
Lecture Notes for MBG 404 Jens Allmer

1

Lecture Note 3 for MBG 404

Formats
Not all results are equal and thus the output of different programs will look significantly
different as well. The redirection that was introduced above created a plain text file
representing the information as text.

Binary
Files that only display cryptic information when viewed in a text editor such as notepad or
wordpad (try notepad++ and see if you like it more than other text editors, http://notepad-
plus-plus.org/) are probably binary files. Such files to not store characters, they may store
information in different format although they could store characters but in such a different
way that other text editors will not understand. Microsoft Word’s doc format is an example
for that. Although text is stored, the information contained in the file cannot be read with a
plain text editor. This is due to a large amount of formatting controls in MS Word which need
to be stored in the file, if they were applied. Another issue here is that MS is not adhering to
standards like the open document format which could be read in a plain text editor.

Text
Plain text files are easy to handle and there are many editors to edit them as well. They are
universally recognized except for different line terminators which can lead to formatting
errors if you use the same files on different operating systems with different editors.

FASTA
FASTA is a special format of a plain text file which introduces a piece of information by a
right angle bracket ‘>’ followed by the identifier for that piece of information. The actual data
starts on the following line in the text file and continues to the end of the file or to the next
right angle bracket.

>Gene1
CAGCACTGACTGCGCATCGATAGTCAGTAGCTAGCTAGCTAGCT
ACACGTAGCTGCAGTACTGACTGATCGATCGATGCTAGCTAGCT
CAGCGAT
>Gene2
GTGEGTCTGACTGATCGATCGATGCCTGACTGATCGATCGATGC
ACGTCTGACTGATCGATCGATGCCTGACTGATCGATCGATGCGT
GGGGGTGT

This is an example for a FASTA file containing two genes. This approach adds some structure
to the text file and that enables programs to accept FASTA as input. Unstructured data is
impossible to handle with a program not specifically designed for that type of data. Structured
data is easy to handle which is why the extensible markup language was introduced.

XML
eXtensible Markup Language (XML) is an approach to completely structure the information
contained in a text file. Each bit of information needs to be described in order to produce valid
XML.

Lecture Notes for MBG 404 Jens Allmer

2

<sequence id=”Gene1”>
CAGCACTGACTGCGCATCGATAGTCAGTAGCTAGCTAGCTAGCT
ACACGTAGCTGCAGTACTGACTGATCGATCGATGCTAGCTAGCT
CAGCGAT
</sequence>

In this example the general idea of XML can be seen. Each piece of information is named.
The sequence is within a so called element which consists of an opening and a closing tag.

<sequence id=”Gene1”>  Opening tag
CAGCACTGACTGCGCATCGAT
ACACGTAGCTGCAGTACTGAC Element
CAGCGAT
</sequence>  Closing tag

The opening tag can also contain attributes which come as name, value pairs. Here the name
of the attribute is id and the value is Gene1. Both files, FASTA and XML, can contain the
same information but the second one can easily be extended with additional data in a well
structured manner. Whereas the FASTA cannot easily be extended.
Clearly XML is more complex than displayed here and some information needs to be
provided in each XML file. Furthermore, XML is hierarchical and therefore the sequence
element cannot stand by itself as shown in the example. It needs to be enclosed in at least the
root element.

<?xml version=”1.0”>
<MySeqs>

<some_info info=”42”/>
<sequence id=”nogene”>THE SEQUENCE</sequence>

</MySeqs>

The structure above shows how an XML file could be organized. Left angle brackets followed
by question marks are used to introduce commands to the interpreter of the XML file (e.g.
some web browser). This is used to specify the version of XML that this file conforms to in
this case. Character sets and other information such as validation files can be presented in that
way as well.
Following is the root tag (which can take any name, of course). When the closing counterpart
of the root tag is encountered, all information has been processed. This also means that all
data need to be enclosed within the root tag. The some_info element does not have a matching
closing tag. Since it does not contain other elements and no text information, the closing tag
can be abbreviated as /> instead of </some_info>. The sequence element is the same as used
earlier.
This is a complete working XML file that you could display with any web browser for
example.

