

Looking for more information?

Visit us on the web at http://www.artisan-scientific.com for more information:

• Price Quotations • Drivers • Technical Specifications, Manuals and Documentation

Artisan Scientific is Your Source for Quality New and Certified-Used/Pre-owned Equipment

- Tens of Thousands of In-Stock Items
- Hundreds of Manufacturers Supported

- Fast Shipping and Delivery
- Leasing / Monthly Rentals

- Equipment Demos
- Consignment

Service Center Repairs

Experienced Engineers and Technicians on staff in our State-of-the-art Full-Service In-House Service Center Facility

InstraView Remote Inspection

Remotely inspect equipment before purchasing with our Innovative InstraView website at http://www.instraview.com

We buy used equipment! We also offer credit for Buy-Backs and Trade-Ins

Sell your excess, underutilized, and idle used equipment. Contact one of our Customer Service Representatives todayl

Talk to a live person: 888-88-SOURCE (888-887-6872) | Contact us by email: sales@artisan-scientific.com | Visit our website: http://www.artisan-scientific.com

Analog Input Module

(Catalog Number 1771-IFE/C)

Contents

This icon is used when additional information is available in the *Analog Input Module User Manual*, publication 1771-6.5.115.

If you need a copy of this manual, fax the enclosed User Manual Request Card to 1-800-576-6340. If you are outside the U.S., fax the card to1-330-723-4036.

Use this document as a guide when installing the 1771-IFE/C analog input module.

То	See page
■ Prevent Electrostatic Discharge	Below
■ Understand Compliance to European Union Directives	2
■ Understand Product Compatibility	2
Calculate Power Requirements	3
■ Determine Module Placement	3
Set the A/B Simulation Jumper	3
■ Set the Configuration Jumpers	4
■ Key the Backplane Connector	4
Install the Module and Field Wiring Arm	5
Connect Wiring to the Field Wiring Arm	6
Ground the Chassis and Module	9
Configure the Module	10
For this reference information	See page
➡ Status Indicators	12
· - 11 1 2	

For this reference information See page Status Indicators 12 Troubleshooting Specifications 13 CSA Hazardous Approval Differences Between Series A, B and C Modules 16

Prevent Electrostatic Discharge

The analog input module is sensitive to electrostatic discharge.

ATTENTION: Electrostatic discharge can damage integrated circuits or semiconductors if you touch backplane connector pins. Follow these guidelines when you handle the module:

- Touch a grounded object to discharge static potential
- Wear an approved wrist-strap grounding device
- Do not touch the backplane connector or connector pins
- Do not touch circuit components inside the module
- If available, use a static-safe work station
- When not in use, keep the module in its static-shield box

Understand Compliance to European Union Directives

If this product has the CE mark it is approved for installation within the European Union and EEA regions. It has been designed and tested to meet the following directives.

EMC Directive

This product is tested to meet Council Directive 89/336/EEC Electromagnetic Compatibility (EMC) and the following standards, in whole or in part, documented in a technical construction file:

- EN 50081-2EMC Generic Emission Standard, Part 2 – Industrial Environment
- EN 50082-2EMC Generic Immunity Standard, Part 2 – Industrial Environment

This product is intended for use in an industrial environment.

Low Voltage Directive

This product is tested to meet Council Directive 73/23/EEC Low Voltage, by applying the safety requirements of EN 61131–2 Programmable Controllers, Part 2 – Equipment Requirements and Tests.

For specific information required by EN 61131-2, see the appropriate sections in this publication, as well as these Allen-Bradley publications:

Publication	Publication number
Industrial Automation Wiring and Grounding Guidelines	1770-4.1
For Noise Immunity	
Guidelines for Handling Lithium Batteries	AG-5.4
Automation Systems Catalog	B111

Understand Product Compatibility

The 1771-IFE module can be used with any 1771 I/O chassis. Compatibility and data table use is listed below.

		Use of Da	ata Table			Compatibility					
Catalog Number	Input Image	Output Image	Read Block	Write Block	,	Chassis					
	Bits	Bits	Words	Words	1/2-Slot	1-Slot	2-Slot	Series			
1771-IFE	8	8	22	39	Υ	Υ	Υ	A, B			

A = Compatible with 1771-A1, -A2, -A4

Do not use this module with cat. no. 1771-AL PLC-2/20 or 2/30 Local Adapter.

B = Compatible with 1771-A1B, -A2B, -A3B, -A3B1, -A4B

Y = Compatible without restriction.

Calculate Power Requirements

The module receives its power through the 1771 I/O power supply and requires 500mA from the backplane.

