spreadsheet is opened, click Ok button to enable stored formulas/equations in the spreadsheet

Sample Problem Exercise

- Enter data in the Input Worksheet (numbers in red in spreadsheet)
 - By default, optional tables are not shown. Click yes to show the optional tables (Table 5-8) with their default values. Click no to hide them.
 - Select state = Alabama, and county = Cullman. Notice that initial values for Annual Rainfall and Number of Rain Days are automatically specified in Table 1 as you select a state or county.
 - Select a weather station = AI Birmingham FAA. Notice that correction factors change with the selected weather station.
 - In Table 1, enter the land use areas for your watershed (Refer next slide)
 - Also in Table 1, Select the feedlot percent paved assuming feedlot area is not zero. Default value = 0-24%.

Sample Problem Exercise #1

- Enter data in the Input Worksheet (numbers in red in spreadsheet), cont'd.
 - Also enter data into Tables 2 and 3. Set the number of months manure applied to 3
 - In Table 4, examine the initial USLE parameter values for each land use type which were automatically specified as you selected the state and county.

Table	1	Table 2			
Cropland	75	Reef Cattle	10		
Pastureland	20		10		
Feedlots	5	Dairy Cattle	10		
		Swine (Hog)	5		
		Sheep	10		
		Chicken	100		

Table 3	
No. of Septic Systems	5
Population per Septic	
System	2.38
Septic Failure Rate, %	0.87

You can always change the default and initial data when local data are available.

Sample Problem Exercise

 Examine estimated load in Total Load and Graph worksheets and enter the results below:

Total Annual N Load (lb/yr): _____ 4699.1 Total Annual P Load (lb/yr): _____ 1042.7 Total Annual Sediment Load (ton/yr): _____ 428.5

Amount and source with highest annual load contribution: N load (lb/yr): __2276.2.0 What source: ___ Cropland P load (lb/yr): __705.6 What source: ___ Cropland Sediment load (lb/yr): _406.1 What source: ___ Cropland

Note that load reduction = 0 since you have not specified any BMP yet – see next slide

Sample Problem Exercise #1

- For the same farm area, estimate total annual load reduction assuming reduced tillage is practiced in cropland areas
- Enter BMP data in BMPs worksheet
 - In Table 1 which is for cropland areas, select Reduced Tillage System under BMP column. Note that initial values of BMP efficiencies are automatically specified with the selected BMP.

• Examine estimated load reduction in Total Load and Graph worksheets and enter the results below:

Total Annual N Load Reduction (lb): _____ 1511.8 Total Annual P Load Reduction (lb): _____467.6 Total Annual Sediment Load Reduction (ton): ____304.6

Source with highest annual load contribution after BMP: N load (lb): ____2135.9 What source: ___Feedlots P load (lb): ____292.9 What source: ___Feedlots Sediment load (lb): ____101.5 What source: __Cropland

End of Problem Exercise #1 – Try adjusting your input data and reexamine the results.

- In the Input worksheet check the box next to Groundwater load calculation
- Examine estimated load in Total Load and Graph worksheets and enter the results below:

Total Annual N Load (lb/yr):5221.0Total Annual P Load (lb/yr):1065.2Total Annual Sediment Load (ton/yr):428.5

Amount and source with highest annual load contribution: N load (lb/yr): ___2135.92 What source: ____ Feedlot P load (lb/yr): __292.95 What source: ____ Feedlot Sediment load (lb/yr): __101.52 What source: ____ Cropland

End of Problem Exercise #1 – Try adjusting your input data and reexamine the results.

Sample Problem Exercise #2

- For the same farm area, estimate total annual load reduction assuming reduced tillage is practiced in cropland areas and Solids Separation Basin BMP on feedlots
- Create a spreadsheet for this project or exercise.
 - Instead of generating a new custom spreadsheet using the STEPL main executable program, you will be using the spreadsheet in the previous exercise.
 - Save the spreadsheet used for Exercise #1 to save recent changes.
 - Save this spreadsheet with a new name (exercise2.xls, be sure to save the file as *.xls type). This new spreadsheet will be used for Exercise #2.

Sample Problem Exercise #2

- Enter new data in the Input Worksheet
 - Note that all the input data entered in the previous spreadsheet are still valid
 - Only modification is an additional BMP

Sample Problem Exercise

 Examine estimated load reduction in Total Load and Graph worksheets and enter the results below:

Total Annual N Load Reduction (lb): ____2259.4 Total Annual P Load Reduction (lb): ____ 558.4 Total Annual Sediment Load Reduction (ton): ____ 304.6

Source with highest annual load contribution after BMP: N load (lb): _1388.3 What source: __Feedlots P load (lb): _237.97 What source: __Cropland Sediment load (lb): _101.5 What source: __Cropland

Note that load reductions have been calculated since BMPs have been already specified in the previous exercise. For this exercise, assume that the same BMPs are installed for all cropland and urban areas in the 8-digit watershed.

Estimate total annual load and load reduction for a watershed that consists more than one farm where all croplands are practicing reduced tillage and filter strips (shown below) and urban open spaces has LID/Bioretention:

Sample Problem Exercise #3

- Create a spreadsheet for this project or exercise.
 - Save the spreadsheet used in Exercise #2 to exercise3.xls.
 - Enter new data in the Input Worksheet

1. Input wate									
					User		Feedlot Percent		
Watershed	Urban	Cropland	Pastureland	Forest	Defined	Feedlots	Paved		
W1	100	500	50	25	0	5	o 0-24% 🖶		
2. Input agricultural animals									
									# of months
									manure
Watershed	Beef Cattle	Dairy Cattle	Swine (Hog)	Sheep	Horse	Chicken	Turkey	Duck	applied
W1	20	10	0	10	0	2000	0	0	3

3. Input septic system and illegal direct wastewater discharge data											
				Wastewater	Direct						
	No. of	Population	Septic	Direct	Discharge						
	Septic	per Septic	Failure	Discharge,	Reduction,						
Watershed	Systems	System	Rate, %	# of People	%						
W1	50	2.38	0.87	0	0						

• Examine estimated load in Total Load and Graph worksheets and enter the results below:

Total Annual N Load (lb): ____17015.2 Total Annual P Load (lb): ____ 4108.5 Total Annual Sediment Load (ton): ____ 1526.7

Source with highest annual load contribution: N load (lb): __11208.3 What source: ___Cropland P load (lb): __3176.6 What source: __Cropland Sediment load (lb): __1467.7 What source: __Cropland

