
Air Handling Unit
Baselines

Developer's Manual

Table of contents
1.Introduction..4

1.1.FREE Studio..4
1.2.EULA..4

2.Glossary..5
2.1.Abbreviations and definitions..5

3.Baseline architecture..6
3.1.Block diagram..6
3.2.GOAL block..7
3.3.DIAGNOSTICS block...8
3.4.STRATEGY block..9
3.5.REGULATORS and ACTUATORS blocks...11

4.Derived applications..12
4.1.Choosing the baseline..12
4.2.Deriving a new Application project from the baseline...14
4.3.Making changes to the application...14

5.Editing the application...15
5.2.ON/OFF status...18
5.3.COOL/HEAT mode..21
5.4.Setpoints...23
5.5.Regulation probes...24
5.6.Diagnostics...26
5.7.Strategy...29
5.8.Regulation and actuation of outputs..36
5.9.LCD terminal menu...41

6.Libraries..45
6.1.Actuators...45
6.2.Alarms...46
6.3.Regulators...48
6.4.SmartHMI..51
6.5.Thermodynamics...57
6.6.Utils..58

1.Block diagram..II
1.1.INPUT...II
1.2.PARAMETERS..III
1.3.GOAL..III
1.4.DIAGNOSTICS...V
1.5.STRATEGY..VI
1.6.REGULATORS and ACTUATORS..VIII
1.7.OUTPUT..X
1.8.HMI..X

2.Application project structure...XI
2.1.Tasks, programs and functional blocks..XI
2.2.Libraries..XII
2.3.INPUT..XII
2.4.PARAMETERS..XIII

2 Air Handling Unit Baselines - Developer's Manual

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

2.5.GOAL...XIV
2.6.DIAGNOSTICS...XV
2.7.STRATEGY...XVI
2.8.REGULATORS and ACTUATORS...XVII
2.9.OUTPUT..XVII
2.10.HMI...XVII

Air Handling Unit Baselines - Developer's Manual 3

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

1. Introduction
The purpose of this manual is to guide the developer in the use of Eliwell FREE Studio
and Eliwell's Air Handling Unit (AHU) Baselines to build a dedicated application for Air
Handling Units.

1.1. FREE Studio
The AHU Baselines are compatible with FREE Studio 2.0 or later versions

1.2. EULA

To install FREE Studio and the Air Handling Unit Baselines, you must accept the terms of
the user license.

Read the End User License Agreement (EULA) carefully before continuing.

End User License Agreement is also available on the website
http://www.eliwell.it/content.aspx?id=4533

4 Air Handling Unit Baselines - Developer's Manual

http://www.eliwell.it/content.aspx?id=4533
file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

2. Glossary
DEVELOPER: designer / developer with knowledge of one or more IEC61131-3
standard programming languages. FREE Applicaton user

USER: end user typically using FREE Device. This person is not expected to be able to
compile code. The USER must have access to adequate documentation.

RESPONSIBILITY: blocks functionality description

COLLABORATIONS: interactions between Baseline Architecture blocks

2.1. Abbreviations and definitions
A.H.U.: Air Handling Unit

Application, Device, Connection: abbreviations of FREE (Studio) Application, FREE
Device, and Free Connection, respectively. Software suites

IEC Application, PLC Application, PLC PROGRAM: application developed in compliance
with IEC61131-3 (industrial control programming standards) by means of the
Application development environment (tool), to download to the target using
Application or Device

Target device, Target: name given to the FREE Smart or FREE Evolution programmable
controller or “instrument”

HMI: Human Machine Interface. Graphic interface developed with Free Studio for FREE
Smart and SKP SKW terminals

Instance: object of a predefined 'class' of objects (function block, template, etc.)

IEC Language: programming language developed in compliance with IEC61131-3 (e.g.
FBD, SFC)

BIOS menu, BIOS: factory-set BIOS parameters menu. The Bios cannot be edited.

Smart: abbreviation of FREE Smart; Evolution: abbreviation of FREE Evolution

Studio: abbreviation of FREE Studio. The software suite described in this document

Tab or form. The work environment is divided into sections or panels. Each panel may in
turn be subdivided into forms or tabs (e.g. Resources tab)

Note: Many definitions and abbreviations are standard information technology and/or
PLC terms and are not listed here.

For example a Function is a standard term. Other terms, such as 'Block,' will be
described in the relevant headings.

Air Handling Unit Baselines - Developer's Manual 5

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

3. Baseline architecture
This section describes the high level software structure (the architecture) of Eliwell
baselines, introducing information that aids understanding of the starting application,
with the result of facilitating the work of a developer who intends to work on the
software to create a dedicated application.

3.1. Block diagram
The block diagram in Figure 1 represents the architecture of the Baselines. The single
items in the diagram and their connections are described in the following headings.

The entire architecture is described in detail in Appendix – Architecture with
descriptions of the RESPONSIBILITY of the individual blocks and the relationships
(called Collaborations) between the GOAL block and the other blocks

6 Air Handling Unit Baselines - Developer's Manual

Figure 1: High level software structure

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg
file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/Esquema Baseline.jpg

3.2. GOAL block
The GOAL block establishes the aims that are to be pursued in the unit control strategy.

Specifically, the data resulting from the GOAL block are:

• unit ON/OFF status;

• COOL/HEAT (summer/winter) unit operating mode;

• energy saving mode activation status (ECO mode);

• setpoints to follow;

• measurements (feedback) to be used for regulation, deriving from the choice of
regulation probes.

The GOAL block is required to summarize these data starting from the different possible
sources, which include parameters and digital and analog inputs.

The GOAL block is not concerned with whether or how the goals can be achieved,
delegating this task to the downstream blocks.

Refer to Appendix – Architecture for further information on the relationships between
the GOAL block and the other blocks.

3.2.1. Software form in AHU Baselines
Working with an AHU Baseline, the GOAL block is composed of a series of programs
written in FBD programming language, the names of which start with Goal_.

The results of the GOAL block are made available to the remaining parts of the
application as global data in the Global shared > Variables folder.

Air Handling Unit Baselines - Developer's Manual 7

EXAMPLE 3.1

As an example, consider how ON/OFF status is determined in the Baselines.

A digital input dedicated to forcing OFF status (remote OFF) is provided: when the
input is high the unit status is forced to OFF.

When the remote OFF input is inactive, unit status depends on the enabling of
time frame operation: if this is the case, ON/OFF status is determined by the
active time frame settings, otherwise it is determined by a user parameter (e.g.
set by graphic interface or by Device).

The GOAL block evaluates and assigns a priority level to the conditions listed
above, determining the resulting ON/OFF status.

EXAMPLE 3.2

For example, the program responsible for determining the AHU ON/OFF status is
Goal_State.

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

3.3. DIAGNOSTICS block
The DIAGNOSTICS block evaluates the presence of fault conditions in the unit and
controls activation and deactivation (reset) of the alarms.

The tests performed by the DIAGNOSTICS block include:

• evaluation of the digital diagnostic inputs for detection of unit fault conditions;

EXAMPLE 3.3

For example, the DIAGNOSTICS block evaluates the status of the air handling unit
fans thermal protections.

• checking of values transmitted by probes in order to detect absent or faulty
probes;

• evaluation of analog inputs associated with safeties/pre-alarms;

EXAMPLE 3.4

Again by way of example, the DIAGNOSTICS block of the AHU baselines checks
that the temperature detected by the antifreeze probe is not below a value
defined as critical.

The DIAGNOSTICS block is responsible for detecting error conditions, but not for
remedying them.

Refer to Appendix – Architecture for further information on the relationships between
the DIAGNOSTICS block and the other blocks.

3.3.1. Software form in the AHU baselines
Working with an AHU baseline, the DIAGNOSTICS block is constituted by the program
of the same name, written in FBD language.

The results of the DIAGNOSTICS block are made available as alarm variables, grouped
in the Global shared > Alarms folder.

Each network of the Diagnostics program is responsible for assigning a value to an
individual alarm.

8 Air Handling Unit Baselines - Developer's Manual

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

3.4. STRATEGY block
The STRATEGY block is responsible for choosing the strategy to use to achieve the aims
determined by the GOAL block. In detail, this consists of:

• evaluating, on the basis of the readings from the field and the aims calculated by
the GOAL block, whether there are requests to be fulfilled or pre-alarm or
emergency situations that must be remedied;

• assigning priority to pending requests;

EXAMPLE 3.5

For example, in the AHU baselines it may occur that neither temperature nor
humidity goals are fulfilled.

In this situation, the STRATEGY block decides which of the two goals is to be
pursued first.

• selecting the strategy to use to fulfill the request from among the various possible
strategies.

EXAMPLE 3.6

Still considering the AHU baselines, a cooling request can be fulfilled by the use of
a cooler or, in certain conditions, by means of the free-cooling mechanism, which
is more economical.

The STRATEGY block evaluates the necessary conditions for activation of free-
cooling (notably, ambient air temperature must be within a clearly defined range
of values): if these conditions are fulfilled, free-cooling is adopted as a strategy to
fulfill the cooling request; otherwise, exclusively the cooler is utilized.

The strategy chosen by the STRATEGY block determines the enabling of the various
components of the unit and the data to be used in their control - such as the setpoints to
follow and the field measurements (feedback) to use.

EXAMPLE 3.7

For example, the cooling strategy enables the cooler regulator by sending it the
value read by the thermoregulation probe and the value of the temperature to be
reached (temperature setpoint in COOL mode).

Vice versa, heating coil regulation is disabled.

Refer to Appendix – Architecture for further information on the relationships between
the STRATEGY block and the other blocks

Air Handling Unit Baselines - Developer's Manual 9

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

3.4.1. Software form in the AHU baselines
Working with an AHU baseline, the STRATEGY block is constituted by the program of
the same name, written in SFC language.

The STRATEGY block is a model of the unit's state machine, defining:

• the actions to be performed (i.e. the strategy to adopt) for each machine state;

• the possible transitions between states and the conditions in which they occur.

The chosen programming language (SFC) allows efficient translation of this state
machine:

• the strategies correspond to ACTIONS of the SFC program, implemented in FBD
language: each strategy contains an FBD network for each unit component;

• the transitions correspond to SFC program TRANSITIONS implemented in ST
language.