Lecture Notes for MBG 404 Jens Allmer

3

ASN.1
This format is again storing information in plain text but the information is structured as in the
case of XML but completely different. NCBI uses this format to present information as for
example gene bank records. An example is seen below.

Figure 1: Section of an ASN.1 file containing information about Grapevine chrome mosaic virus from
NCBI.

Lecture Notes for MBG 404 Jens Allmer

4

JSON
JSON is an alternative to XML which you will see frequently in the future. Below you see
some data concerning a person. In the case of JSON there is no concern of opening and
closing tags. This is modeled using curly braces “}{“. Following person the data enclosed in
the opening curly brace until the end, the closing curly brace, is the information about this
person. When comparing JSON and ASN.1 it can be seen that they are related.

person = {
 "name": "Some Willie",
 "age": 45,
 "height": 1.85,
 "urls": [
 "http://someone.net/",
 "http://www.flickr.com/photos/someone/",
 "http://someone.incognito.com/"
]
}

I will not delve into discussions trying to determine which of the formats may be better or
worse instead I propose that each of them will eventually find their niche. This is evolution at
its best. May the fittest survive.

Other
File formats are numerous and many programs have their own specific format. Many
programs can however accept different types of input and can also produce different types of
output. As long at the format is based on plain text it can be handled easily. If the file is in
binary format, there may be problems when the program is no longer available. Therefore it is
always a good idea to have the results in a format that is supported by a variety of programs.

Console Applications
Many programs in biology are programmed by biologists to achieve a specific task. These
programs have not been developed with user friendliness in mind. They were rather
developed task centered with the developer in mind (needs to finish the PhD). Developing
console applications without graphical user interfaces can be achieved much quicker with a
focus on the correctness of the program instead of with a focus on what the user could do
wrong. Due to the overhead incurred by producing graphical user interfaces and the follow-up
problematic of validating the extended input, many programs are delivered as command line
interfaces. Often the documentation for these programs is reduced to a bare minimum which
may be difficult to understand. Remember that the purpose of the program usually is to
processes some collected data in a highly specific manner. This may initially only be
interesting for a very small number of users which can be instructed by the developer so there
is no need for large amount of documentation and fancy GUIs. Once the field expands this
changes but often the programs remain unchanged.
Console applications can also have an advantage for us. They can be automated and thus be
used to batch process large amounts of data and can further be assembled to form
computational pipelines as we will see in the next chapter.

Lecture Notes for MBG 404 Jens Allmer

5

File Addressing
Whenever you need to specify the location of a file there are several options that you have.
One option is to copy all files necessary into the same folder as the program and then specify
(call) the files by only using their names and extension. For larger files that are used
frequently, this may not be a good choice. There are two ways commonly used to avoid
copying files around and potentially cluttering your computer with many unused copies of the
same file.

Absolute Addressing
The first type of specifying file paths provides the complete path of the file to the program.

Windows
A path starts with the drive letter followed by a colon ‘:’ and a backslash ‘\’ or a forward slash
‘/’. Following all directories that the file is contained in are listed separated by back- or
forward slashes. Finally, the file name consisting of file title and file extension needs to be
specified.

C:\windows\temp\test.txt

C: is the drive letter here. The file with the title text and the extension txt (file name: test.txt)
is located in the temp folder which is a folder in the windows directory. One more problem
arises when the file path contains spaces. Remember that parameters and switches are
separated by spaces. Therefore, a file path which contains spaces, ‘Documents and Settings’
for instance, would produce a problem since it would be resolved to three different parameters,
one with the value Documents, one with and and the final one with the value Settings. To
avoid this problem, such file paths can be enclosed in quotation marks.