Sample Problem Exercise #3

- Enter BMP data in BMP worksheet
 - In Table 1, which is for cropland areas, select "Combined-BMP calculated" under BMP column to indicate that we have a "Reduced Tillage-Filter Strip" BMP train in croplands.
 - Note that the N, P, BOD, and Sediment BMP efficiencies remained zero. If you have the combined efficiency values for this particular BMP train, enter them in Table 7 (number in red). These values will be reflected in Table 1 and in other tables (i.e., if the same BMP train is implemented for other land uses).
 - If you do not have the values, you may use the BMP calculator (next step)

Sample Problem Exercise

#3

 Use BMP Calculator to estimate combined efficiencies of the BMP train

- Run the BMP Calculator by selecting the STEPL/BMP Calculator menu of the STEPL spreadsheet. If the system cannot find the BMP Calculator program, navigate to /STEPL folder and select BMPCalculator.exe
- Using the BMP Calculator interface, do the following (refer back to slide 13 for steps in using BMP Calculator):
 - Add two BMP boxes (one each for Reduced Tillage, and Filter Strip)
 - Enter BMP information (type, area, etc.) for each BMP box by double-clicking the box (Question: What is the area associated with the filter strip)
 - Specify the connection between the two BMPs (Question: Which BMP should be upstream). You may move the boxes to make them more readable
 - Calculate the combined efficiencies for N, P, BOD, and Sediment (0.865, 0.863, ND, 0.913).
 - Enter the combined efficiencies in Table 7 of STEPL spreadsheet. Note the efficiencies are reflected in Table 1.

- Click Urban BMP Tool
 - Select Open Space under urban land use options->Select LID/Bioretention under Available LID/BMP -> Click Apply LID/BMP

Set Urban LID/BMP					×		
Select a Waters	shed: 1	•					
- Select an Urban	Land Use						
C Commercial	C Industrial	C Institutional	C Transportation	C Multi Family			
C Single Family	C Single Family C Urban-Cultivated C Vacant-Developed 💿 Open Space						
Select LID/BMP							
Available LID/BM	P:	LID/BMP Area (ac	:): 1	fotal Available #	Area (ac):		
LID/Bioreten	tion 🔹	5.00		5.00			
Simple form	Reset All		Apply	LID/BMP	Exit		

You can always manually change the initial BMP efficiencies if local data are available.

If your BMP is not in the selection list, you may use STEPL-View/Edit BMP List menu to add your BMP to the database (please refer to the user manual)

• Examine estimated load reduction in Total Load and Graph worksheets and enter the results below:

Total Annual N Load Reduction (lb): ____9929.3 Total Annual P Load Reduction (lb): ____ 2833.4 Total Annual Sediment Reduction (ton): ____ 1340.0

Source with highest annual load contribution after BMP: N load (lb): ___3952.4 What source: ___Feedlot P load (lb): ___658.6 What source: __Feedlot Sediment load (lb): ___127.7 What source: __Cropland

End of Problem Exercise #3 – Try adjusting your input data and reexamine the results.

- Generate a new custom spreadsheet.
 - Similar to exercise 1 create a new spreadsheet, but specify two watersheds this time (Program-> STEPL-> STEPL)
 - Select options. For Exercise #4, specify the following:
 - Specify number of watershed = 2
 - Select first option under Option for Initialization (default selection – Set initial land use areas and animal numbers to zeros)
 - Click ok to create new spreadsheet
 - Click ok to the following message box
 - Save the spreadsheet using a new file name
 - For this example, you may save it to exercise4.xls
 - When the new spreadsheet is opened, click Ok button to enable stored formulas/equations in the spreadsheet

- Enter data in the Input Worksheet (numbers in red in spreadsheet)
 - Select state = Alabama, and county = Cullman.
 - Select a weather station = AI Birmingham
 FAA.

 Enter data in the Input Worksheet (numbers in red in spreadsheet), cont'd

1. Input watershed land use area (ac) and precipitation (in)									
					User		Feedlot Percent		
Watershed	Urban	Cropland	Pastureland	Forest	Defined	Feedlots	Paved		
W1	10	100	50	0	0	0	0-24% 🗧		
W2	10	200	60	0	0	10	O 0-24% 🗧		

2. Input agricultural animals

									# of months
									manure
Watershed	Beef Cattle	Dairy Cattle	Swine (Hog)	Sheep	Horse	Chicken	Turkey	Duck	applied
W1	10	10	10	10	0	1000	10	0	3
W2	10	10	10	10	0	1000	10	0	3
Total	20	20	20	20	0	2000	20	0	

3. Input sept	ic system and	lillegal direc	t wastewater	discharge da	ita
	No. of Septic	Population per Septic	Septic Failure	Wastewater Direct Discharge,	Direct Discharge Reduction,
Watershed	Systems	System	Rate, %	# of People	%
W1	10	2.43	2	0	0
W2	10	2.43	2	0	0

- Cropland in watershed 1 has the same BMP train as in example 2,
- Cropland in watershed 2 has filter strip
- Pastureland in both watersheds has filter strip

- Cropland in watershed 1 has the same BMP train as in example 2,
- Cropland in watershed 2 has filter strip
- Pastureland in both watersheds has filter strip

1. BMPs and	. BMPs and efficiencies for different pollutants on CROPLAND, ND=No Data									
Watershed	Cropland									
	N	Р	BOD	Sediment	BM	Ps	% Area BMP Applied			
W1	0.865	0.863	0	0.913	0	Combined BMPs-Calculated 🗧 🗧 🕂	100			
W2	0.7	0.75	ND	0.65	0	Filter strip 🗧 🗧	100			

7. Combine	7. Combined watershed BMP efficiencies from the BMP calculator									
Watershed	Watershed	Vatershed Combined BMP Efficiencies								
	N	Р	BOD	Sediment	BMPs					
W1-Crop	0.865	0.863	0	0.913	Combined BMPs					
W2-Crop	0	0	0	0	Combined BMPs					
W1-Pasture	0.7	0.75	0	0.65	Combined BMPs					
W2-Pasture	0.7	0.75	0	0.65	Combined BMPs					
W1-Forest	0	0	0	0	Combined BMPs					
W2-Forest	0	0	0	0	Combined BMPs					
W1-User	0	0	0	0	Combined BMPs					
W2-User	0	0	0	0	Combined BMPs					

• Examine estimated load reduction in Total Load and Graph worksheets and enter the results below:

Total Annual N Load Reduction (lb): ____ 6909.5Total Annual P Load Reduction (lb): ____ 1920.5Total Annual Sediment Reduction (ton): ____ 980.3

Source with highest annual load contribution after BMP: N load (lb): ___2844.1 What source: ___ Feedlot P load (lb): ___528.7 What source: __Cropland Sediment load (lb): ___287.6 What source: __Cropland

- In the Input worksheet, check the box next to Treat all the subwatersheds as parts of a single watershed.
- Examine estimated load reduction in Total Load and Graph worksheets and enter the results below:

Total Annual N Load Reduction (lb): ____ 6184.3 Total Annual P Load Reduction (lb): ____ 1641.3 Total Annual Sediment Reduction (ton): ____ 753.6

Source with highest annual load contribution after BMP:

N load (lb): __2844.1 What source: __ Feedlot P load (lb): __483.79 What source: __Cropland Sediment load (lb): __351.18 What source: __Cropland

End of Problem Exercise #4 – Try adjusting your input data and reexamine the results.

- Generate a new custom spreadsheet.
 - Similar to exercise 1 create a new spreadsheet, but specify three watersheds this time (Program-> STEPL-> STEPL)
 - Select options. For Exercise #5, specify the following:
 - Specify number of watershed = 3
 - Specify gully formations = 2
 - Specify impaired streambanks = 2
 - Select second option under Option for Initialization (Test STEPL model with non-zero initial numbers)
 - Click ok to create new spreadsheet
 - Click ok to the following message box
 - Save the spreadsheet using a new file name
 - For this example, you may save it to exercise5.xls
 - When the new spreadsheet is opened, click Ok button to enable stored formulas/equations in the spreadsheet

- Enter data in the Input Worksheet (numbers in red in spreadsheet)
 - Select state = Alabama, and county = Cullman.
 - Select a weather station = AI Birmingham
 FAA.

 Click Gully and Streambank Erosion button in BMPs Worksheet and enter data in the Gully&Streambank Worksheet (numbers in red in spreadsheet)

 Examine estimated load reduction in Total Load and Graph worksheets and enter the results below:

Total Annual N Load Reduction (lb): ____ 20.0 Total Annual P Load Reduction (lb): ____ 7.7 Total Annual Sediment Reduction (ton): ____ 13.8

End of Problem Exercise #5 – Try adjusting your input data and reexamine the results.

BMP Calculator

More Exercises for BMP Calculator

 Try different BMP trains in the BMP Calculator. Note that you may define as many trains as you want and calculate each BMP train's combined efficiency at the same time in the same window. You don't need to open a separate BMP window for each BMP train (see illustration below).

Need of BMP Calculator

• When is BMP Calculator needed?

Note: Each box represents a 100 acre size

Not needed - No combined

Needed - Each land use type uses more than one type of BMP

BMP Calculator – Example 1

BMP Calculator – Example 2

BMP Calculator – Example 3

Adding BMP Data

Add New Data to BMP List

- In STEPL customized menu, click "View/Edit BMP List"
- BMPList worksheet is shown, add or delete BMPs

📉 M	Kicrosoft Excel - Sample.xls									
	<u>Eile E</u> dit <u>V</u>	jew <u>I</u> nsert	F <u>o</u> rmat <u>T</u> ool	s <u>D</u> ata <u>W</u> ir	ndow <u>H</u> elp	STEPL				
D	🖻 🔒 🔒) 🖨 🖪	💱 🐇 📬	n 🛍 🝼 🛛	Σ - Σ	Hide/Unhide Other STEPL Sheets				
_	A1	-	=			Precipitation/Runoff Data				
	Α	B	С	D	E	USLE Parameters by Land Use				
1						View/Edit BMP List 🦰				
2						BMP <u>⊂</u> alculator				
3						Precipitation Correction Factors				
4						Soil N and P				
5						About				
6										

Customized menu

Landuse	BMP & Eff	N	Р	BOD	Sediment
Cropland					
Cropland	0 No BMP	0	0	0	0
Cropland	Combined	0	0	0	0
Cropland	Contour Fa	0.485	0.55	ND	0.405
Cropland	Diversion	0.1	0.3	ND	0.35
Cropland	Filter strip	0.7	0.75	ND	0.65
Cropland	Reduced T	0.55	0.45	ND	0.75
Cropland	Streambar	0.75	0.75	ND	0.75
Cropland	Terrace	0.2	0.7	ND	0.85
Pasturelar	id				
Pasturelan	O No BMP	0	0	0	0
Pasturelar	Combined	0	0	0	0
Pasturelan	User Defin	0.5	0.5	0.5	0.75

Example: New data inserted here

STEPL: Add New Data to BMP List

- Click "Update BMP Data" button to update the BMP selections in the BMPs worksheet
- Click "Save Updates" to save changes to text files (comma delimited)
 - C:or D:\Stepl\Support\AllBMPstepl.csv
 - C: or D:\Stepl\Support\AllBMP.csv

Part 2: Region 5 Model

R5 model is not limited to Region

If controls of the model does not work, set EXCEL > Tools > Macro > Macros > Security to Medium