10 Air Handling Unit Baselines - Developer's Manual

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

3.5. REGULATORS and ACTUATORS blocks
The values assumed by the physical outputs of the controller are established by the set
of REGULATORS and ACTUATORS blocks, which combine the regulation and outputs
actuation logics, respectively.

EXAMPLE 3.8

In tangible terms, regulation logic is construed, for example, as a proportional
regulator, a proportional-integral regulator, or a steps regulator.

For an example of actuation logic we can think of the actuator for a 3-point valve.

Collectively, the REGULATORS and ACTUATORS blocks perform the task of fulfilling the
requests that the STRATEGY block expresses in terms of setpoints or percentage values.

EXAMPLE 3.9

For example, when the cooling strategy enables the cooler and assigns to it a
value of 25°C, the REGULATOR block translates this request into a percent
actuation value that can be assigned directly to an analog output or processed by
the ACTUATOR block (if present), which translates it into values of digital and/or
analog outputs.

Refer to Appendix – Architecture for further information on the relationships between
REGULATORS and ACTUATORS blocks and the other blocks.

3.5.1. Software form in the AHU baselines
The REGULATORS and ACTUATORS blocks are grouped into functional blocks that
represent the physical components of the air handling unit.

EXAMPLE 3.10

For example, the AHU baselines have a block for the outlet fan, one for the
heating coil, one for the cooler, one for the humidifier, etc.

Each strategy determines the inputs of all the blocks and causes their execution.

Air Handling Unit Baselines - Developer's Manual 11

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

4. Derived applications
This section describes the operations to be performed to derive a dedicated application
starting from the Eliwell AHU baselines.

4.1. Choosing the baseline
The first decision to make concerns the AHU baseline from which to start: the choice
mainly depends on the type of AHU that the application must control.

Table 1 lists the main differences between the AHU baselines.

AHU Baselines

Layout 1 is an application dedicated controlling a simple AHU composed of:
• ON/OFF dampers
• a single fan (outlet),
• electric heater,
• cooler.

The only goal pursued by layout 1 is to maintain the temperature of the controlled
room within a given range of values.

12 Air Handling Unit Baselines - Developer's Manual

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

AHU Baselines

Layout 2 extends layout 1 to include:
• humidifier,
• post-heater (the component used for the dehumidification process).

This layout has the further goal of maintaining the relative humidity of the controlled
room within a given range of values.

Layout 3 is an application dedicated to the control of a complete AHU, which includes
all the elements present in the previous layouts, and also:

• a second fan (inlet),
• modulating control of dampers (for free-cooling/free-heating),
• heat recovery unit

Table 1: List of AHU baselines

Air Handling Unit Baselines - Developer's Manual 13

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

The choice of the starting baseline can be guided by the following considerations:

• if the AHU has the sole goal of temperature control and differs significantly from
the characteristics of layout 3 (for example, it does not incorporate management
of free-cooling/free-heating, modulating dampers and inlet fan), it may be more
practical to start from layout 1;

• if the AHU has the dual goals of temperature and relative humidity control and
differs significantly from the characteristics of layout 3 (for example, it does not
incorporate management of free-cooling/free-heating, modulating dampers and
inlet fan), it may be more practical to start from layout 2;

• in all other cases, it may be more practical to start from layout 3.

4.2. Deriving a new Application project from the baseline
Once the starting baseline has been chosen, a copy must be made in order to edit it so
that a dedicated application can be derived.

The steps to follow are:

1. open the Application project corresponding to the chosen baseline;

2. save the application with a new name (File menu > Save project as...).

Refer to the Application user manual for more details.

4.3. Making changes to the application
Once you have made a working copy of the baseline, you can edit the source code in
such a way as to introduce all the differences required by the specific application
circumstances.

For an introduction to the high level structure of the application, refer to Chapter 3.

Even though there are no limitations to the type and number of changes that can be
made, Chapter 5 describes the most frequent cases, illustrating the methods of
proceeding and showing some practical examples.

14 Air Handling Unit Baselines - Developer's Manual

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

5. Editing the application
This section describes the most frequent actions that must be taken on the baselines
and provides indications on how to edit the application, providing numerous practical
examples.

5.1.1. I/O static configuration
It is frequently necessary to map the physical I/O (inputs and outputs of the hardware
that implements the application) on the logical I/O, i.e. on the symbols utilized in the
application to refer to the input and output values.

EXAMPLE 5.1

Working on an application for Smart derived from layout 2, we decide to move
the digital input corresponding to a humidifier alarm from the extended I/O to the
local one.

Application allows editing of the I/O configuration, in table form, in the section Resources
> I/O Mapping of the development environment: simply arrange the symbolic names in the
grids in the way that best adapts to the specific application case in order to fulfill this
requirement.

EXAMPLE 5.2

Considering Example 5.1, to achieve the required result we can follow this
procedure:

1. open the section Resources > I/O Mapping > Local;

2. choose the digital input to be used (let us assume DIL3), and edit the
contents of the corresponding cell by entering the symbolic name of the
humidifier alarm, I_HumidifierAlarm;

3. open the section Resources > I/O Mapping > Extended and remove the
symbolic name of the humidifier alarm from its prior position;

4. the logical input replaced in point 2, I_ElectricHeaterThermal, can be
assigned to an unused digital input of the expansion.

5.1.2. Dynamic configuration of the I/O
It may be required to make the mapping of the physical I/O on the logical I/O depend
on the value of one or more user parameters, in such a way as to be editable also after
the development stage (e.g. at the time of installation).

EXAMPLE 5.3

Working on an application for Smart derived from layout 1 that makes use of all
and exclusively the local digital inputs (DIL1...6), we want the allocation of these
inputs to the corresponding logic symbols to be parametric.

Air Handling Unit Baselines - Developer's Manual 15

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

To achieve this result we must introduce another software level as a new PROGRAM
assigned to the Timed task, which, on the basis of the configuration parameter values,
assigns to each digital input the values read by the corresponding digital input/by the
corresponding probe and - in the opposite sense - assigns the value of each logical
output to the corresponding digital/analog output.

EXAMPLE 5.4

To implement the requirement expressed in Example 5.3, the following procedure
can be adopted:

1. in the section Resources > EEPROM Parameters, six new parameters are
defined (e.g. IO01, IO02, ..., IO06), one for each logical input (e.g., IO01
refers to I_OutletFanThermal, IO02 to I_OutletFanFlowSwitch, etc.),
the value of which, between 1 and 6, identifies the corresponding local
digital input;

2. in the section Resources > Menu Prg, the new parameters are published in a
menu;

3. in the section I/O Mapping > Local, generic names are assigned to the
variables corresponding to the local digital inputs;

16 Air Handling Unit Baselines - Developer's Manual

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

4. the symbols that were previously assigned to the local digital inputs are
defined differently, for example as status variables (section Resources >
Status variables);

5. a new PROGRAM is created in FBD language, with the name
Input_DILMapping, comprising an FBD network for each logical input;
each FBD network selects the local digital input to be used on the basis of
the value read by the corresponding parameter;

6. the new PROGRAM is assigned to the Timed task as the first PROGRAM to
execute: the rest of the application remains unchanged.

Air Handling Unit Baselines - Developer's Manual 17

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

5.2. ON/OFF status
The Goal_State PROGRAM determines the ON/OFF status (more precisely, the status
can be OFF, STD_BY or ON) of the AHU and the activation status of specific operating
modes, such as ECO (Economy) mode.

The result of the Goal_State execution is encoded in the state and economy status
variables: this means that it is possible to edit or even completely replace the
PROGRAM without affecting the rest of the application, as long as these status variables
are assigned the correct values.

In the AHU baselines, the unit status is determined by analyzing the inputs and user
parameters dedicated to this purpose, in accordance with a priority encoded in the
Goal_State PROGRAM code (refer to Figure 2).

Figure 2: Determination of the AHU status starting from the remote digital OFF input, from local state
user parameter St10 and from the information derived from time frame operation, if enabled

Moreover, Goal_State is responsible for determining whether Economy mode is active
or not (refer to Figure 3).

Figure 3: Activation of Economy mode depends on the dedicated digital input and the current value of
the machine mode derived from time frame operation, if enabled

18 Air Handling Unit Baselines - Developer's Manual

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

The same PROGRAM initially establishes the current time frame so that it can utilize the
associated information (see Figure 4).

Figure 4: Enabling time frame operation depends on the availability of the system
clock and the value of parameter tE00; the current time frame is established by

using the library block TimeFrameManager_t

5.2.1. Editing the algorithm that determines ON/OFF status
The data to consider to establish the air handling unit's ON/OFF status and the priority
to assign to said data can be significantly differentiated from case to case. The need
frequently occurs to modify the algorithm for calculation of ON/OFF status.

EXAMPLE 5.5

For example, consider a situation wherein it is not suitable to always award
priority to time frames operation (if enabled) compared to status setting via user
parameter, but in which the parameter-imposed OFF assumes priority with respect
to a time-imposed ON status.

To do this, simply edit the FBD network that establishes the value of the status variable
state within the Goal_State program.

Air Handling Unit Baselines - Developer's Manual 19

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

EXAMPLE 5.6

Considering the need expressed in Example 5.5, network number 3 of the
Goal_State PROGRAM can be edited in such a way as to force OFF status if local
parameter St10 is OFF.

5.2.2. Editing time frame operation
Time frame operation can be replaced with personalized operation depending on the
needs of the specific application case.

To do this, proceed as follows:

• replace the time frame operation block with a different one, which can be
appropriately derived from the first one;

• edit (add/remote, redefine) the set of user parameters required to save the time
frames.

20 Air Handling Unit Baselines - Developer's Manual

EXAMPLE 5.7

Working on a derived application assume we want to insert a COMFORT 24/24h
profile (COMFORT always), to be used in weekly programming.

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

EXAMPLE 5.8

Considering the requirements expressed in Example 5.7, proceed as follows:

1. change the definition of parameters tE01, tE02, ..., tE07, to which it must
be possible to assign the value corresponding to the added profile;

2. import a copy of the TimeFrameManager_t block from the Utils library;

3. edit the source code of the local copy of the TimeFrameManager_t block in
such a way as to manage the added profile.