“C:\Documents and Settings\jens\grades.xls”

This is a file located in my documents containing the grades of the students currently enrolled
in computational biology. This way of specifying files may not be very convenient since file
paths can become rather long quickly. Relative addressing can solve the problem in some
cases.

Relative Addressing
A relative address is like directions you would give to someone that needs the way to the
cinema. You start explaining from the current location until the destination is sufficiently
described. The same is true for relative addressing in the console.

Work Directory/ Current Directory
The current directory is specified in front of the command prompt (here: >)a.

C:\windows\temp>

Here for instance the current directory is a subdirectory of the windows directory called temp.
Both located on drive C. The work directory may or may not be the same as the current
directory. The first assumption can be however that the current directory is also the directory
where you will find output of programs that you will run in the console. If that is not the case

Lecture Notes for MBG 404 Jens Allmer

6

then either the work directory was changed by the program using a parameter that you passed
to the program or the program simply set its directory to the work directory. In that case check
the parameters and switches you set for the program and check whether output was generated
in the directory enclosing the program that you used. The current directory will in the
following often be abbreviated to ‘?>’ where the question mark stands for the absolute path to
your current directory.

Directions
There are only two possible operations:

1. Go into a child directory
2. Go into the parent directory.

To direct the path into a child directory its name needs to be specified. To direct the path into
the parent directory ‘..\’ or ‘../’ can be used. In the following examples we will assume to be
in the directory

C:\programs\blast\bin\

The file we want to execute is BLAST.EXE which needs the path to the database that is too
be searched. The database is located in:

C:\databases\

And here is how we tell blast to use that database using relative addressing:

blast.exe ../../../databases/nr.fasta

Since we are in the bin directory and since it contains BLAST.EXE we do not need to specify
a path to BLAST.EXE. The only parameter we are concerned with in this simplified example
is the path to the database. This path can be accessed by going into bin’s parent directory (../)
then going into blast’s and finally into programs’ parent directory. Now we need to progress
into sub directories. Here we can find the nr.fasta file in the databases directory.

Lecture Notes for MBG 404 Jens Allmer

7

Essential Console Commands
There are too many console commands and in the context of this course we will mostly use
the ones listed below. Of those dir and cd will be used most often.

help Lists all available console commands in case you forgot … or never new

them.
dir Lists files and folders in the current directory
cd Changes current directory by using relative or absolute addressing

May not be used to switch between drives
del filepath Deletes the specified file
mkdir name Creates a new folder entitled name in the current directory
copy src dest Copies a file from a source to a destination (several sources may be

combined by using ‘+’)
rename org new
ren org new

Renames a file or folder from its original name to a new name that you
provide. Can also be used to change file extensions. Batch modes are
possible. Rename *.txt *.rtf for instance changes all file extension from txt
to rtf in the current directory.

find Can find text in files e.g.: find “test” c:*.txt will look at all files on the C
drive and show the lines in text files that contain ‘test’

fc Compares two files and displays the differences

Example Programs
The list of console applications is rather long so it is difficult to pick out programs as
examples. PepNovo was chosen since the number or parameters is rather short and it can thus
quickly be successfully executed. Blast was chosen to show that it can be much more complex
and that it often needs several programs that need to be used to achieve a result.

PepNovo
PepNovo [1] is a program which performs de novo sequencing of tandem mass spectra. which
aims to assign a sequence to an MS/MS spectrum without using information apart from the
measured spectrum such as databases. PepNovo, by Frank and coworkers, is an example for a
console application which echoes the results to screen. As we can use redirection of pipes it is
possible to save or append the results to a text file.
PepNovo needs an MS/MS spectrum as input (the path to it of course) which should be
introduced with the –dta switch. It needs another file as input which contains the mathematic
model for the mass spectrometer which produced the MS/MS spectrum. There are further
options which you can review by starting the program from the console without giving any
parameters.