	Α	B			D		E		F		G		Н	
1		Estimating	i Load R	educt	ions For	Agric	cultur	al a	nd U	rbaı	n BMP	s		
2														
3	This workbook uses the	"Pollutants	s Controll	ed Cal	culation a	and D	ocum	enta	tion fo	or S	ection	319		
4	Watersheds Training Ma	anual" (Mic	higan De	partme	nt of Env	rironm	ental	Qual	ity, J	une	1999)	to		
5	rovide a gross estimate of sediment and nutrient load reductions from the implementation of agricultural BMP													
6	The methodology for the	he methodology for the gross estimate of sediment and other constituent load reductions from the implement												
7	urban BMPs is based or	n reduction	efficienci	es ani	d calculat	tions (develo	ped	by Illi	inois	SEPA.			
8														
9	Please note: This work	(book uses	; many si	mplifyi	ng assun	nption	s to p	provid	le a g	jene	ral ES	TIMAT	Eof	
10	pollutant load reductions	s through B	MP imple	ementa	ation. Mo	ore ac	curate	e res	ults c	of po	llutant	load I	educ	tions
11	may be obtained through	n direct mo	nitoring a	nd/or :	a more de	etaileo	i mod	eling	appl	icat	ion. In	addit	ion,	
12	this workbook does not i	estimate p	ollutant lo	ad rec	luctions f	or dis	solved	1 cor	nstitui	ents				
13					e . 1			_						
14	The workbook is divided	The workbook is divided into worksheets (see bottom of the Window). Each worksheet is specific to												
15	a particular source. In some cases, multiple practices may take place for a specific site, then the various													
15	worksheets will all need to be completed; one worksheet must be completed for each BMP.													
17	I ne tollowing are the wol	rksneets a	na wnat p	ractic	es they c	over:								
10	Markehoot	Doccibl	lo Dracti	-06										
20	Gully Stabilization	Grade 9	Stahilizati	on Str	ucture			٦						
21		Grasse	d Waterw	av oli	001010									
22		Critical	Area Pla	∽, ntina ir	n areas w	/ith au	llies							
23		Water a	and Sedin	hent C	ontrol Ba	isins								
24	Bank Stabilization	Animal	Trails and	1 Walk	wavs			1						
25		Stream	Channel	Stabili	ization									
26		Stream	bank Prot	ection	I									
27	Ngricultural Fields	Prescri	bed Grazi	ng				1						
28		Residue	e Manage	ment,	Mulch Ti	11								
29		Conser	vation Cro	p Rota	ation									
30		Conser	vation Cov	/er										
31		Cover a	nd Green	Manu	re									
32		Critical	Area Pla	nting										
33		Stripere	opping, Co	ontour				-						
34		Stripere	pping. Fi	eld .					-		/- "			- 11 I
• •	Instructions	ully Stabilizati	on <u>(</u> Ba	nk Stab	ilization /	(Ag F	-ields 8	k Filte	r Strip	s /	Feedlo	itsχί	Jrban I	Runott /

Region 5 model has five functional worksheets.

Region 5 Load Estimation Model

Introduction

- Provide a general estimate of pollutant reduction at the source level
- Initially developed by Indiana Department of Environmental Management (IDEM) based on Michigan DEQ's pollution control manual for section 319 watersheds.

Source	BMP			
Gully	Gully Stabilization			
Streambank	Streambank Stabilization			
Agricultural Fields	Field Management Practices and Filter Strips			
Feedlot	Animal Waste System			
Urban Runoff	Various BMPs			

Gully Erosion: Calculate Load Reduction

- Select a soil texture (e.g. sand, loamy sand)
- Enter gully dimensions and the number of years since the gully formed

Parameter	Gully	E	xample	
Top Width (ft)	13		15	
Bottom Width (ft)	2		4	
Depth (ft)	1.5	5		
Length (ft)	300		20	
Number of Years	5		5	
Soil Weight (tons/ft3)	0.0425		0.05	
Soil P Conc (lb/lb soil)*	0.0005		0.0005	*
Soil N Conc (lb/lb soil)*	0.001		0.001	*
+ 14 · · · · · · · · · ·	let provide input	(in red) f	for Total P and	Total N soil c
* If not using the default values, users m	ust provide input	(in red) i		
* If not using the default values, users m Estimated Load Redu	Ictions			
* If not using the default values, users m Estimated Load Redu	ictions BMP			
* If not using the default values, users m Estimated Load Redu	Ictions BMP Efficiency*	Gully	Exan	nple
* If not using the default values, users m Estimated Load Redu Sediment Load Reduction (ton/year)	Ictions BMP Efficiency*	Gully 28.7	Exan 1(nple)
* If not using the default values, users m Estimated Load Redu Sediment Load Reduction (ton/year) Phosphorus Load Reduction (lb/year)	Ictions BMP Efficiency*	Gully 28.7 28.7	Exan 11 8	nple)

Gully Stabilization

Load

Average annual erosion during the life of the gully (t/y)

= Volume x Soil Weight / Years

Nutrient load

= Annual Erosion x Soil Nutrient Conc. x Correction Factor

- Load Reduction after implementing gully stabilization
 - Specify reduction efficiency (100% efficiency by default)
 - Reduction is equal to annual erosion x user-specified efficiency

Volume = (Top Width +Bottom Width) x Depth x Length / 2

Gully Erosion: Nutrient Correction Factor

- Correction Factor
 - Smaller soil particles -> larger aggregated surface area -> more nutrients attached

Soil Texture	Nutrient Correction Factor
Clay	1.15
Silt	1.00
Sand	0.85
Peat	1.50

Stream Bank Erosion— **Calculation** Select a soil texture (e.g. silty clay)

- •
- Enter the dimensions of the eroding stream banks

Please fill in the gray areas below:			
Parameter	Bank #1	Bank #2	Example
Length (ft)	500	500	500
Height (ft)	10	10	15
Lateral Recession Rate (ft/yr)*	0.2	0.2	0.5
Soil Weight (tons/ft3)	0.0425	0.0425	0.04
Soil P Conc (lb/lb soil)** USER 💌	0.0005	0.0005	0.0005
Soil N Conc (lb/lb soil)** USER 💽	0.001	0.001	0.001

** If not using the default values, users must provide input (in red) for Total P and Total N soil concentrations *Lateral Recession Rate (LRR) is the rate at which bank deterioration has taken place and is measured in feet per year. This rate may not be easily determined by direct measurement. Therefore best professional judgement may be required to estimate the LRR. Please refer to the narrative descriptions in Table 1.

Estimated Load						
	BMP Efficiency* Bank #1	BMP Efficiency* Bank #2	Bank #1	Bank #2	Example	
Sediment Load Reduction (ton/year)	1.0	1.0	42.5	42.5	150	
Phosphorus Load Reduction (Ib/year)			42.5	42.5	150	
Nitrogen Load Reduction (lb/yr)			85.0	85.0	300	
* BMP efficiency values should be between 0 and 1, and 1 means 100% pollutant removal efficiency.						