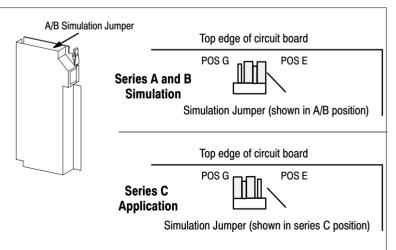
Add this current to the requirements of all other modules in the I/O chassis to prevent overloading the chassis backplane and/or backplane power supply.

Determine Module Placement in the I/O Chassis

Place your module in any I/O module slot of the I/O chassis except for the extreme left slot. This slot is reserved for PC processors or adapter modules.

ATTENTION: Do not insert or remove modules from the I/O chassis while system power is ON. Failure to observe this rule could result in damage to module circuitry.

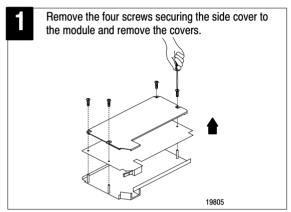
Group your modules to minimize adverse affects from radiated electrical noise and heat. We recommend the following.

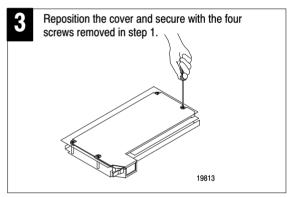

- Group analog input and low voltage dc modules away from ac modules or high voltage dc modules to minimize electrical noise interference
- Do not place this module in the same I/O group with a discrete high-density I/O module when using 2-slot addressing. This module uses a byte in both the input and output image tables for block transfer.

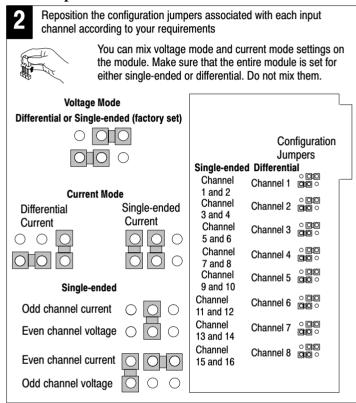
Set the A/B Simulation Jumper

The module is shipped with the A/B simulation jumper set in position **POS G** for Series C applications. This setting returns input data above and below the range end points. If you are replacing a Series A or B 1771-IFE module with this module, reset the simulation jumper to the **POS E** position as shown below.

Set the Series A/B Simulation Jumper

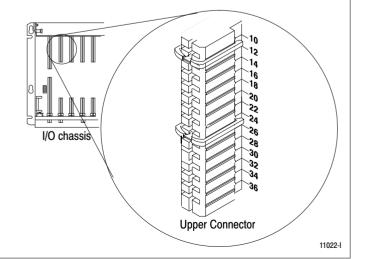

- Locate the simulation jumper at the top edge of the module circuit board.
- 2. Using your fingers, slide the jumper off the 2 posts.
- **3.** Carefully position the jumper on 2 of the 3 posts that correspond to your requirement.




Set the Configuration Jumpers and Key the Backplane Connector

The module has configuration jumpers for determining the input type (voltage or current) desired for each input. The module is shipped with the configuration jumpers positioned for voltage mode and the A/B simulation jumper set for Series C. If you are replacing a Series A or B 1771-IFE module with this module, reset the simulation jumper as shown above.

You can select either voltage or current for each input, but all inputs must be either single-ended or differential. **Do not mix single-ended and differential inputs on the module.**

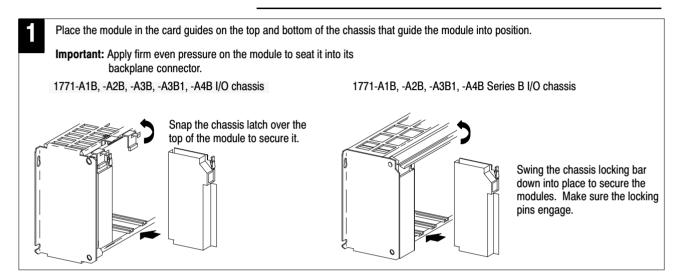

Place your module in any slot in the chassis except the leftmost slot which is reserved for processors or adapters.

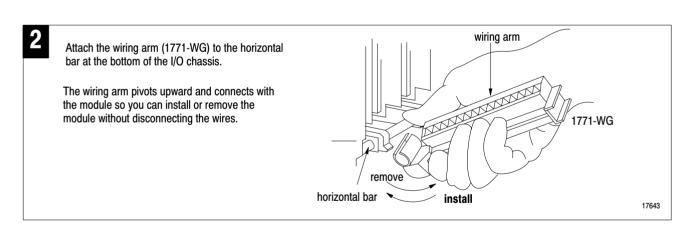
Position the keying bands in the backplane connectors to correspond to the key slots on the module.

