
SYMPHONY 2.8 User’s Manual ∗

SYMPHONY Developed By

T.K. Ralphs†

L. Ladányi‡

Interactive Graph Drawing

Software By

M. Esö§

September 8, 2000

∗This research was partially supported by Texas ATP Grant 97-3604-010
†Department of Industrial and Manufacturing Systems Engineering, Lehigh University, Bethlehem, PA 18015
‡Department of Mathematical Sciences, IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
§Department of Mathematical Sciences, IBM T.J. Watson Research Center, Yorktown Heights, NY 10598

1

c©2000 Ted Ralphs

CONTENTS 3

Contents

1 Introduction 1
1.1 New in Version 2.8 . 1
1.2 Changes to the User Interface . 2
1.3 Getting Started . 2
1.4 Source Files . 4
1.5 User-written Functions . 5
1.6 Data Structures . 6

1.6.1 Internal Data Structures . 6
1.6.2 User-defined Data Structures . 6

1.7 Inter-process Communication for Distributed Computing 6
1.8 Working with PVM . 7
1.9 Communication with Shared Memory . 7
1.10 The LP Engine . 7
1.11 Developing an Application . 8
1.12 Configuring the Modules . 8
1.13 Executable Names . 9
1.14 Debugging Your Application . 9

1.14.1 The First Rule . 9
1.14.2 Debugging with PVM . 9
1.14.3 Using Purify and Quantify . 10
1.14.4 Checking the Validity of Cuts and Tracing the Optimal Path 10
1.14.5 Using the Interactive Graph Drawing Software 10
1.14.6 Other Debugging Techniques . 11

1.15 Controlling Execution and Output . 11
1.16 Other Resources . 12

2 User Written Functions 13
2.1 User-written functions of the Master process . 13
2.2 User-written functions of the LP process . 21
2.3 User-written functions of the CG process . 43
2.4 User-written functions of the CP process . 46
2.5 User-written functions of the Draw Graph process 49

3 Parameter file 51
3.1 Global parameters . 51
3.2 Master Process parameters . 51
3.3 Draw Graph parameters . 52
3.4 Tree Manager parameters . 52
3.5 LP parameters . 56
3.6 Cut Generator Parameters . 60
3.7 Cut Pool Parameters . 60

1

1 Introduction

SYMPHONY (Single- or Multi-Process Optimization over Networks) Version 2.8 is a powerful
environment for implementing branch, cut, and price algorithms. The subroutines in the SYM-
PHONY library comprise a state-of-the-art solver which is designed to be completely modular and
easy to port to various problem settings. All library subroutines are generic—their implementa-
tion does not depend on the the problem-setting. To develop a full-scale, parallel branch and cut
algorithm, the user has only to specify a few problem-specific functions such as preprocessing and
separation. The vast majority of the computation takes place within a “black box,” of which the
user need have no knowledge. SYMPHONY communicates with the user’s routines through well-
defined interfaces and performs all the normal functions of branch and cut—tree management, LP
solution, cut pool management, as well as inter-process or inter-thread communication. Although
there are default options, the user can also assert control over the behavior of SYMPHONY
through a myriad of parameters and optional subroutines. SYMPHONY can be built in a vari-
ety of configurations, ranging from fully parallel to completely sequential, depending on the user’s
needs. The library runs serially on almost any platform, and can also run in parallel in either a fully
distributed environment (network of workstations) or shared-memory environment simply by chang-
ing a few options in the make file. To run in a distributed environment, the user must have installed
Parallel Virtual Machine (PVM) software, available for free from Oak Ridge National Laboratories
at http://www.ccs.ornl.gov/pvm/ . To run in a shared memory environment, the user must have
installed an OpenMP compliant compiler. A cross-platform compiler called Omni, which uses cc or
gcc as a back end, is available for free download at http://pdplab.trc.rwcp.or.jp/Omni . This
manual is concerned with the detailed specifications needed to develop an application using SYM-
PHONY. It is assumed that the user has already read the white paper SYMPHONY: A Parallel
Framework for Branch, Cut, and Price, which provides a high-level introduction to parallel branch,
cut, and price and the overall design and use of SYMPHONY. Reading and understanding of the
white paper should be undertaken before trying to develop an application.

1.1 New in Version 2.8

If you are new to SYMPHONY, you can skip to Section 1.3. Here is a list the new features
available in SYMPHONY 2.8:

• New search rules. There are new search rules available in the tree manager. These rules
enable better control of diving (see Section 3.4).

• More accurate timing information. Reported timing information is now more accurate.

• Idle Time Reporting. Measures of processor idle time are now reported in the run statistics.

• More efficient cut pool management. Cuts are now optionally ranked and purged accord-
ing to a user-defined measure of quality. See the description of user check cut() (Section
2.4).

• Easier use of built-in branching functions. Built-in branching functions can now be
more easily called directly by the user if desired. Previously, these functions required the
passing of internal data structures, making them difficult for the user to call directly. See the
functions branch * in the file LP/lp branch.c for usage.

2 1 INTRODUCTION

• Better control of strong branching. A new strong branching strategy allows the user to
specify that more strong branching candidates should be used near the top of the tree where
branching decisions are more critical. See the description of the relevant parameters (Section
3.5).

1.2 Changes to the User Interface

There are some minor changes to the user interface in order to allow the use of the new features.
If you have code written for an older version, you will have to make some very minor modifications
before compiling with version 2.8.

• user start heurs() (Section2.1) now includes as an optional return value a user-calculated
estimate of the optimal upper bound. This estimate is used to control diving. See the
description of the new diving rules (see Section 3.4) for more information. Since this return
value is optional, you need only add the extra argument to your function definition to upgrade
to the 2.8 interface. No changes to your code are required.

• user check cut() (Section2.4) now includes as an optional return value a user-defined assess-
ment of the current quality of the cut. Since this return value is optional, you need only add
the extra argument to your function definition to upgrade to the 2.8 interface. No changes
to your code are required.

• user select candidates() (Section2.2) now passes in the value of the current level in the
tree in case the user wants to use this information to make branching decisions. Again, the
new argument just needs to be added to the function definition. No changes to your code are
required.

1.3 Getting Started

Here is a sketch outline of how to get started with SYMPHONY. This is basically the same
information contained in the README file that comes with the distribution.

Because SYMPHONY is inherently intended to be compiled and run on multiple architectures
and in multiple configurations, I have chosen not to use the automatic configuration scripts provided
by GNU. With the make files provided, compilation for multiple architectures and configurations
can be done in a single directory without reconfiguring or “cleaning”. This is very convenient, but
it means that there is some hand configuring to do and you might need to know a little about your
computing environment in order to make SYMPHONY compile. For the most part, this is limited
to editing the make file and providing some path names. Also, for this reason, you may have to
live with some complaints from the compiler because of missing function prototypes, etc.

Note that if you choose not to install PVM, you will need to edit the make file and provide
an environment variable which makes it possible for “make” to determine the current architecture.
This environment variable also allows the path to the binaries for each architecture to be set
appropriately. This should all be done automatically if PVM is installed correctly.
Preparing for compilation

• First unpack the distribution by typing “tar -xzf SYMPHONY-2.8.tgz”.

1.3 Getting Started 3

• Edit the various path variables in the make file (SYPHONY-2.8/Makefile) to match where
you installed the source code and where the LP libraries and header files reside for each
architecture on your network. Other architecture-dependent variables should also be set as
required. Be sure to read the comments in the make file to understand what variables have
to be set.

Compiling the sequential version

• Type “make” in the SYMPHONY root directory. This will first make the SYMPHONY
library (sequential version). After this step is completed, you are free to type “make clean”
and/or delete the $ROOT/obj.* and $ROOT/dep.* directories if you want to save disk space.
You should only have to remake the library if you change something in SYMPHONY’s
internal files.

• After making the libraries, SYMPHONY will compile the user code and then make the
executable for the sample application, a vehicle routing and traveling salesman problem solver.
The name of the executable will be “master tm lp cg cp”, indicating that all modules are
contained in a single executable.

• To test the sample program, you can get some problem files from http://branchandcut.org/VRP/data/
or the TSPLIB (http://www.iwr.uni-heidelberg.de/iwr/comopt/software/TSPLIB95/)
. The file format is that specified for the TSPLIB. There is also one sample
file included with the distribution. Make sure the executable directory is in
your path and type ‘‘master tm lp cg cp -F sample.vrp -N 5’’, where sample.vrp is
the sample problem file. The -N argument gives the number of routes, which must
be specified in advance. TSP instances can also be solved, but in this case,
the number of routes does not need to be specified.

Compiling for shared memory

• To compile a shared memory version, obtain an OpenMP compliant compiler, such as Omni
(free from http://pdplab.trc.rwcp.or.jp/Omni) . Other options are listed at the OpenMP
Web site (http://www.openmp.org) .

• Set the variable CC to the compiler name in the make file and compile as above.

• Voila, you have a shared memory parallel solver.

• Note that if you have previously compiled the sequential version, then you should first type
“make clean all”, as this version uses the same compilation directories as the sequential
version. With one active subproblem allowed, it should run exactly the same as the sequential
version so there is no need to compile both.

Compiling for distributed networks

• You must first obtain and install the Parallel Virtual Machine (PVM) software, available
for free from Oak Ridge National Laboratories at http://www.ccs.ornl.gov/pvm/ . See
Section 1.8 for more notes on using PVM.

4 1 INTRODUCTION

• In the Makefile, be sure to set the COMM PROTOCOL to PVM. Also, change one or more of
COMPILE IN TM, COMPILE IN LP, COMPILE IN CG, and COMPILE IN CP, to FALSE, or you will
end up with the sequential version. Various combinations of these variables will give you
different configurations and different executables. See Section 1.12 for more info on setting
them. Also, be sure to set the path variables in the make file appropriately so that make can
find the PVM library.

• Type “make” in the SYMPHONY root directory to make the distributed libraries. As in
Step 1 of the sequential version, you may type “make clean” after making the library. It
should not have to remade again unless you modify SYMPHONY’s internal files.

• After the libraries, all executables requested will be made.

• Make sure there are links from your $PVM ROOT/bin/$PVM ARCH/ directory to each of
the executables in the Vrp/bin.$REV directory. This is required by PVM.

• Start the PVM daemon by typing “pvm” on the command line and then typing “quit”.

• To test the sample program, you can get some problem files from http://branchandcut.org/VRP/data/
or the TSPLIB (http://www.iwr.uni-heidelberg.de/iwr/comopt/software/TSPLIB95/)
. The file format is that specified for the TSPLIB. There is also one sample
file included with the distribution. Make sure the executable directory is in
your path and type ‘‘master -F sample.vrp -N 5’’, where sample.vrp is the sample
problem file. The -N argument gives the number of routes, which must be specified
in advance. TSP instances can also be solved, but in this case, the number of
routes does not need to be specified. Note that the actual executable name may
not be ‘‘master’’ if COMPILE IN TM is set to TRUE in the make file. See Section
1.12 for more information on executable names.

This should result in the successful compilation of the sample application. Once you have accom-
plished this much, you are well on your way to having an application of your own. Don’t be daunted
by the seemingly endless list of user function that you are about to encounter. Most of them are
optional or have default options. If you get lost, consult the source code for the sample application
to see how it’s done.

1.4 Source Files

The easiest way to get oriented is to examine the organization of the source files. When you unpack
the SYMPHONY distribution, you will notice that the source files are organized along the lines
of the modules. There is a separate directory for each module—master (Master), tree manager
(TreeManager), cut generator (CutGen), cut pool (CutPool), and LP solver (LP). In addition, there
is a directory called DrawGraph and a directory called Common that also contain source files. The
DrawGraph directory provides an interface from SYMPHONY to the Interactive Graph Drawing
software package developed by Marta Esö. This is an excellent utility for graphical display and
debugging. The Common directory contains source code for functions used by multiple modules.

Within each module’s directory, there is a primary source file containing the function main()
(named *.c where * is the module name), a source file containing functions related to inter-
process communication (named * proccomm.c) and a file containing general subroutines used by

1.5 User-written Functions 5

the module (named * func.c). The master is the exception and is organized slightly differently.
The LP process source code is further subdivided due to the sheer number of functions.

The include directory contains the header files. Corresponding to each module, there are three
header files, one containing internal data structures and function prototypes associated with the
module (named *.h where * is the module name), one containing the data structures for storing
the parameters (these are also used by the master process), and the third containing the function
prototypes for the user functions (name * u.h). By looking at the header files, you should get a
general idea of how things are laid out.

In addition to the subdirectories corresponding to each module, there are subdirectories cor-
responding to applications. The sample application is contained in the directory Vrp/. The files
containing function stubs that can be filled in to create a new application are contained in the
directory User/. There is one file for each module, initially called User/*/* user.c. The primary
thing that you, as the user, need to understand to build an application is how to fill in these stubs.
That is what the second section of this manual is about.

1.5 User-written Functions

The majority of the user functions are called from either the master process or the LP process.
For these two modules, user functions are invoked from so-called wrapper functions that provide
the interface. Each wrapper function is named * u() , where * is the name of the corresponding
user function, and is defined in a file called * wrapper.c. The wrapper function first collects the
necessary data and hands it to the user by calling the user function. Based on the return value
from the user, the wrapper then performs any necessary post-processing. Most user functions are
designed so that the user can do as little or as much as she likes. Where it is feasible, there are
default options that allow the user to do nothing if the default behavior is acceptable. This is not
possible in all cases and the user must provide certain functions, such as separation.

In the next section, the user functions will be described in detail. The name of every user
written function starts with user . There are three kinds of arguments:

IN: An argument containing information that the user might need to perform the function.

OUT: A pointer to an argument in which the user should return a result (requested data, decision,
etc.) of the function.

INOUT: An argument which contains information the user might need, but also for which the user
can change the value.

The return values from each function are as follows:

Return values:

6 1 INTRODUCTION

ERROR Error in the user function. Printing an error message is the user’s
responsibility. Depending on the work the user function was sup-
posed to do, the error might be ignored (and some default option
used), or the process aborts.

USER AND PP The user implemented both the user function and post-processing
(post-processing by SYMPHONY will be skipped).

USER NO PP The user implemented the user function only.
DEFAULT The default option is going to be used (the default is one of the

built-in options, SYMPHONY decides which one to use based
on initial parameter settings and the execution of the algorithm).

built in option1
built in option2 ... The specified built-in option will be used.

Notes: • Sometimes an output is optional. This will always be noted in the function descriptions.

