

Using Reengineering as an Integrating Capstone
Experience

Victor Matos
Rebecca Grasser

Cleveland State University
Cleveland, Ohio USA, 44114

{matos@cis.csuohio.edu; rgrasser@acm.org}

ABSTRACT

This paper presents an example of integrating IT skills using an interesting real life problem. We describe how the reverse-
and forward-engineering of the USA National Do Not Call registry was used in our capstone course to illustrate the fusion of
different (but interdependent) issues and techniques learned in the IT program. The purpose of the registry is to maintain a list
of residential and personal phone numbers whose owners want to keep out of the reach of the telemarketing industry. We
believe this experience is rich in educational possibilities; it is very appropriate for a technically oriented Information
Technology program and can be conducted in a typical one-semester capstone or senior design project course. The project
begins with an exhaustive investigation of the existing artifact leading the student to the discovery of the original model, and
its processes, business rules and data structures. The various UML diagrams representing the specifications collected in the
discovery phase are used to forward engineer a functionally equivalent database solution using the Microsoft .NET platform.
The project touches on ethical issues concerning the legality of reverse-engineering and hints at possibilities on producing
similar designs such as a “Do-Not-Email” Registry.

Keywords: Capstone project, senior design project, reengineering, National Do Not Call Registry, UML modeling, web
programming, Microsoft .NET applications, database systems.

1. INTRODUCTION

This paper describes an educational experience suitable for
advanced IT students whose academic programs include
courses on systems analysis and design, web-based
programming, and database development. We believe this
example is ideal for a senior design project or capstone
course requiring the participants to work in integrating
concepts and skills around a familiar real life problem which
is realistic but moderate in length and complexity.

The subject of this study is the National Do Not Call
Registry (DNC) ("Rules and Regulations", 2003). The DNC
gives you a choice about whether to receive telemarketing
calls at home. The goal of our project is to produce a
functionally equivalent version of the internet-based
component of the DNC system.

Students engage in a process of reverse engineering the
existing registry in order to discover and learn its underlying
structure and design. This approach is consistent with the
case-study and problem based learning methods which help
students to develop individual and group working skills,
including effective communication and critical thinking
(Herreid, 1994). Students working on this problem will

assume a sequence of increasingly demanding roles. Some of
those roles and their corresponding assignments are

(a) Researcher. Investigate and collect published
references about the DNC,
(b) Author/Reporter. Write an executive summary
report describing the purpose of the registry,
(c) User. Register own home/personal phone,
(d) Analyst. Based on the knowledge acquired
from references and their experience of registering
their own phones, students are asked to guess what
processes, business rules, and data structures are
used to support the registry,
(e) Designer. Provide graphical depictions of the
existing DNC model suitable for implementation
of the new model,
(f) Developer. Apply a current technology (we use
Microsoft .NET solutions) to construct an
equivalent version of the registry,
(g) Administrator. Provide maintenance, security,
recovery, and catastrophic operational plans.

Those roles are typical of a successful systems development
team, in which business analysis, software development,
database support and operational maintenance need to work

harmoniously to provide an effective solution to the user’s
problem. Asking the student to be different actors is useful in
illustrating how a system is assembled to meet a particular
goal, showing alternative courses of action that might be
taken to get there, as well as those situations that could cause
the system to fail.

The paper is organized as follows. The next section – playing
researchers- contains background material on the DNC
registry, and a short review of what the re-engineering
process is about. Then we present a summary of the typical
material produced by a systems analyst/designer after
dissecting the real DNC model. Section four is dedicated to a
detailed discussion of the techniques applied by a Microsoft
.NET developer to implement an internet solution based on
the specifications previously made by the designers. Finally
we provide conclusions and additional directions that the
case could take.

2. BACKGROUND

2.1 What is Reverse and Forward Engineering?
Reverse engineering is a process of investigation whose goal
is to develop a set of specifications for a complex entity by a
meticulous examination of real samples of that system. It
generally involves an orderly extraction of the fragments of
the item under examination and synthesizing abstractions
that represent the structural composition and/or the most
essential and characteristic forms of behavior of the original
item. As indicated by (Chikofsky 2005), when those
concepts are applied to software systems, we realize that
most of the effort is made in “gaining a basic understanding
of a system and its structure with the final objective of either
reproducing a similar version of the software system, or to
gain a sufficient design-level understanding to aid
maintenance, strengthen enhancement, or support
replacement”. Therefore, reverse engineering is based on
analyzing a subject system to identify the system’s
components and their interrelationships and create
representations of the system in another form or at a higher
level of abstraction.

Forward engineering is the constructive process of moving
from high-level abstractions and logical designs made from
the old system to the physical implementation of an
equivalent – and perhaps improved – new system. In forward
engineering the assessment and adjustment of a subject
system is crucial in the re-constructing of that entity in a new
form. Reengineering generally includes some form of
reverse engineering (to achieve a more abstract description)
followed by some form of forward engineering or
restructuring. This process may include additions, changes,
and/or elimination of features not met by the original system.

In our lab experience we have two definitive goals: first we
must understand how the DNC system works, and, secondly
we must implement a similar product using a particular
computer technology (Microsoft .NET solution).

2.2 Methodology for Researching the Do-Not-Call (DNC)
Registry
The first step in the evolution of this study requires the
students to gather and synthesize relevant information about
the registry. Sources include journals, newspaper and
magazine articles, official reports prepared by congressmen
on each side of the issue, documentation posted on web
pages by the Federal Communications Commission (FCC),
etc. Participants - working in groups or individually - must
prepare a short executive summary of their findings.

The second step of the process requires the participants to act
as a typical consumer. Students are asked to register their
personal/home phone number using the internet version of
the registry. The purpose of the task is to gain full
understanding of the actions taking place in a typical
interaction between a consumer and the existing DNC
system. Some of the suggested strategies include flawless
and wrongful situations such as (a) registration of a new and
valid phone number, (b) registration of a phone already
signed for, (c) partial registration of a phone number
followed by intentional omission of confirmation steps, etc.
All relevant information should be noted and schematically
represented using UML diagrams (to be discussed later).

The following section contains a brief synopsis of the typical
statements reported by the students about the origins and
operational characterization of the actual internet version of
the registry as implemented by the FCC.

