

Improving the Usability of Protégé
Plug-In for Artifact Management using

Taxonomic Paths

 Chenreddy pradeepreddy

MASTER THESIS 2009
COMPUTER ENGINEERING

Postadress: Besöksadress: Telefon:

Box 1026 Gjuterigatan 5 036-10 10 00 (vx)

551 11 Jönköping

Förbättring av användbarhet av Protégé

Plug-in Artifact Manager

Improving the Usability of Protégé

Plug-In for Artifact Management using

Taxonomic Paths

Chenreddy pradeepreddy

Detta examensarbete är utfört vid Tekniska Högskolan i Jönköping inom
ämnesområdet datateknik. Arbetet är ett led i teknologie magisterutbildningen

med inriktning informationsteknik. Författarna svarar själva för framförda

åsikter, slutsatser och resultat.

Handledare: Kurt Sandkuhl
Examinator: Vladimir Tarasov

Omfattning: 20 poäng (D-nivå)

Datum: 2009-05-08

Arkiveringsnummer

Abstract

i

 Abstract

The goal of this thesis is to improve Usability and functionality of a tool for artifact

management, which applies taxonomic paths for categorizing artifacts. The main issues

of using the taxonomic paths are used for categorization and should improve the

precision when retrieving documents. The results show the improvements in

functionality and usability of the artifact manager. This thesis explains about Usability, re-

engineering, and necessary infrastructure to improve the performance of the artifact

manager tool.At the end of the thesis necessary modifications has been done to improve

usability and functionality of artifact manager.

Sammanfattning

ii

Sammanfattning

Målet med denna uppsats är att förbättra användbarheten och funktionaliteten av ett

verktyg för handhavande av artefakter. Verktyget använder sig av taxonomiska sökvägar

för kategorisering. Huvudanledningen till att använda taxonomiska sökvägar är att

träffsäkerheten vid dokumentsökningar bör öka vid kategorisering.Resultatetdelen visar

förbättringarna i funktionalitet och användbarhet för verktyget.Uppsatsen är inriktad på

användbarhet, nytänkande och nödvändig infrastruktur för att öka prestandan på

verktyget. I slutet av uppsatsen har nödvändiga ändringar gjorts för att öka

användbarheten och funktionaliteten på artefakthanteringsverktyget

Acknowledgements

iii

Acknowledgements

 I find myself overwhelmed in offering my parents all my thanks in dedicating this thesis

to them.

 First of all I would like to thank Kurt Sandkuhl for giving me the opportunity to work

with this thesis. I would like to thank to my friends nanda, debasis and pranaya who has

been a great support all through this work. Also I would like to thank my parents

Dharma reddy and Sukanya for their patience, moral support and understanding allowed

me to complete this thesis.

Thanks to all my friends who were far away from me, still providing me the confidence,

encouragement throughout the thesis.

To each of the above I extend my deepest appreciation. Thank you for all your support

and guidance.

Key words

iv

Key words

Protégé, Ontology, Plug-in, Artifact.

Contents

v

Contents

1 Introduction.. 1

1.1 BACKGROUND ... 1
1.2 PURPOSE ... 2
1.3 LIMITATIONS ... 2
1.4 OUTLINE ... 3

2 Theoretical Background ... 4

2.1. USABILITY HEURISTICS ... 4
2.1.1 VISABILTY OF SYSTEM STATUS…………………………………………………………………...4

 2.1.2 Match between system and the real world………………………………………5
 2.1.3 User control and freedom……………………………………………………....7
 2.1.4 Consistency and standards……………………………………………………...7
 2.1.5 Error prevention……………………………………………………………….8
 2.1.6 Recognition rather than recall…………………………………………………10
 2.1.7 Flexibility and efficiency of use………………………………………………..11
 2.1.8 Aesthetic and minimalist design……………………………………………….12
 2.1.9 Help users recognize, diagnose, and recover from errors……………………....12
 2.1.10 Help and documentation..13
 2.2. System re-engineering..14

3 Methods ... 17

3.1 IMPLEMENTATION ... 17
 3.2. Identifying improvements regarding user interface of the existing plug-in.…....21

4 Results.. 26

 4.1 Improved usability……………………………………………………………....26
 4.2 Results based on reengineering…………….………………………………….....30
 4.3 Final results……………………………………………………………………..34

5 Conclusion and discussion.. 35

6 References .. 37

List of Figures

vi

List of Figures

Fig 2.1 the system re-engineering process………………………………….…………..12
Fig 3.1. Starting tab of older version Artifact manager……………….……….………..17
Fig 3.2. Types tab of older version Artifact manager……….………………..……...….18
Fig 3.3. Artifacts tab of older version Artifact manager………..……………….....……19
Fig 3.4. Search tab of older version Artifact manager………………………….…….....21
Fig 4.1. Starting tab of modified version artifact manager…………………………...…22
Fig 4.2. Types tab of modified version artifact manager ……...………………………..23
Fig 4.3. Artifacts tab of modified version artifact manager ……………………..………24
Fig 4.4. Search tab of modified version artifact manager …...………………………….25
Fig 4.5. Applied re-engineering process diagram …...…………………………………26

List of Abbreviations

vii

List of Abbreviations

EO = Enterprise Ontology.

Error! Reference source not found.

1

1. Introduction

Many engineering disciplines heavily use documents to capture requirements,

specifications, design decisions, assembly instructions, test procedures or other artifacts

contributing to development and design processes. Although there is a clear trend

towards model-based development, i.e. using model-based representations of all artifacts

in an integrated tool chain, reality in a lot of enterprises continues to be characterized by

document management, document retrieval and the struggle for keeping related

documents consistent. A document in this context denotes a structured amount of

information that is meant for human perception. An artifact is the general term for all

work products in an engineering process, many of them being represented as documents.

Support for managing documents has been subject of research since decades in fields like

document engineering. Progress in ontology engineering creates new possibilities for

easing document management by using [1] ontology‟s.

The subject of this thesis is to improve usability and functionality of a tool for artifact

management, which applies taxonomic paths for categorizing artifacts. A taxonomic path

is a sequence of nodes connected by the “is a” relationship within a taxonomy. Using an

individual set of such paths for a specific artifact is supposed to enhance the meta-data

for the artifact under consideration, i.e. the taxonomic paths are used for categorization

and should improve the precision when retrieving [2] documents.

This report describes our thesis that is a part of master education information technology

at Jonkoping University.

1.1 Background

The primary task of the thesis is improving the usability of the existing Artifact Manager

plug-in for Protégé by evaluating the usability of the current system, identifying

improvements regarding the user interface of the existing plug-in, identifying

improvements of the existing functionality, including new features and implementing the

user interface improvements and functionality improvements. The implementation work

includes the necessity to migrate to the next Protégé version.

The theoretical part of the work focuses on the usability aspects and their consequences

with respect to the architecture and implementation of the plug-in and re-engineering

concepts.

Error! Reference source not found.

