eIP3N pue 131205 UolBWIOJU|
uoissiwwo) ueadoiny

AsTeRICS

AsTeRICS

Developer Manual

Version History

Version |Date Changed Author(s)
0.1 August 19, First draft UcYy
2010
0.2 December 20, | Added ACS and Thrift guides Kl-I
2010
0.3 December 26, | Added setup and build environment FHTW
2010 descriptions, changed document structure,
updated component development guide,
added Native ASAPI and JNI development
descriptions
0.4 March 16, Added one click build script and information |FHTW
2011 about ignoring COM ports in
CIMPortManager
0.5 July 29, 2011 | Added coding guidelines section FHTW
0.6 September Added local storage information FHTW
19, 2011
0.8 September Added header template and javadoc FHTW
28, 2011 example
0.9 October 27, |Integrated Plugin Tool descriptions and FHTW
2011 CIM Protocol Description, reorganized
structure
1.2 January 13, |Reworked structure, added Introduction, FHTW
2012 added PluginCreation Tools
15 June 20", Some minor revisions based upon user FHTW
2012 feedback, additions of features for the final
AsTeRICS prototype
1.5a October 23, |Update of thrift, adding schema compiler Kl-I
2012 instructions for C#
2.0 Nov 13, 2012 |Added updates for final system prototype; |FHTW
updated CIM protocol information
2.2 Jul 10, 2013 |Updates for Release Version 2.2, added FHTW
debugging instructions, fast raw port
controller, updated file/directory structure
2.5 Oct 27, 2014 |Updates for Release Version 2.5, added FHTW
websocket info, added usage info for
threadpool , added Java 8 install infos,
added multithreading info for plugin
development
2.6 March 27, Updates for Release Version 2.6, added FHTW
2015 description of single threaded model

execution concept

Page 2

AsTeRICS Developer Manual

Table of Contents

AV =1 o 1] (o] USSP 2
N 1 1 0 T [Tod 1 0] o PSS 7
1.1 Aboutthe ASTERICS PrOJECE ...cuvviiii i e e e e ea s 7
1.2 ADOUL thiS dOCUMENL... ..o 7
1.3 The AsTeRICS Runtime ENVIrONMENtuuiiiii i 8
1.3.1 ARE COMPONENTSiiiiiiiiiiiiiei e ee et e st e et s e e et s e e e et e e e e et s e e eatn s eeeasaaaaaees 9

R S A o To 11) A @ 15] TSRS 9

2 Getting Started with ASTERICS DeVelopmMENtcoovviiiiiii i 10
2.1 The ASTeRICS Source Code REPOSITOIY........ccuviiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee e 10
21.1 REPOSILONY SITUCIUIEceeiiiie e e e e e e e 10

2.2 Setting up the Eclipse IDE for ARE developmentccevvvvviviiiiiiiiiiiiiiiiiiiiiiieeee, 11
2.3 Setting up build environment for IDK 8oouiiiiiiiiiiiice e 13
2.4 Building ARE Middleware, Services and COMPONENTS.........ccevvvviviiiiiiiiiiiiieiiiiieeeeen. 15
2 A © 1 T I O o S =][L 15
242 Understanding the component build-SCriptS...........ooooveiiiiii, 16

2.5 Starting the ARE middleware and component deployments.............ccccceeeeeeeeeeeeeenn, 17
2.5.1 Structure of the runtime folder “./bIN/ARE”:ccccoiiiiiiiiiiiiiiiiiaeees 17
2.5.2 Structure of the loader.ini file........coooe e 17
2.5.3 ASIERICS SEIVICES ...uuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiib bbb sassssbasseesnssnnnsnnnsnnnes 18
254 RUNNING @ AEPIOYMENTuiiiiiiiiiiiiiiiiii bbb eeennee 18
2.5.5 Activation of ARE webservice (REST, websocket) democccceeeeeeeninnnn, 19
2.5.6 Define autostart model per command liNeccuuuiiiiimiiiiiiiiiiiiiiiiiiens 19
2.5.7 Change model execution thread pooling and submit timeouts......................... 19

2.6 Debugging the ARE.........cooiiiiiiiiiiiiiiiiiiieieeeeeeeeee ettt 21

3 A Quick Guide to ASTeRICS Plugin Development..........c.ccooieeeeiiiiiiiiiiiieeeeeeeeeeieee e 23
3.1 The Plugin Creation WIZard..............ouueiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeee ettt 24
3.1.1 Created files and fOIUEISuuuuuuiiiiiiiiiiii e eeeennnnes 25

3.2 Plugin Activation in ACS and ARE..........cooiiiiiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeee e 28
3.2.1 Component-Collection Management inthe ACSccccoiieiiiiiiiiiiiie e, 29

4 Writing ASTERICS PIUGIN COUEcooiiiiiiiiiiiiiiiiiie e 30
4.1 ARE COUING GUIAEINES.uuiiiiiiiiiiiiiiiiiiiiiiiiiiiietbbebe bbb eebbebaeseeeenesennnee 30
41.1 Port Naming CONVENTIONScooiiiiiiiiiae e e e e e e e 30
4.1.2 Property Naming CONVENLIONS.........coooviiiiiiiieeeeeeeee e 30
4.1.3 Bundle Descriptor Naming CONVENtIONScccoeiiiiiiiiiieeeeieeeiiiiaa e e e 31
4.1.4 AsTeRICS Source File headerouuvviiiiiiiiiice e 31
415 JavaDoc compatible COMMENTS.........oouiiiiiii e 31

4.2 Implementing ASTERICS COMPONENTS.......uuuiuiiiiiiiiiiiiiiiiiiiiiitieeeaeeeeeeeeeneneeeeeeneneeaeee 32
421 The BUndle DeSCIPIOIS.....cuuuuiiii et a e 32

AsTeRICS Developer Manual

4.2.2 The Deployment DESCIIPLOrcii i i it e e e e 33
4.2.3 The ManifeSt fileo 34
4.2.4 Structure of OSGi bundles containing ARE components..............ccoeeeeeeeeeenn. 34
425 ComMPONENtIfECYIE......ccoiieeece e 35
4.2.6 Step-by-Step implementation: Averager ProCEeSSONcceveeeeeeeeeeeeeeeeeeeeeeeenn 36
o N I 11 1= To [T T S 37
4.2.8 Writing plugins USING SWING......cccoiiieiieeeeeeeee e 37
4.2.9 Long lasting method CallS.............ooouiiiiii e 38
4.2.10 SeNSOr CAllDACKSciieeeieeee e 38
4.2.11 Contributing a developed plugin (git pull requESE)cceveeeriiiiiiiiiiee e, 38

5 Services and Utils: Infrastructure for plugins. ... 39
5.1 Communicating with peripherals: CIM Communication Serviceccceeeeeeeereenns 39
LS 700 0t R O 11| = o T (@0 11 {0 = SRR 40
51.2 L0811V o] 11V =T =T T PPN 40
5.1.3 CIMEVENTHANAIETeeeiie ettt e e e e e et e e e e e e e eeennes 41
5.1.4 CIMPIOtOCOIPACKEL ...ttt e e e et e e e e e aeeanes 42
5.1.5 Serial ports not adhering to CIM Protocol (Raw POrtS)cccvvviieiiieeeeeiinnn, 43
5.2 Communication through a socket interface: Remote Connection Manager............. 43
5.2.1 IRemOteCONNECHONLISIENENuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiee e snenaennennne 43
5.2.2 RemoteConNeCtioNMAaNAGETcooii i 44
5.3 LOCAl StOrage SEIVICEcuviuiiiiii et e ettt e e e e e e et e e e e e eaaanes 45
5.4 Keyboard/Mouse Native HOOK SEIVICEScovvviiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee 45
5.5 COMPULET VISION SEIVICES ...ttt s e ettt s e e e e e e e e eaat e s e e e e e eaeanes 45
5.6 Data Conversion ULIITIEScooeeeiiieiiicie ettt e e e e e et e e e e e eeeenes 46
LT A o To o 12T ISPt 46
5.7.1 StAtUS CRECKING ... ettt 47
5.8 The ARE Thread POOIcoooiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee et 48
5.9 The ARE GUI SUPPOIT ...coviiiiiiiiiiiiiiiiiieie ettt 49
5.10 ARE core events Notification SEIVICES.ccuiviviiiiiiii e e e e eaaees 51
5.11 DYNAMIC PrOPEITIEScceiiiiiiii e et e ettt e e e e e e e ettt e s e e e e e e e eaatta e e e eaeeeeanne 51
5.12 Data SYNCAIONIZALIONcoovviiiiiiiiiiiiiiiiiiieee ettt 52
5.13 Interfacing Native C/C++ Code Via INI..........oooviiiiiiiiiiiiciee e 54
5.13.1 Specifying native libraries in the Manifest..............cccccciiiiiiiiiiiiiiiis 54
5.13.2 Java-Implementation: INI-Bridgecoooeeiumiiiiieeii e 54
5.13.3 C-Implementation: Callbacks and JNI COde.............oouviiiiiieieiiiiiiiiiee e, 56
5.14 External Helper Applications and Tools for PIuginscccccooiiiiiiiiiiiiiiiieeeeeees 58
6 Communication Interface Modules and ProtocColccoeviiiiiiiiiiiiiiiee e 59
6.1 Communication Mechanism and Packet Formatcccccoiiiiiiiiiiiiiii e 60
6.2 RequESt/ REPIY - COUCoiviiiiiiiiiiiiiiiieieeeeeeeeee ettt 61

AsTeRICS

Developer Manual

6.2.1 Request/Reply Code iNLSB......c.oooviiiii e 61
6.2.2 Mode / Status Code iN MSBooooiiiiiiiie e 62

6.3 Feature Lists and CIM-IDs of all ASTERICS CIMScooiiiiiiiiiiieeeeieeeeiiieee e 62
B.3.1 HID-CIM ..ttt 62
6.3.2 PT-1 GPIO — CIM (Legacy GPIO)uuuuuuumirininniiininnnnnninnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnes 63
6.3.3 Phone-CIM (Windows Phone OS)coeuiiiiiiiiieeiieeeiii et 64
6.3.4 PT-1 ADC — CIM (Legacy ADC/DAQC).......uuuuuummmuumnrnnnnnnnnnnnnnnnnnnnnnnnnnnnsnnnnnnnnnnnes 65
6.3.5 BMAL80 AcCCEIErOmMEeter SENSOKcceeeieeeeeeeee e 66
LR N G T = I R O = Tl 1 {1 67
B.3.7 EOG-CIM ..ttt nnnes 68
6.3.8 SenSOrbOard — CIMcii it e e e e e e e e e e e eaane 69
6.3.9 ArdUINO — ClIM ...t nnnnes 70
LT 0 O = 2 o £ =T 1 | 1Y 71
6.3.11 PT2 GPIl — CIM (DigitallN).........uuuuuuueeunuuuiininiiiiinieiiiiienennnnnnnennnneeneeneenesneneennenees 73
6.3.12 PT2 GPO — CIM (DigitalOUL)uuuuuueunniiiiiiiiiniininniieesnnnnnnsennnnssnnnnnnnnnnnnnnnns 73
6.3.13 PT2 ADC — CIM (ANGIOGIN).....uuuuuuuuniuninniininiiiiieeiineaiaesnnneenneneeessaereeenennnnnennnnnne 74
6.3.14 PT2 ZIGBEE — CIM....uuiiiiiiiiiiiiiiiiiiiii bbb snnsnnnsnssnnnnes 74

6.4 Demo Implementations of the CIM ProtoCOL.............coevvviiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeee 75

7 Into the Deep: Concepts of the ARE middleware..........cccccoeveeeiiiiiiiiiiiin e, 76
7.1.1 Runtime Model CONCEPLScooeeeeeeeeeeeeeeee e 76
7.1.1.1 LOT0] 0] oT0] 0[] o1 S 77
7.1.1.2 P OIS et ae 78
7.1.13 ChaNNEIS....cciiiiiiiiieeee 80
7.1.1.4 Component Architecture of AREoooovviiiiiiiiiiiii 80

8 ARE threading concept for model eXECULION...........ccoiviiiiiiii i e 83
8.1 Asynchronous MethOd EXECULEceeiiiiiiiiiiiiiiiiiiieiiiee ettt 84
8.2 Synchronous method execAndWaitOnModelExecutorLifecycleThread................... 84
8.3 Pro and Contra of the single threaded approachccccccevvvvviiiiiiiiiiiiiiiiiiiiiie, 84

9 ASAPI Clients and SerialiSatiON...........ccuviieeeiiiiaie et e e e e e e e e 86
9.1 ASAPI and ARE INtErCONNECLIONcevviiiiiiiiiiiiiiiiiieieeeeeeeeeee et 87
9.1.1 ASAPI and ARE in the configuration ProCeSSuuuuuemummmemmimniniiiiiiinnnnnnes 88

9.2 Available ASAPI COMMEANUS.......couiiiiiiiiiiiiiiiiiiiieeieeeee ettt e e 91

LS IR T S T = 1 1S o) o PSSR 94
9.3.1 The Thrift definition file ... e 94
9.3.2 The TRrift COMPIIETuuiiiiiiiii e eeeenee 95
9.3.3 The Thrift LIDIary ... 95
9.3.4 SIMPIE JAVA ClIENT ...ttt nnnee 95