2.2.1 What exactly is the Do-Not-Call (DNC) Registry?
According to year 2002 estimates made by the Direct
Telemarketing Association, an average of 60 million
telemarketing calls were made daily. Those unsolicited calls
were aimed at selling all kind of products and services
ranging from cheaper mortgage loans to unforgettable
summer vacations in the Caribbean. Under pressure from
many consumer-advocacy groups the U.S.A. Congress
intervened and drafted legislation to regulate the massive
volume of calls made by those companies. In February 2003,
Congress passed H.R. 395, known as the Do-Not-Call
Implementation Act and the Appropriations Committee
granted $18 million for the implementation of the program.
This legislation promised the consumers protection from
unwanted telemarketing calls. The law includes penalties of
up to $11,000 in fines for those telemarketers who ignore the
registry and continue to call listed numbers.

The National Do Not Call Registry is managed by the
Federal Trade Commission (FTC), the nation’s consumer
protection agency. It is enforced by the FTC, the Federal
Communications Commission (FCC), and state law
enforcement officials. By August 2003 about 50 million
phone numbers were already included in the DNC registry.

2.2.2 The Registry and its Business Rules: Our
pedagogical strategy at this point is based on class
discussions where the students have an opportunity to
present and summarize the functions of the registry and other
related issues. The business rules describing the different
transactions are synthesized as consumer-registry

interactions. Other aspects such as merchant-registry and
registry-merchant interactions were recognized but not
elaborated.

It should be noted that students actively participated in these
discussions and it was clear that the majority of them were in
favor of the concept of the registry. We believe that this is
important as students tend to create a better solution for an
idea that they support.

2.2.3 DNC Business Rules: Identifying and summarizing
the DNC business rules is arguably the most critical task of
the reverse engineering phase. The what, whom, when,
where, and why of the transactions performed by the DNC
registry is collectively represented by these rules. They do
not provide a view of the physical organization or internal
data structures but rather offer an insight into the behavioral
depiction of operations performed by the registry.

During the process of finding and documenting the DNC set
of business rules, most students found the registry’s
Questions & Answers web-page to be very useful. The
following excerpts represent a portion of the internet-based
registry’s operational description:

1. Home and personal phones numbers can be
registered, verified and removed from the DNC list
by calling 1-888-382-1222 or accessing the web
site at www.donotcall.gov.

2. Telemarketers covered by the National Do Not
Call Registry have up to 31 days from the date you
register to stop calling you.

3. You may register up to three telephone numbers at
one time on the National Do Not Call Registry
website.

4. You will receive a separate confirmation email for
each number you wish to register online. You must
open each email and click on the link in each one
to complete the registration process. This must be
done no later than 72 hours after receiving the
email.

5. If you have more than three personal telephone
numbers, you will have to go through the
registration process more than once to register all
of your numbers. There is a limit on the number of
phone numbers you can register in this manner.

6. Your phone number will remain on the registry for
five years from the date you register (unless you
choose to take it off the registry or your phone
number is disconnected). You can click on the
Verify a Registration button any time to check
your expiration date.

7. If your number is disconnected and then
reconnected, you may need to re-register. Also you
must re-register after changing calling plans or
other services, or changing the billing name on the
account.

8. Calls from or on behalf of political organizations,
charities, and telephone surveyors would still be
permitted, as would calls from companies with

which you have an existing business relationship,
or those to whom you have provided express
agreement in writing to receive their calls.

9. If your number has been on the National Do Not
Call Registry for at least 31 days (starting January
1, 2005) and you receive a call from a telemarketer
that you believe is covered by the National Do Not
Call Registry, you can file a complaint. To file a
complaint, you must know either the name or
telephone number of the company that called, and
the date the company called you. While the FTC
does not resolve individual consumer problems,
your complaint will help investigate the company
and could lead to law enforcement action.

The DNC Registry also includes a phone registration process
which is ignored in this article.

3. MAPPING THE FINDINGS OF THE RE-
ENGINEERING PROCESS

As a result of the class discussions and the registration of
their personal phone numbers in the list, the participants gain
exposure to the inner working of the registry. At this point
we ask the students to summarize their observations, and
report those annotations in the form of different UML
diagrams; more specifically use-case, sequence, and
transition diagrams (Rumbaugh, et al 2005). The students
initiate this phase from a conceptual level, however, a useful
byproduct of this task could be an early sketching of
potential data structures needed to support the operations
observed in the real system.

In essence, students are acting in new roles as Analysts and
Database Designers. The first – and perhaps most important -
representation will be a use-case diagram. The goal of this
task is to capture and represent a concise high-level
behavioral illustration of the system.

Figure 1 depicts a first cut use-case diagram summarizing
the activities of the DNC registry. It identifies two actors, the
Consumer and the Merchant, and introduces seven main
activities. The Consumer is any person trying to sign his/her
personal or residential phone in the registry and the
Merchant represents the telemarketers. Each of the seven
cases consists of an identifier and an optional list of the
business rules it relates to (business/operational rules are
introduced in section 2.2.3). For instance the case “Delete
Phone” is described by the business rule number 1 of section
2.2.3, i.e. a phone could be removed from the DNC after
calling from that particular phone the toll free number 1-888-
382-1222.

At the consumer-registry level the main tasks are the
Registration, Confirmation, and Verification of a phone
number. However figure 1 includes other operations such as
removal of a number from the list, acquisition of information
at different levels of detail, and providing the merchants with
updated copies of the list.

Figure 1. Do-Not-Call Registry Use-Case Diagram.

In order to provide more details about each of the cases,
students are asked to develop additional UML descriptions.
Figure 2 shows an activity diagram detailing the
Registration-Confirmation tasks introduced in the use-case
diagram as the cases “Register Phone” and “Confirm
Phone”.

At this level of the reverse-engineering process the students
may begin to produce their own versions of how the system
works. To support their speculations it is acceptable to
believe there is a physical database on which those
operations take place. Although the exact structure of that
database is unknown to the students, it is appropriate for
them to guess the potential nature and composition it might
have. The following statements paraphrase the behavior of
the registry in terms of operations executed on that (to be
developed) database

• After a consumer’s registration web page is
submitted and all inconsistencies and omissions
are corrected, a summary web page is sent back to
the consumer. The consumer has two options,
either to ignore the message or to acknowledge the
registration request by clicking the accept link of
the summary page.

• If the user chooses to accept, the web page is sent
to the registry. The phone(s) held in the page are
temporarily entered in the database.

• Each database record could include the fields
<Key, eMail, PhoneNumber, RegistrationDate,
ConfirmationDate, ExpirationDate>. The
temporary entries are marked as unconfirmed
pending for final consumer’s action. Each new
record entered in the database has a unique
database key and includes the dates of registration,
confirmation and expiration.

• For each temporary record entered in the database
the registry must prepare a confirmation email.
The email will include the date of the request, the
phone number, and a hyperlink that the consumer
must click on to close the confirmation process.
The hyperlink includes the database key associated
to the current phone number.