2

1.2 Purpose

The main purpose of the thesis is to enhance the existing prototype of an artefact

manager application in order to show that it is possible to use ontology to specify

artefacts and look for them by considering the enterprise ontology. Artefacts describe

documents related to products or processes for example. In order to get efficient

Searching results we applied threshold technique to filter the data. Other techniques can

be used together with the ontology part together to facilitate the main goal which is to

allow faster and cleverer management and to find the existing artifacts for the engineer.

 Theoretical research is focused on the usability aspects and their consequences with

respect to the architecture and implementation of the plug-in and re-engineering

concepts. Basically the theoretical part needs comprehensive research and knowledge of

usability heuristics. Nielsen has described “Heuristic evaluation is the most popular of the

usability inspection methods. Heuristic evaluation is done as a systematic inspection of a user interface

design for usability. The goal of heuristic evaluation is to find the usability problems in the design so that

they can be attended to as part of an iterative design process” [4], based on the above theory we

have done intense study on the existing artifact manger tool and came up with the

suggestion to improve the usability. The achieved improved usability has been discussed

clearly and after rigorous study of system re-engineering [3] concept we have tried to

imply the system re-engineering concept to the existing artifact manger to improve the

functionality of the tool. Finally we have reached to a conclusion that the usability

heuristics can be interface with the software re-engineering concept to improve the

usability and functionality of existing artifact manger.

The application should be based on an existing ontology editor protégé and be able to

manage artifact types and artifacts. Browsing and selecting/highlighting sub-graphs from

the enterprise ontology are other requirements for the application.

1.3 Limitations

To begin our work, we had to finalise the boundaries and limitations of the thesis. To get

successful results it is vital to select proper methodology to execute the project. Few

limitations of this master thesis as described below.

 Enhancement to this software should not affect the basic functionality of existing

plug-in.

 Our application does not support all versions of ontology.

 It is specific software created for the protégé tab-widget plug-in.

Error! Reference source not found.

3

1.4 Outline

The introduction describes our task and how this thesis was set up. It is followed by

descriptions of different usability heuristics and reengineering technique that are used for

the thesis. In the implementation part identifying improvements and functionality of user

interface of the existing plug-in are explained.

The modified user interface, performance and functionality of the artifact manager are

then presented ad analyzed. Modified artifact manager is our resulting product. The

applied usability heuristics research outcome is also described in this chapter.

Finally .in the conclusion and discussions chapters, we summarize what has been

achieved and discuss the results.

.Theoretical Background

4

2 .Theoretical Background

Basically our task is to improve the performance and usability of the existing artefact

manager tool for protégé. For that reason to increase the performance of the tool we

have applied software reengineering concept and as well as to increase the usability of the

artefact manager we have used usability heuristics.

In the first section we have discussed ten usability heuristics precisely and later we have

explained core concept of software reengineering.

2.1. Usability Heuristics

According to Jacob Nielsen [4] there are ten Usability heuristics, they are called

"heuristics" because they are more in the nature of rules of thumb than specific usability

guidelines. In the below sections we have elaborated the ten usability heuristics which

would be applicable to develop this project to greater extent.

2.1.1. Visibility of system status

Interaction between system and user is a vital process. This increase co-ordination and

access level between user and system. This can be achieved by giving frequent

information to the user about ongoing processes from system side with in realistic time.

[4].

Provide appropriate feedback

It is vital for a user friendly tool to provide accurate and precise feedback within a

stipulated time. System interacts with the user by providing an accurate progress

indicator that displays the status of a task and if this status is inappropriate, it will drive

the user towards the credibility of progress indicators thus lead to a conclusion that

environment is less comprehensible and well-suited. When the system displays a standard

error message indicating a logical or technical malfunction and does not provide any

guidance to diagnose the problem, this might hamper the running task [5].

Every time user provides an input or performs an action, there must be a prompt

indication that application has received the user‟s input. A good tool shall provide the

user with the current status of action. System to be designed in such a way that the

execution of the command is known to user and also in case of execution failure proper

pop up message must be displayed. Tool can be made more user friendly by providing

appropriate status and guide the user to complete execution during failure. For example

when you are installing an application and installation got aborted because of low

memory; the user may abort the installation due to unavailability of the solution [5].

http://www.useit.com/jakob/

.Theoretical Background

5

A good warning or error message should contain the following elements:

1. Show the description of the problem

2. A sequence of alert messages to guide the user to find a solution for the problem.

Both of these elements should be presented in simple, non-technical and jargon-free

language [5].

Keep the User Informed

A well designed system will provide the user with an approved status of the application at

an exact time using appropriate feedback. The tool should avoid speculative work for the

user regarding the status of the system or application [5].

For lengthy executions, tool should display a progress indicator that can provide timing

information about how long the process will take to complete. Users don‟t need to know

exactly in seconds about the ongoing process, but an approximation time is helpful, for

example when we query for the price of a product with a combination of specifications

for which the application takes more time to respond and there is no estimation about

the result of the query this might make the user exasperated and avoid its usage [5].

Even though extremely responsive applications can differ widely from one another, they

share the following characteristics [5].

 System should provide instant feedback to users, even when it cannot complete

their needs instantly.

 System should give sufficient feedback for users to recognize what they are

doing, and manage feedback according to user's abilities to understand and reply

to it.

 System should inform when processing is in progress

 System should provide approximation time to finish the ongoing process.

.

2.1.2. Match between system and the real world

The system should design in such a way that the bipolar communication between user

and system must be realistic and user friendly, system must understand and communicate

with language, phrase, word, logics, conventions, and feedback which would be easy to

understand to the end user [4].

An application developer uses terms that make technical or logical sense to him during

his test and debugging phases for displaying messages at various stages of the application

and errors. This is bad practice since the user might not be familiar to these terms. For

example if the programmer uses STDOUT as one of the display messages when you

enter an application, STDOUT is not understood by all the users, this is the case when

.Theoretical Background

6

user cannot understand the status of your application where more meaningful message is

required to say that you have opened the application[7].

 There are few cases where users cannot read the programmers' mind, they need visual

clue to guide them through out the program, and these clues often make use of real

world conventions to be effective. For example if you provide „+‟ sign to perform

intersect operation, user will be driven to a different set of results [7].

 The "match between system and real world" means that the system should go after real-

world conventions as strictly as possible, to allow the user to understand how to use the

program. Real-world representations and natural interactions give the interface a familiar

look and feel and can make it more intuitive to learn and use. If you use a tree picture for

CD/DVD drive, user will not be able to understand that this is the location to browse

for data of CD/DVD drive.

We can often take advantage of users‟ knowledge of the real world by using metaphor
that is, a well-known concept from the outside world to represent elements within your
application. For example when you are generating a report based on time, a picture of
clock in the first page of report gives an indication to the user about the report being
based on time. Another simple example can be:

 A file folder icon suggests that it is the location where documents are placed.

 A trash can icon informs the user that discarded files can be found here.

 While using metaphors, it is important to neither take the metaphor too factually,

nor to extend the metaphor beyond its realistic use.

