
ECLiPSe Constraint Library Manual

Release 5.7

Pascal Brisset Hani El Sakkout Thom Frühwirth Carmen Gervet

Warwick Harvey Micha Meier Stefano Novello Thierry Le Provost

Joachim Schimpf Kish Shen Mark Wallace

August 7, 2004

c© International Computers Limited and ECRC GmbH 1990-1995
c© International Computers Limited and Imperial College London 1996-2000

Contents

1 Introduction 1

1.1 Suspended Goals: suspend . 1

1.2 Finite Domains: ic . 1

1.2.1 Integer Domain . 1

1.2.2 Symbolic Domain: ic symbolic . 2

1.2.3 Global Constraints: ic global . 2

1.2.4 Scheduling Constraints . 2

1.3 Sets . 2

1.4 Intervals . 2

1.5 User-Defined Constraints . 3

1.5.1 Generalised Propagation: propia . 3

1.5.2 Constraint Handling Rules . 3

1.6 Repair . 3

1.7 Linear Constraints . 3

1.7.1 External Linear Solvers: eplex . 3

1.7.2 clpqr . 3

1.7.3 Piecewise Linear: eplex relax . 4

1.7.4 Probing for Scheduling . 4

1.8 Other Libraries . 4

2 Common Solver Interface 5

2.1 Introduction . 5

2.2 Common constraints . 5

2.3 Using the constraints . 6

2.4 The Solvers . 7

3 IC: A Hybrid Finite Domain / Real Number Interval Constraint Solver 9

3.1 Introduction . 9

3.1.1 What IC does . 9

3.1.2 Differences between IC and FD . 9

3.1.3 Differences between IC and RIA . 10

3.1.4 Notes about interval arithmetic . 10

3.1.5 Interval arithmetic and IC . 11

3.1.6 Usage . 12

3.1.7 Arithmetic Expressions . 12

3.2 Library Predicates . 15

i

3.2.1 Domain constraints . 15

3.2.2 Arithmetic constraints . 16

3.2.3 Reified constraints . 17

3.2.4 Miscellaneous constraints . 19

3.2.5 Integer labeling predicates . 19

3.2.6 Real domain refinement predicates . 19

3.2.7 Variable query predicates . 19

3.2.8 Propagation threshold predicates . 20

3.2.9 Solving by Interval Propagation . 21

3.2.10 Reducing Ranges Further . 22

3.2.11 Obtaining Solver Statistics . 24

3.3 General Guidelines for the Use of the IC library 24

3.4 User defined constraints . 25

3.4.1 Modifying variable domains . 26

3.4.2 The IC attribute . 26

4 Additional Finite Domain Constraints 29

4.1 Various Constraints on Lists . 29

4.2 Cumulative Constraint and Resource Profiles 30

4.3 Edge-finder . 30

5 The Integer Sets Library 33

5.1 Introduction . 33

5.2 Ground Integer Sets . 33

5.3 Set Variables . 33

5.3.1 Declaring . 33

5.3.2 Printing . 34

5.3.3 Domain Access . 34

5.4 Constraints . 34

5.4.1 Membership . 34

5.4.2 Cardinality . 34

5.4.3 Set Relations . 35

5.4.4 N-ary Set Relations . 35

5.4.5 Set Weights . 35

5.5 Set Expressions . 35

5.6 Search Support . 35

5.7 Example . 36

6 The Symbolic Domain Library 37

6.1 Introduction . 37

6.2 Domains and Domain Variables . 37

6.3 Basic Constraints . 38

6.4 Global Constraints . 38

6.5 Internals . 39

6.6 Extending and Interfacing this Library . 39

ii

7 Propia - A Library Supporting Generalised Propagation 41

7.1 Overview . 41

7.2 Invoking and Using Propia . 41

7.3 Approximate Generalised Propagation . 45

8 The Constraint Handling Rules Library 49

8.1 Introduction . 49

8.2 Using Constraint Handling Rules . 50

8.3 Example Constraint Handlers . 50

8.4 The CHR Language . 51

8.4.1 Constraint Handling Rules . 51

8.4.2 How CHRs Work . 53

8.5 More on the CHR Language . 54

8.5.1 Declarations . 54

8.5.2 ECLiPSe Clauses . 55

8.5.3 Options . 55

8.5.4 CHR Built-In Predicates . 56

8.6 Labeling . 57

8.7 Writing Good CHR Programs . 58

8.7.1 Choosing CHRs . 58

8.7.2 Optimizations . 59

8.8 Debugging CHR Programs . 60

8.8.1 Using the Debugger . 60

8.9 The Extended CHR Implementation . 61

8.9.1 Invoking the extended CHR library . 62

8.9.2 Syntactic Differences . 62

8.9.3 Compiling . 62

8.9.4 Semantics . 63

8.9.5 Options and Built-In Predicates . 65

8.9.6 Compiler generated predicates . 65

9 EPLEX: The ECLiPSe/LP/MIP Interface 67

9.1 Usage . 67

9.2 Eplex Instances . 67

9.2.1 Linear Constraints . 68

9.2.2 Linear Expressions . 69

9.2.3 Bounds . 69

9.2.4 Integrality . 69

9.2.5 Solving Simple Eplex Problems . 70

9.2.6 Examples . 70

9.3 Advanced Use of Eplex Instances . 71

9.3.1 Obtaining Solver State Information . 71

9.3.2 Creating Eplex Instances Dynamically 72

9.3.3 Interface for CLP-Integration: Solver Demons 73

9.3.4 Probing Using a Different Objective . 75

9.3.5 Destroying the Solver State . 75

9.3.6 Eplex Instance Interface Example: definition of optimize/2: 76

iii

9.4 Low-Level Solver Interface . 76
9.4.1 Setting Up a Solver State . 76
9.4.2 Adding Constraints to a Solver State . 77
9.4.3 Running a Solver State Explicitly . 78
9.4.4 Accessing the Solver State . 78
9.4.5 Expandable Problem and Constraints 79
9.4.6 Changing Solver State Settings . 79
9.4.7 Destroying a Solver State . 80
9.4.8 Miscellaneous Predicates . 80

9.5 Multiple Solver States . 80
9.6 External Solver Output and Log . 81
9.7 Dealing with Large and Other Non-standard Numbers 81
9.8 Error Handling . 81
9.9 Solver Behaviour Differences . 82
9.10 Solver Specific Information . 82

9.10.1 Versions and Licences . 83
9.10.2 Access to External Solver’s Control Parameters 83

10 REPAIR: Constraint-Based Repair 85
10.1 Introduction . 85

10.1.1 Using the Library . 85
10.2 Tentative Values . 85

10.2.1 Attaching and Retrieving Tentative Values 85
10.2.2 Tenability . 86
10.2.3 The Tentative Assignment . 86
10.2.4 Variables with No Tentative Value . 87
10.2.5 Unification . 87
10.2.6 Copying . 87

10.3 Repair Constraints . 87
10.4 Conflict Sets . 88
10.5 Invariants . 89
10.6 Examples . 90

10.6.1 Interaction with Propagation . 90
10.6.2 Repair Labeling . 91

iv

Chapter 1

Introduction

This manual documents the major ECLiPSe libraries in particular the constaint solver libraries
developed at ECRC and IC-Parc. They are enabling tools for the development and delivery
of planning and scheduling applications. Since this is an area of active research and new
developments, these libaries are subject to technical improvements, addition of new features
and redesign as part of our ongoing work. Most of this software is now being developed
and maintained in the context of the ICL-sponsored ECLiPSe-II project, but incorporates
contributions from other projects at IC-Parc, in particular the European-funded CHIC-II
project.

In this section we shall briefly summarize the constraint solvers that are available as ECLiPSe

libraries. No examples are given here - each solver has its own documentation with examples
for the interested reader.

1.1 Suspended Goals: suspend

The constraint solvers of ECLiPSe are all implemented using suspended goals. In fact the
simplest implementation of any constraint is to suspend it until all its variables are sufficiently
instantiated, and then test it.

The library suspend contains versions of the mathematical constraints >=, >, =:=, =\=, =<, <
which behave like this1.

1.2 Finite Domains: ic

1.2.1 Integer Domain

The standard constraint solver offered by most constraint programming systems is the finite
domain solver, which applies constraint propagation techniques developed in the AI com-
munity [21]. ECLiPSe supports finite domain constraints via the ic library2. This library
implements finite domains of integers, and the usual functions and constraints on variables
over these domains.

1Note that the global flag coroutine has a similar effect: it causes the arithmetic comparisons as well as
many other built-in predicates to delay until they are sufficiently instantiated

2There is also an older implementation, the fd library, whose use is deprecated

1

1.2.2 Symbolic Domain: ic symbolic

In addition to integer domains, ECLiPSe offers finite domains of ordered non-numeric values,
for example red, green, blue. These are implemented by the ic symbolic library.

Whilst there is a standard set of constraints supported by the ic library in ECLiPSe and
in most constraint programming systems, many more finite domain constraints have been
introduced which have uses in specific applications and do not belong in a generic constraint
programming library. The behaviour of these constraints is to prune the finite domains of
their variables, in just the same way as the standard constraints. Therefore ECLiPSe offers
several further libraries which implement more constraints using the ic library.

1.2.3 Global Constraints: ic global

One such library is ic global. It supports a variety of constraints, each of which takes as an
argument a list of finite domain variables, of unspecified length. Such constraints are called
“global” constraints [2]. Examples of such constraints, available from the ic global library are
alldifferent/1, maxlist/2, occurrences/3 and sorted/2.

1.2.4 Scheduling Constraints

There are several ECLiPSe libraries implementing global constraints for scheduling applica-
tions. The constraints have the same semantics, but different propagation. The constraints
take a list of tasks (start times, durations and resource needs), and a maximum resource
level. They reduce the finite domains of the task start times by reasoning on resource bot-
tlenecks [13]. Three ECLiPSe libraries implementing scheduling constraints are cumulative,
edge finder and edge finder3.

1.3 Sets

ECLiPSe offers constraint solving over the domain of finite sets of integers. The ic sets library
works together with the ic library to reason about sets and set cardinality [10]3.

1.4 Intervals

Besides finite domains, ECLiPSe also offers continuous domains in the form of numeric in-
tervals. These are also implemented by the ic library, which is an integration of an integer
finite domain solver and interval reasoning over continuous intervals4. It solves equations
and inequations between general arithmetic expressions over continuous or integral variables.
The expressions can include non-linear functions such as sin, built-in constants such as pi.
Piecewise linear unary functions are also available.

In addition to constraints, ic offers search techniques (splitting [20] and squashing [17]) for
solving problems involving continuous numeric variables.

3There is also an older implementation, the conjunto library, which is generally less efficient, but implements
sets of symbolic elements as well as integer sets

4The ic library replaces the old ria interval solver, and covers most of the functionality of the finite domain
solver fd

2

1.5 User-Defined Constraints

1.5.1 Generalised Propagation: propia

The predicate infers takes as one argument any user-defined predicate, and as a second
argument a form of propagation to be applied to that predicate.

This functionality enables the user to turn any predicate into a constraint [16]. The forms of
propagation include finite domains and intervals.

1.5.2 Constraint Handling Rules

The user can also specify predicates using rules with guards [9]. They delay until the guard
is entailed or disentailed, and then execute or terminate accordingly.

This functionality enables the user to implement constraints in a way that is clearer than
directly using the underlying suspend library.

1.6 Repair

The repair library allows a tentative value to be associated with any variable [22]. This
tentative value may violate constraints on the variable, in which case the constraint is recorded
in a list of violated constraints. The repair library also supports propagation invariants [18].
Using invariants, if a variable’s tentative value is changed, the consequences of this change
can be propagated to any variables whose tentative values depend on the changed one. The
use of tentative values in search is illustrated in the ECLiPSe “Tutorial on Search Methods”.

1.7 Linear Constraints

There are two libraries supporting linear constraint solving. The first eplex provides an
interface to external linear programming packages. It offers flexibility and scalability, but may
require a license for the external software. The second clpqr can support infinite precision,
but is less efficient and scalable and offers fewer facilities.

1.7.1 External Linear Solvers: eplex

eplex supports a tight integration [3] between external linear solvers (CPLEX [12] and XPRESS
[19]) and ECLiPSe. Constraints as well as variables can appear in both the external lin-
ear solver and other ECLiPSe solvers. Variable bounds are automatically passed from the
ECLiPSe range solver to the external solver. Optimal solutions and other solutions can be
returned to ECLiPSe as required. Search can be carried out either in ECLiPSe or in the
external solver.

1.7.2 clpqr

The clpqr library offers two implementations of the Simplex method for solving linear con-
straints [11]. One version uses rationals and is exact. The other version uses floats. This
library employs public domain software, and can be used for small problems (with less than
100 variables).

3

1.7.3 Piecewise Linear: eplex relax

This library handles any user-defined piecewise linear function as a constraint closely inte-
grated with eplex. It offers better pruning than the standard handling of piecewise linear
constraints in the external solvers [1].

1.7.4 Probing for Scheduling

For scheduling applications where the cost is dependent on each start time, a combination of
solvers can be very powerful. For example, we can use finite domain propagation to reason
on resources and linear constraint solving to reason on cost [4].
The probing for scheduling library supports such a combination, via a similar user interface
to the cumulative constraint mentioned above.

1.8 Other Libraries

The solvers described above are just a few of the many libraries available in ECLiPSe and
listed in the ECLiPSe library directory. Any ECLiPSe user who has implemented a constraint
solver is welcome to send the code to the ECLiPSe team at IC-Parc so that it can be added to
the available libraries. Comments and suggestions on the existing libraries are also welcome!

4

Chapter 2

Common Solver Interface

2.1 Introduction

ECLiPSe now provides a common syntax for the main arithmetic constraints provided by
different constraint solvers. The basic idea is that the name and syntax of the constraint de-
termines the declarative meaning, while the operational semantics (the algorithmic constraint
behaviour) is determined by the module which implements the constraint. This principle
simplifies the development of applications that use hybrid solution methods. Constraints can
be passed easily to different, even multiple, solvers.

2.2 Common constraints

The constraints can be divided into the following groups:

• the numeric type constraints reals/1 and integers/1. Note that in this context, integers
are considered a subset of the reals.

• the range constraints ::/2, #:: and $::/2, which give upper and lower bounds to their
variables. In addition, ::/2 and #:: can also imply integrality.

• arithmetic equality, inequality and disequality over the mathematical real numbers,
e.g. $=, $>=, >, $\= (and their symnonyms =:=, >=, >, =\=). Note that in this context,
integers are considered a subset of the reals and can therefore occur in these constraints.

• arithmetic equality, inequality and disequality which in addition to the above constrain
all variables within their arguments to integers. Syntactically, these generally have a
leading #, e.g. #=, #\=, #<.

Not all constraints are supported by all the solvers. For example, the finite domain solver does
not support any of the constraints that take real numbers. Table 2.1 shows the constraints
that are available from the various constraint solvers. In the table, a ‘yes’ entry indicates
that the particular constraint is supported by the particular solver. Note that some further
restrictions may apply for a particular solver. For example, the finite domain solver can
handle only linear expressions. Refer to the documentation for each individual solver to see
what restrictions might apply.

5

$::2

$=/2 #::/2

$>=/2 #=/2

$=</2 $>/2 #>=/2

=:=/2 $</2 #=</2

>=/2 >/2 $\=/2 #>/2

=</2 </2 =\=/2 ::/2 #</2 #\=/2 integers/1 reals/1

suspend yes yes yes yes yes yes yes yes

ic yes yes yes yes yes yes yes yes

eplex yes — — yes — — yes yes

colgen yes — — yes — — — yes

(arith) (yes) (yes) (yes) — — — — —

• If integer bounds are given to the eplex version of ::/2 the external solver does not consider
this as an integrality constraint and only solves the continuous relaxation which can then be
rounded to the next integer. To make the external solver solve a mixed integer problem, use the
eplex version of integers/1.

Table 2.1: Supported constraints for various arithmetic solvers

Note that the last line, labelled ‘arith’, is not really a constraint solver but represents just
the standard arithmetic tests which require all variables to be instantiated. This behaviour
is provided by the (automatically imported) module eclipse_language.
It can be somewhat confusing that these standard arithmetic tests have the same names as
the corresponding constraints. One one hand, they have the same declarative meaning. On
the other hand, they are not really interchangeable because they can only be used as tests, not
as active constraints. The following synonyms are therefore provided to make the distinction
visible where needed, and to reduce the need for module-qualification:

$=/2 =:=/2

$\=/2 =\=/2

$>=/2 >=/2

$=</2 =</2

$>/2 >/2

$</2 </2

2.3 Using the constraints

To use the constraints, ECLiPSe needs to know which solver to pass a particular constraint
to. The easiest method for doing this is to module qualify the constraint. For example,

..., ic: (A #>= B), ...

passes the constraint A #>= B to the ic solver. The solver must be loaded first (e.g. via lib/1)
before any constraint can be passed to it.
A constraint can also be passed to more than one solver by specifying a list in the module
qualification. For example,

6

..., [ic, suspend]: (A #>= B), ...

will pass the constraint to both the ic and suspend solvers.
Module qualification is not needed if the constraint is defined by an imported module, and
there is no other imported module which defines the same constraint. For example, if ic is the
only imported module which defines #>=/2, then #>=/2 can be used without qualification:

..., A #>= B, ...

Note that for constraints that are defined for eclipse_language, such as >= (the standard
arithmetic test), the default behaviour when an unqualified call to such a constraint is made
is to pass it to eclipse_language, even if another solver which defines the constraint is
imported. Thus, for example

..., A >= B, ...

will by default have standard (i.e. non-suspending) test semantics, even if, e.g. the ic library
(which also defines >=/2) is imported. To access the ic version, module qualification should
be added:

..., ic:(A >= B), ...

Alternatively, the synonymous $>=/2 constraint could be used:

..., A $>= B, ...

In general, module qualifications are recommended if the programmer wants to ensure a
particular constraint behaviour regardless of which other modules might be loaded. On the
other hand, if the intention is to switch easily between different solvers by simply loading a
different library, module qualification is best omitted.
Finally, it is also possible to let the running program determine which solver to use. In this
case, the program has a variable in the module position, which will only be bound at runtime:

..., Solver:(A #>= B), ...

This will however prevent the solver from performing any compile-time preprocessing on the
constraint.

2.4 The Solvers

suspend This is the simplest possible ’solver’. Its behaviour is to wait until all variables in a
constraint have been instantiated to numbers. Then it performs a test to check whether
the constraint is satisfied, and fails if this is not the case.

ic A new hybrid solver, combining integer and real interval constraint solving. This solver
is intended to replace the FD (and the already discontinued RIA) solver. For more
information, please see chapter 3.

eplex An interface to an LP or MIP solver, i.e. it implements linear constraints over reals or
integers.

7

arith This is not really a solver, but just the implementation of simple arithmetic tests in
module eclipse_language. These require that all variables are instantiated when the
test is invoked. The reason to list it here is that the proper solvers use the same syntax
and can be considered generalisations of the traditional tests.

8

Chapter 3

IC: A Hybrid Finite Domain / Real
Number Interval Constraint Solver

3.1 Introduction

The IC (Interval Constraint) library is a new hybrid integer/real interval arithmetic constraint
solver. Its aim is to make it convenient for programmers to write hybrid solutions to problems,
mixing together integer and real constraints and variables.
Previously, if one wished to mix integer and real constraints, one had to import separate
solvers for each, with the solvers using different representations for the domains of variables.
This meant any variable appearing in both kinds of constraints would end up with two domain
representations, with extra constraints necessary to keep the two representations synchronised.

3.1.1 What IC does

IC is a general interval propagation solver which can be used to solve problems over both
integer and real variables. Integer variables behave much like those from the old finite domain
solver FD, while real variables behave much like those from the old real interval arithmetic
solver RIA. IC allows both kinds of variables to be mixed seamlessly in constraints, since (with
a few exceptions) the same propagation algorithms are used throughout and all variables have
the same underlying representation (indeed, a real variable can be turned into an integer
variable simply by imposing an integrality constraint on it).
IC replaces the ‘fd’, ‘ria’ and ‘range’ libraries. Since IC does not support symbolic domains,
there is a separate symbolic solver library ‘ic symbolic’, to provide the non-numeric function-
ality of ‘fd’.

3.1.2 Differences between IC and FD

• IC supports real variables and constraints; FD does not.

• FD supports symbolic domains; IC does not (use the ic symbolic library).

• In FD, numeric domains are more or less limited to -10000000..10000000 (this default
domain can be modified, but the larger one makes it, the more likely one is to run
into machine integer overflow problems). In IC there is no limit as such, and bounds on
integer variables can be infinite (though variables should not be assigned infinite values).

9

However, since floating point numbers are used in the underlying implementation, not
every integer value is representable. Specifically, integer variables and constraints ought
to behave as expected until the values being manipulated become large enough that
they approach the precision limit of a double precision floating point number (251 or
so). Beyond this, lack of precision may mean that the solver cannot be sure which
integer is intended, in which case the solver starts behaving more like an interval solver
than a traditional finite domain solver. Note however that this precision limit is way
beyond what is normally supported by finite domain solvers (typically substantially less
than 232). Note also that deliberately working with integer variables in this kind of
range is not particularly recommended; the main intention is for the computation to be
“safe” if it strays up into this region by ensuring no overflow problems.

• IC usually requires that expressions constructed at runtime be wrapped in eval/1 when
they appear in constraints; otherwise the variable representing the express may be
assumed to be an IC variable, resulting in a type error. See section 3.1.7 for more
details. We hope to remove this limitation in a future release.

• IC does not support the #<=/2 syntax for less-than-or-equal constraints. Use #=</2
(the standard ECLiPSe operator for integer less-than-or-equal constraints, also sup-
ported by FD) instead. Similarly, use #\=/2 instead of ##/2.

• The reified connectives provided by the two solvers are different: FD’s #\+/1, #/\/2,
#\//2, #=>/2 and #<=>/2 (and their reified versions) correspond to IC’s neg/1,
and/2, or/2, =>/2 and #=/2 (and their reified versions). Note that IC has better
reification support, in that any constraint may be embedded in any other constraint
expression, evaluating to that constraint’s reified value.