10 Native ASAPT LIDFAIES ..ot e e e e et e e e e e e e eeeeees 96
10.1 PRONE LIDIAIY ..o 96

AsTeRICS Developer Manual

10.1.1 Phone Library interface:ccouiiiiiiiiie e 96
10.1.2 EXAMPIE OF USE ..ccoiiiiiiiiiiiieeieeeeeeeeeeee e 98
10.2 GSM MOAEM LIBIary ..o 99
10.2.1 GSM Modem Library iNterfacCe:.........cceeiiieiiiiiicice e 99
10.2.2 EXAMPIE OF USE .coeviiiiiiiiiiiieeeeeeeeeeeeeeee e 101
10.3 3D-MOUSE LiDIary......uuiii i e e 102
10.3.1 3D-Mouse Library interfacecouuvviiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee e 102
10.3.2 EXAMPIE Of USE wuunnii et 102
10.4 Keyboard LIDrary ... 103
10.4.1 Keyboard Library interfaceoouuuiiiiiiie i 103
10.4.2 EXAMPIE OF USE ..coeviiiiiiiiiiiiieeeeeeeeeeeeeeee e 105

11 Appendix A: OSGI-related INfOrmMationccoovveiiiiiiiii e 106
11.1 The OSGi framework and it’'S 1aYersccooeeeeiiieeeee 106
11.2 Modularization iN OSGi ..ccceeeeee e 107
11.3 USINg OSGiin ASTERICSo 107
12 Appendix B: Building the ACSo 109
12.1 Setup of the Development eNVIFONMENT.........cccooeiiiiiiiiiiiii e 109
12.2 Update Process of the SChemata..........ccoooeeeeeeeieieeeeee e 110
13 Appendix C: Guidelines for Building Vision-PlUginSccccciiiiiiiieeecceeiiiiceee e, 111
13,1 OPENCV e 111
13.2 BOOSE LIDIary ... 112
13,3 VIO NPUL ... 114
13.4 Building facetraCkerLK ..o 117
13.5 FaceTracker LiDrary ... 118
14 ReferenCes and RESOUICES.ccooi i e 119

Page 6

AsTeRICS Developer Manual

1 Introduction

1.1 About the AsTeRICS project

AsTeRICS - the Assistive Technology Rapid Integration and Construction Set — is an open
framework for the development of Assistive Technologies, with the main focus on novel,
affordable and flexible AT-solutions. A plethora of sensor- processing- and actuator plugins
provides a powerful, AT-centred infrastructure which can be used to control home
automation equipment, entertainment and ICT-devices or use ambient assistive services by
means of desired sensor combinations — without programming a single line of code.
Interested 3" parties like research institutions or companies in the field of AT can use the
framework to integrate their products into the existing AT-landscape.

The project has been initiated in 2010 as a Special
Targeted Research Project in the Seventh Framework
Programme of the European Commission in the ICT
work programme. For further information, please visit
the project homepage http://www.asterics.org

C

f"vAsTeRICS

1.2 About this document

This document provides resources for developers to work with the AsTeRICS framework. It
includes step-by-step introductions how to set up the development environment, and a “10-
Minutes Guide to AsTeRICS Plugin Development” which outlines plugin creation for the
AsTeRICS Runtime Environment (ARE) with the AsTeRICS Plugin Wizard.

Furthermore, this document outlines important ARE services which can be used for error
reporting or communication with external modules, describes the naming conventions for
programming and plugin creation, illustrates the formation of an example ARE deployment,
and describes the usage of OSGi bundles - i.e., self-contained modules. (For a brief
overview on OSGI see chapter 1.4).

Last but not least, the developer manual also gives some deeper insights into the
middleware, the CIM port manager and the communication framework between ACS and
ARE which is based upon the ASAPI client/server architecture using Thrift. (For an
introduction to ASAPI — the AsTeRICS Application Programming Interface - see chapter 8).

To get used to the AsTeRICS system’s capabilities and concepts, it is recommend to
download and install the AsTeRICS setup (installer) package from the project homepage,
and to read the AsTeRICS User Manual, which describes the main system components: the
AsTeRICS Configuration Suite (ACS) and the AsTeRICS Runtime Envirunment (ARE).

Page 7

http://www.asterics.org/

AsTeRICS Developer Manual

1.3 The AsTeRICS Runtime Environment

The AsTeRICS Runtime environment (ARE) is an OSGi-based middleware [3] which allows
software plugins to run in parallel. The plugins usually represent a sensor or an actuator and
are implemented as independent OSGi bundles. The runtime environment identifies
AsTeRICS plugins from other OSGi bundles based on metadata defined inside the plugins.

The ARE expects from plugin-developers to define the structure of their plugins (properties,
inputs, outputs and event ports) in XML files. Based on these XMLs, the middleware
constructs a runtime representation of each installed AsTeRICS plugin.

Furthermore, the ARE expects a runtime model (system model) which usually comes from
the AsTeRICS Configuration Suite (ACS). The ACS is running on a Windows Personal
Computer (.net 4.0 required) and mainly used to graphically design the layout of the system
as a network of interconnected components. The system model is another XML file that
defines the components participating in a specific application, connections between them,
events and other properties. Based on this file, ARE knows which plugins to activate and
how to define the data flow between them. Since the system model represents the main
communication means between the ACS and the ARE, it is expected to be a serialisable
object, easy to transfer and translate. ARE and ACS communicate through an appropriate
TCP/IP-based communication protocol named ASAPI.

PC

ASAPI Client
RPC, RMI. TCPIIP

=

AsTeRICS Embedded Platform
RPC. RMI, TCP/IP

ARE [OSGi)

ASAP|
Protocol

ASAP| Server

AsTeRICS AsTeRICS AsTeRICS
Sensor Processor Actuator
I os |

HW Interfaces

UsB Blustooth RS232 GPIO AD

The ARE also provides “services” to plugin developers (for example communication support
for COM ports) and it allows reporting errors on the runtime environment, registering event
listeners and interacting with its graphical user interface (ARE GUI).

The ARE GUI is a simple graphical environment developed to allow end-users to interact
directly with the runtime environment. It may be used to modify runtime parameters of a
model via buttons or sliders, and to monitor live signals and events of the running model.

Page 8

AsTeRICS Developer Manual

1.3.1 ARE Components
The ARE consist of the following main parts:
e The ARE middleware

¢ ARE plugins (also referred to as “components”) — sensor, processor and actuator
modules which provide functional building blocks for assistive functionalities

e A service layer which provides infrastructure to the ARE components,
for example COM port and communication management for connection of the
Communication Interface Modules (CIMs)

The ARE is commonly deployed on an embedded device, running an appropriate operating
system (OS), typically an embedded variant of Windows. On top of the OS, an appropriate
Java Virtual Machine (JVM) is used to host the OSGi component framework which provides
support for modularity and dynamic loading/unloading of components.

All the core components of the framework (described in detail later) are defined as OSGi
modules. Certain components that need to access legacy code (e.g., written in C or C++) are
also deployed on top of OSGi, and are interfaced to the native code using Java Native
Interface (JNI) as needed. In this regard, and with the exception of the pluggable
components that use native code interfaces with platform-specific JNI bindings, the ARE
middleware is expected to be platform independent.

The implementation requires basically JAVA 1.7 (JDK/JRE 7) and an OSGi framework
(which is part of the source code downloads).

1.4 About OSGi

The Open Service Gateway initiative (OSGi) is an open specification that enables the
modular assembly of software built with the Java technology [3]. The OSGi Service Platform
facilitates the componentization of software modules and applications and assures
interoperability of applications and services over a variety of networked devices.

OSGi technology is the dynamic module system for Java™. Java provides the portability that
is required to support products on many different platforms. The OSGi technology provides
the standardized primitives that allow applications to be constructed from small, reusable and
collaborative components. These components can be composed into an application and
deployed; The OSGi Service Platform provides a service-oriented architecture that enables
these components to dynamically discover each other for collaboration, and thereby forms
the optimal basis for the AsTeRICS middleware.

Page 9

AsTeRICS Developer Manual

2 Getting Started with AsTeRICS Development

2.1 The AsTeRICS Source Code Repository

The AsTeRICS source code repository is hosted at github and located at

https://github.com/asterics/AsTeRICS

The source code contains open source software modules in JAVA, C++ and C, and
proprietary modules by AsTeRICS partners which are available in binary from (.dll or .exe).

The licenses of the utilized software packages and 3™ party products can be viewed in the
file /documentation/licenses.doc

Currently, the editor for OSKA (the on-screen keyboard application) is the only commercial
software package within the AsTeRICS framework — and not included in the free downloads.
The OSKA editor is only needed if you want to design custom on-screen keyboard layouts for
OSKA (see AsTeRICS User Manual).

2.1.1 Repository structure

The source code repository is organised in the following subfolders:

ACS

Android

ARE

bin
BMClevaluationSuite
CIMs
Documentation

Matived5AP]Ilibraries

The ACS folder contains the AsTeRICS Configuration Suite source code.

The Android folder contains a server application for Android phones which allows interfacing
with the AsTeRICS Android plugin to use phone functions in AsTeRICS models.

The ARE folder contains the middleware and service layers and ARE components.

The bin folder contains subfolders where ARE and ACS executable files are placed during
the build flow. These folders contain additional configuration files or dependencies, for
example the config.ini and loader.ini files which specify the modules which are loaded by the
ARE at startup.

Additionally, the bin folder contains several resources which are useful, e.g. a pre-built ACS
with demo models (in the ACS\models folder) and the OSKA application.

Page 10

https://github.com/asterics/AsTeRICS

AsTeRICS Developer Manual

The BNClevaluationSuite is a collection of matlab files for analysis and comparison of
algorithms for Brain Computer Interfaces (contributed by Starlab).

The CIM folder contains firmware for the microcontroller modules used to interface the
system to the environment (maintained by IMA and FHTW).

The Documentation folder contains the User- and the Developer Manual, and OSKA
manual and the licence information for the developed and all utilized source code and
libraries.

The NativeASAPI folder contains C++ libraries for mobile-phone and GSM modem access,
3d-mouse and tremor reduction from own C++ projects.

2.2 Setting up the Eclipse IDE for ARE development

The ARE framework is not bound to a specific tool flow or IDE. For the convenience of the
development process and ease-of-use for new developers, an Eclipse-based build is
available and will be described in this section. If you prefer a different IDE you can skip this
section. The described setup applies for Microsoft Windows operating systems. If Java and
the Eclipse IDE are already installed, steps 1 - 4 can be omitted.

1. Download and Install the Java Development Kit 7 (JDK 7), JDK 8 is supported as
well.
from http://www.oracle.com/technetwork/java/javase/downloads/index.html

Java Platform, Standard Edition

Java SE Tu2 JDK JRE
This release includes performance # Download # Download
improvements, bug fixes, support for Solaris 11, - -

and Firefox 5 and up. Learn more »

JDK 7 Docs JRE 7 Docs
"What Java Do | Need?" You must have a copy of + Installation + Installation
the JRE (Java Runtime Environment) on your ms ms
system to run Java applications and applets. To - -
develop Java applications and applets, you need = ReadiMe * ReadMe
the JDK (Java Development Kit), which includes
the JRE. " ReleaseNotes * ReleaseNotes
= Oracle License * Oracle License
= Java SE * Java SE
Products Products
= Third Party = Third Party
Licenses Licenses
= Certified Svstem * Cerified System
Configurations Configurations

Choose the 32bit version for your operating system, because some necessary
components for interfacing hardware are not supported by the 64bit version by now.

2. Create a System Environment Variable “JAVA_HOME” which points to the folder
where you installed the Java JDK. The dialog

for system environment variables can be Sl i ==l
found via System Properties -> Advanced -> Name der Varizblen: JAVA_HOME
Environment Variables Wert der Variablen:

OK.] | Abbrechen |

Page 11

http://www.oracle.com/technetwork/java/javase/downloads/index.html

AsTeRICS Developer Manual

3. Add the JDK bin path to the SyStem rSystem\.rariable bearbeiten &Jq
Environment Variable “Path”

Mame der Variablen: Path

Wert der Variablen: jerprint Manager ProY; %JAVA_HOME 2% \bir|

[OK] I Abbrechen I

4. Download and install Eclipse Luna from http://www.eclipse.org/downloads/

Eclipse Luna (4.4.1) Release for

Eclipse IDE for Java Developers

Downloaded 531,859 Times Windows 32 Bit

€} Windows 64 Bit
The essential tools for any Java developer, including a Java IDE, a CVS client,

Git client, XML Editor, Mylyn, Maven integration...