• The consumer is given 72 hour to respond to the
email. Messages sent but not responded to
represent temporary records that must be deleted at
the end of those 72 hours.

• If the consumer clicks on the confirmation
hyperlink, the appropriate temporary record is
updated. The key embedded in the hyperlink is
used to reach and update the database record. The
update is done by adding an expiration date of five
years after today's date.

Internet User ::
Consumer

DoNotCall:: Registry

Display Registration Web-
Page

Accept

Mistakes -Omissions?
Yes

Validate Phone Number(s)
and eMail

Browse

Registration Page: Prov ide
eMail and up to 3 phone
numbers

Submit

Summary Page shows email
and Phones as seen by
Registry

No
Changes

Modifications

Tentatively add email and
phones to the database

Prepare Confirmation eMail(s)

Read eMail and confirm
registration

Send eMail asking for confirmation

Wait up to 72 hoursConfirm Registration

Did consumer accept
registration?

Input Data

Accept Phone Registration -
Expiration wil l occur in 5

years

Yes

Purge request from Registry
No / Timeout

Figure 2. Activity Diagram: Registration-Confirmation Process

Figure 3. Sequence Diagram: Registration – Confirmation Process.

Figure 3 is a sequence diagram showing an alternative
explanation of the Registration and Confirmation processes.
We have found that some students prefer to work with the
material as an activity diagram, while others prefer the
equivalent sequence diagram.

The vertical lines in the sequence diagram are called lifelines
and represent the object’s life during the interaction. This
representation is particularly useful to the object-oriented
developer as a way of depicting the overall flow of control
that takes place in a typical interaction. Inter-object messages

are represented by solid arrows between the involved
lifelines; messages are invocations to the methods supplied
by each object. Information returned by the invoked methods
is denoted by broken lines. The order in which those
messages are sent is shown from top to bottom of the
diagram. Messages have at least a unique name and a list of
optional parameters. Special messages – called self
delegation – represent recursive communication in which the
object calls itself and are denoted by arrows back to the same
lifeline.

(a)

(b)

Figure 4. A simple relational database design for the Do-Not-Call Registry.

3.1 A Preliminary Database Design
Based on the knowledge already acquired by observation of
the real registry, the students are asked to prepare a relational
database structure capable of supporting the different
operations already described for the DNC registry. A
tentative implementation of a physical database design is
drafted in Figure 4. The structure of this one table solution
appears in Figure 4(a) as a Microsoft Access file called the
Master table. Figure 4(b) is a fragment of the actual
repository.

Each record in the Master table represents a transaction
posted on the DNC registry. The state of a transaction could
be twofold; it is either a pending request, or a confirmed
registration. Each record of the Master table consists of
seven fields. The first is a unique identifier (ID field) which
in the case of MS-Access is implemented as a serial
Autonumber. The next field (PatronEmail) is the
consumer’s email address. The next fields are the phone’s
area code (AreaCode) and number (PhoneNumber). The
last three fields are dates used to record the moment in which
the consumer first signs his/her phone number in the list
(RegistrationDate), the date in which the consumer
responds to the automatic email generated by the registry to
confirm his/her demand (ConfirmationDate) and the date in
which the confirmed request will expire (ExpirationDate).

At this stage in the forward engineering of a new solution,
the emphasis is on effectiveness as oppose to efficiency.
Rather than requesting the students an ideal and complete

representation of data in the form of a fully normalized
multi-table database, what is important is that the student’s
design somehow could be used to realistically support all of
the operations identified early on. Optimizing data structures
could be done at a later time, when more understanding of
the needs of the system is reached. For instance, the
preliminary design in Figure 4(a) does not include a
DeleteDate field; however it is relatively simple to add such
data at a later time. Also, the combination AreaCode and
PhoneNumber could be made unique (not admitting
duplicates), but we choose to ignore it for now.

For the time being the above suggested database
representation can handle the main operations in the
following way:

• Registration: Create a database record. Include
unique ID value, area code and phone number.
Make RegistrationDate be today’s date. Set
ExpirationDate equal to (RegistrationDate + 3
days). Set ConfirmationDate to null.

• Confirmation: Change ConfirmationDate to
today’s date. Set ExpirationDate equal to
(ConfirmationDate + 5 years).

• Verification: Use a phone index approach for fast
retrieval of a phone number. If the number is found
in the database, respond positively to the request,
otherwise the number is not registered (or it has
already expired).

• Deletion: If the email supplied in the request
matches the value stored in the database proceed to

removal by setting ExpirationDate to today’s date.
Move the record to a historical file.

• Distribution (to merchants): Extract from database
(at least) the AreaCode/Phone and ExpirationDate
of confirmed records whose ExpirationDate has
not yet been reached.

This preliminary solution could be used as a starting point in
the development process. We recognize there are important
issues that still need to be discussed. These include, but are
not limited to, database accessibility, reliability, concurrency
control, recovery, security, encryption, and periodic backing-
up of the physical database.

4. FORWARD ENGINEERING OF A WEB-BASED
SOLUTION (MyDNC)

In the following phase of the project the students proceed to
make a software artifact that mimics the behavior of the real
DNC registry. The workbench for the forward engineering
process is based on current Microsoft .NET technologies
including: Active Server Pages (ASP.NET), Active Database
Objects (ADO.NET), and Visual Basic .NET.

A mandatory constraint for this phase is the requirement to
reproduce the same user-friendly nature of the original DNC
registry. Efforts must be made to duplicate the look and feel
of the real DNC web site. For brevity we will call the new
system MyDNC. Figures 5 - 7 show our rendition of the
main home page, and the sequence of pages used for phone
registration.

We limit the following discussion to the Registration-
Confirmation process illustrated in the diagrams provided in
Figures 1, 2, and 3. Other processes such as Verification,
Elimination, Filing of Complaints, and Requesting
Information have been left as possible future extensions of
the project.

4.1 Implementing the Software Solution
Each student should create his/her own local version of
MyDNC as a stand-alone ASP.NET Web Application. The
development software in the students’ machines includes (a)
Windows XP Professional with the Internet Information
Services (IIS) installed, (b) Visual Studio 7 (defaulting to
Visual Basic .NET Development), and (c) the Internet
Explorer.

4.1.1 Microsoft .NET Tools: ASP.NET (Active Server
Pages) is a Microsoft language-independent technology that
enables a server computer to dynamically produce pages or
services that can be rendered inside a web browser (the
clients) (Balena 2002). ASP.NET consists of a group of
predefined objects that facilitate the programming of web
applications; some of those objects are Request, Response,
Session, Application, and Server. The Request object allows
the user to grab data from incoming pages, the Response
helps with the writing of dynamic pages, Session provides a
mechanism for global inter-page memory, and Server grants
access to server-side resources such as databases, etc.