5.3. COOL/HEAT mode
The Goal_Mode PROGRAM determines the COOL/HEAT mode of air handling unit
operation.

The result of Goal_Mode execution is encoded in the hcMode status variable: this means
that it is possible to edit or even completely replace the PROGRAM without affecting the
rest of the application, as long as these status variables are assigned the correct values.

Air Handling Unit Baselines - Developer's Manual 21

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

In the AHU baselines, COOL/HEAT mode is established by cross-referencing the inputs
value and dedicated user parameters with the value of an additional user parameter that
defines the selectable modes (see Figure 5).

Figure 5: Determining the COOL/HEAT operating mode of the air handling unit; parameter St00 limits
the selectable modes and defines the sources (local mode, AUTO mode, remote mode) to be used in the

calculation

The same PROGRAM also resolves, on a preliminary basis, AUTO mode (Figure 6),
selectable by the user: in AUTO mode, the mode changeover (from COOL to HEAT and
vice versa) occurs without any action of the user on the basis of the value of a probe that
can be selected by means of a parameter.

Figure 6: Resolution of AUTO mode: in this case the COOL/HEAT operating mode of the user is
established by evaluating the value of the probe selected by means of user parameter St20 with

reference to an interval of values (neutral zone) established by a combination of various user parameters
(the lower limit is set by SP20 + St22, the upper limit by SP10 + St21)

22 Air Handling Unit Baselines - Developer's Manual

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

5.4. Setpoints
The Goal_Setpoint PROGRAM calculates the setpoints relative to all the control goals
managed by the application.

The result of Goal_Setpoint execution is encoded in the set of status variables
dedicated to setpoints: this means that it is possible to edit or even completely replace
the PROGRAM without affecting the rest of the application, as long as these status
variables are assigned the correct values.

In AHU baselines the setpoint is first selected from a list of possible alternative sources
and, thereafter, it is added to one or more differentials (see, for example, Figure 7).

Figure 7: Calculation of the temperature setpoint in COOL mode, starting from the value of parameter
SP10 or SP11, depending on whether or not Economy mode is active; the only differential applied is the

dynamic differential on external temperature, if enabled by parameter (dS00)

Air Handling Unit Baselines - Developer's Manual 23

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

5.5. Regulation probes
The Goal_RegulationProbe PROGRAM selects the probes to be used in the
regulation stage (one probe for each control goal: temperature, relative humidity, etc.).

The result of the Goal_RegulationProbe execution is encoded in the set of status
variables dedicated to the regulation probes: this means that it is possible to edit or
even completely replace the PROGRAM without affecting the rest of the application, as
long as these status variables are assigned the correct values.

In AHU baselines the value of one or more user parameters selects the probe to be used
from a list (see, for example Figure 8).

Figure 8: Selection of the relative humidity probe, chosen in accordance with the value of parameter
Hr01 from the inlet probe, the outlet probe, and the room probe

5.5.1. Editing regulation probe selection
It may be necessary to add or remove a probe from the list of those selectable as the
regulation probe.

EXAMPLE 5.9

For example, considering selection of the humidity regulation probe, assume we
want to eliminate the possibility of using the outlet probe for regulation purposes.

To achieve this result, proceed as follows:

• edit the corresponding FBD network in the Goal_RegulationProbe
PROGRAM, so that the probe is included/excluded in the selection;

• edit the definition of the selection parameter, specifically to increase/decrease
the maximum value.

24 Air Handling Unit Baselines - Developer's Manual

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

EXAMPLE 5.10

Returning to Example 5.9, we can proceed as follows:

1. Remove I_OutletAirRelativeHumidity from network number 2 of the
Goal_RegulationProbe PROGRAM, decreasing the number of inputs of the
MUX block and altering the connections appropriately;

2. Edit the definition of the Hr01_HumidityProbeSelection parameter,
altering the interval of values between 0 and 1.

5.5.2. Setting the regulation probe
As the limit case of the requirement expressed in heading 5.5.1., it may be required to
establish the regulation probe, releasing it from the selection parameter, which can
therefore be removed.

EXAMPLE 5.11

Taking Example 5.9 to the extreme case, assume we decide that the relative
humidity regulation probe must be the inlet probe.

To achieve this result, proceed as follows:

• simplify the corresponding FBD network in the Goal_RegulationProbe
PROGRAM, which becomes a simple assignment;

• remove the selection parameter.

Air Handling Unit Baselines - Developer's Manual 25

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

EXAMPLE 5.12

To achieve the goal established in Example 5.11, we can proceed as follows:

1. remove the MUX block, Hr01_HumidityProbeSelection,
I_OutletAirRelativeHumidity and I_RoomRelativeHumidity from
network number 2 of the Goal_RegulationProbe PROGRAM;

2. insert a MOVE block, which connects I_InletAirRelativeHumidity and
RH_RegulationProbe;

3. in the Resources > EEPROM Parameters section, delete parameter
Hr01_HumidityProbeSelection.

5.6. Diagnostics
The Diagnostics PROGRAM establishes the alarms activation status, i.e. the status of
all the variables defined in the Resources > Alarms section.

The Diagnostics PROGRAM first assesses whether or not to enable diagnostics:
otherwise, all the alarms are deactivated (see Figure 9).

Figure 9: If the AHU status is OFF, diagnostics is disabled

Subsequently (Figure 10), the eventual request for resetting of the alarms received via
the user interface, is managed.

26 Air Handling Unit Baselines - Developer's Manual

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

Figure 10: Management of the alarms reset request

Finally (Figure 11), all the alarm conditions monitored by the application are analyzed
one at a time.

Figure 11: Er_ClockError encodes clock error status: this is a manually reset alarm (i.e. it
requires an explicit reset by the user) and it monitors the status of sysClockError system

variables. Er_InletAirTemperatureProbeError encodes the inlet air temperature probe
error status

If the logics that determine the value of one or more alarms already provided in the
baselines are edited, it is not necessary to edit the parts of the application that use said
alarms.

However, the most frequent modifications of the Diagnostics PROGRAM are
associated with the addition or removal of an alarm, which can impact on the alarm
management delegated to the downstream parts of the application (in particular, to the
Strategy PROGRAM).

Air Handling Unit Baselines - Developer's Manual 27

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

5.6.1. Adding an alarm
If a derived application envisages signalling/management of an alarm condition that is
not provided for in the AHU baselines, an alarm must be added, its signalling must be
managed and the any reactions of the controller must be implemented.

EXAMPLE 5.13

Assume, for example, we want to add the management of a fire alarm read on a
digital input connected to a smoke detector.

To manage a new alarm condition, the following procedure is necessary:

• create a new alarm variable in the section Resources > Alarms;

• manage, in a new FBD network of the Diagnostics program, activation and
reset of the alarm that has just been added;

• if so required, manage the active alarm condition in the Strategy PROGRAM
with an adequate reaction/safety measures procedure.

EXAMPLE 5.14

Returning to Example 5.14, the requirement can be fulfilled with the following
modifications:

1. in the Resources > Alarms section, add a new alarm variable, Er_FireAlarm;

2. in the Resources > I/O Mapping section, add the diagnostic digital input
I_FireAlarm, corresponding to the smoke detector;

3. encode activation and resetting of the alarm with a simple FBD network
and the assistance of the blocks available in the Alarms library;

28 Air Handling Unit Baselines - Developer's Manual

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

4. in Strategy > Act_EvaluateSecurities, add Er_FireAlarm among the
alarms that determine implementation of air handling unit safety
measures.

5.7. Strategy
The Strategy PROGRAM defines the state machine of the application.

The principal states (Figure 12) are:

• ON (normal operation);

• OFF (unit off);

• pre-alarm or emergency states:

◦ OFF with alarm (emergency condition);

◦ antifreeze.

Air Handling Unit Baselines - Developer's Manual 29

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

Figure 12: Principal states of the AHU baselines: in addition to normal operating status
(ON) and OFF status, there is also an alarm status and an extraordinary procedure for the

antifreeze regime

The ON status is, in turn, a states machine (Figure 13), wherein each state represents a
strategy to fulfill a goal (temperature, humidity, etc.).

Figure 13: states machine of layout 2, during normal operation of the unit: considering, for example,
summer mode (COOL), the unit can activate the procedures for cooling (STEP Cooling), priority, and

dehumidification (STEP Dehumidification)

30 Air Handling Unit Baselines - Developer's Manual

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

5.7.1. Removing a strategy
It may occur that some of the pre-alarm/emergency situations envisaged by the Air
Handling Unit baselines, or the strategies to fulfill the control aims, are not relevant for
our particular application case: it may therefore be advisable to eliminate them.

EXAMPLE 5.15

For example, consider an application derived from layout 2, which differs from the
latter due to the absence of a humidifier and hence the impossibility of performing
the dehumidification strategy.

To do this, proceed as follows:

• remove the SFC STEP corresponding to the status to be eliminated;

• if it is not used in other STEPS, remove the ACTION corresponding to the strategy
to be eliminated;

• adjust the connections of the SFC diagram, removing the transitions to and from
the eliminated state.

It may be necessary to adjust other parts of the Strategy PROGRAM or the application,
for example, to eliminate an alarm or an AHU component that is no longer required.

Air Handling Unit Baselines - Developer's Manual 31

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

EXAMPLE 5.16

Returning to Example 5.15, it is sufficient:

1. to eliminate the Humidification STEP and the associated code
(Act_Humidification) in the Act_On ACTION;

2. to eliminate the exit transitions from the eliminated STEP and the third pin
of the exit transition from the Heat STEP (entering in the eliminated
STEP);

3. to eliminate the Humidifier_AHU02 FUNCTION_BLOCK, its global instance
humidifier and the FBD networks in the Strategy PROGRAM (one per
strategy) dedicated to its management.

32 Air Handling Unit Baselines - Developer's Manual

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

5.7.2. Adding a strategy
Derived applications can manage pre-alarm or emergency situations that are not
envisaged by the Air Handling Unit baselines and also provide additional strategies to
fulfill the control objectives.