Note that the 32-bit version is also recommended for 64-bit machines e.g. running
Windows-7 (as there have been reported problems with the 64-bit version)

5. Download and install ant build framework, to build AsTeRICS from the command line
(optional)

a. Download and install the apache ant build framework (version >= 1.9.1)
http://ant.apache.org/bindownload.cqi

b. Create a System Environment Variable “ANT_HOME” which points to the
installation directory of ant.

c. Add the ant bin path to the System Environment Variable “Path”
6. Download and extract the AsTeRICS source code

a. Use your favourite git client and clone the github repository

https://github.com/asterics/AsTeRICS.qit

b. Or download and extract the .zip file into a desired location on your hard disk
7. Start eclipse.exe (If starting the first time, create a workspace folder as suggested)

8. Choose File -> New -> JavaProject in the Eclipse main menu, disable the option
“Use default location” and browse to the ARE subfolder:

Page 12

http://www.eclipse.org/downloads/
http://ant.apache.org/bindownload.cgi
https://github.com/asterics/AsTeRICS.git

AsTeRICS

Developer Manual

= New Java Project

Create a Java Project

Enter a project name.,

Project name:

[] Use default location

JRE

Location: I

Browse...

@ Use an execution environment JRE: lJavaSE-L?

)

_) Use default JRE (currently 'jre7")

9. Then you should see something like this:

_ Use a project specific JRE: jrel

Configure JREs...

= Java - ARE/

4)
File Edit Run Source Refactor Navigate Search Project Window Help
B-0-Q- HE-
B %]

(] &2 i 50 BB S~
[# Package Explorer |2 Navigator £3

t

components

(& actuator.analogout

(= actuator.bardisplay
lou

slout return null:;

{

return null:

oscilloscope
(> actuator.platformdigitalout
(& actuator.platformicd
(& actuator.remotejoystick

b

(2 actuator.text_display -
(& actuator.wavefileplayer i

& libraries i v

[2 Problems [@ Javadoc [, Declaration | El Console £2 . b SVN Tree Conflicts| 4 Search
<terminated> ARE buildxm! [Ant Build] C:A\Program Files (i86)\Java\jdk1 7.0_01\bin\javaw.exe (20122011 16:30:07)

compile:

v =0 ModelSwitcherlnstancejava 52

& public TRuntimeEventTriggererPort getEventTriggererPort

[E=N/E=R =5
E [SYN Reposit... (s
= O|[B TaskList 52 =8

-8 g-@xlelxela~
if (ELP_SWITCHMODEL.equalsIgnoreCase (eventPortID)) {
return elpSwitchModel;

Find

@ Connect Mylyn b
Connect to your task and ALM tools.

eu.asterics.componentactuato

“= import declarations

@ ModelSwitchernstance F
o F ELP_SWITCHMODEL : Strir

public Cbject getRuntimeFropertyValue(String propertylNe

I

% Uncategorized

5% Outline 52 =8

o " elpSwitchModel : Runtime
o ipMedelName : IRuntimelr

& propModel: String
©° ModelSwitcherdnstance(~

A » oAl P Acivate..

@Ee e e~

F

@ new IRuntimeEventlis

@ newRuntimelnputPo

Congratulations ! — You have now a working AsTeRICS build environment !

Eclipse provides different views (Window -> Show View), where the Navigator and the
Package Explorer are most useful for Java source code development.

Note that the “Refresh” command (F5) synchronizes the Navigator view with changes in the

local file system.

2.3 Setting up build environment for JDK 8

If you follow the steps of 2.2 JDK 8 is supported without modifications. In case you have an
older installation of Eclipse (version < Luna (4.4)), you can either

a. upgrade to Eclipse Luna or

b. upgrade the used ant version to at least 1.9.1. In this case you have to tell Eclipse

where to find the new version of ant.

Page 13

AsTeRICS

Developer Manual

1. Start Eclipse and click on “Run/External Tools/External Tools Configuration”

Project [Run| Window Help

O~ G% Run

%, Debug
Run History
Run As

Run Configurations...

Debug History
Debug As
Debug Configurations...

Add V8/Chrome JavaScript Exception Breakpoint
Toggle Breakpoint

Toggle Line Breakpoint

Toggle Method Breakpoint

Toggle Watchpoint

Skip All Breakpoints

® »

Remove All Breskpoints

Add Java Exception Breakpoint...
Add Class Load Breakpoint...
Breakpoint Types

(0]

B All References..
AllInstances...
Instance Count...
Watch
Inspect
Display
Execute
Force Return

ousejar

G Edemal Tools

Ctrl+F11
F11

Ctrl+Shift+B

Ctrl+ShifteN

Ctrl+Shift+I
Ctrl+Shift+D
Ctrl+U
Alt+Shift+F

3

T.MF
ffer;

MANIFEST.MF)] KeyboardCz

t{

main(String args[1) {

g von Hexstring

ng="GA0A";
“ted=Integer.valueOf(hexString, 16);
ntln("Converted: "+converted);

2 von Byte array
byte[]{@,0,0xA,@xA};
Buffer.wrap(arr).getInt();
ntln("Converted: "+converted);

rch | B Console 5%
ication] C:\Program Files (86)\ava\jreT\bin\javan

Progress m Developm

l

1 ARE build.xml

2 ARE_linux build sl

3 ARE buildml (3)

4 ARE build.xml (1)

5 ARE buildml (2)

6 ARE_linux buildml (1)
7 ARE linux build.xml (2)
8 testNRSerial buildxml

Run As. 3

External Tools Cenfigurations..

Organize Favorites.

2. Click on tab “Classpath” and set the new Ant Home by clicking onto the

respective button.

|| Name: ARE build.xml

Classpath:

E Main (kéh Refresh ﬂm Build (\ﬂ% Targets (0’{} Classpath - <O0* Properties} = JRﬂ ﬁ Environmenq = Commorq

a % User Entries
i+ = Ant Home (Default) |
|- B Additional Tasks & Support

Remove

Add JARs...

Add External JARs...

Add Folders...

Add Variable...

Restore Default Entries

I

Ant Home...

Apply Revert

Ri

=
-

| [Close

Page 14

AsTeRICS Developer Manual

2.4 Building ARE Middleware, Services and Components

For building the ARE middleware and components (plugins), the supplied ANT build scripts
are recommended. Apache ANT is a command-line based build tool for Java applications [8].
Eclipse provides an ANT plugin which operates these build scripts (named “build.xml” in the
AsTeRICS repository). You can either use the command line ant command in a windows
shell or use the Eclipse plugin.

The middleware, the services and the components have separate build.xml files. The
middleware and services are required for building the components. To build everything, a
top-level build script is available in the ARE folder. To use this top-level build script, switch to
the Java Project Perspective, right-click the “build.xml” file located in ARE-section of the
Navigator window (as shown below) and select the second menu entry in the context menu:
“2 RunAs -> Ant Build”:

= Java - ARE/bui - Eclips
=~ Java - ARE/buildxml - Eclipse e reran @
File Edit MNavigate Search Project

Edit configuration and launch.

Ci= [E= 3 w @

Run an Ant build file. rﬂ

4 | Name: ARE build.xml

%= Navigator (2

J — —

4 = ARE D Main t~§‘ Refresh | |7y Build | o Targets % Classpath | <@> Properties | =), JRE| g Environment| = Common

(= components

B junit Check targets to execute:

(&= middleware Name Description

& osgi (@ buildARE

= RKTX (@ buildServices

= 5;;\”“5 7] @ buildComponents [default]

= =t @ buildAll

(= thrift _ .

- (@) buildAll-release

(= tocls -

| .classpath * clean

X project 1 out of 6 selected

| buildxml

Sort targets

[} LPCHSS_EXT%T Hide internal targets not selected for execution

Target execution order:

buildComponents

| Apply | | Revert |

‘\/‘_?:' [Run l | Close ‘

This opens the “Edit configuration and launch” window, where the build targets of the top-
level build script can be selected. These build targets provide different “on-Click” builds for
the AsTeRICS framework.

2.4.1 One Click Builds

The top-level build script allows building all components that exist in the source tree. It also
defines several properties which are inherited to all component build scripts. An important
example is the “debug” property which defines via compiler options if the code shall be
instrumented with source code level debugging information (“true”) or not (“false”).

The top-level build script provides the following targets:

e BUuildARE: builds just the middleware
e BuildServices: builds the middleware and all services (eg. CIMCommunication etc.)
e BuildAll: cleans build targets, builds middleware, services and components

Page 15

AsTeRICS Developer Manual

o BuildAll-release: cleans build targets, builds middleware, services and components
without source-level debug information for the eclipse remote debugger
e Clean: cleans build targets (removes all jar files and the out directory)

The source level debug information is enabled by all build targets of the top-level build script
except “BuildAll-release”.

Alternatively, individual services or components can be built by selecting their associated
“build.xml” script from the corresponding subfolders In these scripts, source level debugging
information is per default disabled in the compilation step.

2.4.2 Understanding the component build-scripts

A typical ANT build script for an ARE component looks like the following:

<project name="asterics.${component.id}" default="jar" basedir=".">
<property name="component.id" value="processor.MyComponent"/>
<!-- set global properties for this build -->
<property name="build" location="../out/production/${component.id}"/>
<property name="src.java" location="src/main/java"/>
<property name="dist" location=".."/>
<property name="runtime" location="../../../examples/ARE"/>
<property name="osgi" location="../../osgi"/>
<property name="middleware" location="../../middleware"/>
<property name="services" location="../../services"/>
<property name="classpath" location=".."/>

<path id="asterics.classpath">

<pathelement location="bin"/>

<pathelement location=

"${osgi}/org.eclipse.osgi 3.6.0.v20100517.jar"/>

<pathelement location="${middleware}/asterics.ARE.jar"/>
</path>
<property name="resources" location="src/main/resources"/>

<target name="init">

<!-- Create the time stamp -->
<tstamp/>
<!-- Create the build directory structure used by compile -->
<mkdir dir="${build}"/>
</target>

<target name="compile" depends="init" description="compile the source ">
<javac srcdir="S${src.javal}l" destdir="${build}" verbose="true" debug="${debug}"
classpath="${classpath}"> <classpath refid="asterics.classpath"/>
</javac>
</target>
<target name="jar" depends="compile"
description="generate the 0SGi bundle" >
<jar jarfile="${dist}/asterics.${component.id}.jar" basedir="${build}"
manifest="${resources}/META-INF/MANIFEST .MF">
<fileset dir="${resources}"/>
</jar>
<copy file="${dist}/asterics.${component.id}.jar"
tofile="${runtime}/asterics.${component.id}.jar"/>
</target>
</project>

In the first section of the build script, folder locations for the build intermediates, the final build
products (.jar file) and the classpath are defined. The classpath usually points to the “bin”
folder, the middleware “asterics.ARE.jar’ and the osgi distribution. If a component needs
additional resources, their location has to be defined here.

Page 16

AsTeRICS Developer Manual

Subsequently the build script defines two build targets: the compilation of the Java source
code and the creation of the .jar file. If the .jar file shall contain additional .dlls with native
code, they have to be specified in the Manifest file as shows in section 5.13.1.

After the .jar file has been created in the distribution folder, it is copied to the runtime folder
(/bin/ARE).

2.5 Starting the ARE middleware and component deployments

To test the ARE and component bundles, open the folder “/bin/ARE”, and locate the batch
file “start.bat”:

2.5.1 Structure of the runtime folder “./bin/ARE”:

This folder contains dependencies for running the ARE middleware and the .jars resulting
from ANT builds, it has the following structure:

/
+- bin/
+- ARE/
+- data/ folder for plugin working data
+- models/ stored models (configurations)
+- profile/
+- config.ini system bundles to be started
+- services.ini general service bundles to be started
+- services-windows.ini windows-specific service bundles
+- services-linux.ini linux-specific service bundles
+- loader.ini plugin-bundles to be started
+- org.eclipse.osgi/ osgl configuration folder
+- 1238790741.1og system log messages, stack trace
+- tools/ plugin helper apps and dlls
+- .logger stores console logging settings
+- ARE.exe starts the ARE without console output
+- areProperties stores recent window/GUI properties
+- <my component.jar> component bundle (s)
+- asterics.ARE.jar ARE middleware
+- asterics.mw.services.cimcommunication.jar CIM port manager
+- asterics0.log application log file
+- jtester.exe helper app for checking Java version
+- logging.properties configuration of loglevel etc.
+- org.eclipse.osgi 3.6.0v20100517.jar osgl distribtion
+= sleeper.exe helper app for launcher timing
+- start.bat starts ARE with console output
+- start debug.bat starts ARE with Eclipse debug support
+- start.sh starts ARE without console on Linux
+- start debug.sh starts ARE with debugging on Linux
+- VCChecker.jar helper jar for checking VC redist dependency

Important Note: The osgi configuration folder “org.eclipse.osgi” in the “profile” subdirectory
has to be deleted if .dlls in .jar bundles are updated or changed. (This folder is automatically
created when starting the ARE and holds working data for the OSGI-bundles.) The One-Click
build.xml script described in chapter 2.4.1 deletes the folder automatically.

