
Drools5 Integration
Helper 1.3.0 user guide

Mathieu Boretti <mathieu.boretti@gmail.com>

Drools5 Integration Helper 1.3.0 user guide
Mathieu Boretti <mathieu.boretti@gmail.com>

iii

Table of Contents
1. Introduction ... 1

Presentation ... 1
License ... 1

Drools5 Integration Helper ... 13
Installation ... 14

Download .. 15
Installation in local maven repository ... 15
Installation in remote maven repository ... 15

2. Java Library - Drools5 Integration Helper Library ... 16
Introduction ... 16

Dependencies ... 17
DroolsInterface ... 17

Interface(s) .. 17
Method(s) .. 18
Parameter(s) ... 20
Return value .. 20

DroolsClass ... 21
Class(s) ... 21
Field(s) ... 22
Constructor(s) ... 23
Drools Execution .. 24

DroolsCondition ... 25
Idea .. 25
Condition definition .. 25
Exception throwing ... 26
Static methods .. 26

DroolsProvider ... 26
Getting concrete instance from interface ... 26
Getting RuleBase from interface or class ... 27
Getting RuleBase from type and resource .. 27
Running pre-condition ... 27
Running post-condition .. 28

Spring Integration ... 28
Exceptions ... 28
Logging .. 29
Summaries ... 29

Annotations ... 29
Enumerations ... 30
Classes .. 30
Interfaces ... 30
Errors and Exceptions .. 30

Performance ... 31
3. Maven plugin - Drools5 Integration Helper Maven Plugin .. 32

Introduction ... 32
Drools Packaging .. 32
Validation Drools Goals ... 33

drools-copy-validate .. 33
drools-copy-validate-test ... 34

Compilation Drools Goals .. 34
drools-compile .. 35
drools-compile-test .. 35

Drools5 Integration
Helper 1.3.0 user guide

iv

PostProcessing Drools Goals ... 36
drools-postprocessor .. 36
drools-postprocessor-test .. 37

Report Goal ... 37
drools-report .. 37

Logging of maven plugin execution ... 38
4. Maven Archetype - Drools5 Integration Helper Archetype .. 40

Introduction ... 40
Usage ... 40

Example of usage ... 40
5. Examples ... 42

Presentation ... 42
The problem .. 42

Examples using interface .. 42
General idea .. 42
Implementation ... 42

Examples using class ... 46
General idea .. 46
Implementation ... 47

Examples using condition ... 51
General idea .. 51
Implementation ... 51

v

List of Figures
2.1. View of the runtime dependencies ... 17
3.1. Example of report ... 38

vi

List of Tables
2.1. Summary of the annotations ... 29
2.2. Summary of the enumerations ... 30
2.3. Summary of the classes ... 30
2.4. Summary of the interface ... 30

1

Chapter 1. Introduction
Presentation

This user guide defines what is Drools5-integration-helper and how to use it.

More information regarding the project can be found at http://www.javaforge.com/project/DroolsHelp.
Also, javadoc and maven site are part of the various downloadable files.

Drools5-Integration-Helper is available under the GPL-3 license.

License

 GNU GENERAL PUBLIC LICENSE
 Version 3, 29 June 2007

 Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

 Preamble

 The GNU General Public License is a free, copyleft license for
software and other kinds of works.

 The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

 To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

 For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

http://www.javaforge.com/project/DroolsHelp

Introduction

2

 Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

 For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

 Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

 Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

 The precise terms and conditions for copying, distribution and
modification follow.

 TERMS AND CONDITIONS

 0. Definitions.

 "This License" refers to version 3 of the GNU General Public License.

 "Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

 "The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.

 To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.

 A "covered work" means either the unmodified Program or a work based
on the Program.

 To "propagate" a work means to do anything with it that, without

Introduction

3

permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

 To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

 An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

 1. Source Code.

 The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.

 A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

 The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

 The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

Introduction

4

 The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

 The Corresponding Source for a work in source code form is that
same work.

 2. Basic Permissions.

 All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

 You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

 Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

 3. Protecting Users' Legal Rights From Anti-Circumvention Law.

 No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

 When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.

 4. Conveying Verbatim Copies.

 You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any

Introduction

5

non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

 You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

 5. Conveying Modified Source Versions.

 You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

 a) The work must carry prominent notices stating that you modified
 it, and giving a relevant date.

 b) The work must carry prominent notices stating that it is
 released under this License and any conditions added under section
 7. This requirement modifies the requirement in section 4 to
 "keep intact all notices".

 c) You must license the entire work, as a whole, under this
 License to anyone who comes into possession of a copy. This
 License will therefore apply, along with any applicable section 7
 additional terms, to the whole of the work, and all its parts,
 regardless of how they are packaged. This License gives no
 permission to license the work in any other way, but it does not
 invalidate such permission if you have separately received it.

 d) If the work has interactive user interfaces, each must display
 Appropriate Legal Notices; however, if the Program has interactive
 interfaces that do not display Appropriate Legal Notices, your
 work need not make them do so.

 A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

 6. Conveying Non-Source Forms.

 You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

 a) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by the
 Corresponding Source fixed on a durable physical medium

Introduction

6

 customarily used for software interchange.

 b) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by a
 written offer, valid for at least three years and valid for as
 long as you offer spare parts or customer support for that product
 model, to give anyone who possesses the object code either (1) a
 copy of the Corresponding Source for all the software in the
 product that is covered by this License, on a durable physical
 medium customarily used for software interchange, for a price no
 more than your reasonable cost of physically performing this
 conveying of source, or (2) access to copy the
 Corresponding Source from a network server at no charge.

 c) Convey individual copies of the object code with a copy of the
 written offer to provide the Corresponding Source. This
 alternative is allowed only occasionally and noncommercially, and
 only if you received the object code with such an offer, in accord
 with subsection 6b.

 d) Convey the object code by offering access from a designated
 place (gratis or for a charge), and offer equivalent access to the
 Corresponding Source in the same way through the same place at no
 further charge. You need not require recipients to copy the
 Corresponding Source along with the object code. If the place to
 copy the object code is a network server, the Corresponding Source
 may be on a different server (operated by you or a third party)
 that supports equivalent copying facilities, provided you maintain
 clear directions next to the object code saying where to find the
 Corresponding Source. Regardless of what server hosts the
 Corresponding Source, you remain obligated to ensure that it is
 available for as long as needed to satisfy these requirements.

 e) Convey the object code using peer-to-peer transmission, provided
 you inform other peers where the object code and Corresponding
 Source of the work are being offered to the general public at no
 charge under subsection 6d.

 A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

 A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

Introduction

7

 "Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

 If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

 The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

 Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

 7. Additional Terms.

 "Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

 When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

 Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of

Introduction

8

that material) supplement the terms of this License with terms:

 a) Disclaiming warranty or limiting liability differently from the
 terms of sections 15 and 16 of this License; or

 b) Requiring preservation of specified reasonable legal notices or
 author attributions in that material or in the Appropriate Legal
 Notices displayed by works containing it; or

 c) Prohibiting misrepresentation of the origin of that material, or
 requiring that modified versions of such material be marked in
 reasonable ways as different from the original version; or

 d) Limiting the use for publicity purposes of names of licensors or
 authors of the material; or

 e) Declining to grant rights under trademark law for use of some
 trade names, trademarks, or service marks; or

 f) Requiring indemnification of licensors and authors of that
 material by anyone who conveys the material (or modified versions of
 it) with contractual assumptions of liability to the recipient, for
 any liability that these contractual assumptions directly impose on
 those licensors and authors.

 All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

 If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

 Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

 8. Termination.

 You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

 However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)

Introduction

9

provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

 Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

 Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

 9. Acceptance Not Required for Having Copies.

 You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

 10. Automatic Licensing of Downstream Recipients.

 Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

 An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

 You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

Introduction

10

 11. Patents.

 A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".

 A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

 Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

 In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

 If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

 If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

 A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered

Introduction

11

work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

 Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

 12. No Surrender of Others' Freedom.

 If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

 13. Use with the GNU Affero General Public License.

 Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

 14. Revised Versions of this License.

 The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

 Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

Introduction

12

 If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

 Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

 15. Disclaimer of Warranty.

 THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

 16. Limitation of Liability.

 IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

 17. Interpretation of Sections 15 and 16.

 If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

 To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

Introduction

13

 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

 If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:

 <program> Copyright (C) <year> <name of author>
 This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
 This is free software, and you are welcome to redistribute it
 under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".

 You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.

 The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

Drools5 Integration Helper
Drools5 Integration Helper is a set of java classes, maven plugin and maven archetype to deal with
Drools5 (and specifically with Drools Expert [http://www.jboss.org/drools/drools-expert.html] and Drools
Guvnor [http://www.jboss.org/drools/drools-guvnor.html]).