EXAMPLE 5.17

Returning to Example 5.13, assume we wish to react to a fire alarm with a
dedicated procedure.

To do this, proceed as follows:

• create the SFC STEP corresponding to the state to be added;

• create the ACTION corresponding to the strategy to be added, assigning it to the
STEP we have just created;

• adjust the connections of the SFC diagram, adding the transitions to and from the
added state.

It may be necessary to adjust other parts of the Strategy PROGRAM or the application,
for example, to manage a new alarm variable or a new AHU component.

Air Handling Unit Baselines - Developer's Manual 33

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

EXAMPLE 5.18

To meet the requirement expressed in Example 5.17, proceed as follows:

1. edit Act_EvaluateSecurities so that it assigns a value to a flag dedicated
to the fire alarm, forceFireAlarm;

2. insert a new STEP, FireAlarm, connected in parallel to the other main
states, but in the first position, because it has higher priority;

3. as a condition of the entry transition to the FireAlarm STEP, select
forceFireAlarm; as an exit condition, select a new TRANSITION,
corresponding to the denied value of forceFireAlarm;

4. create a new ACTION Act_FireAlarm and assign it to the FireAlarm
STEP;

34 Air Handling Unit Baselines - Developer's Manual

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

5. encode the new strategy in the Act_FireAlarm ACTION, for example in
FBD language, wherein each network is dedicated to controlling a
component of the air handling unit.

Air Handling Unit Baselines - Developer's Manual 35

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

5.8. Regulation and actuation of outputs
The components of the AHU are modelled within the AHU baselines with the
FUNCTION_BLOCKS utilized by the Strategy PROGRAM in the execution of the
various strategies.

5.8.1. Editing the regulation of an AHU component.
In developing an application derived from the AHU baselines it is frequently necessary
to modify the regulation and/or actuation of the controller outputs in order to mirror the
differences in the physical actuators of which the unit is composed. Provided the
FUNCTION_BLOCK interface remains unchanged, it will not be necessary to alter the
rest of the application.

36 Air Handling Unit Baselines - Developer's Manual

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

EXAMPLE 5.19

For example, consider an application derived from layout 1, from which it differs
due to the presence of an electric heater with resistances (in the number of 3) in
place of the heating coil with modulating valve.

We can proceed as follows:

1. edit the application outputs: the baseline uses an analog output to
regulate the electric heater, while the derivative application uses three
digital outputs (one for each resistance);

2. change implementation of the Heater_AHU01 block, so that it translates
the same commands received from STRATEGY into actions on three digital
outputs; specifically:

a) when the electric heater is not enabled, the three digital outputs are
FALSE;

b) when the power level of the electric heater is set, if the level is 33%,
only the digital output corresponding to the first resistance is TRUE; if
the level is 66%, two digital outputs are TRUE; if the level is 100%, all
three digital outputs are TRUE;

Air Handling Unit Baselines - Developer's Manual 37

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

c) in normal operation of the heating coil, regulation is performed in three
steps, the differentials of which correspond to one third of the
thermoregulation band in HEAT mode (you can use the
ThreeStepsRegulator_t block of the Regulators library); actuation of
the outputs is disabled if the outlet temperature exceeds the upper
limit set by parameter.

38 Air Handling Unit Baselines - Developer's Manual

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

5.8.2. Adding a component to the AHU
In developing a dedicated application derived from a baseline, it may be necessary to
manage a physical component of the AHU that is not envisaged by the baseline.

EXAMPLE 5.20

Consider the case of an application derived from layout 1, from which it differs
due to the presence of a heat recovery unit.

Management of the new component calls for:

• definition of an additional FUNCTION_BLOCK that is responsible for translating
the commands received from STRATEGY into operations on the outputs;

• editing of the Strategy PROGRAM so that the new component is managed in all
operating modes (in each "strategy").

EXAMPLE 5.21

Considering Example 5.20, we can proceed as follows:

1. define the logical output to control the heat recovery unit, which it is
assumed to be of the rotary type and that requires the controller to specify
the speed (analog output);

2. define the parameters required for regulation of the rotary heat recovery
unit, which, in this example, we assume to be limited to:

a) a setpoint on the difference between the expulsion temperature and
ambient air temperature;

b) the proportional band beyond which the regulator saturates (speed
equal to 100%);

Air Handling Unit Baselines - Developer's Manual 39

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

3. create the FUNCTION_BLOCK dedicated to control of the heat recovery unit
in order to manage the following operating modes:

a) disabled: in this case the rotary heat recovery unit speed is null, and
the I_HeatRecoveryUnit output is set to 0;

b) enabled: the speed of the rotary heat recovery unit is subject to
proportional regulation controlled by parameters rC01 and rC02;

c) fixed speed: the speed of the rotary heat recovery unit is fixed at a
level specified by STRATEGY;

4. create a global instance of the FUNCTION_BLOCK;

5. edit the Strategy PROGRAM, inserting - in each strategy - a new FBD
network dedicated to control of the heat recovery unit.

40 Air Handling Unit Baselines - Developer's Manual

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

5.9. LCD terminal menu
The SKWHMI PROGRAM is responsible for defining the user menu for the LCD terminal.

The menu tree is represented by an analogous construct in SFC language (see Figure
14), wherein each STEP represents a submenu and each TRANSITION represents the
possible transitions between them.

Figure 14: Structure of the menu for the LCD terminal: from the main menu you can access the set menu
to edit the setpoints and display active alarms, or the Prg menu, which in turn allows access to various

submenus for parameter programming procedures

Each transition is associated with a Boolean variable that represents the enabling of a
single submenu (see Figure 15 for example): these variables are assigned values in the
ACTIONS associated with the STEPS of the diagram and, at each instant, only one of
them must be TRUE.

Air Handling Unit Baselines - Developer's Manual 41

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

Figure 15: transition in the set menu is enabled when the
enableSetMenu variable is TRUE; transition in the Prg menu is enabled

when the enablePrgMenu variable is TRUE
The ACTIONS of the SKWHMI PROGRAM define the submenus and their items, utilizing
the blocks of the SmartHMI library for management of user navigation (Figure 16).

Figure 16: two fragments of Act_DayMenu, containing the definition of the Day menu and of its 7 items,
invocation of the SKWRightDisplayMenu_t library block (dayMenu variable) and management of the

enabling flags of the menu itself and the parent memory (Prg menu)

5.9.1. Adding an item to a menu
A frequent variation to the menu for the LCD terminal included in the AHU baselines, is
the addition of an item to a menu.

EXAMPLE 5.22

Returning to Example 5.21, assume we want to insert parameter rC01 in the
password protected ThermoregulationMenu.

In this case the changes are limited to the ACTION that defines the menu to be edited.
In particular, it is necessary to:

• edit the definition of the menu, increasing the number of items;

• add the definition of the new item.

42 Air Handling Unit Baselines - Developer's Manual

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

EXAMPLE 5.23

To achieve the goal established in Example 5.22, we can proceed as follows:

1. increase the value assigned to thermoregulationMenu.itemNumber;

2. insert the definition of rC01 in the desired position, specifying the
minimum and maximum values, the text identification, and the type of
value to be displayed (DISPLAY_TEMPERATURE).

5.9.2. Adding a menu
The user interface for the LCD terminal of an application derived from the AHU
baselines may call for the addition of an entire menu.

EXAMPLE 5.24

Extending Example 5.22, assume we wish to create a menu dedicated to the
configuration of the heat recovery unit (parameters rC01 and rC02), within the
password-protected section.

To add a menu we need to adjust the SFC diagram to add the STEP corresponding to
the new menu and connect it to the parent menu.

Air Handling Unit Baselines - Developer's Manual 43

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

EXAMPLE 5.25

To meet the requirement expressed in Example 5.25, proceed as follows:

1. first of all define a new Boolean variable to enable the menu,
enableHeatRecoveryUnitMenu;

2. create a new STEP, HeatRecoveryUnitMenu, connecting it as the child of
ServiceMenu;

3. edit Act_ServiceMenu so that it manages an extra item corresponding to
the new submenu;

4. create and implement the ACTION Act_HeatRecoveryUnitMenu, inserting
the definition of the menu and its items (parameters rC01 and rC02); in
doing this, it may prove useful to create and invoke a suitable block of the
SmartHMI library for navigation management.

44 Air Handling Unit Baselines - Developer's Manual

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

6. Libraries
The baselines for AHUs make use of various block libraries (FUNCTION and
FUNCTION_BLOCK). These libraries can be utilized effectively in the development of
applications derived from the baselines.

This chapter contains a detailed description of the blocks contained in the various libraries.

6.1. Actuators
The Actuators library contains the set of actuation logics that are most frequently utilized
in HVAC applications.

6.1.1. DelayedStarter_t

Type FUNCTION_BLOCK

Description Actuator of a digital output that adds a starting delay and a stopping delay

Inputs 1) in : BOOL
Value to actuate on the digital output prior to application of the
delays.
2) delayOnStart : UDINT
Starting delay, expressed in milliseconds [ms].
3) delayOnStop : UDINT
Stopping delay, expressed in milliseconds [ms].
4) delayBetween : UDINT
Minimum pause time between successive starts, expressed in
milliseconds [ms].

Outputs 1) out : BOOL
Value to actuate on the digital output after application of the delays.

6.1.2. StarDeltaStarter_t

Type FUNCTION_BLOCK

Description Star-delta starting

Inputs 1) in : BOOL
Value to actuate on the digital output.
2) lineStarDelay : UDINT
Star-line delay, expressed in milliseconds [ms].
3) starDuration : UDINT
Star-line duration, expressed in milliseconds [ms].
4) starDeltaDelay : UDINT
Star-delta delay, expressed in milliseconds [ms].

Outputs 1) line : BOOL
Line contactor.

Air Handling Unit Baselines - Developer's Manual 45

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

1) star : BOOL
Star contactor.
1) delta : BOOL
Delta contactor.

6.2. Alarms
The Alarms library contains the set of management logics of the alarms that are most
frequently utilized in the applications.

6.2.1. AutoRearmAlarm_t

Type FUNCTION_BLOCK

Description Automatic reset alarm

Inputs 1) enable : BOOL
Enables the alarm condition test. If FALSE, the block output is set to 0
(alarm not active).
2) condition : BOOL
Alarm condition, active when condition equals TRUE.