When the students initiate the development of myDNC
software, Microsoft Visual Studio creates a new directory in
the web default folder of the server (in most cases the name
is C:\InetPub\wwwRoot\MyDNC). This web directory will
contain a collection of .aspx web Forms. Each web Form
holds any number of graphical user interface (GUI) controls
as well as code to attend their events. The GUI controls
could be either traditional HTML design elements – such as
such as text-boxes, pictures, labels, buttons, etc. - or the
more sophisticated .NET GUI counterparts. The computer
code serving the events of an .aspx page is made of client-
side and server-side sets of routines.

Client-side subroutines are locally interpreted by the virtual
machine in the client’s browser. Those scripts are
interspersed with the page’s HTML tags. Local scripts are
written using traditional client-side web-languages including
VBScript, JavaScript, etc. For .NET web applications,
server-side code is written with any Visual Studio .NET
language (we choose VB.NET). This type of routines offer
richer possibilities for the developer, however, they are more
resource demanding and require a round-trip navigation.

Unlike Windows applications, ASP.NET solutions are not
meant to keep a permanent link or state between the client
and the server. This stateless feature is inherent to HTTP and
requires the developer to create code that can simulate the
concept of page-to-page memory storage. ASP.NET
programmers have several alternatives to overcome the
stateless nature of HTTP. Some of the choices include
Application state, Session state, Cookies, and persistent
databases. We use the ASP.NET Session object in the
implementation of our solution. In particular we rely on its
support for collections as a global array-like memory place
holder whose visibility encompasses the entire application.

4.1.2 The Final Product: The Microsoft Internet
Information Services (IIS) tool allows the students to host -
in their computers - operational stand-alone web sites. In
particular, MyDNC web-pages (or more precisely Web
Forms) could be directly accessed using a browser such as
Internet Explorer. For instance, the URL required by Internet
Explorer to reach the main page of the student's application
(MyDNCHome.aspx) should be:

http://LocalHost/myDNC/MyDNCHome.aspx

The home page in Figure 5 acts as a main switchboard for
the registry services. The buttons in the home page are
responsible for the calling of other pages stored in the local
MyDNC directory. Options such as Registration,
Verification, Filing a Complaint, etc, are available by
clicking the appropriate buttons. Like any other web
application, the attention to events is provided by the
application software. For this project we have chosen to
write server-side code as much as possible, however we also
include an example of local scripting.

In Figure 5, if the consumer pushes the button labeled
Register Now, the associated event handling routine invokes
the ASP.NET Server object to execute on its behalf the

method that transfers control to another page. Assume the
page being called is named MyDNCRegister.aspx. The
supporting VB.NET “code-behind” subroutine is as follows:

Private Sub btnRegisterNow_Click(...) Handles
btnRegisterNow.Click
 Server.Transfer("myDNCRegister.aspx")
End Sub

The service routine for the other buttons in Figure 5 is
similar to the above fragment. The only difference is the
actual name of the Web Form being called.

4.1.2.1 Step One: Registration – Data Collection: A
rendition of the registration page appears in Figure 6. The
interior frame identifies the page as “Step One” of the
process and provides brief instructions for the consumer as
well as text boxes to collect input data. Up to three phone
numbers (including area code) could be entered on the page.
The consumer – for verification purposes - must enter his/her
email address twice. Local (client-side) validation could be

done. As an option, simple facts could be locally checked,
using the ASP.NET Validator controls (Required Field,
Range, and Regular Expression Validators). For instance;
area code must be present and it should be a number less
than 999, phone numbers are made of exactly seven digits
each (range 0000000-9999999), email addresses have a
format defined by the pattern xxx@yyy.zzz, etc.

4.1.2.2 Step Two: Temporary Registration: Once the
consumer has finished the entering and editing of data,
he/she could click on the Submit button. The page is sent to
the web server where another page (call it
MyDNCCheckErrors.aspx) may perform further validation
of the supplied data. In addition to syntactical verification,
some logical problems could be addressed, such as: is the
area code a legitimate value, is the phone number already
registered, and so on. Figure 7 shows a verification page that
reflects the data entered in the previous step (Figure 6).

Figure 5. Homepage of MyDNC Registry

Figure 6. Registration Page at MyDNC Registry.

Figure 7. Screen echoing the data supplied for phone number registration.

Private Sub Page_Load(ByVal sender As System.Object, ByVal e As
 System.EventArgs) Handles MyBase.Load
 'run this segment only the first time the page is loaded
 If Not IsPostBack Then
 'create ASP.SESSION variables initialize them
 Session(0) = Request.Form("txtArea1")
 Session(1) = Request.Form("txtPhone1")
 Session(2) = Request.Form("txtArea2")
 Session(3) = Request.Form("txtPhone2")
 Session(4) = Request.Form("txtArea3")
 Session(5) = Request.Form("txtPhone3")
 Session(6) = Request.Form("txtEmail")
 '--
 '--- TODO: check data here (validate area code,
 '--- phone must be numeric, spaces/hyphens/dots, etc.
 '--

 'Echo all the data on the textbox so consumer could see
 'what we have at received at the server side.
 Dim i As Integer, myLine As String
 'up to three lines holding AreaCode & PhoneNumber
 For i = 0 To 2
 If Session(2 * i) <> "" Then
 myLine &= " Area: " & Session(2 * i) & _
 " Phone: " & Session(2 * i + 1) & vbCrLf
 End If
 Next
 myLine &= " Email: " & Session(6)
 Me.txtMsg.Text = myLine & vbCrLf
End Sub

An appropriate moment for the preparation of the Web Form
shown in Figure 7 occurs during the Page_Load event of
myDNCCheckErrors.aspx. The skeleton of this server-side
code fragment is given below.

The function IsPostBack() returns the True value only when
the page is displayed for the first time. Please notice the use
of the ASP.NET Session object as a way of preserving data.
For instance Session(6) holds the consumer’s email string.
This value is extracted from the txtEmail textbox defined in
the web Form shown in Figure 6. The construct
Request.Form(“txtEmail”) relies on the ASP.NET Request
object for the parsing of the <Name:Value> pairs sent by the
calling Web Form. Any other subroutine – in the same or
another page – could recall this email value by examining
the contents of Session(6). ASP.NET creates the sense of
“global memory” by making the Session variables available
to any web-page for the current user for the current session.
This server-side subroutine finishes with a loop in which
each combination of area code and phone number is placed
on a line and assigned to a textbox for display purposes.