• If an array has to be returned (i.e., the argument is type **array) then (unless otherwise
noted) the user has to allocate space for the array itself and set *array to be the array
allocated. If an output array is optional then the user must not set *array for the array
she is not going to fill up because this is how SYMPHONY decides which optional
arrays are filled up.

• Some built-in options are implemented so that the user can invoke them directly from the
user function. This might be useful if, for example, the user wants to use different built-
in options at different stages of the algorithm, or if he wants to do the post-processing
himself but does not want to implement the option itself.

1.6 Data Structures

1.6.1 Internal Data Structures

With few exceptions, the data structures used internally by SYMPHONY are undocumented and
most users will not need to access them directly. However, if such access is desired, a pointer
to the main data structure used by each of the modules can be obtained simply by calling the
function get * ptr() where * is the appropriate module (see the header files). This function will
return a pointer to the data structure for the appropriate module. Casual users are advised against
modifying SYMPHONY’s internal data structures directly.

1.6.2 User-defined Data Structures

The user can define her own data structure for each module to maintain problem-specific data and
any other information the user needs access to. A pointer to this data structure is maintained by
SYMPHONY and is passed to the user as an argument to each user function. Since SYMPHONY
knows nothing about this data structure, it is up to the user to allocate it, maintain it, and free it
as required.

1.7 Inter-process Communication for Distributed Computing

While the implementation of SYMPHONY strives to shield the user from having to know any-
thing about communications protocols or the specifics of inter-process communication, it may be

1.8 Working with PVM 7

necessary for the user to pass information from one module to another in some cases—for instance,
if the user must pass problem-specific data to the LP process after reading them in from a data
file. In cases where this might be appropriate, user functions are supplied in pairs—a send func-
tion and a receive function. All data are sent in the form of arrays of either type char, int, or
double, or as strings. To send an array, the user has simply to invoke the function send ? array(?
*array, int length) where ? is one of the previously listed types. To receive that array, there
is a corresponding function called receive ? array(? *array, int length). When receiving
an array, the user must first allocate the appropriate amount of memory. In cases where variable
length arrays need to be passed, the user must first pass the length of the array (as a separate
array of length one) and then the array itself. In the receive function, this allows the length to be
received first so that the proper amount of space can be allocated before receiving the array itself.
Note that data must be received in exactly the same order as it was passed, as data is read linearly
into and out of the message buffer. The easiest way to ensure this is done properly is to simply
copy the send statements into the receive function and change the function names. It may then be
necessary to add some allocation statements in between the receive function calls.

1.8 Working with PVM

To compile a distributed application, it is necessary to install PVM. The current version of PVM
can be obtained at http://www.ccs.ornl.gov/pvm/. It should compile and install without any
problem. You will have to make a few modifications to your .cshrc file, such as defining the
PVM ROOT environment variable, but this is all explained clearly in the PVM documentation. Note
that all executables (or at least a link to them) must reside in the $PVM ROOT/bin/$PVM ARCH
directory in order for parallel processes to be spawned correctly. The environment variable PVM ARCH
is set in your .cshrc file and contains a string representing the current architecture type. To run
a parallel application, you must first start up the daemon on each of the machines you plan to use
in the computation. How to do this is also explained in the PVM documentation.

1.9 Communication with Shared Memory

In the shared memory configuration, it is not necessary to use message passing to move information
from one module to another since memory is globally accessible. In the few cases where the user
would ordinarily have to pass information using message passing, it is easiest and most efficient
to simply copy the information to the new location. This copying gets done in the send function
and hence the receive function is never actually called. This means that the user must perform all
necessary initialization, etc. in the send function. This makes it a little confusing to write source
code which will work for all configurations. However, the confusion should be cleared up by looking
at the sample application, especially the file Vrp/Master/vrp.c.

1.10 The LP Engine

SYMPHONY requires the use of a third-party callable library to solve the LP relaxations once
they are formulated. Currently, CPLEX c© is the only available option. Any LP solver with the
appropriate capabilities can be interfaced with SYMPHONY by writing a set of interface routines
contained in the file LP/lp solver.c. Once the interface routines are written, the make file must
be modified to link with the new LP solver.

8 1 INTRODUCTION

1.11 Developing an Application

Once the user functions are filled in, all that remains is to compile the application. The distribution
comes with two make files that facilitate this process. The primary make file resides in the root
directory. The user make file resides in the user’s subdirectory, initially called User/. There are
a number of variables that must be set in the primary make file. Read the comments in the file
SYMPHONY-2.8/Makefile to ensure that everything is set properly. The user make file shouldn’t
require much modification unless you add source files other than the ones included in the distribution
or change their names.

When you are ready, type “make” to make the executables. SYMPHONY will create three
subdirectories—User/obj.*, User/bin.*, and User/dep.* where * is a number corresponding the
current architecture (determined by the PVM ARCH environment variable). Note that if you don’t
have PVM installed, you should either modify the make file appropriately (read the make file to
see how to do this) or set the PVM ARCH environment variable by hand. If your architecture is not
be listed in the make file, edit it by following the example set by the architectures already included.
Make sure to set the corresponding path variables properly. Be sure to also set the proper links
from the $PVM ROOT/bin/$PVM ARCH as explained in the previous section if you are compiling a
distributed version.

1.12 Configuring the Modules

In the make file, there are four variables that control which modules run as separate executables
and which are called directly in serial fashion. The variables are as follows:

COMPILE IN CG: If set to TRUE, then the cut generator function will be called directly from
the LP in serial fashion, instead of running as a separate executable. This is desirable if cut
generation is quick and running it in parallel is not worth the price of the communication
overhead.

COMPILE IN CP: If set to TRUE, then the cut pool(s) will be maintained as a data structure
auxiliary to the tree manager.

COMPILE IN LP: If set to TRUE, then the LP functions will be called directly from the tree
manager. When running the distributed version, this necessarily implies that there will only
be one active subproblem at a time, and hence the code will essentially be running serially. IN
the shared-memory version, however, the tree manager will be threaded in order to execute
subproblems in parallel.

COMPILE IN TM: If set to TRUE, then the tree will be managed directly from the master
process. This is only recommended if a single executable is desired (i.e. the three other
variables are also set to true). A single executable is extremely useful for debugging purposes.

These variables can be set in virtually any combination, though some don’t really make much sense.
Note that in a few user functions that involve process communication, there will be different versions
for serial and parallel computation. This is accomplished through the use of #ifdef statements in
the source code. This is well documented in the function descriptions and the in the source files
containing the function stubs. See also Section 1.9.

1.13 Executable Names 9

1.13 Executable Names

In order to keep track of the various possible configurations, executable and their corresponding
libraries are named as follows. For the fully distributed version, the names are master, tm, lp, cg,
and cp. For other configurations, the executable name is a combination of all the modules that
were compiled together joined by underscores. In other words, if the LP and the cut generator
modules were compiled together (i.e. COMPILE IN CG set to TRUE), then the executable name would
be “lp cg” and the corresponding library file would be called “liblp cg.a.” You can rename the
executables as you like. However, if you are using PVM to spawn the modules, as in the fully
distributed version, you must set the parameters * exe in the parameter file to the new executable
names. See Section 3.4 for information on setting parameters in the parameter file.

1.14 Debugging Your Application

1.14.1 The First Rule

SYMPHONY has many built-in options to make debugging easier. The most important one,
however, is the following rule. It is easier to debug the fully sequential version than the
fully distributed version. Debugging parallel code is not terrible, but it is more difficult to
understand what is going on when you have to look at the interaction of several different modules
running as separate processes. This means multiple debugging windows which have to be closed and
restarted each time the application is re-run. For this reason, it is highly recommended to develop
code that can be compiled serially even if you eventually intend to run in a fully distributed
environment. This does make the coding marginally more complex, but believe me, it’s worth the
effort. The vast majority of your code will be the same for either case. Make sure to set the compile
flag to “-g” in the make file.

1.14.2 Debugging with PVM

If you wish to venture into debugging your distributed application, then you simply need to set
the parameter * debug, where * is the name of the module you wish to debug, to the value “4” in
the parameter file (the number “4” is chosen by PVM). This will tell PVM to spawn the particular
process or processes in question under a debugger. What PVM actually does in this case is to
launch the script $PVM ROOT/lib/debugger. You will undoubtedly want to modify this script to
launch your preferred debugger in the manner you deem fit. If you have trouble with this, please
send e-mail to the list serve (see Section 1.16).

It’s a little tricky to debug interacting parallel processes, but you will quickly get the idea. The
main difficulty is in that the order of operations is difficult to control. Random interactions can
occur when processes run in parallel due to varying system loads, process priorities, etc. Therefore,
it may not always be possible to duplicate errors. To force runs that you should be able to reproduce,
make sure the parameter no cut timeout appears in the parameter file or start SYMPHONY with
the “-a” option. This will keep the cut generator from timing out, a major source of randomness.
Furthermore, run with only one active node allowed at a time (set max active nodes to “1”).
This will keep the tree search from becoming random. These two steps should allow runs to be
reproduced. You still have to be careful, but this should make things easier.

10 1 INTRODUCTION

1.14.3 Using Purify and Quantify

The make file is already set up for compiling applications using purify and quantify. Simply set
the paths to the executables and type “make pall” or “p*” where * is the module you want to
purify. The executable name is the same as described in Section 1.13, but with a “p” in front of it.
To tell PVM to launch the purified version of the executables, you must set the parameters * exe
in the parameter file to the purified executable names. See Section 3.4 for information on setting
parameters in the parameter file.

1.14.4 Checking the Validity of Cuts and Tracing the Optimal Path

Sometimes the only evidence of a bug is the fact that the optimal solution to a particular problem
is never found. This is usually caused by either (1) adding an invalid cut, or (2) performing
an invalid branching. There are two options available for discovering such errors. The first is
for checking the validity of added cuts. This checking must, of course, be done by the user,
but SYMPHONY can facilitate such checking. To do this, the user must fill in the function
user check validity of cut() (see Section 2.3). THIS function is called every time a cut is
passed from the cut generator to the LP and can function as an independent verifier. To do this,
the user must pass (through her own data structures) a known feasible solution. Then for each cut
passed into the function, the user can check whether the cut is satisfied by the feasible solution.
If not, then there is a problem! Of course, the problem could also be with the checking routine.
To see how this is done, check out the sample application file Vrp/cg user.c. After filling in this
function, the user must recompile everything (including the libraries) after uncommenting the line
in the make file that contains “BB DEFINES += -DCHECK CUT VALIDITY.” Type “make clean all”
and then “make.”

Tracing the optimal path can alert the user when the subproblem which admits a particular
known feasible solution (at least according to the branching restrictions that have been imposed
so far) is pruned. This could be due to an invalid branching. Note that this option currently only
works for branching on binary variables. To use this facility, the user must fill in the function
user send feas sol() (see Section 2.1). All that is required is to pass out an array of user indices
that are in the feasible solution that you want to trace. Each time the subproblem which admits
this feasible solution is branched on, the branch that continues to admit the solution is marked.
When one of these marked subproblems is pruned, the user is notified.

1.14.5 Using the Interactive Graph Drawing Software

The Interactive Graph Drawing (IGD) software package is included with SYMPHONY and SYM-
PHONY facilitates its use through interfaces with the package. The package, which is a Tcl/Tk
application, is extremely useful for developing and debugging applications involving graph-based
problems. Given display coordinates for each node in the graph, IGD can display support graphs
corresponding to fractional solutions with or without edge weights and node labels and weights,
as well as other information. Furthermore, the user can interactively modify the graph by, for
instance, moving the nodes apart to “disentangle” the edges. The user can also interactively enter
violated cuts through the IGD interface.

To use IGD, you must have installed PVM since the drawing window runs as a separate ap-
plication and communicates with the user’s routines through message passing. To compile the
graph drawing application, type “make dglib dg” in the SYMPHONY root directory. The user

1.15 Controlling Execution and Output 11

routines in the file dg user.c can be filled in, but it is not necessary to fill anything in for basic
applications.

After compiling dg, the user must write some subroutines that communicate with dg and cause
the graph to be drawn. Regrettably, this is currently a little more complicated than it needs to be
and is not well documented. However, by looking at the sample application, it is relatively easy
to see how it should be done. To enable graph drawing, put the line do draw graph 1 into the
parameter file or use the -d command line option.

1.14.6 Other Debugging Techniques

Another useful built-in function is MakeMPS, which will write the current LP relaxation to a file
in MPS format. This file can then be read into the LP solver interactively or examined by hand for
errors. Many times, CPLEX gives much more explicit error messages interactively than through
the callable library. The form of the function is

void MakeMPS(LPData *lp_data, int bc_index, int iter_num)

The matrix is written to the file “matrix.[bc index].[iter num].mps” where bc index is the usu-
ally passed as the index of the current subproblem and iter num is the current iteration number.
These can, however, be any numbers the user chooses. If SYMPHONY is forced to abandon
solution of an LP because the LP solver returns an error code, the current LP relaxation is au-
tomatically written to the file “matrix.[bc index].[iter num].mps” where bc index is the index
of the current subproblem and iter num is the current iteration number. MakeMPS can be called
using breakpoint code to examine the status of the matrix at any point during execution.

Logging is another useful feature. Logging the state of the search tree can help isolate some
problems more easily. See Section 3.4 for the appropriate parameter settings to use logging.

1.15 Controlling Execution and Output

Calling SYMPHONY with no arguments simply lists all command-line options. Most of the
common parameters can be set on the command line. Usually it is easier to use a parameter file.
To invoke SYMPHONY with a parameter file type “master -f filename ...” where filename
is the name of the parameter file. The format of the file is explained in Section 3.

The output level can be controlled through the use of the verbosity parameter. Setting this
parameter at different levels will cause different progress messages to be printed out. Level 0 only
prints out the introductory and solution summary messages, along with status messages every
10 minutes. Level 1 prints out a message every time a new node is created. Level 3 prints out
messages describing each iteration of the solution process. Levels beyond 3 print out even more
detailed information.

There are also two possible graphical interfaces. For graph-based problems, the Interactive
Graph Drawing Software allows visual display of fractional solutions, as well as feasible and optimal
solutions discovered during the solution process. For all types of problems, VBCTOOL creates a
visual picture of the branch and cut tree, either in real time as the solution process evolves or as
an emulation from a file created by SYMPHONY. See Section 3.4 for information on how to use
VBCTOOL with SYMPHONY. Binaries for VBCTOOL can be obtained at
http://www.informatik.uni-koeln.de/ls juenger/projects/vbctool.html.