Place the keying bands:

between 10 and 12 between 24 and 26

You can change the position of these bands if subsequent system design and rewiring makes insertion of a different type of module necessary.




Install the Module and Field Wiring Arm

ATTENTION: Remove power from the 1771 I/O chassis backplane and field wiring arm before removing or installing an I/O module.

- Failure to remove power from the backplane or wiring arm could cause module damage, degradation of performance, or injury.
- Failure to remove power from the backplane could cause injury or equipment damage due to possible unexpected operation.

Connect Wiring to the Field Wiring Arm

Connect your I/O devices to the cat. no. 1771-WG wiring arm shipped with the module.

ATTENTION: Remove power from the 1771 I/O chassis backplane and field wiring arm before removing or installing an I/O module.

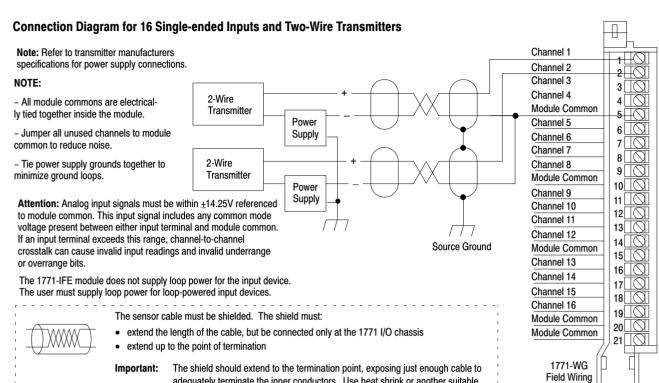
- Failure to remove power from the backplane or wiring arm could cause module damage, degradation of performance, or injury.
- Failure to remove power from the backplane could cause injury or equipment damage due to possible unexpected operation.

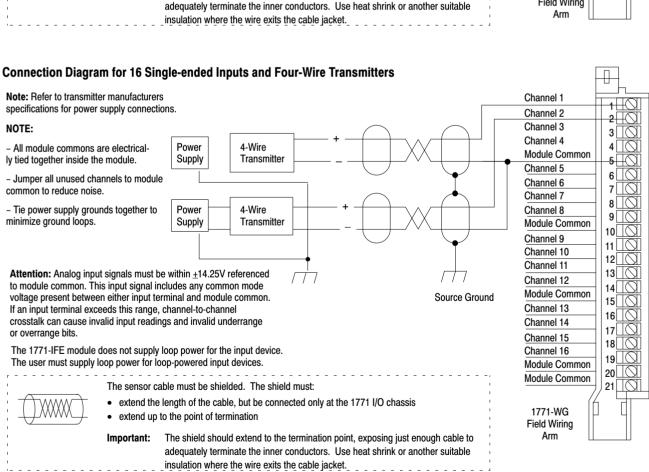
Input connections for the 1771-IFE module with:

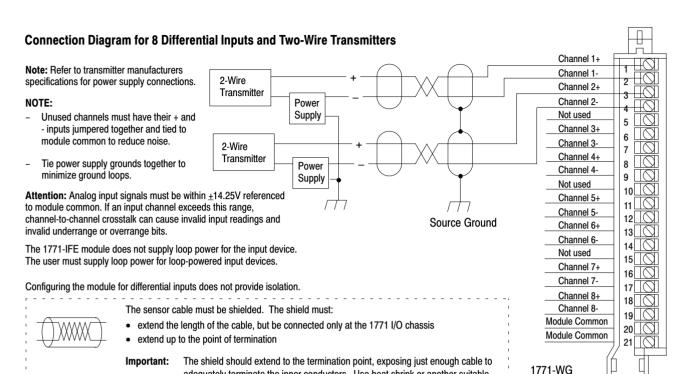
- single-ended inputs are shown on page 7
- differential inputs are shown on page 8