Stream Bank Erosion

- Load (Channel Erosion)
 - = Length * Height * Lateral Recession rate * Soil weight
- Load Reduction
 - = Load * Load reduction efficiency

Determining Lateral Recession Rate by Field Observation

Lateral Recession Rate (ft/yr)	Category	Description
0.01 – 0.05	Slight	Some bare bank, no exposed roots
0.06 – 0.2	Moderate	Bank is mostly bare
0.3 – 0.5	Severe	Bank is bare with exposed roots
0.5+	Very Severe	Bank is bare with fallen trees

Agricultural Practices—Usage

- Check BMPs: Agricultural field practices and filter strips (check both)
- Select a state and a county for default USLE parameter values
- Modify the default USLE parameter values for local conditions, especially the cover factor C and the supporting practice factor P to reflect the before and after treatment effects

Please check which BMPs apply:	Please select	a state and a	a county, and	default USL	E param
Agricultural Field Practices	Users should u	use the local U	SLE paramete	r values if avai	lable!
	State		County		
✓ * Filter Strips	Alabama	-	Autauga	•	
	-				
Diana fill in the ways are a halow					
Please fill in the <u>gray</u> areas below:			F		
			Example		
	Before	After	Before	After	
USLE or RUSLE	Treatment	Treatment	Treatment	Treatment	
Rainfall-Runoff Erosivity Factor (R)	374.69	374.69	120	120	
Soil Erodibility Factor (K)	0.20	0.20	0.35	0.35	
Length-Slope Factor (LS)	0.29	0.29	0.44	0.44	
Cover Management Factor (C<=1.0)*	0.20	0.04	0.7	0.5	
Support Practice Factor (P<=1.0)*	0.99	0.99	0.775	0.11	
Predicted Avg Annual Soil Loss (ton/acre/year)	4.21	0.84	10.03	1.02	
* User must use the local C and/or P values (in	red) to obtain t	he reduction d	ue to the field p	ractices.	

Agricultural Practices—Usage 2

- Enter contributing areas (e.g. 50 acres)
- Select a soil texture (e.g. silt)

Estimated Load Reductions for Agricultural Field Practices					
, i i i i i i i i i i i i i i i i i i i	Treated	Example			
Sediment Load Reduction (ton/year)	97	85			
Phosphorus Load Reduction (lb/year)	118	100			
Nitrogen Load Reduction (lb/yr)	236	200			
Estimated Additional Load Reductions	through Filter	Strips			
	Filter-Strip Efficiency	Filter-Strip Treated	Example		
Sediment Load Reduction (ton/year)	0.65	16	92		
Phosphorus Load Reduction (lb/year)	0.75	34	114		
Nitrogen Load Reduction (lb/yr)	0.70	63	227		
Total Estimated Load Rec	luctions				
	Total	Example			
Sediment Load Reduction (ton/year)	113	177			
Phosphorus Load Reduction (lb/year)	152	214			
Nitrogen Load Reduction (lb/yr)	298	427			

Note: This worksheet is also applicable to other cases (mining, construction sites) when USLE is used.

Feedlot Pollution Reduction

- Load
 - Enter a contributing area (e.g. 1.74 acre)
 - Specify the percentage of paved area (e.g. 75-100%)
 - Select state and a county (Pennsylvania, Lycoming)
 - Select Weather Station (NY New York Central Park)
 - Enter animal count for each type

Animal Numbers	Animal Type	Design Weight*
0	Slaughter Steer	1,000
0	Young Beef	500
100	Dairy Cow	1,400
30	Young Dairy Stock	500
0	Swine	200
0	Feeder Pig	50
0	Sheep	100
0	Turkey	10
0	Chicken	4
0	Duck	4
0	Horse	1,000

Feedlot Pollution Reduction

- Load Reduction
 - Select a feedlot best management practice (e.g. waste management system)
 - System calculates load reduction using pre-assigned (BOD, P, N) efficiencies for the selected BMP

Estimated Load and Load Reductions				
Pollutants	Load before BMP	Load Reduction	Load after BMP	
Biochemical Oxygen Demand load (Ibs/yr)	8,598	NA	NA	
Phosphorus load (lbs/yr)	848	763	85	
Nitrogen load (Ibs/yr)	7,239	5,791	1,448	

Urban Pollution Reduction

- Load
 - Enter size (acres) of storm water sewered and unsewered areas for each urban land use subclass
 - System calculates load using default unit loads for each land use sub class

Please enter landuse of contributing/drainage area in acres:

	Sewered	Unsewered
Commercial	100	10
ndustrial	100	10
Institutional	50	10
Transportation	50	0
Multi-Family	100	10
Residential	200	10
Agriculture	0	20
Vacant	20	0
Open Space	250	250

Note: Storm sewers

Urban Pollution Reduction

- Load Reduction
 - Select BMP
 - System calculates load using default BMP efficiencies for the selected BMP

	Pre-BMP Loading (Ibs∕yr)	Post- BMP Loading (Ibs/yr)	Load Reduction (Ibs/yr)	
BOD	30,640	13,482	17, 158	
COD	234,750	U	U	
TSS	681,250	126,031	555,219	
LEAD	531	U	U	
COPPER	102	U	U	
ZINC	785	U	U	
TDS	1,210,084	U	U	
TN	7,850	U	U	
TKN	4,293	U	U	
DP	363	U	U	
TP	928	450	478	
CADMIUM	6	U	U	

Region 5 model vs. STEPL 1

- Region 5 model
 - Calculates load at the source level
 - Sources are independent (no relationship between worksheets)
- STEPL
 - Calculates load for different sources at source and watershed level
 - Sources are related in watershed
 - User can specify and update BMP list
 - BMP calculator for complex BMP arrangements

Part 3: Special Discussion

BMP Efficiency Estimator

- Simple calculator to estimate BMP efficiency for non structural BMP
- Estimates efficiency due tochanges in cropping patterns or soil support practices

Models and Documentation

- BMP Efficiency Calculator (New) (Last updated: 09/24/2008. Please send your comments to <u>STEPL support</u>.)
 - o <u>BMP Efficiency Calculator 1.0 Package</u> 💐

BMP Efficiency Estimator – contd.

Microsoft Excel - BMP_eff_estimator_082006.xls									
📳 Eile Edit View Insert Format Iools Data Window Help Calculator Type a question for help 🗸 🗗 🗗									8 ×
Arial • 10 • B Z U ≡ ≡ ≡ ⊠ \$ % • 10 • Aria • F									
	G15	▼ fx	-				-		
	A	В	C	D	E	F	G		<u>н</u> <u>–</u>
<u> </u>	He	իթ				-			
3				BMF	P Efficie	ency C	alculator 1.0		
5									
6	STEP 1	1.Specify BMP Name							
7		My Pasture Improvement							
8		2a Calast State		2h Colort Cou			2. Weather Station for rain	action for store)	
10	STEP 2	Za. Select State		ZD. Select Cou Fairfay	nty T		ZC. Weather Station (for rain	correction factors)	
11		Yiiginia		T amax			VA WASHINGIN DO NATE AF		
13		3. Select Maior Soil Hy	drologic Group						
14	STEP 3	SHG A	SHG B	SHG C	SHG D				
15		۲	9	۲	۲				
16									
17	STEP 4	4. Select a practice or g	ground cover co	ndition					
18		4a. Boforo BMP Implan	outation						
20		Practice or Ground Cov	/er	Continuous	fallow_tilled_up	and down slo	ne		-
21		Support Practice		No Support					
22									
24									
25		4b. After BMP Impleme	ntation			1.0.0.11			_
26		Practice or Ground Cov	ver	Corn(silage)-Wheat(Residu	es left,fall turn	plowed) ; 2 year rotation		
27		Support Practice							
29									
31	Desults	Result: Load Reduction	Efficiencies	·					
32	Results	BMP Name	N	Р	Sediment	Runoff			
33		My Pasture Improvement	0.48	0.585	0.65	0.434			
34									
								Ð	
Ready									