12 1 INTRODUCTION

1.16 Other Resources

There is a SYMPHONY user’s list serve for posting questions/comments. To subscribe, send
“subscribe symphony-users” to majordomo@branchandcut.org. There is also a Web site for
SYMPHONY at http://branchandcut.org/SYMPHONY . Bug reports can be sent to
symphony-bugs@branchandcut.org.

13

2 User Written Functions

2.1 User-written functions of the Master process

. user usage

void user_usage()

Description:
The user can use any capitol letter (except ’H’) for command line switches to con-
trol user-defined parameter settings without the use of a parameter file. The function
user usage() can optionally print out usage information for the user-defined command
line switches. The command line switch -H automatically calls the user’s usage subrou-
tine. The switch -h prints SYMPHONY’s own usage information.

. user initialize

int user_initialize(void **user)

Description:
The user allocates space for and initializes the user-defined data structures for the master
process.

Arguments:
void **user OUT Pointer to the user-defined data structure.

Return values:
ERROR Error. SYMPHONY stops.
USER NO PP Initialization is done.

. user free master

int user_free_master(void **user)

Description:
The user frees all the data structures within *user, and also free *user itself. This
can be done using the built-in macro FREE that checks the existence of a pointer before
freeing it.

Arguments:
void **user INOUT Pointer to the user-defined data structure (should be NULL

on return).
Return values:

ERROR Ignored. This is probably not a fatal error.
USER NO PP Everything was freed successfully.

. user readparams

14 2 USER WRITTEN FUNCTIONS

int user_readparams(void *user, char *filename, int argc, char **argv)

Description:
The user reads in parameters from the file named filename. The file filename is a file
containing both built-in parameters and user parameters. The filename is given as a
command line argument when starting the application and is then passed to the user.
The user must open the file for reading, scan the file for lines that contain user parameters
and then read the parameters in as appropriate. See the file Master/master io.c to see
how SYMPHONY does this.
Optionally, the user can also parse the command line arguments. All capital letters are
reserved for user-defined command line switches. The switch -H is reserved for help and
calls the user’s usage subroutine (see user send lp data()).

Arguments:
void *user IN Pointer to the user-defined data structure.
char *filename IN The name of the parameter file.

Return values:
ERROR Error. SYMPHONY stops.
USER NO PP User parameters were read successfully.

. user io

int user_io(void *user)

Description:
The user prepares all information needed to specify the problem instance (e.g., reads in
data from a data file, etc.).

Arguments:
void *user IN Pointer to the user-defined data structure.

Return values:
ERROR Error. SYMPHONY stops.
USER NO PP User I/O was completed successfully.

. user init draw graph

int user_init_draw_graph(void *user, int dg_id)

Description:
This function is invoked only if the do draw graph parameter is set. The user can
initialize the graph drawing process by sending some initial information (e.g., the location
of the nodes of a graph, like in the TSP.)

Arguments:
void *user IN Pointer to the user-defined data structure.
int dg id IN The process id of the graph drawing process.

2.1 User-written functions of the Master process 15

Return values:
ERROR Error. SYMPHONY stops.
USER NO PP The user completed initialization successfully.

. user start heurs

int user_start_heurs(void *user, double *ub, double *ub_estimate)

Description:

The user invokes heuristics and generates the initial global upper bound and also perhaps
an upper bound estimate. This is the last place where the user can do things before
the branch and cut algorithm starts. She might do some preprocessing, in addition to
generating the upper bound.

Arguments:

void *user IN Pointer to the user-defined data structure.
double *ub OUT Pointer to the global upper bound. Initially, the upper bound

is set to either -MAXDOUBLE or the bound read in from the pa-
rameter file, and should be changed by the user only if a better
valid upper bound is found.

double *ub estimate OUT Pointer to an estimate of the global upper bound. This is useful
if the BEST ESTIMATE diving strategy is used (see the treeman-
ager parameter diving strategy (Section 3.4))

Return values:
ERROR Error. This error is probably not fatal.
USER NO PP User executed function successfully.

. user set base

int user_set_base(void *user, int *basevarnum, int **basevars, double **lb,
double **ub, int *basecutnum, int *colgen_strat)

Description:

The user must specify the set of base variables and the number of base constraints. The
base constraints themselves need not be specified since they are never stored explicitly.

Arguments:

16 2 USER WRITTEN FUNCTIONS

void *user IN Pointer to the user-defined data structure.
int *varnum OUT Pointer to the number of base variables.
int **userind OUT Pointer to an array containing the user indices of

the base variables.
int **lb OUT Pointer to an array containing the lower bounds for

the base variables.
int **ub OUT Pointer to an array containing the upper bounds for

the base variables.
int *cutnum OUT The number of base constraints.
int *colgen strat INOUT The default strategy or one that has been read in

from the parameter file is passed in, but the user is
free to change it. See colgen strat in the descrip-
tion of parameters for details on how to set it.

Return values:
ERROR Error. SYMPHONY stops.
USER NO PP The required data are filled in, but no post-processing done.
USER AND PP All required post-processing done.

Post-processing:
The array of user indices is sorted if the user has not already done so.

. user create root

int user_create_root(void *user, int *extravarnum, int **extravars)

Description:
The user must specify which extra variables are to be active in the root node in addition
to the base variables.

Arguments:
void *user IN Pointer to the user-defined data structure.
int *extravarnum OUT Pointer to the number of extra active variables in the

root.
int *extravars OUT Pointer to an array containing a list of user indices of

the extra variables to be active in the root.
Return values:

ERROR Error. SYMPHONY stops.
USER NO PP All required data filled out, but no post-processing done.
USER AND PP All required post-processing done.

Post-processing:
The array of extra indices is sorted if the user has not already done so.

. user receive feasible solution

int user_receive_feasible_solution(void *user, int msgtag, double cost,
int numvars, int *indices, double *values)

2.1 User-written functions of the Master process 17

Description:
Feasible solutions can be sent and/or stored in a user-defined packed form if desired. For
instance, the TSP, a tour can be specified simply as a permutation, rather than as a list
of variable indices. In the LP process, a feasible solution is packed either by the user or
by a default packing routine. If the default packing routine was used, the msgtag will be
FEASIBLE SOLUTION NONZEROS. In this case, cost, numvars, indices and values will
contain the solution value, the number of nonzeros in the feasible solution, and their
user indices and values. The user has only to interpret and store the solution. Oth-
erwise, when msgtag is FEASIBLE SOLUTION USER, SYMPHONY will send and receive
the solution value only and the user has to unpack exactly what she has packed in the
LP process. In this case the contents of the last three arguments are undefined.

Arguments:
void *user IN Pointer to the user-defined data structure.
int msgtag IN FEASIBLE SOLUTION NONZEROS or FEASIBLE SOLUTION USER
double cost IN The cost of the feasible solution.
int numvars IN The number of variables whose user indices and values were

sent (length of indices and values).
int *indices IN The user indices of the nonzero variables.
double *values IN The corresponding values.

Return values:
ERROR Ignored. This is probably not a fatal error.
USER NO PP The solution has been unpacked and stored.

. user send lp data

int user_send_lp_data(void *user, void **user_lp)

Description:
The user has to send all problem-specific data that will be needed in the LP process to set
up the initial LP relaxation and perform later computations. This could include instance
data, as well as user parameter settings. This is one of the few places where the user will
need to worry about the configuration of the modules. If either the tree manager or the
LP are running as a separate process (either COMPILE IN LP or COMPILE IN TM are FALSE
in the make file), then the data will be sent and received through message-passing. See
user receive lp data() in Section 2.2 for more discussion. Otherwise, it can be copied
over directly to the user-defined data structure for the LP. In the latter case, *user lp
is a pointer to the user-defined data structure for the LP that must be allocated and
initialized. For a discussion of message-passing in SYMPHONY, see Section 1.7. The
code for the two cases is put in the same source file by use of #ifdef statements. See
the comments in the code stub for this function for more details.

Arguments:
void *user IN Pointer to the user-defined data structure.
void **user lp OUT Pointer to the user-defined data structure for the LP pro-

cess.

18 2 USER WRITTEN FUNCTIONS

Return values:
ERROR Error. SYMPHONY stops.
USER NO PP Packing is done.

. user send cg data

int user_pack_cg_data(void *user, void **user_cg)

Description:
The user has to send all problem-specific data that will be needed by the cut generator
for separation. This is one of the few places where the user will need to worry about the
configuration of the modules. If either the tree manager, the LP, or the cut generator are
running as a separate process (either COMPILE IN LP, COMPILE IN TM, or COMPILE IN CG
are FALSE in the make file), then the data will be sent and received through message-
passing. See user receive cg data in Section 2.3 for more discussion. Otherwise, it
can be copied over directly to the user-defined data structure for the CG. In the latter
case, *user cg is a pointer to the user-defined data structure for the CG that must
be allocated and initialized. For a discussion of message-passing in SYMPHONY, see
Section 1.7. The code for the two cases is put in the same source file by use of #ifdef
statements. See the comments in the code stub for this function for more details.

Arguments:
void *user IN Pointer to the user-defined data structure.
void **user cg OUT Pointer to the user-defined data structure for the cut gen-

erator process.
Return values:

ERROR Error. SYMPHONY stops.
USER NO PP Packing is done.

. user send cp data

int user_pack_cp_data(void *user, void **user_cp)

Description:
The user has to send all problem-specific data that will be needed by the cut pool in
order to store and check cuts. This is one of the few places where the user will need to
worry about the configuration of the modules. If either the tree manager, the LP, or
the cut pool are running as a separate process(either COMPILE IN LP, COMPILE IN TM,
or COMPILE IN CP are FALSE in the make file), then the data will be sent and received
through message-passing. See user receive cp data() in Section 2.4 for more discus-
sion. Otherwise, it can be copied over directly to the user-defined data structure for
the CP. In the latter case, *user cp is a pointer to the user-defined data structure for
the CP that must be allocated and initialized. For a discussion of message passing in
SYMPHONY, see Section 1.7. The code for the two cases is put in the same source file
by use of #ifdef statements. See the comments in the code stub for this function for
more details.

2.1 User-written functions of the Master process 19

Arguments:
void *user IN Pointer to the user-defined data structure.
void **user cp OUT Pointer to the user-defined data structure for the cut pool

process.

Return values:
ERROR Error. SYMPHONY stops.
USER NO PP Packing is done.

. user display solution

int user_display_solution(void *user)

Description:
This function is invoked when the best solution found so far is to be displayed (after
heuristics, after the end of the first phase, or the end of the whole algorithm). This can
be done using either a text-based format or using the drawgraph process.

Return values:
ERROR Ignored.
USER NO PP Displaying is done.

Arguments:
void *user IN Pointer to the user-defined data structure.

. user send feas sol

int user_process_own_messages(void *user, int *feas_sol_size, int **feas_sol)

Description:
This function is useful for debugging purposes. It passes a known feasible solution to
the tree manager. The tree manager then tracks which current subproblem admits this
feasible solution and notifies the user when it gets pruned. It is useful for finding out
why a known optimal solution never gets discovered. Usually, this is due to either an
invalid cut of an invalid branching. Note that this feature only works when branching
on binary variables. See Section 1.14.4 for more on how to use this feature.

Return values:

Arguments:
void *user IN Pointer to the user-defined data structure.
int *feas sol size INOUT Pointer to size of the feasible solution passed by the

user.
int **feas sol INOUT Pointer to the array of user indices containing the

feasible solution. This array is simply copied by the
tree manager and must be freed by the user.

ERROR Solution tracing is not enabled.
USER NO PP Tracing of the given solution is enabled.

20 2 USER WRITTEN FUNCTIONS

. user process own messages

int user_process_own_messages(void *user, int msgtag)

Description:
The user must receive any message he sends to the master process (independently of
SYMPHONY’s own messages). An example for such a message is sending feasible
solutions from separate heuristics processes fired up in user start heurs().

Arguments:
void *user IN Pointer to the user-defined data structure.
int msgtag IN The message tag of the message.

Return values:
ERROR Ignored.
USER NO PP Message is processed.

2.2 User-written functions of the LP process 21

2.2 User-written functions of the LP process

Data Structures

We first describe a few structures that are used to pass data into and out of the user func-
tions of the LP process.

. cut data
One of the few internally defined data structures that the user has to deal with frequently
is the cut data data structure, used to store the packed form of cuts. This structure has 8
fields listed below.

int size – The size of the coef array.

char *coef – An array containing the packed form of the cut, which is defined and con-
structed by the user. Given this packed form and a list of the variables active in the
current relaxation, the user must be able to construct the corresponding constraint.

double rhs – The right hand side of the constraint.

double range – The range of the constraint. It is zero for a standard form constraint.
Otherwise, the row activity level is limited to between rhs and rhs + range.

char type – A user-defined type identifier that represents the general class that the cut
belongs to.

char sense – The sense of the constraint. Can be either ’L’ (≤), ’E’ (=), ’G’ (≥) or ’R’
(ranged). This may be evident from the type.

char branch – Determines whether the cut can be branched on or not. Possible initial values
are DO NOT BRANCH ON THIS ROW and ALLOWED TO BRANCH ON.

int name – Identifier used by SYMPHONY. The user should not set this.

. waiting row
A closely related data structure is the waiting row, essentially the “unpacked” form of a cut.
There are six fields.

source pid – Used internally by SYMPHONY.

cut data *cut – Pointer to the cut from which the row was generated.

int nzcnt, *matind, *matval – Fields describing the row. nzcnt is the number of nonze-
ros in the row, i.e., the length of the matind and matval arrays, which are the variable
indices (wrt. the current LP relaxation) and nonzero coefficients in the row.

double violation – If the constraint corresponding to the cut is violated, this value contains
the degree of violation (the absolute value of the difference between the row activity level
(i.e., lhs) and the right hand side). This value does not have to be set by the user.

. var desc
The var desc structure is used list the variables in the current relaxation. There are four
fields.

int userind – The user index of the variables,

22 2 USER WRITTEN FUNCTIONS

int colind – The column index of the variables (in the current relaxation),

double lb – The lower bound of the variable,

double ub – The upper bound of the variable.

Function Descriptions

Now we describe the functions themselves.

. user receive lp data

int user_receive_lp_data (void **user)

Description:
The user has to receive here all problem-specific information sent from the master, set
up necessary data structures, etc. Note that the data need only be actively received
and the user data structure allocated if either the TM or LP modules are configured
as separate processes. Otherwise, data will have been copied into appropriate locations
in the master function user send lp data() (see Section 2.1). The two cases can be
handled by means of #ifdef statements. See comments in the source code stubs for
more details. Note that the data must be received in exactly the same order as it was
sent from the master. See Section 1.7 for more notes on receiving data.