There are few factors to consider when using a metaphor:

 Once you decided to use metaphor, its usage should be same throughout the interface,

rather using once at a specific point. Even superior would be to use the same metaphor

extend over numerous applications.fro example we can find floppy symbol in MS Word

to save and in MS excel if floppy symbol is used for opening a file from the floppy drive,

creates non-uniformity of the metaphor causing confusion in the minds of the user[6].

Metaphor is not always essential. In most of the cases the normal purpose of the

software itself is easier to understand than any real-world analogy of it. Do not damage a

metaphor in adapting it to the program's real purpose. Nor should you damage the sense

of a particular program feature in order to adapt it to a metaphor [6].

.Theoretical Background

7

2.1.3. User control and freedom

Some time Users choose system functions by error and will require a visibly marked

"emergency exit" to leave the surplus state without having to go through a

comprehensive dialogue. The system should supports undo and redo actions [4].

As much as possible, allow users to do whatever they want at all times. Users should

always feel in control, able to do what they want when they want. Users should be able to

switch between different tasks at any time. Avoid using interfaces that lock them into one

operation and prevent them from switching to anything else until that operation is

completed. Users should always have a clear path out. Avoid interfaces that make users

feel trapped. Use constant illustration elements to enable people to navigate fast but also

to allow them have reliable landmarks, giving people a sense of control on the navigation

[5].

To give users control over the system, allow them to achieve tasks using any cycle of

steps that they would naturally use. Don't limit them by artificially restricting their

choices to your notion of the "correct" sequence. The user must also be capable to tailor

aspects of their environment to fit individual preferences. It is very important,

nevertheless, to keep away from the ambush of allowing too much configuration, or

allowing the configuration of parameters that mainly accepted by user [5].

It is very important to provide end-users with the capabilities they need while helping

them avoid hazardous, irreversible actions. For example, in situations where the user

might demolish data accidentally, in this case it is always better to provide a warning

message before proceed for final deletion [5].

2.1.4. Consistency and standards

There should be consistency in design level of the system, so that user will wonder with

the flow, action, and situation of the system. Consistent design approach must be

followed while developing a system [4].

Consistency

Idea behind building any system is to have a consistent performance of the tool. When

the consistency of the system fails attributes like usability, navigation, Performance,

user-friendliness does not facilitate the user in using the tool. Consistency plays a vital

role in user interface. Some things to keep in mind for a consistent tool:

 Layout of application be with nominal eccentricity

 Navigation be apparent and consistent and not every click a venture

.Theoretical Background

8

Usability

Usability is one of the trivial features that makes the user chose a particular system/tool.

Due to resources venture towards Usability is bounced and reason behind this being a

simple one that is many errors could be discovered at the initial stage of the system/tool

development. There could be many meetings to understand the requirement of the user,

deciding the number of meetings to gather the requirement depends on the tool/system

Navigation

Navigation is to an application as table of contents are to a book. Navigation in an

application has to be clear and simple for the user. With a glimpse on the layout user

should be able to identify which segment of the application is he accessing and where the

user is being headed to. Navigation should ascertain the user about: Which segment of

the application is he in? Usually application/tool designers tend to have aspect of

projecting designer‟s preferences onto a design. Nomenclature used for an application

has to be a part of navigation of your application.

Performance

We live in 3rd generation mobile world, where at the press of a button of your cell phone

you get directions to unknown destinations with GPS in it, at such scenario we cannot

wait for the download to be completed while we drive from office to a friend‟s place. A

pragmatic standards-based design helps in achieving the need. With simple, semantic

markup and intangible presentation of the structure we achieve the desired performance

concern

2.1.5. Error prevention

A watchful design will be more helpful to avoid a trouble from occurring in the

preliminary stage than a good error messages. Inspection the errors and eliminating them

is the best way before confirming the option to the users [4].

One of the methods to help users make true choices is to predict frequent troubles and

providing feedback and communicate at every stage. Designer has the load to keep the

user out of difficulty. When requested the interface has to provide visual cues, reminders,

list of choices, and other aids. Recognition is easier for humans than recall. Supplemental

support is provided by appropriate and hover help, as well as agents. An opportunity to

eliminate user mistake and confusion is the gist of it [5].

The difficult task is to write helpful error messages which user understands. Displaying

error messages to find an appropriate display position is not a simple task. The question

is whether the message should become visible without delay when error occurs, in a

status bar, or in a dialog box? As a matter of fact error management is not preferred tasks

of developers and documenters. But they can‟t run away from this dilemma. Avoid errors

.Theoretical Background

9

instead of managing them is the best possible approach which makes most sense and this

is the simplest clarification.

Benefits

 Recovering from errors is the problem of most of the users as users cannot come

into error situations.

 Errors and error messages do not suspend user‟s effort.

 Error messages do not confuse users

 Displaying error messages in a screen area or popup window is not necessary.

Tips:

One of the ways to find design solutions that prevent errors is to give up of “old habits”

and take some rethinking. Some typical “patterns” are available to find new solutions as

there are no universal rules to prevent errors. Some ideas and examples are provided

below.

Some of the examples might not prevent errors themselves but help to reduce the

possibilities of errors in the right directions. These ideas have been beyond on the web

but they are well known to application developers.

Prevent wrong or invalid Inputs:

Numeric fields: Parsing the input string prevents users from entering letters or other
invalid characters.
Data and time fields: Making available intellectual date and time fields that are
preformatted or supply selection controls as an alternative of input fields (dropdown
lists, spin buttons, calendar controls)
Currency fields: Utilize preformatted fields for the different units.

Prevent Invalid Actions

Disable pushbuttons that cannot be used in the current context

Do not offer functionality that is not needed (reduces complication)

Prevent Disastrous Actions

Adding explanatory texts to the respective buttons can help users to avoid severe

consequences for that particular actions and informing the users about the consequences

will be a good help.

 Displaying confirmation dialogs will help if users might lose data

Follow the usual flow of control

Flow of control on a screen is usually from left to right and top to bottom. Users might

be confused if this direction is changed indiscriminately and for example might overlook

.Theoretical Background

10

the consequences of their actions and might get confused not knowingly how and where

to progress.

Do not obscure the Screen and its Purpose

Hiding the essential information and revealing immaterial information often dominates

the screen. In other cases users simply have no clue on a screen‟s function. Accordingly,

providing the essential information and relevantly arranging the things that are

predictable first helps users to know what to do on a screen and how to do it.

2.1.6. Recognition rather than recall

Making objects, events and options visible will help to play down the user‟s memory. It is

not required that user need to memorize information from one part of the dialogue to

another. Every time a suitable instruction for the use of the system is needed, they must

be visible or easily retrievable [4].

An easily accessible documentation should be added as the users often cannot memorize

what each object/ action/ options means so that users don‟t have to memorize what

each object/ action/ option does[8].

Predictable results should be provided to the user actions. Designer has the responsibility

to recognize the users‟ tasks, goals, and mental model in order to meet those prospects.