2.5.2 Structure of the loader.ini file

Page 17

AsTeRICS Developer Manual

The loader.ini file located in the folder “./bin/ARE/profile/” specifies bundles which will be
started by the ARE middleware automatically (using the OSGI lifecycle management
commands). This file is created by the AsTeRICS Plugin Activation Tool (see section 3.2) but
could also be updated manually. Basically it contains a list of .jar files for the built
components as shown in the following list:

asterics.actuator.AnalogOut.jar
asterics.actuator.AndroidPhoneControl.jar
asterics.actuator.ApplicationLauncher.jar
asterics.actuator.BarDisplay.jar
asterics.actuator.DigitalOut.jar
asterics.actuator.EnobioDisplay.jar
asterics.actuator.EventVisualizer.jar
asterics.actuator.FileWriter.jar
asterics.actuator.FS20Sender.jar
asterics.actuator.GSMModem. jar
asterics.actuator.ImageBox.jar
asterics.actuator.IrTrans.jar
asterics.actuator.Keyboard. jar

Please note that only the components defined in the loader.ini file will be available in the
ARE. Models involving other components cannot be deployed from the ACS, nor started.

A number of additional bundles which are needed to start the ARE middleware are specified
in the config.ini file, most notably the ARE middleware “asterics.ARE.jar”.

2.5.3 AsteRICS services

An AsteRICS service is a bundle that provides ARE-wide functionality usable by other
services or plugins. The service can be optionally disabled which means that the service
bundle is not installed and not activated. The file services.ini contains a list of general
services to be loaded. Whereas the services-windows.ini and services-linux.ini files contain
platform dependent service names. You can also create your own use-case specific services
ini file and edit the start script to load it.

2.5.4 Running a deployment

The “ARE.exe” starter application launches the ARE without console output and without
debugging instrumentation.

Alternatively, the commandline batch script “start_debug.bat” which is provided in the folder
“.bin/ARE” runs Java with additional configuration parameters including:

e the location of the OSGi distribution
¢ the profile subfolder which contains the config.ini file: “./bin/ARE/profile”

e debugging instrumentation for the remote debugging server connection

Page 18

AsTeRICS Developer Manual

After starting the ARE middleware, bundles are loaded and started as specified in
“loader.ini”. If everything is properly configured, the ARE window comes up with a GUI and
provides ASAPI server functionalities for connection of the ACS or other client applications.

2.5.5 Activation of ARE webservice (REST, websocket) demo
The ARE contains a service that creates several web-based services. These include

o a webserver with document root (relative to ARE start folder): data\webservice and
URL: http://localhost:8082/

e awebsocket at URL http://localhost:8082/ws/astericsData

e a REST ASAPI interface at URL http://localhost:8081/rest

e To retrieve the currently deployed model, call:
http://localhost:8081/rest/runtime/model/

The webservices are turned off by default and can be activated by a command line switch of
the ARE when using the start_debug.bat start script.

AsTeRICS\bin\ARE>start debug.bat --webservice

When deploying and starting the demo model “WebSocket_test.acs” you can see the
websocket functionality in action. It uses the data of a SignalGenerator and forwards it
through a websocket utilizing the WebSocket plugin. The provided index.html file of the
webserver automatically connects to the given websocket and visualizes the data.

Important Note: The websocket support currently lacks a meaningful data protocol and is not
fully implemented. The purpose is just to show how it could works.

2.5.6 Define autostart model per command line

By starting the ARE with the name of a model as first command line parameter a model that
should be started automatically can be defined. The model must exist in the sub-folder
“models”.

ARE .exe CameraMouse.acs
or

start debug.bat CameraMouse.acs

2.5.7 Change model execution thread pooling and submit timeouts

The file “areProperties” contains properties to configure GUI related features and to configure
the internal model execution behaviour. The following internal model execution properties
exist:

e ThreadPool.ModelExecutor.size=0

Page 19

http://localhost:8082/
http://localhost:8082/ws/astericsData
http://localhost:8081/rest
http://localhost:8081/rest/runtime/model/

AsTeRICS Developer Manual

o The size of the “ModelExecutor” thread pool. By default the value is 0, which
means that a model is executed with a single thread. If the value is > 1 the
model is executed with a thread pool of that size.

o Important Note: The multi-threaded mode is deprecated and will be

removed with the next release (2.7). There is no guarantee for data integrity
and thread synchronization when executing a model.

e ThreadPoolTasks.submitTimeout=20000

o When submitting a task to be executed in the ModelExecutor thread a submit
timeout can be configured. After the time elapsed a TimeoutException is
thrown. The timeout value must be specified in milliseconds.

The submit timeout is used for starting, stopping, pausing and resuming a
model.

Page 20

AsTeRICS

Developer Manual

2.6 Debugging the ARE

If the ARE is started using the “start_debug.bat” script and source-level debug information
was added during the compilation (see section 2.3), debugging with Eclipse is supported via
a remote debugging connection. This is a convenient way for debugging an OSGl-based java
framework with a lot of plugins. To enable the debugging support in Eclipse, a Debug
Configuration is created via the dedicated menu entry:

= Java - AREfcom ponents/processor.adjustmentcurve/build.xml - Eclipse

File Edit Mavigate

S =
;LJ']E'

a4 =3 ARE
4 [= components

SEn s -G FE (W

Search Project Run

Window Help

T Mavigater 53
2| 0

(no launch histary)

Debug As
Debug Configuratiﬁs...

Organize Favorites.

Create a “Remote Java Application” Debug Configuration and assign a name for it, e.g.
“ARE”. Then, specify the connection properties of the Debug Configuration to use the Host
“localhost” and the Socket/Port “1044” (this port is given in the ARE build scripts for the
remote debug server to listen for incoming client connections):

TEX| B
type filter text
& Eclipse Application
5] Java Applet
[T Java Application
Ju JUnit
Ju JUnit Plug-in Test
4 05Gi Framework
4 [, Remote Java Application
2, ARE

Filter matched 8 of 8 items

Create, manage, and run configurations

Attach to a Java virtual machine accepting debug connections

Name: ARE
| & Connect
Project:

ARE

Connection Type:

%/ Source| =] Common

Browse...

Standard (Socket Attach)

>

Connection Properties:
Host: localhost

Port: 1044

[] Allow termination of remote VM

{ Debug

) |

Close

Now launch the ARE using “start_debug.bat”. The messages in the console window should

indicate the establishment of the listening socket 1044 for the debugging connection:

Page 21

AsTeRICS Developer Manual

B C\Windows\system32\cmd.exe =N (23w
AsTeRICS ARE Uersion 2.0

C:~AsTeRICS~bin~ARE>set JAUA_BIN="java"™
C:~AsTeRICS~hin“ARE>if exist javasbinsjava.exe {(set JAVA_BIN=java“bin-java.exe >

C:~AsTeRICS~bin“ARE>" java" —version 2>k1 | jtester.exe

WRE version 1.7 detected.

De leting OSGi—Cache

Das System kann die angegebene Datei nicht finden.
Starting AsTeRICS Runtime Environment with Debug output
Listening for transport dt_socket at address: 1844

losgi> Jul 88, 2813 12:42:51 PM eu.asterics.mw.are.Main start
Information: JUM 32 bit detected
cim start

Now, the usual debugging support of Eclipse can be used, including breakpoints in
middleware or components, variable and context watch windows, single stepping etc. All
these operations are performed in the Eclipse “Debug” perspective.

The following screenshot shows a program execution of the ARE which ran into a breakpoint
(here: the OSKA plugin was halted as a command was selected in the OSKA-application and
transferred to the ARE plugin’s command handler:

p

i@ e] bR RN BT O -G i@

aid v > ¥ oy - £ | 87 Java (35 Debug
%5 Debug 52 ¥ e 9= Variables 52 E Y= 08
4 o Thread [pool-1-thread-2] (Suspended (breakpoint at line 132 in OskaCommandManager)) ~ « N Value
SUOsC b bandieCommand(Strino}line132) " a this OskaCommandManager (id=86)
OskaComm OskaConr istener.dataR ytel]) line: 184 R T “COMMAND" (id=107)
imonen(oTsmchanagarSSetuLpTh:iad.:Sno line: 229 i o inp 'COMMAND:2 13 {ENTER}" (id=108)
utor. u utorSWorker) line: not available > opan String[3] (id=109)
hreadPoolExecutorSWorker.run() line: not available -
= Thread.run() line: not available
@ Thread [Destroy)avaVM] (Running)
@ Thread [AWT-EventQueue-0] (Running)
»® Daemon Thread [AWT-Windows] (Running)
@ Thread [AWT-Shutdown] (Running)
@ Daemon Thread [Start Level Event Dispatcher] (Running) > §)
|J] Oskalnstance java |=] build.xml |J] 10skaCi dHandler.java [J] OskaActi i ITCP... [J] *OskaCommandManagerjava 2 = = O 8= Outline 52 = =
e 1T nanaler Touna Tor extra Commana, Talse 1T geTault 1
* handl ed - 513, 8 e
#8 eu.asterics.component.processor.oska
boolean handleCommand(String input) 4 @ OskaCommandManager
. . . e . 4 commands : Hashtable<St
String [] inputs = input.split("\1", -1); s actionStings:H
if ((inputs != null) & (inputs.length >= 1)) 4 & defaultHandler String
{ @ new IOskaActionStringHandler() {..
String command = inputs[@].substring(@, inputs[@].indexOf(':")); a addCommand(String, I0skaCommandt ||
= a addActionString(String, I0skaActionStri
» T0skaCommandHandler [ERFEES = null; A cleaflandlesfivaic
handler = commands.get(command); B edractActionStrings(String)
if (handler != null) a handleCommand(String) : boolean
® handleDefaultCommand(String(])
handler.handleCommand(inputs); ~
«) « it »
Bl Console 52 *B+=0
No consoles to display at this time.
Writable Smart Insert 132:40
If the source-level debug information is e o o e
g (p f ¥ | Unable to install breakpoint in eu.asterics.component.actuator.midi.GUISL due to
debu In su Ort) an error message ‘S missing line number attributes. Modify compiler options to generate line number
gg g pp g attributes.
indicates a problem, e.g. the missing line Resson:
. . . Absent Line Number Information
number for breakpoint installation: Don'ttell me again N

Page 22

AsTeRICS Developer Manual

3 A Quick Guide to AsTeRICS Plugin Development

This section describes the AsTeRICS Plugin-Creation tool and the plugin-activation process.
These tools make it easy to create new plugins and make them available in ACS and ARE.
They can be started manually from their location in the AsTeRICS_ runtime.zip package
(folder: “ACS/tools”) — or they can be launched from the “Misc.” — Tab in the main menu of
the ACS:

xl Lli" a7 IAsTERICS Configuration Suite

X System Components Edit Misc.
& I iy
Options Plugin Plugin

Creation Wizard Activation Wizard

The creation of a new AsTeRICS plugin for the runtime environment involves several steps:

creating the folder structure to store the plugin files

e creating the ANT build script file

e creating the manifest file

e creating the bundle-descriptor, which specifies the ports and properties of the plugin
e creating the source code file of the Javalnstance

o defining the ports and properties and implementing the get- and set-methods
for input-, output-, eventListener- and evenTrigger ports

o implementing the get- and set- methods for property values and the input ports
receive handlers

This process is similar for each plugin, and involves much work and sources of errors,
especially for people who work with the AsTeRICS framework for the first time.

Usually, you look for a plugin with similar specifications, copy its folder structure and then
rename and change the files as desired. But also this process needs some effort and
errors/typos can be introduced very easily.

The purpose of the AsTeRICS Plugin Creation Tools is to make it easy to create new
plugins, by providing the necessary folder structure, the bundle descriptor and a template for
the JAVA source code.

Page 23

AsTeRICS Developer Manual

3.1 The Plugin Creation Wizard

The plugin Creation wizard allows definition of characteristics of a new plugin and creates the
needed folders and files for the Eclipse build flow, including the JAVA source code skeleton
and the plugin’s bundle descriptor.

Eﬂﬂ AsTeRICS Plugin Creation Wizard E@
Exit

Setup

Pluginhame: MyFlugin Type: |processor v| Subcategary: Others Path to existing target folder. [Chastercs\areicomponents)
Input Ports Output Ports Ewent Listener Ports Ewent Trigger Ports
myInPort (double) rmyDutFort (double
T utFort? (doukle) myEtpPort E
miéEtEPDrtZ

MName: |mylnFort

MName: |myOutPore

. ElpPaort
Data-Type: |double - Date-Type: |double - Mame: |myElpFo Name: |myEtpPortd
Description: |input port descripti Description: |output port descrip Deserpfion: — felp description R=scloion =t description
add [nput Paort ‘ delete add Cutput Port delete add Event Listener Port | delete add Event Trigger Port | delete
Properties . -
[Flugin-Description: |y Plugin description
MName: myProperty?
Flugin is a Singlaton O
Data-Type: integer M Plugin has & GUI O
Default Value: ‘1 wsizer (30 Y-size: |20 (% aof screen size)
Combo-Box Entries |test1 JMest2itestd |
m]

Description |propeﬁy description

add Property CREATE PLUGIN |

‘ delete

As can be seen in the above figure, desired input- and output ports, data types, properties
and plugin-features are simply selected and added to list boxes on the screen.