Arguments:
void **user OUT Pointer to the user-defined LP data structure.

Return values:
ERROR Error. SYMPHONY aborts this LP process.
USER NO PP User received the data.

Wrapper invoked from: lp initialize() at process start.

. user free lp

int user_free_lp(void **user)

Description:
The user has to free all the data structures within *user, and also free user itself. The
user can use the built-in macro FREE that checks the existence of a pointer before freeing
it.

Arguments:
void **user INOUT Pointer to the user-defined LP data structure.

Return values:
ERROR Error. SYMPHONY ignores error message.
USER NO PP User freed everything in the user space.

Wrapper invoked from: lp close() at process shutdown.

2.2 User-written functions of the LP process 23

. user create lp

int user_create_lp(void *user, int varnum, var_desc **vars, int
numrows, int cutnum, cut_data **cuts, int *nz,
int **matbeg, int **matind, double **matval,
double **obj, double **rhs, char **sense,
double **rngval, int *maxn, int *maxm,
int *maxnz, int *allocn, int *allocm, int *allocnz)

Description:
Based on the instance data contained in the user data structure and the list of cuts and
variables that are active in the current subproblem, the user has to create the initial LP
relaxation for the search node. The matrix of the LP problem must contain the variables
whose user indices are listed in vars (in the same order) and at least the base constraints.

An LP is defined by a matrix of constraints, an objective function, and bounds
on both the right hand side values of the constraints and on the variables. If the
problem has n variables and m constraints, the constraints are given by a constraint
coefficient matrix of size mxn (described in the next paragraph). The sense of each
constraint, the right hand side values and bounds on the right hand side (called range)
are vectors are of size m. The objective function coefficients and the lower and upper
bounds on the variables are vectors of length n. The sense of each constraint can be
either ’L’ (≤), ’E’ (=), ’G’ (≥) or ’R’ (ranged). For non-ranged rows the range value
is 0, for a ranged row the range value must be non-negative and the constraint means
that the row activity level has to be between the right hand side value and the right
hand side increased by the range value.

Since the coefficient matrix is very often sparse, only the nonzero entries are
stored. Each entry of the matrix has a column index, a row index and a coefficient
value associated with it. An LP matrix is specified in the form of the three arrays
*matval, *matind, and *matbeg. The array *matval contains the values of the nonzero
entries of the matrix in column order; that is, all the entries for the 0th column come
first, then the entries for the 1st column, etc. The row index corresponding to each
entry of *matval is listed in *matind (both of them are of length nz, the number of
nonzero entries in the matrix). Finally, *matbeg contains the starting positions of
each of the columns in *matval and *matind. Thus, (*matbeg)[i] is the position of
the first entry of column i in both *matval and *matind). By convention *matbeg is
allocated to be of length n + 1, with (*matbeg)[n] containing the position after the
very last entry in *matval and *matind (so it is very conveniently equal to nz). This
representation of a matrix is known as a column ordered or column major representation.

The arrays that are passed in can be overwritten and have already been previ-
ously allocated for the lengths indicated (see the description of arguments below).
Therefore, if they are big enough, the user need not reallocate them. If the max lengths
are not big enough then she has to free the corresponding arrays and allocate them
again. In this case she must return the allocated size of the array to avoid further

24 2 USER WRITTEN FUNCTIONS

reallocation. If the user plans to utilize dynamic column and/or cut generation, arrays
should be allocated large enough to allow for reasonable growth of the matrix or
unnecessary reallocations will result. In order to accommodate *maxn variables, arrays
must be allocated to size *allocn = *maxn + *maxm +1 and *allocnz = *maxnz +
*maxm because of the extra space required by the LP solver for slack and artificial
variables.

Arguments:
void *user IN Pointer to the user-defined LP data structure.

int varnum IN Number of variables in the relaxation (base and extra).
var desc **vars IN An array of length n containing the user indices of the

active variables (base and extra).
int rownum IN Number of constraints in the relaxation (base and ex-

tra).
int cutnum IN Number of extra constraints.
cut data **cuts IN Packed description of extra constraints.

int *nz OUT Pointer to the number of nonzeros in the LP.
int **matbeg INOUT Pointers to the arrays that describe the LP problem

(see description above.
int **matind INOUT
double **matval INOUT
double **obj INOUT
double **rhs INOUT
char **sense INOUT
double **rngval INOUT

int *maxn INOUT The maximum number of variables.
int *maxm INOUT The maximum number of constraints.
int *maxnz INOUT The maximum number of nonzeros.

int *allocn INOUT The length of the *matbeg and *obj arrays (should be
*maxm + *maxn +1).

int *allocm INOUT The length of the *rhs, *sense and *rngval arrays.
int *allocnz INOUT The length of the *matval and *matind arrays (should

be *maxnz + *maxm.
Return values:

ERROR Error. The LP process is aborted.
USER AND PP Post-processing will be skipped, the user added the constraints corre-

sponding to the cuts.
USER NO PP User created the matrix with only the base constraints.

Post-processing:
The extra constraints are added to the matrix by calling the user unpack cuts() sub-
routine and then adding the corresponding rows to the matrix. This is easier for the
user to implement, but less efficient than adding the cuts at the time the original matrix
was being constructed.

2.2 User-written functions of the LP process 25

Wrapper invoked from: process chain() which is invoked when setting up a the initial
search node in a chain.

. user get upper bounds

int user_get_upper_bounds(void *user, int varnum, int *indices, double *ub)

Description:

The user has to return the upper bounds of the variables whose user indices are given.
Note that space for ub is already allocated when this function is invoked. There is no
post-processing. The default is to set all the upper bounds to 1.

Arguments:

void *user IN Pointer to the user-defined LP data structure.
int varnum IN Length of vars.
int *vars IN Array containing the user indices of the variables.
double *ub OUT Array of upper bounds (to be filled out by the user).

Return values:
ERROR Error. The LP process is aborted.
DEFAULT Upper bounds are set to one.
USER NO PP The user filled up the upper bound array.

Wrapper invoked from: add col set() (when SYMPHONY adds columns after pricing
out) and from create lp u() (when SYMPHONY has to get the bounds on the extra
variables in the new active node).

Note:

Only the upper bounds for extra variables are ever asked for since the array of bounds
for the base variables is always maintained. Lower bounds for the extra variables must
be zero and hence there is no corresponding function for lower bounds.

. user is feasible

int user_is_feasible(void *user, double lpetol, int varnum, int
*indices, double *values, int *feasible)

Description:

User tests the feasibility of the solution to the current LP relaxation.

There is no post-processing. Possible defaults are testing integrality (TEST INTEGRALITY)
and testing whether the solution is binary (TEST ZERO ONE).

Arguments:

26 2 USER WRITTEN FUNCTIONS

void *user INOUT Pointer to the user-defined LP data structure.

double lpetol IN The ε tolerance of the LP solver.
int varnum IN The length of the indices and values arrays.
int *indices IN User indices of variables at nonzero level in the current

solution.
double *values IN Values of the variables listed in indices.

int *feasible OUT Feasibility status of the solution (NOT FEASIBLE, or
FEASIBLE).

Return values:
ERROR Error. Solution is considered to be not feasible.
USER NO PP User checked IP feasibility.
DEFAULT Regulated by the parameter is feasible default, but set to

TEST INTEGRALITY unless over-ridden by the user.
TEST INTEGRALITY Test integrality of the given solution.
TEST ZERO ONE Tests whether the solution is binary.

Wrapper invoked from: select branching object() after pre-solving the LP relaxation
of a child corresponding to a candidate and from fathom branch() after solving an LP
relaxation.

. user send feasible solution

int user_send_feasible_solution(void *user, double lpetol,
int varnum, int *indices, double *values)

Description:
Send a feasible solution to the master process. The solution is sent using the commu-
nication functions described in Section 1.7 in whatever logical format the user wants to
use. The default is to pack the user indices and values of variables at non-zero level.
If the user packs the solution herself then the same data must be packed here that will
be received in the user receive feasible solution() function in the master process.
See the description of that function for details. This function will only be called when
either the LP or tree manager are running as a separate executable. Otherwise, the
solution gets stored within the LP user data structure.

Arguments:
void *user IN Pointer to the user-defined LP data structure.

double lpetol IN The ε tolerance of the LP solver.
int varnum IN The length of the indices and values arrays.
int *indices IN User indices of variables at nonzero level in the current solu-

tion.
double *values IN Values of the variables listed in indices.

Return values:

2.2 User-written functions of the LP process 27

ERROR Error. Do the default.
USER NO PP User packed the solution.
DEFAULT Regulated by the parameter pack feasible solution default,

but set to SEND NONZEROS unless over-ridden by the user.
SEND NONZEROS Pack the nonzero values and their indices.

Wrapper invoked: as soon as feasibility is detected anywhere.

. user display solution

int user_display_solution(void *user, int which_sol,
int varnum, int *indices, double *values)

Description:
Given a solution to an LP relaxation (the indices and values of the nonzero variables) the
user can (graphically) display it. The which sol argument shows what kind of solution is
passed to the function: DISP FEAS SOLUTION indicates a solution feasible to the original
IP problem, DISP RELAXED SOLUTION indicates the solution to any LP relaxation and
DISP FINAL RELAXED SOLUTION indicates the solution to an LP relaxation when no cut
has been found. There is no post-processing. Default options print out user indices and
values of nonzero or fractional variables on the standard output.

Arguments:
void *user IN Pointer to the user-defined LP data structure.

int which sol IN The type of solution passed on to the
displaying function. Possible values are
DISP FEAS SOLUTION, DISP RELAXED SOLUTION and
DISP FINAL RELAXED SOLUTION.

int varnum IN The number of variables in the current solution at nonzero
level (the length of the indices and values arrays).

int *indices IN User indices of variables at nonzero level in the current solu-
tion.

double *values IN Values of the nonzero variables.

Return values:
ERROR Error. SYMPHONY ignores error message.
USER NO PP User displayed whatever she wanted to.
DEFAULT Regulated by the parameter display solution default.
DISP NOTHING Display nothing.
DISP NZ INT Display user indices (as integers) and values of nonzero variables.
DISP NZ HEXA Display user indices (as hexadecimals) and values of nonzero vari-

ables.
DISP FRAC INT Display user indices (as integers) and values of variables not at

their lower or upper bounds.
DISP FRAC HEXA Display user indices (as hexadecimals) and values of variables not

at their lower and upper bounds.

28 2 USER WRITTEN FUNCTIONS

Wrapper invoked from: fathom branch() with DISP FEAS SOLUTION or
DISP RELAXED SOLUTION after solving an LP relaxation and checking its feasibil-
ity status. If it was not feasible and no cut could be added either then the wrapper is
invoked once more, now with DISP FINAL RELAXED SOLUTION.

. user shall we branch

int user_shall_we_branch(void *user, double lpetol, int cutnum,
int slacks_in_matrix_num,
cut_data **slacks_in_matrix,
int slack_cut_num, cut_data **slack_cuts,
int varnum, var_desc **vars, double *x,
char *status, int *cand_num,
branch_obj ***candidates, int *action)

Description:
There are two user-written functions invoked from select candidates u. The first
one (user shall we branch()) decides whether to branch at all, the second one
(user select candidates()) chooses the branching objects. The argument lists of the
two functions are the same, and if branching occurs (see discussion below) then the
contents of *cand num and *candidates will not change between the calls to the two
functions.

The first of these two functions is invoked in each iteration after solving the LP
relaxation and (possibly) generating cuts. Therefore, by the time it is called, some
violated cuts might be known. Still, the user might decide to branch anyway. The
second function is invoked only when branching is decided on.

Given (1) the number of known violated cuts that can be added to the problem
when this function is invoked, (2) the constraints that are slack in the LP relaxation,
(3) the slack cuts not in the matrix that could be branched on (more on this later), and
(4) the solution to the current LP relaxation, the user must decide whether to branch or
not. Branching can be done either on variables or slack cuts. A pool of slack cuts which
has been removed from the problem and kept for possible branching is passed to the
user. If any of these happen to actually be violated (it is up to the user to determine
this), they can be passed back as branching candidate type VIOLATED SLACK and will be
added into the current relaxation. In this case, branching does not have to occur (the
structure of the *candidates array is described below in user select candidates()).

This function has two outputs. The first output is *action which can take four
values: USER DO BRANCH if the user wants to branch, USER DO NOT BRANCH if he doesn’t
want to branch, USER BRANCH IF MUST if he wants to branch only if there are no known
violated cuts, or finally USER BRANCH IF TAILOFF if he wants to branch in case tailing
off is detected. The second output is the number of candidates and their description.
In this function the only sensible “candidates” are VIOLATED SLACKs.

2.2 User-written functions of the LP process 29

There is no post processing, but in case branching is selected, the
col gen before branch() function is invoked before the branching would take
place. If that function finds dual infeasible variables then (instead of branching) they
are added to the LP relaxation and the problem is resolved. (Note that the behavior of
the col gen before branch() is governed by the colgen strat[] TM parameters.)

Arguments:
void *user IN Pointer to the user-defined LP data struc-

ture.
double lpetol IN The ε tolerance of the LP solver.

int cutnum IN The number of violated cuts (known before
invoking this function) that could be added
to the problem (instead of branching).

int slacks in matrix num IN Number of slack constraints in the matrix.
cut data **slacks in matrix IN The description of the cuts corresponding

to these constraints (see Section 2.2).

int slack cut num IN The number of slack cuts not in the matrix.
cut data **slack cuts IN Array of pointers to these cuts (see Section

2.2).
int varnum IN The number of variables in the current lp

relaxation (the length of the following three
arrays).

var desc **vars IN Description of the variables in the relax-
ation.

double *x IN The corresponding solution values (in the
optimal solution to the relaxation).

char *status IN The stati of the variables. There are five
possible status values: NOT FIXED, TEMP -
FIXED TO UB, PERM FIXED TO UB, TEMP -
FIXED TO LB and PERM FIXED TO LB.

int *cand num OUT Pointer to the number of candidates re-
turned (the length of *candidates).

candidate ***candidates OUT Pointer to the array of candidates gener-
ated (see description below).

int *action OUT What to do. Must be one of the four above
described values.