Outputs 1) alarm : USINT
Alarm status: 0 = not active, 1 = active

6.2.2. DelayAutoRearmAlarm_t

Type FUNCTION_BLOCK

Description Delayed activation and automatic reset alarm

Inputs 1) enable : BOOL
Enables the alarm condition test. If FALSE, the block output is set to 0
(alarm not active).
2) condition : BOOL
Alarm condition, active when condition equals TRUE.
3) delay : UDINT
Alarm activation delay, expressed in milliseconds.

Outputs 1) alarm : USINT
Alarm status: 0 = not active, 1 = active

6.2.3. DelayManualRearmAlarm_t

Type FUNCTION_BLOCK

Description Delayed activation alarm with manual reset

Inputs 1) enable : BOOL
Enables the alarm condition test. If FALSE, the block output is set to 0
(alarm not active).

46 Air Handling Unit Baselines - Developer's Manual

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

2) reset : BOOL
Alarms reset command. If TRUE and the alarm is in pending manual
reset status, it transits to the non activation status (the block output is
0).
3) condition : BOOL
Alarm condition, active when condition equals TRUE.
4) delay : UDINT
Alarm activation delay, expressed in milliseconds.

Outputs 1) alarm : USINT
Alarm status: 0 = not active, 1 = active, 2 = pending manual reset

6.2.4. ManualRearmAlarm_t

Type FUNCTION_BLOCK

Description Manual reset alarm

Inputs 1) enable : BOOL
Enables the alarm condition test. If FALSE, the block output is set to 0
(alarm not active).
2) reset : BOOL
Alarms reset command. If TRUE and the alarm is in the pending
manual reset status, it transits to non activation status (block output is
0).
3) condition : BOOL
Alarm condition, active when condition equals TRUE.

Outputs 1) alarm : USINT
Alarm status: 0 = not active, 1 = active, 2 = pending manual reset

6.2.5. ProbeError_t

Type FUNCTION_BLOCK

Description Probe error

Inputs 1) enable : BOOL
Enables the alarm condition test. If FALSE, the block output is set to 0
(alarm not active).
2) probe : INT
Value read by the probe whose operation/presence must be checked.

Outputs 1) alarm : USINT
Alarm status: 0 = not active, 1 = active

Air Handling Unit Baselines - Developer's Manual 47

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

6.3. Regulators
The Regulators library contains the set of regulation logics that are most frequently
utilized in HVAC applications.

6.3.1. Hysteresis_t

Type FUNCTION_BLOCK

Description Hysteresis

Inputs 1) clockwise : BOOL
Direction of hysteresis: if FALSE, the direction is counter-clockwise; if
TRUE, it is clockwise.
2) in : INT
Value to correlate with the thresholds given by parameters lo and hi.
3) lo : INT
Hysteresis lower threshold value.
4) hi : INT
Hysteresis upper threshold value.

Outputs 1) out : BOOL
Hysteresis status.

6.3.2. OnOffRegulator_t

Type FUNCTION_BLOCK

Description Regulator ON/OFF

Inputs 1) hcMode : USINT
Direction of regulator: if COOL, the control action is active until
feedback exceeds the setpoint; if HEAT, it is active until feedback
is below the setpoint.
2) feedback : INT
Measurement of the physical quantity subject to the control action
read by the regulation probe and utilized as feedback for correlation
with the setpoint.
3) setpoint : INT
Target value of the physical quantity subject to the control action.
4) diff : INT
Differential to be added to/subtracted from the setpoint for status
changeover from OFF to ON: if hcMode equals COOL, the control
action occurs when feedback becomes greater than or equal to
setpoint + diff; if hcMode equals HEAT, it occurs when feedback
is below or equal to setpoint - diff.

Outputs 1) out : BOOL
ON/OFF status of the control action.

48 Air Handling Unit Baselines - Developer's Manual

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

6.3.3. ProportionalRegulator_t

Type FUNCTION_BLOCK

Description Proportional regulator

Inputs 1) hcMode : USINT
Direction of regulator: if COOL, the control action is active until
feedback exceeds the setpoint; if HEAT, it is active until feedback
is below the setpoint.
2) feedback : INT
Measurement of the physical quantity subject to the control action
read by the regulation probe and utilized as feedback for correlation
with the setpoint.
3) setpoint : INT
Target value of the physical quantity subject to the control action.
4) band : INT
Dimension of the proportional band: if hcMode equals COOL, the
regulator saturates (control action equals 100%) when feedback
becomes higher than or equal to setpoint + band; if hcMode
equals HEAT, when feedback becomes less than or equal to
setpoint - band.

Outputs 1) out : INT
Control action level, in parts per thousand [‰].

6.3.4. ThreeStepsRegulator_t

Type FUNCTION_BLOCK

Description Regulator with three steps

Inputs 1) hcMode : USINT
Direction of regulator: if COOL, the control action is active until
feedback exceeds the setpoint; if HEAT, it is active until feedback
is below the setpoint.
2) feedback : INT
Measurement of the physical quantity subject to the control action
read by the regulation probe and utilized as feedback for correlation
with the setpoint.
3) setpoint : INT
Target value of the physical quantity subject to the control action.
4) diff : INT
Total differential to add to/subtract from the setpoint for activation of
the three power steps: if hcMode equals COOL, the first step is
activated when feedback becomes greater than or equal to
setpoint + diff/3, the second step when feedback becomes
greater than or equal to setpoint + 2·diff/3, and the third step
when feedback becomes greater than or equal to setpoint +

Air Handling Unit Baselines - Developer's Manual 49

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

diff; if hcMode equals HEAT, the first step is activated when
feedback becomes less than or equal to setpoint - diff/3, the
second step when feedback becomes less than or equal to
setpoint - 2·diff/3, and the third step when feedback
becomes less than or equal to setpoint - diff;

Outputs 1) step1 : BOOL
ON/OFF status of the first power step.
2) step2 : BOOL
ON/OFF status of the second power step.
3) step3 : BOOL
ON/OFF status of the third power step.

6.3.5. TwoStepsRegulator_t

Type FUNCTION_BLOCK

Description Regulator with two steps

Inputs 1) hcMode : USINT
Direction of regulator: if COOL, the control action is active until
feedback exceeds the setpoint; if HEAT, it is active until feedback
is below the setpoint.
2) feedback : INT
Measurement of the physical quantity that is subject to the control
action read by the regulation probe and utilized as feedback for
correlation with the setpoint.
3) setpoint : INT
Target value of the physical quantity subject to the control action.
4) diff : INT
Total differential to add to/subtract from the setpoint for activation of
the two power steps: if hcMode equals COOL, the first step is activated
when feedback becomes greater than or equal to setpoint +
diff/2, the second step when feedback becomes greater than or
equal to setpoint +diff; if hcMode equals HEAT, the first step is
activated when feedback becomes less than than or equal to
setpoint - diff/2, and the second step when feedback
becomes less than or equal to setpoint - diff;

Outputs 1) step1 : BOOL
ON/OFF status of the first power step.
2) step2 : BOOL
ON/OFF status of the second power step.

50 Air Handling Unit Baselines - Developer's Manual

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

6.4. SmartHMI
The SmartHMI library contains blocks for the construction of user interfaces for Smart
and the relative terminals (SKW, SKP).

6.4.1. LocalMainView_t

Type FUNCTION_BLOCK

Description Block for management of LEDs and detection of prolonged pressing
of keys ("hot" key function) of the local Smart display, in basic display
mode.

Inputs 1) state : USINT
Unit ON/OFF status, utilized by LocalMainView_t for management
of the stand-by LED and view of the 'OFF' text on the display.
2) remoteState : BOOL
If TRUE, ON/OFF status is determined by a remote setting, and its
display (illumination of the stand-by LED or message 'OFF' shown on
the display) is intermittent.
3) mode : USINT
COOL/HEAT operating mode, utilized by LocalMainView_t for
management of the corresponding LEDs.
4) remoteMode : BOOL
If TRUE, COOL/HEAT operating mode is determined by a remote
setting and its display (illumination of COOL or HEAT LED) is
intermittent.
5) economy : BOOL
Activation of Economy mode, utilized by LocalMainView_t for
management of the corresponding LED.
6) timeIsEnabled : BOOL
Activation of time frame operation, utilized by LocalMainView_t for
management of the corresponding LED.
7) resource1 : BOOL
Enabling of resource no. 1 (depending on application), utilized by
LocalMainView_t for management of the corresponding LED.
8) resource2 : BOOL
Enabling of resource no. 2 (depending on application), utilized by
LocalMainView_t for management of the corresponding LED.
9) resource3 : BOOL
Enabling of resource no. 3 (depending on application), utilized by
LocalMainView_t for management of the corresponding LED.
10) resource4 : BOOL
Enabling of resource no. 4 (depending on application), utilized by
LocalMainView_t for management of the corresponding LED.
11) resource5 : BOOL
Enabling of resource no. 5 (depending on application), utilized by

Air Handling Unit Baselines - Developer's Manual 51

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

LocalMainView_t for management of the corresponding LED.
12) resource6 : BOOL
Enabling of resource no. 6 (depending on application), utilized by
LocalMainView_t for management of the corresponding LED.
13) resource7 : BOOL
Enabling of resource no. 7 (depending on application), utilized by
LocalMainView_t for management of the corresponding LED.

Outputs 1) hotKeyUP : BOOL
Prolonged press of local display UP key detected.
2) hotKeyDW : BOOL
Prolonged press of local display DW key detected.
3) hotKeyESC : BOOL
Prolonged press of local display ESC key detected.
4) hotKeySET : BOOL
Prolonged press of local display SET key detected.

6.4.2. SKWAlarmMenu_t

Type FUNCTION_BLOCK

Description Block for navigation from remote keypad of an alarms menu

Inputs 1) totalAlarms : USINT
Total number of alarms that can be displayed in the menu.
2) currentAlarmValue : USINT
Value of current alarm (i.e. of the alarm in the currentAlarm
position): 0 = not active, 1 = active, 2 = pending manual reset.
3) currentAlarmLabel : STRING
Text identifying current alarm (i.e. the alarm in the currentAlarm
position).