Usage of the terms and images matching users‟ task experience so that it will be a help

for the users understanding the objects and their roles and associations in accomplishing

tasks.

 The task of making users convinced in exploring, perceptive they can try an action, view

the result, and undo the action if the result is undesirable is needed. Interfaces should be

made more comfortable for the users so that their actions do not cause any irreversible

consequences.

User might be interested to explore further than navigation. We need to guide them in

some of the consequences for potentially hazardous proceedings. Guidelines must be

extended for the proceedings performed by accident as they don‟t know the

consequences [5].

For any inevitable motive, the vagaries of Internet communication, or as a result of error

on their part, we need to guarantee that user never lose their effort. Warn the user and

ask for affirmation if an action is extremely hazardous, and there is no way to undo the

outcome. Such actions must be performed in extreme cases because if users receive

confirmation messages commonly they might start ignoring them making them worse

than ineffective [5].

.Theoretical Background

11

User may not expect the side effect of bundling of events so it is better to avoid it. For

example, only send request should be cancelled when a user choose to cancel a request to

send a note. Avoid bundling an additional event, such as deletion of the note, with the

cancel request. Allowing users to make their choices and their actions autonomous is the

best way rather than implementing complex proceedings [5].

2.1.7. Flexibility and efficiency of use

Accelerators -- hidden to the beginner user- help to speed up the communication for the

user as it can be provide flexibility to both experienced and inexperienced users.

Everyday actions will be allowed to be monitored [4].

Flexibility:

Flexibility can be defined as a way to make changes to the system so that the application

is easy to use. Below are the factors that have to be taken into consideration to increase

the flexibility of the system:

 Task migratability: Migration means transfer between two places , in the same sense ,

task migratability refers to transferring the control for execution between the system and

the user , meaning it is how the system supports the user to execute different tasks and

vice versa .

 Substitutivity: It is defined as the Input or the Output that the user provides or requires

from the system.

 Dialogue initiative: It is when the system allows the user to interact with it by not placing

any restrictions by the input dialogue, such a situation is said to be dialogue initiative.

Efficiency:

Efficiency relates to how fast users complete their tasks once they learn how to use a

application, meaning using an application more number of times increases the level of

comfort and expertise in that application which helps to reduce the time taken by the

user to complete a task. This can be gained by designing the application in a logical

constructive manner.

.Theoretical Background

12

2.1.8. Aesthetic and minimalist design

Information that is irrelevant or not regularly needed shouldn‟t be included in a dialog.

When irrelevant information creeps into a dialog it in fact competes with the relevant

information which diminishes the actual meaning of the dialog [4].

The importance of a program is that it might not be a piece of art but it is mandatory not

to look ugly. A basic principle of what William Rotsler states is "Never do anything of what

that looks to someone else like a mistake" [6].

A relevant example would be of arrangement of buttons on the screen. Imagine you have

4 buttons each labeled with 4 random names that have almost equal size. These buttons

are displayed on the screen using an automated layout algorithm. However it is know that

all these buttons are of different sizes and gives a gut feeling that the algorithm is

incorporated carelessly. To eliminate this incompleteness the packaging algorithm must

better understand that it is better to use the same size for all buttons that almost the

same size. The principles of graphical design ought to make sense and give value to the

layout algorithm now. This also applies to widget layouts done manually [6].

Another factor to pleasing the user would be to create programs that look to work faster

than slackly programs carrying a sack. Only smart tricks can make a program look fast in

spite the fact that you never compromised with its functionality. For example you can

use for the off screen bitmap images for rendering which can then appear on a single

click. Technically this is called BitBlt (Bit-Block Transfer), in the example above, the

buttons can a similar concept to flicker when button is activated or screen sizes are

changed [6].

2.1.9. Help users recognize, diagnose, and recover from
errors

Error messages are to be user understandable and without code representation. It would

suggest a solution to the end-user [4].

When an erroneous operation is performed by the user, or a regular operation creates an

error (the user never knows) the program should clearly identify the error and direct the

user for the next steps. Cryptic error messages and uncaught errors are an example of

unhelpful error messages. Cryptic errors are those error messages that take the user

nowhere. They are very less informative and will not refer to a solution to fix the error

user level [9].

.Theoretical Background

13

Uncaught errors are those errors that a program fails to recognize and moves forward

with the process. But at a later point of time this uncaught error might lead to a program

mal function that is not actually because of the current operation. For example a memory

over usage created by one user on the server which is not caught correctly might show

up its impact when another user actually tries to access the server with a different

operation but by then the memory is totally engulfed and the server stops responding.

Because the error is uncaught it remains a hard to trace error [9].

2.1.10. Help and documentation

To get started with any application users needs some kind basic training and knowledge.

First and foremost thing is the user manual help and project documentation form these

documents user can learn to access and use the application. It is vital provide help and

documentation along with project. It should interface with project in such way that user

can search easily [4].

User no need memorize the things which are already known to the system, such as name

of the file and interface details. The system must provide the information whatever form

it is [5].

System should allow for users to have a two-way interaction to illuminate or authenticate

requests, or to remedy a problem. The interactive window has to be well presented and

comprise good interaction features similar to other segments of interface console. For

allowing users to make choice for a specific task tool should present pertinent

information, provide access to related information [5].

At times the system fails to follow the user‟s request in spite of having objects and

actions provided when they want to complete a specific task. In such cases tool can

provide a two-way communication to help users achieve their target [5].

User tasks can be of a varied kind ranging from beginner to expert level. In addition to

providing assistance when requested, the system should recognize and anticipate the

user's goals, and offer assistance to make the task easier. To achieve the target a user

wants to get, tool/system‟s help should be able to assist with ease and less time.

Intelligent assistance should build the user independent to use to tool as the user prefers

to be so [5].

.Theoretical Background

14

2.2. System re-engineering:

Ian Sommerville has described “Re- engineering is a process of Reorganizing and modifying existing

software systems to make them more maintainable and updating the structure and values of the system´s

data” [3].

Re- engineering has two key advantages

1. Reduced risk

 There is a high risk involved in the new software development. There may be

development problems, staffing problems and specification problems

2. Reduced cost

 The expenditure of re-engineering is often considerably less than the costs of

developing new software.

Fig2.1. the system re-engineering process [3]

The above figure illustrates the re-engineering process. The input to the process is a

legacy program and the output is a structured and modified version of the same program.

In this process the data for the system may also re-engineered [3].

.Theoretical Background

15

The activities in this re-engineering process are

1. Source code translation:

 In this process the program is transformed from one programming language to more

advance version of the same language or a different programming language [3].

2. Reverse engineering:

 In the reverse engineering stage, the complete analysis of software is done with a noted

view to understand its design and specification. It may be part of a re-engineering

process but may also be used to re-specify a system for reimplementation. This helps to

document its organization and functionality [3].

3. Program structure improvement:

 In this process the control formation of the program is analyzed and customized to

make it easier to read and recognize. The program may be automatically restructured to

remove unconditional branches. Conditions may be simplified to make them more

readable and easy to understand [3].