The verification page (myDNCCheckErrors.aspx) offers the
consumer the option of making some changes (clicking the
Change button) or completing the second step of registration
by pushing the Register button. As the students will
discover, the first action is very simple to take care of, but
the second is more complex.

If the consumer decides to make some changes, the
registration screen seen in figure 6 is sent back to the user
and the cycle is repeated. This rather simple navigation
process is similar to clicking the Previous-Page button
provided by most web browsers. However, we implemented
this idea by defining the Change button as a primitive (or
Intrinsic) HTML control with a client-side piece of VBScript
code attached to its click event. The HTML definition of the
button is <INPUT type="button" value="Change"
name="btnChange">. The corresponding service routine
uses the Back(1) method of the Window.History object to
take the navigation one page backwards. The routine
follows:

<script Language=”VBScript”>
Sub btnChange_OnClick()
 window.history.back(1)
End Sub
</script>

If the consumer chooses to register her phone number(s), a
set of intensive server-side operations take place. The main
goal of this step is to assemble and insert temporary
record(s) in the physical database. A temporary record
represents the solicited - although uncommitted – request
made by the consumer. The VB code is given below; lines
have been numbered to facilitate the discussion.

1 Private Sub btnRegister_Click(ByVal sender As System.Object, ByVal e As
 System.EventArgs) Handles btnRegister.Click

2 '--- Prepare TEMPORARY database records
3 '--- get data from Session object
4 Dim area(3), phone(3) As String
5 Area(1) = Session(0) : phone(1) = Session(1)
6 Area(2) = Session(2) : phone(2) = Session(3)
7 Area(3) = Session(4) : phone(3) = Session(5)
8 email = Session(6)
9 'prepare the .NET Connection, Command, and DataReader objects
10 Dim myCnn As New OleDb.OleDbConnection
11 Dim myCmd As New OleDb.OleDbCommand
12 Dim myDR As OleDb.OleDbDataReader
13 '--- define a link to the local MS-Access Database
14 Dim cnnStr As String = "Provider=Microsoft.Jet.OleDB.4.0;” & _
15 "Data Source=C:\DoNotCall\DoNotCall.mdb"
16 myCnn.ConnectionString = cnnStr
17 myCnn.Open()
18
19 Dim i, myRecAffected, theGeneratedID As Integer,
20 Dim mySQL, myID As String,
21 Dim myDate1, myDate2, myDate3 As Date
22 Dim ts As New TimeSpan(5 * 365, 0, 0, 0, 0)
23 myDate1 = Format(Now, "short date") 'todays date
24 myDate3 = myDate1.Add(ts) 'five years from now
25
26 '--- prepare the SQL INSERT commands to enter the new user request
27 For i = 1 To 3
28 If phone(i) <> "" Then
29 'insert the new phone in the Master file
30 mySQL = "Insert into Master (PatronEmail, AreaCode,
31 PhoneNumber, RegistrationDate,
32 ConfirmationDate, ExpirationDate)
33 values ('" & _

34 email & "', '" & _
35 area(i) & "', '" & _
36 phone(i) & "', #" & _
37 myDate1 & "#, null, #" & _
38 myDate3 & "#)"
39 myCmd.CommandText = mySQL
40 myCmd.CommandType = CommandType.Text
41 myCmd.Connection = myCnn
42 myRecAffected = myCmd.ExecuteNonQuery()
43
44 'find the ID (AutoNumber) of the recently inserted record
45 mySQL = " select ID from Master " & _
46 " where areaCode = '" & area(i) & "'" & _
47 " and PhoneNumber='" & phone(i) & "'"
48 myCmd.CommandText = mySQL
49 theGeneratedID = myCmd.ExecuteScalar
50
51 'create (one at the time) session variables: ID1, ID2, ID3
52 'and assign to each the generated ID
53 myID = "ID" & i
54 Session(myID) = theGeneratedID
55 End If
56 Next
57 myCnn.Close()
58 Server.Transfer("myDNCConfirmation.aspx")
59 End Sub

Line 4 defines the local arrays Area(3) and Phone(3). Those
arrays will be used to facilitate the use of the
<AreaCode:PhoneNumber> pairs stored in Session variables.
In lines 10-12 three ADO.NET objects: myCnn, myCmd,
and myDR are defined. ADO.NET is a new middleware
standard used by the Microsoft .NET platform for reaching a
variety of data sources including relational databases.
myCnn is an instance of the Connection class; it creates a
pipe between the application and the database on which
messages and data will travel. The user messages will be
phrased in the form of SQL statements. Those SQL retrieval
or maintenance messages will be assembled and managed
inside the Command object defined in line 11. The data
returned by the server will consist of relational tables.
Clients have several ways of collecting those answer tables,
in our case myDR is an ADO.NET DataReader object which
will provide a simple read-only client-side data repository.

In order to use the ADO.NET components, the application
code must include the line “Imports System.Data.OleDb”.
The System.Data.OleDb namespace is the .NET Framework
Data Provider for OLE DB. This namespace describes the
collection of classes used by the application to access a
disconnected OLE DB data source in the .NET managed
space.

The connection string of line 14-15 identifies the database
software provider and the physical database location. In our
code Microsoft.Jet.OleDB.4.0 refers to the MS-Access
driver. For security reasons the database must be held in a
special type of directory that allows remote web users the
possibility of reading and updating the database. For
additional information on this topic, please see appendix A.

Lines 21-25 define and prepare date variables myDate1 and
myDate3 holding respectively the current date and one that is
five years away from today’s date.

The for-loop in line 27 is used to assemble and insert each of
the three possible phones given by the consumer. mySQL is
the string holding the corresponding SQL-insert command.
Each of these commands will request the database in Figure
4 to accept a new temporary record. In each case the pieces
of the insert operator are glued together: email, area code,
phone, registration date, and expiration date are put into a
comma delimited string. This string is the text that the
command object myCmd will send as a message to the
database server. For example, the following SQL insert
command represents the request for a temporary record on
behalf of the first phone number in Figure 6.

Insert into Master (PatronEmail,
 AreaCode, PhoneNumber, RegistrationDate,
ConfirmationDate, ExpirationDate)
 values ('VictorMatos@sbcGlobal.net',
'216','123-4567',#5/23/2005#, null,
#5/22/2010#)

Lines 39-42 show how MyCmd is told what SQL command,
code type, and connection object should be used. In line 42
the command is executed as a non-query. Under this format
the server does not return a table, however a control value
indicating the total number of database records affected by
the operation is sent back to the application. Also notice the
presence of a null value in the argument list. This null
represents the ConfirmationDate which is - if any - a date in
the next three days range given to the consumer to respond.