INOUT
variables

1) currentAlarm : USINT
Current alarm, expressed as a position in the menu, deriving from the
navigation operations performed by the user.
2) enable : BOOL
Enabling of the menu: can be deactivated following a user command
or due to timeout.

Outputs 1) back : BOOL
Returns user to the higher menu level

52 Air Handling Unit Baselines - Developer's Manual

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

6.4.3. SKWFolderMenu_t

Type FUNCTION_BLOCK

Description Block for navigation from remote keypad of a menu providing access
to a list of submenus

Inputs 1) folderNumber : USINT
Total number of submenus that can be displayed in the menu.
2) currentFolderLabel : STRING
Text identifying the current submenu (i.e. submenu in the
currentFolder position).

INOUT
variables

1) currentFolder : USINT
Current submenu, expressed as a position in the menu, deriving from
the navigation operations performed by the user.
2) enable : BOOL
Enabling of the menu: can be deactivated following a user command
or due to timeout.

Outputs 1) back : BOOL
Returns user to the higher menu level
2) enableCurrentFolder : BOOL
User command for input in the current submenu (i.e. the submenu in
the currentFolder position).

6.4.4. SKWLeftDisplayMenu_t

Type FUNCTION_BLOCK

Description Block for navigation from the remote keypad of a menu of items, with
their values shown on the left-hand display

Inputs 1) itemNumber : USINT
Total number of items that can be displayed in the menu.
2) currentItemValue : INT
Text identifying current item (i.e. item in currentItem position).
3) currentItemMin : INT
Minimum value of current item (i.e. item in currentItem position).
4) currentItemMax : INT
Maximum value of current item (i.e. item in currentItem position).
5) currentItemLabel : STRING
Text identifying current item (i.e. item in currentItem position).
6) currentItemDisplayType : USINT
Type of value of the current item (i.e. item in currentItem position),
expressed with constants DISPLAY_TEMPERATURE,
DISPLAY_PRESSURE_ONE_DEC, ...
7) subFolder : BOOL
If TRUE, the menu provides access also to a submenu (not included in

Air Handling Unit Baselines - Developer's Manual 53

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

the itemNumber counter value).
8) subFolderName : STRING
Text identifying the submenu.

INOUT
variables

1) currentItem : USINT
Current item, expressed as a position in the menu, deriving from the
navigation operations performed by the user.
2) enable : BOOL
Enabling of the menu: can be deactivated following a user command
or due to timeout.

Outputs 1) enableSubFolder : BOOL
User command for entry into the submenu.
2) back : BOOL
Returns user to the higher menu level
3) updateCurrentItemValue : BOOL
User command to edit the value of the current item (i.e. item in
currentItem position).
4) localValue : INT
Value to assign to the current item (i.e., item in currentItem position)
when updateCurrentItemValue is TRUE.

6.4.5. SKWMainView_t

Type FUNCTION_BLOCK

Description Block for management of LEDs and detection of prolonged pressing
of keys ("hot" key function) of the local Smart display, in basic display
mode.

Inputs 1) state : USINT
Unit ON/OFF status, utilized by SKWMainView_t for management of
stand-by LED and view of 'OFF' text on display.
2) stateSource : USINT
Source of ON/OFF status: 0 = local, 1 = remote, 2 = time frame
operation.
3) mode : USINT
COOL/HEAT/AUTO operating mode, utilized by SKWMainView_t for
management of the corresponding LEDs.
4) modeSource : USINT
Source of operating mode COOL/HEAT/AUTO: 0 = local, 1 = remote,
2 = auto.
5) modeSelection : USINT
Selectable operating modes COOL/HEAT/AUTO (for editing by the
user with remote keypad): 0 = COOL only, 1 = HEAT only, 2 = COOL
and HEAT, 3 = COOL, HEAT and AUTO, 4 = remote setting.
6) rightValueType : USINT
Type of value to show on the right-hand display of the LCD terminal,

54 Air Handling Unit Baselines - Developer's Manual

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

expressed with constants DISPLAY_TEMPERATURE,
DISPLAY_PRESSURE_ONE_DEC, ...
7) rightValue : INT
Value to show on the right-hand display of the LCD terminal.
8) leftValueType : USINT
Type of value to show on the left-hand display of the LCD terminal,
expressed with constants DISPLAY_TEMPERATURE,
DISPLAY_PRESSURE_ONE_DEC, ...
9) leftValue : INT
Value to show on the left-hand display of the LCD terminal.
10) leftText : STRING
Text to show on the left-hand display of the LCD terminal, if
leftValueType equals TEXT.
11) generalAlarm : BOOL
If TRUE, the unit is in OFF status from alarm and generalAlarmMsg is
shown on the display.
12) generalAlarmMsg : STRING
Message to show on display when generalAlarm is TRUE.
13) alarm : USINT
Alarms status, SKWMainView_t for management of the corresponding
LED. If 0, this means no active alarm; if 1; at least one active alarm; if 2,
all active alarms are pending manual reset.
14) economy : BOOL
Activation of Economy mode, utilized by LocalMainView_t for
management of the corresponding LED.
15) currentTimeProfile : USINT
Current time frame operation profile.
16) fanSpeedControl : BOOL
If TRUE, management of fans speed from LCD keypad is enabled.
17) fanSpeed : USINT
Fans speed, if fanSpeedControl is TRUE.

INOUT
variables

1) enable : BOOL
Enabling of the menu: can be deactivated following a user command
(for entry in a submenu).

Outputs 1) enableSetMenu : BOOL
User command for entry into the set menu.
2) enablePrgMenu : BOOL
User command for entry into the Prg menu.
3) timeout : BOOL
Timeout detected in basic display mode.
4) changeStateRequest : BOOL
User command for changeover of unit ON/OFF status.
5) newState : USINT
New value of unit ON/OFF status requested by user, if

Air Handling Unit Baselines - Developer's Manual 55

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

changeStateRequest is TRUE.
6) changeModeRequest : BOOL
User command for changeover of operating mode
COOL/HEAT/AUTO.
7) newMode : USINT
New value of operating mode COOL/HEAT/AUTO requested by user,
if changeModeRequest is TRUE.
8) changeFanSpeedRequest : BOOL
User command for fan speed change.
9) newFanSpeed : USINT
New fan speed requested by user, if changeFanSpeedRequest is
TRUE.
10) toggleTimeRequest : BOOL
User command to enable/disable time frame operation.

6.4.6. SKWPswProtection_t

Type FUNCTION_BLOCK

Description Block for password protection of access to a menu for remote keypad

Inputs 1) timeout : BOOL
If TRUE, access privileges forgotten (due to timeout) and the password
must be re-entered to gain access to the menu.

INOUT
variables

1) enable : BOOL
Enabling of the menu: can be deactivated following a user command
or due to timeout.

Outputs 1) enableMenu : BOOL
Menu access rights acquired (user has entered the password
correctly).
2) back : BOOL
Returns user to the higher menu level

6.4.7. SKWRightDisplayMenu_t

Type FUNCTION_BLOCK

Description Block for navigation from the remote keypad of a menu of items, with
their values shown on the right-hand display

Inputs 1) itemNumber : USINT
Total number of alarms that can be displayed in the menu.
2) currentItemValue : INT
Text identifying current item (i.e. item in currentItem position).
3) currentItemMin : INT
Minimum value of current item (i.e. item in currentItem position).
4) currentItemMax : INT

56 Air Handling Unit Baselines - Developer's Manual

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

Maximum value of current item (i.e. item in currentItem position).
5) currentItemLabel : STRING
Text identifying current item (i.e. item in currentItem position).
6) currentItemDisplayType : USINT
Type of value of current item (i.e. item in currentItem position),
expressed with constants DISPLAY_TEMPERATURE,
DISPLAY_PRESSURE_ONE_DEC, ...
7) subFolder : BOOL
If TRUE, the menu provides access also to a submenu (not included in
the itemNumber count value).
8) subFolderName : STRING
Identification text of submenu.

INOUT
variables

1) currentItem : USINT
Current item, expressed as a position in the menu, deriving from the
navigation operations performed by the user.
2) enable : BOOL
Enabling of the menu: can be deactivated following a user command
or due to timeout.

Outputs 1) enableSubFolder : BOOL
User command for entry into the submenu.
2) back : BOOL
User command to return to higher menu level
3) updateCurrentItemValue : BOOL
User command to edit value of current item (i.e. item in currentItem
position).
4) localValue : INT
Value to assign to current item (i.e. item in currentItem position)
when updateCurrentItemValue is TRUE.

6.5. Thermodynamics
The Thermodynamics library contains calculation functions of physical units of
importance in the development of HVAC applications.

Air Handling Unit Baselines - Developer's Manual 57

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

6.5.1. CalcEnthalpy

Type FUNCTION

Description Approximate calculation of specific enthalpy

Inputs 1) temperature : INT
Temperature, in tenths of a degree Celsius [°C · 10-1].
2) humidity : INT
Relative humidity percentage, in parts per thousand [‰].
3) altitude : INT
Height above sea level, in hundreds of metres [m · 102]

Outputs Specific enthalpy [(kJ/kg) · 10-1].

6.6. Utils
The Utils library contains generic blocks of utilities that do not fall logically into any of
the foregoing libraries.

6.6.1. DynamicSetpoint_t

Type FUNCTION_BLOCK

Description Block for management of a dynamic differential to apply to a setpoint

Inputs 1) enable : BOOL
Enabling of dynamic differential. If FALSE, the differential output
equals 0.
2) hcMode : USINT
Direction of regulator: if COOL, dynamic differential is greater than 0
when feedback is higher than setpoint; if HEAT, when feedback is
below setpoint.
3) maxDifferential : INT
Maximum value of dynamic differential (i.e. maximum value of
differential output).
4) feedback : INT
Measurement of the physical unit to which value of dynamic
differential is linked, utilized as feedback for correlation with the
setpoint.
5) setpoint : INT
Value of the physical unit to which value of dynamic differential is
linked, for which the differential is cancelled.
6) band : INT
Proportional band of increase of the value of the differential value up
to its maximum, maxDifferential.