• The primitives for accessing and manipulating the domains of variables are different;
see section 3.2.7 on variable domain query predicates for details of IC’s support for this.

3.1.3 Differences between IC and RIA

The main difference between IC’s interval solving and RIA’s is that IC is aware of and utilises
the bounded real numeric type. This means bounded reals may appear in IC constraints, and
IC variables may be unified with bounded reals (though direct unification is not recommended:
it is preferable to use an equality constraint to do the assignment). In contrast, RIA will fail
with a type error if bounded reals are used in either of these cases.

3.1.4 Notes about interval arithmetic

The main problem with using floating point arithmetic instead of real arithmetic for doing
any kind of numerical computation or constraint solving is that it is only approximate. Finite
precision means a floating point value may only approximate the intended real; it also means
there may be rounding errors when doing any computation. Worse is that one does not
know from looking at an answer how much error has crept into the computation; it may be
that the result one obtains is very close to the true solution, or it may be that the errors
have accumulated to the point where they are significant. This means it can be hard to know
whether or not the answer one obtains is actually a solution (it may have been unintentionally

10

included due to errors), or worse, whether or not answers have been missed (unintentionally
excluded due to errors).

Interval arithmetic is one way to manage the error problem. Essentially each real number is
represented by a pair of floating point bounds. The true value of the number may not be
known, but it is definitely known to lie between the two bounds. Any arithmetic operation
to be performed is then done using these bounds, with the resulting interval widened to take
into account any possible error in the operation, thus ensuring the resulting interval contains
the true answer. This is the principle behind the bounded real arithmetic type.

Note that interval arithmetic does not guarantee small errors, it just provides a way of knowing
how large the error may have become.

One drawback of the interval approach is that arithmetic comparisons can no longer always
be answered with a simple “yes” or “no”; sometimes the only possible answer is “don’t know”.
This is reflected in the behaviour of arithmetic comparators (=:=, >=, etc.) when applied to
bounded reals which overlap each other. In such a case, one cannot know whether the true
value of one is greater than, less than, or equal to the other, and so a delayed goal is left
behind. This delayed goal indicates that the computation succeeded, contingent on whether
the condition in the delayed goal is true. For example, if the delayed goal left behind was
0.2__0.4 >= 0.1__0.3, this indicates that the computation should be considered a success
only if the true value represented by the bounded real on the left is greater than or equal to
that of the bounded real on the right. If the width of the intervals in any such delayed goals
is non-trivial, then this indicates a problem with numerical accuracy. It is up to the user to
decide how large an error is tolerable for any given application.

3.1.5 Interval arithmetic and IC

In order to ensure the soundness of the results it produces, the IC solver does almost all
computation using interval arithmetic. As part of this, the first thing done to a constraint
when it is given to the solver is to convert all non-integer numbers in it to bounded reals.
Note that for this conversion, floating point numbers are assumed to refer to the closest
representable float value, as per the type conversion predicate breal/2. This lack of widening
when converting floating point numbers to bounded reals is fine if the floating point number
is exactly the intended real number, but if there is any uncertainty, that uncertainty should
be encoded by using a bounded real in the constraint instead of a float.

One of the drawbacks of this approach is that the user is not protected from the fundamental
inaccuracies that may occur when trying to represent decimal numbers with floating point
values in binary. The user should be aware therefore that some numbers given explicitly as
part of their program may not be safely represented as a bounded real that spans the exact
decimal value. e.g. X $= 0.1 or equivalently X is breal(0.1).

This may lead to unexpected results such as

[eclipse 2]: X $= 0.1, Y $= 0.09999999999999999, X $> Y.

X = 0.1__0.1

Y = 0.099999999999999992__0.099999999999999992

Yes (0.00s cpu)

[eclipse 3]: X $= 0.1, Y $= 0.099999999999999999, X $> Y.

11

No (0.00s cpu)

This potential source of confusion arises only with values which are explicitly given within a
program. By replacing the assignment to Y with an expression which evaluates to the same
real value we get

[eclipse 4]: X $= 0.1, Y $= 0.1 - 0.000000000000000001, X $> Y.

X = 0.1__0.1

Y = 0.099999999999999992__0.1

Delayed goals:

ic : (0 > -1.3877787807814457e-17__-0.0)

Yes (0.00s cpu)

Note the delayed goal indicating the conditions under which the original goal should be
considered to have succeeded.

3.1.6 Usage

To load the IC library into your program, simply add the following directive at an appropriate
point in your code.

:- lib(ic).

3.1.7 Arithmetic Expressions

The IC library solves constraint problems over the reals. It is not limited to linear constraints.
So it can be used to solve general problems like:

[eclipse 2]: ln(X) $>= sin(X).

X = X{0.36787944117144228 .. 1.0Inf}

Delayed goals:

...

Yes (0.01s cpu)

The IC library treats linear and non-linear constraints differently. Linear constraints are
handled by a single propagator, whereas non-linear constraints are broken down into simpler
ternary/binary/unary propagators.
Any relational constraint ($=, $>=, #=, etc.) can be reified simply by including it in an
expression where it will evaluate to its reified truth value.
User-defined constraints may also be included in constraint expressions where they will be
treated in a similar manner to user defined functions found in expressions handled by is/2.
That is to say they will be called at run-time with an extra argument to collect the result.

12

Note, however, that user defined constraint/functions, when used in IC, should be deter-
ministic. User defined constraints/functions which leave choice points may not behave as
expected.
Variables appearing in arithmetic IC constraints at compile-time are assumed to be IC vari-
ables unless they are wrapped in an eval/1 term. See section 3.1.7 for an more detailed
explanation of usage.
The following arithmetic expression can be used inside the constraints:

X Variables. If X is not yet a interval variable, it is turned into one by implicitly constraining
it to be a real variable.

123 Integer constants. They are assumed to be exact and are used as is.

0.1 Floating point constants. These are assumed to be exact and are converted to a zero
width bounded reals.

pi, e Intervals enclosing the constants π and e respectively.

inf Floating point infinity.

+Expr Identity.

-Expr Sign change.

+-Expr Expr or -Expr. The result is an interval enclosing both. If however, either bound is
infeasible then the result is the bound that is feasible. If neither bound is feasible, the
goal fails.

abs(Expr) The absolute value of Expr.

E1+E2 Addition.

E1-E2 Subtraction.

E1*E2 Multiplication.

E1/E2 Division.

E1ˆE2 Exponentiation.

min(E1,E2) Minimum.

max(E1,E2) Maximum.

sqr(Expr) Square. Logically equivalent to Expr*Expr, but with better operational be-
haviour.

sqrt(Expr) Square root (always positive).

exp(Expr) Same as e^Expr.

ln(Expr) Natural logarithm, the reverse of the exp function.

sin(Expr) Sine.

13

cos(Expr) Cosine.

atan(Expr) Arcus tangens. (Returns value between -pi/2 and pi/2.)

rsqr(Expr) Reverse of the sqr function. Equivalent to +-sqrt(Expr).

rpow(E1,E2) Reverse of exponentiation. i.e. finds X in E1 = X^E2.

sub(Expr) A subinterval of Expr.

sum(ExprList) Sum of a list of expressions.

min(ExprList) Minimum of a list of expressions.

max(ExprList) Maximum of a list of expressions.

and Reified constraint conjunction. e.g. B #= (X$>3 and X$<8)

or Reified constraint disjunction. e.g. B #= (X$>3 or X$<8)

=> Reified constraint implication. e.g. B #= (X$>3 => X$<8)

neg Reified constraint negation. e.g. B #= (neg X$>3)

$>, $>=, $=, $=<, $<, $\=, #>, #>=, #=, #=<, #<, #\=, >, >=, =:=, =<, <, =\=, and, or, =>, neg
Any arithmetic or logical constraint that can be issued as a goal may also appear within
an expression.

Within the expression context, the constraint evaluates to its reified truth value. If
the constraint is entailed by the state of the constraint store then the (sub-)expression
evaluates to 1. If it is dis-entailed by the state of the constraint store then it evaluates
to 0. If its reified status is unknown then it evaluates to an integral variable 0..1.

Note: The simple cases (e.g. Bool #= (X #> 5)) are equivalent to directly calling the
reified forms of the basic constraints (e.g. #>(X, 5, Bool)).

foo(Arg1, Arg2 ... ArgN), module:foo(Arg1, Arg2 ... ArgN) Any terms found in the
expression whose principle functor is not listed above will be replaced in the expression
by a newly created auxiliary variable. This same variable will be appended to the term as
an extra argument, and then the term will be called as call(foo(Arg1, Arg2 ... ArgN, Aux)).
If no lookup module is specified, then the current module will be used.

This behaviour mimics that of is/2.

eval(Expr) See section 3.1.7 for an explanation of eval/1 usage.

eval

The eval/1 wrapper inside arithmetic constraints is used to indicate that a variable will
be bound to an expression at run-time. This feature will only be used by programs which
generate their constraints dynamically at run-time, for example.

14

broken_sum(Xs,Sum):-

(

foreach(X,Xs),

fromto(Expr,S1,S2,0)

do

S1 = X + S2

),

Sum $= Expr.

The above implementation of a summation constraint will not work as intended because the
variable Expr will be treated like an IC variable when it is in fact the term +(X1,+(X2,+(...)))

which is constructed in the for-loop. In order to get the desired functionality, one must wrap
the variable Expr in an eval/1.

working_sum(Xs,Sum):-

(

foreach(X,Xs),

fromto(Expr,S1,S2,0)

do

S1 = X + S2

),

Sum $= eval(Expr).

3.2 Library Predicates

3.2.1 Domain constraints

Vars :: Domain Constrains Vars to take only integer or real values from the domain spec-
ified by Domain. Vars may be a variable, a list, or a submatrix (e.g. M[1..4, 3..6]); for
a list or a submatrix, the domain is applied recursively so that one can apply a domain
to, for instance, a list of lists of variables. Domain can be specified as a simple range Lo
.. Hi, or as a list of subranges and/or individual elements (integer variables only). The
type of the bounds determines the type of the variable (real or integer). Also allowed
are the (untyped) symbolic bound values inf, +inf and -inf.

::(Vars,Domain,Bool) Provides a reified form of the ::/2 domain assignment predicate.
This reified ::/3 is defined only to work for one variable and only integer variables
(unlike ::/2), hence only the Domain formats suitable for integers may be supplied to
this predicate.

For a single variable, V, the Bool will be instantiated to 0 if the current domain of V
does not intersect with Domain. It will be instantiated to 1 iff the domain of V is wholly
contained within Domain. Finally the Boolean will remain an integer variable in the
range 0..1 if neither of the above two conditions hold.

Instantiating Bool to 1, will cause the constraint to behave exactly like ::/2. Instanti-
ating Bool to 0 will cause Domain to be excluded from the domain of all the variables
in Vars where such an exclusion is representable. If such an integer domain is unrep-
resentable (e.g. -1.0Inf .. -5, 5..1.0Inf), then a delayed goal will be setup to
exclude values when the bounds become sufficiently narrow.

15

Note that calling the reified form of :: will result in the Variable becoming constrained
to be integral, even if Bool is uninstantiated.

Further note that, like other reified predicates, :: can be used infix in an IC expression
e.g. B #= (X :: [1..10]) is equivalent to ::(X, [1..10], B). See section 3.2.3 for
more information of reified constraints.

Vars #:: Domain Constrains Vars to take only integer values from the domain specified
by Domain. Vars may be a variable, a list, or a submatrix (e.g. M[1..4, 3..6]); for a list
or a submatrix, the domain is applied recursively so that one can apply a domain to,
for instance, a list of lists of variables. Domain can be specified as a simple range Lo
.. Hi, or as a list of subranges and/or individual elements (integer variables only). Also
allowed are the (untyped) symbolic bound values inf, +inf and -inf.

Vars $:: Domain Constrains Vars to take real values from the domain specified by Domain.
Vars may be a variable, a list, or a submatrix (e.g. M[1..4, 3..6]); for a list or a submatrix,
the domain is applied recursively so that one can apply a domain to, for instance, a list
of lists of variables. Domain can only be specified as a simple range Lo .. Hi, in keeping
with other implementations of this generic domain assignment predicate.

reals(Vars) Declares that the given variables are IC variables.

integers(Vars) Constrains the given variables to take integer values only.

3.2.2 Arithmetic constraints

Note that the integer forms of the constraints are essentially the same as the general forms,
except that they check that all constants are integers and generally constrain all variables
and subexpressions to be integral. Thus with integer constraints, the solver does very much
behave like a traditional integer solver, with any temporary variables and intermediate results
assumed to be integral. This means that it makes little sense to use many of the nonlinear
functions available for use in expressions (e.g. sin, cos, ln, exp) in integer constraints. It also
means that one should take care using such things as division: X/2 + Y/2 #= 1 and X +
Y #= 2 are different constraints, with the former constraining X and Y to be even. That
said, if all the constants and variables are integral already and the subexpressions clearly so
as a consequence, then the integer (#) constraints and general ($) constraints may be used
integerchangeably.

ExprX $= ExprY, ic:(ExprX =:= ExprY) ExprX is equal to ExprY. ExprX and Ex-
prY are general expressions.

ExprX $>= ExprY, ic:(ExprX >= ExprY) ExprX is greater than or equal to ExprY.
ExprX and ExprY are general expressions.

ExprX $=< ExprY, ic:(ExprX =< ExprY) ExprX is less than or equal to ExprY. Ex-
prX and ExprY are general expressions.

ExprX $> ExprY, ic:(ExprX > ExprY) ExprX is strictly greater than ExprY. ExprX
and ExprY are general expressions.

16

ExprX $< ExprY), ic:(ExprX < ExprY) ExprX is strictly less than ExprY. ExprX and
ExprY are general expressions.

ExprX $\= ExprY, ic:(ExprX =\= ExprY) ExprX is not equal to ExprY. ExprX and
ExprY are general expressions.

ExprX #= ExprY ExprX is equal to ExprY. ExprX and ExprY are constrained to be
integer expressions.

ExprX #>= ExprY ExprX is greater than or equal to ExprY. ExprX and ExprY are
constrained to be integer expressions.

ExprX #=< ExprY ExprX is less than or equal to ExprY. ExprX and ExprY are con-
strained to be integer expressions.

ExprX #> ExprY ExprX is greater than ExprY. ExprX and ExprY are constrained to be
integer expressions.

ExprX #< ExprY ExprX is less than ExprY. ExprX and ExprY are constrained to be
integer expressions.

ExprX #\= ExprY ExprX is not equal to ExprY. ExprX and ExprY are constrained to
be integer expressions.

The comparison constraints =:=/2, >=/2, =</2 and =\=/2 have the same syntax as the stan-
dard ECLiPSe built-in comparison operators (and those of other constraint solvers). Unless
explicitly qualified, the ECLiPSe built-ins are used. To use these constraints without the need
to qualify them, use the alternative dollar-syntax.

3.2.3 Reified constraints

As mentioned earlier, when constraints appear in an expression context, then they evaluate
to their reified truth value. Practically this means that the constraints are posted in a passive
check but do not propagate mode, whereby no variable domains are modified but checks are
made to see if the constraint has become entailed (necessarily true) or dis-entailed (necessarily
false).
The simplest and arguably most natural way to reify a constraint is to place it in an expression
context (i.e. on either side of a $=, $>=, #=, etc.) and assign its truth value to a variable. For
example:

TruthValue #= (X $> 4).

It is also possible to use the 3 argument form of the constraint predicates where the third
argument is the reified truth value, for example:

$>(X, 4, TruthValue).

But in general the previous form is recommended as it can be easily extended to handle
the truth values of a combination of constraints, by using the infix operators and (logical
conjunction), or (logical disjunction) and => (logical implication) or the prefix operator neg
(logical negation). e.g.:

17

TruthValue #= (X $> 4 and Y $< 6).

Again, as mentioned earlier, there are a number of reified connectives which can be used to
combine reified constraints using logical operations on their truth values.

and/2 Reified constraint conjunction. e.g. B #= (X $> 3 and X $< 8) or X $> 3 and X $< 8

or/2 Reified constraint disjunction. e.g. B #= (X $> 3 or X $< 8) or X $> 3 or X $< 8

=>/2 Reified constraint implication. e.g. B #= (X $> 3 => X $< 8) or X $> 3 => X $< 8

neg/1 Reified constraint negation. e.g. B #= (neg X $> 3) or neg X $> 3

Enforcing constraints

The logical truth value of a constraint, when reified, can be used to enforce the constraint (or
its negation) during search.

The following three examples are equivalent:

X $> 4.

B #= (X $> 4), B=1.

B #= (X $=< 4), B=0.

By unifying the value of the reified truth value, the constraint changes from being passive
to being active. Once actively true (or actively false) the constraint will prune domains as
though it had been posted as a simple non-reified constraint.

User-defined reified constraints

Reified constraints are implemented using the the 3 argument form of the constraint predicate
if it exists (and it does exist for the arithmetic relation constraints).

User-defined constraints will be treated as reifiable if they appear in an expression context
and as such should provide forms where the last argument is the reified truth value reflected
into a variable.

The user-defined constraint should behave as follows depending on the state of the reified
variable.

Reified variable is unbound When the reified variable is unbound, the constraint should
not perform any domain reduction on its arguments, but should check to see if the constraint
has become entailed or dis-entailed, setting the reified variable to 1 or 0 respectively.

Reified variable is bound to 0 In the event that the reified variable becomes bound to
0 then the constraint should actively propagate its negation.

Reified variable is bound to 1 In the event that the reified variable becomes bound to
1 then the constraint should actively propagate its normal semantics.

18

3.2.4 Miscellaneous constraints

alldifferent(Vars) Constrains all elements of a list to be different from all other elements
of the list.

element(Index, List, Value) Constrains Value to be the Index’th element of the list of
integers List.

3.2.5 Integer labeling predicates

These predicates can be used to enumerate solutions to a set of constraints over integer
variables. For optimisation, see also the branch and bound library.

indomain(Var) Instantiates an integer IC variable to an element of its domain.

labeling(Vars) Instantiates all IC variables in a list to elements of their domains.

search(Vars, Arg, Select, Choice, Method, Options) Instantiates the variables Vars by
performing a search based on the parameters provided by the user.

3.2.6 Real domain refinement predicates

These predicates can be used to locate real solutions to a set of constraints. They are essen-
tially the same as those that were available in RIA; more details of the algorithms used can
be found in section 3.2.10.

locate(Vars, Precision) Locate solution intervals for Vars by splitting and search. Pre-
cision indicates how accurate the intervals have to be (in absolute or relative terms)
before splitting stops.

locate(Vars, Precision, LinLog) As per locate/2, but LinLog specifies wither linear (lin)
or logarithmic (log) splitting should be used. (locate/2 is equivalent to calling lo-
cate/3 with log as the third argument.)

locate(LocateVars, SquashVars, Precision, LinLog) As per locate/3, but also applies
the squashing algorithm to SquashVars both before splitting commences, and then again
after each split.

squash(Vars, Precision, LinLog) Refine the intervals of Vars by the squashing algorithm.

3.2.7 Variable query predicates

These predicates allow one to retrieve various properties of an IC variable (and usually work
on ground numbers as well).

is solver var(Var) Succeeds if an only if Var is an IC variable.

is solver type(Term) Succeeds if an only if Term is an IC variable or a number.

get solver type(Var, Type) Returns whether Var is an integer variable or a real variable.

get bounds(Var, Lo, Hi) Returns the current bounds of Var.

19

get min(Var, Lo) Returns the current lower bound of Var.

get max(Var, Hi) Returns the current upper bound of Var.

get float bounds(Var, Lo, Hi) Returns the current bounds of Var as floats.

get integer bounds(Var, Lo, Hi) Returns the current bounds of the integer variable Var
(infinite bounds are returned as floats). Constrains Var to be integral if it isn’t already.

get finite integer bounds(Var, Lo, Hi) Returns the current (finite) bounds of the integer
variable Var. Constrains Var to be finite and integral if it isn’t already.

get domain size(Var, Size) Returns the number of elements in the IC domain for Var.
Currently Var needs to be of type integer.

get domain(Var, Domain) Returns a ground representation of the current IC domain for
Var.

get domain as list(Var, Domain) Returns a list of all the elements in the IC domain for
Var. Currently Var needs to be of type integer.

get median(Var, Median) Returns the median of the interval of Var.

get delta(Var, Delta) Returns the width of the interval of Var.

is in domain(Var, Value) Succeeds if and only if Value is contained in the current domain
of Var.

is in domain(Var, Value, Result) Binds Result to ’yes’, ’no’ or ’maybe’ depending on
whether Value is in the current domain of Var.

delayed goals number(Var, Number) Returns the number of delayed goals suspended on
the IC attribute. This approximates the number of IC constraints that Var is involved
in.

3.2.8 Propagation threshold predicates

With interval constraint propagation, it is sometimes useful to limit propagation for efficiency
reasons. In IC, this is controlled by the propagation threshold. The way it works is that
for non-integer variables, bounds are only changed if the absolute and relative changes of the
bound exceed this threshold (i.e. small changes are suppressed). This means that constraints
over real variables are only guaranteed to be consistent up to the current threshold (over and
above any normal widening which occurs).

Note that a higher threshold speeds up computations, but reduces precision and may in the
extreme case prevent the system from being able to locate individual solutions.

The default threshold is 1e-8.

get threshold(Threshold) Returns the current propagation threshold.

20

set threshold(Threshold) Sets the propagation threshold. Note that if the threshold is
reduced using this predicate (requiring a higher level of precision), the current state of
the system may not be consistent with respect to the new threshold. If it is important
that the new level of precision be realised for all or part of the system before computation
proceeds, set threshold/2 should be used instead.

set threshold(Threshold, WakeVars) Sets the propagation threshold, with re-computation.
If the threshold has been reduced, all constraints suspended on the bounds of the vari-
ables in the list WakeVars are woken.

3.2.9 Solving by Interval Propagation

Some problems can be solved just by interval propagation, for example:

[eclipse 9]: X :: 0.0..100.0, sqr(X) $= 7-X.

X = X{2.1925824014821353 .. 2.1925824127108307}

Delayed goals:

...

yes.

There are two things to note here:

• The solver never instantiates real variables. They only get reduced to narrow ranges.