This project provide three main artifacts:

• One java library to provide various integration to interface from java to drools.

http://www.jboss.org/drools/drools-expert.html
http://www.jboss.org/drools/drools-expert.html
http://www.jboss.org/drools/drools-guvnor.html
http://www.jboss.org/drools/drools-guvnor.html
http://www.jboss.org/drools/drools-guvnor.html

Introduction

14

• Support of drools call thru interface in stateless mode.

• Support of drools call thru interface in statefull mode.

• Support of drools interface integration into spring [http://www.springsource.org/documentation].

• Support of drools annotation on classes.

• Support of field updated based on annotations.

• Support of usage of condition on method.

• One Maven [http://maven.apache.org/] plugin to validate and compile drools files and support additional
annotations..

• Support of validation of drools source file.

• Support of compilation of drools source file.

• Support of instrumentalization of class file.

• One Maven [http://maven.apache.org/] archetype to produce ready to use Maven 2 project.

• Support generation of a Maven 2 project with both classes and interfaces approach.

• Support generation of a Maven 2 project that use JUnit 4 [http://www.junit.org/] tests as example.

Drools5 Integration Helper is provided as ready to use Maven artifact. No IDE integration is provided
as no IDE integration is needed for Drools5 Integration Helper itself. IDE integration regarding Drools
can be provided by the IDE related to drools.

Drools5 Integration Helper require Java 6.

This library uses log4j library [http://logging.apache.org/log4j/1.2/index.html] to log and provides access
to log4j from drools rules.

The main idea behind Drools5 Integration Helper is to provide tools that allow access to the power of
rule engine, without having to care about how to interface with this type of engine. To do so, Drools5
Integration Helper focus on providing a way to provide this interface by only say "here I like to be
interfaced with drools" and not "here I like to do so and so to access to drools". So, almost all usage of
Drools5 Integration Helper are to be done in declarative way (using annotation for example).

Installation
The various artifacts of Drools5 Integration helper are integrated into the maven central repository, starting
from version 1.3.0. No specific configuration is needed to use them.

Note that potentially some dependencies may not be available in central. In this case, the jboss repository
[http://repository.jboss.org/maven2/] may be add to your list of repositories.

It is possible to download them manual and install them.

This chapter describe how to download and then install all the required file into maven local or remote
repository. For readers with good Maven skill, this chapter is potentially useless. Also it is not strictly
required to use this installation procedure, if you can have access to the central repository.

http://www.springsource.org/documentation
http://www.springsource.org/documentation
http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/
http://www.junit.org/
http://www.junit.org/
http://logging.apache.org/log4j/1.2/index.html
http://logging.apache.org/log4j/1.2/index.html
http://repository.jboss.org/maven2/
http://repository.jboss.org/maven2/

Introduction

15

All artifacts have org.boretti.drools.integration as groupId, except for the examples that have groupId
org.boretti.drools.integration.examples. Examples can't be get from the Maven central repo. There are
available from the SVN and in the documents part of the site.

Download
All artifacts can be downloaded from http://www.javaforge.com/proj/doc.do?doc_id=73466.

All in one download

All artifacts are available in a single zip file.

Per files download

It is possible to download separately all file.

Installation in local maven repository
All maven artifacts can be install in the local repository. The various file are named like
'artifactId'-'version'.'extension' or 'artifactId'-'version'-'classifier'.'extension'

The plugin maven-install-plugin can be used to install each artifact into your local repository:

mvn install:install-file -Dfile=path-to-your-artifact-file \
 -DgroupId=org.boretti.drools.integration \
 -DartifactId=your-artifactId \
 -Dversion=version \
 -Dpackaging=extension

or

mvn install:install-file -Dfile=path-to-your-artifact-file \
 -DgroupId=org.boretti.drools.integration \
 -DartifactId=your-artifactId \
 -Dversion=version \
 -Dclassifier=classifier
 -Dpackaging=extension

Installation in remote maven repository
All maven artifacts can be deploy in a remote maven repository. The various file are named like
'artifactId'-'version'.'extension' or 'artifactId'-'version'-'classifier'.'extension'

The plugin maven-deploy-plugin can be used to install each artifact into a remote repository:

mvn deploy:deploy-file -Durl=file://C:\m2-repo \
 -DrepositoryId=some.id \
 -Dfile=your-artifact \
 [-DgroupId=org.boretti.drools.integration] \
 [-DartifactId=your-artifact] \
 [-Dversion=version] \
 [-Dpackaging=extension] \
 [-Dclassifier=classifier] \

http://www.javaforge.com/proj/doc.do?doc_id=73466

16

Chapter 2. Java Library - Drools5
Integration Helper Library

Introduction
The artifact org.boretti.drools.integration:drools5-integration-helper-library provides the following
support:

• A set of annotations and enumeration to make an interface as drools interface.

• A set of classes that provide a way to instantiate these interfaces, directly or from Spring.

• A set of annotations and enumeration to make a class as drools class.

All the Classes, Annotations, Enumerations and Interfaces are part of the following package (or
sub-packages) : org.boretti.drools.integration.drools5. The sub-package annotations contains all the
annotations that can be used. The sub-package exceptions contains all the exceptions that can be thrown
by this library. Finally the sub-package implementation contains all the stuff that provide the core
implementation for this library. Classes and interfaces of this sub-package must not be used as they are
reserved for internal implementation of the library and the definition of these classes, interfaces and
methods may change without notice.

This chapter describe how to use this library. The javadoc is available as part of the downloadable files.

This library can be add as a maven dependency by using:

<dependency>
 <groupId>org.boretti.drools.integration</groupId>
 <artifactId>drools5-integration-helper-library</artifactId>
 <version>1.3.0</version>
</dependency>

This dependency will indirectly reference the various drools dependencies.

Two various approaches are provided to interfaces with Drools. They both are complementary way of
defining this interface.

• The first one is based on usage of an annotated interface. In this case, we can say it is a service oriented
way of thinking. The drools file is exposed as classical java method, by an interface.

• The second one is based on usage of an annotated class. This can be done in two different ways.

• By using annotations on field. In this case it is possible to have field auto-computed by drools.

• By using annotations in method. In this case, these annotations can define pre and post-condition that
will be evaluated by using drools.

Theses both ways will require class instrumentalization.

These both approaches cover different types of use case and can be use in the same java program without
problem.

Java Library - Drools5
Integration Helper Library

17

Drools resources can be get from the resource available by using the class loader, but also from an URL.
These URLs can point to drools resources exposed by Drools Guvnor. Drools Guvnor usage is out of scope
of this document.

Dependencies

Figure 2.1. View of the runtime dependencies

There are four main dependencies for the library:

log4j This is the classical log4j library.

spring This is a dependency to the spring library to support the spring integration.

drools-core This is a dependency to the drools-core library. It is the main dependency for
drools.

drools-compiler This is a dependency to the drools-compiler library. This dependency provides
the feature to compile Drools file.

DroolsInterface
Interface(s)

DroolsInterface is the first main concept behind this library. The goal of a DroolsInterface is to provides
a way to call Drools rules from java, without having to care about the Drools interfacing.

Java Library - Drools5
Integration Helper Library

18

To achieve this goal, the developer can define an interface and annotate it with the annotation
@DroolsService:

package foo;

import org.boretti.drools.integration.drools5.annotations.DroolsService;

@DroolsService
public interface MyName {
 /*... */
}

This annotation make this interface as a DroolsInterface. This annotation support two attributes:

type can be SOURCE or COMPILED or XML.

• SOURCE is to be used to define that this class will be based on a drools source file.

• COMPILED (default) is to be used to define that this class will be based on a drools
compiled file (using the maven plugin).

• XML is to be used to define that this interface will be based on a drools XML file.

resourceName is to be used to define the resource name to be used to load the rules. If this is unset or
null or empty, the default resource name used will be the interface with .drl extension
for source and .cdrl for compiled.
The resourceName must point a valid resource. Resource are found using the classic
getResourceAsStream from the Class object that is this interface or by reading an url
(http://XXX or file://XXX).

Both type and resourceName can be override at execution, by passing others value with creating the
concrete instance of the interface.

Method(s)
Developer must of course add several method definition to this interface. Every method will be use to
call the rules that are behind this interface, except for the special case defined later in this document. The
parameter of the method will be pass (depending of the annotation @DroolsParameter) to the rule engine.
if the method define a return type other that void, the return value will be the first fact that match this type
or all if the type is an array.

By default, methods are execution method. A special case is for method that are setter and that have an
annotation @DroolsVariable. These methods can be used to inject additional object to the drools context.

@DroolsVariable and @DroolsMethod are incompatible and can't be used on the same method. This
constraint is not checked at compile time, but only at execution time.