Important Notes:

e the path to the target folder has to exist in the local file system, and must point to the
ARE/components directory where all plugin source files are located, e.g.:
“C:\asterics\bin\components\”.

e The plugin name must be specified in CamelCase letters (capital first letter), e.qg.
“‘MyPlugin”. Type and Subcategory have to be specified - they define the location
where the plugin will appear in the ACS Components menu.

e |t is possible to create a list of possible text-selections in a combo-box in the ACS
property editor. The data type for this property must be integer, the property gets the
number of the selected item. Text-captions for the combo-box entries must be
separated with double slash, e.g: “Mode 1//Mode 2//Mode 3”.

Page 24

AsTeRICS Developer Manual

3.1.1 Created files and folders

After “Create Plugin!” has been pressed and the plugin creation was completed successfully,
following sub-folders and files are begin created:

B) src
El L man
=L java
=) eu
E | asterics

= | componsnt
= | processor
| testerForWwizard
H | resources
| META-INF

The root folder contains the build script, which can be executed inside Eclipse to compile and
build the plugin (.jar) file:

B build.xmi _ ol x|
C<project name="asterics.${component.id}" default="Jar" basedir="."»

<property name="component.id" value="processor.testerForwizard" />

<l-- set global properties for this build --»
<property name="huild" location=".. /out/production/${component.id}" />
<property name="src.java" location="src/main/java"/>
<property name="dist" Tocation=".."/=
<property name="runtime' location="../../../examples/ARE" />
<property name="osgi' location="../../osgi" />
<property name="middlewars" lTocation="../../middlewzare" />
<property name="services" Tocation="../../services"/>
<property name="classpath" location=".."/>
=) <path id="asterics.classpath">

<pathelement location="bin"/>
<pathelement location="%${osgi}/org.eclipse.osgi_3.6.0.v20100517. jar" />
<pathelement location="%${middleware}/asterics.ARE.jar" />

</path>

<property name='"resources' location="src/main/resources' />

= «<target name="init"»

<|-- Create the time stamp --»
<tstamp/>
<|-- Create the build directory structure used by compile --»
<mkdir dir="${build}" />
</target>

- «<target name="compile" depends="init" description="compile the source ">

E <javac srcdir="3${src.javal" destdir="3{build}" wverbose="trus"

= i classpath="%{classpath]"> <classpath refid="asterics.classpath"/>
</javac>

</targets>

<jar jarfile="${dist}/asterics. ${component. id}. jar" basedir="%${build}"
fmanifest="${resources} /META-TNF/MANTIFEST. MF" >
<Fileset dir="%{resources}" />
</jar>
<copy Tile="§{dist}/asterics.${component.id}. jar"
tofile="8{runtime}/asterics. ${component. id}. jar" />

z <target name="jar" depends="compile" description="generate the 05G1 bundle" =

</targét>
\
L</projects
< |
;Jﬁiﬂ

The META-INF folder contains the manifest file

Page 25

AsTeRICS

Developer Manual

lo/x]
ManiTest-Yersion: 1.0

Eundle-Manifestversion: 2

Bundle-Name: asterics-processors.testerForwizard
Bundle-symbolicName: eu.asterics.component.processor. testerForwizard
Bundle-version: 0.1.0

ynamicImport-Package: *

Kl 0

N |

The “resources” folder contains the bundle descriptor (bundle_descriptor.xml):

7xm

I <componentType id="asterics. testerForwizard”

_lo/x]

version="1,0"7> a
<componentTypes Aanlns txsi="http:/www. w3, org/2001/xMLEchema-ins tance"

x5 1 noNamespaceschemalocation="bundle_model. xsd">

canonical_name="eu.asterics.component.processor. testerForwizard, TesterForwizardInstance' >

<type>processor</type>

<singleton>false</singleton>

<descriptions>test the function of the wizzard</description:

<ports>

<inputPort id="inl">

] <description>input port description</descriptions
U Ttiplicity=one-to-one</multiplicity:
<mustBeConnecteds>false</mus tReConnecteds>

; <dataType>double</dataType:

</inputPort:>

<inputPort id="in2">

! <description>input port description</description:
smuTtiplicity=one-to-one</multiplicity:
<mustBeConnected>false</mus tEeConnecteds>
<dataTyperinteger</dataTypes

</inputPort>

<outputPort id="outl">

; <descriptionroutput port description</description=

; <dataTyperdouble</dataTypex

</foutputFort>

<oUtputPort id="out2" L
<descrwptwon>output port description</description:

; <dataTyperdouble</dataTypes

</ outputFort:>

</ports:

<EVents:

<eventListenerPort_id="listenerl"s

] <description>elp descr1pt1on{/descr1ptwon}
</eventlistenerPort>

<evemtTrwggererPort id="triggerl">
i <descriptionretp description</description:
</feventTriggererPorts

| o

The source code folder “src\main\java\eu\asterics\component\<pluginType>\<pluginName>"
contains a template for the plugin source code in JAVA, including the definitions of the
selected ports and properties and the needed get- and set- methods for ports and property
values. The code skeleton complies to the AsTeRICS coding guidelines and contains the
AsTeRICS source file header (only a small portion is shown in the following screenshot).

Page 26

AsTeRICS

Developer Manual

{1
.
+

4

import
import
import
import
import
import
import
import
import
import

IR B N N T R R

-

java.util. logging. Logger;
data.ConversionUtils;

eu.
eu.
eu.
eu.
eu.
eu.
eu.
eu.
eu.

asterics
asterics
asterics
asterics

- T
- i .
- [T .
- Thei o

mode.
mode] .
mode].

runtime.
runtime.
runtime.

B TesterForwizardInstance java

package eu.asterics.component.processor. testerForwizard;

AbstractRuntimeComponentInstance;
IRUntimeInputPort;
IRuntimeOutputPort;

=]

runtime.
runtime.

mode].
mode .
mode].
mode .

asterics
asterics
asterics
asterics
asterics

- i .
- T
- i .
- IThed
- Thei o

IRUntimeEventListenerPort;
TRuntimeEventTriggererPort;
runtime. impl.DefaultRUnRtimeOUtputPOrt;
runtime. impl.DefaultRuntimeEventTriggererPort;
services. AstericsErrorHandling;

ASTeRICS - Assistive Technology Rapid Integration and Construction set

homepage: http://www. asterics.org

dBBER BBEEEBREEER EZBEEEEEh. EBBBEEEE . dBBEED. . dBEBED.
dB8BBEE 888 888 wBBb BBE dBBP ¥BBb dBBP V¥BEBb
dBBPBER 888 388 388 BB BE8 888 vEBb.
dBBF 8BE .dBBBEb 888 .dBBb. BEBE dBBP BBE B8BB "vBEEh.
dBBP BBB BBK 888 dBP ¥Bb BBBBBEEEP" B88 BBB "v88b.
dEBP B8B "vEBEEbh. 888 BBSEEEE8 B8 Tesb 838 EBB BBE "8BB
dBBREEEEERE XB8 BEB wab. 888 TB8b 888 vBBb dBBP vB3b dBEP
dBBP B33 GBBEBBP' BEB "VEBEB BBE TBBb BBBEBERE '"vBBREP" "vBEEEP"

This project has been funded by the European Commission,
Grant Agreement Number 247730

License: LGPL w3.0 (GNU Lesser General Public License version 3.0)
http://www. gnu. org/1icenses/Tapl. him]

LI

|

il

After the Eclipse IDE has been opened, Eclipse must be pushed to refresh the folder
structure by pushing F5. Furthermore, the path “src\main\java” must be configured as source
folder.

[

i processor.ssvendetect = a1c n d‘;*_:a_; l;C;L_.Il’J]_.E '«alL;é
iy processor.st New 4
iy processor.st Go Int !
g processor.st one public void sendData(double c
Open in Mew Wind

iy processor.st pen in Rew Window] //TODO change this to a n
i processor.st Show In Alt+5hift+W » super.sendData(Conversior
i processor.st }
5 processorst =) Copy Crl+C ¥
iy processorte 55 Copy Qualified Name
[processord [B Paste Ctrl+V
Ef processor.w ¥ Delete Delete
iy processory " Parses a packet in P2-Format.
% proxy.remot Rerowe from Context Ctrl+Alt+Shift+ Down =/
i sensoraccel Build Path b | # Useas Source Folder
i sensor.anal .
bl 3
i sensor.auto et CEENEY %% Configure Build Path...
7 sensor.buttg sy int x = 2;
i b giy Import. .
iy sensor.cellb 3 |[Eport for (int k =@ ; k < 6; k
i sensor.digit 1 .
s . value[k]=(((int) arrz
i sensoredith & Refresh F5
iy sensor.enoly Assign Working Sets... /1 value[k] =(ing)((
i sensor.eog b
iy sensor.even Validate Wty
[sensor.eyetn Profile As » }
iy sensorfacet Debug As v // System.out.println("Read
iy sensor.facet Run A 5 opChannell.sendData(value[@]
iy sensor.fs20r unas opChannel2.sendData(value[1]
% sensorjoyst Compare With 3 opChannel3. sendData(value[2]
5 sensorkeyb Replace With > opChannel4.sendbata(value[3]
iy sensor.kine Restore from Local History...
i sensorlipm .
= V& Deb 2
5 sensor.micg ebugging cet.html &3
i sensormou Generate Markdown Preview
i sensor.open StartExplorer 3
& sensor.o;cs Team 4 Declaration Search B Console i
iy sensor,
& pep Source * ks to display at this time.
a 5 src

4 T mair| Properties Alt+Enter

> G jova
> 4 resources
i build.xml

Page 27

AsTeRICS

Developer Manual

The plugin code can be built using the provided build script (right-click build.xml -> RunAs ->

Ant Build in the plugin’s folder)

[it

& Java - AsTeRICS/ARE/components /processor.testerForwizard/src/main /java /eu /asterics /component /processor /testerForWizard /TesterForwiz
Fle Edit Run Source Refactor Mavigate Search Project Window Help

gla|Bidls-0-a~|we~ |®c - P8

g [-Gl -

~lalx

£ 23 SVN Reposi

(2 processor. it

& processor firl

(&% processor fir 12to30

(& processor firgto12

(& processor fir8to500

& processor.hold

(& processor.ntegrate

(& processor. mathevaluator
(& processor. matrixproduct
G Processor, matrixprocUctAAA
[Processor. minmax

(& processor.oska

(25 processor pathmultiplexer
& processor pathselector

(& processor.phone

(& processor signaltranslation
(2 processor string_dispatcher

H Package Explorer | % Navigator [B&ls =0 @ hericge.j f@ TesterForWizardinsta &3 . 3 = B[Task List &2 =8
rocessor.derivative - ! = = afl = =
gprocessor differentiate —I if ("listenerl"_equalsIgnoreCase (eventPortID)) —I L H?% | © | x ‘ 4
&grocessor‘d\sswmﬂamty { fnd Kb ALY Activats...
(& processor.double_dispatcher) return elplistenerl; % Uncategorized
(& processor.epochaveraging
rocessor. epochcuttn
Gp P J return null;
G processor, eventeounter)
(& processor.evertdispateher
(= processor.eventfipflop . @ connect Mylyn 2
a public IRuntimeEventTriggererPort getEventTriggererPort (String e

if ("triggerl".equalsIgnoreCase (eventPortID)) J
(return etpTriggerl;

}.f ("trigger2".equalsIgnoreCase {eventPortID))

(return etpTrigger?;

}

return null;

| o

4

Connect to your task and ALM
tools,

=8
T

& Outline 22

- eu.asterics mw.model.r;l
- eu.asterics. mw.model.r
- RLLASTENCS. MW 38rvice:
— java‘uul‘\ogglmg‘LoggeJ
®, TesterFor\Wizardinstance
aF elplistener1 : IRuAtime
@ new RutmeEver
& efpTrigger : IRUNtME

& F einTrinaer? : TR nfime T
4| 3

2. Problems | @ Javadoc 15 Dedaration| B Consale & & SVN Tree Canflicts| ! History| -+ Search|

IE R ECEIETERI R

<terminated> ASTERICS buld:xml (23) [Ant Buid] CiYProgram Fies (86)\lavatjres\bintjavaw.exe (03.10.2011 14:33:17)
TTavETT [LORTIT JaTET TAG NF I8 - CIaoS | Java s [ANg T F 1A T, CIass] |

= nrowassor favt_serder

G processor testerForwizard]
G arc [javac] [loading java‘\lang\Boolean.class (java\lang:Boolean.class)]
5 main [javac] [loading java\lang\Void.class(java\lang:Void.class)]
& java [javac] [wrote Ciheclipselworkspace\AsTeRICS\ARE\componentsioutiproduction\processor.testerkFo
.G- oLl [javac] [wrote C:leclipse\workspace\AsTeRICS\RRE\componentshout'production\processor.testerFo
VE-‘ asterics [javac] [wrote C:iheclipselworkspace\AsTeRICS\ARE\componentshoutiproduction\processor.testerFo
(% component [javac] [wrote C:h\eclipse\workspace\AsTeRICS\ARE\components\outiproducticn\processor.testerFo
3 processor . [Javac] [total 422ms]
G testerForwizard Jar: . .)
2 TesterForwizardinstance. java [jar] Bullclilng jar: C: \ecllpse\workspace\ASTeRICS\ARE\components\asterlcs -processor.testerF
G resoLrces [copy] Copying 1 file to C:i‘eclipse\workspace‘\AsTeRICS\examples\ARE
.Q}-MEFA—INF BUILD SUCCESSEFUL
l’; burele_descriptor.mi Total time: 843 milliseconds _
s build.xml hd

4

o

Wiritable Smart Insert 4:33]

To see the plugin in the ACS editor window and/or start it inside the runtime environment, the
Plugin Activation Tool can be used (see section 3).