4. Program modularization:

 In this process basically all related parts of the program collected together and, where

appropriate and redundancy is removed. It is a manual process that is carried out by

program inspection and Re-organization [3].

5. Data re-engineering:

The data processed by the program is changed to reflect program changes. It involves

analyzing and reorganizing the data structures (and sometimes the data values) in a

program

System re-engineering may not necessarily require all of the steps which we discussed

earlier Source code translation may not be needed if the programming language used to

develop the system is still supported by the compiler supplier. If the re-engineering relies

completely on automated tools, the recovering documentation through reverse

engineering may be unnecessary [3].

Data re-engineering in only required if the data structure in the program change during

system Re-engineering .anyway software re-engineering always involves some program

re-structuring [3].

.Theoretical Background

16

Re -engineering cost factors:

1. The quality of the software to be re-engineered: The lower the quality of the

software and its associated documentation. The higher the Re-engineering costs.

2. The tool support available for re-engineering: it is not normally cost-effective to

re-engineer a software system unless you can use CASE tools to automate most of

the program changes.

3. The extent of data conversion required: if re-engineering requires large volumes of

data to be converted. The process cost increases significantly

4. The availability of expert staff : if the staff responsible for maintaining the system

cannot be involved in the re-engineering process, the costs will increase because

system re-engineering will have to spend a great deal of time understanding the

system[3].

Methods

17

3 Methods

The main aim of this thesis is to get clear understanding and knowledge about existing

artifact manger and also get historical overview of idea. And finding out the past

development and research that was done in this field.

Keeping in view the purpose of thesis, Imperative qualitative approach was used for

carrying out this thesis work. As we already know our topic of interest and have

preliminary knowledge about the topic and keeping in view the limitation of our process

we choose the above design for our thesis work.

The study was started by formulating usability heuristics and system re-engineering

concepts. By keeping the view of theoretical framework the modification level of

existing artifact manger was designed. Literature on usability heuristics [4] and system re-

engineering [3] (discussed n detailed sections 2.1 and 2.2 respectively) was reviewed to

support and fulfill the main purpose of the thesis. Then qualitative data was collected

and useful modification was proposed based on the above literature review. Results and

analysis was carried out to verify and motivate the proposed outcome of the thesis work.

Our intension was to know the functionality and flow of the past artifact manger evolved

and showed. And based on our literature review and current state of artifact manger and

the central suggestions were determined for future directions.

This project is not restricted but our focus is to find the value added modification to

existing artifact manger listed below.

 How the existing artifact manger does not fulfill the rules and regulations of the

usability heuristics?

 How system re-engineering concept can be accomplished to improve the

functionality of the artifact manger?

At the end of this thesis work we managed to address and find solution above two

questions with implementation approach to the artifact manger. In the results we

discussed about achieved projected modification based usability and re-engineering

concepts and compared based on the user feedback survey technique.

3.1 Implementation

Our implementation was influenced by different factors. One of them was the modifying

functionality of the existing plug-in based on usability and re-engineering concept it was a

new experience to me. We had thus to explore Protégé framework and find which were

the possibilities and limitations. furthermore, even though we had quite well defined

Methods

18

basic requirements for the application and the project, the area was still quite new and we

needed to get acquainted with the domain and understand more clearly about the

developing environment required to satisfy the thesis requirements for the software.

Therefore we used an evolutionary software development process by trying and

validating progressively each step that we understood more.

From the next section, we start to explain how we implemented the different concepts
involved for improving the usability of Protégé plug-in for artifact manager based
Usability Heuristics and the environment which we used to develop the functionality of
artifact manger.

Our environment:

 Our task required that we used an existing ontology editor like protégé, since we had

experience with protégé and the enterprise otology being continued in protégé and older

version of the software is also developed based on this protégé. This encourages us to

choose this protégé.

Protégé is an open-source platform that provides a growing user community with a suite

of tools to construct domain models and knowledge-based applications with ontology‟s.

We choose to implement our application as protégé with a tab-widget-plug in called

artifact manger. Initially we decided to use net beans as a tool to develop and modify the

source code. Unfortunately the modification does not reflect explicitly to the protégé.

 The major task is to find out a suitable way of interaction with protégé Due to the lack

of information, we searched through discussion groups [10] have been used finally, and

then we used my eclipse 7.0 tool as a source code development environment. The

developed or modified source code has been converted jar file and imported to plug-in

folder of protégé to view the output.

Some best features of my eclipse 7.0

 Advanced java script tooling.

 New plug-in dash board.

 New JSF views and enhancements.

Methods

19

Artifact manager:

Artifact manager is software used to manage artifacts. The broader aspect of artifact

manager is to create, remove, change the artifacts and search artifacts.

Functionality of artifact manager:

Artifact manager is a tab plug-in for protégé; it contains four sub tabs discussed below

The starting tab:

 The “Starting” tab shown in figure 4.1 Permits the selection of the EO, it will refer the

metadata for each artifact. It uses protégé standard-format file containing the ontology.

The EO is integrated into the current ontology which holds artifact types and instances

and other temporary classes used for the execution of the Artifact manger. If successfully

imported, a message gives notice of it; otherwise an error message is given. The status of

the imported ontology will be saved into the project ontology and no further importation

will be permitted. Therefore the EO must not be changed. This version of artifact

manger doesn‟t support EO change.

The types tab:

The “type” tab shown in the figure 4.2 allows adding, removing of artifacts types, on

selection of an artifact type, the corresponding list of attribute associated that particular

type of artifact will displayed, together with the appropriate cardinality of the attribute.

We can delete a selected attribute from the list by using remove option. Similarly we can

change the name of existing attribute using rename option. We can create two types of

attributes like simple and complex.

The artifact tab:

This “artifact” tab shown in figure 4.3 is intended to manage artifacts. In protégé it

corresponds to instances of the class of the artifact type to which the artifacts is based

on. Possible actions are to add and remove an artifact. When an artifact is selected, user

can give values to attributes, by creating new instances of them, finally the metadata is set

by selecting (highlighting) elements from the EO on the right windowpane. The URL

consists of a string that stores the physical representation of the artifact.

While adding an artifact, user can select among the different existing artifact types using

dropdown list, after adding the artifact list of attribute types is displayed. Attribute types

that depends of the preexistence of other attributes (when they are not directly attached

to the artifact, but to another attribute for instances) will not be displayed at first, it will

be necessary to create at least one instance) will not be displayed at first, it will be

necessary to create at least one attribute of the triggering attribute.

Methods

20

Selecting an attribute in the list will display the instances of that attribute in the adjacent

table. For the selected artifact from the list on the left of the screen, will appear the EO

on the right windowpane. User can add whole path to metadata selection panel. User can

change the path when he wants to add new one. When the complex attribute type is

selected, we can create an instance of it, the value won‟t give effect because a complex

attribute doesn‟t hold a value, but it will then enable the creation of contained attributes

type which can hold a value.