Other Alternative Load Models - Simple

Model	Field or Watershed	Land Use	Pollutant	Event or Continuous	BMP	Data Reqt's	Level of Effort
Simple							
Simple	Watershed	Urban	N, P	Event		Low	Low
Method							
FHWA	Both	Urban	N, P	Event		Low	Low
SLOSS/	Both	Rural	P, Sed	Event		Low	Low
PHOSPH							
Watershed	Both	Both	Р	Event	Simple	Medium	Medium

Reference: List of alternative load and load reduction models, STEPL Web site.

Other Alternative Load Models – Mid Range

Model	Field or Watershed	Land Use	Pollutant	Event or Continuous	BMP	Data Reqt's	Level of Effort
Mid Range							
AGNPS	Both	Rural	N, P, Sed	Both	Detailed	Medium to High	Medium to High
GWLF	Both	Both	N, P, Sed	Both	Simple	Low to Medium	Low to Medium

Other Alternative Load Models - Detailed

Model	Field or Watershed	Land Use	Pollutant	Event or Continuous	BMP	Data Reqt's	Level of Effort				
Detailed/Complex											
ANSWERS	Both	Rural	N, P, Sed	Both	Detailed	Medium to High	Medium to High				
GLEAMS	Field	Rural	N, P, Sed	Both	Detailed	Medium to High	Medium to High				
HSPF	Both	Both	N, P, Sed	Both	Detailed	Medium to High	Medium to High				
SWAT	Both	Rural	N, P, Sed	Both	Detailed	Medium	Medium				
SWMM	Both	Both	N, P, Sed	Both	Detailed	High	High				
WEPP	Both	Rural	Sed	Continuous	Detailed	Low to High	Low to High				

STEPL Online Input Data Server ONLY FOR PRACTICE!!

STEPL Online Input Data Server

Note: Zoom in further to display polygon IDs

STEPL Online Input Data Server: Basic Report

Data is summarized by HUCO polygon

					Poly	gon ID	Urban/	Transportati	ion (C	Cropla	and	Pa	sture/Rangeland	Forest	User Defined	Feedlots	Water	Others
					7951		1000.0	0	20	00.00	I	588	800.00	20600.00	0.00	1.22	1000.00	200.00
					7968		61900.	00	21	73100	0.00	26	7400.00	5500.00	0.00	349.00	10300.00	43300.00
					7970		31100.	00	11	33500	0.00	314	400.00	1400.00	0.00	55.94	3600.00	10800.00
					8290		0.90		0.	.00		81.	.72	0.00	0.00	0.00	0.00	0.00
					8380		67.11		0.	.00		610	07.11	0.00	0.00	0.03	0.00	0.00
Polygon ID	Beef Cattle	Dai	ry Cattle	Swine(Hog)	Sheep	Horse	Chicken	Turl	key :	Duck	c))	31.88	0.00	0.00	0.01	0.00	0.00
7951	1873	0		11		165	104	110	D		1	79	9.29	0.00	0.00	0.00	0.00	0.00
7968	28569	113	759	16339		1871	2540	3223938+D	1056	5600	60	10	600.00	0.00	0.00	48.16	2000.00	4300.00
7970	7159	226	97	503		5781	930	1254374	D		13	0	00	0.00	0.00	0.00	0.00	0.00
8290	D	D		0		0	0	0	2		0	31	1299.97	27500.00	0.00	454.38	16900.00	58600.00
8380	D	D		0		0	0	0	218		0							
8427	D	D		0		0	0	0	72		0							
8568	D	D		0		0	0	0	Poly	σοη Γ		0. 0	of Sentic Systems	Populatio	n ner Sentic S	vstem Se	ntic Failur	e Rate %
8684	4656	218	74	921		1693	170	D	7951	Bourt	14	179		1 67	in per separe s	0	38	0 1100,70
8752	8	0	Polygon 1	ID Hye	drolog	țical Gr	oup	D	7968	2	18	886	2	2.81		0 '	38	
Total	42265	158	7951	D				4478422	7970		68	323	-	2.89		0.1	38	
			7968	В					8290]	0			1.92		0.1	38	
			7970	В					8380)	5			1.92		0.1	38	
			8290						8427	,	1			1.92		0.1	38	
			8380						8568	;	0			1.92		0.1	38	
			8427						8684		16	528		3.05		0.1	38	
			8008						8752	2	5			1.86		0.1	38	
			0750	B					Total		28	380	3	2.78		0.1	38	
			0752	D				L										

STEPL: Discussion

- Watershed vs. subwatershed
 - STEPL model is not limited to subwatershed (can apply to farms, scenarios, etc.)
 - Watershed size (make the subwatershed small enough to reflect BMP effectiveness.
 - You want to know the reduction at the local subwatershed level (Sum of loads from subwatersheds ≠ load at the watershed outlet because of the transport loss in the main stem.)
- Local weather data
- How to use the user-defined land use?
- Septic failure rate clarification
- Add new BMPs to the list
- Small treated area vs. large watershed
- R5 100% efficiency assumptions
- Estimate BMP efficiencies using USLE tables

Some useful data!