3.2 Plugin Activation in ACS and ARE

To use a new AsTeRICS plugin which has been built using the Eclipse build flow and exists
as executable .jar file/OSGI bundle, two steps are necessary:

1. The name of the .jar file of the bundle has to be added to the “loader.ini” file of the
AsTeRICS Runtime Environment (ARE). This file is located in the /profile subfolder
of the ARE and specifies bundles/components that are loaded by the ARE at startup.
All plugins which are used in ARE models — or to be precise: the bundles which
contain those plugins — have to be loaded in the ARE framework to be available for
deployment. To add the new plugin, simply open the loader.ini file with a text editor
and add the name of the .jar file. Then, restart the ARE so that the new bundle is

loaded and activated.

Page 28

AsTeRICS Developer Manual

2. The Plugin has to be announced to the ACS — so that it gets visible in the graphical
editor and can be used for the creation of deployment models. This is done by
adding the bundle descriptor of the new plugin to a component-collection file
(extension “.abd”) in the ACS-folder. These component collections contain all bundle-
descriptors of components which can be used in the ACS. The new plugin section
can be added either manually or can be downloaded from the running ARE via the
ACS’ Component-Collection Manager (recommended, see 3.2.1). Using the
Component Collection Manger, the downloaded collection can be stored as “default
Component Collection” for the ACS, so that all components will be available when
the ACS is started next time.

Subsequently, the plugin can be selected in the “components” menu of the ACS, and the
ARE will activate the plugin at startup.

3.2.1 Component-Collection Management in the ACS

The ACS provides a function for downloading the bundle descriptions of all active plugins
directly from a running ARE and creating a component collection file from this information.
(“System”- tab, Button “Download Component Collection”):

e r prrrr) a

. v h 1 = = =l = =
» - 7 = 3 = &0} E »
Disconnect Upload Download Download Store Load Model Activate a Delete a Set as

from ARE Model Meodel Component Collection = Model on ARE from Storage Stored Model Stored Model Autorun

The component collection will be stored as “.abd” — file in the ACS folder, subfolder
“componentcollections”. The new component collection can be used right after download, but
will not be available after an ACS restart.

Within the ACS Component-Collection Manager (in the “Miscellaneous” tab), component
collections can be selected or set as default collection for the ACS startup. For details see
the User Manual, ACS section.

Please note that the “loader.ini” — file has to be updated manually in the ARE’s “profile”
subfolder, by addition of the new .jar filename. After restart of the ARE and connection to the
ACS, the component collection can be downloaded.

Page 29

AsTeRICS Developer Manual

4 Writing AsTeRICS Plugin Code

4.1 ARE Coding Guidelines

Coding guidelines are necessary to allow new developers to quickly find their through the
code of the ARE. They are created in such a way to provide means for developers to
understand code of each other but they also make sure that non-technical users can find
their way through a model in ACS.

The basic coding guidelines are:

e Plugins, ports and properties should be named intuitively in the bundle descriptor.
Only if necessary, the corresponding variables in the plugin code should be named
differently. However they should adhere to the naming conventions stated in section
4.1.2 and different names should be commented in the code sections which translate
the name into the variable (getinputPort(), getRuntimeProperty() ...)

e Variable names should always use the Java naming conventions

e Every method should be preceded by a JavaDoc compatible header in order to allow
new developer to grasp what is going on in it

o Where reasonable code comments should be added to improve understanding of
code internals

e Code should be indented by two spaces per indentations stage. Indentations should
be done using space and not tabs. Tabs should be converted to spaces.

e Parentheses should be placed in a separate line to facilitate readability

4.1.1 Port Naming Conventions

Variables of port instances should be named with a prefix indicating what kind of port it is.
The rest of the port name should indicate the port's use and adhere to the standard Java
variable naming conventions. The available prefixes are:

o ip: indicates that the port is an instance of IRuntimelnputPort

e oOp: indicates that the port is an instance of IRuntimeOutputPort

e elp: indicates that the port is an instance of IRuntimeEventListenerPort
e etp: indicates that the port is an instance of IRuntimeEventTriggererPort

A variable holding an event listener port could therefore be named elpKeyPressed.

4.1.2 Property Naming Conventions

Plugin properties should be directly mapped to a variable in the plugin code. The variable’s
should be prepended with the prefix prop and adhere to standard Java naming conventions.
Thus a property could be named InputGainValue and the corresponding variable should be
named proplnputGainValue.

Page 30

AsTeRICS Developer Manual

4.1.3 Bundle Descriptor Naming Conventions

The bundle descriptor should serve as an abstraction layer between the user who creates
models in the ACS and the developer. Thus the names for plugins, ports and properties in
the bundle descriptor should be as intuitive as possible. Names in the bundle descriptor
should not include prefixes because the added information is also conveyed in the
presentation of plugins in the ACS.

The bundle descriptor can translate intuitive names (e.g. input.switch) to the canonical
names of plugins (e.g. Gpiolnputinstance) allowing coexistence of a user and a developer
language. This method of name translation can be applied for plugin names, port names and
property names.

4.1.4 AsTeRICS Source File header

Every source file of the AsTeRICS project which will be released as open source under the
LGPL license should have the following header:

/

AsTeRICS - Assistive Technology Rapid Integration and Construction Set

dssss 88888888888 8888888b. 8888888 .d8888b. .d8888b.
dsg8s8ss 888 888 Y88b 888 d88P Y88b d88P Y88b
d8g8p888 888 888 888 888 888 888 Y88b.
d8g8p 888 .d8888b 888 .d88b. 888 dssp 888 888 "Y888b.
d8g8p 888 88K 888 d8P Y8b 8888888pP" 888 888 "Y88b.
dssp 888 "Y8888b. 888 88888888 888 T88b 888 888 888 "888
d8888888888 X88 888 Y8b. 888 T88b 888 Y88b d88P Y88b d88P
dssp 888 88888P' 888 "y8888 888 T88b 8888888 "Y8888P" "yg8g88p"

homepage: http://www.asterics.org
This project has been partly funded by the European Commission,

Grant Agreement Number 247730

License: GPL v3.0 (GNU General Public License Version 3.0)
http://www.gnu.org/licenses/gpl.html

LR . e S S S . S S R S T S

~

4.1.5 JavaDoc compatible comments

JavaDoc compatible comments should be used to indicate the author of a source file, and to
describe the purpose of a function/method/class and the respective parameters and return
values.

Example for a source file header info:
/‘k*
* Bardisplayinstance.java
Purpose of this module:
Implements the Bardisplay actuator plugin

Date: Mar 7, 2011

*
*
*
* Chris Veigl [veigl@technikum-wien.at]
*
* Time: 10:55:05 AM

*

Page 31

AsTeRICS Developer Manual

Example for a method of a class:

/**

* Returns the value of the given property

* propertyName the name of the property
* the property value

*/

public Object getRuntimePropertyValue (String propertyName)

4.2 Implementing AsTeRICS components

This section describes the basic steps required for implementing an AsTeRICS component
including a brief introduction to OSGi. To illustrate the implementation steps, we take a walk-
through with the implementation of a simple processor component.

The AsTeRICS schemata of the XML descriptors include two concepts: the bundle
descriptors and the deployment descriptors.

4.2.1 The Bundle Descriptors

Bundle descriptors are used to describe the content of an individual bundle (typically
encapsulating one or more components). As such, they contain information about the
included components, their ports, their customizable properties and optionally their GUI.

The following shows a bundle descriptor of a simple processor-plugin (subtype for the ACS
components menu is “Basic Math”). The plugin provides an averaging function for n values
(property “buffer-size”) and has one input port and one output port for integer values:

<?xml version="1.0"?2>
<componentTypes xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="bundle model.xsd">
<componentType
id="asterics.averager"
canonical name="eu.asterics.component.processor.averager.AveragerComponent">
<type subtype="Basic Math">processor</type>
<description>Linked list-based averager</description>
<ports>
<inputPort id="in 1">
<description>Input port of averager</description>
<multiplicity>one-to-one</multiplicity>
<mustBeConnected>true</mustBeConnected>
<dataType>integer</dataType>
</inputPort>
<outputPort id="out 1">
<description>Output port of averager</description>
<dataType>integer</dataType>
</outputPort>
</ports>
<properties>
<property name="buffer-size"
type="integer"
value="50"
description="The size of the averager's buffer"/>
</properties>
</componentType>
</componentTypes>

Page 32

AsTeRICS Developer Manual

4.2.2 The Deployment Descriptor

Deployment descriptors instruct the ARE of the desired application deployment structure.
The deployment descriptor is typically composed in the AsTeRICS Configuration Suite (ACS)
but can also be written with a text editor (as the bundle descriptor). Basically the deployment
descriptor contains several component descriptions (copied from the corresponding bundle
descriptors), actual property values and the channel connection between input- and output
ports of the components.

Please note that the type_id argument of the component element in deployment descriptor
must match the id argument of the componentType element on the bundle descriptor. This is
how the ARE detects the referred plugin type in the deployment model.

The following demo deployment descriptor describes a simple model containing two plugins
and one channel:

<?xml version="1.0" encoding="UTF-8"?>
<model xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="deployment model.xsd">

<components>

<component type id="sensor.SignalSource" id="sensor.SignalSource.l">
<description>A Source of two signal cahnnels </description>
<ports>
<outputPort portTypeID="outportl"/>
<outputPort portTypelD="outport2"/>
</ports>
<properties>
</properties>
</component>

<component type id="actuator.SignalTarget" id="actuator.SignalTarget.l">
<description>A Signal Target</description>
<ports>
<inputPort portTypeID="in x"/>
<inputPort portTypeID="in y"/>
</ports>
</component>
</components>

<channels>
<channel id="channel.l1">
<description>Connects SignalSource.l (outport 1)
to SignalTarget.l (in_x)</description>
<source>
<component id="sensor.SignalSource.l"/>
<port id="outportl"/>
</source>
<target>
<component id="actuator.SignalTarget.1l"/>
<port id="in x"/>
</target>
</channel>
</channels>
</model>

Page 33

AsTeRICS Developer Manual

4.2.3 The Manifest file

The Manifest file tells the bundle name and other informations like import packages and .dlls
to the OSGi. A typical Manifest looks as follows:

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: asterics-processors.averager
Bundle-SymbolicName: eu.asterics.component.processor.averager
Bundle-Version: 0.1.0

DynamicImport-Package: *

Please note the empty line at the end of the Manifest file. It seems that OSGi needs that
empty line in order to work properly. An example of a Manifest file of a component containing
native code .dlls can be found in section 5.13.

4.2.4 Structure of OSGi bundles containing ARE components

As a common OSGi bundle, an AsTeRICS component must be packaged in a JAR file,
containing the class files (object code) and the Manifest file. In addition to these, the
AsTeRICS middleware expects the bundle descriptor. At this point, it should be noted that it
is possible to include multiple AsTeRICS components in a single OSGi bundle, as long as
the bundle descriptor describes all of them.

Overall, the file structure in a typical AsTeRICS bundle looks as follows:

+- eu/
+- asterics/
+- component/
F= coo
+- lib/
+- native/
+- my library.dll
+- META-INEF/
+- MANIFEST.MF
+- bundle descriptor.xml

The Java object code is included in the corresponding folders representing the package
structure (e.g., “/eu/asterics/component/...” etc). Optionally, if libraries are needed - native or
not-, then they are included in the “/lib” folder. The Manifest is included in the “META-INF”
folder as per the standard Java/OSGi practice. Finally, the AsTeRICS bundle descriptor is
included directly in the root of the JAR file (i.e. “/”).

Page 34

AsTeRICS Developer Manual

4.2.5 Component lifecyle

An ARE component implementation needs to realise the actual component with its lifecycle
(i.e., ways to access its ports and properties, and methods realizing its lifecycle). This is
illustrated in the following code:

package eu.asterics.mw.model.runtime;

public interface IRuntimeComponentInstance

{

public void start();
public void pause();
public void resume () ;
public void stop();

public IRuntimeInputPort getInputPort (final String portID);

public IRuntimeOutputPort getOutputPort (final String portID);

public IRuntimeEventListenerPort getEventListenerPort (final String eventPortID);
public IRuntimeEventTriggererPort getEventTriggererPort (final String eventPortID);

public Object getRuntimePropertyValue (String propertyName) ;
public List<String> getRuntimePropertyList (String key);

public Object setRuntimePropertyValue (String propertyName, Object newValue);

public void syncedValuesReceived (HashMap <String, byte[]> dataRow);

Initial

The lifecycle support methods are used to intercept ®
AsTeRICS events concerning the component’s lifecycle. e
In principle, a component can be any of the following: Cj
° READY, [CREATE INSTANCE]
e ACTIVE,

ACTIVE
[stateful)

ISTART

READY STOPPED
(stateless) (stateless)

[STOF!

e SUSPENDED and

[FAUSE] [RESUME]

SUSPENDED
(stateful)

e STOPPED

These states and their possible transitions are illustrated
in the figure on the right:

The rest of the methods are used for supporting the component operations, namely
accessing the input/output ports of the component, as well as getting/setting its supported
properties.