Search tab:

The “search” tab shown in figure 4.4 allows the searching of existing artifacts, according

to different possible parameters by:

 Attribute

 Ontology matching

 Both

Both matching can be combined; actually the attribute matching limits the number of

artifacts that will be matched against their metadata. It should therefore perform faster

than with only ontology matching.

Ontology matching can be done in two ways.

 Part of EO selection query

 Free ontology query

We first click to display the existing attribute types. Then we can select which attribute

will be in the search, by selecting one of the pre-selected attribute. We can then visualize

the instances of such attribute; by clicking on it we will get the list of matching artifacts.

By choosing the ontology matching way, user can choose between a free editing ontology

or can extract from EO. In the latter case, one highlights which class or instance should

be looked for. Then we start search, we get eventually artifacts that match. They would

contain some or all of the elements from the ontology. A score gives an indication of

how accurate are the search results, the user first selects in which mode the search will be

performed, by free ontology or by EO selection, the additional filtration done based on

threshold technique. We can see the count of matching artifacts on the top of the list

box.

Methods

21

3.2. Identifying improvements regarding user interface
of the existing plug-in:

In this section we analyzed the existing functionality and flow of the artifact manger

based on the usability heuristics. In the below sections we tried to relate the implication

of specific usability heuristics that use for proposed modifications to existing artifact

manager tool. For each tab the applicable usability heuristics is discussed in detail in

section 3.2.1 onwards.

 Starting tab:

 Fig 3.1. Starting tab of older version Artifact manager

From the pictorial diagram the visible minor bugs which may create an illusion or

confusion to the end user are described below.

Based on usability:

1. Check status button: user need not to check the status of the ontology merging,

where as it would be rational to show the status automatically loading event of

the page. This modification has been proposed based on usability heuristic

“Keep the User Informed” discussed in section 2.1.1 broadly.

Methods

22

2. …. Button : to give a better clarity to the end user, it is required to use proper key

word as a label on the button. This modification reference has been taken from

usability heuristic “Match between system and real world” discussed in section

2.1.2 clearly.

3. Generally across the globe Red is a color indicates warning or panic, in this case

we assume the above informatics note should not be in red color. After

importing the ontology, the “browse” button remains active for user to import

ontology. This proposed modification influenced based on the usability heuristic

“Error prevention” which we have described clearly in section 2.1.5.

Types tab:

 Fig 3.2. Types tab of older version Artifact manager

From the pictorial diagram the visible minor bugs which may create an illusion or

confusion to the end user are described below

Methods

23

Based on usability:

1. List artifact types button: user need not to click the button to display the existing

artifact types, this would be create a confusion if there is no artifact types entered

and try to keep pressing the button to see the content. This modification has

been proposed based on usability heuristics “Keep the User Informed” and

“Consistency and standards“discussed in sections 2.1.1 and 2.1.4 respectively.

2. Remove selected type: there is no warning message displayed to the end user

when he tries to delete artifact type. While deleting the artifact type it doesn‟t

check the proper hierarchy data of artifact under available particular artifact type.

This proposed modification has been done based usability heuristics “Help

users recognize, diagnose, and recover from errors” and “error prevention”

discussed in section 2.1.9 and 2.1.5 respectively.

3. Showing all unnecessary information to the end user create ambiguity. This

modification proposed based the usability heuristic “Recognition rather than

recall” described in section 2.1.6.

 Artifacts tab:

 Fig 3.3. Artifacts tab of older version Artifact manager

Methods

24

From the pictorial diagram the visible minor bugs which may create an illusion or

confusion to the end user are described below

Based on usability:

1. List artifacts button: user need not to click the button to display the existing

artifacts, this would be create confusion if there is no artifacts. This

modification has been proposed based on usability heuristics “Keep the User

Informed” and “Consistency and standards “discussed in sections 2.1.1 and 2.1.4

respectively.

2. Remove selected artifact: there is no warning message displayed to the end user

when he tries to delete existing artifact. While deleting the artifact there is no

precautionary message is displayed. This proposed modification has been done based

usability heuristics “Help users recognize, diagnose, and recover from

errors” discussed in section 2.1.9 clearly.

3. Showing all unnecessary information (buttons, labels, text box, and list box) to

the end user create ambiguity. This modification proposed based the usability

heuristic “Recognition rather than recall” described in section 2.1.6.

4. “….” And “Laun” Buttons: to give a better clarity to the end user, it is required

to use proper keyword as a label on the button. This modification reference has

been taken from usability heuristic “Match between system and real world”

discussed in section 2.1.2 clearly.

Based on Functionality:

1. While trying to add the classes to metadata. It is time consuming task to add each

and every class to metadata as a separate event. There may be a chance of missing

some important class to be added .it may end up with fragment of system with

inaccurate results.

Methods

25

 Search tab:

 Fig 3.4. Search tab of older version Artifact manager

From the pictorial diagram the visible minor bugs which may create an illusion or

confusion to the end user are described below

Based on usability:

1. … Button: user need not to click this button to display the exciting select

attribute types, this would create confusion to end user. . This modification has

been proposed based on usability heuristics “Keep the User Informed” and

“Consistency and standards “discussed in sections 2.1.1 and 2.1.4 respectively.

Based on Functionality:

1. While trying to add the classes to enterprise ontology selection. It is time

consuming task to add each and every class as a separate event. There may be a

chance of missing some important class to be added .it may end up with fragment

of system with inaccurate results

2. It is all ways better to know the list of matching artifacts count, it will use full to

filter the data and easy to find useful matching artifacts.

3. It is helpful to extract or sort the data based on score provided by the user.

Error! Reference source not found.

26

4. Results

This section consists of three segments. In the first segment we have described achieved

usability improvement of existing artifact manager tool based on usability heuristics. In

the second segment we described the improvement of existing artifact manager tool

based on system re-engineering theory. Finally we have discussed the overall result

achieved by applying usability heuristics and system re-engineering.

4.1 Improved Usability

In this section we have described visibly about improved usability by applying usability
heuristics on existing artifact manager tool.

Starting tab:

 Fig 4.1. Starting tab of modified version artifact manager

As earlier we have discuss the excising bugs and functionality based on that we have

proposed solutions to existing bugs some shown in above picture disused below.

Error! Reference source not found.

27

Accomplished results:

1. The Check status button has been removed, the functionality of the status display

has-been modified such that the status will automatically display while loading

event of the page.

2. Proper label name has assigned to …. Button.

3. The text message color has been changed to visual friendly color.

4. Static information‟s is being removed from the screen and validation is checked

and alert message has been displayed on click event of browse button.

5. After merging the ontology the browse button has been disabled to prevent end

user to select new ontology.

Types tab:

 Fig 4.2. Types tab of modified version artifact manager

As earlier we have discuss the excising bugs and functionality based on that we have

proposed solutions to existing bugs some shown in above picture disused below.

Accomplished results:

Error! Reference source not found.