Session

Optionally, method can be annotated with the annotation @DroolsMethod. This annotation supports
several attributes, one is session. This attribute can have the following value:

NONE (default also when both @DroolsMethod and @DroolsVariable are not used). In this case,
the execution of the drools is done in purely stateless mode.

Java Library - Drools5
Integration Helper Library

19

In case a session exists at time this method is call, the session is not impacted by this call.
This type of call are fully thread safe.

NEW In this case, the execution will first discard any existing drools session, and then create a new
one. Then a fireAll will be trigger.
The generated concrete class doesn't provide in security regarding threading. It is the
responsability of the caller of the concrete interface.

END In this case, a session must existing before. A fireAll will be trigger and then the session will
be discard. In case no session exists, an IllegalArgumentException exception is thrown.
The generated concrete class doesn't provide in security regarding threading. It is the
responsability of the caller of the concrete interface. In case no session exists at this time,
an error is raised.

JOIN In this case, if a session exists, this session will be used ; if not, the execution will be done
in stateless mode.
The generated concrete class doesn't provide in security regarding threading. It is the
responsability of the caller of the concrete interface.

REQUIRE In this case, a session must exists before execution. In case no session exists, an
IllegalArgumentException exception is thrown.

The generated concrete class doesn't provide any security regarding threading. It is the responsability of
the caller of the concrete interface. In case no session exists at this time when a session is required, an
error is raised.

Activation Group

Activation Group is a new attribute of the @DroolsMethod annotation. Currently this attribute is not used.

Setter Methods

The setter method must be named setXXX, must have exactly one parameter and a void return type. Also,
the annotation @DroolsVariable is mandatory. This annotation support one attribute, global. By default
this attribute is false. The logic of passing the field to drools is the following:

global=false In this case, the variable is stored internally in the interface when the setter is called.
When called with null, the variable is removed. At time a new stateless session or a
new statefull session is created, this variable is added to the fact.

global=true In this case, the variable is stored internally in the interface when the setter is called.
When called with null, the variable is removed. At time a new stateless session or a
new statefull session is created, this variable is added to the global list. The field name
is used as the name for the global variable in drools.
Drools may produce error in case a global is defined on java side and not on drools
side.

Calling a setter method when a session is already existing doesn't impact the existing session. The change
of field will only be applyed for the new session.

Asynchronous methods

A method (not a setter) can be asynchronous. To do so, it is required to use a Future as a return value.
The call will then be asynchronous (executed in a separated Thread) and the Future will be available to
have access to the response.

Java Library - Drools5
Integration Helper Library

20

Parameter(s)
Parameters of the various methods may be annotated with the annotation @DroolsParameter. This
annotation support one attribute: handling. This attribute can have the following value:

NONE (default, also when annotation is not used). In this case, the parameter is simply
pass to the drools.

IGNORED In this case, the parameter is ignored and not pass to drools.

TOFLAT1 In this case, if the parameter is an array or a Collection, all items of the array
or the Collection will be pass to drools and not the parameter itself.

TOFLATALL In this case, if the parameter is an array or a Collection, all items of the
array or the Collection will be pass to drools and not the parameter itself, and
recursively for all items.

GENERICDEFINITION In this case, it is assumed the parameter is a Class parameter to be used for the
return type. The goal is to support generic.

public <T> T myMethod(
 @DroolsParameter(handling=GENERICDEFINITION)
 Class<T> clazz,
 /*...*/
);

This will ensure the method returns the right type of object at runtime. This
parameter is not pass to drools. It is only used to support generic.

Drools5-Integration-Helper supports null parameters, but not for a GENERICDEFINITION parameter.

Return value
Methods that are not setter can have a return type. If the return type is void, nothing is returned. If the
returned value is an array, then all objects in drools that match this type (that are the same class or a sub
class) are returned. It is also possible to use a Future as a return value. In this case, the execution of the
method is asynchronous.

In case the return type is not an array and several object match the expected type, only the first one found
will be returned. As the order of fact is not determined, in this case, there is no way to know which object
will be returned.

In case the return type is an array, the order of the object in this array can be different between two
consecutive calls.

Generic

Return type can be generic, but in this case the GENERICDEFINITION logic must be used to inform
drools5-Integration-Helper about the real type. In any case, before using generic type in rule, it is better
to make an analysis before using generic in drools, as the result can be very difficult to predict.

Future

Using a return type of Future (java.util.concurrent.Future) marks the method as asynchronous method. For
readability it is better to add a specific text at the end of the name of the method, for example like Async.

Java Library - Drools5
Integration Helper Library

21

For the Future usage, there are two use cases:

public Future<String> myMethod(/*...*/);

In this case, the generic part of the Future is clearly defined. Drools5-Integration-Helper will return a
Future that will return a String from drools.

public <T> Future<T> myMethod(
 @DroolsParameter(handling=GENERICDEFINITION) Class<T> clazz,
 /*...*/);

In this case, the generic part of the Future is defined by the clazz parameter.

Primitive types

A special note on primitive type is required. For example, if we have the following interface:

@DroolsService(type=SOURCE,resourceName="/drools.drl")
private interface PrimitifInterface {
 public boolean testBoolean1(boolean in);

 public Boolean testBoolean2(boolean in);

 public boolean testBoolean3(Boolean in);

 public Boolean testBoolean4(Boolean in);
}

In this case, if the rule file do nothing, what is asserted as parameter will be used for the return value. Even
if both Boolean and boolean are used, both Boolean and boolean are accepted as matching for each others.

DroolsClass

Class(s)
Any class can be transform into automated drools class.

To achieve this goal, the developer can define a class and annotate it with the annotation @DroolsService:

package foo;

import org.boretti.drools.integration.drools5.annotations.DroolsService;

@DroolsService
public class MyName {
 /*... */
}

This annotation make this class as a DroolsClass. This annotation support two attributes:

type can be SOURCE or COMPILED or XML.

• SOURCE is to be used to define that this class will be based on a drools source file.

Java Library - Drools5
Integration Helper Library

22

• COMPILED (default) is to be used to define that this class will be based on a drools
compiled file (using the maven plugin).

• XML is to be used to define that this interface will be based on a drools XML file.

resourceName is to be used to define the resource name to be used to load the rules. If this is unset
or null or empty, the default resource name used will be the class with .drl extension
for source and .cdrl for compiled.
The resourceName must point a valid resource. Resource are found using the classic
getResourceAsStream from the Class object that is this interface or by reading an
URL (http://XXX or file://XXX).

The class must be instrumented using the maven plugin. Missing this step will produce classes that are
not integrating the drools interfacing.

Both resourceName and type can be override by use special annotated parameter in the constructor.

Field(s)
The class will contains several fields. The field can have tree states:

@DroolsGenerated With this annotation, the field is marked as generated thru drools. In this case,
the Maven plugin will add a call to the drools engine in the getter of this field,
when needed. The call will pass one single object to drools : this. It is the
responsability of the drools rule to set the field.

@DroolsIgnored With this annotation, the field is marked as not generated thru drools and that
setting this field will not trigger a rerun of the drools rule.

Not annotated Without annotation, the field is marked as not generated thru drools but that
changing this field must trigger drools execution. In this case, the Maven plugin
will add a piece of code to mark the execution of drools as required.

package foo;

import org.boretti.drools.integration.drools5.annotations.DroolsService;
import org.boretti.drools.integration.drools5.annotations.DroolsIgnored;
import org.boretti.drools.integration.drools5.annotations.DroolsGenerated;

@DroolsService
public class MyName {
 @DroolsIgnored
 private String ignoredField;

 private String sourceField;

 @DroolsGenerated
 private String generatedField;

 /* ... put here the various getter and setter */
}

Only access to the field thru the getter and setter are instrumented. Direct access to the field will not trigger
or use recomputation.

Java Library - Drools5
Integration Helper Library

23

Constructor(s)
By default, all constructors are instrumented at compile time to have additional code to initialize the rule
base. The parameter of the constructor can use two special annotations:

@DroolsResourceName Must be use zero or one time in the constructor and must be use on a String
parameter. It marks the parameter as an injection of the resourceName.

@DroolsResourceType Must be use zero or one time in the constructor and must be use on a
DroolsServiceType parameter. It marks the parameter as an injection of the
serviceType.

When at least one of these two annotations are used, the resourceName and/or resourceType will be
override by using the received value. Only overriding at construction time is supported.

Wrong usage of this annotations (for instance @DroolsResourceName on a Boolean parameter) will be
reported as a warning in the logs of the maven plugin execution.

It is not required to have a default constructor or a constructor without any override parameter.

Multiple constructors usage.

A class can have several constructors. All constructors will be instrumented by the maven plugin. But what
happen if a constructor use an other one (classical approach) ?