Return values:
ERROR Error. DEFAULT is used.
USER NO PP The user filled out *action (and possibly *cand num and *candidates).
DEFAULT action is set to the value of the parameter shall we branch default,

which is initially USER BRANCH IF MUST unless over-ridden by the user.

Notes:

30 2 USER WRITTEN FUNCTIONS

• The user has to allocate the pointer array for the candidates and place the pointer
for the array into ***candidates (if candidates are returned).

• Candidates of type VIOLATED SLACK are always added to the LP relaxation regardless
of what action is chosen and whether branching will be carried out or not.

• Also note that the user can change his mind in user select candidates() and
not branch after all, even if she chose to branch in this function. A possible
scenario: cut num is zero when this function is invoked and the user asks for
USER BRANCH IF MUST without checking the slack constraints and slack cuts. After-
wards no columns are generated (no dual infeasible variables found) and thus SYM-
PHONY decides branching is called for and invokes user select candidates().
However, in that function the user checks the slack cuts, finds that some are vio-
lated, cancels the branching request and adds the violated cuts to the relaxation
instead.

Warning: The cuts the user unpacks and wants to be added to the problem (either because
they are of type VIOLATED SLACK or type CANDIDATE CUT NOT IN MATRIX) will be deleted
from the list of slack cuts after this routine returns. Therefore the same warning applies
here as in the function user unpack cuts().

Wrapper invoked from: select branching object().

. user select candidates

int user_select_candidates(void *user, double lpetol, int cutnum,
int slacks_in_matrix_num,
cut_data **slacks_in_matrix,
int slack_cut_num, cut_data **slack_cuts,
int varnum, var_desc **vars, double *x,
char *status, int *cand_num,
branch_obj ***candidates, int *action,
int bc_level)

Description:
The purpose of this function is to generate branching candidates. Note that *action
from user shall we branch() is passed on to this function (but its value can be
changed here, see notes at the previous function), as well as the candidates in
**candidates and their number in *cand num if there were any.

Violated cuts found among the slack cuts (not in the matrix) can be added to
the candidate list. These violated cuts will be added to the LP relaxation regardless of
the value of *action.

The branch obj structure contains fields similar to the cut data data structure.
Branching is accomplished by imposing inequalities which divide the current subprob-
lem while cutting off the corresponding fractional solution. Branching on cuts and
variables is treated symmetrically and branching on a variable can be thought of as
imposing a constraint with a single unit entry in the appropriate column. Following is
a list of the fields of the branch obj data structure which must be set by the user.

2.2 User-written functions of the LP process 31

char type Can take five values:
CANDIDATE VARIABLE The object is a variable.
CANDIDATE CUT IN MATRIX The object is a cut (it must be slack) which is in the

current formulation.
CANDIDATE CUT NOT IN MATRIX The object is a cut (it must be slack) which has

been deleted from the formulation and is listed among the slack cuts.
VIOLATED SLACK The object is not offered as a candidate for branching, but rather

it is selected because it was among the slack cuts but became violated again.
SLACK TO BE DISCARDED The object is not selected as a candidate for branching

rather it is selected because it is a slack cut which should be discarded even
from the list of slack cuts.

int position The position of the object in the appropriate array (which is one of vars,
slacks in matrix, or slack cuts.

waiting row *row Used only if the type is CANDIDATE CUT NOT IN MATRIX or
VIOLATED SLACK. In these cases this field holds the row extension corresponding to
the cut. This structure can be filled out easily using a call to user unpack cuts().

int child num
The number of children of this branching object.

char *sense, double *rhs, double *range, int *branch
The description of the children. These arrays determine the sense, rhs, etc. for the
cut to be imposed in each of the children. These are defined and used exactly as in
the cut data data structure. Note: If a limit is defined on the number of children
by defining the MAX CHILDREN NUM macro to be a number (it is pre-defined to be 4
as a default), then these arrays will be statically defined to be the correct length
and don’t have to be allocated. This option is highly recommended. Otherwise, the
user must allocate them to be of length child num.

double lhs The activity level for the row (for branching cuts). This field is purely for
the user’s convenience. SYMPHONY doesn’t use it so it need not be filled out.

double *objval, int *termcode, int *iterd, int *feasible
The objective values, termination codes, number of iterations and feasibility stati of
the children after pre-solving them. These are all filed out by SYMPHONY during
strong branching. The user may access them in user compare candidates() (see
below).

There are three default options (see below), each chooses a few variables (the number is
determined by the strong branching parameters (see Section 3.5).

Arguments:
Same as for user shall we branch(), except that *action must be either
USER DO BRANCH or USER DO NOT BRANCH, and if branching is asked
for, there must be a real candidate in the candidate list (not only
VIOLATED SLACKs and SLACK TO BE DISCARDEDs). Also, the argument bc level
is the level in the tree. This could be used in deciding how many
strong branching candidates to use.

Return values:

32 2 USER WRITTEN FUNCTIONS

ERROR Error. DEFAULT is used.
USER NO PP User generated branching candidates.
DEFAULT Regulated by the

select candidates default parameter
(one of the following three
options).

USER CLOSE TO HALF Choose variables with values closest
to half.

USER CLOSE TO HALF AND EXPENSIVE Choose variables with values close
to half and with high objective
function coefficients.

USER CLOSE TO ONE AND CHEAP Choose variables with values close
to one and with low objective
function coefficients.

Wrapper invoked from: select branching object().

Notes: See the notes at user shall we branch().

. user compare candidates

int user_compare_candidates(void *user, branch_obj *can1, branch_obj *can2,
int *which_is_better)

Description:

By the time this function is invoked, the children of the current search tree node
corresponding to each branching candidate have been pre-solved, i.e., the objval,
termcode, iterd, and feasible fields of the can1 and can2 structures are filled out.
Note that if the termination code for a child is D UNBOUNDED or D OBJLIM, i.e., the dual
problem is unbounded or the objective limit is reached, then the objective value of that
child is set to MAXDOUBLE / 2. Similarly, if the termination code is one of D ITLIM
(iteration limit reached), D INFEASIBLE (dual infeasible) or ABANDONED (because of
numerical difficulties) then the objective value of that child is set to that of the parent’s.

Based on this information the user must choose which candidate he considers better
and whether to branch on this better one immediately without checking the remaining
candidates. As such, there are four possible answers: FIRST CANDIDATE BETTER,
SECOND CANDIDATE BETTER, FIRST CANDIDATE BETTER AND BRANCH ON IT
and SECOND CANDIDATE BETTER AND BRANCH ON IT. An answer ending with
AND BRANCH ON IT indicates that the user wants to terminate the strong branch-
ing process and select that particular candidate for branching.

There are several default options. In each of them, objective values of the pre-
solved LP relaxations are compared.

Arguments:

2.2 User-written functions of the LP process 33

void *user IN Pointer to the user-defined LP data structure.

branch obj *can1 IN One of the candidates to be compared.
branch obj *can2 IN The other candidate to be compared.
int *which is better OUT The user’s choice. See the description above.

Return values:
ERROR Error. DEFAULT is used.
USER NO PP User filled out *which is better.
DEFAULT Regulated by the compare candidates default parameter,

initially set to LOWEST LOW OBJ unless over-ridden by the user.
BIGGEST DIFFERENCE Prefer the candidate with the biggest difference between high-

est and lowest objective function values.
LOWEST LOW Prefer the candidate with the lowest minimum objective func-

tion value. The minimum is taken over the objective function
values of all the children.

HIGHEST LOW Prefer the candidate with the highest minimum objective
function value.

LOWEST HIGH Prefer the candidate with the lowest maximum objective
function value.

HIGHEST HIGH Prefer the candidate with the highest maximum objective
function value .

Wrapper invoked from: select branching object() after the LP relaxations of the chil-
dren have been pre-solved.

. user select child

int user_select_child(void *user, double ub, branch_obj *can, char *action)

Description:

By the time this function is invoked, the candidate for branching has been chosen.
Based on this information and the current best upper bound, the user has to decide
what to do with each child. Possible actions for a child are KEEP THIS CHILD (the child
will be kept at this LP for further processing, i.e., the process dives into that child),
PRUNE THIS CHILD (the child will be pruned based on some problem specific property—
no questions asked...), PRUNE THIS CHILD FATHOMABLE (the child will be pruned based
on its pre-solved LP relaxation) and RETURN THIS CHILD (the child will be sent back to
tree manager). Note that at most one child can be kept at the current LP process.

There are two default options—in both of them, objective values of the pre-solved LP
relaxations are compared (for those children whose pre-solve did not terminate with
primal infeasibility or high cost). One rule prefers the child with the lowest objective
function value and the other prefers the child with the higher objective function value.

Arguments:

34 2 USER WRITTEN FUNCTIONS

void *user IN Pointer to the user-defined LP data structure.

int ub IN The current best upper bound.
double etol IN Epsilon tolerance.
branch obj *can IN The branching candidate.

char *action OUT Array of actions for the children. The array is already
allocated to length can->number.

Return values:
ERROR Error. DEFAULT is used.
USER NO PP User filled out *action.
USER AND PP User filled out *action and did an equivalent of the

post-processing.
DEFAULT Regulated by the select child default parameter,

which is initially set to PREFER LOWER OBJ VALUE, un-
less over-ridden by the user.

PREFER HIGHER OBJ VALUE Choose child with the highest objective value.
PREFER LOWER OBJ VALUE Choose child with the lowest objective value.

Post-processing:
Checks which children can be fathomed based on the objective value of their pre-solved
LP relaxation.

Wrapper invoked from: branch().

. user print branch stat

int user_print_branch_stat(void *user, branch_obj *can, cut_data *cut,
char *action)

Description:
Print out information about branching candidate can, such as a more explicit problem-
specific description than SYMPHONY can provide (for instance, end points of an edge).
If verbosity is set high enough, the identity of the branching object and the children
(with objective values and termination codes for the pre-solved LPs) is printed out to
the standard output by SYMPHONY.

Arguments:
void *user IN Pointer to the user-defined LP data structure.

branch obj *can IN The branching candidate.
cut data *cut IN The description of the cut if the branching object is a cut.
char *action IN Array of actions for the children.

Return values:
ERROR Error. Ignored by SYMPHONY.
USER NO PP The user printed out whatever she wanted to.

Wrapper invoked from: branch() after the best candidate has been selected, pre-solved,
and the action is decided on for the children.

2.2 User-written functions of the LP process 35

. user add to desc

int user_add_to_desc(void *user, int *desc_size, char **desc)

Description:
Before a node description is sent to the TM, the user can provide a pointer to a
data structure that will be appended to the description for later use by the user in
reconstruction of the node. This information must be placed into *desc. Its size should
be returned in *desc size.

There is only one default option: the description to be added is considered to be
of zero length, i.e., there is no additional description.

Arguments:
void *user IN Pointer to the user-defined LP data structure.

int *desc size OUT The size of the additional information, the length of *desc
in bytes.

char **desc OUT Pointer to the additional information (space must be allo-
cated by the user).

Return values:
ERROR Error. DEFAULT is used.
USER NO PP User filled out *desc size and *desc.
DEFAULT No description is appended.

Wrapper invoked from: create explicit node desc() before a node is sent to the tree
manager.

. user same cuts

int user_same_cuts (void *user, cut_data *cut1, cut_data *cut2,
int *same_cuts)

Description:
Determine whether the two cuts are comparable (the normals of the half-spaces corre-
sponding to the cuts point in the same direction) and if yes, which one is stronger. The
default is to declare the cuts comparable only if the type, sense and coef fields of the
two cuts are the same byte by byte; and if this is the case to compare the right hand
sides to decide which cut is stronger.

Arguments:
void *user IN Pointer to the user-defined LP data structure.

cut data *cut1 IN The first cut.
cut data *cut2 IN The second cut.
int *same cuts OUT Possible values: SAME, FIRST CUT BETTER,

SECOND CUT BETTER and DIFFERENT (i.e., not com-
parable).

36 2 USER WRITTEN FUNCTIONS

Return values:
ERROR Error. DEFAULT is used.
USER NO PP User did the comparison, filled out *same cuts.
DEFAULT Compare byte by byte (see above).

Wrapper invoked from: process message() when a PACKED CUT arrives.

Note:
This function is used to check whether a newly arrived cut is already in the local pool.
If so, or if it is weaker than a cut in the local pool, then the new cut is discarded; if it
is stronger then a cut in the local pool, then the new cut replaces the old one and if the
new is different from all the old ones, then it is added to the local pool.

. user unpack cuts

int user_unpack_cuts(void *user, int from, int one_row_only, int varnum,
var_desc **vars, int cutnum, cut_data **cuts,
int *new_row_num, waiting_row ***new_rows)

Description:
The user has to interpret the given cuts as constraints for the current LP relaxation,
i.e., he must decode the compact representation of the cuts (see the cut data structure)
into rows for the matrix. A pointer to the array of generated rows must be returned in
***new rows (the user has to allocate this array) and their number in *new row num.
There is no post processing. There are no built-in default options.

Arguments:
void *user IN Pointer to the user-defined LP data structure.

int from IN See below in “Notes”.
int one row only IN UNPACK CUTS SINGLE or

UNPACK CUTS MULTIPLE (see notes below).
int varnum IN The number of variables.
var desc **vars IN The variables currently in the problem.
int cutnum IN The number of cuts to be decoded.
cut data **cuts IN Cuts that need to be converted to rows for the

current LP. See “Warning” below.

int *new row num OUT Pointer to the number of rows in **new rows.
waiting row ***new rows OUT Pointer to the array of pointers to the new rows.

Return values:
ERROR Error. The cuts are discarded.
USER NO PP User unpacked the cuts.

Wrapper invoked from: Wherever a cut needs to be unpacked (multiple places).

Notes:

• When decoding the cuts, the expanded constraints have to be adjusted to the current
LP, i.e., coefficients corresponding to variables currently not in the LP have to be
left out.

2.2 User-written functions of the LP process 37

• If the one row only flag is set to UNPACK CUTS MULTIPLE, then the user can generate
as many constraints (even zero!) from a cut as she wants (this way she can lift
the cuts, thus adjusting them for the current LP). However, if the flag is set to
UNPACK CUTS SINGLE, then for each cut the user must generate a unique row, the
same one that had been generated from the cut before. (The flag is set to this value
only when regenerating a search tree node.)

• The from argument can take on six different values: CUT FROM CG, CUT FROM CP,
CUT FROM TM, CUT LEFTOVER (these are cuts from a previous LP relaxation that are
still in the local pool), CUT NOT IN MATRIX SLACK and CUT VIOLATED SLACK indicat-
ing where the cut came from. This might be useful in deciding whether to lift the
cut or not.