28

1. List artifact type‟s button has been removed. The functionality of the list artifact

type‟s button has-been modified such that the status will automatically display

while loading event of the page.

2. On click of Remove selected button a popup warning message displayed to the

end user to get the conformation for removal. On back ground condition has

been checked for the artifact type whether it contains any artifact or not. In case

it contains any artifacts then user will not able to delete artifact type

3. Proper hide and when is given to the unnecessary information to the end user to

reduce ambiguity. (considering one example on selection artifact type, the

corresponding information show to the user)

Artifacts tab:

Fig 4.3. Artifacts tab of modified version artifact manager

As earlier we have discuss the excising bugs and functionality based on that we have

proposed solutions to existing bugs some shown in above picture disused below.

Error! Reference source not found.

29

Accomplished results:

1. List artifacts button has been removed. The functionality of the list artifacts

button has-been modified such that the status will automatically display while

loading event of the page.

2. On click of Remove selected button a popup warning message displayed to the

end user to get the conformation for removal.

3. Proper hide and when is given to the unnecessary information to the end user to

reduce ambiguity. (considering one example on selection artifact, the

corresponding information show to the user)

4. Now we are able to add the whole path to metadata. Its help full to time

reduction. Possibility of missing important classes has been reduced. It will useful

to achieve accurate results.

5. “….” And “Laun” Buttons label name has been changed to a meaning full

name.

Search tab:

Fig 4.4. Search tab of modified version artifact manager

Error! Reference source not found.

30

As earlier we have discuss the excising bugs and functionality based on that we have

proposed solutions to existing bugs some shown in above picture disused below.

Accomplished results:

1. … Button has been removed. The functionality of the … button has-been

modified such that the status will automatically display while loading event of

the page
2. Now we are able to add the whole path to enterprise ontology selection its help

full to time reduction. Possibility of missing important classes has been reduced.

It will useful to achieve accurate results

3. Additional feature has been incorporated to show the count of the list of

matching artifacts .certainly it will help the user to see the number of matching

artifacts

4. Finally user can filter and manipulate the matching artifacts with the help

threshold functionality .(user require to fill threshold functionality column with

required score to display the specific matching artifact)

4.2. Results based on reengineering:

 Fig 4.5. Applied re-engineering process diagram

Error! Reference source not found.

31

As illustrated above diagram the notation of software reengineering has five phases. Not

necessarily all the five phases required to be accommodated in any particular software

reengineering process.

Here we have used three major phases of reengineering marked with colored box, and

explanation of usage of these particular phases is described below.

Source code translation:

 Actually In this phase program should modified from one language to another

programming language or old version to advanced version of that same programming

language. In this occasion we have modified few sections of old programming language

to advance version of that programming language. The major development and design

component used in old version of software was core java. We all know core java has its

own limitation to explore all functional and requirements. The current scenario

compelled the developer to look forward advance version of java technology such as j2ee

and JSP. User interface which were designed in java applet has been modified and

replaced by advanced java concepts such as java swings.

While working in this phase we had some complications, especially to figure out suitable

environment for developing software. In the document of old version software doesn‟t

provide the clear information of the environment .for this reason we spent lot of time to

set up an environment. We could not manage to find the appropriate environment for

the software development, but finally we have chosen my eclipse 7.0 version to develop

and to do modification of that software.

We have done few modifications in the source code in the various stages to achieve the

required functionality; below we have given the example code which shows achieved

modifications.

Source code of old version artifact manger:

Public void saveClassMetaData()
 {
 ProtegeClass pcls = getSelectedClass ();
 If (null! = pcls)
 {
 If (! isHighLighted (pcls))
 {
 m_collClassMD.add (pcls);

MetaDataManager.setClassMetaData (m_ains, m_collClassMD);
 }
 Else
 {
 m_collClassMD.remove (pcls);

MetaDataManager.setClassMetaData (m_ains, m_collClassMD);
 }
 }

 RefreshClassTree ();
 UpdateClassButton ();
 }

Error! Reference source not found.

32

Source code of new version artifact manger:

Public void saveClassMetaData(ProtegeClass ParentSelectedClass)
 {
 ProtegeClass pcls = getSelectedClass();
 if(null != pcls)
 {
 if(!isHighLighted(pcls))
 {
 m_collClassMD.add(pcls);
 for(int i=0;i<=10;i++){
 pcls=pcls.getFirstParent();
 m_collClassMD.add (pcls);
 If(ParentSelectedClass.compare(pcls) pcls.getTopParent().compare(pcls))
 {
 break;
 }
 }
 childNode=true;
 MetaDataManager.setClassMetaData(m_ains, m_collClassMD); }
 else
 {
 m_collClassMD.remove(pcls);
 for(int i=0;i<=10;i++){
 pcls=pcls.getFirstParent ();
 m_collClassMD.remove (pcls);
 If (ParentSelectedClass.compare (pcls) || pcls.getTopParent ().compare (pcls)){
 Break ;}
 ChildNode=false;
MetaDataManager.setClassMetaData (m_ains, m_collClassMD);
 }
 }
 refreshClassTree ();
 UpdatablessButton ();
 }

In the old version of artifact manager while adding path to metadata we have to add each

and every single class and remove a single class. It is time consuming task to add each

and every class to metadata as a separate event. There may be a chance of missing some

important class to be added .it may end up with fragment of system with inaccurate

results. To solve this problem we have created on option which first checks the parent

class, if the user selects the child class then whole path added to metadata.

Reverse engineering:

In this phase of software reengineering we had done a thorough study on the working

functionality of old software, during this comprehensive study we found various

functionality which can be improved further to simplify the user access and reduce the

complexity. This additional functionality will be value-added to this existing plug-in.

Based on the findings during analysis and study phase of the software, we have modified

user interface design and code to an extent such that it would incorporate the suggested

Error! Reference source not found.

33

changes and certainly helpful to the end user. This user friendly approach done based on

Usability Heuristics .Certain principles of Usability Heuristics. Such as displaying proper

error message to the end user at various stages to minimize the mistakes and enabling

end user to have more command and control on the software.

Usability Heuristics improvise the performance and flexibility of the software so that end

user can learn and handle precisely

 The modified user interface design is shown in section 4.1 (fig numbers 4.1, 4.2, 4.3 and

4.4) if you draw a comparison between old user interface design shown in section 3.1

(refers fig numbers 3.1, 3.2, 3.3 and 3.4) we can see a visible change in user interface

design between new version and old versions of artifact manger.

 For example in old version search tab (fig 3.4) there was no option to see the count of

matching artifacts list, in the old version to add a path to enterprise ontology selection we

have to add each and every single class. There was no option to filter the matching

artifacts list. Attribute list was displayed by the click of “…” button

On the new version the visible modified user interface design changes are.