Estimate BMP Efficiency Using USLE C Value Table I

Generalized Values of Cover and Management Factor (C) for Field Cro	ops East of the Rocky Mountains (Stewart et al 1975).
---	---

Crop, rotation &	& management b/	Productivity a/		
(Please use the	e abbreviation table below!)	High	Moderate	
Continuous fa	llow, tilled up and down slope	1.00	1.00	
1	C, RdR, fall TP, conv (1)	0.54	0.62	
2	C, RdR, spring TP, conv (1)	0.50	0.59	
3	C, RdL, fall TP, conv (1)	0.42	0.52	
4	C, RdR, wc seeding, spring TP, conv (1)	0.40	0.49	
5	C, RdL, standing, spring TP, conv (1)	0.38	0.48	
6	C, fall shred stalks, spring TP, conv (1)	0.35	0.44	
7	C(silage)-W(RdL,fall TP) (2)	0.31	0.35	
8	C, RdL, fall chisel, spring disk, 40-30% re (1)	0.24	0.30	
9	C(silage), W wc seeding, no-till p1 in c-k W (1)	0.20	0.24	
10	C(RdL)-W(RdL, spring TP) (2)	0.20	0.28	
11	C, fall shred stalks, chisel p1, 40-30% re (1)	0.19	0.26	
12	C-C-C-W-M, RdL, TP for C, disk for W (5)	0.17	0.23	
13	C, RdL, strip till row zones, 55-40% re (1)	0.16	0.24	
14	C-C-C-W-M-M, RdL, TP for C, disk for W (6)	0.14	0.20	
15	C-C-W-M, RdL, TP for C, disk for W (4)	0.12	0.17	
16	C, fall shred, no-till pl, 70-50% re (1)	0.11	0.18	
17	C-C-W-M-M, RdL, TP for C, disk for W (5)	0.087	0.14	
18	C-C-C-W-M, RdL, no-till pl 2nd & 3rd C (5)	0.076	0.13	
19	C-C-W-M, RdL, no-till pl 2d C (4)	0.068	0.11	
20	C, no-till pl in c-k wheat, 90-70% re (1)	0.062	0.14	
21	C-C-C-W-M-M, no-till p1 2d & 3rd C (6)	0.061	0.11	
22	C-W-M, RdL, TP for C, disk for W (3)	0.055	0.095	
23	C-C-W-M-M, RdL, no-till pl 2d C (5)	0.051	0.094	
24	C-W-M-M, RdL, TP for C, disk for W (4)	0.039	0.074	
25	C-W-M-M-M, RdL, TP for C, disk for W (5)	0.032	0.061	
26	C, no-till pl in c-k sod, 95-80% re (1)	0.017	0.053	

Estimate BMP Efficiency Using USLE C Value

Generalized Values of Cover and Management Factor (C) for Field Crops East of the Rocky Mountains (Stewart et al 1975).

Crop, rotation	& management b/	Productivity a/		
(Please use th	e abbreviation table below!)	High	Moderate	
COTTON /c				
27	Cot, conv (western plains) (1)	0.42	0.49	
28	Cot, conv (south) (1)	0.34	0.40	
MEADOW (HA	AY)			
29	Grass & legume mix	0.004	0.01	
30	Alfalfa, lespedeza or sericia	0.020	-	
31	Sweet clover	0.025	-	
SORGHUM, G	RAIN (western plains)			
32	RdL, spring TP, conv (1)	0.43	0.53	
33	No-till pl in shredded 70-50% re	0.11	0.18	
SOYBEANS /	;			
34	B, RdL, spring TP, conv (1)	0.48	0.54	
35	C-B, TP annually, conv (2)	0.43	0.51	
36	B, no-till pl	0.22	0.28	
37	C-B, no-till pl, fall shred C stalks (2)	0.18	0.22	
WHEAT				
38	W-F, fall TP after W (2)	0.38	-	
39	W-F, stubble mulch, 500 lb re (2)	0.32	-	
40	W-F, stubble mulch, 1000 lb re (2)	0.21	-	
41	Spring W, RdL, Sept TP, conv (ND,SD) (1)	0.23	-	
42	winter W, RdL, Aug TP, conv (KS) (1)	0.19	-	
43	Spring W, stubble mulch, 750 lb re (1)	0.15	-	
44	Spring W, stubble mulch, 1250 lb re (1)	0.12	-	
45	Winter W, stubble mulch, 750 lb re (1)	0.11	-	
46	Winter W, stubble mulch, 1250 lb re (1)	0.10	-	
47	W-M, conv (2)	0.054	-	
48	W-M-M, conv (3)	0.026	-	
49	W-M-M, conv (4)	0.021	-	

Estimate BMP Efficiency Using USLE C Value Table III

Values of Cover and Management Factor (C) for Pasture and Woodland (Novotny & Chesters, 1981).

Cover	Value
Permanent pasture, id	le land, unmanaged woodland
95-100% ground cover	
as grass	0.003
as weeds	0.01
80% ground cover	
as grass	0.01
as weeds	0.04
60% ground cover	
as grass	0.04
as weeds	0.09
Managed woodland	
75-100% tree canopy	0.001
40-75% tree canopy	0.002-0.004
20-40% tree canopy	0.003-0.01

For example: Increase ground cover from 60% to 80% will reduce erosion about 75%

Estimate BMP Efficiency Using USLE C Value Table IV

Generalized Values of Cover and Management Factor (C) for Field Crops East of the Rocky Mountains (Stewart et al 1975).

Notes and Abbreviations

a/. High level exemplified by long-term yield averages greater than 75 bu/ac corn or 3 ton/ac hay or cotton management that regularly provides good stands and growth.

b/. Numbers in parentheses indicate numbers of years in the rotation cycle. (1) indicates a continuous one-crop system.

c/. Grain sorghum, soybeans or cotton may be substituted for corn in lines 12,14,15, 17-19, 21-25 to estimate values for sod-based rotations.

Abbreviations:

В	soybeans	F	fallow					
С	corn	Μ	grass & legume hay					
c-k	chemically killed	pl	plant					
conv	conventional	W	wheat					
cot	cotton	WC	winter cover					
lb re	pounds of residue per a	cre remaining on s	urface after new crop seeding					
% re	percentage of soil surfac	ce covered by resid	due mulch after new crop seedin	ıg				
xx-yy% re	xx% cover for high prod	uctivity, yy% for me	oderate					
RdR	residues (corn stover, st	raw, etc.) removed	d or burned					
RdL	residues left on field (on	residues left on field (on surface or incorporated)						
TP	turn plowed (upper 5 or	more inches of soi	l inverted, covering residues					

Estimate BMP Efficiency Using USLE P Value Table

Values of Supporting Practice Factor (P) (Stewart et al 1975).