Two different cases are interesting to be study. The first one is with constructor that doesn't override the
drools resource(s). and the second one with override of the drools location.

Multiple constructors without Drools override

Let's take an example:

public constructor() {
 /* ... */
}

public constructor(String arg) {
 this();
 /* ... */
}

public constructor(String arg0,boolean arg1) {
 this(arg);
 /* ... */
}

We have several constructors, with zero, one, or two parameters. The zero-parameter constructor use the
implicit call to super(). All others constructors first call the constructor with parameter-1 parameters. None
of the various constructors use resource override.

In this case, all constructor will have additional code to configure the drools Rule. This code will be added
just after the call to the parent constructor (for the first method) or just after the call to the other constructor
(for the two last methods). The side effect is that the drools Rule object will be constructed several time,
event if only the one from the most outside constructor will be used.

Java Library - Drools5
Integration Helper Library

24

Multiple constructors with Drools override.

Let's take an example:

public constructor() {
 /* ... */
}

public constructor(@DroolsResourceName String resourceName) {
 this();
}

In this case, we have one default constructor and one additional constructor that just call the default
constructor, but use a resource override.

In this case, all constructor will have additional code to configure the drools Rule. This code will be added
just after the call to the parent constructor (for the first method) or just after the call to the other constructor
(for the last method). The side effect is that the drools Rule object will be constructed several time, event
if only the one from the most outside constructor will be used. It will ensure that the used Rule object will
be the one with the override parameter. But, in all this, with this approach, the Rule object with default
value will be constructed.

The fact that with this approach the object with default will be constructed in any case can be a potential
issue, for example when the resource with default value is not available, because this will make fail the
inner constructor and indirectly the outer constructor, before construction of the Rule object with overrided
value.

How to avoid the unnecessary construction of the rule data

As we can see in the previous section, depending on how the constructor are used, we may have several
construction of the rules object, when only one is required. It can have performance issues and also
unwanted errors.

It exists a workaround to avoid (or limit) this issue. To do so, the call to this must be removed and a internal
private initialization method is defined. This method is call and not the other constructor:

public constructor(/*...*/) {
 init(/*...*/);
}

public constructor(@DroolsResourceName String resourceName) {
 init(/*...*/);
}

private final void init(/*...*/) {
 /*...*/
}

Drools Execution
Drools is called :

• The first time a field annotated with @DroolsGenerated is getted.

• Every time a field annotated with @DroolsGenerated is getted, just after a none annotated field is set.

Java Library - Drools5
Integration Helper Library

25

All executions are done in purely stateless mode. Drools5-integration-helper doesn't care about multi-
threading access. Developer must use synchronized getter and setter if needed.

DroolsCondition

Idea
In some cases it can be interesting to define conditions related to a method. This is an approach similar
to the Programming by Contract model. The goal is to annotated a method to define pre-condition and
post-condition.

The class must be instrumented using the maven plugin. Missing this step will produce classes that are
not integrating the drools interfacing.

Condition definition

PreCondition

PreCondition can be defined by using the @DroolsPreCondition annotation. This annotation support
several attributes:

type can be SOURCE or COMPILED or XML.

• SOURCE is to be used to define that this class will be based on a drools source file.

• COMPILED (default) is to be used to define that this class will be based on a drools
compiled file (using the maven plugin).

• XML is to be used to define that this interface will be based on a drools XML file.

resourceName is to be used to define the resource name to be used to load the rules.
The resourceName must point a valid resource. Resource are found using the classic
getResourceAsStream from the Class object that is this interface or by reading an url
(http://XXX or file://XXX).

error is to be used to define the error that can be throw in case of error. This must be a Class
object that extends Error.

Class<? extends Error> error();

Methods with this annotations will contains, at the start of the method, an evaluation of the drools rules
defined in the annotation. this and all parameters of the method will be passed as fact. The rule must insert
an concrete instance of an Error (based on the attribute error) in case the precondition are not meet.

PostCondition

PostCondition can be defined by using the @DroolsPostCondition annotation. This annotation support
several attributes:

type can be SOURCE or COMPILED or XML.

• SOURCE is to be used to define that this class will be based on a drools source file.

• COMPILED (default) is to be used to define that this class will be based on a drools
compiled file (using the maven plugin).

Java Library - Drools5
Integration Helper Library

26

• XML is to be used to define that this interface will be based on a drools XML file.

resourceName is to be used to define the resource name to be used to load the rules.
The resourceName must point a valid resource. Resource are found using the classic
getResourceAsStream from the Class object that is this interface or by reading an url
(http://XXX or file://XXX).

error is to be used to define the error that can be throw in case of error. This must be a Class
object that extends Error.

Class<? extends Error> error();

onException is to be used to mark that throw instruction must be considered as to be marked for
post condition check. Default is false

Methods with this annotations will contains, before each (X)return, an evaluation of the drools rules defined
in the annotation. this and all parameters of the method will be passed as fact. The rule must insert an
concrete instance of an Error (based on the attribute error) in case the postcondition are not meet.

If onException is set to true, all athrow (throw instruction at java level) are also preceded by the
postcondition.

In the current implementation, post condition can only have access to the state of the argument and this at
time of the evaluation. No access to old value (before execution of the method) are not available.

Exception throwing
In case error is inserted into the drools fact, the error will be thrown by the system. As it is required to
extends Error, it is not required to explicitly use throws feature on the method.

Static methods
Static methods are not supported.

DroolsProvider
Once the developer has define the drools interface, a way to create concrete instance is required.

Only Drools Interface requires direct usage of the DroolsProvider. Drools Class doesn't need special
instantiation but these classes will only internally the DroolsProvider.

This can be achieve using the DroolsProvider class. This class provides several methods.

Getting concrete instance from interface
public <T> T getService(Class<T> clazz)

or

public <T> T getService(Class<T> clazz,
 String resourceName)

or

public <T> T getService(Class<T> clazz,

Java Library - Drools5
Integration Helper Library

27

 String resourceName,
 DroolsServiceType serviceType)

It is possible to pass the interface to this method to create a new concrete instance. This method return
a new interface for all usage.

In case a Class, a not annotated (or wrongly annotated) Interface is used it will generate an error.

All concrete instance of the interface returned by this method will implements T and also the interface
DroolsInterface. When casting explicitly to DroolsInterface this concrete class, it is possible to get
manually the current session (for statefull execution) or the RuleBase related to this interface.

The two additional parameters can be used to override the resourceName and serviceType that are defined
at interface level.

Getting RuleBase from interface or class
public <T> RuleBase getRuleBase(Class<T> clazz)

or

public <T> RuleBase getRuleBaseOverride(Class<T> clazz,
 String resourceName)

or

public <T> RuleBase getRuleBaseOverride(Class<T> clazz,
 DroolsServiceType resourceType)

or

public <T> RuleBase getRuleBaseOverride(Class<T> clazz,
 String resourceName,
 DroolsServiceType resourceType)

This method returns a new RuleBase object, based on the annotation of the received interface or class.
Usage of this method is normally not needed for end-user. This method is used by the classes that have
been annotated @DroolsService to get the rules.

Getting RuleBase from type and resource
public <T> RuleBase getRuleBase(
 Class<T> clazz,
 DroolsServiceType type,
 String resourceName)

This method returns a cachable RuleBase object, based on the received parameter. Usage of this method is
normally not needed for end-user. This method is used by the classes that have been annotated to support
pre-condition.

Running pre-condition
public static <T> void runPreCondition(
 Class<T> clazz,
 DroolsServiceType type,
 String resourceName,

Java Library - Drools5
Integration Helper Library

28

 Class<? extends Error> error,
 Object reference,
 Object args[])

This method run a precondition and produce an error if needed. Usage of this method is normally not
needed for end-user. This method is used by the classes that have been annotated to support pre-condition.

Running post-condition
public static <T> void runPostCondition(
 Class<T> clazz,
 DroolsServiceType type,
 String resourceName,
 Class<? extends Error> error,
 Object reference,
 Object args[])

This method run a postcondition and produce an error if needed. Usage of this method is normally not
needed for end-user. This method is used by the classes that have been annotated to support post-condition.

Spring Integration
It is possible to have an integration with Spring using the DroolsBeanFactory class. To do so, the developer
must:

1. Define the annotated interface. To do so, it is just required to have a standard interface that is annotated
with @DroolsService.

2. Register the bean in spring bean configuration:

<bean
 id="Drools1"
 class="org.boretti.drools.integration.drools5.DroolsBeanFactory">
 <property
 name="droolsInterface"
 value="foo.MyPackage"
 />
</bean>

This will provide a Bean that is a DroolsInterface and implements the provided interface. This BeanFactory
use the DroolsProvider to create the concrete instance of the interface.