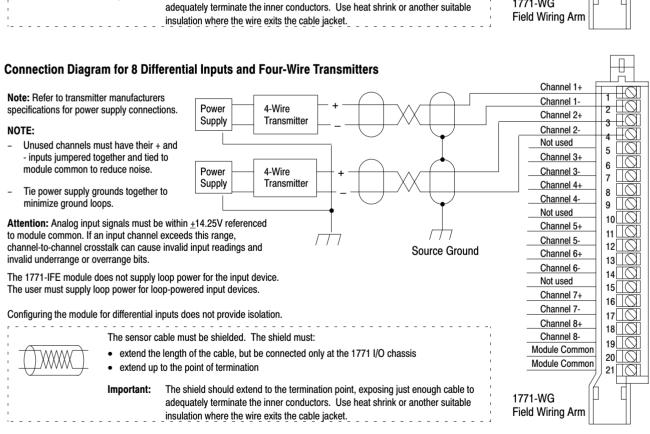
Minimizing Ground Loops

To minimize ground-loop currents on input circuits:

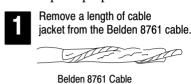

- use single-ended mode whenever possible
- use 2-wire transmitters with a common power supply
- separate 2-wire and 4-wire transmitters between different modules
- tie 4-wire transmitter and/or separate power supply grounds together

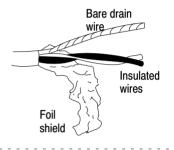

Important:


We do not recommend mixing 2-wire and 4-wire transmitter inputs on the same module. Power supply placement can make it impossible to eliminate ground loops.


Cable Lengths

Recommended maximum cable length for voltage-mode input devices is 50 feet. This recommendation is based on considerations of signal degradation and electrical noise immunity in typical industrial environments. Cable length for current-mode input devices need not be as restrictive because analog signals from these devices are less sensitive to electrical noise interference.





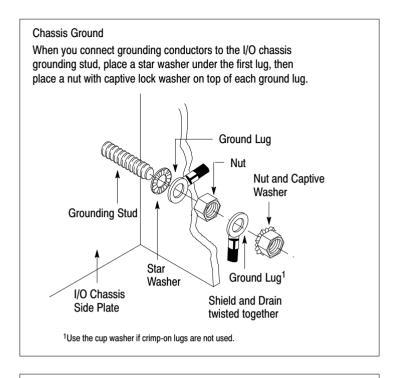
Ground the Chassis and Module

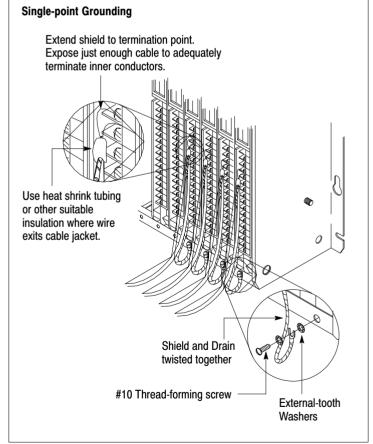
Use the following diagrams to ground your I/O chassis and analog input module. Follow these steps to prepare the cable:

Pull the foil shield and bare drain wire from the insulated wires.

Twist the foil shield and drain wire together to form a single strand.

Attach a ground lug.


Fold shield back, and apply shrink tubing to secure.



When using shielded cable wire, ground the foil shield and drain wire only at one end of the cable. We recommend that you wrap the foil shield and drain wire together and connect them to a chassis mounting bolt.

At the opposite end of the cable, tape exposed shield and drain wire with electrical tape to insulate it from electrical contact.

Refer to Industrial Automation Wiring and Grounding Guidelines for Noise Immunity, publication 1770-4.1, for additional information.

Configure the Module

For detailed configuration information, see chapter 2 of your *Analog Input User Manual* (publication 1771-6.5.115).

Because of the many analog devices available and the wide variety of possible applications, you must configure the module to conform to the analog device and specific application that you have chosen. Use the configuration information below to configure your module to your specifications.