• The matind fields of the rows must be filled with indices with respect to the position
of the variables in **vars.

• Warning: For each row, the user must make sure that the cut the row was generated
from (and can be uniquely regenerated from if needed later) is safely stored in
the waiting row structure. SYMPHONY will free the entries in cuts after this
function returns. If a row is generated from a cut in cuts (and not from a lifted cut),
the user has the option of physically copying the cut into the corresponding part of
the waiting row structure, or copying the pointer to the cut into the waiting row
structure and erasing the pointer in cuts. If a row is generated from a lifted cut, the
user should store a copy of the lifted cut in the corresponding part of waiting row.

. user send lp solution

int user_send_lp_solution(void *user, int varnum, var_desc **vars,
double *x, int where)

Description:

The user has the option to send the LP solution to either the cut pool or the cut generator
in some user-defined form if desired. There are two default options—sending the indices
and values for all nonzero variables (SEND NONZEROS) and sending the indices and values
for all fractional variables (SEND FRACTIONS).

Arguments:
void *user IN Pointer to the user-defined LP data structure.

int varnum IN The number of variables currently in the LP relaxation.
(The length of the *vars and x arrays.)

var desc **vars IN The variables currently in the LP relaxation.
double *x IN Values of the above variables.
int where IN Where the solution is to be sent—LP SOL TO CG or

LP SOL TO CP.

Return values:

38 2 USER WRITTEN FUNCTIONS

ERROR Error. No message will be sent.
USER NO PP User packed and sent the message.
DEFAULT Regulated by the pack lp solution default parameter, initially

set to SEND NOZEROS.
SEND NONZEROS Send user indices and values of variables at nonzero level.
SEND FRACTIONS Send user indices and values of variables at fractional level.

Wrapper invoked from: fathom branch() after an LP relaxation has been solved. The
message is always sent to the cut generator (if there is one). The message is sent to the
cut pool if a search tree node at the top of a chain is being processed (except at the root
in the first phase), or if a given number (cut pool check freq) of LP relaxations have
been solved since the last check.

Note:
The wrapper automatically packs the level, index, and iteration number corresponding
to the current LP solution within the current search tree node, as well as the objective
value and upper bound in case the solution is sent to a cut generator. This data will
be unpacked by SYMPHONY on the receiving end, the user will have to unpack there
exactly what he has packed here.

. user logical fixing

int user_logical_fixing(void *user, int varnum, var_desc **vars,
double *x, char *status)

Description:
Logical fixing is modifying the stati of variables based on logical implications derived
from problem-specific information. In this function the user can modify the status
of any variable. Valid stati are: NOT FIXED, TEMP FIXED TO LB, PERM FIXED TO LB,
TEMP FIXED TO UB and PERM FIXED TO UB. Be forewarned that fallaciously fixing a vari-
able in this function can cause the algorithm to terminate improperly. Generally, a
variable can only be fixed permanently if the matrix is full at the time of the fixing (i.e.
all variables that are not fixed are in the matrix). There are no default options.

Arguments:
void *user IN Pointer to the user-defined LP data structure.

int varnum IN The number of variables currently in the LP relaxation.
(The length of the *vars and x arrays.)

var desc **vars IN The variables currently in the LP relaxation.
double *x IN Values of the above variables.
char *status INOUT Stati of variables currently in the LP relaxation.

Return values:
ERROR Error. Ignored by SYMPHONY.
USER NO PP User changed the stati of the variables she wanted.

Wrapper invoked from: fix variables() after doing reduced cost fixing, but only when
a specified number of variables have been fixed by reduced cost (see LP parameter
settings).

2.2 User-written functions of the LP process 39

. user generate column

int user_generate_column(void *user, int generate_what, int cutnum,
cut_data **cuts, int prevind, int nextind,
int *real_nextind, double *colval,
int *colind, int *collen, double *obj)

Description:
This function is called when pricing out the columns that are not already fixed and are
not explicitly represented in the matrix. Only the user knows the explicit description
of these columns. When a missing variable need to be priced, the user is asked to
provide the corresponding column. SYMPHONY scans through the known variables
in the order of their user indices. After testing a variable in the matrix (prevind),
SYMPHONY asks the user if there are any missing variables to be priced before the
next variable in the matrix (nextind). If there are missing variables before nextind, the
user has to supply the user index of the real next variable (real nextind) along with
the corresponding column. Occasionally SYMPHONY asks the user to simply supply
the column corresponding to nextind. The generate what flag is used for making a
distinction between the two cases: in the former case it is set to GENERATE REAL NEXTIND
and in the latter it is set to GENERATE NEXTIND.

Arguments:
void *user IN Pointer to the user-defined LP data structure.

int generate what IN GENERATE NEXTIND or GENERATE REAL NEXTIND (see
description above).

int cutnum IN The number of added rows in the LP formulation (i.e.,
the total number of rows less the number of base con-
straints). This is the length of the **cuts array.

cut data **cuts IN Description of the cuts corresponding to the added rows
of the current LP formulation. The user is supposed
to know about the cuts corresponding to the base con-
straints.

int prevind IN The last variable processed (−1 if there was none) by
SYMPHONY.

int nextind IN The next variable (−1 if there are none) known to
SYMPHONY.

int *real nextind OUT Pointer to the user index of the next variable (−1 if
there is none).

double *colval OUT Values of the nonzero entries in the column of the next
variable. (Sufficient space is already allocated for this
array.)

int *colind OUT Row indices of the nonzero entries in the column. (Suf-
ficient space is already allocated for this array.)

int *collen OUT The length of the colval and colind arrays.
double *obj OUT Objective coefficient corresponding to the next vari-

able.

40 2 USER WRITTEN FUNCTIONS

Return values:
ERROR Error. The LP process is aborted.
USER NO PP User filled out *real nextind and generated its column if

needed.
Wrapper invoked from: price all vars() and restore lp feasibility().

Note:
colval, colind, collen and obj do not need to be filled out if real nextind is the
same as nextind and generate what is GENERATE REAL NEXTIND.

. user generate cuts in lp

int user_generate_cuts_in_lp(void *user, int varnum, var_desc **vars,
double *x, int *new_row_num,
waiting_row ***new_rows)

Description:
The user might decide to generate cuts directly within the LP process instead of using
the cut generator. This can be accomplished either through a call to this function
or simply by configuring SYMPHONY such that the cut generator is called directly
from the LP solver. One example of when this might be done is when generating
Gomory cuts (this is planned to be part of SYMPHONY later) or something else
that requires knowledge of the current LP tableau. The IN arguments are the same
as in user send lp solution() (except that there is no where argument). Not only
the generated cuts but the corresponding rows must be returned (the cuts are in the
waiting row structures) because the user unpack cuts() function will not be invoked
for the generated cuts. Also, the user must fill out the violation field for every
row. The reason for this is that any cut generated here will definitely correspond to
the current LP solution so the user must have already computed the violation when
generating the cut.

Post-processing consists of checking if any of the new cuts are already in the lo-
cal pool (or dominated by a cut in the local pool). Since the user will probably use this
function to generate tableau-dependent cuts, it is highly unlikely that any of the new
cuts would already be in the pool. Therefore the user will probably return USER AND PP
to force SYMPHONY to skip post-processing.

Arguments:
void *user IN Pointer to the user-defined LP data structure.

int varnum IN The number of variables currently in the LP
relaxation. (The length of the *vars and x ar-
rays.)

var desc **vars IN The variables currently in the LP relaxation.
double *x IN Values of the above variables.
int *new row num OUT The number of cuts generated.
waiting row ***new rows OUT The cuts and the corresponding rows.

2.2 User-written functions of the LP process 41

Return values:
ERROR Error. Interpreted as if no cuts were generated.
USER NO PP Cuts were generated but SYMPHONY must compare them to those

in the local pool.
USER AND PP Cuts were generated and SYMPHONY should not compare them to

those in the local pool.
DEFAULT No cuts are generated. (At least for now. We might add Gomory cuts

for default later.)

Post-processing:
SYMPHONY checks if any of the newly generated rows are already in the local pool.

Wrapper invoked from: receive cuts() before the cuts from the CG process are re-
ceived. Since the user will probably use this function to generate tableau-dependent cuts,
it is highly unlikely that any of the new cuts would already be in the pool. Therefore the
user will probably return USER AND PP to force SYMPHONY to skip post-processing.

Notes:

• Just like in user unpack cuts(), the user has to allocate space for the rows.
• Unless the name field of a cut is explicitly set to CUT SEND TO CP, SYM-

PHONY will assume that the cut is locally valid only and set that field to
CUT DO NOT SEND TO CP.

. user print stat on cuts added

int user_print_stat_on_cuts_added(void *user, int rownum, waiting_row **rows)

Description:
The user can print out some information (if he wishes to) on the cuts that will be added
to the LP formulation. The default is to print out the number of cuts added.

Arguments:
void *user IN Pointer to the user-defined LP data structure.

int rownum IN The number of cuts added.
waiting row **rows IN Array of waiting rows containing the cuts added.

Return values:
ERROR Revert to default.
USER AND PP User printed whatever he wanted.
DEFAULT Print out the number of cuts added.

Wrapper invoked from: add best waiting rows() after it has been decided how many
cuts to add and after the cuts have been selected from the local pool.

. user purge waiting rows

int user_purge_waiting_rows(void *user, int rownum,
waiting_row **rows, char *delete)

42 2 USER WRITTEN FUNCTIONS

Description:
The local pool is purged from time to time to control its size. In this function the user
has the power to decide which cuts to purge from this pool if desired. To mark the ith

waiting row (an element of the pre-pool) for removal she has to set delete[i] to be
TRUE (delete is allocated before the function is called and its elements are set to FALSE
by default).

Post-processing consists of actually deleting those entries from the waiting row
list and compressing the list. The default is to discard the least violated waiting rows
and keep no more than what can be added in the next iteration (this is determined by
the max cut num per iter parameter).

Arguments:
void *user IN Pointer to the user-defined LP data structure.

int rownum IN The number of waiting rows.
waiting row **rows IN The array of waiting rows.
char *delete OUT An array of indicators (each of them is one char)

showing which waiting rows are to be deleted.

Return values:
ERROR Purge every single waiting row.
USER AND PP The user removed the unwanted waiting rows and compressed the

remaining list.
USER NO PP The user marked in delete the rows to be deleted.
DEFAULT Described above.

Post-processing:
Delete the appropriate rows.

Wrapper invoked from: receive cuts() after cuts have been added.

2.3 User-written functions of the CG process 43

2.3 User-written functions of the CG process

Due to the relative simplicity of the cut generator, there are no wrapper functions implemented for
CG. Consequently, there are no default options and no post-processing.

. user receive cg data

int user_receive_cg_data (void **user)

Description:
The user has to receive here all problem-specific information that is known to the master
and will be needed for computation in the CG process later on. The same data must be
received here that was sent in the user send cg data() (see Section 2.1) function in the
master process. The user has to allocate space for all the data structures, including user
itself. Note that some or all of this may be done in the function user send cg data()
if the Tree Manager, LP, and CG are all compiled together. See that function for more
information.

Arguments:
void **user INOUT Pointer to the user-defined data structure.

Return values:
ERROR Error. CG exits.
USER NO PP The user received the data properly.

Invoked from: cg initialize() at process start.

. user receive lp solution cg

int user_receive_lp_solution_cg(void *user)

Description:
This function is invoked only if in the user send lp solution() function of the LP
process the user opted for packing the current LP solution himself. Here he must unpack
the very same data he packed there.

Arguments:
void *user IN Pointer to the user-defined data structure.

Invoked from: Whenever an LP solution is received.

Return values:
ERROR Error. This LP solution is not processed.
USER NO PP The user received the LP solution.

Note:
SYMPHONY automatically unpacks the level, index and iteration number correspond-
ing to the current LP solution within the current search tree node as well as the objective
value and upper bound.

. user free cg

44 2 USER WRITTEN FUNCTIONS

int user_free_cg(void **user)

Description:
The user has to free all the data structures within user, and also free user itself. The
user can use the built-in macro FREE that checks the existence of a pointer before freeing
it.

Arguments:
void **user INOUT Pointer to the user-defined data structure (should be NULL

on exit from this function).
Return values:

ERROR Ignored.
USER NO PP The user freed all data structures.

Invoked from: cg close() at process shutdown.

. user find cuts

int user_find_cuts(void *user, int varnum, int iter_num, int level,
int index, double objval, int *indices, double *values,
double ub, double lpetol, int *cutnum)

Description:
The user can generate cuts based on the current LP solution stored in soln. Cuts
found need to be sent back to the LP by calling the cg send cut(cut data *new cut)
function. The argument of this function is a pointer to the cut to be sent. See Section
2.2 for a description of this data structure. If the user wants the cut to be added to the
cut pool in case it proves to be effective in the LP, then new cut->name should be set
to CUT SEND TO CP. Otherwise, it should be set to CUT DO NOT SEND TO CP.

The only output of this function is the number of cuts generated and this value
is returned in the last argument.

Arguments:
void *user IN Pointer to the user-defined data structure.
int iter num IN The iteration number of the current LP solution.
int level IN The level in the tree on which the current LP solution was

generated.
index IN The index of the node in which LP solution was generated.
objval IN The objective function value of the current LP solution.
int varnum IN The number of nonzeros in the current LP solution.
indices IN The column indices of the nonzero variables in the current

LP solution.
values IN The values of the nonzero variables listed in indices.
double ub IN The current global upper bound.
double lpetol IN The current error tolerance in the LP.
int *cutnum OUT Pointer to the number of cuts generated and sent to the

LP.

2.3 User-written functions of the CG process 45

Return values:
ERROR Ignored.
USER NO PP The user function exited properly.

Invoked from: Whenever an LP solution is received.

. user check validity of cut

int user_check_validity_of_cut(void *user, cut_data *new_cut)

Description:
This function is provided as a debugging tool. Every cut that is to be sent to the LP
solver is first passed to this function where the user can independently verify that the
cut is valid by testing it against a known feasible solution (usually an optimal one). This
is useful for determining why a particular known feasible (optimal) solution was never
found. Usually, this is due to an invalid cut being added. See Section 1.14.4 for more
on this feature.

Arguments:
void *user IN Pointer to the user-defined data structure.
cut data *new cut IN Pointer to the cut that must be checked.

Return values:
ERROR Ignored.
USER NO PP The user is done checking the cut.