• In general, many delayed goals remain at the end of propagation. This reflects the
fact that the variable’s ranges could possibly be further reduced later on during the
computation. It also reflects he fact that

• the solver does not guarantee the existence of solutions in the computed ranges. How-
ever, it guarantees that there are no solutions outside these ranges.

Note that, since variables by default range from minus to plus infinity, we could have written
the above example as:

[eclipse 2]: sqr(X) $= 7-X, X $>= 0.

X = X{2.1925824014821353 .. 2.1925824127108307}

Delayed goals:

...

yes.

If too little information is given, the interval propagation may not be able to infer any inter-
esting bounds:

[eclipse 2]: sqr(X) $= 7-X.

X = X{-1.0Inf .. 7.0}

21

Delayed goals:

...

yes.

3.2.10 Reducing Ranges Further

There are two methods for further domain reduction. They both rely on search and splitting
the domains. There are 2 parameters to specify how domains are to be split.

The Precision parameter is used to specify the minimum required precision, i.e. the max-
imum size of the resulting intervals (in either absolute or relative terms). Note that the
arc-propagation threshold needs to be one or several orders of magnitude smaller than preci-
sion, otherwise the solver may not be able to achieve the required precision.

The lin/log parameter guides the way domains are split. If it is set to lin then the split is
in the arithmetic middle. If it is set to log, the split is such as to have the same number of
floats to either side of the split. This is to take the logarithmic distribution of the floats into
account.

If the ranges of variables at the start of the squashing algorithm are known not to span several
orders of magnitude (|max| < 10 ∗ |min|) the somewhat cheaper linear splitting may be used.
In general, log splitting is recommended.

locate(+Vars, +Precision)

locate(+Vars, +Precision, +lin/log) Locate solution intervals for the given variables
with the required precision. This works well if the problem has a finite number of
solutions. locate/2,3 work by nondeterministically splitting the ranges of the variables
until they are narrower than Precision.

squash(+Vars, +Precision, +lin/log) Use the squash algorithm (section 3.2.10) on these
variables. This is a deterministic reduction of the ranges of variables, done by searching
for domain restrictions which cause failure, and then reducing the domain to the comple-
ment of that which caused the failure. This algorithm is appropriate when the problem
has continuous solution ranges (where locate would return many adjacent solutions).

locate(+LocateVars,+SquashVars,+Precision,+lin/log) A variant of locate/2,3 with
interleaved squashing: The squash algorithm (section 3.2.10) is applied once to the
SquashVars initially, and then again after each splitting step, ie. each time one of the
LocateVars has been split nondeterministically. A variable may occur both in Locate-
Vars and SquashVars.

Squash algorithm

A stronger propagation algorithm is also included. This is built upon the normal bound
consistency. It guarantees that, if you take any variable and restrict its range to a small domain
near one of its bounds, the original bound consistency solver will not find any constraint
unsatisfied.

All points (X,Y) Y >= X, lying within the intersection of 2 circles with radius 2, one centred
at (0,0) the other at (1,1).

22

Bound-propagation

solution

Squashing solution

+1

+2

+3

-1-2 +1 +3+2

-1

-2

y > x

Figure 3.1: Propagation with Squash algorithm (example)

[eclipse 2]: 4 $>= X^2 + Y^2, 4 $>= (X-1)^2+(Y-1)^2, Y $>= X.

Y = Y{-1.0000000000000004 .. 2.0000000000000004}

X = X{-1.0000000000000004 .. 2.0000000000000004}

Delayed goals:

...

yes.

The bound-consistency solution does not take into account the X >= Y constraint. Intuitively
this is because it passes through the corners of the box denoting the solution to the problem
of simply intersecting the two circles.

[eclipse 2]: 4 $>= X^2 + Y^2, 4 $>= (X-1)^2+(Y-1)^2, Y $>= X,

squash([X,Y], 1e-5, lin).

X = X{-1.0000000000000004 .. 1.4142135999632601}

Y = Y{-0.41421359996326 .. 2.0000000000000004}

Delayed goals:

...

yes.

23

3.2.11 Obtaining Solver Statistics

(Using the facilities described in this section requires importing the ic kernel module. Also,
since they depend on the internals of the IC library, the details presented here are subject to
change without notice.)
Often it is difficult to know where the solver spends its time. The library has built-in counters
which keep track of the number of times various events occur:

ic lin create The number of linear constraints set up.

ic lin prop The number of times a linear constraint is propagated.

ic uni prop/ic bin prop/ic tern prop The number of times a non-linear (unary/binary/ternary)
operator is propagated.

ic split The number of domain splits in locate/2,3,4.

ic squash The number of squash attempts in squash/3 or locate/4.

Users who wish to track activity within their own programs may (if they wish) use the same
mechanism. New event types can be registered (see below) and actions recorded by calling
the ic event(Event) predicate.
The counters are controlled using the primitives:

ic stat(on)

ic stat(off) Enables/disable collection of statistics. Default is off.

ic stat(reset) Reset statistics counters.

ic stat(print) Print statistics counters to the standard output stream.

ic stat get(-Stat) Returns a list of CounterName=CounterValue pairs, summarising the
computation since the last reset.

ic event(+Name) Records the fact that the named event has happened.

ic stat register event(+Name,+Description) Registers a new event type and sets the
counter to 0. This allows user-defined predicates to record their own events within the
same framework.

3.3 General Guidelines for the Use of the IC library

Whilst IC has been designed to provide a flexible, consistent and yet powerful framework for
many sorts of constraint satisfaction problems, it can not be all things to all people.
There are circumstances under which IC will not propagate all possible information, for
reasons of efficiency.
It is the purpose of this section to point out ways that may help IC to solve problems more
efficiently.
Typical constraint satisfaction problems are solved by iteratively propagating information
from basic constraints until no more propagation can take place (i.e. a fixed point has been
reached), and then reducing the domain of a variable so as to prompt more propagation.

24

As with most constraint solvers the propagation provided by the builtin constraints is rarely
able to solve large problems completely without the need for some form of search. A number
of factors affect the speed of the propagation phase.

1. The size of the initial domains. Smaller domains typically result in propagation reaching
a fixed point sooner. So give explicit initial domains to as many variables as possible.

2. Integer domains allow more propagation. An important point to note here is that (as in
mathematics) IC treats integers as a strict subset of the reals, and as such the integer do-
main 0 .. 100 contains significantly fewer values than the real domain 0.0 .. 100.0.
With this in mind, IC attempts to infer integrality where possible (e.g. the sum of two
integer variables is constrained to be integer), however integer domains (where applica-
ble) should be used in user code.

The difference becomes apparent when dealing with strict inequalities, for example.

[eclipse 4]: reals([X]), X $> 5.

X = X{5.0 .. 1.0Inf}

Delayed goals:

ic : (X{5.0 .. 1.0Inf} > 5)

Yes (0.00s cpu)

Note that the lower bound of X is still five despite the fact that X has been constrained
to be strictly greater than five. Further note the presence of a delayed goal which will
fail should X be constrained to be exactly five.

[eclipse 5]: integers([X]), X $> 5.

X = X{6 .. 1.0Inf}

Yes (0.00s cpu)

In this example since X is known to be integral, the lower bound of X can be set to 6,
as there are no integers between five and six.

3.4 User defined constraints

The library ic kernel provides a number of facilities useful for implementing IC constraints
or otherwise extending the facilities provided by the standard IC library.
While the ic kernel library exposes the structure of the IC attribute to the programmer (see
below), accessing it directly is strongly discouraged (if for no other reason, the internals of
IC may continue to evolve). For accessing information about a variable and its domain, use
the predicates described earlier in section 3.2.7 “Variable query predicates”. For modifying a
variable, it is particularly important to go through the access predicates, in order to make sure
that the internal state remains consistent, appropriate constraints are scheduled for execution
as a result of the change, etc. The predicates available for modifying a variable are discussed
in the next section.

25

3.4.1 Modifying variable domains

When using IC variables in normal code, one would typically use the $\=, $=< and $>= family
of constraints to (resp.) remove a value, reduce the upper bound or increase the lower bound
of a variable.

While these constraints are good for normal CSP solving, they have a number of properties
which may be less desirable when writing new constraints. In particular, they may leave
unwanted delayed goals behind and may perform extra propagation before returning (it may
be desirable to perform all required bound updates before allowing further propagation to
occur).

To give the constraint writer more control over such matters, special predicates exist in the
ic kernel module which allow direct modification of the domain without the waking of goals
(they are scheduled for execution but not actually executed). These predicates generally
accept an IC variable, a non-IC variable (which will be constrained to make it a real IC
variable) or a number.

Full details on these predicates can be found in the reference manual; they are listed here
for completeness. Note that with the exception of impose bounds/3 none of the goals call
wake/0, so the programmer is free to do so at a convenient time.

impose min/2 Set the lowerbound.

impose max/2 Set the upperbound.

impose bounds/3 Sets both upper and lower bounds.

exclude/2 Excludes an integer from an integral variable.

exclude range/3 Excludes a range of integers from an integral variable.

set var type/2 Makes the variable be of the given type.

set vars type/2 Like set var type, but works for lists and submatrices of variables as well.

3.4.2 The IC attribute

The IC attribute is a meta-term which is attached to all variables which take part in IC
constraints. ic kernel defines the IC attribute as a structure of the following form:

ic with [var_type:Type,

lo:Lo,

hi:Hi,

bitmap:Bitmap,

min:SuspMin,

max:SuspMax,

hole:SuspHole,

type:SuspType

]

This structure holds

26

var type The type of the variable. This defaults to ’real’ but may become ’integer’ after an
explicit call to integers/1, by being included in an integer constraint (e.g. #=) or by
inferences made during constraint propagation.

lo The lower bound of the variable’s domain, as a float.

hi The lower bound of the variable’s domain, as a float.

bitmap Where relevant, a bitmap represent the integer domain; where not relevant it holds
the atom undefined.

min Suspension list of goals to be woken on lower bound changes.

max Suspension list of goals to be woken on upper bound changes.

hole Suspension list of goals to be woken when a value is removed from the middle of a
domain. Such removals only happen for integer variables whose domain is finite.

type Suspension list of goals to be woken when a variable’s type becomes more constrained,
i.e. when a variable goes from being real to being integer.

The suspension list names can be used in suspend/3 and related predicates to denote an
appropriate waking condition.
The attribute of a domain variable can be accessed with the predicate get ic attr/2.
As noted above, direct access and manipulation of the attribute is discouraged; use the access
predicates instead.

27

28

Chapter 4

Additional Finite Domain
Constraints

4.1 Various Constraints on Lists

The library ic global implements a number of constraints over lists of integer variables. It is
loaded using one of

:- use_module(library(ic_global)).

:- lib(ic_global).

The following predicates are provided

alldifferent(+List)
A version of alldifferent/1 with strong propagation.

alldifferent(+List, ++Capacity)
Like alldifferent/1, but every value may occur Capacity times.

minlist(+List, ?Min)
Min is the minimum of the values in List. Operationally: Min gets updated to reflect

the current range of the minimum of variables and values in List. Likewise, the list
elements get constrained to the minimum given.

maxlist(+List, ?Max)
Max is the maximum of the values in List. Operationally: Max gets updated to reflect
the current range of the maximum of variables and values in List. Likewise, the list
elements get constrained to the maximum given.

lexico le(+List1, +List2)
Imposes a lexicographic ordering between the two lists.

ordered(++Relation, +List)
Constrains List to be ordered according to Relation. Relation is one of the atoms <,

=<, >, >=, = .

ordered sum(++List, +Sum)
The list elements are ordered and their sum is Sum.

29

occurrences(++Value, +List, ?N)
The value Value occurs in List N times. Operationally: N gets updated to reflect the

number of possible occurrences in the List. List elements may get instantiated to Value,
or Value may be removed from their domain if required by N.

sorted(?List, ?Sorted)
Sorted is a sorted permutation of List.

sorted(?List, ?Sorted, ?Positions)
Sorted is a sorted permutation of List and Positions is a list whose elements indicating
the position of each unsorted list element within the sorted list.

sumlist(+List, ?Sum)
The sum of the list elements is Sum. This constraint is more efficient than a general

IC sum constraint if the list is long and Sum is not constrained frequently.

4.2 Cumulative Constraint and Resource Profiles

The library cumulative implements the cumulative scheduling constraint. It is based on the
IC library and is loaded using one of

:- use_module(library(ic_cumulative)).

:- lib(ic_cumulative).

cumulative(+StartTimes, +Durations, +Resources, ++ResourceLimit)
A cumulative scheduling constraint. StartTimes, Durations and Resources are lists

of equal length N of integer variables or integers. ResourceLimit is an integer. The
declarative meaning is: If there are N tasks, each starting at a certain start time,
having a certain duration and consuming a certain (constant) amount of resource, then
the sum of resource usage of all the tasks does not exceed ResourceLimit at any time.

profile(+StartTimes, +Durations, +Resources, -Profile)
StartTimes, Durations, Resources and Profile are lists of equal length N of integer

variables or integers with the same meaning as in cumulative/4. The list Profile indicates
the level of resource usage at the starting point of each task.

4.3 Edge-finder

The libraries ic edge finder and ic edge finder3 implement stronger versions of the dis-
junctive and cumulative scheduling constraints. They employ a technique known as edge-
finding to derive stronger bounds on the starting times of the tasks. The library is loaded
using either

:- use_module(library(ic_edge_finder)).

to get a weaker variant with quadratic complexity, or

:- use_module(library(ic_edge_finder3)).

to get a stronger variant with cubic complexity.

30

disjunctive(+StartTimes,+Durations)
A disjunctive scheduling constraint. StartTimes and Durations are lists of equal length
N of integer variables or integers. The declarative meaning is that the N tasks with
certain start times and duration do not overlap at any point in time.

cumulative(+StartTimes,+Durations,+Resources,++ResourceLimit)
A cumulative scheduling constraint. StartTimes, Durations and Resources are lists of

equal length N of integer variables or integers. ResourceLimit is an integer. The declar-
ative meaning is: If there are N tasks, each starting at a certain start time, having a
certain duration and consuming a certain (constant) amount of resource, then the sum
of resource usage of all the tasks does not exceed ResourceLimit at any time. This con-
straint can propagate more information than the implementation in library(cumulative).

cumulative(+StartTimes,+Durations,+Resources,+Area,++ResourceLimit)
In this variant, an area (the product of duration and resource usage of a task) can be

specified, e.g. if duration or resource usage are not known in advance. The edge-finder
algorithm can make use of this information to derive bound updates.

31

32

Chapter 5

The Integer Sets Library

5.1 Introduction

The fd sets library is a solver for constraints over the domain of finite sets of integers. Unlike
conjunto, it cannot deal with sets elements that are not integers. On the other hand, fd sets
is usually faster for integer sets than conjunto.

5.2 Ground Integer Sets

(Ground) integer sets are simply sorted, duplicate-free lists of integers e.g.

SetOfThree = [1,3,7]

EmptySet = []

Lists which contain non-integers, are unsorted or contain duplicates, are not sets in the sense
of this library.

5.3 Set Variables

5.3.1 Declaring

Set variables are variables which can eventually take a ground integer set as their value. They
are characterized by a lower bound (the set of elements that are definitely in the set) and an
upper bound (the set of elements that may be in the set). A set variable can be declared as
follows:

SetVar :: []..[1,2,3,4,5,6,7]

If the lower bound is the empty set (like in this case) this can be written as

SetVar subset [1,2,3,4,5,6,7]

If the lower bound is the empty set and the upper bound is a set of consecutive integers, one
can also declare it like

intset(SetVar, 1, 7)

33

which is equivalent to the above.

The predicates to declare sets are:

?Set :: ++Lwb..++Upb Set is an integer set within the given bounds

intset(?Set, +Min, +Max) Set is a set containing numbers between Min and Max

intsets(?Sets, ?N, +Min, +Max) Sets is a list of N sets containing numbers between Min
and Max

5.3.2 Printing

Set variables are by default printed in a particular way, e.g.

?- X :: [2,3]..[1,2,3,4], write(X).

X{[2, 3] \/ ([] .. [1, 4]) : _308{[2 .. 4]}}

The curly brackets contain

1. the lower bound of the set

2. the union symbol

3. the set of optional values (that may or may not be in the set)

4. a colon

5. a finite domain indicating the admissible cardinality for the set

5.3.3 Domain Access

potential members(?Set, -List) List is the list of elements of whose membership in Set is
currently uncertain

set range(?Set, -Lwb, -Upb) Lwb and Upb are the current lower and upper bounds on
Set

5.4 Constraints

5.4.1 Membership

?X in ?Set The integer X is member of the integer set Set

?X notin ?Set The integer X is not a member of the integer set Set

membership booleans(?Set, ?BoolArr) BoolArr is an array of booleans describing Set

5.4.2 Cardinality

#(?Set, ?Card) Card is the cardinality of the integer set Set

34

5.4.3 Set Relations

difference(?Set1, ?Set2, ?Set3) Set3 is the difference of the integer sets Set1 and Set2

?Set1 disjoint ?Set2 The integer sets Set1 and Set2 are disjoint

?Set1 includes ?Set2 Set1 includes (is a superset) of the integer set Set2

intersection(?Set1, ?Set2, ?Set3) Set3 is the intersection of the integer sets Set1 and Set2

?Set1 sameset ?Set2 The sets Set1 and Set2 are equal

?Set1 subset ?Set2 Set1 is a subset of the integer set Set2

symdiff(?Set1, ?Set2, ?Set3) Set3 is the symmetric difference of the integer sets Set1 and
Set2

union(?Set1, ?Set2, ?Set3) Set3 is the union of the integer sets Set1 and Set2

5.4.4 N-ary Set Relations

all disjoint(+Sets) Sets is a list of integers sets which are all disjoint

all union(+Sets, ?SetUnion) SetUnion is the union of all the sets in the list Sets

all intersection(+Sets, ?SetIntersection) SetIntersection is the intersection of all the
sets in the list Sets

5.4.5 Set Weights

weight(?Set, ++ElementWeights, ?Weight) According to the array of element weights,
the weight of set Set1 is Weight

5.5 Set Expressions

In most positions where a set or set variable is expected one can also use a set expression.
A set expression is composed from ground sets (integer lists), set variables, and the following
set operators:

Set1 /\ Set2 % intersection

Set1 \/ Set2 % union

Set1 \ Set2 % difference

When such set expressions occur, they are translated into auxiliary intersection/3, union/3
and difference/3 constraints, respectively.

5.6 Search Support

The insetdomain/4 predicate can be used to enumerate all ground instantiations of a set
variable, much like indomain/1 in the finite-domain case.

insetdomain(?Set, ?CardSel, ?ElemSel, ?Order) Instantiate Set to a possible value

35

5.7 Example

The following program computes so-called Steiner triplets. These are triplets of numbers from
1 to N such that any two triplets have at most one element in common.

:- lib(fd_sets).

:- lib(fd).

steiner(N, Sets) :-

NB is N * (N-1) // 6, % compute number of triplets

intsets(Sets, NB, 1, N), % initialise the set variables

(foreach(S,Sets) do

#(S,3) % constrain their cardinality

),

(fromto(Sets,[S1|Ss],Ss,[]) do

(foreach(S2,Ss), param(S1) do

#(S1 /\ S2, C), % constrain the cardinality

C #<= 1 % of pairwise intersections

)

),

label_sets(Sets). % search

label_sets([]).

label_sets([S|Ss]) :-

insetdomain(S,_,_,_),

label_sets(Ss).

Here is an example of running this program

?- steiner(9,X).

X = [[1, 2, 3], [1, 4, 5], [1, 6, 7], [1, 8, 9],

[2, 4, 6], [2, 5, 8], [2, 7, 9], [3, 4, 9],

[3, 5, 7], [3, 6, 8], [4, 7, 8], [5, 6, 9]] More? (;)

36

Chapter 6

The Symbolic Domain Library

6.1 Introduction

The ic symbolic library is a solver for constraints over ordered symbolic domains. It is imple-
mented on top of library(ic) (see 3), by mapping symbolic domains to finite integer domains.
There are also several mixed-domain constraints, which have both symbolic and integer ar-
guments.

6.2 Domains and Domain Variables

This library uses the domain feature provided by the ECLiPSe kernel. This means that
domains need to be declared. The declaration specifies the domain values and their order.
For example:

?- local domain(weekday(mo,tu,we,th,fr,sa,su)).

declares a domain with name ’weekday’ and values ’mo’, ’tu’ etc. The domain values are
implicitly ordered, with ’mo’ corresponding to 1, until ’su’ corresponding to 7. Domain values
must be unique within one ECLiPSe module, i.e. a symbolic value can belong to at most one
domain.

A variable of a declared domain can then be created using

?- X &:: weekday.

X = X{[mo, tu, we, th, fr, sa, su]}

Yes (0.00s cpu)

or multiple variables using

?- [X,Y,Z] &:: weekday.

X = X{[mo, tu, we, th, fr, sa, su]}

Y = Y{[mo, tu, we, th, fr, sa, su]}

Z = Z{[mo, tu, we, th, fr, sa, su]}

Yes (0.00s cpu)

37

6.3 Basic Constraints

The following constraints implement the basic relationships between two domain values. The
constraints require their arguments to come from identical domains, otherwise an error is
raised.

?X &= ?Y X is the same as Y

?X &\= ?Y X is different from Y

?X &> ?Y X is strictly before Y in the domain order

?X &< ?Y X is strictly after Y in the domain order

?X &=< ?Y X is the same as Y, or before Y in the domain order

?X &>= ?Y X is the same as Y, or after Y in the domain order

shift(?X,?C,?Y) Y is C places above X in the domain order. X and Y have symbolic
domains, C has an integer domain.

rotate(?X,?C,?Y) like shift/3 but wraps at domain boundary.

element(?Index,++List,?Value) Value occurs List at position Index. Value has a sym-
bolic domain, Index has an integer domain. List is a number of symbolic domain values.

For example

?- [X, Y] &:: weekday, X &< Y.

X = X{[mo, tu, we, th, fr, sa]}

Y = Y{[tu, we, th, fr, sa, su]}

Yes (0.00s cpu)

?- X &:: weekday, X &=< we.