Dec. Bits	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00	Description
Octal Bits	17	16	15	14	13	12	11	10	07	06	05	04	03	02	01	00	Description
Word 1	8	3	7	7	6	6		5	4	ļ	3	}	:	2		1	Range Selection - Channels 1 - 8
2	1	6	1	5	1	14 13 12 11 10 9 Rang							Range Selection - Channels 9 - 16				
Input range selection	ne alle	ou tho		Bit	01	Bit	00	Voltage	or Cui	rent In	put						
user to configure the	inputs	for an	y of		0	()	1 to 5V	dc, 4 t	o 20m/	A (defa	ult)					
7 input voltage or cur bits are required for e	rent ra ach cl	inges. hannel	Two		0	1		0 to 5V	dc, 0 t	o 20m	4						
Bits 00 and 01 for channel 2,	annel '				1	()	-5 to +5	5V dc, -	20 to +	-20mA						
and 03 for charmer 2,	eic.				1	1		-10 to +	-10V do	c, 0 to	10V do	;					
3	F	Real Ti	me Sa	mplin	g	Da For		Input Type			ı	Digital	Filter				Real time sampling, data format, input type and digital filter
Deal time com-	alim ar	Dofo	A tion	o DTO	,	1		1		A	Dig	ital fil	ter re	duces	effect	of nois	e on input. (Default is no
Real time samp	-	- Dela forma									filte						1
Bit 10 Bit 09 (12) (11)		roces		10 1110	aton						- Inc	ut tvr	e. set	bit fo	differ	ential r	node on all channels.
	CD (c	defaul	t)								Re	set (0)	_ = s	ingle-		inputs	(default)
0 1 F	Reserv	ed									36	(1)	= u	merei	uai iii	วนเธ	
1 0 T	wo's c	omple	ment	binary													
1 1 S	igned	magn	itude t	oinary													
4	corre		ding					gnate ne) corres								to	Sign Bits, minimum scaling values
5	Max	imum	scali	ng va	lue m	ust b	e gre	gnate m ater tha respond	n mini	mum	on an	y parl					Sign Bits, maximum scaling values
6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36	Mini	mum s	scalin	g valu	ies for	each	chann	el. Ente	r in BC	D form	at.						Channel 1 - minimum scaling
7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37	Maxi	imum	scalir	ı g valı	ues for	each	chanr	nel. Ente	er in BC	D form	nat.						Channel 1 - maximum scaling
38	Offset calibration – Each bit represents a channel (bit 00 to channel 1, bit 01 to channel 2, etc.). When the bit is set, and a BTW has been sent, the module will read the channels and adjust the offset to analog ground potential. In differential mode, bits 08 thru 15 (10 thru 17 in octal) are ignored. In current mode, apply 0mA.									:							
39	Gain calibration – Each bit represents a channel (bit 00 to channel 1, bit 01 to channel 2, etc). When the bit is set, and a BTW has been sent, the module will read the channels and adjust the gain correction values. If used on +, 0 to 5, or 1 to 5V ranges, a value of 5V is expected. If used on +10V range, 10V is expected. In differential mode, bits 08 thru 15 (10 thru 17 in octal) are ignored. In current mode, apply 20mA.								nd Gain Calibration								

Use the following table to read data from your input module.

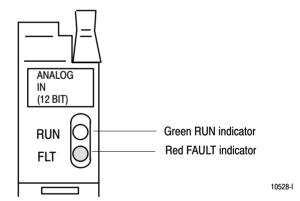
Dec. Bits	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00	
Octal Bits	17	16	15	14	13	12	11	10	07	06	05	04	03	02	01	00	Description
Word 1										HF	EE	CS	RTS	IS	OR	PU	Diagnostics
Hardwa convert to operate to oper	er fuse ate. M state calibrate rup, the im and tion si this be ful. If the ced sim	tus bition die datus it will the bition offsiultand	it - (E ata to a fror alibra bit - be cla t is see et an eousl	n. Dig EE) The nonvertion value (CS) eared et, and digair y.	ital log nis bit volatile EEPF values When if the incorr n calib	is set e men comment of the comment	if an nory. I lid no sed. rating ration bltage s wer	error If this t pass t the was curre e	occurs bit is s the	et				sca are wh	tell cha valid s aling is e equa	alivelent of ra the pronnels caling some	wer up bit - (PU) Used by the dule to tell the processor that it is we but not yet configured. It is a key ement in the application program. Inge bit - (OR) This bit is sent to occessor that one or more are either over or under range. I bit - (IS) This bit reports that the show invalid. Usually, both values nimum is greater than maximum omes on. Can also be an invalid

the user-programmed period.

Octal Bits	17	16	15	14	13	12	11	10	07	06	05	04	03	02	01	00	Description
2	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Data underrange for channels 1-16
3	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Data overrange for channels 1-16
	iind	erran	nae hi	ite for	each	chan	nel P	kit OO	for cha	nnel ·	1 hit ()1 for	channe	io et	r ¹ The	202	1 to 5V dc, 4 to 20mA (default)
													e right.	1 Z, GU	U. 1110	550	0 to 5V dc, 0 to 20mA
													hannel	2, etc	.1 The	ese	-5 to +5V dc, -20 to +20mA
	bits	are se	et (1)	at app	oroxin	nately	the ii	nput r	ange i	imits s	hown	on the	e right.				-10 to +10V dc, 0 to 10V dc
4	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	
	Pola 2, et		oits –	Set v	when	input	is les	s thar	zero.	Bit 0	0 for c	hanne	l 1, bit	01 for	chanr	nel	Data polarity for channels 1–16
5								Chan	nel 1 l	nput							Channel 1 Input
6								Chan	nel 2 I	nput							Channel 2 Input
7								Chan	nel 3 I	nput							Channel 3 Input
8								Chan	nel 4 l	nput							Channel 4 Input
				\downarrow						\downarrow	\downarrow				\downarrow		
20							(Chanr	nel 16	Input							Channel 16 Input
21	has calib	ffset calibration results bits – Each bit represents a channel. After a calibration BTW as been sent, the module confirms calibration by echoing back the channels that were alibrated during the offset calibration BTW. In differential mode, channels 09 thru 16 re zero.									W re	Offset Calibration Results					
22	has calib	Gain calibration results bits – Each bit represents a channel. After a calibration BTW as been sent, the module confirms calibration by echoing back the channels that were alibrated during the gain calibration BTW. In differential mode, channels 09 thru 16 re zero.								Gain Calibration Results							