Parameters and Switches
-dta [path to dta file]
-list [path to text file containing a list of paths to dta files]
-model [path to a file containing the mathematical model for the specific environment]
-num_tags [How many tags should be generated]

Lecture Notes for MBG 404 Jens Allmer

8

-non_tryptic [The peptides submitted to the mass spectrometer were not tryptically digested]
-tag_length [Number of amino acids that should make up a tag (3-6)]

Example

?>PepNovo_W32.exe -dta MSMSSpectrum.dta -model tryp_model.txt

Download
http://www-cse.ucsd.edu/groups/bioinformatics/software.html#pepnovo
http://mbg403.allmer.de/tools/pn.zipb

BLAST
The basic local alignment search tool [2] by Altschul and coworkers is an
algorithm to find a sequence in another sequence. It is one of the tools with
the highest impact on biology and bioinformatics. It basically points out all
exact and those approximate matches which pass a user set threshold for a
query in a library of sequences. It is mostly used online where there are
numerous servers that provide computational resources and a convenient
graphical user interface (web page). These interfaces are however limited in
several regards which makes it sometimes necessary to run BLAST locally.
Downloading BLAST reveals that it is not just one program but a collection
of programs. A list of the programs contained in the BLAST package is seen
on the right. Not all programs are needed in all circumstances. For instance,
if sequences are available in the correct format, then formatdb.exe is not
needed.

Download
http://www.ncbi.nlm.nih.gov/BLAST/download.shtml

Make BLAST DB
This program (makeblastdb.exe) comes as part of the BLAST package and shall be examined
first. Its purpose is to format a sequence database such that they are compatible with the
format that BLAST expects. Some inputs are expected such as the actual file that needs to be
converted. More information is in the documentation of the blast package which came with
the download.

Help output (makeblastdb.exe –help)
USAGE
 makeblastdb.exe [-h] [-help] [-in input_file] [-dbtype molecule_type]
 [-title database_title] [-parse_seqids] [-hash_index]
 [-mask_data mask_data_files] [-gi_mask]
 [-gi_mask_name gi_based_mask_names] [-out database_name]
 [-max_file_sz number_of_bytes] [-taxid TaxID] [-taxid_map TaxIDMapFile]
 [-logfile File_Name] [-version]

Figure 2:
blast package

Lecture Notes for MBG 404 Jens Allmer

9

DESCRIPTION
 Application to create BLAST databases, version 2.2.24+

OPTIONAL ARGUMENTS
 -h
 Print USAGE and DESCRIPTION; ignore other arguments
 -help
 Print USAGE, DESCRIPTION and ARGUMENTS description; ignore other arguments
 -version
 Print version number; ignore other arguments

 *** Input options
 -in <File_In>
 Input file/database name; the data type is automatically detected, it may
 be any of the following:
 FASTA file(s) and/or
 BLAST database(s)
 Default = `-'
 -dbtype <String, `nucl', `prot'>
 Molecule type of input
 Default = `prot'

 *** Configuration options
 -title <String>
 Title for BLAST database
 Default = input file name provided to -in argument
 -parse_seqids
 Parse Seq-ids in FASTA input
 -hash_index
 Create index of sequence hash values.

 *** Sequence masking options
 -mask_data <String>
 Comma-separated list of input files containing masking data as produced by
 NCBI masking applications (e.g. dustmasker, segmasker, windowmasker)
 -gi_mask
 Create GI indexed masking data.
 * Requires: parse_seqids
 -gi_mask_name <String>
 Comma-separated list of masking data output files.
 * Requires: mask_data, gi_mask

 *** Output options
 -out <String>
 Name of BLAST database to be created
 Default = input file name provided to -in argumentRequired if multiple
 file(s)/database(s) are provided as input
 -max_file_sz <String>
 Maximum file size for BLAST database files
 Default = `1GB'

Lecture Notes for MBG 404 Jens Allmer

10

 *** Taxonomy options
 -taxid <Integer, >=0>
 Taxonomy ID to assign to all sequences
 * Incompatible with: taxid_map
 -taxid_map <File_In>
 Text file mapping sequence IDs to taxonomy IDs.
 Format:<SequenceId> <TaxonomyId><newline>
 * Incompatible with: taxid
 -logfile <File_Out>
 File to which the program log should be redirected