Outputs 1) differential : INT
Dynamic differential to apply.

58 Air Handling Unit Baselines - Developer's Manual

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

6.6.2. PercentageReduction

Type FUNCTION

Description Percentage reduction of a value expressed in parts per thousand [‰]

Inputs 1) in : INT
Value to reduce, expressed in parts per thousand [‰].
2) reduction : INT
Value of the percentage reduction to apply, expressed in parts per
thousand [‰].

Outputs Value resulting from the percentage reduction

6.6.3. TimeFrameManager_t

Type FUNCTION_BLOCK

Description Time frame operation

Inputs 1) enable : BOOL
Enable time frame operation.

Outputs 1) mode : USINT
Mode (COMFORT, ECO or OFF) corresponding to the current time
frame.

Air Handling Unit Baselines - Developer's Manual 59

file:///C:/Zanette/F_backup_220109/LavoriCorrenti/PROGETTI/I1623_04 FREE Smart BASELINE AHU/AHU Developer/logo_free_smart.jpg

APPENDIX

 APPENDIX - Air Handling Unit Baselines - Developer's Manual I

1. Block diagram
The block diagram shown in Figure 17 represents the high level software structure of a
baseline. See also the same architecture diagram in Figure 1

Figure 17: High level software structure
The following headings provide detailed descriptions of the individual items of the
diagram and their connections.

1.1. INPUT

1.1.1. Responsibility
The INPUT block translates physical inputs into logical inputs utilized by the application.
Specifically, the block:

• maps the physical inputs on the corresponding logical inputs (i.e., INPUT
determines which DIs or AIs correspond to which symbolic names utilized in the
application);

• converts the physical value of the inputs into the logical value utilized in the
application.

II APPENDIX - Air Handling Unit Baselines - Developer's Manual

1.1.2. Collaborations
The physical inputs read by INPUT are external to the application architecture.
The logical inputs produced by INPUT are utilized by:

• GOAL, with regard to remote setting of the operating mode and activation of
Economy mode;

• DIAGNOSTICS, with regard to digital diagnostic inputs (thermal protections, flow
switches, pressure switches, etc.) and analog diagnostics (probe error, high/low
pressure, etc.);

• STRATEGY and REGULATORS, with regard to regulators feedback.

1.2. PARAMETERS

1.2.1. Responsibility
The PARAMETERS block provides the application with the configuration parameters
supplied by USER.

1.2.2. Collaborations
The PARAMETERS outputs are utilized by:

• GOAL (setpoints, time frames, etc.);
• DIAGNOSTICS (alarms configuration);
• REGULATORS (regulators configuration);
• ACTUATORS (actuators configuration).

1.3. GOAL

1.3.1. Responsibility
The GOAL block establishes the aims that the unit controller must pursue.

Specifically, the data resulting from the GOAL block are:

• unit ON/OFF status;

• COOL/HEAT (summer/winter) operating mode of the unit;

• energy saving mode activation status (ECO mode);

• setpoints to follow;

• measurements (feedback) to use in regulation, deriving from the choice of
regulation probes.

The GOAL block is necessary to summarize these data starting from the different
possible sources, which include parameters and digital and analog inputs.

The GOAL block is not concerned with whether or how the goals can be achieved,
delegating this task to the downstream blocks.

 APPENDIX - Air Handling Unit Baselines - Developer's Manual III

1.3.2. Collaborations
To achieve this aim, GOAL makes use of:

• local setting (from PARAMETERS) and remote setting (from INPUT) of the
ON/OFF stratus and the requested operating mode;

• setpoint (from PARAMETERS);
• time frames and their activation (from PARAMETERS);
• activation (from INPUT) and settings (from PARAMETERS) of Economy mode;
• dynamic setpoint input (from INPUT) and its settings (from PARAMETERS);
• automatic mode changeover input (from INPUT) and its settings (from

PARAMETERS);
• regulation probe selection parameters (from PARAMETERS).

The result of the GOAL calculation is propagated towards other items of the
architecture, in particular towards:

• DIAGNOSTICS (unit ON/OFF status);
• STRATEGY (unit ON/OFF status, request type and setpoint to follow, regulation

probes);
• HMI (ON/OFF status of the unit and request type).

The above situation is represented schematically in Figure 18.

Figure 18: Relationships between GOAL and the other blocks

IV APPENDIX - Air Handling Unit Baselines - Developer's Manual

1.4. DIAGNOSTICS

1.4.1. Responsibility
The DIAGNOSTICS block evaluates the presence of anomaly conditions in the unit and
manages activation and deactivation (reset) of the alarms.

1.4.2. Collaborations
DIAGNOSTICS makes use of:

• unit ON/OFF status (from GOAL);
• diagnostic digital inputs (from INPUT) for detection of anomalous conditions in

the unit (for example, tripping of a thermal protection);
• analog inputs (from INPUT) for analog diagnostics (e.g. for detection of a missing

or faulty probe);
• configuration of alarms activation and resetting logics (from PARAMETERS) (e.g. a

delay interval);
• user command for manual alarms reset (from HMI).

The status (active or inactive) of the alarms is transmitted by DIAGNOSTICS to:
• HMI, for signalling of the active alarms and the facility to reset them;
• STRATEGY, for execution of exceptional procedures for faults management.

The diagram in Figure 19 summarizes the DIAGNOSTICS collaborations.

 APPENDIX - Air Handling Unit Baselines - Developer's Manual V

Figure 19: Relationships between GOAL and the other blocks

1.5. STRATEGY

1.5.1. Responsibility
The STRATEGY block establishes the strategy to use to achieve the control goal. In
detail, this consists of:

• evaluating the existence of requests to be fulfilled;
• assigning priority to pending requests;
• choosing the strategy to use to fulfill the request from among the various possible

strategies;
• managing the request, on the basis of the chosen strategy.

1.5.2. Collaborations
STRATEGY receives the following information as an input:

• ON/OFF status of the unit, the user requests and relative setpoints (from GOAL);
• diagnostic information that calls for a centralized fault management procedure

(from DIAGNOSTICS);
• the status of all regulators (from REGULATORS);
• the status of the actuators of interest to the strategy (from ACTUATORS).

VI APPENDIX - Air Handling Unit Baselines - Developer's Manual

The strategy adopted is translated into commands towards REGULATORS/ACTUATORS.
The above situation is represented schematically in Figure 20.

 APPENDIX - Air Handling Unit Baselines - Developer's Manual VII

Figure 20: Relationship between STRATEGY and the other blocks

1.6. REGULATORS and ACTUATORS

1.6.1. Responsibility
The values assumed by the physical outputs of the controller are established by the
group of REGULATORS and ACTUATORS blocks, which bring together the logic of
regulation and of outputs actuation, respectively.

The REGULATORS and ACTUATORS blocks collectively perform the task of fulfilling the
requests expressed by the STRATEGY block in terms of setpoints or percentage values.

1.6.2. Collaborations
REGULATORS receives at input:

• the regulator setpoints (from STRATEGY);
• feedback information for regulation (from INPUT) (for example, temperature

probes, pressure probes, etc.);
• possible configurations of regulation logics delegated to USER (from

PARAMETERS);
• control data - commands for activation, by-pass, etc. (from STRATEGY).

The REGULATORS outputs are used by:
• ACTUATORS, as values to implement on the unit outputs.

ACTUATORS receives at input:
• possible configurations of actuation logics delegated to USER (from

PARAMETERS);
• the values of the control actions to implement (from REGULATORS).

The ACTUATORS outputs are used by:
• STRATEGY, in order to change the strategy adopted on the basis of the actuators

status;
• OUTPUT, for physical implementation.

The situation described is represented schematically in Figure 21.

VIII APPENDIX - Air Handling Unit Baselines - Developer's Manual

 APPENDIX - Air Handling Unit Baselines - Developer's Manual IX

Figure 21: Relationships between REGULATORS, ACTUATORS and the other blocks

1.7. OUTPUT

1.7.1. Responsibility
The OUTPUT block implements the logical outputs on the physical outputs, supplying,
in particular:

• mapping between logical and physical outputs (to which DOs or AOs the logical
outputs correspond);

• conversion of the logical value utilized in the application into the corresponding
physical value.

1.7.2. Collaborations
The logical outputs utilized by OUTPUT are calculated by ACTUATORS.
The physical outputs produced by OUTPUT are external to the system.

1.8. HMI

1.8.1. Responsibility
The HMI block manages the application user interface, in particular with reference to:

• signalling of unit ON/OFF status;
• the operating mode (HEAT, COOL, etc.);
• signalling of active services;
• the application menu;
• keys management.

1.8.2. Collaborations
HMI gathers the following data to view:

• unit ON/OFF status (from GOAL);
• operating mode (from GOAL);
• the set of active services (from OUTPUT).

Data on the activities of the user managed by HMI are used by:
• DIAGNOSTICS, with regard to manual alarms reset.

X APPENDIX - Air Handling Unit Baselines - Developer's Manual

2. Application project structure
The previous chapter describes the architecture of a baseline from an abstract
standpoint: in this chapter, the architecture is explained and described in terms of items
of an Application project.

2.1. Tasks, programs and functional blocks
All the blocks described in the previous chapter, with the exception of REGULATORS
and ACTUATORS, translate into programs (PROGRAM, in accordance with standard
IEC61131-3). This means, specifically, that the exchange of data between blocks occurs
by means of global variables, whether they are parameters (EEPROM Parameters), states
(Status variables), Alarms, I/Os (I/O mapping) or internal variables (Global variables).
The REGULATORS and ACTUATORS blocks are grouped into functional blocks that
represent the physical components of the air handling unit, created as global variables
and invoked within the PROGRAM STRATEGY.
All the programs that make up the baseline are executed by the Timed task with the
exception of those dedicated to the HMI (significant only for Smart).

 APPENDIX - Air Handling Unit Baselines - Developer's Manual XI

2.2. Libraries
The baseline application makes use of numerous library blocks, subdivided into
separate libraries depending on their role (regulators in the regulators library, actuators
in the actuators library, etc...).
The number of blocks present in a library may increase at the same time as the need to
implement new logics for new applications.
The DEVELOPER can alter the behaviour of an application significantly with simple
replacements of a block with an analogous block present in the library.