Default Configuration

If a write block of five words with all zeroes is sent to the module, default selections will be:


- 1 to 5V dc or 4 to 20mA (dependent on configuration jumper setting)
- BCD data format
- no real time sampling (RTS)
- no filtering
- no scaling
- single-ended inputs

Interpret Status Indicators

The front panel of the analog input module contains a green RUN indicator and a red FAULT indicator. At power-up, the module momentarily turns on the red indicator as a lamp test, then checks for:

- correct RAM operation
- firmware errors

If there is no fault, the red indicator turns off.

The green indicator comes on when the module is powered. It will flash until the module is programmed. If a fault is found initially or occurs later, the red fault indicator lights. The module also reports status and specific faults (if they occur) in every transfer of data (BTR) to the PC processor. Monitor the green and red indicators and status bits in word 1 of the BTR file when troubleshooting your module.

Troubleshooting

For detailed troubleshooting information, see chapter 7 of your *Analog Input User Manual* (publication 1771-6.5.115).

Possible module fault causes and corrective action is described in the following table.

Indicators	Probable Cause	Recommended Action
RUN (green on) FLT (red off)	Normal operation	None
RUN (green blinking) FLT (red off)	Awaiting configuration Block Transfer Write	Send configuration BTW
RUN (green off) FLT (red on)	Hardware failure in module	Return module for repair
RUN (green off) FLT (red off)	No power	Turn off power. Remove and reinsert module into chassis. Return power. If problem still exists, and chassis power supply is functioning properly, return the module for repair.

Specifications

Description	Value
Inputs per module	16 single-ended; 8 differential low level
Module Location	1771 I/O rack - 1 slot
Input voltage ranges (nominal)	+1 to +5V dc 0 to +5V dc -5 to +5V dc -10 to +10V dc 0 to +10V dc
Input current ranges (nominal)	+4 to +20mA 0 to +20mA -20 to +20mA
Resolution	12-bit binary 12 bits plus sign on bipolar ranges
Accuracy	0.1% of full scale range @ 25°C
Linearity	±1 LSB
Repeatability	±1 LSB
Isolation Voltage	Isolation meets or exceeds UL Standard 508, and CSA Standard C22.2 No. 142.
Input overvoltage protection	200V (voltage mode) ¹ 8V (current mode) ²
Input overcurrent protection (current ranges)	30mA
Common mode voltage	±14.25 Volts
Input impedance	>10 Megohms for voltage ranges; 250 ohms for current ranges
Common mode rejection	80 db, dc-120 Hz
Current Requirements	500mA @ +5V from I/O chassis backplane
Power Dissipation	2.5 Watts (maximum)
Specifications continued on next page	

Description	Value					
Thermal Dissipation	8.52 BTU/hr (maximum)					
Unscaled BCD and binary output to processor	0000 to +4095 ₁₀ for polar ranges (0 to 5V, +1 to +5V, 0 to +20mA, and +4 to +20mA) -4095 ₁₀ to 4095 ₁₀ for bipolar ranges (<u>+</u> 5V, <u>+</u> 10V, <u>+</u> 20mA)					
Engineering units sent to processor	±9999 ₁₀ with selectable scaling					
Internal scan rate	13.7 ms for 8 differential inputs (no digital filtering) –add 0.3ms for filtering 27.4 ms for 16 single–ended input (no digital filtering) –add 0.3 for filtering					
Environmental conditions Operational temperature: Storage temperature: Relative humidity: Operating Storage	0 to 60°C (32 to 140°F) -40 to 85°C (-40 to 185°F) 5 to 95% (without condensation) 5 to 85% (without condensation)					
Conductors Wiring Category	14 gauge (2mm²) stranded (max.) 3/64 inch (1.2mm) insulation (max.) Category 2 ³					
Keying	between 10 and 12 between 24 and 26					
Wiring Arm	Catalog Number 1771-WG					
Field Wiring Arm Screw Torque	7-9 inch-pounds					
Agency Certification (when product or packaging is marked)	• (L) St. Class 1 Div 2 Hazardous 4 • (E) marked for all applicable directives					
User Manual	Publication 1771-6.5.115					

<sup>The inputs are protected to 200V. However, if an input terminal's voltage exceeds ±14.25V as referenced to module common, channel-to-channel crosstalk can cause invalid input readings and invalid underrange/overrange bits.