In case some setter (method named setXXX, with exactly one parameter, annotated with @DroolsVariable)
are also annotated with @Autowired (from Spring), the DroolsBeanFactory will try to inject into this setter
a Bean with the same type that is the parameter. The required attribute is not checked.

The object created by this BeanFactory are not singleton. Spring will take care of creating singleton if
needed.

Exceptions
The Drools5-Integration-Helper-Library classes can throw exception. All specific exceptions are in the
package org.boretti.drools.integration.drools5.exceptions. The parent Exception is DroolsError which
extends Error. These exceptions are related to the following main categories of problem:

Java Library - Drools5
Integration Helper Library

29

• Invalid objects. For example, not annotated interface passed to the DroolsProvider class.

• Access to drools file error. For example, resource with the drools rule not found.

• Compilation error. For example, the source drools file is not valid.

Also, the IllegalArgumentException may be thrown for null parameter or invalid session state.

Logging
The log4j library [http://logging.apache.org/log4j/1.2/index.html] is used to provide logging
functionalities for the various classes. All the logger name are based on the class name.

Some very low level informations are logged in debug mode. Errors are logged before been thrown.

The global droolsLogger is added to every working memory. This is an instance of
org.apache.log4j.Logger that can be used for logging from drools. The name of this logger is based on the
name class of the Interface or Class annotated with @DroolsService.

This field must be declared in drools file :

global org.apache.log4j.Logger droolsLogger;

Configuration of the log4j library is out of scope of Drools5-Integration-Helper.

Summaries

Annotations

Table 2.1. Summary of the annotations

Annotation Scope Description Attributes

@DroolsGenerated on field Mark this field as auto-
generated.

N/A

@DroolsIgnored on field Mark this field as not
part ofdrools source
field.

N/A

@DroolsMethod on method(interface) Mark this method as
drools method.(optional
usage)

session

@DroolsParameter on parameter(interface) Add additional
information for the
parameter(optional
usage)

handling

@DroolsPostCondition on method Mark this method as
using post-condition.

type, resourceName,
error, onException

@DroolsPreCondition on method(class) Mark this method as
using pre-condition.

type,resourceName,error

@DroolsResourceName on
parameter(constructor)

Mark this parameter as
resource Name injector

http://logging.apache.org/log4j/1.2/index.html
http://logging.apache.org/log4j/1.2/index.html

Java Library - Drools5
Integration Helper Library

30

@DroolsResourceType on
parameter(constructor)

Mark this parameter as
resource type injector

@DroolsService on interface Mark this interface as
Drools interface.

type,resourceName

@DroolsVariable on method(interface) Mark this method as
variable injectionmethod

global

Enumerations

Table 2.2. Summary of the enumerations

Enumeration Description Values

DroolsParameterHandling Definition of the parameter
handling for the method of the
interface.

GENERICDEFINITION,
IGNORED, NONE, TOFLAT1,
TOFLATALL

DroolsServiceType Definition of the type of the
drools source

COMPILED, SOURCE, XML

DroolsSessionType Definition of the session
handling for the method of the
interface.

END, JOIN, NEW, NONE,
REQUIRE

Classes
Exceptions and Errors are listed in a separated table

Table 2.3. Summary of the classes

Name Description

DroolsBeanFactory The Spring BeanFactory to support dynamic
creation of Proxy from Spring.

DroolsProvider The class to be used to get Proxy for any interface.

Interfaces

Table 2.4. Summary of the interface

Name Description

DroolsInterface This interface is automatically implemented
by all Proxies generated bythe classes
DroolsBeanFactory and DroolsProvider

Errors and Exceptions
• ClassCastDroolsError

• CompilationDroolsError

• DroolsError

Java Library - Drools5
Integration Helper Library

31

• IncompatibleAnnotationDroolsError

• IODroolsError

• MalformedURLDroolsError

• NotAClassDroolsError

• NotAnInterfaceDroolsError

• NotAnnotatedClassDroolsError

• NotAnnotatedInterfaceDroolsError

• XMLDroolsError

Performance
Performance of drools itself is out of scope. Drools5-Integration-Helper add a small footprint to a direct
usage of drools. Initialization of Proxy and classes are the most consuming operation (because of the need
to load resource, parse resource, etc). So it is a very good idea to avoid recreating object if it is not needed.

Also, pre-condition and post-condition usage require passing all the arguments of the method to drools.
This is an operation that can consume time.

In case log4j logging for the drools5-Integration-Helper classes are set to debug, it can have a severe impact
on the performance. So, debug log level for these classes should be avoid in production environment.
Depending of the type of appender used, usage of the debug level can be 5 time slower that without.

32

Chapter 3. Maven plugin - Drools5
Integration Helper Maven Plugin
Introduction

A maven plugin drools5-integration-helper-maven-plugin is provided. Plugin prefix is drools5. The
plugin can be used by adding this section in the plugin section:

 <plugin>
 <groupId>org.boretti.drools.integration</groupId>
 <artifactId>drools5-integration-helper-maven-plugin</artifactId>
 <version>1.3.0</version>
 <extension>true</extension>
 </plugin>

The extension section is needed because of the additional packaging provided by the plugin.

The plugin is used when

• One of the provided packaging is used.

• One or several goal(s) are listed to be used.

Please refer to the site (part of the artefacts) for the standard plugin documentation. Also, the plugin exposes
the help goal.

Plugin has been tested with Maven 2.0.10 and Maven 2.2.1.

Drools Packaging
This maven 2 plugin provides several packaging that extends standard packaging:

drools This packaging is a synonym of the jar-drools packaging.

jar-drools This packaging is the same one that the packaging jar, but in addition, the various goals
of this plugin are executed during the compile, process-class, test-compile and process-
test-class phase.

ejb-drools This packaging is the same one that the packaging ejb, but in addition, the various goals
of this plugin are executed during the compile, process-class, test-compile and process-
test-class phase.

ejb3-drools This packaging is the same one that the packaging ejb3, but in addition, the various
goals of this plugin are executed during the compile, process-class, test-compile and
process-test-class phase.

rar-drools This packaging is the same one that the packaging rar, but in addition, the various goals
of this plugin are executed during the compile, process-class, test-compile and process-
test-class phase.

par-drools This packaging is the same one that the packaging par, but in addition, the various goals
of this plugin are executed during the compile, process-class, test-compile and process-
test-class phase.

Maven plugin - Drools5
Integration Helper Maven Plugin

33

war-drools This packaging is the same one that the packaging war, but in addition, the various
goals of this plugin are executed during the compile, process-class, test-compile and
process-test-class phase.

The packaging can be used in the following way:

<project
 xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>${groupId}</groupId>
 <artifactId>${artifactId}</artifactId>
 <packaging>jar-drools</packaging>
 <version>${version}</version>

Is is not required to use these packaging to use the maven plugin. The various goals can be called manually.

All the previous packaging add the following goals:

compile drools-copy-validate, drools-compile.

process-classes drools-postprocessor.

test-compile drools-copy-validate-test, drools-compile-test.

process-test-classes drools-postprocessor-test.

Report goal are not part of the executed goal. It must be call manually.

Validation Drools Goals
Theses two goals are related to validation of the Drools files. Drools files can be used for the main code
of the artifact or for the tests. Is it why there is two goals.

drools-copy-validate
This goal is executed by default in phase compile. It work in the following way:

1. For each file with extension .drl in folder src/main/drools:

1. Validate that the file is valid regarding drools compiler.

2. Copy the file into target/classes. The folder hierarchy is the same in the target/classes folder.

2. For each file with extension .xml in folder src/main/drools:

1. Validate that the file is valid regarding drools compiler.

2. Copy the file into target/classes. The folder hierarchy is the same in the target/classes folder.

configuration

This goal supports the following configuration items:

outputDirectory Where to copy files. Default is into target/classes

Maven plugin - Drools5
Integration Helper Maven Plugin

34

inputDirectory From where to read source files. Default is from src/main/drools

extension Extension for source files. Default is .drl

xmlExtension Extension for xml source files. Default is .xml

reportDirectory The folder into which reports of execution must be wrote.

reportFile The file name for the report file.

Notes

This goal handle both Drools Source files and XML sources file at the same time. It is necessary to ensure
there is no none Drools XML file in the drools source file.

drools-copy-validate-test
This goal is executed by default in phase test-compile. It work in the following way:

1. For each file with extension .drl in folder src/test/drools:

1. Validate that the file is valid regarding drools compiler.

2. Copy the file into target/test-classes. The folder hierarchy is the same in the target/test-classes folder.

2. For each file with extension .xml in folder src/test/drools:

1. Validate that the file is valid regarding drools compiler.

2. Copy the file into target/test-classes. The folder hierarchy is the same in the target/test-classes folder.

configuration

This goal supports the following configuration items:

outputDirectory Where to copy files. Default is into target/test-classes

inputDirectory From where to read source files. Default is from src/test/drools

extension Extension for source files. Default is .drl

xmlExtension Extension for xml source files. Default is .xml

reportDirectory The folder into which reports of execution must be wrote.

reportFile The file name for the report file.