Page 35

AsTeRICS Developer Manual

4.2.6 Step-by-Step implementation: Averager processor

In the following, the implementation on a simpe “averager” component is described. This
component realizes some simple processing functionality: It collects its most recent input
from one input port and produces its average at one output port. The number of samples to
be stored and used for the computation of the average is controlled by a property.

The component shall have a single input port (named “in_1"), a single output port (named
‘out_1), and a single property (named “buffer-size”) which has the type “integer” and the
default value “50”.

Using the PluginCreationWizard, the bundle descriptor, the Manifest file, the build script and
the skeleton for the JAVA-code can be generated (see section3.1).

Then the actual Java-Code which implements the plugin’s functionality can be added.

The functionality of this component is quite simple: It takes as input integer values, which are
gueued in a buffer in a first in, first out order (FIFO). Whenever a new value is added, the
average of the buffer value is computed and provided in the output. The size of the buffer is
controlled by the “buffer-size” property. A possible implementation is shown below.

public static final int DEFAULT BUFFER SIZE = 10;
private final LinkedList<Integer> buffer = new LinkedList<Integer>();
private int bufferSize = DEFAULT BUFFER SIZE;

public Object setRuntimePropertyValue (String propertyName, Object newValue)
{
if ("buffer-size".equalsIgnoreCase (propertyName))

{
final Object oldValue = bufferSize;

if (newValue != null)
{
if (newValue instanceof Integer)
{
bufferSize = (Integer) newValue;
// truncate unnecessary tail elements
while (bufferSize < buffer.size())

{

buffer.removelast () ;

}

else

{
AstericsErrorHandling.instance.reportError (this,
"Invalid property value for "+propertyName+":"+newValue) ;

}

return oldValue;

}

return null;

Page 36

AsTeRICS Developer Manual

private int addInt(final int in)

{
buffer.addFirst (in) ;
if (buffer.size () > bufferSize) buffer.removelast () ;

float sum = 0f;
for (int item : buffer) sum += item;

return Math.round(sum / buffer.size());

}

private class InputPortl implements IRuntimeInputPort

{
public void receiveData (byte[] data)

{
int in = ConversionUtils.byteArrayToInt (data);
outputPortl.sendData (ConversionUtils.intToByteArray (addInt (in)));

}

private class OutputPortl extends DefaultRuntimeOutputPort
{
@Override
public void sendData (byte[] data)
{
super.sendData (data) ;

}

Note that the implementation details above build upon the code which is generated by the
AsTeRICS PluginCreationWizard tool. Specifically, the above methods belong to the class of
the desired “Averager” plugin, which extends and implements the abstract class
“AbstractRuntimeComponentinstance”. This class provides some standard implementation of
the lifecycle support methods.

The implementations of the input and output ports implement or override that of the
“IRuntimelnputPort” and “DefaultRuntimeOutputPort” respectively. In the first case, the
“receiveData” method is overridden so that the input bytes are converted to an integer, then
processed using the local, private method “addInt”, and finally delegated to the output port.
The latter has actually no implementation. A dummy implementation is used to illustrated
overriding the “sendData” method, although this could be avoided altogether.

The private method “addInt” realized the core functionality of the averager component.
Finally, the get/set property value methods are implemented to allow for getting/setting the
value of the “buffer-size” property, in a straightforward manner.

4.2.7 Threading

For detailed information about the threading concept see 8.

4.2.8 Writing plugins using Swing

Page 37

AsTeRICS Developer Manual

If a plugin provides a Swing GUI it should only use the asynchronous method

SwingUtilities.invokelLater (..)

(and not the synchronous one) to perform the GUI updates. This is to prevent a potential
thread deadlock if an action was originally triggered by a Swing GUI event e.g. by a button
click in the ARE GUI. For detailed information about the ARE threading concept see 8.

4.2.9 Long lasting method calls

If a method call performs a long lasting task and there is no need to await the termination of
it, the task should be handed over to a worker thread (see 5.8) to not block ModelExecutor
thread. For detailed information about the threading concept see 8.

4.2.10 Sensor callbacks

In case you write a plugin that uses a separate thread to generate data (e.g. FrameGrabber,
Timer,...) you should explicitly use the method

AstericsModelExecutionThreadPool.execute (..)

This is to ensure that corresponding data will be delivered within the same task execution.
For detailed information about the threading concept see 8. Below is an example of the
FacetrackerLK plugin in the callback method for new arriving coordinates:

public void newCoordinates callback(final int pointl x,
final int pointl y, final int point2 x, final int point2 y)
{

AstericsModelExecutionThreadPool.instance.execute (new Runnable () {
@Override
public void run () {

opNoseX.sendData (ConversionUtils.intToBytes (pointl x));
opNoseY.sendData (ConversionUtils.intToBytes (pointl y));
opChinX.sendData (ConversionUtils.intToBytes (point2 x));

opChinY.sendData (ConversionUtils.intToBytes (point2 y));
}

}
4.2.11 Contributing a developed plugin (git pull request)

The AsTeRICS platform is designed as an open and modular platform. The idea is to make it
easy for others to develop assistive plugins any end-user in the world could benefit from.
Hence, we would love to get your contribution back to the github repository to be able to ship
the new plugin with future releases. For this purpose, please send a pull request.

https://help.qgithub.com/articles/using-pull-requests/

Page 38

https://help.github.com/articles/using-pull-requests/

AsTeRICS Developer Manual

5 Services and Utils: Infrastructure for plugins

The ARE Services are a set of classes that enable the direct interaction between AsTeRICS
plugins and other software to directly interact with the runtime environment. The most
significant ARE Services are:

¢ CIM Communication Service: the ARE CIM Communication service layer is a unified
approach to allow plugins of the ARE to communicate with their associated hardware
modules attached to the AsTeRICS platform via a COM port. A range of hardware
modules are provided which implement the dedicated Communication Interface
Module (CIM) protocol. Further details on this communication protocol and
implementation details for the ARE CIM Communication Service can be found in
chapter 5.14.

e Remote Connection Service: the remote connection services allows external software
that cannot be integrated into the standard plugin inter communication system used
by the ARE, for example because of programming language incompatibilities, to work
with the AsTeRICS system. For example, the interconnection of OSKA (the On-
Screen Keyboard Application developed by AsTeRICS partner SENSORY) and the
ARE uses the Remote Connection Service to send key selection information to the
ARE. On the other hand, the ARE can reply with cell selection commands or other
information. The actual communication is done via a protocol that can be understood
by the Java ServerSocket implementation. The port number that the external software
component connects to identifies the connecting component.

e Local Storage Service: The Local Storage Service will allow plugins to store individual
working data “per model” and “per plugin-instance”. This is necessary when plugins
need to store own calibration data, pattern recognition samples or similar data. In
course of the architectural refinements for the final prototype, a service class will be
provided which generates an according folder and respective file read- and write
methods.

e Native Hook Services for systemwide keyboard and mouse capturing

e Computer Vision services to support a unified way for frame grabbing, computer
vision processing and video frame rendering.

5.1 Communicating with peripherals: CIM Communication service

Communication between actuator and sensor components in the ARE and peripheral
devices is currently defined to use a serial communication i.e. a COM port or a virtual COM
port. Messaging via this interface can either adhere to the CIM protocol (see section 5.14) or
use any other protocol using the raw port implementation of the CIM communication
services.

All the communication with peripheral devices is done through a service in the ARE service
layer called CIM Communication. The service is provided as a separate OSGi bundle which
places its classes in the package eu.asterics.mw.services.cimcommunication. Access to the
classes is done by exporting the entire package in the bundle.

Page 39

AsTeRICS Developer Manual

Four classes of the CIM Communication service are important to the component
programmer:

o CIMPortManager

e CIMController

e CIMProtocolPacket
e CIMEventHandler

5.1.1 CIMPortController

CIMPortController is an abstract class which hides the actual implementation of the port
controller. The port controller provides the same methods for sending packets using the CIM
protocol, for raw port implementations and for future uses such as a port controller handling
Zigbee connections.

5.1.2 CIMPortManager

All CIM ports and other COM ports are access through the main class of the package
CIMPortManager. This is implemented as a singleton with a public access method
getinstance(). Thus all calls to the CIM communication service have to be done through:

CIMPortManager.getInstance ()

Upon creation the CIMPortManager detects all the connected CIMs and registers them in a
HashMap. CIMs are identified and stored by the combination of their CIM Id and their unique
number. Therefore multiple CIMs of the same CIM Id can be used on the AsTeRICS
platform.

On some computers there exist certain serial ports which do not work correctly and behave
strangely. An example of such a port is a loopback port which echoes everything written to it
or ports created by Bluetooth dongles. Since the CIMPortManager iterates through all serial
ports, these ports can cause problems in the auto detection of attached CIMs and even lock
up the runtime. Therefore a file ignore_ports.txt in the directory data/cimcommunication is
parsed upon start of the auto detection. This file should be filled with the name of the COM
ports behaving erratically one name per line.

To be able to communicate with a CIM, the CIM port manager provides several methods:

public CIMPortController getConnection (short cimId)
public CIMPortController getConnection (short cimId, long uniqueNumber)

These methods return a CIMPortController (read on for details) instance of the requested
CIM. The method using two parameters will return the instance to the port controller which
works with the CIM of the exact CIM ID and unique number. If the CIM cannot be found, null
will be returned.

Page 40

AsTeRICS Developer Manual

Requesting a connection without naming a unique number will return the first port controller
connected to a CIM of the correct ID found in the HashMap holding all the port controllers.

Sending data to the connected peripheral can be done in several ways using the following
methods of CIMPortManager:

public int sendPacket (short cimId, byte [] data,
short featureAddress, short requestCode, boolean crc)

public int sendPacket (CIMUniqueldentifier cuid, byte [] data,
short featureAddress, short requestCode, boolean crc)

public int sendPacket (CIMPortController ctrl, byte [] data,
short featureAddress, short requestCode, boolean crc)

Basically these three methods do the same thing, however they do it at different speeds as
the first two methods will look up the port controller that the packet should be sent to. Again
the method taking only the CIM ID as a parameter will look up the first correct port controller.
The third method which is passed the CIMPortController instance returned on
getConnection() is the fastest method and should be used whenever possible.

Sending a CIM packet is done by providing the feature address and request code for a
certain packet. The feature addresses and request codes can be found in the CIM protocol
specification and the basic addresses and requests are also provided as static fields in the
CIMProtocolPacket class. If data has to be attached to a CIM protocol packet a byte array
holding said data has to be passed to the method, otherwise the data parameter of the
method has to be set to null. The caller can also decide whether a CRC checksum should be
added to the packet although this is currently unimplemented.

5.1.3 CIMEventHandler

Receiving a packet is done through use of the CIMEventHandler interface. This interface
should be implemented by plugins that wish to communicate with CIMs (or raw ports). The
interface contains two methods:

public void handlePacketReceived (CIMEvent e);
public void handlePacketError (CIMEvent e);

These methods are called upon correct reception of a packet or upon discovery of an error
(timeout of a reply, packet transmission errors, incorrect order of incoming packets ...)
respectively by the port controller.

Upon correct reception of a CIM protocol based packet the method handlePacketReceived()
is called with an instance of CIMEventPacketReceived as parameter. After conversion of the
CIMEvent to this class, the packet can be extracted from the event and processed further.

All detected errors lead to a call of handlePacketError() with an appropriate CIMEvent
implementation. The possible implemenations are:

Page 41

AsTeRICS Developer Manual

¢ CIMEventErrorPacketFault: holds information to error in packet and the broken
packet itself
o CIMEventErrorPacketLost: holds information on serial number of lost packet

To register the event handler with a specific CIM port controller, the CIMPortController class
exposes the following methods:

¢ addEventHandler(CIMEventHandler hdlr)
e removeEventHandler(CIMEventHandler hdlr)

A port controller can handle multiple attached event handlers and remove each one
separately.