Only 8 volts can be placed directly across the input when configured in the current mode.

Refer to publication 1770-4.1, "Industrial Automation Wiring and Grounding Guidelines for Noise Immunity."

CSA certification— Class I, Division 2, Group A, B, C, D or nonhazardous locations.</sup>

CSA Hazardous Location Approval

Approbation d'utilisation dans des emplacements dangereux par la CSA

CSA certifies products for general use as well as for use in hazardous locations. Actual CSA certification is indicated by the product label as shown below, and not by statements in any user documentation.

La CSA certifie les produits d'utilisation générale aussi bien que ceux qui s'utilisent dans des emplacements dangereux. La certification CSA en vigueur est indiquée par l'étiquette du produit et non par des affirmations dans la documentation à l'usage des utilisateurs.

Example of the CSA certification product label

Exemple d'étiquette de certification d'un produit par la CSA

To comply with CSA certification for use in hazardous locations, the following information becomes a part of the product literature for CSA-certified Allen-Bradley industrial control products.

- This equipment is suitable for use in Class I, Division 2, Groups A, B, C, D, or non-hazardous locations only.
- The products having the appropriate CSA markings (that is, Class I Division 2, Groups A, B, C, D), are certified for use in other equipment where the suitability of combination (that is, application or use) is determined by the CSA or the local inspection office having jurisdiction.

Pour satisfaire à la certification de la CSA dans des endroits dangereux, les informations suivantes font partie intégrante de la documentation des produits industriels de contrôle Allen-Bradley certifiés par la CSA.

- Cet équipement convient à l'utilisation dans des emplacements de Classe 1, Division 2, Groupes A, B, C, D, ou ne convient qu'à l'utilisation dans des endroits non dangereux.
- Les produits portant le marquage approprié de la CSA (c'est à dire, Classe 1, Division 2, Groupes A, B, C, D) sont certifiés à l'utilisation pour d'autres équipements où la convenance de combinaison (application ou utilisation) est déterminée par la CSA ou le bureau local d'inspection qualifié.

Important: Due to the modular nature of a PLC[®] control system, the product with the highest temperature rating determines the overall temperature code rating of a PLC control system in a Class I, Division 2 location. The temperature code rating is marked on the product label as shown.

Important: Par suite de la nature modulaire du système de contrôle PLC®), le produit ayant le taux le plus élevé de température détermine le taux d'ensemble du code de température du système de contrôle d'un PLC dans un emplacement de Classe 1, Division 2. Le taux du code de température est indiqué sur l'étiquette du produit.

Temperature code rating

Look for temperature code rating here

Taux du code de température

The following warnings apply to products having CSA certification for use in hazardous locations.

Les avertissements suivants s'appliquent aux produits ayant la certification CSA pour leur utilisation dans des emplacements dangereux.

ATTENTION: Explosion hazard —

- Substitution of components may impair suitability for Class I, Division 2.
- Do not replace components unless power has been switched off or the area is known to be non-hazardous.
- Do not disconnect equipment unless power has been switched off or the area is known to be non-hazardous.
- Do not disconnect connectors unless power has been switched off or the area is known to be non-hazardous. Secure any user-supplied connectors that mate to external circuits on an Allen-Bradley product using screws, sliding latches, threaded connectors, or other means such that any connection can withstand a 15 Newton (3.4 lb.) separating force applied for a minimum of one minute.

AVERTISSEMENT: Risque d'explosion —

- La substitution de composants peut rendre ce matériel inacceptable pour lesemplacements de Classe I, Division 2.
- Couper le courant ou s'assurer quel'emplacement est désigné non dangereux avant de remplacer lescomposants.
- Avant de débrancher l'équipement, couper le courant ou s'assurer que l'emplacement est désigné non dangereux.
- Avant de débrancher les connecteurs, couper le courant ou s'assurer que l'emplacement est reconnu non dangereux. Attacher tous connecteurs fournis par l'utilisateur et reliés aux circuits externes d'un appareil Allen-Bradley à l'aide de vis, loquets coulissants, connecteurs filetés ou autres moyens permettant aux connexions de résister à une force de séparation de 15 newtons (3,4 lb. - 1,5 kg) appliquée pendant au moins une minute.