X = X{[mo, tu, we]}

Yes (0.00s cpu)

6.4 Global Constraints

A number of global constraints are available which directly correspond (and are in fact im-
plemented via) their counterparts in lib(ic global):

alldifferent(+List) All list elements are different

occurrences(++Value,+List,?N) Value occurs N times in List

atmost(++N,+List,++Value) Value occurs at most N times in List

38

6.5 Internals

Internally, symbolic domains are mapped to integer ranges from 1 up to the number of domain
elements. The first value in the domain declaration corresponds to 1, the second to 2 and
so on. Similarly, symbolic domain variables can be mapped to a corresponding IC integer
variable. This mapping is accessible through the predicate symbol domain index/3:

?- symbol_domain_index(fr, D, I).

D = weekday

I = 5

Yes (0.00s cpu)

?- X &:: weekday, symbol_domain_index(X, D, I).

X = X{[mo, tu, we, th, fr, sa, su]}

D = weekday

I = I{1 .. 7}

Yes (0.00s cpu)

?- X &:: weekday, X &\= we, symbol_domain_index(X, D, I).

X = X{[mo, tu, th, fr, sa, su]}

D = weekday

I = I{[1, 2, 4 .. 7]}

Yes (0.00s cpu)

The integer variable I mirrors the domain of the symbolic variable X and vice versa.

6.6 Extending and Interfacing this Library

Because of the mapping of symbols to integers, new constraints over symbolic variables can
be implemented simply by placing numeric (IC) constraints on the corresponding integer
variables.
Similarly, the facilities of the ic search library can be exploited when working with symbolic
variables. Instead of labeling the symbolic variables, one can use the various facilities of
ic search to label the corresponding integer variables instead.

39

40

Chapter 7

Propia - A Library Supporting
Generalised Propagation

7.1 Overview

Propia is the name for the implementation of Generalised Propagation in ECLiPSe.
Generalised propagation is not restricted to integer domains, but can be applied to any goal
the user cares to specify even if the variables don’t have domains.
Effectively the system looks ahead to determine if an approximation to the possible answers
has a non-trivial generalization. It is non-trivial if it enables any variables in the goal to
become further instantiated, thus reducing search.
The background and motivation for Generalised Propagation is given in references [15, 14, 16].
This section focusses on how to use it. Further examples of the use of Propia are distributed
with ECLiPSein the doc/examples/propia/ directory . A simple demonstration of Propia
in action on Lewis Carroll’s Zebra problem can be run by compiling zebra.pl and issuing
the query lib(ic), zebra(Houses,ic) . An slightly more complex application of Propia to
crossword generation can be run by compiling crossword.
Using Propia it is easy to take a standard Prolog program and, with minimal syntactic change,
to turn it into a constraint logic program. Any goal Goal in the Prolog program, can be trans-
formed into a constraint by annotating it thus Goal infers most. The resulting constraint
admits just the same answers as the original goal, but its behaviour is quite different. Instead
of evaluating the goal by non-deterministically selecting a clause in its definition and evaluat-
ing the clause body, Propia evaluates the resulting constraint by extracting information from
it deterministically. Propia extracts as much information as possible from the constraints
before selecting an ordinary Prolog goal and evaluating it. In this way Propia reduces the
number of choices that need to be explored and thus makes programs more efficient.

7.2 Invoking and Using Propia

Propia is an ECLiPSelibrary, loaded by calling

?- lib(propia).

A goal, such as member(X,[1,2,3]), is turned into a constraint by annotating it using the
infers operator. The second argument of infers defines how much propagation should be

41

attempted on the constraint and will be described in section 7.3 below. In this section we
shall use Goal infers most, which infers as much information as possible, given the loaded
constraint solvers. If the IC solver is loaded, then IC information is extracted, and Propia
reduces the domains to achieve arc-consistency.

We first show the behaviour of the original goal:

?- member(X, [1, 2, 3]).

X = 1

Yes (0.00s cpu, solution 1, maybe more)

X = 2

Yes (0.02s cpu, solution 2, maybe more)

X = 3

Yes (0.02s cpu, solution 3)

Constraint propagation is invoked by infers most:

?- lib(ic).

...

?- member(X, [1, 2, 3]) infers most.

X = X{1 .. 3}

Yes (0.00s cpu)

Note that the information produced by the constraint solves the corresponding goal as well.
The constraint can thus be dropped.

In case there remains information not yet extracted, the constraint must delay so that com-
pleteness is preserved:

?- member(X,Y) infers most.

X = X

Y = [H3|T3]

Delayed goals:

member(X, [H3|T3]) infers most

yes.

Propia copes correctly with built-in predicates, such as #>and #<, so after compiling this
simple program:

notin3to6(X) :- X#<3.

notin3to6(X) :- X#>6.

the predicate can be used as a constraint:

?- X :: 1 .. 10, notin3to6(X) infers most.

X = X{[1, 2, 7 .. 10]}

Yes (0.00s cpu)

In this example there are no “delayed” constraints since all valuations for X satisfying the
above conditions are solutions. Propia detects this and therefore avoids delaying the constraint
again.

42

In scheduling applications it is necessary to constrain two tasks that require the same machine
not to be performed at the same time. Specifically one must end before the other begins, or
vice versa. If one task starting at time ST1 has duration D1 and another task starting at
time ST2 has duration D2, the above “disjunctive” constraint is expressed as follows:

noclash(ST1,D1,ST2,D2) :- ST1 #>= ST2+D2.

noclash(ST1,D1,ST2,D2) :- ST2 #>= ST1+D1.

Generalised Propagation on this constraint allows useful information to be extracted even
before it is decided in which order the tasks should be run:

?- lib(ic).

...

?- [ST1, ST2] :: 1 .. 10, noclash(ST1, 5, ST2, 7) infers most.

ST1 = ST1{[1 .. 5, 8 .. 10]}

ST2 = ST2{[1 .. 3, 6 .. 10]}

There is 1 delayed goal.

Yes (0.00s cpu)

The values 6 and 7 are removed from the domain of ST1 because the goal noclash(ST1,5,ST2,7)
cannot be satisfied if ST1 is either 6 or 7. For example if ST1 is 6, then either 6 > ST2+7 (to
satisfy the first clause defining noclash) or else ST2 > 6 + 5 (to satisfy the second clause).
There is no value for ST2in{1...10} that makes either inequality true, and so 6 is removed
from the domain of ST1. By a similar reasoning 4 and 5 are removed from the domain of
ST2.

We next take a simple example from propositional logic. In this example the result of con-
straint propagation is reflected not only in the variable domains, but also in the unification
of problem variables. We first define logical conjunction by its truth table:

land(true,true,true).

land(true,false,false).

land(false,true,false).

land(false,false,false).

Now we ask for an X, Y, Z satisfying land(X, Y, Z) ∧ X = Y . . Both solutions have
X = Y = Z, and this information is produced solely by propagating on the land constraint:

?- land(X, Y, Z) infers most, X = Y.

Z = X

X = X

Y = X

There is 1 delayed goal.

Yes (0.00s cpu)

We now illustrate the potential efficiency benefits of Generalised Propagation with a simple
resource allocation problem. A company makes 9 products, each of which require two kinds
of components in their manufacture, and yields a certain profit. This information is held in
the following table.

43

/*** product(Name,#Component1,#Component2,Profit). **/

product(1,1,19,1).

product(2,2,17,2).

product(3,3,15,3).

product(4,4,13,4).

product(5,10,8,5).

product(6,16,4,4).

product(7,17,3,3).

product(8,18,2,2).

product(9,19,1,1).

We wish to find which products to manufacture in order to make a certain profit without
using more than a certain number of either kind of component.1

We first define a predicate sum(Products,Comp1,Comp2,Profit) which relates a list of prod-
ucts (eg Products=[1,5,1]), to the number of each component required to build all the
products in the list and the profit (for [1,5,1], Comp1=12 and Comp2=46 and Profit=7).

sum([],0,0,0).

sum([Name|Products],Count1,Count2,Profit) :-

[Count1,Count2,Profit]::0..100,

product(Name,Ct1a,Ct2a,Profita),

Count1 #= Ct1a+Ct1b,

Count2 #= Ct2a+Ct2b,

Profit #= Profita+Profitb,

sum(Products,Ct1b,Ct2b,Profitb).

If sum is invoked with a list of variables as its first argument, eg [V1,V2,V3], then the only
choice made during execution is at the call to product. In short, for each variable in the
input list there are 9 alternative products that could be chosen. For a list of three variables
there are consequently 93 = 729 alternatives.
If we assume a production batch of 9 units, then the number of alternative ways of solving sum

is 99 , or nearly 400 million. To avoid exploring so many possibilities, we simply annotate the
call to product(Name,Ct1a,Ct2a,Profita) as a Generalised Propagation constraint. Thus
the new definition of sum is:

sum([],0,0,0).

sum([Name|Products],Count1,Count2,Profit) :-

[Count1,Count2,Profit]::0..100,

product(Name,Ct1a,Ct2a,Profita) infers most,

Count1 #= Ct1a+Ct1b,

Count2 #= Ct2a+Ct2b,

Profit #= Profita+Profitb,

sum(Products,Ct1b,Ct2b,Profitb).

Now sum refuses to make any choices:

?- sum([V1, V2, V3], Comp1, Comp2, Profit).

V1 = V1{1 .. 9}

1To keep the example simple there is no optimisation.

44

V2 = V2{1 .. 9}

V3 = V3{1 .. 9}

Comp1 = Comp1{3 .. 57}

Comp2 = Comp2{3 .. 57}

Profit = Profit{3 .. 15}

There are 9 delayed goals.

Yes (0.01s cpu)

Using the second version of sum, it is simple to write a program which produces lists of
products which use less than a given number Max1 and Max2 of each component, and yields
more than a given profit MinProfit:

solve(Products,Batch,Max1,Max2,MinProfit) :-

length(Products,Batch),

Comp1 #=< Max1,

Comp2 #=< Max2,

Profit #>= MinProfit,

sum(Products,Comp1,Comp2,Profit),

labeling(Products).

The following query finds which products to manufacture in order to make a profit of 40
without using more than 95 of either kind of component.

?- solve(P, 9, 95, 95, 40).

P = [1, 4, 5, 5, 5, 5, 5, 5, 5]

Yes (0.03s cpu, solution 1, maybe more)

Constraints can be dropped as soon as they became redundant (i.e. as soon as they were
entailed by the current partial solution). The check for entailment can be expensive, so
Propia only drops constraints if a simple syntactic check allows it. For infers most, this check
succeeds if the IC library is loaded, and the constraint has only one remaining variable.

7.3 Approximate Generalised Propagation

The syntax Goal infers most can also be varied to invoke different levels of Generalised Prop-
agation. Other alternatives are Goal infers ic, Goal infers unique, and Goal infers consistent.
The strongest constraint is generated by Goal infers most, but it can be expensive to com-
pute. The other alternatives may be evaluated more efficiently, and may yield a better overall
performance on different applications. We call them “approximations”, since the information
they produce during propagation is a (weaker) approximation of the information produced
by the strongest constraint.

We illustrate the different approximations supported by the current version of Propia on a
single small example. The results for Goal infers most reflect the problem that structured
terms cannot appear in IC integer domains.

p(1,a).

p(2,f(Z)).

p(3,3).

45

?- p(X, Y) infers most.

X = X{1 .. 3}

Y = Y

There is 1 delayed goal.

Yes (0.00s cpu)

?- X :: 1 .. 3, p(X, Y) infers most.

X = X{1 .. 3}

Y = Y

There is 1 delayed goal.

Yes (0.00s cpu)

?- p(2, Y) infers most.

Y = f(_326)

There is 1 delayed goal.

Yes (0.00s cpu)

The first approximation we will introduce in this section is one that searches for the unique
answer to the query. It is written Goal infers unique. This is cheap because as soon as two
different answers to the query have been found, the constraint evaluation terminates and the
constraint is delayed again until new information becomes available. Here are two examples
of this approximation. In the first example notice that no domain is produced for X.

?- p(X, Y) infers unique.

X = X

Y = Y

There is 1 delayed goal.

Yes (0.00s cpu)

In the second example, by contrast, infers unique yields the same result as infers most:

?- p(X,X) infers unique.

X = 3

Yes (0.00s cpu)

The next example shows that unique can even capture nonground answers:

?- p(2, X) infers unique.

X = f(Z)

Yes (0.00s cpu)

The next approximation we shall describe is even weaker: it tests if there is an answer and if
not it fails. If there is an answer it checks to see if the constraint is already true.

?- p(1, X) infers consistent.

X = X

There is 1 delayed goal.

Yes (0.00s cpu)

46

?- p(1, a) infers consistent.

Yes (0.00s cpu)

?- p(1, X) infers consistent, X = b.

No (0.00s cpu)

The strongest language infers most extracts any information possible from the loaded con-
straint solvers. The solvers currently handled by Propia are unification (which is the built-in
solver of Prolog), ic and ic symbolic. The IC library is loaded by lib(ic) and the symbolic
library by lib(ic_symbolic). These libraries are described elsewhere. If both libraries are
loaded, then infers most extracts information from unification, IC domains and symbolic
domains. For example:

p(f(X),1) :- X *>=0, X *=< 10.

p(f(X),1) :- X=12.

with the above program

?- p(X, Y) infers most.

X = f(_338{0.0 .. 12.0})

Y = Y{[1, 2]}

There is 1 delayed goal.

Yes (0.00s cpu)

The approximation infers ic is similar to infers most. However, while infers most ex-
tracts information based on whatever constraint solvers are loaded, the others only infers
information derived from the specified constraint solver. Here’s the same example using
infers ic:

?- p(X, Y) infers ic.

X = f(_353{0.0 .. 12.0})

Y = Y{[1, 2]}

There is 1 delayed goal.

Yes (0.00s cpu)

One rather special approximation langue is infers ac, where ac stands for arc-consistency.
This has similar semantics to infers ic, but is implemented very efficiently using the built-in
element constraint of the IC solver. The limitation is that Goal infers ac is implemented
by executing the goal repeatedly to find all the solutions, and then manipulating the complete
set of solutions. It will only work in case there are finitely many solutions and they are all
ground.
Finally it is possible to invoke Propia in such a way as to influence its waking conditions. To do
this, use the standard suspend syntax. For example “forward checking” can be implemented
as follows:

propagate(Goal,fc) :- !,

suspend(Goal,7,Goal->inst) infers most.

In this case the Propia constraint wakes up each time a variable in the goal is instantiated.
The default priority for Propia constraints is 3. However, in the above example, the priority
of the Propia constraint has been set to 7.

47

48

Chapter 8

The Constraint Handling Rules
Library

The chr library implements constraint handling rules (CHRs). It includes a compiler, which
translates CHR programs into ECLiPSe programs, and a runtime system. Several constraint
handlers are provided in example files in the directory chr.

The current chr library has now been modified to function correctly without the Opium
debugger, which is no longer supported. In addition, the Prolog code produced by the chr

command is now more readable.

In addition, there is now an experimental extended implementation of CHRs. This extended
implementation is faster than the existing chr library, and contains some extensions and
changes. This is described in section 8.9.

8.1 Introduction

Constraint handling rules (CHRs, CHR home page http://www.pst.informatik.uni-muenchen.de/-
fruehwir/chr-intro.html) [6] are a high-level language extension to write user-defined con-
straints. CHRs are essentially a committed-choice language consisting of guarded rules with
multiple heads.

The high-level CHRs are an excellent tool for rapid prototyping and implementation of con-
straint handlers. The usual abstract formalism to describe a constraint system, i.e. inference
rules, rewrite rules, sequents, formulas expressing axioms and theorems, can be written as
CHRs in a straightforward way. Starting from this executable specification, the rules can be
refined and adapted to the specifics of the application.

CHRs define simplification of, and propagation over, user-defined constraints. Simplification
replaces constraints by simpler constraints while preserving logical equivalence (e.g. X>Y,Y>X
<=> fail). Propagation adds new constraints which are logically redundant but may cause
further simplification (e.g. X>Y,Y>Z ==> X>Z). Repeatedly applying CHRs incrementally sim-
plifies and finally solves user-defined constraints (e.g. A>B,B>C,C>A leads to fail).

With multiple heads and propagation rules, CHRs provide two features which are essential for
non-trivial constraint handling. The declarative reading of CHRs as formulas of first order logic
allows one to reason about their correctness. On the other hand, regarding CHRs as a rewrite
system on logical formulas allows one to reason about their termination and confluence.

In the next section it is explained how to use CHRs. Then, example constraint handlers and

49

the color graphic demo are listed. The next section introduces the basics of the CHR language
and how it works. The next section describes more of the CHR language, the section after the
built-in labeling feature. Then there is a section on how to write good CHR programs. Next
the debuggers for CHRs are introduced.

8.2 Using Constraint Handling Rules

Here are the steps to be taken from writing to using CHRs:

• Write a CHR program in a file File.chr.

• In ECLiPSe, load the chr library with the query lib(chr). It contains both the compiler
and runtime system for CHRs. Now ECLiPSe is in coroutining mode.

• Compile your chr file into a pl file with the query chr2pl(File).

• In any ECLiPSe session, you can load a compiled constraint handler ([File].). The CHR

library is automatically loaded to provide the necessary runtime environment. ECLiPSe

is in coroutining mode.

You can compile your chr file and load the resulting pl file at once using the query chr(File).

8.3 Example Constraint Handlers

All example files are in the subdirectory lib/chr of the installation-directory of ECLiPSe

(which can be found using get_flag(installation_directory,Dir). The files (.chr, .pl,
examples) relevant to a particular constraint system can be found by looking at all files that
match the pattern given in the following listing with each example handler. The examples
include a color graphic demo about optimal sender placement for wire-less devices in buildings
and company sites, small constraint handlers for

• minimum, maximum of and inequalities between terms (*minmax*),

• terms (functor/3, arg/3, =.. as constraints) (*term*),

• lists (similar to Prolog III) (*list*),

• rational trees (*tree*),

• sound if-then-else, negation and checking, lazy conjunction and disjunction (*con-
trol*),

• geometric reasoning about rectangles (*demo*),

and larger constraint handlers for

• booleans for propositional logic (*bool*),

• finite and infinite domains (inspired by CHIP) (*domain*),

• sets (*set*),

50

• terminological reasoning (similar to KL-ONE) [8] (*kl-one*),

• temporal reasoning (over time points and intervals) [7] (*time*),

• equation solving over real numbers (similar to CLP(R)) or rational numbers (*math*).

CHRs have also been used as a committed choice programming language on their own (*prime*).
The example handlers can be loaded using chr(lib(File)). For instance the finite domain
handler can be made available as follows (the current directory must have write permission
so that the pl file can be created):

[eclipse 1]: lib(chr), chr(lib(domain)).

...

domain.pl compiled traceable 241028 bytes in 1.22 seconds

yes.

[eclipse 2]: X::1..10, X ne 5.

X = X

Constraints:

(4) X_g1165 :: [1, 2, 3, 4, 6, 7, 8, 9, 10]

yes.

8.4 The CHR Language

User-defined constraints are defined by constraint handling rules - and optional ECLiPSe

clauses for the built-in labeling feature. The constraints must be declared before they are
defined. A CHR program (file extension chr) may also include other declarations, options
and arbitrary ECLiPSe clauses.

Program ::= Statement [Program]
Statement ::= Declaration | Option | Rule | Clause

Constraint handling rules involving the same constraint can be scattered across a file as long
as they are in the same module and compiled together. For readability declarations and
options should precede rules and clauses.
In the following subsections, we introduce constraint handling rules and explain how they
work. The next section describes declarations, clauses, options and built-in predicates for
CHRs.

8.4.1 Constraint Handling Rules

A constraint handling rule has one or two heads, an optional guard, a body and an optional
name. A “Head” is a “Constraint”. A “Constraint” is an ECLiPSe callable term (i.e. atom or
structure) whose functor is a declared constraint. A “Guard” is an ECLiPSe goal. The guard
is a test on the applicability of a rule. The “Body” of a rule is an ECLiPSe goal (including
constraints). The execution of the guard and the body should not involve side-effects (like

51

assert/1, write/1) (for more information see the section on writing CHR programs). A rule
can be named with a “RuleName” which can be any ECLiPSe term (including variables from
the rule). During debugging (see section 8.8), this name will be displayed instead of the whole
rule.

There are three kinds of constraint handling rules.

Rule ::= SimplificationRule | PropagationRule | SimpagationRule
SimplificationRule ::= [RuleName @] Head [, Head] <=> [Guard |] Body.
PropagationRule ::= [RuleName @] Head [, Head] ==> [Guard |] Body.
SimpagationRule ::= [RuleName @] Head \ Head <=> [Guard |] Body.

Declaratively, a rule relates heads and body provided the guard is true. A simplification rule
means that the heads are true if and only if the body is true. A propagation rule means that
the body is true if the heads are true. A simpagation rule is a combination of a simplification
and propagation rule. The rule “Head1 \ Head2 <=> Body” is equivalent to the simplification
rule “Head1 , Head2 <=> Body, Head1.” However, the simpagation rule is more compact to
write, more efficient to execute and has better termination behavior than the corresponding
simplification rule.

Example: Assume you want to write a constraint handler for minimum and maximum based
on inequality constraints. The complete code can be found in the handler file minmax.chr.

handler minmax.

constraints leq/2, neq/2, minimum/3, maximum/3.

built_in @ X leq Y <=> \+nonground(X),\+nonground(Y) | X @=< Y.

reflexivity @ X leq X <=> true.

antisymmetry @ X leq Y, Y leq X <=> X = Y.

transitivity @ X leq Y, Y leq Z ==> X \== Y, Y \== Z, X \== Z | X leq Z.

...

built_in @ X neq Y <=> X \== Y | true.

irreflexivity@ X neq X <=> fail.

...

subsumption @ X lss Y \ X neq Y <=> true.

simplification @ X neq Y, X leq Y <=> X lss Y.

...

min_eq @ minimum(X, X, Y) <=> X = Y.

min_eq @ minimum(X, Y, X) <=> X leq Y.

min_eq @ minimum(X, Y, Y) <=> Y leq X.

...

propagation @ minimum(X, Y, Z) ==> Z leq X, Z leq Y.

...

Procedurally, a rule can fire only if its guard succeeds. A firing simplification rule replaces the
head constraints by the body constraints, a firing propagation rule keeps the head constraints
and adds the body. A firing simpagation rule keeps the first head and replaces the second
head by the body. See the next subsection for more details.