Lines 44-49 illustrate a special case of database retrieval.
The string mySQL is phrased as a SQL-select command,
requesting from the server the internal identification number
assigned to the newly inserted record. This one single value
is easily retrieved using the ExecuteScalar method of the
command object. The variable TheGeneratedID will be used

to tell the key of the temporary record in the database. We
will explain later how this ID number is used in the email to
be sent to the user asking for confirmation.

The last two lines of the registration routine close the
connection object and request the server to display a Web
Form called myDNCConfirmation.aspx.

4.1.2.3 Step Three: Confirmation and Permanent
Registration: The purpose of myDNCConfirmation.aspx is
to acknowledge the consumer’s request for registration and
to initiate the preparation of the third and final step required
for his/her acceptance. The students will need to insert
several temporary records in the Master table. These lines
hold the internal database key, area code and phone number.
For each of the temporary records that were created and
inserted into the Master table, the system will prepare
individual pieces of email and deliver each of those
messages to the consumer. The goal of these messages is to
get the final approval from the consumer.

For each phone number temporarily registered in the
database, the VB.NET (SendEmailNow) code below will

assemble and deliver to the consumer a piece of email. A
sample of such mail appears in Figure 8. The mail text
includes a hyperlink that ends with an encrypted identifier.
In our example, the cyphertext material is ?xYzAbC?66. We
will use this string to illustrate the mechanism to update the
pending database requests. The value 66 represents the
internal database key associated to the phone number (216
333-4455) that is being confirmed.

The equivalent of a signature is obtained by asking the
consumer to click on the hyperlink that is included in the e-
mail’s text. In order to finalize the registration, the email
must be responded to within three days of its creation. If this
is done in a timely fashion, the ConfirmationDate in the
temporary database record is set to today’s date and the
record will be held in the system for five years. Within a few
days, telemarketers will be informed that this number is "off
limits".

The following VB.NET illustrates how the email pieces are
made and transmitted. Again, code lines are numbered to
facilitate the discussion.

1 Private Sub SendEmailNow(ByVal theEmailTo, ByVal theID,
 ByVal theArea, ByVal thePhone)

2 Dim myEmail As New System.Web.Mail.MailMessage
3 Try
4 'assemble the email asking the user to click URL-link for confirmation
5 myEmail.To = theEmailTo
6 myEmail.From = "myVerify@donotcall.govx"
7 myEmail.Body = PrepareBody(theEmailTo, theID, theArea, thePhone)
8 myEmail.Subject = "National Do Not Call Registry - " & _

 "Your Registration Is Confirmed"
9 myEmail.BodyFormat = Web.Mail.MailFormat.Text
10 'using my school mail server
11 System.Web.Mail.SmtpMail.SmtpServer = "grail.cba.csuohio.edu"
12 System.Web.Mail.SmtpMail.Send(myEmail)
13 Catch ex As Exception
14 txtSpy.Text &= vbCrLf & "Problems-" & ex.Message 'only for DEBUGGING
15 Exit Sub
16 End Try
17 txtSpy.Text &= vbCrLf & "Done mailing" 'only for DEBUGGING!
18 End Sub
19
20
21 Public Function PrepareBody(ByVal theEmailTo As String, ByVal theID As Integer,

 ByVal theArea As String, ByVal thePhone As String)
22 Dim theBody As New System.Text.StringBuilder
23 Dim myDate1, myDate2, myDate3 As Date, ts As New TimeSpan(5 * 365, 0, 0, 0, 0)
24
25 myDate1 = Format(Now, "short date") 'request: todays date
26 myDate3 = myDate1.Add(ts) 'expiration: five years later
27
28 'TODO: use the ID-key to encrypt a more complex key.
29 'last piece of the hyperlink is the database key of the current record
30 Dim theLink As String
31 theLink = "http://localhost/myDNC/myDNCRegVer.aspx?xYzAbC?" & theID
32 theBody.Append("Your phone... " & theID & " " & theArea & " " & thePhone & _

 "theEmailTo & " " & myDate1 & " " & myDate3 & vbCrLf)
33 theBody.Append(". Here is the link: " & theLink & vbCrLf)
34 theBody.Append("Click on the link to complete your request to " & _

 "register your phone " & _
 "number with the last four digits " & Right(thePhone, 4) & _
 "on the National Do Not Call Registry. ")

35 theBody.Append(".... ") 'See Figure 8
40 Return theBody.ToString
41 End Function

In lines 1-18 the subroutine SendEmailNow defines an email
object (line 2), fills the different parts of the email using the
data from each temporary record (lines 5-9), identifies the
mail server (line 11) and releases the message (line 12). The
subroutine PrepareBody (line 7, 21-41) produces the
encrypted hyperlink and concatenates it with the rest of the
letter.

Later on, if the consumer clicks on the link that appears in
the email, the web form myDNCRegVer.aspx will be invoked
and the encrypted string will be supplied as an argument to

the called page. This page could use its Page_Load event to
decipher the input argument, use the internal database key
(value 66 in our running example), update the corresponding
temporary record by setting the confirmation date as today’s
date, and finally create the simple page shown in Figure 9.
This last web page informs the consumer about the
permanent registration of his/her phone number in myDNC
registry.

Figure 8. Email asking consumer to click on link to finalize registration.

Figure 9. Final notification – Your phone number has been successfully registered

The following VB.NET code is part of myDNCRegVer.aspx
page. It performs the final steps of registration by attempting
to change the ConfirmationDate of a temporary record to the
current date. The subroutine in lines 1-31 updates the
temporary record whose ID key is known to us. It uses the
ADO.NET Connection, Command, and DataReader already
discussed during the pre-registration of the phone number.
The SQL statement in line 18 tries to set the
ConfirmationDate to the day of confirmation. The command

is executed as a non-query operation (line 22). The code is
rather simplistic and has room for several situations not
discussed here. For instance, we did not check for the
elapsed period between pre-registration and confirmation
dates to exceed the limit of three days. These and other
improvements are left to the students. The final lines 42-43
dynamically make a simple web page announcing the
permanent registration of the phone number which will
remain valid for the next five years.