Invoked from: Whenever a cut is being sent to the LP.

46 2 USER WRITTEN FUNCTIONS

2.4 User-written functions of the CP process

Due to the relative simplicity of the cut pool, there are no wrapper functions implemented for CP.
Consequently, there are no default options and no post-processing.

. user receive cp data

int user_receive_cp_data(void **user)

Description:
The user has to receive here all problem-specific information sent from
user send cp data() (see Section 2.1) function in the master process. The user
has to allocate space for all the data structures, including user itself. Note that this
function is only called if the either the Tree Manager, LP, or CP are running as a
separate process (i.e. either COMPILE IN TM, COMPILE IN LP, or COMPILE IN CP are set
to FALSE in the make file). Otherwise, this is done in user send cp data(). See the
description of that function for more details.

Arguments:
void **user INOUT Pointer to the user-defined data structure.

Return values:
ERROR Error. Cut Pool exits.
USER NO PP The user received data successfully.

Invoked from: cp initialize at process start.

. user free cp

int user_free_cp(void **user)

Description:
The user has to free all the data structures within user, and also free user itself. The
user can use the built-in macro FREE that checks the existence of a pointer before freeing
it.

Arguments:
void **user INOUT Pointer to the user-defined data structure (should be NULL

on exit).

Return values:
ERROR Ignored.
USER NO PP The user freed all data structures.

Invoked from: cp close() at process shutdown.

. user receive lp solution cp

void user_receive_lp_solution_cp(void *user)

2.4 User-written functions of the CP process 47

Description:
This function is invoked only if in the user send lp solution() function of the LP
process the user opted for packing the current LP solution herself. Here she must receive
the very same data she sent there.

Arguments:
void *user IN Pointer to the user-defined data structure.

Return values:
ERROR Cuts are not checked for this LP solution.
USER NO PP The user function exited properly.

Invoked from: Whenever an LP solution is received.

Note:
SYMPHONY automatically unpacks the level, index and iteration number correspond-
ing to the current LP solution within the current search tree node.

. user prepare to check cuts

int user_prepare_to_check_cuts(void *user, int varnum, int *indices,
double *values)

Description:
This function is invoked after an LP solution is received but before any cuts are tested.
Here the user can build up data structures (e.g., a graph representation of the solution)
that can make the testing of cuts easier in the user check cuts function.

Arguments:
void *user IN Pointer to the user-defined data structure.
int varnum IN The number of nonzero/fractional variables described in

indices and values.
int *indices IN The user indices of the nonzero/fractional variables.
double *values IN The nonzero/fractional values.

Return values:
ERROR Cuts are not checked for this LP solution.
USER NO PP The user is prepared to check cuts.

Invoked from: Whenever an LP solution is received.

. user check cut

int user_check_cut(void *user, double lpetol, int varnum,
int *indices, double *values, cut_data *cut,
int *is_violated, double *quality)

Description:
The user has to determine whether a given cut is violated by the given LP solution (see
Section 2.2 for a description of the cut data data data structure). Also, the user can
assign a number to the cut called the quality. This number is used in deciding which
cuts to check and purge. See the section on Cut Pool Parameters for more information.

48 2 USER WRITTEN FUNCTIONS

Arguments:
void *user INOUT The user defined part of p.
double lpetol IN The ε tolerance in the LP process.
int varnum IN Same as the previous function.
int *indices IN Same as the previous function.
double *values IN Same as the previous function.
cut data *cut IN Pointer to the cut to be tested.
int *is violated OUT TRUE/FALSE based on whether the cut is violated

or not.
double *quality OUT a number representing the relative strength of the cut.

Return values:
ERROR Cut is not sent to the LP, regardless of the value of

*is violated.
USER NO PP The user function exited properly.

Invoked from: Whenever a cut needs to be checked.

Note:
The same note applies to number, indices and values as in the previous function.

. user finished checking cuts

int user_finished_checking_cuts(void *user)

Description:
When this function is invoked there are no more cuts to be checked, so the user can dis-
mantle data structures he created in user prepare to check cuts. Also, if he received
and stored the LP solution himself he can delete it now.

Arguments:
void *user IN Pointer to the user-defined data structure.

Return values:
ERROR Ignored.
USER NO PP The user function exited properly.

Invoked from: After all cuts have been checked.

2.5 User-written functions of the Draw Graph process 49

2.5 User-written functions of the Draw Graph process

Due to the relative simplicity of the cut pool, there are no wrapper functions implemented for DG.
Consequently, there are no default options and no post-processing.

. user dg process message

void user_dg_process_message(void *user, window *win, FILE *write_to)

Description:
The user has to process whatever user-defined messages are sent to the process. A write-
to pipe to the wish process is provided so that the user can directly issue commands
there.

Arguments:
void *user INOUT Pointer to the user-defined data structure.
window *win INOUT The window that received the message.
FILE *write to IN Pipe to the wish process.

Return values:
ERROR Error. Message ignored.
USER NO PP The user processed the message.

. user dg init window

void user_dg_init_window(void **user, window *win)

Description:
The user must perform whatever initialization is necessary for processing later com-
mands. This usually includes setting up the user’s data structure for receiving and
storing display data.

Arguments:
void **user INOUT Pointer to the user-defined data structure.
window *win INOUT

Return values:
ERROR Error. Ignored.
USER NO PP The user successfully performed initialization.

. user dg free window

void user_dg_free_window(void **user, window *win)

Description:
The user must free any data structures allocated.

50 2 USER WRITTEN FUNCTIONS

Arguments:
void **user INOUT Pointer to the user-defined data structure.
window *win INOUT

Return values:
ERROR Error. Ignored.
USER NO PP The user successfully freed the data structures.

. user interpret text

void user_interpret_text(void *user, int text_length,
char *text, int owner_tid)

Description:
The user can interpret text input from the window.

Arguments:
void *user INOUT Pointer to the user-defined data structure.
int text length IN The length of text.
char *text IN
int owner tid IN The tid of the process that initiated this window.

Return values:
ERROR Error. Ignored.
USER NO PP The user successfully interpreted the text.

51

3 Parameter file

The parameter file name is passed to SYMPHONY as the only command line argument to the
master process which is started by the user. Each line of the parameter file contains either a
comment or two words – a keyword and a value, separated by white space. If the first word
(sequence of non-white-space characters) on a line is not a keyword, then the line is considered a
comment line. Otherwise the parameter corresponding to the keyword is set to the listed value.
Usually the keyword is the same as the parameter name in the source code. Here we list the
keywords, the type of value that should be given with the keywords and the default value. A
parameter corresponding to keyword “K” in process “P” can also be set by using the keyword
“P K”.

To make this list shorter, occasionally a comma separated list of parameters is given if the
meanings of those parameters are strongly connected. For clarity, the constant name is sometimes
given instead of the numerical value for default settings and options. The corresponding value is
given in curly braces for convenience.

3.1 Global parameters

verbosity – integer (0). Sets the verbosity of all processes to the given value. In general, the
greater this number the more verbose each process is. Experiment to find out what this
means.

random seed – integer (17). A random seed.

granularity – double (1e-6). should be set to “the minimum difference between two distinct
objective function values” less the epsilon tolerance. E.g., if every variable is integral and the
objective coefficients are integral then for any feasible solution the objective value is integer,
so granularity could be correctly set to .99999.

upper bound – double (none) . The value of the best known upper bound.

3.2 Master Process parameters

M verbosity – integer (0).

M random seed – integer (17). A random seed just for the Master Process.

upper bound – double (no upper bound). This parameter is used if the user wants to artifi-
cially impose an upper bound (for instance if a solution of that value is already known).

upper bound estimate – double (no estimate). This parameter is used if the user wants to
provide an estimate of the optimal value which will help guide the search. This is used in
conjunction with the diving strategy BEST ESTIMATE.

tm exe, dg exe – strings (“tm”, “dg”). The name of the executable files of the TM
and DG processes. Note that the TM executable name may have extensions that
depend on the configuration of the modules, but the default is always set
to the file name produced by the make file. If you change the name of the
treemanager executable from the default, you must set this parameter to the
new name.

52 3 PARAMETER FILE

tm debug, dg debug – boolean (both FALSE). Whether these processes should be
started under a debugger or not (see 1.14.2 for more details on this).

tm machine – string (empty string). On which processor of the virtual machine the
TM should be run. Leaving this parameter as an empty string means arbitrary
selection.

do draw graph – boolean (FALSE). Whether to start up the DG process or not (see
Section 1.14.5 for an introduction to this).

do branch and cut – boolean (TRUE). Whether to run the branch and cut algorithm or
not. (Set this to FALSE to run the user’s heuristics only.)

3.3 Draw Graph parameters

source path – string (“.”). The directory where the DG tcl/tk scripts reside.

echo commands – boolean (FALSE). Whether to echo the tcl/tk commands on the screen or not.

canvas width, canvas height – integers (1000, 700). The default width and height of the
drawing canvas in pixels.

viewable width, viewable height – integers (600, 400). The default viewable width and
height of the drawing canvas in pixels.

interactive mode – integer (TRUE). Whether it is allowable to change things interactively on
the canvas or not.

node radius – integer (8). The default radius of a displayed graph node.

disp nodelabels, disp nodeweights, disp edgeweights – integers (all TRUE). Whether to
display node labels, node weights, and edge weights or not.

nodelabel font, nodeweight font, edgeweight font – strings (all “-adobe-helvetica-...”).
The default character font for displaying node labels, node weights and edge weights.

node dash, edge dash – strings (both empty string). The dash pattern of the circles drawn
around dashed nodes and that of dashed edges.

3.4 Tree Manager parameters

TM verbosity – integer (0). The verbosity of the TM process.

lp exe, cg exe, cp exe – strings (“lp”, “cg”, “cp”). The name of the LP, CG, and CP pro-
cess binaries. Note: when running in parallel using PVM, these executables (or links to
them) must reside in the PVM ROOT/bin/PVM ARCH/ directory. Also, be sure to note that the
executable names may have extensions that depend on the configuration of the modules, but
the defaults will always be set to the name that the make file produce.

lp debug, cg debug, cp debug – boolean (all FALSE). Whether the processes should be
started under a debugger or not.

3.4 Tree Manager parameters 53

max active nodes – integer (1). The maximum number of active search tree nodes—equal to
the number of LP and CG tandems to be started up.

max cp num – integer (0). The maximum number of cut pools to be used.

lp mach num, cg mach num, cp mach num – integers (all 0). The number of processors in the
virtual machine to run LP (CG, CP) processes. If this value is 0 then the processes will be
assigned to processors in round-robin order. Otherwise the next xx mach num lines describe
the processors where the LP (CG, CP) processes must run. The keyword – value pairs
on these lines must be TM xx machine and the name or IP address of a processor (the
processor names need not be distinct). In this case the actual processes are assigned in a
round robin fashion to the processors on this list.

This feature is useful if a specific software package is needed for some process, but
that software is not licensed for every node of the virtual machine or if a certain process
must run on a certain type of machine due to resource requirements.

use cg – boolean (FALSE). Whether to use a cut generator or not.

TM random seed – integer (17). The random seed used in the TM.

unconditional dive frac – double (0.1). The fraction of the nodes on which SYMPHONY
randomly dives unconditionally into one of the children.

diving strategy – integer (BEST ESTIMATE{0}). The strategy employed when deciding
whether to dive or not.

The BEST ESTIMATE{0} strategy continues to dive until the lower bound in the child
to be dived into exceeds the parameter upper bound estimate, which is given by the
user.

The COMP BEST K{1} strategy computes the average lower bound on the best
diving k search tree nodes and decides to dive if the lower bound of the
child to be dived into does not exceed this average by more than the
fraction diving threshold.

The COMP BEST K GAP{2} strategy takes the size of the gap into account when
deciding whether to dive. After the average lower bound of the best diving k
nodes is computed, the gap between this average lower bound and the current
upper bound is computed. Diving only occurs if the difference between the
computed average lower bound and the lower bound of the child to be dived
into is at most the fraction diving threshold of the gap.

Note that fractional diving settings can override these strategies. See
below.

diving k, diving threshold – integer, double (1, 0.0). See above.

54 3 PARAMETER FILE

fractional diving ratio, fractional diving num – integer (0.02, 0). Diving occurs
automatically if the number of fractional variables in the child to be dived
into is less than fractional diving num or the fraction of total variables
that are fractional is less than fractional diving ratio. This overrides the
other diving rules. Note that in order for this option to work, the code
must be compiled with FRACTIONAL BRANCHING defined. This is the default.
See the Makefile for more details.

node selection rule – integer (LOWEST LP FIRST{0}). The rule for selecting the
next search tree node to be processed. This rule selects the one with
lowest lower bound. Other possible values are: HIGHEST LP FIRST{1},
BREADTH FIRST SEARCH{2} and DEPTH FIRST SEARCH{3}.

load balance level -- integer (-1).] A naive attempt at load balancing on
problems where significant time is spent in the root node, contributing
to a lack of parallel speed-up. Only a prescribed number of iterations
(load balance iter) are performed in the root node (and in each subsequent
node on a level less than or equal to load balance level) before branching is
forced in order to provide additional subproblems for the idle processors to
work on. This doesn’t work well in general.

load balance iter -- integer (-1).] Works in tandem with the load balance level
to attempt some simple load balancing. See the above description.

keep description of pruned – integer (DISCARD{0}). Whether to keep the description
of pruned search tree nodes or not. The reasons to do this are (1) if the
user wants to write out a proof of optimality using the logging function,
(2) for debugging, or (3) to get a visual picture of the tree using the
software VBCTOOL. Otherwise, keeping the pruned nodes around just takes up
memory.

There are three options if it is desired to keep some description of
the pruned nodes around. First, their full description can be written
out to disk and freed from memory (KEEP ON DISK FULL{1}). There is not
really too much you can do with this kind of file, but theoretically,
it contains a full record of the solution process and could be used to
provide a certificate of optimality (if we were using exact arithmetic)
using an independent verifier. In this case, the line following
keep description of pruned should be a line containing the keyword
pruned node file name with its corresponding value being the name of a file
to which a description of the pruned nodes can be written. The file does
not need to exist and will be over-written if it does exist.

If you have the software VBCTOOL (see Section 1.15), then you can
alternatively just write out the information VBCTOOL needs to display the
tree (KEEP ON DISK VBC TOOL{2}).
Finally, the user can set the value to of this parameter to
KEEP IN MEMORY{2}, in which case all pruned nodes will be kept in memory
and written out to the regular log file if that option is chosen. This

3.4 Tree Manager parameters 55

is really only useful for debugging. Otherwise, pruned nodes should be
flushed.

logging – integer (NO LOGGING{0}). Whether or not to write out the state of the
search tree and all other necessary data to disk periodically in order
to allow a warm start in the case of a system crash or to allow periodic
viewing with VBCTOOL.