52

8.4.2 How CHRs Work

ECLiPSe will first solve the built-in constraints, then user-defined constraints by CHRs then
the other goals.

Example, contd.:

[eclipse]: chr(minmax).

minmax.chr compiled traceable 106874 bytes in 3.37 seconds

minmax.pl compiled traceable 124980 bytes in 1.83 seconds

yes.

[eclipse]: minimum(X,Y,Z), maximum(X,Y,Z).

X = Y = Z = _g496

yes.

Each user-defined constraint is associated with all rules in whose heads it occurs by the CHR

compiler. Every time a user-defined constraint goal is added or re-activated, it checks itself
the applicability of its associated CHRs by trying each CHR. To try a CHR, one of its heads is
matched against the constraint goal. If a CHR has two heads, the constraint store is searched
for a “partner” constraint that matches the other head. If the matching succeeded, the guard
is executed as a test. Otherwise the rule delays and the next rule is tried.

The guard either succeeds, fails or delays. If the guard succeeds, the rule fires. Otherwise
the rule delays and the next rule is tried. In the current implementation, a guard succeeds
if its execution succeeds without delayed goals and attempts to “touch” a global variable
(one that occurs in the heads). A variable is touched if it is unified with a term (including
other variables), if it gets more constrained by built-in constraints (e.g. finite domains or
equations over rationals) or if a goal delays on it (see also the check_guard_bindings option).
Currently, built-in constraints used in a guard act as tests only (see also the section on writing
good CHR programs).

If the firing CHR is a simplification rule, the matched constraint goals are removed and the
body of the CHR is executed. Similarly for a firing simpagation rule, except that the first
head is kept. If the firing CHR is a propagation rule the body of the CHR is executed and the
next rule is tried. It is remembered that the propagation rule fired, so it will not fire again
(with the same partner constraint) if the constraint goal is re-activated.

If the constraint goal has not been removed and all rules have been tried, it delays until a
variable occurring in the constraint is touched. Then the constraint is re-activated and all its
rules are tried again.

Example, contd.: The following trace is edited, rules that are tried in vain and redelay have
been removed.

[eclipse]: chr_trace.

yes.

Debugger switched on - creep mode

[eclipse]: notrace. % trace only constraints

Debugger switched off

yes.

[eclipse]: minimum(X,Y,Z), maximum(X,Y,Z).

ADD (1) minimum(X, Y, Z)

53

TRY (1) minimum(_g218, _g220, _g222) with propagation

RULE ’propagation’ FIRED

ADD (2) leq(_g665, _g601)

ADD (3) leq(_g665, Var)

ADD (4) maximum(_g601, Var, _g665)

TRY (4) maximum(_g601, Var, _g665) with propagation

RULE ’propagation’ FIRED

ADD (5) leq(_g601, _g665)

TRY (5) leq(_g601, _g665) (2) leq(_g665, _g601) with antisymmetry

RULE ’antisymmetry’ FIRED

TRY (4) maximum(_g601, Var, _g601) with max_eq

RULE ’max_eq’ FIRED

ADD (6) leq(Var, _g601)

TRY (3) leq(_g601, Var) (6) leq(Var, _g601) with antisymmetry

RULE ’antisymmetry’ FIRED

TRY (1) minimum(_g601, _g601, _g601) with min_eq

RULE ’min_eq’ FIRED

ADD (7) leq(_g601, _g601)

TRY (7) leq(_g601, _g601) with reflexivity

RULE ’reflexivity’ FIRED

X = Y = Z = _g558

yes.

8.5 More on the CHR Language

The following subsections describe declarations, clauses, options and built-in predicates of the
CHR language.

8.5.1 Declarations

Declarations name the constraint handler, its constraints, specify their syntax and use in
built-in labeling.

Declaration ::= handler Name.
::= constraints SpecList.
::= operator(Precedence,Associativity,Name).
::= label_with Constraint if Guard.

54

The optional handler declaration documents the name of the constraint handler. Currently
it can be omitted, but will be useful in future releases for combining handlers.
The mandatory constraints declaration lists the constraints defined in the handler. A
“SpecList” is a list of Name/Arity pairs for the constraints. The declaration of a constraint
must appear before the constraint handling rules and ECLiPSe clauses which define it, other-
wise a syntax error is raised. There can be several constraints declarations.
The optional operator declaration declares an operator, with the same arguments as op/3

in ECLiPSe. However, while the usual operator declarations are ignored during compilation
from chr to pl files, the CHR operator declarations are taken into account (see also the
subsection on clauses).
The optional label_with declaration specifies when the ECLiPSe clauses of a constraint can
be used for built-in labeling (see subsection on labeling).
Example, contd.: The first lines of the minmax handler are declarations:

handler minmax.

constraints leq/2, neq/2, minimum/3, maximum/3.

operator(700, xfx, leq).

operator(700, xfx, neq).

8.5.2 ECLiPSe Clauses

A constraint handler program may also include arbitrary ECLiPSe code (written with the
four operators :- /[1,2] and ?- /[1,2]).

Clause ::= Head :- Body.
::= Head ?- Body.
::= :- Body.
::= ?- Body.

Note that :-/1 and ?-/1 behave different from each other in CHR programs. Clauses starting
with :- are copied into the pl file by the CHR compiler, clauses with ?- are executed by the
compiler. As the op declaration needs both copying and execution, we have introduced the
special operator declaration (see previous subsection on declarations). A ”Head” can be a
”Constraint”, such clauses are used for built-in labeling only (see section on labeling).

8.5.3 Options

The option command allows the user to set options in the CHR compiler.

Option ::= option(Option, On or off).

Options can be switched on or off. Default is on. Advanced users may switch an option off
to improve the efficiency of the handler at the cost of safety. Options are:

• check_guard_bindings: When executing a guard, it is checked that no global variables
(variables of the rule heads) are touched (see subsection on how CHRs work). If the
option is on, guards involving cut, if-then-else or negation may not work correctly if

55

a global variable has been touched before. If switched off, guard checking may be
significantly faster, but only safe if the user makes sure that global variables are not
touched. To ensure that the variables are sufficiently bound, tests like nonvar/1 or
delays can be added to the predicates used in the guards.

• already_in_store: Before adding a user-defined constraint to the constraint store, it
is checked if there is an identical one already in the store. If there is, the new constraint
needs not to be added. The handling of the duplicate constraint is avoided. This option
can be set to off, because the checking may be too expensive if duplicate constraints
rarely occur. Specific duplicate constraints can still be removed by a simpagation rule
of the form Constraint \ Constraint <=> true.

• already_in_heads: In two-headed simplification rules, the intention is often to simplify
the two head constraints into a stronger version of one of the constraints. However, a
straightforward encoding of the rule may include the case where the new constraint
is identical to the corresponding head constraint. Removing the head constraint and
adding it again in the body is inefficient and may cause termination problems. If the
already_in_heads option is on, in such a case the head constraint is kept and the
body constraint ignored. Note however, that this optimization currently only works if
the body constraint is the only goal of the body or the first goal in the conjunction
comprising the body of the rule (see the example handler for domains). The option may
be too expensive if identical head-body constraints rarely occur.

• Note that the ECLiPSe environment flag debug_compile (set and unset with dbgcomp

and nodbgcomp) is also taken into account by the CHR compiler. The default is on. If
switched off, the resulting code is more efficient, but cannot be debugged anymore (see
section 8.8).

8.5.4 CHR Built-In Predicates

There are some built-in predicates to compile chr files, for debugging, built-in labeling and
to inspect the constraint store and remove its constraints:

• chr2pl(File) compiles “File” from a chr to pl file.

• chr(File) compiles “File” from a chr to pl file and loads the pl file.

• chr_trace activates the standard debugger and shows constraint handling.

• chr_notrace stops either debugger.

• chr_labeling provides built-in labeling (see corresponding subsection).

• chr_label_with(Constraint) checks if “Constraint” satisfies a label_with declaration
(used for built-in labeling).

• chr_resolve(Constraint) uses the ECLiPSe clauses to solve a constraint (used for built-
in labeling).

• chr_get_constraint(Constraint) gets a constraint unifying with“Constraint” from the
constraint store and removes it, gets another constraint on backtracking.

56

• chr_get_constraint(Variable,Constraint) is the same as chr_get_constraint/1 ex-
cept that the constraint constrains the variable “Variable”.

8.6 Labeling

In a constraint logic program, constraint handling is interleaved with making choices. Typi-
cally, without making choices, constraint problems cannot be solved completely. Labeling is a
controlled way to make choices. Usually, a labeling predicate is called at the end of the pro-
gram which chooses values for the variables constrained in the program. We will understand
labeling in the most general sense as a procedure introducing arbitrary choices (additional
constraints on constrained variables) in a systematic way.
The CHR run-time system provides built-in labeling for user-defined constraints. The idea is
to write clauses for user-defined constraints that are used for labeling the variables in the
constraint. These clauses are not used during constraint handling, but only during built-in
labeling. Therefore the “Head” of a clause may be a user-defined “Constraint”. The la-

bel_with declaration restricts the use of the clauses for built-in labeling (see subsection on
declarations). There can be several label_with declarations for a constraint.
Example, contd.:

label_with minimum(X, Y, Z) if true.

minimum(X, Y, Z):- X leq Y, Z = X.

minimum(X, Y, Z):- Y lss X, Z = Y.

The built-in labeling is invoked by calling the CHR built-in predicate chr_labeling/0 (no
arguments). Once called, whenever no more constraint handling is possible, the built-in
labeling will choose a constraint goal whose label_with declaration is satisfied for labeling.
It will introduce choices using the clauses of the constraint.
Example, contd.: A query without and with built-in labeling:

[eclipse]: minimum(X,Y,Z), maximum(X,Y,W), Z neq W.

X = _g357

Y = _g389

Z = _g421

W = _g1227

Constraints:

(1) minimum(_g357, _g389, _g421)

(2) _g421 leq _g357

(3) _g421 leq _g389

(4) maximum(_g357, _g389, _g1227)

(5) _g357 leq _g1227

(7) _g389 leq _g1227

(10) _g421 lss _g1227

yes.

[eclipse]: minimum(X,Y,Z), maximum(X,Y,W), Z neq W, chr_labeling.

57

X = Z = _g363

Y = W = _g395

Constraints:

(10) _g363 lss _g395

More? (;)

X = W = _g363

Y = Z = _g395

Constraints:

(17) _g395 lss _g363

yes.

Advanced users can write their own labeling procedure taking into account the constraints in
the constraint store (see next subsection for CHR built-in predicates to inspect and manipulate
the constraint store).
Example The predicate chr_labeling/0 can be defined as:

labeling :-

chr_get_constraint(C),

chr_label_with(C),

!,

chr_resolve(C),

labeling.

labeling.

8.7 Writing Good CHR Programs

This section gives some programming hints. For maximum efficiency of your constraint han-
dler, see also the subsection on options, especially on check_guard_bindings and the de-

bug_compile flag.

8.7.1 Choosing CHRs

Constraint handling rules for a given constraint system can often be derived from its definition
in formalisms such as inference rules, rewrite rules, sequents, formulas expressing axioms and
theorems. CHRs can also be found by first considering special cases of each constraint and
then looking at interactions of pairs of constraints sharing a variable. Cases that don’t occur
in the application can be ignored. CHRs can also improve application programs by turning
certain predicates into constraints to provide “short-cuts” (lemmas). For example, to the
predicate append/3 one can add append(L1,[],L2) <=> L1=L2 together with label_with

append(L1,L2,L3) if true.
Starting from an executable specification, the rules can then be refined and adapted to the
specifics of the application. Efficiency can be improved by strengthening or weakening the

58

guards to perform simplification as early as needed and to do the “just right” amount of
propagation. Propagation rules can be expensive, because no constraints are removed. If the
speed of the final handler is not satisfactory, it can be rewritten using meta-terms or auxiliary
C functions.
The rules for a constraint can be scattered across the chr file as long as they are in the
same module. The rules are tried in some order determined by the CHR compiler. Due to
optimizations this order is not necessarily the textual order in which the rules where written.
In addition, the incremental addition of constraints at run-time causes constraints to be tried
for application of rules in some dynamically determined order.

8.7.2 Optimizations

Single-headed rules should be preferred to two-headed rules which involve the expensive search
for a partner constraint. Rules with two heads can be avoided by changing the “granularity” of
the constraints. For example, assume one wants to express that n variables are different from
each other. It is more efficient to have a single constraint all_different(List_of_n_Vars)
than n2 inequality constraints (see handler domain.chr). However, the extreme case of having
a single constraint modeling the whole constraint store will usually be inefficient.
Rules with two heads are more efficient, if the two heads of the rule share a variable (which
is usually the case). Then the search for a partner constraint has to consider less candidates.
Moreover, two rules with identical (or sufficiently similar) heads can be merged into one rule
so that the search for a partner constraint is only performed once instead of twice.
Rules with more than two heads are not allowed for efficiency reasons. If needed, they can
usually be written as several rules with two heads. For example, in the handler for set
constraints set.chr, the propagation rule:

set_union(S1, S2, S), set(S1, S1Glb, S1Lub), set(S2, S2Glb, S2Lub) ==>

s_union(S1Glb, S2Glb, SGlb),

s_union(S1Lub, S2Lub, SLub),

set(S, SGlb, SLub).

is translated into:

set_union(S1, S2, S), set(S1, S1Glb, S1Lub) ==>

’$set_union’(S2, S1, S1Glb, S1Lub, S).

set(S2, S2Glb, S2Lub) \ ’$set_union’(S2, S1, S1Glb, S1Lub, S) <=>

s_union(S1Glb, S2Glb, SGlb),

s_union(S1Lub, S2Lub, SLub),

set(S, SGlb, SLub).

As guards are tried frequently, they should be simple tests not involving side-effects. For
efficiency and clarity reasons, one should also avoid using user-defined constraints in guards.
Currently, besides conjunctions, disjunctions are allowed in the guard, but they should be used
with care. The use of other control built-in predicates of ECLiPSe is discouraged. Negation
and if-then-else can be used if their first arguments are either simple goals (see ECLiPSe user
manual) or goals that don’t touch global variables. Similarly, goals preceding a cut must fulfill
this condition. Built-in constraints (e.g. finite domains, rational arithmetic) work as tests
only in the current implementation. Head matching is more efficient than explicitly checking
equalities in the guard (which requires the check_guard_bindings flag to be on). In the

59

current implementation, local variables (those that do not occur in the heads) can be shared
between the guard and the body.

Several handlers can be used simultaneously if they don’t share user-defined constraints. The
current implementation will not work correctly if the same constraint is defined in rules of
different handlers that have been compiled separately. In such a case, the handlers must be
merged “by hand”. This means that the source code has to be edited so that the rules for the
shared constraint are together (in one module). Changes may be necessary (like strengthening
guards) to avoid divergence or loops in the computation.

Constraint handlers can be tightly integrated with constraints defined with other extensions of
ECLiPSe (e.g. meta-terms) by using the ECLiPSe built-in predicate notify_constrained(Var)
to notify ECLiPSe each time a variable becomes more constrained. This happens if a user-
defined constraint is called for the first time or if a user-defined constraint is rewritten by a
CHR into a stronger constraint with the same functor.

For pretty printing of the user-defined constraints in the answer at the top-level and debuggers,
ECLiPSe macro transformation (for write mode) can be used. This is especially useful when
the constraints have some not so readable notation inside the handler. For an example, see
the constraint handler bool bool.chr.

8.8 Debugging CHR Programs

User-defined constraints including application of CHRs can be traced with the standard de-
bugger. Debugging of the ECLiPSe code is done in the standard way. See the corresponding
user manual for more information.

8.8.1 Using the Debugger

In order to use the debugging tool, the debug_compile flag must have been on (default)
during compilation (chr to pl) and loading of the produced ECLiPSe code.

• The query trace. activates the standard debugger (tracing user-defined constraints like
predicates).

• The query chr_trace. activates the standard debugger showing more information about
the handling of constraints. (application of CHRs).

• The query chr_notrace. stops either debugger.

The debugger displays user-defined constraints and application of CHRs. User-defined con-
straints are treated as predicates and the information about application of CHRs is displayed
without stopping. See the subsection on how CHRs work for an example trace. The additional
ports are:

• add: A new constraint is added to the constraint store.

• already_in: A constraint to be added was already present.

The ports related to application of rules are:

• try_rule: A rule is tried.

60

• delay_rule: The last tried rule cannot fire because the guard did not succeed.

• fire_rule: The last tried rule fires.

The ports related to labeling are:

• try_label: A label with declaration is checked.

• delay_label: The last label with declaration delays because the guard did not succeed.

• fire_label: The last tried label with declaration succeeds, so the clauses of the asso-
ciated constraint will be used for built-in labeling.

When displayed, each constraint is labeled with a unique integer identifier. Each rule is
labeled with its name as given in the chr source using the @ operator. If a rule does not have
a name, it is displayed together with a unique integer identifier.

8.9 The Extended CHR Implementation

A new, extended, chr library has been developed, with the intention of providing the basis
for a system that will allow more optimisations than the previous implementation. At the
same time, some of the syntax of the CHR has been changed to conform better to standard
Prolog.
The system is still experimental, and provides no special support for debugging CHR code.
Please report any problems encountered while using this system.
The main user visible differences from the original chr library are as follows:

• The extended library produces code that generally runs about twice as fast as the old
non-debugging code. It is expected that further improvements should be possible.

• CHR code is no longer compiled with a special command – the normal compile command
will now recognise and compile CHR code when the extended chr library is loaded.
No intermediate Prolog file is produced. The .chr extension is no longer supported
implicitly.

• Syntax of some operators have been changed to conform better to standard Prolog.

• A framework for supporting more than two head constraints has been introduced. How-
ever, support for propagation rules with more than two heads have not yet been added.
Simplification and simpagation rules with more than two heads are currently supported.

• The compiler does not try to reorder the CHR any more. Instead, they are ordered in
the way they are written by the user.

• label_with is no longer supported. It can be replaced with user defined labelling.

• The operational semantics of rules have been clarified.

• The CHR are run at the same priority before and after suspensions. Priorities can be
specified for CHR constraints.

• There is no special support for debugging yet. The CHR code would be seen by the
debugger as the transformed Prolog code that is generated by the compiler.

61

8.9.1 Invoking the extended CHR library

The extended library is invoked by lib(ech). Given that it is now integrated into the
compiler. It can be invoked from a file that contains CHR code, as :- lib(ech)., as long as
this occurs before the CHR code.

8.9.2 Syntactic Differences

As programs containing CHRs are no longer compiled by a separate process, the .chr extension
is no longer implicitly supported. Files with the .chr extension can still be compiled by
explicitly specifying the extension in the compile command, as in [’file.chr’]. Associated
with this change, there are some changes to the declarations of the .chr format:

• operator/3 does not exist. It is not needed because the standard Prolog op/3 dec-
laration can now handle all operator declarations. Replace all operator/3 with op/3

declarations.

• The other declarations handler constraints option are now handled as normal Pro-
log declarations, i.e. they must be preceded with :-. This is to conform with standard
Prolog syntax.

The syntax for naming a rule has been changed, because the old method (using @ clashes
with the use of @ in modules. The new operator for naming rules is ::=. Here is part of the
minmax handler in the new syntax:

:- handler minmax.

:- constraints leq/2, neq/2, minimum/3, maximum/3.

:- op(700, xfx, leq).

built_in ::= X leq Y <=> \+nonground(X), \+nonground(Y) | X @=< Y.

reflexivity ::= X leq X <=> true.

...

8.9.3 Compiling

After loading the extended chr library, programs containing CHR code can be compiled di-
rectly. Thus, CHR code can be freely mixed with normal Prolog code in any file. In particular,
a compilation may now compile code from different files in different modules which may all
contain CHR codes. This was not a problem with the old library because CHR code had to
be compile separately.
In the extended library, CHR code can occur anywhere in a particular module, and for each
module, all the CHR code (which may reside in different files) will all be compiled into one unit
(handler declarations are ignored by the system, they are present for compatibility purposes
only), with the same constraint store. CHR code in different modules are entirely separate
and independent from each other.
In order to allow CHR code to occur anywhere inside a module, and also because it is diffi-
cult to define a meaning for replacing multi-heads rules, compilation of CHR code is always
incremental, i.e. any existing CHR code in a module is not replaced by a new compilation.
Instead, the rules from the new compilation is added to the old ones.

62

It is possible to clear out old CHR code before compiling a file. This is done with the chr/1

predicate. This first remove any existing CHR code in any module before the compilation
starts. It thus approximates the semantics of chr/1 of the old library, but no Prolog file is
generated.

8.9.4 Semantics

Addition and removal of constraints

In the old chr library, it was not clearly defined when a constraint will be added to or removed
from the constraint store during the execution of a rule. In the extended chr library, all head
constraints that occur in the head of a rule are mutually exclusive, i.e. they cannot refer to
the same constraint. This ensures that similar heads in a rule will match different constraints
in the constraint store. Beyond this, the state of a constraint – if it is in the constraint store
or not – that has been matched in the head is not defined during the execution of the rest of
the head and guard. As soon as the guard is satisfied, any constraints removed by a rule will
no longer be in the constraint store, and any constraint that is not removed by the rule will
be present in the constraint store.

This can have an effect on execution. For example, in the finite domain example in the old
chr directory (domain.chr), there is the following rule:

X lt Y, X::[A|L] <=>

\+nonground(Y), remove_higher(Y,[A|L],L1), remove(Y,L1,L2) |

X::L2.

Unfortunately this rule is not sufficiently specified in the extended CHR, and can lead to
looping under certain circumstances. The two remove predicate in the guard removes elements
from the domain, but if no elements are removed (because X lt Y is redundant, e.g. X lt 5

with X::[1..2]), then in the old CHR execution, the body goal, the constraint X::L2 would
not be actually executed, because the older constraint in the head (the one that matched
X::[A|L]) has not yet been removed when the new constraint is imposed. With the extended
CHR, the old constraint is removed after the guard, so the X::L2 is executed, and this can
lead to looping. The rule should thus be written as:

X lt Y, X::[A|L] <=>

\+nonground(Y), remove_higher(Y,[A|L],L1), remove(Y,L1,L2),

L2\==[A|L] |

X::L2.