2.3. INPUT
The conversion of the physical value into the corresponding logical value utilized within
the application is performed by the BIOS on the basis of the values of the I/O
configuration parameters.
Mapping between physical inputs and logical inputs is performed statically with the
Application I/O Mapping table.

XII APPENDIX - Air Handling Unit Baselines - Developer's Manual

2.3.1. Possibilities of action of the DEVELOPER
The DEVELOPER can take action in the context of I/O mapping with the utmost
simplicity.

2.4. PARAMETERS
The parameters are made available to the application by means of their definition in the
Application EEPROM Parameters tables (and, potentially, Status variables).

With regard to Smart, considering the absence of a parameters database on the target
(unlike Evolution), the PARAMETERS block can include a dedicated IEC61131-3
PROGRAM that is responsible for validating the values of the application parameters.
This logic must be isolated from the remainder of the application, in such a way as to
facilitate possible porting on Evolution.

2.4.1. Possibilities of action of the DEVELOPER
The DEVELOPER can easily take action on the definition of parameters (editing of the
default value, the range of permissible values, etc.) or add new ones.

 APPENDIX - Air Handling Unit Baselines - Developer's Manual XIII

2.5. GOAL
Working with an AHU baseline, the GOAL block is composed of a series of programs
written in FBD language, the names of which start with Goal_.

The results of the GOAL block are made available as global data to the remaining parts
of the application, in the folder Global shared > Variables.

2.5.1. Possibilities of action of the DEVELOPER
The GOAL block is useful for the following DEVELOPER tasks:

• replacement of a given logic (for example, priority among inputs that determine
the operating mode) with an alternative present in the library;

• extension or simplification of the logical networks connected to pins of the blocks
(for example, to add a condition to enable time frame operation);

• introduction of new factors for calculation of the setpoints to follow.

XIV APPENDIX - Air Handling Unit Baselines - Developer's Manual

2.6. DIAGNOSTICS
Working with an AHU baseline, the DIAGNOSTICS block is constituted by the program
of the same name, written in FBD language.

The results of the DIAGNOSTICS block are made available as alarm variables, grouped
therefore in the folder Global shared > Alarms.

Each network of the Diagnostics program is responsible for assigning a value to an
individual alarm.

2.6.1. Possibilities of action of the DEVELOPER
The DEVELOPER can easily:

• modify the logics for detection and resetting of alarms (for example, adding or
removing delays, making such logics parametric, requesting manual resetting of a
specific alarm, etc.);

• add the management of new alarm conditions.

 APPENDIX - Air Handling Unit Baselines - Developer's Manual XV

2.7. STRATEGY
Working with an AHU baseline, the STRATEGY block is constituted by the program of
the same name, written in SFC language.

The STRATEGY block is a model of the unit's state machine, which defines:

• the actions to be performed (i.e. the strategy to adopt) for each machine state;

• the possible transitions between states and conditions in which they occur.

The chosen programming language (SFC) allows efficient translation of this state
machine:

• the strategies correspond to ACTIONS of the SFC program, implemented in FBD
language: each strategy contains an FBD network for each unit component;

• the transitions correspond to SFC program TRANSITIONS implemented in ST
language.

2.7.1. Possibilities of action of the DEVELOPER
With reference to the above, in terms of DEVELOPER actions, STRATEGY can:

• manage pre-alarm situations or emergency situations that are not envisaged by
the Air Handling Unit baselines, and also provide additional strategies to fulfill the
control goals;

• modify the individual strategies already provided for, in terms of actions on the
REGULATORS and ACTUATORS blocks.

XVI APPENDIX - Air Handling Unit Baselines - Developer's Manual

2.8. REGULATORS and ACTUATORS
The REGULATORS and ACTUATORS blocks are grouped together in functional blocks,
which represent the physical components of the air handling unit.

Each strategy determines the inputs of all the blocks and causes their execution.

2.8.1. Possibilities of action of the DEVELOPER
The DEVELOPER has considerable freedom of action in REGULATORS and ACTUATORS,
for example, to:

• replace regulation and actuation logics (e.g. with other library blocks);
• insert additional logic on the regulator block pins;
• replace the physical inputs with parametric inputs, or vice versa.
• build complex actuators composed of several actuator blocks although managed

as a single actuator by STRATEGY, coordinated by a logical block that is
concerned with subdividing requests originating from STRATEGY over different
actuators.

Note that is certain cases it may be necessary, or more appropriate, to modify STRATEGY
to manage a complex actuator on that level.

2.9. OUTPUT
Mapping between logical outputs and physical outputs is performed statically with the
Application I/O Mapping table.
Conversion of the logical value utilized within the application into the corresponding
physical value is performed by the BIOS on the basis of the values of the I/O
configuration parameters.

2.10. HMI
Considering Smart, the HMI block is partly automated (local application menu), and
partly implemented in dedicated IEC61131-3 PROGRAMS that are responsible for
signalling of ON/OFF status, of the operating mode, and of the active services, of the
keys management and management of the menu for the remote terminal.
The DEVELOPER can easily act on the entire HMI block.
The HMI logic is isolated from the rest of the application, in such a way as to facilitate
possible porting on Evolution.

 APPENDIX - Air Handling Unit Baselines - Developer's Manual XVII

Eliwell Controls Srl
Via dell’ Industria, 15 Z. I. Paludi
32010 Pieve d’ Alpago (BL) - Italy
Telephone +39 (0)437 986 111
Fax +39 (0)437 989 066
Sales:
+39 (0)437 986 100 (Italy)
+39 (0)437 986 200 (other countries)
saleseliwell@invensys.com
Technical helpline: +39 (0)437 986 250
eliwell.freeway@invensys.com
www.eliwell.it

9MA10043 06/11
© Copyright Eliwell Controls s.r.l. 2010-2011 All rights reserved

XVIII APPENDIX - Air Handling Unit Baselines - Developer's Manual

http://www.eliwell.it/

	1. Introduction
	1.1. FREE Studio
	1.2. EULA

	2. Glossary
	2.1. Abbreviations and definitions

	3. Baseline architecture
	3.1. Block diagram
	3.2. GOAL block
	3.2.1. Software form in AHU Baselines

	3.3. DIAGNOSTICS block
	3.3.1. Software form in the AHU baselines

	3.4. STRATEGY block
	3.4.1. Software form in the AHU baselines

	3.5. REGULATORS and ACTUATORS blocks
	3.5.1. Software form in the AHU baselines

	4. Derived applications
	4.1. Choosing the baseline
	4.2. Deriving a new Application project from the baseline
	4.3. Making changes to the application

	5. Editing the application
	5.1.1. I/O static configuration
	5.1.2. Dynamic configuration of the I/O
	5.2. ON/OFF status
	5.2.1. Editing the algorithm that determines ON/OFF status
	5.2.2. Editing time frame operation

	5.3. COOL/HEAT mode
	5.4. Setpoints
	5.5. Regulation probes
	5.5.1. Editing regulation probe selection
	5.5.2. Setting the regulation probe

	5.6. Diagnostics
	5.6.1. Adding an alarm

	5.7. Strategy
	5.7.1. Removing a strategy
	5.7.2. Adding a strategy

	5.8. Regulation and actuation of outputs
	5.8.1. Editing the regulation of an AHU component.
	5.8.2. Adding a component to the AHU

	5.9. LCD terminal menu
	5.9.1. Adding an item to a menu
	5.9.2. Adding a menu

	6. Libraries
	6.1. Actuators
	6.1.1. DelayedStarter_t
	6.1.2. StarDeltaStarter_t

	6.2. Alarms
	6.2.1. AutoRearmAlarm_t
	6.2.2. DelayAutoRearmAlarm_t
	6.2.3. DelayManualRearmAlarm_t
	6.2.4. ManualRearmAlarm_t
	6.2.5. ProbeError_t

	6.3. Regulators
	6.3.1. Hysteresis_t
	6.3.2. OnOffRegulator_t
	6.3.3. ProportionalRegulator_t
	6.3.4. ThreeStepsRegulator_t
	6.3.5. TwoStepsRegulator_t

	6.4. SmartHMI
	6.4.1. LocalMainView_t
	6.4.2. SKWAlarmMenu_t
	6.4.3. SKWFolderMenu_t
	6.4.4. SKWLeftDisplayMenu_t
	6.4.5. SKWMainView_t
	6.4.6. SKWPswProtection_t
	6.4.7. SKWRightDisplayMenu_t

	6.5. Thermodynamics
	6.5.1. CalcEnthalpy

	6.6. Utils
	6.6.1. DynamicSetpoint_t
	6.6.2. PercentageReduction
	6.6.3. TimeFrameManager_t

	1. Block diagram
	1.1. INPUT
	1.1.1. Responsibility
	1.1.2. Collaborations

	1.2. PARAMETERS
	1.2.1. Responsibility
	1.2.2. Collaborations

	1.3. GOAL
	1.3.1. Responsibility
	1.3.2. Collaborations

	1.4. DIAGNOSTICS
	1.4.1. Responsibility
	1.4.2. Collaborations

	1.5. STRATEGY
	1.5.1. Responsibility
	1.5.2. Collaborations

	1.6. REGULATORS and ACTUATORS
	1.6.1. Responsibility
	1.6.2. Collaborations

	1.7. OUTPUT
	1.7.1. Responsibility
	1.7.2. Collaborations

	1.8. HMI
	1.8.1. Responsibility
	1.8.2. Collaborations

	2. Application project structure
	2.1. Tasks, programs and functional blocks
	2.2. Libraries
	2.3. INPUT
	2.3.1. Possibilities of action of the DEVELOPER

	2.4. PARAMETERS
	2.4.1. Possibilities of action of the DEVELOPER

	2.5. GOAL
	2.5.1. Possibilities of action of the DEVELOPER

	2.6. DIAGNOSTICS
	2.6.1. Possibilities of action of the DEVELOPER

	2.7. STRATEGY
	2.7.1. Possibilities of action of the DEVELOPER

	2.8. REGULATORS and ACTUATORS
	2.8.1. Possibilities of action of the DEVELOPER

	2.9. OUTPUT
	2.10. HMI