Notes

This goal handle both Drools Source files and XML sources file at the same time. It is necessary to ensure
there is no none Drools XML file in the drools source file.

Compilation Drools Goals
Theses two goals are related to compilation of the Drools files. Drools files can be used for the main code
of the artifact or for the tests. Is it why there is two goals. Both drools source files and drools XML source
files will be compiled.

Maven plugin - Drools5
Integration Helper Maven Plugin

35

drools-compile
This goal is executed by default in phase compile. It work in the following way:

1. For each file with extension .drl in folder src/main/drools:

1. Compile the file using drools compiler.

2. Write the resulting compiled file into target/classes. The folder hierarchy is the same in the target/
classes folder. The file will have .cdrl extension.

2. For each file with extension .xml in folder src/main/drools:

1. Compile the file using drools compiler.

2. Write the resulting compiled file into target/classes. The folder hierarchy is the same in the target/
classes folder. The file will have .cdrl extension.

configuration

This goal supports the following configuration items:

outputDirectory Where to copy compiled files. Default is into target/classes

inputDirectory From where to read source files. Default is from src/main/drools

extension Extension for source files. Default is .drl

xmlExtension Extension for xml source files. Default is .xml

compiledExtension Extension for compiled files. Default is .cdrl

reportDirectory The folder into which reports of execution must be wrote.

reportFile The file name for the report file.

Notes

This goal handle both Drools Source files and XML sources file at the same time. It is necessary to ensure
there is no none Drools XML file in the drools source file.

drools-compile-test
This goal is executed by default in phase test-compile. It work in the following way:

1. For each file with extension .drl in folder src/test/drools:

1. Compile the file using drools compiler.

2. Write the resulting compiled file into target/test-classes. The folder hierarchy is the same in the
target/test-classes folder. The file will have .cdrl extension.

2. For each file with extension .xml in folder src/test/drools:

1. Compile the file using drools compiler.

Maven plugin - Drools5
Integration Helper Maven Plugin

36

2. Write the resulting compiled file into target/test-classes. The folder hierarchy is the same in the
target/test-classes folder. The file will have .cdrl extension.

configuration

This goal supports the following configuration items:

outputDirectory Where to copy compiled files. Default is into target/test-classes

inputDirectory From where to read source files. Default is from src/test/drools

extension Extension for source files. Default is .drl

xmlExtension Extension for xml source files. Default is .xml

compiledExtension Extension for compiled files. Default is .cdrl

reportDirectory The folder into which reports of execution must be wrote.

reportFile The file name for the report file.

Notes

This goal handle both Drools Source files and XML sources file at the same time. It is necessary to ensure
there is no none Drools XML file in the drools source file.

PostProcessing Drools Goals
Theses two goals are related to instrumentalization of the Drools classes. Drools files can be used for the
main code of the artifact or for the tests. Is it why there is two goals.

In case these goals are runned twice, on the same classes, the second time, the classes will not be
instrumented as they already are.

The code instrumentalization is based on ASM [http://asm.ow2.org/].

drools-postprocessor
This goal is executed by default in phase process-classes. It work in the following way:

1. For each class files that match patterns in folder target/classes:

1. Check if the class is candidate to instrumentalization.

2. If the class is candidate, instrumentalizate it.

3. Replace the file of the class with the instrumentalized one.

configuration

This goal supports the following configuration items:

inputDirectory From where to read class files. Default is from target/classes.

extension Extension for source files. Default is .class

http://asm.ow2.org/
http://asm.ow2.org/

Maven plugin - Drools5
Integration Helper Maven Plugin

37

includes List of file inclusion patterns

excludes List of file exclusion patterns

reportDirectory The folder into which reports of execution must be wrote.

reportFile The file name for the report file.

Notes

Filtering classes can be usefull to avoid this plugin inspecting all the classes (which can take time).

drools-postprocessor-test
This goal is executed by default in phase process-test-classes. It work in the following way:

1. For each class files that match patterns in folder target/test-classes:

1. Check if the class is candidate to instrumentalization.

2. If the class is candidate, instrumentalizate it.

3. Replace the file of the class with the instrumentalized one.

configuration

This goal supports the following configuration items:

inputDirectory From where to read class files. Default is from target/test-classes.

extension Extension for source files. Default is .class

includes List of file inclusion patterns

excludes List of file exclusion patterns

reportDirectory The folder into which reports of execution must be wrote.

reportFile The file name for the report file.

Notes

Filtering classes can be usefull to avoid this plugin inspecting all the classes (which can take time).

Report Goal
A special report goal is available to integrate the reporting of goals execution in the generated site.

drools-report
This goal will inspect each report file and add it to the site. To do so, it will:

1. For each reports files:

1. Load it into memory.

Maven plugin - Drools5
Integration Helper Maven Plugin

38

2. Write recursively the comments from the report file into the site.

configuration

This goal supports the following configuration items:

reportInputDirectory This is the source folder that contains the generated logs from the
execution of the various goals.

reportOutputDirectory This is the destination folder that will contains the resulted site.

Results

This plugin will list all the report file and display all the log of each file. If an entry contains other entries,
they will be displayed also.

Figure 3.1. Example of report

Logging of maven plugin execution
Every goal of this plugin have two special parameters:

reportDirectory This is the folder where the logging of the execution are stored.

reportFile This is the file name that will be used by the plugin to store his logging
information.

These logging information are based on an XML logging.

Here is an example of this log:

<droolsGoalExecutionLogs>
 <logs>
 <action>postprocessor</action>
 <comments>
 Class defined by file XXXXX has been rewritten by the plugin
 </comments>
 <fileName>XXXXX</fileName>
 <logs>
 <action>postprocessor</action>

Maven plugin - Drools5
Integration Helper Maven Plugin

39

 <comments>
 DroolsService annotation found. Field annotation will be used.
 </comments>
 <fileName>XXXXX</fileName>
 <timestamp>1258403938343</timestamp>
 </logs>
 <logs>
 <action>postprocessor</action>
 <comments>
 Constructor instrumentalization ()V
 </comments>
 <fileName>XXXXX</fileName>
 <timestamp>1258403938359</timestamp>
 </logs>
 <logs>
 <action>postprocessor</action>
 <comments>
 Method instrumentalization getField1/()Ljava/lang/String;
 </comments>
 <fileName>XXXXX</fileName>
 <timestamp>1258403938375</timestamp>
 </logs>
 ...

This can be usefull to check what has been modified in the class files.

40

Chapter 4. Maven Archetype - Drools5
Integration Helper Archetype
Introduction

It is possible to automatically generated a basic Maven project that integrate all the Drools5-Integration-
Helper features. To do so, a Maven archetype is provided. This archetype provides the following stuff:

• Maven 2 project, with references to the required libraries and plugin.

• Example of Annotated interfaces.

• Example of Annotated classes.

• Using Field oriented annotations.

• Using PreCondition oriented annotations.

• Example of JUnit for the two previous entries.

Presentation of what is an archetype is out of the scope of this document. Please refer to Maven Archetype
plugin [http://maven.apache.org/plugins/maven-archetype-plugin/] for more information on the archetype
plugin.

Usage
The creation of the Maven 2 project is based on the maven-archetype-plugin. It is possible to use the
following call, from a terminal:

mvn \
 archetype:generate \
 -DarchetypeGroupId=org.boretti.drools.integration \
 -DarchetypeArtifactId=drools5-integration-helper-archetype \
 -DarchetypeVersion=1.3.0

The system will then ask you several questions (like package name for example). You must reply to the
various questions and then a default Maven project, based on the archetype, will be created. This archetype
is directly usable.