PLC est une marque déposée de Allen-Bradley Company, Inc. PLC is a registered trademark of Allen-Bradley Company, Inc. Le sigle CSA est la marque déposée de l'Association des Standards pour le Canada. CSA logo is a registered trademark of the Canadian Standards Association.

Differences Between Series A, B and C Modules

Feature	Series A, and B	Series C
Indicator lights	At power-up, the green run indicator comes on and stays on.	At powerup, the green run indicator blinks until a configuration BTW is received. After a configuration BTW is received, the green indicator stays on.
	2. Limited to 3 bits of diagnostic information	Has 6 bits of diagnostic information representing 6 possible faults.
Input Data	Input clamped at range ends. Will not go above or below range limits.	Returns input data above and below the range end points. For example, a 1–5V input with default scaling will return all values between ±5.2V. Jumper settable for Series A and B simulation.
Default Scaling		Allows default scaling with both maximum and minimum scaling values as zero. No scaling error will be reported.
Block Transfer Lengths	Maximum block transfers lengths of 20 words for BTR and 37 words for BTW. Default length of 0 words.	Maximum block transfers lengths of 22 words for BTR and 39 words for BTW (due to autocalibration). Default length of 0 words (same as series A).
Configuration Plugs	24 configuration plugs to set on 3 row headers.	16 configuration plugs to set on eight 2 row headers.
Compatibility	The series A and B modules are compatible with the 1771-AL PLC local adapter.	The series C module is not compatible with the 1771-AL PLC local adapter.
Calibration Procedures	Used jumpers and potentiometers to adjust 10V reference and null input offset.	Uses precision voltage source to supply voltage and a block transfer to set offset and gain.
Agency Approvals	Series A module not CE certified. Series B module CE certified.	Series C module CE certified.

Allen-Bradley

Allen-Bradley, a Rockwell Automation Business, has been helping its customers improve productivity and quality for more than 90 years. We design, manufacture and support a broad range of automation products worldwide. They include logic processors, power and motion control devices, operator interfaces, sensors and a variety of software. Rockwell is one of the world's leading technology companies.

Worldwide representation. -

Argentina • Australia • Australia • Bahrain • Belgium • Brazil • Bulgaria • Canada • Chile • China, PRC • Colombia • Costa Rica • Croatia • Cyprus • Czech Republic • Denmark • Ecuador • Egypt • El Salvador • Finland • France • Germany • Greece • Guatemala • Honduras • Hong Kong • Hungary • Iceland • India • Indonesia • Ireland • Israel • Italy • Jamaica • Japan • Jordan • Korea • Kuwait • Lebanon • Malaysia • Mexico • Netherlands • New Zealand • Norway • Pakistan • Peru • Philippines • Poland • Portugal • Puerto Rico • Qatar • Romania • Russia-CIS • Saudi Arabia • Singapore • Slovakia • Slovenia • South Africa, Republic • Spain • Sweden • Switzerland • Taiwan • Thailand • Turkey • United Arab Emirates • United Kingdom • United States • Uruguay • Venezuela • Yugoslavia

Allen-Bradley Headquarters, 1201 South Second Street, Milwaukee, WI 53204 USA, Tel: (1) 414 382-2000 Fax: (1) 414 382-4444

Looking for more information?

Visit us on the web at http://www.artisan-scientific.com for more information:

• Price Quotations • Drivers • Technical Specifications, Manuals and Documentation

Artisan Scientific is Your Source for Quality New and Certified-Used/Pre-owned Equipment

- Tens of Thousands of In-Stock Items
- Hundreds of Manufacturers Supported

- · Fast Shipping and Delivery
- Leasing / Monthly Rentals

- Equipment Demos
- Consignment

Service Center Repairs

Experienced Engineers and Technicians on staff in our State-of-the-art Full-Service In-House Service Center Facility

InstraView Remote Inspection

Remotely inspect equipment before purchasing with our Innovative InstraView website at http://www.instraview.com

We buy used equipment! We also offer credit for Buy-Backs and Trade-Ins

Sell your excess, underutilized, and idle used equipment. Contact one of our Customer Service Representatives todayl

Talk to a live person: 888-88-SOURCE (888-887-6872) | Contact us by email: sales@artisan-scientific.com | Visit our website: http://www.artisan-scientific.com