Documentation information
This application serves as a replacement for formatdb.
4.6.8.1 in: Input file or BLAST database name to use as source; the data type is automatically
detected. Note that multiple input files/BLAST databases can be provided, each must be
separated by white space in a string quoted with single quotation marks. Multiple input files/
BLAST databases which contain white space in them should be quoted with double quotation
marks inside the white space-separated, single quoted string (e.g.: -in ‘“C:\My Documents
\seqs.fsa” “E:\Users\Joe Smith\myfasta.fsa”‘).
Page 12
BLAST Command Line Applications User Manual

BLAST Help BLAST Help BLAST Help BLAST Help
4.6.8.2 title: Title for the BLAST database to create
4.6.8.3 parse_seqids: Parse the Seq-id(s) in the FASTA input provided. Please note that this
option should be provided consistently among the various applications involved in creating
BLAST databases. For instance, the filtering applications as well as convert2blastmask should
use this option if makeblastdb uses it also.
4.6.8.4 hash_index: Enables the creation of sequence hash values. These hash values can then
be used to quickly determine if a given sequence data exists in this BLAST database.
4.6.8.5 mask_data: Comma-separated list of input files containing masking data to apply to
the sequences being added to the BLAST database being created. For more information, see
Masking in BLAST databases and the examples.
4.6.8.6 out: Name of the BLAST database to create.
4.6.8.7 max_file_sz: Maximum file size for any of the BLAST database files created.
4.6.8.8 logfile: Name of the file to which the program log should be redirected (stdout by
default).
4.6.8.9 taxid: Taxonomy ID to assign to all sequences.
4.6.8.10 taxid_map: Name of file which provides a mapping of sequence IDs to taxonomy IDs.

FormatDB
This program comes as part of an older BLAST package and serves the same purpose as
makeblastdb.exe.

Parameters and Switches
 -t Title for database file [String] Optional
 -i Input file(s) for formatting [File In] Optional
 -l Logfile name: [File Out] Optional
 default = formatdb.log
 -p Type of file [T/F] Optional
 default = T
 -o Parse options [T/F] Optional
 T - True: Parse SeqId and create indexes.
 F - False: Do not parse SeqId. Do not create indexes.

default = F

Lecture Notes for MBG 404 Jens Allmer

11

 -a Input file is database in ASN.1 format (otherwise FASTA is expected)
 [T/F] Optional
 default = F
 -b ASN.1 database in binary mode [T/F] Optional
 T - binary,
 F - text mode.

default = F
 -e Input is a Seq-entry [T/F] Optional
 default = F
 -n Base name for BLAST files [String] Optional
 -v Database volume size in millions of letters [Integer] Optional
 default = 4000
 -s Create indexes limited only to accessions - sparse [T/F] Optional
 default = F
 -V Verbose: check for non-unique string ids in the database [T/F] Optional
 default = F
 -L Create an alias file with this name
 use the gifile arg (below) if set to calculate db size
 use the BLAST db specified with -i (above) [File Out] Optional
 -F Gifile (file containing list of gi's) [File In] Optional
 -B Binary Gifile produced from the Gifile specified above [File Out] Optional
 -T Taxid file to set the taxonomy ids in ASN.1 deflines [File In] Optional

Example

?>formatdb –i proteins.fasta –n chlre3

References
[1] A. Frank and P. Pevzner, “PepNovo: de novo peptide sequencing via probabilistic

network modeling,” Anal Chem, vol. 77, Feb. 2005, pp. 964-73.
[2] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman, “Basic local alignment search

tool,” J Mol Biol, vol. 215, Oct. 1990, pp. 403-10.

Notes
a. The command prompt can also be different or can even be changed. Check the

PROMPT command in your console to find out how.
b. For the version of PepNovo mentioned in this text you need to download from here.