Example of usage
For example, it is possible to use the previous command:

[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: 'archetype'.
[INFO] --
[INFO] Building Maven Default Project
[INFO] task-segment: [archetype:generate] (aggregator-style)
[INFO] --
[INFO] Preparing archetype:generate
[INFO] No goals needed for project - skipping

http://maven.apache.org/plugins/maven-archetype-plugin/
http://maven.apache.org/plugins/maven-archetype-plugin/
http://maven.apache.org/plugins/maven-archetype-plugin/

Maven Archetype - Drools5
Integration Helper Archetype

41

[INFO] Setting property: classpath.resource.loader.class => 'org.codehaus.plexus.velocity.ContextClassLoaderResourceLoader'.
[INFO] Setting property: velocimacro.messages.on => 'false'.
[INFO] Setting property: resource.loader => 'classpath'.
[INFO] Setting property: resource.manager.logwhenfound => 'false'.
[INFO] [archetype:generate]
[INFO] Generating project in Interactive mode
[WARNING] No archetype repository found. Falling back to central repository (http://repo1.maven.org/maven2).
[WARNING] Use -DarchetypeRepository=<your repository> if archetype's repository is elsewhere.
Define value for groupId: :

Here input grpid

Define value for artifactId: :

Here input artifactid

Define value for version: 1.0-SNAPSHOT: :

Here input 1.0-SNAPSHOT

Define value for package: grpid: :

Here input package

Confirm properties configuration:
groupId: grpid
artifactId: artifactid
version: 1.0-SNAPSHOT
package: package
 Y: :

Finally confirm the data you input

[INFO] --
[INFO] BUILD SUCCESSFUL
[INFO] --
[INFO] Total time: 25 seconds
[INFO] Finished at: Sun Nov 15 12:46:56 CET 2009
[INFO] Final Memory: 8M/15M
[INFO] --

The resulting folder will be named artifactid. It will contains a single pom.xml file. A src folder will be
created. It will contains the main and test folder. You will then have a drools folder for the drools file,
a java folder for the java source.

42

Chapter 5. Examples
Presentation

Drools5-Integration-Helper can be use in various ways to achieve similar goals. In the following section
we will discuss how to achieve this goal (interfacing with drools business rules) from java, using the
various approaches .

Additional examples are available as part of the special group org.boretti.drools.integration.examples.

We will use the same problem as a basis for all the examples:

The problem
We must develop a logic, based on business rule, to allow (or disallow) access to credit for customer of
a bank.

Basically, in all solutions, we will have the following entities:

• A drools file defining how to compute the fact a customer is allowed to have or not access to credit.

• A class defining the customer.

The computation is based on the sex (a boolean value), the age (an int value) and the fact the customer
is unemployed (boolean).

Examples using interface

General idea
The general idea is to have a interface that directly delegate computation of the credit status. To do so, the
Customer class, a dedicated interface, the drools file and usage of the Maven plugin are required.

Implementation

Java Source

Customer.java

The class Customer defines the various field and getter/setter like in the standard way. Only fields that
are not computed are defined.

package example1;

public class Customer {
 private String name;

 private String prenom;

 private boolean sexe;

 private int age;

Examples

43

 private boolean chomeur;

 /**
 * @return the name
 */
 public String getName() {
 return name;
 }

 public Customer(String name, String prenom, boolean sexe, int age,
 boolean chomeur) {
 super();
 this.name = name;
 this.prenom = prenom;
 this.sexe = sexe;
 this.age = age;
 this.chomeur = chomeur;
 }

 /**
 * @param name the name to set
 */
 public void setName(String name) {
 this.name = name;
 }

 /**
 * @return the prenom
 */
 public String getPrenom() {
 return prenom;
 }

 /**
 * @param prenom the prenom to set
 */
 public void setPrenom(String prenom) {
 this.prenom = prenom;
 }

 /**
 * @return the sexe
 */
 public boolean isSexe() {
 return sexe;
 }

 /**
 * @param sexe the sexe to set
 */
 public void setSexe(boolean sexe) {
 this.sexe = sexe;
 }

Examples

44

 /**
 * @return the age
 */
 public int getAge() {
 return age;
 }

 /**
 * @param age the age to set
 */
 public void setAge(int age) {
 this.age = age;
 }

 /**
 * @return the chomeur
 */
 public boolean isChomeur() {
 return chomeur;
 }

 /**
 * @param chomeur the chomeur to set
 */
 public void setChomeur(boolean chomeur) {
 this.chomeur = chomeur;
 }

}

CustomerEvaluator.java

This interface define that it is possible to compute the credit check regarding a Customer. The annotation
is used to define the drools file.

package example1;

import org.boretti.drools.integration.drools5.annotations.DroolsService;

@DroolsService(resourceName="/example1/Customer.cdrl")

public interface CustomerEvaluator {
 public boolean checkCredit(Customer customer);
}

Drools file

The drools file must use the various information regarding the Customer to compute the value. A boolean
value is asserted into the workingMemory.

package example1;

global org.apache.log4j.Logger droolsLogger;

Examples

45

rule "Good sexe"
when
 c:Customer(sexe == true,chomeur == false)
then
 insert(true);
end

rule "Wrong sexe good age"
when
 c:Customer(sexe == false,chomeur == false,age>45)
then
 insert(true);
end

rule "Wrong customer 1"
when
 c:Customer(chomeur == true)
then
 insert(false);
end

rule "Wrong customer 2"
when
 c:Customer(sexe == false, age<=45)
then
 insert(false);
end

Maven integration

The pom.xml file must reference the drools helper library and the plugin. Using the packaging jar-drools
ensure the drools goals to be executed automatically.

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>
 org.boretti.drools.integration.test
 </groupId>
 <artifactId>
 drools5-integration-helper-maven-plugin-test9
 </artifactId>
 <packaging>jar-drools</packaging>
 <version>1.3.0</version>

 <dependencies>
 <dependency>
 <groupId>
 org.boretti.drools.integration
 </groupId>
 <artifactId>

Examples

46

 drools5-integration-helper-library
 </artifactId>
 <version>1.3.0</version>
 </dependency>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.4</version>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>
 org.apache.maven.plugins
 </groupId>
 <artifactId>
 maven-compiler-plugin
 </artifactId>
 <configuration>
 <source>1.6</source>
 <target>1.6</target>
 </configuration>
 </plugin>
 <plugin>
 <artifactId>
 drools5-integration-helper-maven-plugin
 </artifactId>
 <groupId>
 org.boretti.drools.integration
 </groupId>
 <version>1.3.0</version>
 <extensions>true</extensions>
 </plugin>
 </plugins>
 </build>
</project>

Usage

The user must create an instance of the Subscriber class and then get a reference to the
CustomerEvaluator interface. To do so, it is possible to use the following call for example new
DroolsProvider().getService(CustomerEvaluator.class). Then it is possible to just call the method exposed
by the concrete implementation of the interface.

Examples using class

General idea
The general idea is to have a class that directly delegate computation of the field containing the credit
status. To do so, only the Customer class, the drools file and usage of the Maven plugin are required.

Examples

47

Implementation

Java Source

The class Customer defines the various field and getter/setter like in the standard way. Fields that are not
part of the credit check are annotated with @DroolsIgnored. The field generated by the drools is annotated
with @DroolsGenerated. The annotation @DroolsService references the drools file.

package example1;

import org.boretti.drools.integration.drools5.annotations.DroolsService;
import org.boretti.drools.integration.drools5.annotations.DroolsGenerated;
import org.boretti.drools.integration.drools5.annotations.DroolsIgnored;

@DroolsService(resourceName="/example1/Customer.cdrl")
public class Customer {

 //This field must not trigger field recomputation
 @DroolsIgnored
 private String name;

 //This field must not trigger field recomputation
 @DroolsIgnored
 private String prenom;

 private boolean sexe;

 private int age;

 private boolean chomeur;

 //This field is generated using drools
 @DroolsGenerated
 private boolean creditAllowed;

 /**
 * @return the name
 */
 public String getName() {
 return name;
 }

 public Customer(String name, String prenom, boolean sexe, int age,
 boolean chomeur) {
 super();
 this.name = name;
 this.prenom = prenom;
 this.sexe = sexe;
 this.age = age;
 this.chomeur = chomeur;
 }

 /**

Examples

48

 * @param name the name to set
 */
 public void setName(String name) {
 this.name = name;
 }

 /**
 * @return the prenom
 */
 public String getPrenom() {
 return prenom;
 }

 /**
 * @param prenom the prenom to set
 */
 public void setPrenom(String prenom) {
 this.prenom = prenom;
 }

 /**
 * @return the sexe
 */
 public boolean isSexe() {
 return sexe;
 }

 /**
 * @param sexe the sexe to set
 */
 public void setSexe(boolean sexe) {
 this.sexe = sexe;
 }

 /**
 * @return the age
 */
 public int getAge() {
 return age;
 }

 /**
 * @param age the age to set
 */
 public void setAge(int age) {
 this.age = age;
 }

 /**
 * @return the chomeur
 */
 public boolean isChomeur() {
 return chomeur;
 }

Examples

49

 /**
 * @param chomeur the chomeur to set
 */
 public void setChomeur(boolean chomeur) {
 this.chomeur = chomeur;
 }

 /**
 * @return the creditAllowed
 */
 public boolean isCreditAllowed() {
 return creditAllowed;
 }

 /**
 * @param creditAllowed the creditAllowed to set
 */
 public void setCreditAllowed(boolean creditAllowed) {
 this.creditAllowed = creditAllowed;
 }
}

Drools file

The drools file contains the logic to compute the creditAllowed value. This file is implicitly call to compute
the creditAllowed. This drools file must set the creditAllowed.

package example1;

global org.apache.log4j.Logger droolsLogger;

rule "Reset"
 salience 2
when
 c:Customer()
then
 c.setCreditAllowed(false);
end

rule "Good sexe"
 salience 1
when
 c:Customer(sexe == true,chomeur == false)
then
 c.setCreditAllowed(true);
end

rule "Wrong sexe good age"
 salience 1
when
 c:Customer(sexe == false,chomeur == false,age>45)
then

Examples

50

 c.setCreditAllowed(true);
end

Maven integration

The pom.xml file must reference the drools helper library and the plugin. Using the packaging jar-drools
ensure the drools goals to be executed automatically.