Executing Propagation and simpagation rules

Consider the following propagation rule:

p(X), q(Y) ==> <Body>.

:- p(X).

63

The execution of this rule, started by calling p(X), will try to match all q(Y) in the constraint
store, and thus it can be satisfied, with <Body> executed, multiple number of times with
different q(Y). <Body> for a particular q(Y) will be executed first, before trying to match the
next q(Y). The execution of <Body> may however cause the removal of p(X). In this case, no
further matching with q(Y) will be performed.
Note that there is no commitment with propagation and simpagation rule if the constraint
being matched is not removed:

p(X), q(Y) ==> <Body1>.

p(X), r(Y) ==> <Body2>.

:- p(X).

Both rules will always be executed.
The body of a rule is executed as soon as its guard succeeds. In the case of propagation rules,
this means that the other propagation rules for this constraint will not be tried until the body
goals have all been executed. This is unlike the old CHR, where for propagation rules, the
body is not executed until all the propagation rules have been tried, and if more than one
propagation rule has fired (successful in its guard execution), then the most recently fired
rule’s body is executed first. For properly written, mutually exclusive propagation rule, this
should not make a difference (modulo the effect of the removal of constraints in the body).

Execution Priority

The priority at which an ECH rule is executed depends on the ‘active’ constraint, i.e. the
constraint that triggered the execution of the rules. Normally, the ECH rules are executed
at the default priority, but a different priority can be associated with a constraint when it is
declared, specifying the priority at which the ECH rules will be executed when that constraint
is the active constraint.

:- constraints chr_labeling/0:at_lower(1).

this specifies that if chr_labeling/0 was the active constraint, then the rules will be executed
at a lower priority than the default. The priorities are mapped to the priority system of
ECLiPSe, and at_lower(1) maps to a priority one lower than the default, so that ECH rules
executing at the default priority will execute first. This is particularly useful for labelling, as
this allow the other ECH constraints to be executed during the labelling process rather than
afterwards.
The priority specified can be at_lower(N), at_higher(N), or at_absolute_priority(N).
For at_lower(N), the priority is the default + N; for at_higher(N), it is the default - N.
at_absolute_priority(N) sets the priority to N, regardless of the default, and its use is
not recommended. The available priorities are from 1 (highest) to 11 (lowest). The default
priority is initially set to 9, but can be changed with the chr_priority option. Note that
the priority at which the rules will run at is determined at compile time, and changing the
default priority will only affect new constraints compiled after the change. It should therefore
only be used in a directive before any of the ECH rules.
This behaviour is different from the old chr library, and from older versions of ech library,
where the rules ran at different priorities before and after suspension. This can lead to different

64

behaviours with the same rule, either with other constraints solvers, or even with other CHR
rules, as a woken CHR executes at much higher priority than the initial run. With the current
ech execution, the rules are executed at the same priority before and after suspension, for the
same active constraint. The default priority is set at 9 so that it is very likely to be lower than
the priority used in other constraint solvers. The user is now allowed to alter the priority of
specific ECH constraints to allow the user more control so that for example a labelling rule
can run at a lower priority than the other constraints.

8.9.5 Options and Built-In Predicates

The check_guard_bindings and already_in_store options from the old chr library are
supported. Note that the extended compiler can actually detect some cases where guard
bindings cannot constrain any global variables (for example, var/1), and will in such cases
no check guard bindings.
New options, intended to control the way the compiler tries to optimise code, are introduced.
These are intended for the developers of the compiler, and will not be discussed in detail here.
The only currently supported option in this category is single_symmetric_simpagation.
Another new option, default_chr_priority, allows the default priority to be changed, e.g.

:- option(default_chr_priority, 6).

changes the default priority to 6, so the compiler would generate new CHR code which defaults
to this priority (unless overridden in the constraints declaration). The available values are
from 1 to 11.
The old CHR built-ins, chr_get_constraint/1 and chr_get_constraint/2 are both imple-
mented in this library.
A new built-in predicate, in_chrstore/1, is used to inspect the constraint store:

in_chrstore(+Constraint)

is used to test if Constraint is in the constraint store or not. It can be used to prevent the
addition of redundant constraints:

X leq Y, Y leq Z ==> \+in_chrstore(X leq Z)| X leq Z.

The above usage is only useful if the already_in_store option is off. Note that as the state
of a constraint that appears in the head is not defined in the guard, it is strongly suggested
that the user does not perform this test in the guard for such constraints,

8.9.6 Compiler generated predicates

A source to source transformation is performed on CHR code by the compiler, and the resulting
code is compiled in the same module as the CHR code. These transformed predicates all begin
with ’CHR’, so the user should avoid using such predicates.

65

66

Chapter 9

EPLEX: The ECLiPSe/LP/MIP
Interface

9.1 Usage

This library allows the use of an external mathematical programming (LP, MIP or quadratic)
solver from within ECLiPSe. It provides a largely solver-independent API to the programmer,
so many programs will run with any supported external solver.

With the kind agreement of Dash Associates Ltd., the XPRESS-MP1 solver is now included
with the library, and is available for academic use under the ECLiPSe licence agreement.

See section 9.10 for more details on the supported solvers.

The most generic way to load the library is:

:- lib(eplex).

This will try to load an appropriate external solver available on the computer.

It is also possible to request a specific solver explicitly, see section 9.10 for details.

Note that the ECLiPSe library described here is just an interface to an external solver. In
order to be able to use it, you need to have access to a solver supported by the library. For
commercial solvers, this may require a licence for the solver on your machine. However, you
do not need to obtain a separate licence for the included XPRESS-MP solver. This solver is
licenced to IC-Parc for distribution with ECLiPSe, and it cannot be used independently of
ECLiPSe.

9.2 Eplex Instances

In this chapter, the problem passed to the external solver will be referred to as an eplex
problem. An eplex problem consists of a set of linear arithmetic constraints, whose variables
have bounds and may possibly have integrality constraints. The external solver will solve
such a problem by optimising these constraints with respect to an objective function.

With the eplex library, it is possible to have more than one eplex problem within one program.
The simplest way to write such programs with the library is through Eplex Instances. An
eplex instance is an instance of the eplex solver, to which an eplex problem can be sent. An

1XPRESS-MP is a product from Dash Associates Ltd. (www.dashoptimization.com)

67

external solver state can be associated with each eplex instance, which can be invoked to solve
the eplex problem. Declaratively, an eplex instance can be seen as a compound constraint
consisting of all the variables, their bounds, and constraints of the eplex problem.

Like other solvers, each eplex instance has its own module. To use an eplex instance, it must
first be declared, so that the module can be created. This is done by:

eplex instance(+Name)

This predicate will initialise an eplex instance Name. Once initialised, a Name module will
exist, to which the user can post the constraints for the eplex problem and setup and use the
external solver state to solve the eplex problem. Normally, this predicate should be issued as
a directive in the user’s program, so that the program code can refer to the instance directly
in their code. For example:

:- eplex_instance(instance).

For convenience, the eplex library declares eplex as an eplex instance when the library is
loaded.

9.2.1 Linear Constraints

The constraints provided are equalities and inequalities over linear expressions. Their opera-
tional behaviour is as follows:

• When they contain no variables, they simply succeed or fail.

• When they contain exactly one variable, they are translated into a bound update on
that variable, which may in turn fail, succeed, or even instantiate the variable. Note
that if the variable’s type is integer, the bound will be adjusted to the next suitable
integral value.

• Otherwise, the constraint is transferred to the external solver state if the state has been
setup. If it has not, the constraint delays and is transferred to the external solver state
when it is setup. This mechanism makes it possible to interface to a non-incremental
black-box solver that requires all constraints at once, or to send constraints to the solver
in batches

As with all predicates defined for an eplex instance, these constraints should be module-
qualified with the name of the eplex instance. In the following they are shown qualified
with the eplex instance. Other instances can be used if they have been declared using
eplex instance/1.

EplexInstance: (X $= Y)

X is equal to Y. X and Y are linear expressions.

EplexInstance: (X $>= Y)

X is greater or equal to Y. X and Y are linear expressions.

68

EplexInstance: (X $=< Y)

X is less or equal to Y. X and Y are linear expressions.

9.2.2 Linear Expressions

The following arithmetic expression can be used inside the constraints:

X Variables. If X is not yet a ranged variable, it is turned into one via an implicit declaration
X $:: -inf..inf.

123, 3.4 Integer or floating point constants.

+Expr Identity.

-Expr Sign change.

E1+E2 Addition.

sum(ListOfExpr) Equivalent to the sum of all list elements.

E1-E2 Subtraction.

E1*E2 Multiplication.

ListOfExpr1*ListOfExpr2 Scalar product: The sum of the products of the corresponding
elements in the two lists. The lists must be of equal length.

9.2.3 Bounds

Bounds for variables can be given to an eplex instance via the $::/2 constraint:

EplexIntance: Vars $:: Lo..Hi Restrict the external solver to assign solution values for
the eplex problem within the bounds specified by Lo..Hi. Passes to the external solver
the bounds for the variables in Vars. Lo, Hi are the lower and upper bounds, respectively.
Note that the bounds are only passed to the external solver if they would narrow the
current bounds, and failure will occur if the resulting interval is empty. Note also that
the external solver does not do any bound propagation and will thus not change the
bounds on its own. The default bounds for variables are notionally -1.0Inf..1.0Inf (where
infinity is actually defined as the solver’s notion of infinity).

9.2.4 Integrality

The difference between using an LP vs. an MIP solver is made by declaring integrality to the
solver via the integers/1 constraint:

EplexInstance:integers(Vars) Inform the external solver to treat the variables Vars as
integral. It does not impose the integer type on Vars. However, when a typed solution
is retrieved (via lp get/3 or lp var get/3), this will be rounded to the nearest integer.

Note that unless eplex:integers/1 (or lp add/3, see section 9.4.2) is invoked, any invoca-
tion of the eplex external solver (via lp solve/2, lp probe/3 or lp demon setup/5) will
only solve a continuous relaxation, even when problem variables have been declared as
integers in other solvers (e.g. ic).

69

Note that all the above constraints are local to the eplex instance; they do not place any
restrictions on the variables for other eplex instances or solvers. Failure will occur only when
inconsistency is detected within the same eplex instance, unless the user explicitly try to
merge the constraints from different solvers/eplex instance.

9.2.5 Solving Simple Eplex Problems

In order to solve an eplex problem, the eplex instance must be set up for an external solver
state. The solver state can then be invoked to solve the problem. The simplest way to do
this is to use:

EplexInstance:eplex solver setup(+Objective) This predicate creates a new external
solver state and associates it with the eplex instance. Any arithmetic, integrality and
bound constraints posted for this eplex instance are collected to create the external
solver state. After this, the solver state can be invoked to solve the eplex problem.

Objective is either min(Expr) or max(Expr) where Expr is a linear expression (or
quadratic, if supported by the external solver).

EplexInstance:eplex solve(-Cost) Explicitly invokes the external solver state. Any new
constraints posted are taken into account. If the external solver can find an optimal
solution to the eplex problem, then the predicate succeeds and Cost is instantiated to
the optimal value. If the problem is infeasible (has no solution) or unbounded (Cost is
not bounded by the constraints), then the predicate fails.

9.2.6 Examples

Here is a simple linear program, handled by the predefined eplex instance ’eplex’:

:- lib(eplex).

lp_example(Cost) :-

eplex: eplex_solver_setup(min(X)),

eplex: (X+Y $>= 3),

eplex: (X-Y $= 0),

eplex: eplex_solve(Cost).

The same example using a user-defined eplex instance:

:- lib(eplex).

:- eplex_instance(my_instance).

lp_example(Cost) :-

my_instance: eplex_solver_setup(min(X)),

my_instance: (X+Y $>= 3),

my_instance: (X-Y $= 0),

my_instance: eplex_solve(Cost).

Running the program gives the optimal value for Cost:

70

[eclipse 2]: lp_example(Cost).

Cost = 1.5

Note that if the eplex eplex instance is used instead of my_instance, then the eplex_instance/1
declaration is not necessary.
By declaring one variable as integer, we obtain a Mixed Integer Problem:

:- lib(eplex).

:- eplex_instance(my_instance).

mip_example(Cost) :-

my_instance: (X+Y $>= 3),

my_instance: (X-Y $= 0),

my_instance: integers([X]),

my_instance: eplex_solver_setup(min(X)),

my_instance: eplex_solve(Cost).

....

[eclipse 2]: mip_example(Cost).

Cost = 2.0

The cost is now higher because X is constrained to be an integer. Note also that in this
example, we posted the constraints before setting up the external solver, whereas in the
previous example we set up the solver first. The solver set up and constraint posting can
be done in any order. If integers/1 constraints are only posted after problem setup, the
problem will be automatically converted from an LP to a MIP problem.
This section has introduced the most basic ways to use the eplex library. We will discuss
more advanced methods of using the eplex instances in section 9.3.

9.3 Advanced Use of Eplex Instances

9.3.1 Obtaining Solver State Information

The black-box interface binds both the objective value (Cost) and the problem variables by
bindings these variables. On the other hand, eplex solve/1 binds the objective value, but
does not bind the problem variables. These values can be obtained by:

EplexInstance:eplex var get(+Var, +What, -Value) Retrieve information about the
solver state associated with the eplex instance for the variable Var. If What is solution
or typed_solution, then the value assigned to this variable by the solver state to obtain
the optimal solution is returned in Value. solution returns the value as a float, and
typed_solution returns the value as either a float or a rounded integer, depending on
if the variable was constrained to an integer in the eplex problem.

EplexInstance:eplex get(+What, -Value) Retrieve information about solver state asso-
ciated with the eplex instance. This returns information such as the problem type, the
constraints for the eplex problem. See the reference manual for more details.

71

EplexInstance:eplex set(+What, +Value) Set a solver option for the eplex instance.

EplexInstance:eplex write(+Format, +File) Write out the problem in the the eplex
instance’s solver state to the file File in format Format. The writing is done by the
external solver. Use the use var name(yes) option in eplex solver setup/4 so that
the written file uses ECLiPSevariable names. Also the write_before_solve option of
eplex solver setup/4 can be used to write out a problem just before it is solved by the
external solver: this allows problem to be written in places where eplex write/2 cannot
be added (e.g. for probing problems)..

EplexInstance:eplex read(+Format, +File) Read a MP problem in the file File in for-
mat Format into a solver state, and associate the solver with the eplex instance. No
solver must already be setup for the eplex instance. The solver state that is setup can
only be triggered explicitly.

So for the simple MIP example:

:- lib(eplex).

:- eplex_instance(my_instance).

mip_example2([X,Y], Cost) :-

my_instance: (X+Y $>= 3),

my_instance: (X-Y $= 0),

my_instance: integers([X]),

my_instance: eplex_solver_setup(min(X)),

my_instance: eplex_solve(Cost),

my_instance: eplex_var_get(X, typed_solution, X),

my_instance: eplex_var_get(Y, typed_solution, Y).

....

[eclipse 2]: mip_example2([X,Y],C).

X = 2

Y = 2.0

C = 2.0

In the example, only X is returned as an integer, as Y was not explicitly constrained to be an
integer.
Note that if there are multiple eplex instances, and a variable is shared between the instances,
then the solver state for each instance can have a different optimal value to the variable.

9.3.2 Creating Eplex Instances Dynamically

So far, we have shown the use of eplex_instance/1 as a directive to declare an eplex instance.
For some applications, it might be necessary to create eplex instances dynamically at run-
time. The can be done by calling eplex_instance/1 at run-time. In this case, the instance
name should not be used to module-qualify any predicates in the code, since this will raise a
compiler warning complaining about an unknown module.

72

new_pool(X,Y) :- % INCORRECT

eplex_instance(pool),

pool: (X $>= Y), % will generate a warning

...

Of course, in the above code, the instance name pool is already known at compile time, so it
can always be declared by a directive.
If the name is truly generated dynamically, this can be done as follows:

new_pool(Pool,X,Y) :-

eplex_instance(Pool),

Pool: (X $>= Y),

....

9.3.3 Interface for CLP-Integration: Solver Demons

To implement hybrid algorithms where a run of a simplex/MIP solver is only a part of the
global solving process, the black-box model presented above is not appropriate anymore. With
eplex instances, we can call eplex_solve/1 repeatedly to re-solve the problem, perhaps after
adding more constraints to the problem or after changes in the variable bounds. However,
the solver must be invoked explicitly. We require more sophisticated methods of invoking the
solver. This can be done by setting up a solver demon, and specifying the conditions in which
the demon is to wake up and invoke the external solver.

EplexInstance:eplex solver setup(+Objective, -Cost, +ListOfOptions, +Trigger-
Modes)

This is a more sophisticated set up for a new solver state than eplex_solver_setup/1 (in
fact eplex solver setup/1 is a special case of eplex solver setup/4). The main idea is that a
list of trigger conditions are specified in TriggerModes, and along with setting up the solver
state, a demon goal is created which is woken up when one of the specified trigger condition
is met. This demon goal will then invoke the solver, with any constraints posted to the eplex
instance since the solver was last invoked taken into account, to re-solve the problem.
The ListOfOptions is a list of solver options for setting up the solver state. Some of these
affect the way the external solver solves the problem, such as if presolve should be applied
before solving the problem. See the reference manual for eplex solver setup/4 for details
on the available options and trigger modes.
As the solver is designed to be invoked repeatedly, it is inappropriate to directly bind Cost

to the objective value. Instead, the objective value is exported as a bound to Cost: For a
minimization problem, each solution’s cost becomes a lower bound, for maximization an upper
bound on Cost. This technique allows for repeated re-solving with reduced variable bounds or
added constraints. Note that the bound update is done only if the solution is optimal. Note
also that Cost is not automatically made a problem variable, and thus may not have bounds
associated with in. In order for the bounds information not to be lost, some bounds should
be given to Cost (e.g. making it a problem variable (but this might introduce unecessarly
self-waking on bounds change), or via another solver with bounds (e.g. ic)).
Note that when a solver demon runs frequently on relatively small problems, it can be im-
portant for efficiency to switch the external solver’s presolving off for this demon as part of
the ListOfOptions during the setup of the problem to reduce overheads.

73

Example

The simplest case of having a simplex solver automatically cooperating with a CLP program,
is to set up a solver demon which will repeatedly check whether the continuous relaxation of
a set of constraints is still feasible. The code could look as follows (we use the eplex instance
in this example):

simplex :-

eplex:eplex_solver_setup(min(0), C, [solution(no)], [bounds]).

First, the constraints are normalised and checked for linearity. Then a solver with a dummy
objective function is set up. The option solution(no) indicates that we are not interested in
solution values. Then we start a solver demon which will re-examine the problem whenever
a change of variable bounds occurs. The demon can be regarded as a compound constraint
implementing the conjunction of the individual constraints. It is able to detect some infeasi-
bilities that for instance could not be detected by a finite domains solver, e.g.

[eclipse 2]: eplex:(X+Y+Z =< 1),

eplex_solver_setup(min(0), C, [solution(no)], [bounds]),

K = 2.

No (0.00s cpu)

In the example, the initial simplex is successful, but instantiating K wakes the demon again,
and the simplex fails this time.

A further step is to take advantage of the cost bound that the simplex procedure provides.
To do this, we need to give the objective The setup is similar to above, but we accept an
objective function and add a cost variable. The bounds of the cost variable will be updated
whenever a simplex invocation finds a better cost bound on the problem. In the example
below, an upper bound for the cost of 1.5 is found initially:

[eclipse 5]: ic: (Cost $:: -1.0Inf..1.0Inf),

eplex:(X+Y $=< 1), eplex:(Y+Z $=< 1), eplex:(X+Z $=< 1),

eplex:eplex_solver_setup(max(X+Y+Z), Cost, [solution(no)], [bounds]).

X = X{-1e+20 .. 1e+20}

Y = Y{-1e+20 .. 1e+20}

Z = Z{-1e+20 .. 1e+20}

Cost = Cost{-1.0Inf .. 1.500001}

Delayed goals:

lp_demon(prob(...), ...)

Yes (0.00s cpu)

(Note that the ranges for X, Y and Z is -1e+20 .. 1e+20 as 1e+20 is this external solver’s
notion of infinity).

If the variable bounds change subsequently, the solver will be re-triggered, improving the cost
bound to 1.3:

74

[eclipse 6]: ic: (Cost $:: -1.0Inf..1.0Inf),

eplex:(X+Y $=< 1), eplex:(Y+Z $=< 1), eplex:(X+Z $=< 1),

eplex:eplex_solver_setup(max(X+Y+Z), Cost, [solution(no)], [bounds]),

eplex:(Y =< 0.3).

X = X{-1e+20 .. 1e+20}

Z = Z{-1e+20 .. 1e+20}

Cost = Cost{-1.0Inf .. 1.300001}

Y = Y{-1e+20 .. 0.3}

Delayed goals:

lp_demon(prob(...), ...)

Yes (0.00s cpu)

A further example is the implementation of a MIP-style branch-and-bound procedure. Source
code is provided in the library file mip.pl.

9.3.4 Probing Using a Different Objective

The external mathematical programming solvers often provides the facility for the user to
change the problem being solved. This includes the addition or removal of constraints, and
the changing of the objective function. We have already seen how extra constraints can be
added. As ECLiPSe is a logic programming language, removal of constraints is automatically
achieved by backtracking. We do not allow the user to explicitly remove constraints that
have been collected by the external solver, as this makes the problem non-monotonic. For the
same reason, we do not allow the objective function to be changed.2 However, we do allow
the objective function to be temporarily changed. This is achieved through:

EplexInstance:eplex probe(+Objective, -Cost)

Similar to eplex solve/1, but optimize for a different objective function rather than the one
that was specified during solver setup. The Cost value is instantiated to the objective value for
this new objective function, and the eplex values for the problem variables are also updated.

9.3.5 Destroying the Solver State

EplexInstance:eplex cleanup

Destroy the specified solver, free all memory, etc. Note that ECLiPSe will normally do the
cleanup automatically, for instance when execution fails across the solver setup, or when a
solver handle gets garbage collected. The solver is disassociated with the eplex instance, and
any outstanding constraints not yet collected by the solver are removed, with a warning to
the user. In effect, the eplex instance is reinitialised.