 We have introduced one label to display the count of matching artifacts list and one

input field enter the value for thresh hold technique to filter the data. We added two new

buttons to enterprise ontology selection frame to add whole taxonomic path to search

selection. We removed “….” Button but we can see the list of select attribute types on

the event of page loading

Data re-engineering:

In this phase we have done two major modifications to the program to get accurate

search information .Those main changes are reflected in search tab of the plug-in and it

helps to get accurate search result using threshold condition and displaying the total

count of artifacts. And another reflection is adding whole path to metadata panel in

artifacts tab and adding whole path to search selection panel in search tab.

Usability improvement:

As shown in figure 4.5 marked with blue color the usability improvement is integral part

of ongoing system re-engineering of this artifact manager. In this case the Re-engineering

process starts with existing artifact manager tool to a new transformed and improved

version of artifact manager. In this process various activities such a usability

improvement, value added functionality changes have been achieved. As we have

described in the diagram usability improvement is derived from “source code

translation”. The necessary source code has been modified based on the proposed

changes by applying usability heuristics on existing artifact manger. Thus we can

conclude that usability improvement is an integral part of the system reengineering.

Error! Reference source not found.

34

Hence with this usability improvement we have improved the usability of the existing

artifact manager and improved the structure of the program in certain areas where ever

the code modification has been done.

4.3. Final results:

In this section we have discussed how the implementation have done based on usability

heuristics and how we modified the software based on reengineering concept introduced

in the theoretical background.

Protégé is a powerful tool for dealing with ontology‟s. It can create and manage

ontology‟s in an effective manner. Artifact manger meant to handle metadata (which as

references to ontology) therefore it appeared to be a rational choice to reuse its

environment and implement a plug-in for it. Using ontology to store and manage

artifacts seemed a natural and best option since it enables the creation of complex

structures for easy handling and understanding.

Importing a project is made by using protégé functionalities for including and merging

projects .previously they implemented directly the methods they use to make it integrated

in our plug-in. we tried to modify This functionality but it was difficult to implement

through but works satisfyingly if we take apart same bug we discovered in protégé or

limitations like the necessity to have the EO file in the same folder as the current project.

Protégé is a university project, and is still under active enhancement and development.

We have found previously developed plug-in working sufficiently but after doing vivid

study on that plug-in, we came across some limitations and decided to improvise the

functionality and usability by providing suitable solutions. appropriate steps has been

included to achieve version compatability.In this process of improving usability of plug-

in, we accomplished to see the status of enterprise ontology merging in the “starting tab

“on the page loading event. In the “types tab” user has been able to these the existing

artifacts types successfully on the event of page loading and user has been prevented

delete artifact type in case it contains any artifacts in artifacts tab.

In the artifacts tab user has been able to see the existing artifacts on the event of page

loading and proper error message has been provided to safeguard to the end user, and we

succeeded to add the whole path metadata. In the search tab we manage to see the

existing attribute types on the page loading event. Also we are able to add the whole path

to enterprise ontology selection and Additional feature has been incorporated to show

the count of the list of matching artifacts. Finally user can filter and manipulate the

matching artifacts with the help threshold functionality.

In this enhancement area we have taken various references of usability heuristics to

achieve above mentioned results. Few vital usability heuristics that we have

Error! Reference source not found.

35

accommodated were Visibility of system status, Help and documentation, Aesthetic and

minimalist design and Error prevention. Apart from usability heuristics we tried to put

software reengineering concept to improve the functionality and performance of the

existing plug-in.

Above discussed results were achieved by applying the system re-engineering process.

Initially we have done study of the existing artifact manager and proposed the necessary

transformation in improvement with help of usability heuristics. In execution phase

(refer figure 4.5) each aimed result was started from source code translation phase to

improved usability and data re-engineering phases. In source code translation phase we

have modified the source code based on inputs proposed from the system re-engineering

and usability heuristics. Source code translation, resulted the improvement in structure of

the program, usability and functionality. Usability improvement further strengthens the

structure of the program.

For the future work the developed plug-in should support to upcoming versions of

ontology and creation of a database to store the information to increase performance of

the artifact manger tool (presently we are using same folder to store the data to import

ontology).as of now we have not modified searching algorithm to find the artifact

matching‟s. We can use other matching algorithms that could be helpful to find the

proper searching results.

Conclusion and discussion

36

4 Conclusion and discussion

Our work is to modify the functionality and increase usability of an existing plug-in for

the protégé. We have used java and advanced java language to modify functionality and

we used my eclipse tool as design development tool. Essentially the fundamental concept

to improve usability we used usability heuristics and to improve the functionality we used

software reengineering concept.

The modified version of artifact manger has clearly succeeded to avoid to ambiguity of

end user by removing unnecessary pictorial representation of buttons. Display the proper

error message when it‟s needed. Provided some flexible option to add the path to

metadata and introduced some threshold technique to get precise search results.

To get bug free results we have followed the standard procedure of the software re-

engineering process starting from source code translation, usability improvement to

program structure improvement. Every aimed and achieved result has followed the few

activities within the boundary of software re-engineering.

We have modified the structure of the existing plug-in in such a way that, it can enable

for the further development and simplification by adding new functionalities.

Error! Reference source not found.

37

5 References

[1] Andreas Billig, Kurt Sandkuhl: Enterprise Ontology based Artefact Management.
GI Jahrestagung (2) 2008: 681-687, Lecture Notes on Informatics.

[2] Billig A. and Sandkuhl, K. (2002) “Match-Making based on Semantic Nets: The
XML-based BaSeWeP Approach.” Proceedings XSW 2002, Springer Verlag

[3] Ian Sommerville, Software engineering-7th Ed, System re-engineering ISBN 0-321-
21026-3

[4] Ten Usability Heuristics by Jakob Nielsen

 http://www.useit.com/papers/heuristic/heuristic_list.html(Acc. 2009-06-01)

[5] Dokeos User Interface Guidelines 1.0

 http://www.dokeos.com/doc/duig-1.0.pdf(Acc. 2009-06-01)

[6] A Summary of Principles for User-Interface Design by Talin

 http://www.sylvantech.com/~talin/projects/ui_design.html(Acc. 2009-06-01)

[7] Match between System and the Real World Definition

 http://coweb.cc.gatech.edu/cs2340/5466(Acc. 2009-06-01)

[8] Recognition Rather than Recall Definition

 http://coweb.cc.gatech.edu/cs2340/5468(Acc. 2009-06-01)

[9] Help Users Recognize, Diagnose, and Recover from Errors Definition

 http://coweb.cc.gatech.edu/cs2340/5469(Acc. 2009-06-01)

[10] The protégé-discussion Archives

 https://mailman.stanford.edu/pipermail/protege-discussion (Acc. 2009-01-08)

http://www.useit.com/jakob/
http://www.useit.com/papers/heuristic/heuristic_list.html(Acc
http://www.dokeos.com/doc/duig-1.0.pdf(Acc
http://www.sylvantech.com/~talin/projects/ui_design.html(Acc
http://coweb.cc.gatech.edu/cs2340/5466(Acc
http://coweb.cc.gatech.edu/cs2340/5468(Acc
http://coweb.cc.gatech.edu/cs2340/5469(Acc