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>
 org.boretti.drools.integration.test
 </groupId>
 <artifactId>
 drools5-integration-helper-maven-plugin-test8
 </artifactId>
 <packaging>jar-drools</packaging>
 <version>1.3.0</version>

 <dependencies>
 <dependency>
 <groupId>
 org.boretti.drools.integration
 </groupId>
 <artifactId>
 drools5-integration-helper-library
 </artifactId>
 <version>1.3.0</version>
 </dependency>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.4</version>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>
 org.apache.maven.plugins
 </groupId>
 <artifactId>
 maven-compiler-plugin
 </artifactId>
 <configuration>
 <source>1.6</source>
 <target>1.6</target>
 </configuration>
 </plugin>

Examples

51

 <plugin>
 <artifactId>
 drools5-integration-helper-maven-plugin
 </artifactId>
 <groupId>
 org.boretti.drools.integration
 </groupId>
 <version>1.3.0</version>
 <extensions>true</extensions>
 </plugin>
 </plugins>
 </build>
</project>

Usage

With this approach, it is only necessary to instantiate the object. Every time a field that is use to compute
the credit access is modified, the system will ensure the credit access field is recomputed at next access
(in getter method). Everything is transparent at runtime.

Examples using condition

General idea
In this approach the check to know if the customer is allowed to have credit is not done in a dedicated
method or thru a field, but but defining that there are some preconditions to be checked before granting
(and giving) the credit.

So, only a Customer class and rules (and maven usage) are required. For the completude of the solution,
a dedicated Error is also defined.

Implementation

Java Source

Customer class

This class have several field and one method annotated with @DroolsPreCondition.

package conditions;

import org.boretti.drools.integration.drools5.annotations.DroolsPreCondition;

public class Customer {
 private String name;

 private String prenom;

 private boolean sexe;

 private int age;

Examples

52

 private boolean chomeur;

 /**
 * @return the name
 */
 public String getName() {
 return name;
 }

 public Customer(String name, String prenom, boolean sexe, int age,
 boolean chomeur) {
 super();
 this.name = name;
 this.prenom = prenom;
 this.sexe = sexe;
 this.age = age;
 this.chomeur = chomeur;
 }

 /**
 * @param name the name to set
 */
 public void setName(String name) {
 this.name = name;
 }

 /**
 * @return the prenom
 */
 public String getPrenom() {
 return prenom;
 }

 /**
 * @param prenom the prenom to set
 */
 public void setPrenom(String prenom) {
 this.prenom = prenom;
 }

 /**
 * @return the sexe
 */
 public boolean isSexe() {
 return sexe;
 }

 /**
 * @param sexe the sexe to set
 */
 public void setSexe(boolean sexe) {
 this.sexe = sexe;
 }

Examples

53

 /**
 * @return the age
 */
 public int getAge() {
 return age;
 }

 /**
 * @param age the age to set
 */
 public void setAge(int age) {
 this.age = age;
 }

 /**
 * @return the chomeur
 */
 public boolean isChomeur() {
 return chomeur;
 }

 /**
 * @param chomeur the chomeur to set
 */
 public void setChomeur(boolean chomeur) {
 this.chomeur = chomeur;
 }

 @DroolsPreCondition(resourceName="/Customer-conditions-pre.cdrl",error=UnAuthorizedError.class)
 public void doCredit(float howMany) {
 System.err.println("Credit granted :"+howMany);
 }

}

Error class

package conditions;

public class UnAuthorizedError extends Error {
 public UnAuthorizedError() {}

 public UnAuthorizedError(String msg) {
 super(msg);
 }

 public UnAuthorizedError(String msg,Throwable cause) {
 super(msg,cause);
 }
}

Drools file

This file define the business rule. In case credit can't be allowed, an Error is inserted.

Examples

54

package conditions;

global org.apache.log4j.Logger droolsLogger;

rule "Wrong customer 1"
when
 c:Customer(chomeur == true)
then
 insert(new UnAuthorizedError("Chomeur are not allowed"));
end

rule "Wrong customer 2"
when
 c:Customer(sexe == false, age<=45)
then
 insert(new UnAuthorizedError("Bad sex with age under 45 are not allowed"));
end

Maven integration

The pom.xml file must reference the drools helper library and the plugin. Using the packaging jar-drools
ensure the drools goals to be executed automatically.

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>
 org.boretti.drools.integration.test
 </groupId>
 <artifactId>
 drools5-integration-helper-maven-plugin-testXXX
 </artifactId>
 <packaging>jar-drools</packaging>
 <version>1.3.0</version>

 <dependencies>
 <dependency>
 <groupId>
 org.boretti.drools.integration
 </groupId>
 <artifactId>
 drools5-integration-helper-library
 </artifactId>
 <version>1.3.0</version>
 </dependency>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.4</version>
 <scope>test</scope>
 </dependency>

Examples

55

 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>
 org.apache.maven.plugins
 </groupId>
 <artifactId>
 maven-compiler-plugin
 </artifactId>
 <configuration>
 <source>1.6</source>
 <target>1.6</target>
 </configuration>
 </plugin>
 <plugin>
 <artifactId>
 drools5-integration-helper-maven-plugin
 </artifactId>
 <groupId>
 org.boretti.drools.integration
 </groupId>
 <version>1.3.0</version>
 <extensions>true</extensions>
 </plugin>
 </plugins>
 </build>
</project>

Usage

The class Customer can be used directly. When the method doCredit is call, the rules will be run priori
to the execution of the method itself.

	Drools5 Integration Helper 1.3.0 user guide
	Table of Contents
	Chapter 1. Introduction
	Presentation
	License

	Drools5 Integration Helper
	Installation
	Download
	All in one download
	Per files download

	Installation in local maven repository
	Installation in remote maven repository

	Chapter 2. Java Library - Drools5 Integration Helper Library
	Introduction
	Dependencies

	DroolsInterface
	Interface(s)
	Method(s)
	Session
	Activation Group
	Setter Methods
	Asynchronous methods

	Parameter(s)
	Return value
	Generic
	Future
	Primitive types

	DroolsClass
	Class(s)
	Field(s)
	Constructor(s)
	Multiple constructors usage.
	Multiple constructors without Drools override
	Multiple constructors with Drools override.
	How to avoid the unnecessary construction of the rule data

	Drools Execution

	DroolsCondition
	Idea
	Condition definition
	PreCondition
	PostCondition

	Exception throwing
	Static methods

	DroolsProvider
	Getting concrete instance from interface
	Getting RuleBase from interface or class
	Getting RuleBase from type and resource
	Running pre-condition
	Running post-condition

	Spring Integration
	Exceptions
	Logging
	Summaries
	Annotations
	Enumerations
	Classes
	Interfaces
	Errors and Exceptions

	Performance

	Chapter 3. Maven plugin - Drools5 Integration Helper Maven Plugin
	Introduction
	Drools Packaging
	Validation Drools Goals
	drools-copy-validate
	configuration
	Notes

	drools-copy-validate-test
	configuration
	Notes

	Compilation Drools Goals
	drools-compile
	configuration
	Notes

	drools-compile-test
	configuration
	Notes

	PostProcessing Drools Goals
	drools-postprocessor
	configuration
	Notes

	drools-postprocessor-test
	configuration
	Notes

	Report Goal
	drools-report
	configuration
	Results

	Logging of maven plugin execution

	Chapter 4. Maven Archetype - Drools5 Integration Helper Archetype
	Introduction
	Usage
	Example of usage

	Chapter 5. Examples
	Presentation
	The problem

	Examples using interface
	General idea
	Implementation
	Java Source
	Customer.java
	CustomerEvaluator.java

	Drools file
	Maven integration
	Usage

	Examples using class
	General idea
	Implementation
	Java Source
	Drools file
	Maven integration
	Usage

	Examples using condition
	General idea
	Implementation
	Java Source
	Customer class
	Error class

	Drools file
	Maven integration
	Usage