Note that this is a non-logical operation. Backtracking into code before eplex_cleanup/0

will not restore the solver state, and any attempt to reuse the solver state will not be possible

2However, some monotonic changes are allowed in the low-level interface, for implementing column gener-
ation, see section 9.4.5.

75

(the execution will abort with an error). Normally, it is recommended to let ECLiPSe perform
the cleanup automatically, for instance when execution fails across the solver setup, or when
an unused solver state handle gets garbage collected. However, calling eplex cleanup/0 may
cause resources (memory and licence) to be freed earlier.

9.3.6 Eplex Instance Interface Example: definition of optimize/2:

A black-box setup-and-solve predicate optimize/2 can be defined as:

optimize(OptExpr, ObjVal) :-

eplex:eplex_solver_setup(OptExpr),

eplex:eplex_solve(ObjVal),

eplex:eplex_get(vars, VArr),

eplex:eplex_get(typed_solution, SolutionVector),

VArr = SolutionVector, % do the bindings

eplex:eplex_cleanup.

A solver state is set up for the eplex instance eplex, to allow constraints that were previously
posted to eplex to be collected. This happens once the solver is invoked by eplex_solve/1.
If there is a solution, the solution vector is obtained, and the variables are instantiated to
those solutions.

9.4 Low-Level Solver Interface

For many applications, the facilities presented so far should be appropriate for using Sim-
plex/MIP through ECLiPSe. However, sometimes it may be more convenient or efficient to
directly access the solver state instead of going through the abstraction of the eplex instances.
This section describes lower level operations like how to set up solvers manually. In fact, these
lower level predicates are used to implement the predicates provided with eplex instances.
These predicates accesses the external solver state via a handle, which is returned when the
solver state is set up, and subsequently used to access a particular solver state by the other
predicates. The handle should be treated as a opaque data structure that is used by the eplex
library to refer to a particular solver state.

9.4.1 Setting Up a Solver State

lp demon setup(+Objective, -Cost, +ListOfOptions, +TriggerModes, -Handle)

This is used to set up a demon solver, and eplex_solver_setup/4 calls this predicate. There
is one extra argument compared to eplex_solver_setup/4: the solver state handle Handle,
which is returned by this predicate when the new solver state is created. The other argu-
ments are the same as in eplex_solver_setup/4, except that there is an additional option
in ListOfOptions: collect_from/1. This is used to specify which, if any, eplex instance
the solver state should be collecting constraints from. If an eplex instance is specified (as
pool(Instance)), then the solver state is associated with that instance. If the eplex instance
is not to be associated with an eplex instance, none should be given as the argument to col-

lect_from. This allows a solver state to be set up without the overhead of an eplex instance.
The solver state will not collect any constraints automatically when it is invoked; instead the
constraints must be added explicitly via the handle (using lp_add_constraints/3).

76

By default, the external solver is invoked once after set up by lp_demon_setup, if any Trig-

gerModes is specified. Otherwise, the solver is not invoked and the predicate returns after set
up.

lp setup(+NormConstraints, +Objective, +ListOfOptions, -Handle)

This is an even lower-level primitive, setting up a solver state without any automatic trigger-
ing. It creates a new solver state for the set of constraints NormConstraints (see below for how
to obtain a set of normalised constraints). Apart from the explicitly listed constraints, the
variable’s ranges will be taken into account as the variable bounds for the simplex algorithm.
Undeclared variables are implicitly declared as reals/1.

However, when variables have been declared integers in other solvers (e.g. using ic:integers/1),
that is not taken into account by the solver by default. This means that the solver will
only work on the relaxed problem (ie. ignoring the integrality constraints), unless specified
otherwise in the options. Objective is either min(Expr) or max(Expr) where Expr is a lin-
ear (or quadratic) expression. ListOfOptions is a list of solver options, the same as for
lp demon setup/5 and eplex solver setup/4, except for the collect_from and ini-

tial_solve options, which are specific for the demon solvers.

9.4.2 Adding Constraints to a Solver State

Constraints can be added directly to a solver state without posting them to an eplex instance.
This is done by:

lp add constraints(+Handle, +Constraints, +NewIntegers)

Add new constraints (with possibly new variables) to the solver state represented by Handle
The new constraints will be taken into account the next time the solver is run. The constraints
will be removed on backtracking.

The constraints are first normalised, and simple constraints filtered out (as discussed in sec-
tion 9.2.1) before they are added to the external solver (by calling lp add/3 described below).

lp add(+Handle, +NewNormConstraints, +NewIntegers)

This adds the constraints (both linear and intergrality) to the external solver represented by
Handle. The linear arithmetic constraints must be normalised. Note that it is possible to add
trivial constraints, which would be filtered out by the higher level lp_add_constraints/3
using this predicate. Integrality constraints on non-problem variables are filtered out and a
warning given.

lp add vars(+Handle, +Vars)

This adds the variables in Vars to the external solver state represented by Handle. The
variables should not contain variables which are already problem variables. The variables are
given the default bounds of -infinity..infinity.

77

lp var set bounds(+Handle, +Var, ++Lo,++Hi)

This updates the bounds for the problem variable Var in the external solver state represented
by Handle. Failure occurs if Var is not a problem variable.

9.4.3 Running a Solver State Explicitly

lp solve(+Handle, -Cost)

Apply the external solver’s LP or MIP solver to the problem represented by Handle. Precisely
which method is used depends on the options given to lp setup/4. lp solve/2 fails if there is
no solution or succeeds if an optimal solution is found, returning the solution’s cost in Cost
(unlike with lp demon setup/6, Cost gets instantiated to a number). After a success, various
solution and status information can be retrieved using lp get/3 and lp var get/4.

The set of constraints considered by the solver is the one given when the solver was created
plus any new constraints that were added (e.g by lp add constraints/3) in the meantime.

If there was an error condition, or limits were exceeded, lp solve/2 raises an event. See section
9.8 for details.

lp probe(+Handle, +Objective, -Cost)

Similar to lp solve/2, but optimize for a different objective function rather than the one that
was specified during solver setup. This is the predicate called by eplex probe/2. The main
difference is that eplex_probe/2 will first collect the constraints from the associated eplex
instance before calling lp_probe/3.

9.4.4 Accessing the Solver State

In section 9.3.1, we discussed how solver state information can be accessed via the eplex
instance. Here are the lower level predicates that directly access this information via the
solver state’s handle:

lp get(+Handle, +What, -Value)

Retrieve information about solver state and results. See the reference manual description of
lp_get/3 for a detailed description of the available values for What.

For example, it is possible to obtain the solution values from the last successful invocation of
the external solver using the following:

instantiate_solution(Handle) :-

lp_get(Handle, vars, Vars),

lp_get(Handle, typed_solution, Values),

Vars = Values.

lp var get(+Handle,+Var, +What, -Value)

Retrieve information about solver state represented by Handle, related to a specific variable
Var. Again, see the reference manual for the available parameters.

78

lp var get bounds(+Handle, +Var, -Lo, -Hi)

Retrieve the bounds of the problem variable Var from the solver state represented by Handle.

reduced cost pruning(+Handle,?GlobalCost)

This predicate implements a technique to prune variable bounds based on a global cost bound
and the reduced costs of some solution to a problem relaxation. The assumptions are that
there is a global problem whose cost variable is GlobalCost, and that Handle refers to a linear
relaxation of this global problem. The pruning potentially affects all variables involved in the
relaxed problem.

9.4.5 Expandable Problem and Constraints

We provide low-level primitives to ‘expand’ an eplex problem. Such a problem is considered
to have as yet unspecified components in the objective function and posted constraints. These
constraints are known as expandable constraints. The as yet unspecified component involve
variables that have not yet been added to the problem. When these variables are added, coef-
ficients for the variables can be added to the expandable constraints, as well as the objective
function. These primitives are the basis for implementing column generation, and are used
by the column generation library, lib(colgen).

These primitives modify an existing eplex problem non-monotonically, and can only be used
on problems that are not represented by an eplex instance, and was not setup as a demon
solver (i.e. no trigger conditions are specified).

lp add constraints(+Handle, +Constraints, +Ints, -Idxs)

This adds expandable constraints Constraints to the solver state represented by Handle. The
predicate returns a list of indicies for these constraints in Idxs. The indicies are used to refer
to the constraints when new variables are added to expand the problem.

lp add columns(+Handle, +Columns)

This expands the problem by adding new variables (columns) to the solver state represented by
Handle. Columns is a list of variable:column-specification pair, where variable is the variable
to be added as a new column, and column-specification the specification for the non-zero
components of the column, i.e. coefficients for the expandable constraints (referred to using
the index obtained from lp add constraints/4) and the objective for this variable.

9.4.6 Changing Solver State Settings

In addition to accessing information from the solver state, some options (a subset of those
specified during solver set up) can be changed by:

lp set(+Handle, +What, +Value)

This primitive can be used to change some of the initial options even after setup. Handle
refers to an existing solver state. See the reference manual for details.

79

9.4.7 Destroying a Solver State

lp cleanup(+Handle)

Destroy the specified solver state, free all memory, etc. If the solver state is associated with
an eplex handle, the solver state is disassociated with the eplex instance. However, unlike
eplex cleanup/0, the outstanding constraints not yet collected by the solver is not removed.
As with eplex_cleanup/0, care should be taken before using this non-logical predicate.

9.4.8 Miscellaneous Predicates

lp read(+File, +Format, -Handle)

Read a problem from a file and setup a solver for it. Format is lp or mps. The result is a
handle similar to the one obtained by lp setup/4.

lp write(+Handle, +Format, +File)

Write out the problem in the solver state represented by Handle to the file File in format
Format.

normalise cstrs(+Constraints, -NormConstraints, -NonlinConstr)

where Constraints is a list of terms of the form X $= Y, X $>= Y or X $=< Y where X
and Y are arithmetic expressions. The linear constraints are returned in normalised form in
NormConstraints, the nonlinear ones are returned unchanged in NonlinConstr.

9.5 Multiple Solver States

This library allows multiple solver states to be maintained in the same program. Each solver
state represents an eplex problem. For the external solver, each solver state is completely in-
dependent. For ECLiPSe, the solver states may share variables in the constraints or objective
functions. The eplex library maintains separate solution values for each solver state, and it
is up to the user to reconcile these solution values if they are different.
When two eplex variables are unified, then the library ensures that the now single variable
maintains the eplex values from both variables. The one exception is when two variables
from the same solver state is unified. In this case, an equality constraint between the two
variables is sent to the solver state, but the user can only obtain one eplex value from the
unified variable, even though in the external solver, the variable is still represented as two
variables (columns in the matrix).
It is possible to turn off this automatic sending of the equality constraints by specifying ‘no’ for
the option post_equality_when_unified (in solver setup, or via eplex_set/2). The reason
is that some solvers automatically perform unification when they know that two variables are
the same. For example, for the constraint X $= Y + Z, if Y becomes 0, then X and Z may be
unified by the solver maintaining the constraint. If the same constraint was also posted to
the eplex solver state, then there is no need to send the redundant constraint. However, if the
external solver state did not have the constraint, then it can become inconsistent with that
of ECLiPSe if the equality constraint is not sent. Therefore, only turn off sending of equality
constraints if you are certain you know what you are doing.

80

9.6 External Solver Output and Log

The external solver’s output can be controlled using:

lp_set(SolverChannel, +(Stream)) Send output from SolverChannel to the ECLiPSe I/O
stream Stream.

lp_set(SolverChannel, -(Stream)) Stop sending output from SolverChannel to the ECLiPSe

I/O stream Stream.

SolverChannel is one of result_channel, error_channel, warning_channel, log_channel,
and Stream is an ECLiPSe stream identifier (e.g. output, or the result of an open/3 opera-
tion). By default, error_channel is directed to ECLiPSe’s error stream, warning_channel
to warning_output stream, while result_channel and log_channel are suppressed. To see
the output on these channels, do for instance

:- lp_set(result_channel, +output), lp_set(log_channel, +log_output).

Similarly, to create a log file:

:- open("mylog.log", write, logstream), lp_set(log_channel, +logstream).

and to stop logging:

:- lp_set(log_channel, -logstream), close(logstream).

9.7 Dealing with Large and Other Non-standard Numbers

In many external solvers, infinities or very large numbers are not handled directly. Instead,
these solvers define a large (floating point) number to be infinity. However, the problem that
is sent to the external solver may contain values greater than the solver’s notion of infinity.
This is handled in the following way:

• If a variable’s range extends beyond the solver’s infinity, the range is rounded down.

• If some coefficient (constant) in the problem is outside the solver’s range, an out of
range error would be raised when this is detected (and the problem is not passed to the
external solver).

In addition, ECLiPSe supports numeric types that are not generally available, e.g. bounded
real and rational. These are converted into floating point numbers before they are passed to
the external solver.

9.8 Error Handling

The external solver’s optimization can abort without completely solving the problem, because
of some error, or some resource limit was reached. Eplex classifies these into the following
cases, with default ways of handling them:

suboptimal This means that a solution was found but it may be suboptimal. The default
behaviour is to print a warning and succeed.

81

unbounded This means that the problem is unbounded. The default behaviour is to bind
Cost to infinity (positive or negative depending on the optimisation direction), print a
warning and succeed. CAUTION: No solution values are computed when the problem
is unbounded, so unless the problem was set up with the solution(no) option, an error
will occur when trying to continue as if the optimisation had succeeded.

unknown This means that due to the solution method chosen, it is unknown whether the
problem is unbounded or infeasible. The default behaviour is to print a warning and
fail (even though this may be logically wrong!).

abort Some other error condition occurred during optimisation. The default behaviour is to
print an error and abort.

The default behaviours can be overridden for each problem by giving a user defined goal to
handle each case during problem setup in eplex solver setup/4 (lp setup/4, lp demon setup/5,
or later with eplex set/2 or lp set/3) as an option. If given, the user defined goal will be
executed instead. The user defined handler could for instance change parameter settings and
call lp solve again.
The default behaviour is implemented by raising the events eplex_suboptimal, eplex_unbounded,
eplex_unknown and eplex_abort for the different abort cases. These events can themselves
be redefined to change the default behaviours. However, as this changes the behaviour glob-
ally, it is not recommended.

9.9 Solver Behaviour Differences

In general, an MP problem can have more than one optimal solution (i.e. different sets of
assignments to the problem variables that gives the optimal objective value). Any of these
solutions is correct, and the external solver will return one of them. It is possible for a different
solver (or even a different version of the same solver) to return another of these solutions. If
the user’s program uses the solution values, then it is possible that the detailed behaviour of
the program could depend on the solver being used.
The solution that is returned can also depend on the detailed settings of the floating point
unit of the processor. Thus changing some of these settings may change the solution that is
returned. It is thus possible for eplex to give different solutions on the same machine and
solver if these settings are changed (e.g. when ECLiPSe is embedded into a Java application).

9.10 Solver Specific Information

The external solvers currently supported by the eplex library are:

• XPRESS-MP3

• CPLEX4

Note that the set of supported solver versions may vary between different releases of ECLiPSe;
please refer to the release notes.
To load a specific solver explicitly, use:

3XPRESS-MP is a product from Dash Associates Ltd. (www.dashoptimization.com)
4CPLEX is a registered trademark of ILOG S.A. (www.ilog.com)

82

:- lib(eplex_cplex).

:- lib(eplex_xpress).

The first line explicitly requests the CPLEX solver, the second line explicitly requests the
XPRESS-MP solver. Note that these solvers must be available for your machine for the
above to work.

9.10.1 Versions and Licences

All the solvers supported by the library comes in various versions. In addition, for XPRESS-
MP, we distinguish versions included with ECLiPSe: the ‘OEM’ versions, from versions ob-
tained independently by the user.

Depending on which solver you have, which version of it, and which hardware and operating
system, you need to use the matching version of this interface. Because an ECLiPSe installa-
tion can be shared between several computers on a network, we have provided you with the
possibility to tell the system which licence you have on which machine. To configure your
local installation, simply add one line for each computer with the appropriate licence to the
file <eclipsedir>/lib/eplex_lic_info.ecl, where <eclipsedir> is the directory or folder
where your ECLiPSe installation resides. The file contains lines of the form

licence(Hostname, Solver, Version, LicStr, LicNum).

For example, if you have CPLEX version 6.5 on machine workhorse, and both the OEM
and non-OEM XPRESS-MP version 13.26 on machine mule, and your internet domain is
+icparc.ic.ac.uk, you would add the lines

licence(’workhorse.icparc.ic.ac.uk’, cplex, ’65’, , 0).

licence(’mule.icparc.ic.ac.uk’, xpress, ’1326icp’, default, 0). % OEM

licence(’mule.icparc.ic.ac.uk’, xpress, ’1326’, , 0). % non-OEM

The hostname must match the result of get flag(hostname,H), converted to an atom (this
is normally the complete internet domain name, rather than just the machine). Version is
formed from the concatenation of the major and minor version numbers. In the case of OEM
XPRESS-MP, this is followed by the postfix icp. The meaning of LicStr and LicNum depends
on the optimizer: For CPLEX, LicStr is a string containing the environment settings for
runtime licences, e.g. ”CPLEXLICENSE=/usr/local/cplexlic.ptr”, and LicNum is the serial
number for runtime licences. For XPRESS-MP, if the OEM version is used, LicStr should be
the atom default, as the licencing is handled internally by eplex. For other versions of the
library, LicStr is a string specifying the directory where .pwd licence file is located (overrides
value of XPRESS environment variable). LicNum is unused in both cases. If a machine has
more than one licence and lib(eplex) is called, the first one listed in eplex_lic_info.ecl will
be used.

9.10.2 Access to External Solver’s Control Parameters

The external solver has a number of control parameters that affect the way it works. These
can be queried and modified using the lp get/2, eplex get/2, lp get/3, and lp set/2,
eplex set/2, lp set/3 predicates respectively:

83

lp get(+Handle, optimizer param(+ParamName), -Value)

Retrieve the value of a control parameter for the external solver for the problem represented
by Handle. These paramters are solver specific; see lp get/3 for more details..

EplexInstance:eplex get(optimizer param(+ParamName), -Value)

Like lp get/3, but get a control parameter for the external solver associated with the specified
eplex instance.

lp get(optimizer param(+ParamName), -Value)

Retrieve the global value of a control parameter for the external solver. The paramters and
the exact meaning of ‘global’ is solver specific: if the solver does not have global parameters,
this gets the global default value, rather than the globally applicable value. The parameters
are as in lp get/3.

lp set(+Handle, optimizer param(+ParamName), +Value)

Set a control parameter for the external solver for the problem represented by Handle. If the
external solver does not have problem specific parameters, this will raise an unimplemented
functionality exception. The parameters are as in lp get/3.

EplexInstance:eplex set(optimizer param(+ParamName), +Value)

Like lp set/3, but set a control parameter for the external solver associated with the specified
eplex instance.

lp set(optimizer param(+ParamName), +Value)

Set a control parameter for the external solver for the problem globally. If the external solver
does not have global parameters, this will set the global default for the parameter. The
parameters are as in lp get/3.

lp get(optimizer, -Value) and lp get(optimizer version, -Value)

Retrieve the name (currently ’cplex’ or ’xpress’) and version of the external optimizer. This
can be used to write portable code even when using solver-specific settings:

(lp_get(optimizer, xpress) ->

(lp_get(optimizer_version, Version), Version >= 13 ->

lp_set(Handler, optimize_param(maxnode), 100)

;

lp_set(Handler, optimize_param(maxnod), 100)

)

; lp_get(optimizer, cplex) ->

lp_set(Handler, optimize_param(node_limit), 100)

), ...

84

Chapter 10

REPAIR: Constraint-Based Repair

10.1 Introduction

The Repair library provides two simple, fundamental features which are the basis for the
development of repair algorithms and non-monotonic search methods in ECLiPSe:

• The maintenance of tentative values for the problem variables. These tentative values
may together form a partial or even inconsistent tentative assignment. Modifications
to, or extensions of this assignment may be applied until a correct solution is found.

• The monitoring of constraints (the so called repair constraints) for being either satisfied
or violated under the current tentative assignment. Search algorithms can then access
the set of constraints that are violated at any point in the search, and perform repairs
by changing the tentative assignment of the problem variables.

This functionality allows the implementation of classical local search methods within a CLP
environment (see Tutorial on Search Methods). However, the central aim of the Repair library
is to provide a framework for the integration of repair-based search with the consistency
techniques available in ECLiPSe, such as the domains and constraints of the FD library.
A more detailed description of the theory and methods that are the basis of the Repair library
is available [5].

10.1.1 Using the Library

To use the repair library you need to load it using

:- lib(repair).

Normally, you will also want to load one more of the ’fd’, ’ic’, ’fd sets’ or ’conjunto’ solvers.
This is because of the notion of tenability, i.e. whether a tentative value is in a domain is
checked by communicating with a different solver that keeps that domain.

10.2 Tentative Values

10.2.1 Attaching and Retrieving Tentative Values

A problem variable may be associated with a tentative value. Typically this tentative value
is used to record preferred or previous assignments to this variable.

85

?Vars tent set ++Values

Assigns tentative values for the variables in a term. These are typically used to register
values the variables are given in a partial or initially inconsistent solution. These values may
be changed through later calls to the same predicate. Vars can be a variable, a list of variables
or any nonground term. Values must be a corresponding ground term. The tentative values
of the variables in Vars are set to the corresponding ground values in Values.

?Vars tent get ?Values

Query the variable’s tentative values. Values is a copy of the term Vars with the tentative
values filled in place of the variables. If a variable has no tentative value a variable is returned
in its place.

10.2.2 Tenability

A problem variable is tenable when it does not have a tentative value or when it has a tentative
value that is consistent e.g. with its finite domain. For example

[eclipse 3]: fd:(X::1..5), X tent_set 3.

X = X{fd:[1..5], repair:3}

produces a tenable variable (note how the tentative value is printed as the variable’s repair-
attribute), while on the other hand

[eclipse 3]: fd:(X::1..5), X tent_set 7.

X = X{fd:[1..5], repair:7}

produces an untenable variable. Note that, unlike logical assignments, the tentative value can
be changed:

[eclipse 3]: fd:(X::1..5), X tent_set 7, X tent_set 3.