1 Private Sub SetDBConfirmationDate(ByVal theIDValue)
2 'CONFIRMATION of a phone number is represented as the entering -in the database record-
3 'of an expiration date (5 years after request date)
4 Try
5 Dim myCnn As New OleDb.OleDbConnection
6 Dim myCmd As New OleDb.OleDbCommand
7 Dim myDR As OleDb.OleDbDataReader
8
9 'setup the connection to the MS-Access database
10 Dim cnnStr As String = "Provider=Microsoft.Jet.OleDB.4.0; " & _

 "Data Source=C:\DoNotCall\DoNotCall.mdb"
11 myCnn.ConnectionString = cnnStr
12 myCnn.Open()
14
15 Dim myRecAffected As Integer, mySQL, thePhone As String, myDate1 As Date
 myDate1 = Format(Now, "short date") 'todays date

16
17 'change the confirmation date in the existing record whose DB key is: theIDValue
18 mySQL = "UPDATE Master SET ConfirmationDate=#" & myDate1 & "# where ID=" & theIDValue
19 myCmd.CommandText = mySQL
20 myCmd.CommandType = CommandType.Text
21 myCmd.Connection = myCnn
22 myRecAffected = myCmd.ExecuteNonQuery
23
24 If myRecAffected <> 1 Then
25 txtSpy.Text = "Failure - " & mySQL 'for DEBUGGING - improve!
26 End If
27 myCnn.Close()
28 Catch ex As Exception
29 txtSpy.Text = ex.Message

30 End Try
31 End Sub

32 Private Function PrepareMsg(ByVal thePhone, ByVal myDate1, ByVal mydate3)
33 'Prepare the body of the email notifying the user about the successful
34 'registration of his/her phone number
35 Dim theBody As New System.Text.StringBuilder
36 theBody.Append("Your phone number with the last four digits ")
37 theBody.Append(thePhone)
38 theBody.Append(" was registered in the (PRETENDING) 'MY-National Do Not Call Registry' on " & _

 myDate1 & "." & vbCrLf)
39 theBody.Append("Print this email and keep it for your records." & vbCrLf)
40 theBody.Append("***" & vbCrLf)
41 theBody.Append("Please do not reply to this message as it is from an unattended mailbox.")
42 Return theBody.ToString
43 End Function

5. CONCLUSION

In this paper we discussed a complete and technically
challenging IT experience. The problem is based on the
reengineering of the National Do-Not-Call Registry which is
controlled by the U.S.A. Federal Trade Commission. The
goal is to produce a functionally equivalent software system,
with the obvious limitations that a classroom project
imposes. Students participating in this one-semester project
showed a great deal of interest in completing the assignment.
We argue that the sense of familiarity with the subject, as it
looks like a real life issue, and the relatively simple technical
requirements for implementation make the project an
effective candidate for success.

All students in the course were given a syllabus similar to the
one in Appendix B. The syllabus provides a step-by-step
breakdown of the tasks at hand, and allows the instructor to
realistically plan the experience. Every student participated
in all aspects of the task, and each student was required to
individually submit each of the deliverables listed. The
project is planned for a 15-week semester. It includes many
individual checkpoints, class discussion, small student-
initiated research projects, conceptual and physical
modeling, and report and code preparation. In the semesters
where this project was made available to our students, we did
not allow them to work in groups. This decision was made as
the number of students was small enough that individual
effort was appropriate. However, team collaboration can be
an excellent option for larger class sizes and/or where group
work is a course outcome.

According to Martin (1998), "The capstone projects course
presents the final opportunity for students to reflect upon the
principles and operationalize the skills they have learned in
all of their courses through the design, development and
implementation of a large scale project". To allow students
to reflect on what they have learned, we recommend students
write an Impact paper, where they discuss how the registry
will affect (a) the telemarketing industry, (b) non-profit
fundraising organizations, (c) the average telephone owner,
and /or (d) IT professionals. (See, for example (Martin, 1998
– Appendix D)) An excellent opportunity to discuss these

items is given in the syllabus during the week 3 and week 13
class discussion.

In this project, students were asked to carefully dissect and
annotate the behavioral characterization of the internet based
portion of the registry. This observation of the real registry
was performed in conjunction with the actual registration of
the student’s personal/home phone(s). Special attention was
given to the identification of the business rules governing the
registry.

We noted several interesting observations during the
semester. The students did not seem to immediately grasp
that their simple physical model could be a proper solution to
the problem. They spent considerable time looking for a
more complex solution rather than considering that their
simple approach was satisfactory. In their research, the
students found that the implementation costs of the actual
system ran in the order of $20 million. They could not
reconcile the simplicity of their solution with the enormity of
this figure.

Several problems important to the IT professional were
identified during the evolution of this project. We did not
elaborate on all of them but made a point in identifying
issues such as (a) legality of the reverse engineering process
(Hansen 2004), (b) ethical aspects of the registry and the
free-speech rights of the telemarketers, (c) securing the data
against intruders and impersonators, (d) creating
maintenance plans including daily housekeeping, backup,
recovery, catastrophic failures, etc.

The instructors need to be aware that there may be some
problems with the processing of student-generated email.
Many institutions prevent (or heavily filter) the sending of
mail from non-local accounts or certain areas of campus to
avoid potential security risks. It may be necessary for the
instructor to involve local IT resources to allow this project
to go forward.

One issue we discovered was that with the emphasis on the
reengineering of the system, we were unable to spend a
satisfactory amount of time on the administrative portion of
the experience. We recognize that there are several important

administrative and security issues which we were unable to
address due to lack of time and resources. These topics
include (a) planning for periodic backups, (b) creating
profiles for different kinds of users working on the registry
(such as DEVELOPER, AUDITOR, OPERATOR,
MANAGER, etc.), (c) adding security provisions (mirroring
sites, redundant disks in the same location), (d) identifying
threats (disruption, destruction, disaster, unauthorized
access), (e) assessing the risk of each threat and preparing a
response for each case, and (f) creating controls to mitigate
or stop threats (consider redundancy, fault tolerant servers,
disaster recovery plans, anti-virus software, security policy,
passwords and encryption, firewalls, etc).

In addition, the instructor may consider alternative methods
of implementation emphasizing, for instance, public relations
issues behind filing complaints against merchants, and the
processing of those complaints, verification of all data,
deleting records from the system, and attending consumer
requests for information. Other major variations closely
related to this project can include similar registries such as a
National Do-Not-Email, Do-Not-Mail, Do-Not-Fax, and Do-
Not-SMS/Text-Me.

Even with our failure to cover some activities – normally
included in actual software development projects – we
believe that this experience is not only appropriate and
feasible but fun for the students who enthusiastically
embraced the problem and worked towards interesting
solutions.

6. REFERENCES
Balena, Francesco (2002), Programming Microsoft Visual

Basic.NET (Core Reference). Microsoft Press, ISBN 0-
7356-1375-3.