Practice Slope(%):	1.1-2	2.1-7	7.1-12	12.1-18	18.1-24	
No support practice	1.00	1.00	1.00	1.00	1.00	
Contouring	0.60	0.50	0.60	0.80	0.90	
Contour strip cropping						
R-R-M-M/a	0.30	0.25	0.30	0.40	0.45	
R-W-M-M	0.30	0.25	0.30	0.40	0.45	
R-R-W-M	0.45	0.38	0.45	0.60	0.68	
R-W	0.52	0.44	0.52	0.70	0.90	
R-O	0.60	0.50	0.60	0.80	0.90	
Contour listing or						
ridge planting	0.30	0.25	0.30	0.40	0.45	
Contour terracing /b	$0.6/n^{\frac{1}{2}}$	$0.5/n^{1/2}$	$0.6/n^{\frac{1}{2}}$	$0.8/n^{1/2}$	$0.9/n^{1/2}$	

a/. R = row crop, W = fall-seeded grain, M = meadow. The crops are grown in rotation and so arranged on the field that row crop strips are always separated by a meadow or winter-grain strip. b/. These factors estimate the amount of soil eroded to the terrace channels. To obtain off-field values, multiply by 0.2. n = number of approximately equal length intervals into which the field slope is divided by the terraces. Tillage operations must be parallel to the terraces.

For example: Contouring will reduce sediment by 10-40% depending on slope

Estimate Runoff Changes Using Curve Number

Land Use/Cov	ver Hyd	drologic Condition	А	В	С	D <- Soil Hydrologic Group
Fallow Bare S	Soil		77	86	 91	94
Crop residue cover (CR)		Poor *	76	85	90	93
	•		74	83	88	90
Row Crops S	Straight row (S	R) Poor	72	81	88	91
			67	78	85	89
	SR+CR	Poor	71	80	87	90
			64	75	82	85
Contoured (C	:)	Poor	70	79	84	88
		Good	65	75	82	86
	C+CR	Poor	69	78	83	87
		Good	64	74	81	85
Contoured & t	terraced (C&T) Poor	66	74	80	82
			62	71	78	81
C&T + CR		Poor	65	73	79	81
		Good	61	70	77	80
Small	SR	Poor	65	76	84	88
Grains		Good	63	75	83	87
	SR+CR	Poor	64	75	83	86
		Good	60	72	80	84
	С	Poor	63	74	82	85
		Good	61	73	81	84
	C+CR	Poor	62	73	81	84
		Good	60	72	80	83
	C&T	Poor	61	72	79	82
		Good	59	70	78	81
	C&T + CR	Poor	60	71	78	81
		Good	58	69	77	80
Close-	SR	Poor	66	77	85	89
seeded or		Good	58	72	81	85
broadcast	С	Poor	64	75	83	85
legumes or		Good	55	69	78	83
rotation	C&T	Poor	63	73	80	83
meadow		Good	51	67	76	80

Estimate Runoff Changes Using Curve Number II

Runoff Curve Numbers (Antecedent Moisture Condition II) for Other Rural Land (Soil Conservation Service, 1986).

Land Use/Cover	Hydrologic Condition	Soil Hydrologi Group	A	В	С	D
Pasture, grassland or range		Poor/a	68	79	86	89
- continuous forage for grazing		Fair	49	69	79	84
		Good	39	61	74	80
Meadow - continuous grass, pre	otected					
from grazing, generally mowed for hay		-	30	58	71	78
Brush - brush/weeds/grass mixture with brush the major element		Poor/b	48	67	77	83
		Fair	35	56	70	77
		Good	30	48	65	73
Woods/grass combination		Poor	57	73	82	86
(orchard or tree farm) /c		Fair	43	65	76	82
		Good	32	58	72	79
Woods		Poor/d	45	66	77	83
		Fair	36	60	73	79
		Good	30	55	70	77
Farmsteads – buildings, lanes,						
driveways and surrounding lots		-	59	74	82	86

a) Poor: 50% ground cover or heavily grazed with no mulch; Fair: 50 to 75% ground cover and not heavily grazed; Good: > 75% ground cover and lightly or only occasionally grazed.

b) Poor: < 50% ground cover; Fair 50 to 75% ground cover; Good: > 75% ground cover.

c) Estimated as 50% woods, 50% pasture.

d) Poor: forest lifter, small trees and brush are destroyed by heavy grazing or regular burning; Fair: woods are grazed but not burned and some forest lifter covers the soil; Good: Woods are protected from grazing and litter and brush adequately cover the soil.

Estimate Runoff Changes Using Curve Number III

Runoff Curve Numbers (Antecedent Moisture Condition II) for Arid and Semiarid Rangelands (Soil Conservation Service, 1986).

Land Use/Cover	Hydrologic Condition	Soil Hydrologic Group	A	В	С	D
Herbaceous - grass, weeds & low- growing brush; brush the minor component		Poor /a	-	80	87	93
		Fair	-	71	81	89
		Good	-	62	74	85
Oak/aspen - oak brush, aspen, Poor mountain mahogany, bitter brush, maple and other brush			-	66	74	79
		Fair	-	48	57	63
		Good	-	30	41	48
Pinyon/juniper - pinyon, juniper or both; grass understory		Poor	-	75	85	89
		Fair	-	58	73	80
		Good	-	41	61	71
Sagebrush with grass understory		Poor	-	67	80	85
		Fair	-	51	63	70
		Good	-	35	47	55
Desert scrub - saltbush, greasewood,		Poor	63	77	85	88
creosotebrush, blackbrush, bu	ursage,	Fair	55	72	81	86
palo verde, mesquite and cac	tus	Good	49	68	79	84

a. Poor: < 30% ground cover (litter, grass and brush overstory); Fair: 30 to 70% ground cover; Good: 70% ground cover.

Estimate Runoff Changes Using Curve Number IV

Runoff Curve Numbers (Antecedent Moisture Condition II) for Urban Areas (Soil Conservation Service, 1986).

Land Use/Cover	Hydrologic Condition	Soil Hydrologic Group	A	В	С	D
Open space (lawns, parks, g	golf					
Poor condition (grass cove	r < 50%		68	79	86	80
Fair condition (grass cover 50-75%)			49	69	79	84
Good condition (grass cover> 75%)			39	61	74	80
Impervious areas:						
Paved parking lots, roofs,						
driveways, etc.)			98	98	98	98
Streets and roads:						
Paved with curbs & storr	n sewers		98	98	98	98
Paved with open ditches			83	89	92	93
Gravel			76	85	89	91
Dirt			72	82	87	89
Western desert urban areas	:					
Natural desert landscaping	g (pervious					
areas, only)			63	77	85	88
Artificial desert landscapin	g					
(impervious weed barrier	r, desert					
shrub with 1-2 in sand o	or gravel		00	00	00	00
muich and basin border	S)		96	96	96	96