X = X{fd:[1..5], repair:3}

tenable(?Var)

Succeeds if the given variable is tenable. This predicate is the link between repair and any
underlying solver that maintains a domain for a variable1.

10.2.3 The Tentative Assignment

The notion of a tentative assignment is the means of integration with the consistency methods
of ECLiPSe. The tentative assignment is used for identifying whether a repair constraint is
being violated.

The tentative assignment is a function of the groundness and tenability of problem variables
according to the following table

1If you wish to write your own solver and have it cooperate with repair you have to define a test unify
handler

86

Variable Groundness Variable Tenability Value in Tentative Assignment

Ground Tenable Ground Value
Ground Not Tenable Ground Value
Not Ground Tenable Tentative Value
Not Ground Not Tenable Undefined

A repair constraint is violated under two conditions:

• The tentative assignment is undefined for any of its variables.

• The constraint fails under the tentative assignment.

10.2.4 Variables with No Tentative Value

It has been noted above that variables with no associated tentative value are considered to
be tenable. Since no single value has been selected as a tentative value, the Repair library
checks constraints for consistency with respect to the domain of that variable. A temporary
variable with identical domains is substituted in the constraint check.

10.2.5 Unification

If two variables with distinct tentative values are unified only one is kept for the unified
variable. Preference is given to a tentative value that would result in a tenable unified variable.

10.2.6 Copying

If a variable with a repair attribute is copied using copy term/2 or similar, the repair
attribute is stripped. If you wish the copy to have the same tentative value as the original,
you will need to call tent get/2 and tent set/2 yourself.

10.3 Repair Constraints

Once a constraint has been declared to be a repair constraint it is monitored for violation.
Whether a repair constraint is considered to be violated depends on the states of its variables.
A temporary assignment of the variables is used for checking constraints. This assignment is
called the tentative assignment and is described above. A constraint which is violated in this
way is called a conflict constraint.
Normal constraints are turned into repair constraints by giving them one of the following
annotations:

Constraint r conflict ConflictSet

This is the simplest form of annotation. r conflict/2 makes a constraint known to the repair
library, i.e. it will initiate monitoring of Constraint for conflicts. When the constraint goes
into conflict, it will show up in the conflict set denoted by ConflictSet, from where it can be
retrieved using conflict constraints/2. Constraint can be any goal that works logically,
it should be useable as a ground check, and work on any instantiation pattern. Typically, it
will be a constraint from some solver library. ConflictSet can be a user-defined name (an

87

atom) or it can be a variable in which case the system returns a conflict set handle that can
later be passed to conflict constraints/2. Example constraint with annotation:

fd:(Capacity >= sum(Weights)) r_conflict cap_cstr

Note that using different conflict sets for different groups of constraints will often make the
search algorithm easier and more efficient. A second allowed form of the r conflict/2 anno-
tation is Constraint r conflict ConflictSet-ConflictData. If this is used, ConflictData
will appear in the conflict set instead of the Constraint itself. This feature can be used to
pass additional information to the search algorithm.

Constraint r conflict prop ConflictSet

In addition to what r conflict/2 does, the r conflict prop/2 annotation causes the Con-
straint to be activated as a goal as soon as it goes into conflict for the first time. If Con-
straint is a finite-domain constraint for example, this means that domain-based propagation
on Constraint will start at that point in time.

Note that if you want constraint propagation from the very beginning, you should simply
write the constraint twice, once without and once with annotation.

10.4 Conflict Sets

Given a tentative assignment, there are two kinds of conflicts that can occur:

• Untenable variables

• Violated constraints

To obtain a tentative assignment which is a solution to the given problem, both kinds of
conflicts must be repaired. The repair library supports this task by dynamically maintaining
conflict sets. Typically, a search algorithm examines the conflict set(s) and attempts to repair
the tentative assignment such that the conflicts disappear. When all conflict sets are empty,
a solution is found.

conflict vars(-Vars)

When a variable becomes untenable, it appears in the set of conflict variable, when it becomes
tenable, it disappears. This primitive returns the list of all currently untenable variables. Note
that all these variables must be reassigned in any solution (there is no other way to repair un-
tenability). Variable reassignment can be achieved by changing the variable’s tentative value
with tent set/2, or by instantiating the variable. Care should be taken whilst implementing
repairs through tentative value changes since this is a non-monotonic operation: conflicting
repairs may lead to cycles and the computation may not terminate.

conflict constraints(+ConflictSet, -Constraints)

When a repair constraint goes into conflict (i.e. when it does not satisfy the tentative assign-
ment of its variables), it appears in a conflict set, once it satisfies the tentative assignment,
it disappears. This primitive returns the list of all current conflict constraints in the given

88

conflict set. ConflictSet is the conflict set name (or handle) which has been used in the
corresponding constraint annotation. For example

conflict_constraints(cap_cstr, Conflicts)

would retrieve all constraints that were annotated with cap_cstr and are currently in conflict.

At least one variable within a conflict constraint must be reassigned to get a repaired solu-
tion. Variable reassignment can be achieved by changing the variable’s tentative value with
tent set/2, or by instantiating the variable. Care should be taken whilst implementing repairs
through tentative value changes since this is a non-monotonic operation: conflicting repairs
may lead to cycles and the computation may not terminate.

Note that any repair action can change the conflict set, therefore conflict constraints/2
should be called again after a change has been made, in order to obtain an up-to-date conflict
set.

poss conflict vars(+ConflictSet, -Vars)

The set of variables within the conflict constraints. This is generally a mixture of tenable and
untenable variables.

10.5 Invariants

For writing sophisticated search algorithms it is useful to be able not only to detect conflicts
caused by tentative value changes, but also to compute consequences of these changes. For
example, it is possible to repair certain constraints automatically by (re)computing one or
more of their variable’s tentative values based on the others (e.g. a sum constraint can be
repaired by updating the tentative value of the sum variable whenever the tentative value of
one of the other variables changes). We provide two predicates for this purpose:

-Result tent is +Expression

This is similar to the normal arithmetic is/2 predicate, but evaluates the expression based
on the tentative assignment of its variables. The result is delivered as (an update to) the
tentative value of the Result variable. Once initiated, tent is will stay active and keep
updating Result’s tentative value eagerly whenever the tentative assignment of any variable
in Expression changes.

tent call(In, Out, Goal)

This is a completely general meta-predicate to support computations with tentative values.
Goal is a general goal, and In and Out are lists (or other terms) containing subsets of Goal’s
variables. A copy of Goal is called, with the In-variables replaced by their tentative values
and the Out-variables replaced by fresh variables. Goal is expected to return values for the
Out variables. These values are then used to update the tentative values of the original Out
variables. This process repeats whenever the tentative value of any In-variable changes.

89

Waking on Tentative Assignment Change

The predicates tent is/2 and tent call/3 are implemented using the ga chg suspension list
which is attached to every repair variable. The programmer has therefore all the tools to
write specialised, efficient versions of tent call/3. Follow the following pattern:

my_invariant(In, Out) :-

In tent_get TentIn,

... compute TentOut from TentIn ...

suspend(my_invariant(In,Out,Susp), 3, [In->ga_chg]),

Out tent_set TentOut.

This can be made more efficient by using a demon (demon/1).

10.6 Examples

More examples of repair library use, in particular in the area of local search, can be found in
the Tutorial on Search Methods.

10.6.1 Interaction with Propagation

In the following example, we set up three constraints as both repair and fd-constraints (using
the r conflict prop annotation) and install an initial tentative assignment (using tent set).
We then observe the result by retrieving the conflict sets:

[eclipse 1]: lib(repair), lib(fd). % libraries needed here

yes.

[eclipse 2]:

fd:([X,Y,Z]::1..3), % the problem variables

fd:(Y #\= X) r_conflict_prop confset, % state the constraints

fd:(Y #\= Z) r_conflict_prop confset,

fd:(Y #= 3) r_conflict_prop confset,

[X,Y,Z] tent_set [1,2,3], % set initial assignment

[X,Y,Z] tent_get [NewX,NewY,NewZ], % get repaired solution

conflict_constraints(confset, Cs), % see the conflicts

conflict_vars(Vs).

X = X{fd:[1..3], repair:1}

Y = 3

Z = Z{fd:[1, 2], repair:3}

NewX = 1

NewY = 3

NewZ = 3

Cs = [3 #\= Z{fd:[1, 2], repair:3}]

Vs = [Z{fd:[1, 2], repair:3}]

Delayed goals:

...

yes.

90

Initially only the third constraint Y #= 3 is inconsistent with the tentative assignment. Ac-
cording to the definition of r conflict prop this leads to the constraint Y #= 3 being propa-
gated, which causes Y to be intantiated to 3 thus rendering the tentative value (2) irrelevant.
Now the constraint Y #\= Z, is in conflict since Y is now 3 and Z has the tentative value 3
as well. The constraint starts to propagate and removes 3 from the domain of Z [1..2].
As a result Z becomes a conflict variable since its tentative value (3) is no longer in its domain.
The Y #\= Z constraint remains in the conflict constraint set because Z has no valid tentative
assignment.
The constraint Y #\= X is not affected, it neither goes into conflict nor is its fd-version ever
activated.
To repair the remaining conflicts and to find actual solutions, the repair/0 predicate de-
scribed below could be used.

10.6.2 Repair Labeling

This is an example for how to use the information provided by the repair library to improve
finite domain labeling. You can find the repair/1 predicate in the ’repairfd’ library file.

repair(ConflictSet) :-

(conflict_vars([C|_]) -> % label conflict

indomain(C), % variables first

repair(ConflictSet)

; conflict_constraints(ConflictSet, [C|_]) ->

term_variables(C, Vars), % choose one variable in

deleteffc(Var,Vars, _), % the conflict constraint

Var tent_get Val,

(Var = Val ; fd:(Var #\= Val)),

repair(ConflictSet)

; % no more conflicts:

true % a solution is found.

).

The predicate is recursive and terminates when there are no more variables or constraints in
conflict.
Repair search often finishes without labeling all variables, a solution has been found and a
set of tenable variables are still uninstantiated. Thus even after the search is finished, Repair
library delayed goals used for monitoring constraints will be present in anticipation of further
changes.
To remove them one has to ground these tenable variables to their tentative values.
Note that the example code never changes tentative values. This has the advantage that
this is still a complete, monotonic and cycle-free algorithm. However, it is not very realistic
when the problem is difficult and the solution is not close enough to the initial tentative
assignment. In that case, one would like to exploit the observation that it is often possible
to repair some conflict constraints by changing tentative values. During search one would
update the tentative values to be as near as pssible to what one wants while maintaining
consistency. If the search leads to a failure these changes are of course undone.

91

Index

</2
ic, 17

>/2
ic, 16

>=/2
ic, 16

::/2
fd sets, 34
ic, 15

::/3
ic, 15

=</2
ic, 16

=>/2, 10, 18
=:=/2

ic, 16
=\=/2

ic, 17
#</2

ic, 17
#<=>/2, 10
#<=/2, 10
#>/2

ic, 17
#>=/2

ic, 17
#/2

fd sets, 34
#::/2

ic, 16
#=</2, 10

ic, 17
#=>/2, 10
#=/2, 10

ic, 17
##/2, 10
#/\/2, 10
#\+/1, 10
#\=/2, 10

ic, 17

#\//2, 10

$</2

ic, 17

$>/2

ic, 16

$>=/2

eplex, 68

ic, 16

$::/2

eplex, 69

ic, 16

$=</2

eplex, 69

ic, 16

$=/2

eplex, 68

ic, 16

$\=/2

ic, 17

&</2

ic symbolic, 38

&=/2

ic symbolic, 38

&=</2

ic symbolic, 38

&>/2

ic symbolic, 38

&>=/2

ic symbolic, 38

&\=/2

ic symbolic, 38

all disjoint/1, 35

all intersection/2, 35

all union/2, 35

alldifferent/1, 29

ic, 19

ic symbolic, 38

92

alldifferent/2, 29

already in heads option, 56

already in store option, 56
and/2, 10, 18

annotation, 87

approximate generalised propagation, 45

arithmetic constraints, 51
atmost/3

ic symbolic, 38

boolean constraints, 50
branch and bound, 19

breal/2, 11

check guard bindings option, 53, 55, 58, 59
CHR, 49

chr/1, 56

chr2pl/1, 56

chr get constraint/1, 56

chr get constraint/2, 57
chr label with/1, 56

chr labeling/0, 56

chr notrace/0, 56

chr resolve/1, 56
chr trace/0, 56

column generation

lp add columns/4, 79

lp add constraints/4, 79

committed choice, 51
common solver interface, 5–8

conflict constraint, 87

conflict constraints, 88

conflict variables, 88
conflict constraints/2, 87–89

conflict constraints/2, 88

conflict vars/1, 88

consistent, 45
constraint annotation, 87

constraint handling rules, 49

constraint solvers, 50

constraints

disjunctive, 42
constraints declaration, 55

control

sound, 50

copy term/2, 87
CPLEX, 83

cumulative/4, 30, 31

cumulative/5, 31

dbgcomp, 56, 58, 60

debug compile flag, 56, 58, 60

declarations

CHR, 54
default range, 21

delayed goals, 21

delayed goals number/2, 20

demon/1, 90
difference/3, 35

fd sets, 35

disjoint/2

fd sets, 35

disjunctive constraints, 42
disjunctive/2, 31

domain constraints, 50

domain splitting, 22

domain/1, 37

element/3

ic, 19

ic symbolic, 38
eplex, 67

instance

eplex instance/1, 72

lp probe/3, 78

presolve, 73
eplex:eplex get/2, 84

eplex cleanup/0, 75, 80

eplex get/2, 71, 83

eplex instance/1
epex, 68

eplex probe/2, 75, 78

eplex read/2, 72

eplex set/2, 72, 83, 84
eplex solve/1, 70

eplex solver setup/1, 70

eplex solver setup/4, 72, 73, 77

eplex var get/3, 71

eplex write/2, 72
eplex cplex, 83

eplex xpress, 83

equation solving, 51

exclude/2, 26
exclude range/3, 26

93

existence of solutions, 21

geometric constraints, 50
get bounds/3, 19
get delta/2

ic, 20
get domain/2, 20
get domain as list/2, 20
get domain size/2, 20
get finite integer bounds/3, 20
get float bounds/3, 20
get ic attr/2, 27
get integer bounds/3, 20
get max/2, 20
get median/2

ic, 20
get min/2, 20
get solver type/2, 19
get threshold/1

ic, 20
guard, 51, 53, 55, 59

handler declaration, 55

ic, 9
ic:integers/1, 77
ic cumulative:cumulative/4, 30
ic cumulative:profile/4, 30
ic event/1

ic kernel, 24
ic global:alldifferent/1, 29
ic global:alldifferent/2, 29
ic global:sorted/2, 30
ic global:sorted/3, 30
ic global:sumlist/2, 30
ic kernel, 24–26
ic stat/1

ic kernel, 24
ic stat get/1

ic kernel, 24
ic stat register event/2

ic kernel, 24
impose bounds/3, 26
impose max/2, 26
impose min/2, 26
in/2

fd sets, 34
includes/2

fd sets, 35
indomain/1, 35

ic, 19
infers, 41
insetdomain/4, 35
integers/1

eplex, 69
ic, 16

intersection/3, 35
fd sets, 35

intset/3, 34
intsets/4, 34
is/2, 14, 89
is in domain/2

ic, 20
is in domain/3

ic, 20
is solver type/1, 19
is solver var/1, 19

label with declaration, 55, 57, 58
labeling

CHR, 57
built-in, 57

labeling/1
ic, 19

lexico le/2, 29
lexico le/2, 29
lib(eplex), 7
lib(ic), 7
lib(suspend), 7
library

chr.pl, 49–65
fd sets, 33–36
ic, 9–27
ic symbolic, 37–39

lin, 22
linear programming, interface to, 67–84
list constraints, 50
local search, 85
locate/2, 19, 22

ic, 19
locate/3, 19, 22

ic, 19
locate/4, 22

ic, 19
log, 22

94

lp add/3, 77
lp add columns/2, 79
lp add constraints/3, 77
lp add constraints/4, 79
lp add vars/2, 77
lp cleanup/1, 80
lp demon setup/5, 76, 77
lp get/2, 83, 84
lp get/3, 78, 83, 84
lp read/3, 80
lp set/2, 83, 84
lp set/3, 79, 83, 84
lp setup/4, 77
lp solve/2, 78
lp var get/4, 78
lp var get bounds/4, 79
lp var set bounds/4, 78
lp write/3, 80

mathematical programming, interface to,
67–84

maxlist/2, 29
membership booleans/2

fd sets, 34
minlist/2, 29
minmax constraints, 50
mixed integer programming, interface to,

67–84
most, 42

neg/1, 10, 18
nodbgcomp, 56, 58, 60
normalise cstrs/3, 80
notin/2

fd sets, 34

occurrences/3, 30
ic symbolic, 38

operator declaration, 55
options

chr, 55
or/2, 10, 18
ordered/2, 29
ordered sum/2, 29
ordered sum/2, 29

poss conflict vars/2, 89
potential members/2, 34

Precision, 22

profile/4, 30

propagation, 21, 90
propagation rule, 52

Propia, 41

propositional logic, 43, 50

r conflict/2, 87, 88

r conflict prop/2, 88

r conflict/2, 87

r conflict prop/2, 88
reals/1

ic, 16

reduced cost pruning/2, 79

repair, 85

repair/1, 91
resource allocation, 43

rotate/3

ic symbolic, 38

sameset/2

fd sets, 35

scheduling, 42

search/6
ic, 19

set constraints, 50

set range/3, 34

set threshold/1

ic, 21
set threshold/2, 21

ic, 21

set var type/2, 26

set vars type/2, 26
shift/1

ic symbolic, 38

simpagation rule, 52

simplex solver, interface to, 67–84
simplification rule, 52

sorted/2, 30

sorted/3, 30

squash, 22

squash/3, 22
ic, 19

subset/2

fd sets, 35

sumlist/2, 30
suspend/3, 27

95

suspension list
ga chg, 90

symbol domain index/3, 39
symdiff/3

fd sets, 35

temporal constraints, 51
tenable, 86
tent call/3, 90
tent get/2, 87
tent is/2, 90
tent set/2, 87
tent call/3, 89
tent is/2, 89
tentative assignment, 86
Tentative Values, 85
term constraints, 50
terminological constraints, 51
tree constraints, 50

unification
eplex variables, 80

union/3, 35
fd sets, 35

unique, 45

violation, 87

wake/0, 26
weight/3, 35

XPRESS-MP, 83

96

Bibliography

[1] F. Ajili and H. El Sakkout. LP probing for piecewise linear optimization in scheduling.
Programme and papers presented at CPAIOR’01: www.icparc.ic.ac.uk/cpAIOR01/,
2001.

[2] N. Beldiceanu and E. Contjean. Introducing
global constraints in CHIP. Mathematical and Computer Modelling, 12:97–123, 1994.
citeseer.nj.nec.com/beldiceanu94introducing.html.

[3] A. Bockmayr and T. Kasper. Branch and infer: A unifying framework for integer and
finite domain constraint programming. INFORMS Journal on Computing, 10(3):287–300,
1998.

[4] H. H. El Sakkout and M. G. Wallace. Probe backtrack search for minimal perturbation
in dynamic scheduling. Constraints, 5(4):359–388, 2000.

[5] Hani El Sakkout. Improving Backtrack Search: Three Case Studies of Localized Dynamic
Hybridization. PhD thesis, Imperial College, London, June 1999.

[6] T. Fruehwirth. Constraint simplification rules. Technical Report ECRC-92-18, ECRC
Munich, Germany, July 1992. presented at CLP workshop at ICLP 92, Washington,
USA, November 1992.

[7] T. Fruehwirth. Temporal reasoning with constraint handling rules. Technical Report
Core-93-8, ECRC Munich, Germany, January 1993.

[8] T. Fruehwirth and Ph. Hanschke. Terminological reasoning with constraint handling
rules. In First Workshop on the Principles and Practice of Constraint Programming,
Newport, RI, USA, April 1993.

[9] T. Frühwirth. Theory and practice of constraint handling rules. Logic Programming,
37(1-3):95–138, 1988.

[10] C. Gervet. Interval propagation to reason about sets: Definition and implementation of
a practical language. Constraints, 1(3):191–244, 1997.

[11] C. Holzbauer. OFAI clp(q,r) Manual. Technical Report TR-95-09, Austrian Research
Institute for AI, Vienna, 1995.

[12] ILOG. CPLEX. www.ilog.com/products/cplex/, 2001.

[13] C. Le Pape and P. Baptiste. Resource constraints for preemptive job-shop scheduling.
Constraints, 3(4):263–287, 1998.

97

[14] T. Le Provost. Approximate Generalised Propagation. ESPRIT Project Deliverable
CORE-93-7, also as CHIC-WP5-D.5.2.3.3, ECRC GmbH, January 1993.

[15] T. Le Provost and M.G. Wallace. Domain-independent propagation (or Generalised Prop-
agation). In Proceedings of the International Conference on Fifth Generation Computer
Systems (FGCS’92), pages 1004–1011, June 1992.

[16] T. Le Provost and M.G. Wallace. Generalized constraint propagation over the CLP
Scheme. Journal of Logic Programming, 16(3-4):319–359, July 1993. Special Issue on
Constraint Logic Programming.

[17] Olivier Lhomme, Arnaud Gotlieb, Michel Rueher, and Patrick Taillibert. Boosting the
interval narrowing algorithm. In Joint International Conference and Symposium on Logic
Programming, pages 378–392, 1996.

[18] L. Michel and P. Van Hentenryck. Localizer: A modeling language for local search.
Lecture Notes in Computer Science, 1330, 1997.

[19] Dash Optimization. XPRESS-MP. www.dash.co.uk/, 2001.

[20] P. Van Hentenryck, D. McAllester, and D. Kapur. Solving polynomial systems using a
branch and prune approach. SIAM Journal on Numerical Analysis, 1995.

[21] Pascal Van Hentenryck. Constraint Satisfaction in Logic Programming. Logic Program-
ming Series. MIT Press, Cambridge, MA, 1989.

[22] M.G. Wallace and J. Schimpf. Finding the right hybrid algorithm - a combinatorial
meta-problem. Annals of Mathematics and Artificial Intelligence, 34(4):259–270, 2002.

98