If the value of this parameter is set to FULL LOGGING{1}, then all
information needed to warm start the calculation will written out
periodically. The next two lines of the parameter file following should
contain the keywords tree log file name and cut log file name along with
corresponding file names as values. These will be the files used to record
the search tree and related data and the list of cuts needed to reconstruct
the tree.

If the value of the parameter is set to VBC TOOL{2}, then only the
information VBCTOOL needs to display the tree will be logged. This is not
really a very useful option since a ‘‘live’’ picture of the tree can be
obtained using the vbc emulation parameter described below (see Section 1.15
for more on this).

logging interval – integer (1800). Interval (in seconds) between writing out the
above log files.

warm start – boolean (0). Used to allow the tree manager to make a warm start by
reading in previously written log files. If this option is set, then the
two line following must start with the keywords warm start tree file name
and warm start cut file name and include the appropriate file names as the
corresponding values.

vbc emulation -- integer (NO VBC EMULATION{0}).] Determines whether or not to
employ the VBCTOOL emulation mode. If one of these modes is chosen, then
the tree will be displayed in ‘‘real time’’ using the VBCTOOL Software.
When using the option VBC EMULATION LIVE{2} and piping the output directly
to VBCTOOL, the tree will be displayed as it is constructed, with color
coding indicating the status of each node. With VBC EMULATION FILE{1}
selected, a log file will be produced which can later be read into VBCTOOL
to produce an emulation of the solution process at any desired speed. If
VBC EMULATION FILE is selected, the the following line should contain the
keyword vbc emulation file name along with the corresponding file name for a
value.

price in root – boolean (FALSE). Whether to price out variables in the root node
before the second phase starts (called repricing the root).

trim search tree – boolean (FALSE). Whether to trim the search tree before the
second phase starts or not. Useful only if there are two phases. (It is
very useful then.)

56 3 PARAMETER FILE

colgen in first phase, colgen in second phase – integers (both 4). These parameters
determine if and when to do column generation in the first and second phase
of the algorithm. The value of each parameter is obtained by setting the
last four bits. The last two bits refer to what to do when attempting to
prune a node. If neither of the last two bits are set, then we don’t do
anything---we just prune it. If only the last bit is set, then we simply
save the node for the second phase without doing any column generation
(yet). If only the second to last bit is set, then we do column generation
immediately and resolve if any new columns are found. The next two higher
bits determine whether or not to do column generation before branching. If
only the third lowest bit is set, then no column generation occurs before
branching. If only the fourth lowest bit is set, then column generation is
attempted before branching. The default is not to generate columns before
branching or fathoming, which corresponds to only the third lowest bit being
set, resulting in a default value of 4.

time limit – integer (0). Number of seconds of wall-clock time allowed for
solution. When this time limit is reached, the solution process will stop
and the best solution found to that point, along with other relevant data,
will be output. A time limit of zero means there is no limit.

3.5 LP parameters

LP verbosity – integer (0). Verbosity level of the LP process.

set obj upper lim – boolean (FALSE). Whether to stop solving the LP relaxation when it’s op-
timal value is provably higher than the global upper bound. There are some advantages to
continuing the solution process anyway. For instance, this results in the highest possible lower
bound. On the other hand, if the matrix is full, this node will be pruned anyway and the rest
of the computation is pointless. This option should be set at FALSE for column generation
since the LP dual values may not be reliable otherwise.

try to recover from error – boolean (TRUE). Indicates what should be done in case the LP
solver is unable to solve a particular LP relaxation because of numerical problems. It is
possible to recover from this situation but further results may be suspect. On the other hand,
the entire solution process can be abandoned.

problem type – integer (ZERO ONE PROBLEM{0}). The type of problem being solved. Other val-
ues are INTEGER PROBLEM{1} or MIXED INTEGER PROBLEM{2}. (Caution: The mixed-integer
option is not well tested.)

cut pool check frequency – integer (10). The number of iterations between sending LP solu-
tions to the cut pool to find violated cuts. It is not advisable to check the cut pool too
frequently as the cut pool process can get bogged down and the LP solution generally do not
change that drastically from one iteration to the next anyway.

not fixed storage size – integer (2048). The not fixed list is a partial list of indices of vari-
ables not in the matrix that have not been fixed by reduced cost. Keeping this list allows
SYMPHONY to avoid repricing variables (an expensive operation) that are not in the matrix

3.5 LP parameters 57

because they have already been permanently fixed. When this array reaches its maximum
size, no more variable indices can be stored. It is therefore advisable to keep the maximum
size of this array as large as possible, given memory limitations.

max non dual feas to add min, max non dual feas to add max, max non dual feas to add frac –
integer, integer, double (20, 200, .05). These three parameters determine the maximum
number of non-dual-feasible columns that can be added in any one iteration after pricing.
This maximum is set to the indicated fraction of the current number of active columns unless
this numbers exceeds the given maximum or is less than the given minimum, in which case,
it is set to the max or min, respectively.

max not fixable to add min, max not fixable to add max, max not fixable to add frac –
integer, integer, double (100, 500, .1). As above, these three parameters determine the
maximum number of new columns to be added to the problem because they cannot be priced
out. These variables are only added when trying to restore infeasibility and usually, this
does not require many variables anyway.

mat col compress num, mat col compress ratio – integer, double (50, .05). Determines
when the matrix should be physically compressed. This only happens when the number of
columns is high enough to make it “worthwhile.” The matrix is physically compressed when
the number of deleted columns exceeds either an absolute number and a specified fraction of
the current number of active columns.

mat row compress num, mat row compress ratio – integer, double (20, .05). Same as above
except for rows.

tailoff gap backsteps, tailoff gap frac – integer, double (2, .99). Determines when tai-
loff is detected in the LP process. Tailoff is reported if the average ratio of the current gap to
the previous iteration’s gap over the last tailoff gap backsteps iterations wasn’t at least
tailoff gap frac.

tailoff obj backsteps, tailoff obj frac – integer, double (2, .99). Same as above, only
the ratio is taken with respect to the change in objective function values instead of the
change in the gap.

ineff cnt to delete – integer (0). Determines after how many iterations of being deemed in-
effective a constraint is removed from the current relaxation.

eff cnt before cutpool – integer (3). Determines after how many iterations of being deemed
effective each cut will be sent to the global pool.

ineffective constraints – integer (BASIC SLACKS ARE INEFFECTIVE{2}). Determines under
what condition a constraint is deemed ineffective in the current relaxation. Other possible
values are NO CONSTRAINT IS INEFFECTIVE{0}, NONZERO SLACKS ARE INEFFECTIVE{1}, and
ZERO DUAL VALUES ARE INEFFECTIVE{3}.

base constraints always effective – boolean (TRUE). Determines whether the base con-
straints can ever be removed from the relaxation. In some case, removing the base constraints
from the problem can be disastrous depending on the assumptions made by the cut generator.

58 3 PARAMETER FILE

branch on cuts – boolean (FALSE). This informs the framework whether the user plans on
branching on cuts or not. If so, there is additional bookkeeping to be done, such as main-
taining a pool of slack cuts to be used for branching. Therefore, the user should not set this
flag unless he actually plans on using this feature.

discard slack cuts – integer (DISCARD SLACKS BEFORE NEW ITERATION{0}).
Determines when the pool of slack cuts is discarded. The other option is
DISCARD SLACKS WHEN STARTING NEW NODE{1}.

first lp first cut time out, first lp all cuts time out, later lp first cut time out,
later lp all cuts time out – double (0, 0, 5, 1). The next group of parameters determines
when the LP should give up waiting for cuts from the cut generator and start to solve the
relaxation in its current form or possibly branch if necessary. There are two factors that
contribute to determining this timeout. First is whether this is the first LP in the search
node of whether it is a later LP. Second is whether any cuts have been added already in
this iteration. The four timeout parameters correspond to the four possible combinations of
these two variables.

no cut timeout – This keyword does not have an associated value. If this keyword appears on a
line by itself or with a value, this tells the framework not to time out while waiting for cuts.
This is useful for debugging since it enables runs with a single LP process to be duplicated.

all cut timeout – double (no default). This keyword tells the framework to set all of the above
timeout parameters to the value indicated.

max cut num per iter – integer (20). The maximum number of cuts that can be added to the
LP in an iteration. The remaining cuts stay in the local pool to be added in subsequent
iterations, if they are strong enough.

do reduced cost fixing – boolean (FALSE). Whether or not to attempt to fix variables by re-
duced cost. This option is highly recommended

gap as ub frac, gap as last gap frac – double (.1, .7). Determines when reduced cost fixing
should be attempted. It is only done when the gap is within the fraction gap as ub frac of
the upper bound or when the gap has decreased by the fraction gap as last gap frac since
the last time variables were fixed.

do logical fixing – boolean (FALSE). Determines whether the user’s logical fixing routine
should be used.

fixed to ub before logical fixing, fixed to ub frac before logical fixing – integer,
double (1, .01). Determines when logical fixing should be attempted. It will be called only
when a certain absolute number and a certain number of variables have been fixed to their
upper bounds by reduced cost. This is because it is typically only after fixing variables to
their upper bound that other variables can be logically fixed.

max presolve iter – integer (10). Number of simplex iterations to be performed in the pre-
solve for strong branching.

3.5 LP parameters 59

strong branching cand num max, strong branching cand num min, strong branching red ratio
– integer (25, 5, 1). These three parameters together determine the num-
ber of strong branching candidates to be used by default. In the root node,
strong branching cand num max candidates are used. On each succeeding level, this number
is reduced by the number strong branching red ratio multiplied by the square of the level.
This continues until the number of candidates is reduced to strong branching cand num min
and then that number of candidates is used in all lower levels of the tree.

is feasible default – integer (TEST INTEGRALITY{1}). Determines the default test to be used
to determine feasibility. This parameter is provided so that the user can change the default
behavior without recompiling. The only other option is TEST ZERO ONE{0}.

send feasible solution default – integer (SEND NONZEROS{0}). Determines the form in
which to send the feasible solution. This parameter is provided so that the user can change
the default behavior without recompiling. This is currently the only option.

send lp solution default – integer (SEND NONZEROS{0}). Determines the default form in
which to send the LP solution to the cut generator and cut pool. This parameter is provided
so that the user can change the default behavior without recompiling. The other option is
SEND FRACTIONS{1}.

display solution default – integer (DISP NOTHING{0}). Determines how to display the
current LP solution if desired. See the description of user display solution() for other
possible values. This parameter is provided so that the user can change the
default behavior without recompiling.

shall we branch default – integer (USER BRANCH IF MUST{2}). Determines the default
branching behavior. Other values are USER DO NOT BRANCH{0} (not recommended
as a default), USER DO BRANCH{1} (also not recommended as a default), and
USER BRANCH IF TAILOFF{3}. This parameter is provided so that the user can
change the default behavior without recompiling.

select candidates default – integer (USER CLOSE TO HALF AND EXPENSIVE{11}).
Determines the default rule for selecting strong branching candidates.
Other values are USER CLOSE TO HALF{10} and USER CLOSE TO ONE AND CHEAP{12}.
This parameter is provided so that the user can change the default behavior
without recompiling.

compare candidates default – integer (LOWEST LOW OBJ{1}). Determines the
default rule for comparing candidates. See the description of
user compare candidates() for other values. This parameter is provided so
that the user can change the default behavior without recompiling.

select child default – integer (PREFER LOWER OBJ VALUE{0}). Determines the default
rule for selecting the child to be processed next. For other possible
values, see the description user select child(). This parameter is provided
so that the user can change the default behavior without recompiling.

60 3 PARAMETER FILE

3.6 Cut Generator Parameters

CG verbosity – integer (0). Verbosity level for the cut generator process.

3.7 Cut Pool Parameters

CP verbosity – integer (0). Verbosity of the cut pool process.

cp logging – boolean (0). Determines whether the logging option is enabled. In this case, the
entire contents of the cut pool are written out periodically to disk (at the same interval as
the tree manager log files are written). If this option is set, then the line following must start
with the keyword cp log file name and include the appropriate file name as the value.

cp warm start – boolean (0). Used to allow the cut pool to make a warm start by reading in a
previously written log file. If this option is set, then the line following must start with the
keyword cp warm start file name and include the appropriate file name as the value.

block size – integer (5000). Indicates the size of the blocks to allocate when more space is
needed in the cut list.

max size – integer (2000000). Indicates the maximum size of the cut pool in bytes. This is the
total memory taken up by the cut list, including all data structures and the array of pointers
itself.

max number of cuts – integer (10000). Indicates the maximum number of cuts allowed to be
stored. When this max is reached, cuts are forceably purged, starting with duplicates and
then those indicated by the parameter delete which (see below), until the list is below the
allowable size.

min to delete – integer (1000). Indicates the number of cuts required to be deleted when the
pool reaches it’s maximum size.

touches until deletion – integer (10). When using the number of touches a cut has as a mea-
sure of its quality, this parameter indicates the number of touches a cut can have before being
deleted from the pool. The number of touches is the number of times in a row that a cut
has been checked without being found to be violated. It is a measure of a cut’s relevance or
effectiveness.

delete which – integer (DELETE BY TOUCHES{2}). Indicates which cuts to delete when purging
the pool. DELETE BY TOUCHES indicates that cuts whose number of touches is above the
threshold (see touches until deletion above) should be purged if the pool gets too large.
DELETE BY QUALITY{1} indicates that a user-defined measure of quality should be used (see
the function user check cuts in Section2.4).

check which – integer (CHECK ALL CUTS{0}). Indicates which cuts should be checked for vi-
olation. The choices are to check all cuts (CHECK ALL CUTS{0}); only those that have
number of touches below the threshold (CHECK TOUCHES{2}); only those that were gen-
erated at a level higher in the tree than the current one (CHECK LEVEL{1}); or both
(CHECK LEVEL AND TOUCHES{3}). Note that with CHECK ALL CUTS set, SYMPHONY will
still only check the first cuts to check cuts in the list ordered by quality (see the
function user check cut).

3.7 Cut Pool Parameters 61

cuts to check – integer (1000). Indicates how many cuts in the pool to actually
check. The list is ordered by quality and the first cuts to check cuts are
checked for violation.