Chikofsky, Eliot (2005), "Reverse Engineering: A Valuable
Double-Edged Sword." Foreword for Eldad Eilam's
Reversing: Secrets of Reverse Engineering. Wiley.

Hansen, Evan (2004), “US Court: Reverse engineering is
‘presumptively legal’ “.CNET News.com, 11:40 BST,
March 01, 2004.

Herreid, Clyde Freeman (1994), “Case Studies in Science A
Novel Method of Science Education”. Journal of
College Science Teaching (pp. 221-229), February.

Martin, C. Dianne and Elaine Yale Weltz (1998). "From
Awareness to Action: Integrating Ethics and Social
Responsibility across the Computer Science
Curriculum. Third Report from the Project ImpactCS
Steering Committee". Available at
http://www.seas.gwu.edu/~impactcs/paper3/pg1.html.
Accessed August 2005.

Microsoft Corp. Technical Articles 175168 and 316675.
Microsoft Knowledge Database.

“Rules and Regulations Implementing the Telephone
Consumer Protection Act of 1991”. U.S.A. Federal
Communications Commission. CG Docket No. 02-278,
Report and Order, 18 FCC Rcd 14014 (2003).

Rumbaugh, James, Ivar Jacobson, and Grady Booch (2005),
Unified Modeling Language Reference Manual, The,
2nd Edition. Addison Wesley Professional. ISBN:
0321245628.

AUTHOR BIOGRAPHIES

Victor Matos is an Associate Professor of
Computer and Information Science at
Cleveland State University in Cleveland,
Ohio.

Rebecca Grasser is an Associate
Professor of Information Systems at
Lakeland Community College in
Kirtland, Ohio.

Appendix A: Changing a Directory to Allow Web-

Requested Read/Write Operations

The Internet GUEST account (IUSR_MACHINE), which is
by default part of the "Everyone" group, does not initially
have write permissions on remote database files (.mdb). This
is the most common reason for the exception “Operation
must use an updatable query”. To fix this problem, use the
Security tab in Explorer to adjust the properties for this file
so that the Internet Guest account has the correct permissions
(Microsoft Knowledge Database)

1. Global Change from Basic to Advanced Sharing
Properties

1. Execute the Windows-Explorer.
2. Select Tools | Folder Options | View
3. Uncheck the entry “Use simple file sharing

(recommended)”.
4. Apply | OK.

2. Select Directory and Allow user

1. Select directory that contains the shared file.
2. Right-Click on the folder.
3. Choose Properties | Security
4. Click on Add… to enter anonymous web user.
5. Enter the line <MachineName>\aspnet. Where

MachineName is the machine on which ASP.NET is
installed on.

6. Click Check Names … to verify the validity of the
(anonymous) user name.

7. Select the aspnet user you just created and give him/her
Modify and Write access to the directory.

3. Changing the Share/Change options of a Directory
using Basic Sharing Properties

Assume the file we want to share/modify on the web is
called myDoNotCall.mdb. Let the path to the database be
c:/myDoNotCall/myDoNotCall.mdb. The folder
c:/myDoNotCall must be set as “shared” and “modifiable”.
To do that, follow the instructions

1. Create the folder c:/myDoNotCall. Copy the sample
database into the folder.

2. Right-click on the folder’s name. Select Properties. A
pop-up window appears showing several tags. Click on
Sharing. Check the two options (a) Share this folder on
the network and, (b) Allow network users to change my
files.

Note.
Another (less desirable) option to work around the
“Updatable query” exception is to store the database file into
a subdirectory that has already been granted the Global and
Shared privileges. Files under Windows-XP could be
remotely accessed via web by just moving them to the folder

C:\My Documents\All Users\Shared Documents

This directory has already all the options set (including
Read, Modify, Write) and allows everybody to access the
files.

Appendix B: Sample Syllabus and short instructor notes

Date(s) Notes
End of week 1 Submit team name, team logo, and names/email address of all team members
End of week 2 Register your phone number with the actual Do Not Call Registry. Submit resulting printouts
End of week 3 Class Discussion (1) Free speech of the telemarketing industry vs. the consumer's right to privacy.

Take a position – which side did you chose and why? (2) The legality of reverse engineering of
existing systems and artifacts. Copyright laws. Take a position – which side did you chose and why?

End of week 4 Submit use-case diagrams
End of week 5 Submit required systems analysis including your sequence and transition diagrams.
End of week 6 Class Discussion Agree on a physical implementation of the conceptual model.
End of week 7 Submit required database documentation including demonstration of completed MS Access

implementation
End of week 8 Submit screen prints of completed graphical user interface (GUI) for the home page (first entry page)

(No functionality, GUI only)
End of week 9 Submit screen prints of completed graphical user interface (GUI) for the complete registration

process (No functionality, GUI only)
End of week 10 Begin documentation process
End of week 11 Submit/demonstrate working application - up to, but not including, the email process (Insure your

database is being correctly updated with all applicable information)
End of week 12 Submit screen prints of completed graphical user interface (GUI) for the email process (No

functionality, GUI only)
End of week 13 Class Discussion: Security and System Management. Identification, assessment, and response to

threats. Ethical issues surrounding data assurance, security, and privacy.
End of week 14 Submit the following documentation:

Note: All manuals must be typed; have a table of contents and/or index; and finally a
professional layout, easy to follow and understand

User's Manual: How do users properly use your product? What happens when an error is
received? How is it corrected? What technical issues might be encountered? Insure it can
"stand alone" without you there to explain. Include a “How To” for every activity in your
site, common and not-so-common errors explained and fixes suggested, and so forth.
Application Administrator's Manual: How do administrators properly use your product?
What happens when an error is received? How is it corrected? What technical issues might
be encountered? Insure it can "stand alone" without you there to explain. Include a “How
To” for every activity in your site, common and not-so-common errors explained and fixes
suggested, and so forth.
Software Administrator's Manual This manual has three parts (1) a test suite, (2) a
security suite, and (3) installation instructions.
Test Suite: You will need to provide a test suite and associated documentation that
adequately and sufficiently tests every line of code in your application. Your test suite
documentation should be such that another programmer can adequately test your project
without you being in the room.

User Level Testing
For every user page, do you have screen shots of the page and all possible
errors/error messages and corrections?
System Level Testing
System Charts included in test suite
For every decision point/loop construct - have you described and then prevented
“illegal” data points?
Discussion of external issues, such as networking, browsers, and operating
systems

Security Suite: What are your security mechanisms? How have you tested them?
Installation Instructions: Starting on a clean computer (only the operating system installed
and web server software), install your application so that it is ready to be served.

Work on your presentations and clean up any last minute coding.
End of week 15 Submit/demonstrate completed working application