5.1.4 CIMProtocolPacket

This class holds all the information given in a packet transferred to or from a CIM. There are
two ways the developer has to use this class. Upon sending packets the sending component
has to set the feature address and the request code. The CIMProtocolPacket class provides
the constants as static field to facilitate setting commands.

public final static byte COMMAND REQUEST FEATURE LIST 0x00;
public final static byte COMMAND REPLY FEATURE LIST 0x01;
public final static byte COMMAND REQUEST WRITE FEATURE = 0x10;

public final static byte COMMAND REPLY WRITE FEATURE = 0x10;
public final static byte COMMAND REQUEST READ FEATURE = 0x11;
public final static byte COMMAND REPLY READ FEATURE = 0x11;

public final static byte COMMAND EVENT REPLY = 0x20;
public final static byte COMMAND REQUEST RESET CIM = (byte) 0x80;
public final static byte COMMAND REPLY RESET CIM = (byte) 0x80;
public final static byte COMMAND REQUEST START CIM (byte) 0x81;
public final static byte COMMAND REPLY START CIM = (byte) 0x81;
public final static byte COMMAND REQUEST STOP CIM = (byte) 0x82;
public final static byte COMMAND REPLY STOP CIM = (byte) 0x82;

Furthermore the class contains constants for the global features that every CIM has to
provide.

public static final short FEATURE UNIQUE SERIAL NUMBER = 0;

Upon reception of an incoming packet the component associated with the CIM sending the
packet is notified and a reference to the packet is passed as an instance of
CIMProtocolPacket wrapped in a CIMEvent instance. The developer can access all the fields
of the packet via the getter methods the class provides:

public short getAreCimID ()

public byte getSerialNumber ()
public short getFeatureAddress ()
public short getRequestReplyCode ()
public byte[] getData ()

public int getCrc ()

Page 42

AsTeRICS Developer Manual

5.1.5 Serial ports not adhering to CIM Protocol (Raw Ports)

Some peripherals use a proprietary protocol to transfer their data. If this is the case the user
can open a raw port through the CIMPortManager method:

public CIMPortController getRawConnection (String portName, int baudRate)
This will open the port with the name specified in the parameter portName and set the
communication to the specified Baud rate.

Data can be sent to peripheral using the sendPacket() method for the returned
CIMPortController. The packet will simply transfer the byte array passed in the data
parameter and ignore the values giving the in the other parameter fields.

Received data will be forwarded to the event handler through calls to
handlePacketReceived() with a CIMEventRawPacket as parameter. This class holds a public
member variable b which holds the value of the received byte. The event handler has to
handle the reconstruction of the proprietary packet itself.

HighSpeed Raw Ports:

public CIMPortController getRawConnection (String portName, int baudRate,
boolean highSpeed)

A second variant opf the getRawConnection method allows specification of a “highSpeed”
parameter. If highSpeed is true, the CIMPortController does not apply any connection
handling or callbacks for received data to avoid performance problems in higher bandwidth
streaming use cases. In this case, the CIMPortController can return the JAVA InputStream
for the openend COM port connection and the plug developer can use it as desired:

portController =
CIMPortManager.getInstance () .getRawConnection (”COM12”,115200, true) ;
in = portController.getInputStream() ;

if (in.available() > 100) myHandlePacket ((byte) in.read());

5.2 Communication through a socket interface: Remote
Connection Manager

When using third party software that runs on the same platform (as for example the
prominently used On Screen Keyboard Application OSKA), it becomes necessary to
establish a communication between ARE and the third party application. This is managed by
the RemoteConnectionManager found in the package eu.asterics.mw.services. The main
interface to this manager are the classes RemoteConnectionManager and
IRemoteConnectionListener.

5.2.1 IRemoteConnectionListener

This interface is implemented by plugins that need to communicate via a socket
communication. The interface contains the following methods:

void connectionEstablished();
void dataReceived (byte [] data);

Page 43

AsTeRICS Developer Manual

void connectionLost () ;
void connectionClosed() ;

connectionEstablished() is called whenever a plugin requests a connection and the
connection has been established. This can either happen if a connection has already been
established before or if the new connection has finished its setup and connection process.

dataReceived() is called whenever new data arrives from the other end of the connection.
Data is transferred in a byte array and has to be processed by the event listener.

connectionLost() is called when the connection management cannot read from or write to the
socket.

connectionClosed() is called after the connection has been closed.

5.2.2 RemoteConnectionManager

The RemoteConnectionManager is implemented as a singleton and can be accessed via a
public static member of the class. Thus access is always achieved through:

RemoteConnectionManager.instance

A connection is opened by a call the RemoteConnectionManager’s method:

boolean requestConnection (String port, IRemoteConnectionListener 1)

This call will try to access a connection on the specified port. Although the port is actually an
integer it is passed as a String here. The method will return true if a connection on this port
has already been established and attach the remote connection listener passed in the
second argument to the connection. If there is no active connection on the specified port, the
requestConnection method will initiate the setup of the connection and return false. With this
return value the user can decide whether he needs to perform setup actions or will be able to
do this in the connectionEstablished() callback.

The socket connection handling is implemented using two threads, one for sending, one for
receiving data. The receiver thread will continuously read data from the socket and forward it
to the registered listener calling the dataReceived() method. Since incoming data is handled
in another thread than the plugin which will use the socket connection, access to the
methods handling this data or the way of passing data should be done in a synchronised
code block.

Sending data is done calling the method sendData of RemoteConnectionManager:

public boolean writeData (String port, byte[] data)

This method is called using a String holding the port number of the connection socket and an
array of bytes to be sent. The call to this method will place the data in an outgoing queue and
return true if this was successful. Thus it is not guaranteed that the data has already been
sent when the method returns. The sender thread will grab data from the outgoing queue and
transfer it via the socket or call the connectionLost() method of the registered listener if there
are problems while sending.

Page 44

AsTeRICS Developer Manual

Once the connection to a socket is not needed anymore, the user has to close the
connection, calling the following method of RemoteConnectionManager:

public void closeConnection (String port)

This will close the socket connection, end all threads and return.

5.3 Local Storage Service

If a model needs to save its own calibration data, training data or other private data that can
be different in every model and every instance, the local storage service provides a method
to save different data to the same file name on a per plugin instance per model basis.

The service uses a directory tree structure that is placed in the directory the OSGi is run
from. Data is saved in a directory called “storage”. In this directory, directories for every
model name of a model that uses at least one plugin that accesses local storage can be
found. In the third directory layer, directories with the plugin instance name of every plugin
that accesses local storage can be found. Thus if a model named “timertest” uses a plugin
instance named “timer1” that saves local data this data can be found at the path location
“storage/timertest/timer1”.

The service practically consists of only one method:

public File getLocalStorageFile (IRuntimeComponentInstance component, String
fileName)

Calling this method located in the AREServices class will return a File object pointing to the
requested file name or null if the file could not be opened or the model hame could not be
retrieved. After opening the file the standard JAVA ways to manipulate files apply.

5.4 Keyboard/Mouse Native Hook Services

The AsTeRICS service jnativehook (if enabled) provides access to the library
https://github.com/kwhat/jnativehook.

Additionally, the service contains the singleton NativeHookServices that initializes the library
to be usable in plugins. A plugin that wants to be a keaboard/mouse listener only has to add
the listener to the GlobalScreen instance of the library.

5.5 Computer Vision Services

The AsTeRICS services javacv and computervision (if enabled) provide access to the library
https://github.com/bytedeco/javacv, which again provides access to numerous libs in the field
of computer vision (e.g. OpenCV), frame grabbing and frame rendering. Additionally, some
helper classes are provided for face detection.

Page 45

https://github.com/kwhat/jnativehook
https://github.com/bytedeco/javacv

AsTeRICS Developer Manual

5.6 Data Conversion Utilities

The middleware provides the class “ConversionUtils” that provide static helper methods to
convert model data types to byte arrays and vice versa. The conversion is needed to convert
incoming data of input ports or outgoing data to output ports. There are methods for each
type of conversion. If two connected ports (output to input) have different data types the data
is automatically converted to the data type of the input port.

Check the class ConversionUtils for a full list of supported methods:
https://github.com/asterics/AsTeRICS/blob/master/ARE/middleware/src/main/java/eu/asterics
/mw/data/ConversionUtils.java

5.7 Logging

The Logging support provides a uniform way of error reporting in the runtime environment so
we have utilized the Java logging libraries and the various severity levels supported. The
AsTeRICS error handling mechanism is used extensively from the runtime core classes but
also utilized by the AsTeRICS components via the AstericsErrorHandling interface.

Each component is allowed to report an error message, a debug information or a simple
information to be displayed on the screen. The ARE maintains four separate log files and
updates them whenever a new error occurs. In particular there are different loggers for
reporting severe errors, warnings, fine errors and one logger that contains them all.

ARE also maintains a status object for the current status of the runtime environment.
Whenever a fatal error occurs (either internally or caused by one of the deployed
components) the status changes to fatal error. Other possible statuses are unknown, OK,
deployed, running and paused.

The ACS can request the current status of the runtime environment and update its own state
accordingly. For example the ACS user can be informed about the current ARE status while
the ACS will terminate a connection (or refuse to establish a new one) with a non-working
ARE.

Using a Logger is the recommended way to report notifications or error descriptions to the
user. In the ARE framework, using the Java logging service is recommended. The Java
logger can be configured using the file “logging.properties” (see section 2.3.3.1) and used as
follows:

import java.util.logging.Logger;
()

Logger.getAnonymousLogger () .info ("Component started ");

ARE provides a unified logging and error reporting mechanism. The AstericsErrorHandling
class provides 4 types of loggers to be used by the ARE, deployed components and the

Page 46

https://github.com/asterics/AsTeRICS/blob/master/ARE/middleware/src/main/java/eu/asterics/mw/data/ConversionUtils.java
https://github.com/asterics/AsTeRICS/blob/master/ARE/middleware/src/main/java/eu/asterics/mw/data/ConversionUtils.java

AsTeRICS Developer Manual

ACS. It also provides methods for status checking which are responsible for monitoring the
current status of the ARE and deployed Components.

The 4 different loggers correspond to different severity levels as follows:

Level severe: only severe errors are logged. Such errors cause an ARE failure and must be
addressed immediately. Severe loggers should be used only by ARE. Errors of this type will
be written in the “asterics_logger_severe.log” file.

Level warning: only warnings and upper level messages are logged. Warnings are important
and must be addressed soon but not as fatal as the severe errors. Warnings can be logged
by components using the following method call:

public void reportError (IRuntimeComponentInstance component, String errorMsg)

The messages will be written in the “asterics_logger_warning.log” file.

Level info: only informative and upper level messages are logged. Use this logger when you
normally wanted to print something on the screen.

public void reportInfo (IRuntimeComponentInstance component, String info)

The messages will be written in the “asterics_logger.log” file.

Level fine: only debug and upper level messages are logged. Usage of this logger is mainly
for debugging or development time. Use the following command:

public void reportInfo (IRuntimeComponentInstance component, String info)

The messages will be written in the “asterics_logger_fine.log” file.

Please note that each logger by default also logs all messages with severity level higher than
its own as well. E.g. the warning logger logs warning and severe messages, the info logger
logs informative, warning and severe messages etc.

5.7.1 Status checking

The status checking mechanism is responsible for recording the current status of the ARE or
the error state of a component. The status is recorded by creating and storing objects called
statusObjects. A statusObject stores the status of its creator as a string, its creator (the ARE
or the specific component) and the error message.

Page 47

AsTeRICS Developer Manual

public static void setStatusObject (String status, String componentID,
String errorMsqg)

The status of the ARE can be one of the following strings:

UNKNOWN: initial state for the ARE

OK: ARE is running and ready to deploy a model

DEPLOYED: A model has been deployed and the ARE is now ready to run the model
RUNNING: A model is running on the ARE

PAUSED: A model has been deployed and the ARE is in paused mode

ERROR: An error occurred

FATAL_ERROR: A fatal error occurred, model or deployment aborted

The status of a component can only be the ERROR state because this is the only state of a
component that we are interested in recording for later use. An ERROR statusObject is
automatically created when a component calls the reportError method as described above.

For retrieving the statusObijects, the following method is used:

public StatusObject[] queryStatus (boolean fullList)

This method is particularly useful for the ACS to determine the current status of the runtime
environment and of the deployed components. If the ARE or one of the components are in a
problematic state it can be reflected in the ACS.

The boolean fullList argument specifies whether the error list to be returned will include all
statusObjects generated since the ARE startup or just those that have not been requested by
the ACS before.

5.8 The ARE Thread Pool

In order to avoid resource greedy threads and to achieve best thread handling, ARE uses
one of the Thread Pool implementations provided by Java since JRE 1.5. In particular, we
have utilized the java.util.concurrent.Executors library for creating a CachedThreadPool.

A cached thread pool will create threads as needed but will reuse previously instantiated
threads when they are available and inactive. A cached thread pool is particularly useful for
many short-lived asynchronous tasks and improves the performance of the runtime
environment.

Page 48

AsTeRICS Developer Manual

Developers are expected to use the ARE thread pool for executing their tasks that require a
new Thread. You will need to import the middleware services package in order to get access
to the AstericsThreadPool class.

5.9 The ARE GUI support

The ARE provides a panel area (“ARE Desktop”) where plugins can display their graphical
elements using the ARE GUI support classes. The ACS provides a dedicated canvas editor
that allows end users positioning and resizing graphical elements of the plugins. Based on
this information, the ARE displays plugins on the local device, maintaining the correct screen
position and aspect ratio of graphical elements with respect to the screen resolution of the
deployment device. (For more information about the usage of the ACS GUI editor and the
ARE GUI control panel refer to the User Manual.)

 ASTERICS Runtime Environment 22 _ Hork chrsveiglPC IP05.20351 @ =] | X @ & ajusomenCure,test- AsTeRICS Configuration Sulte =r |
System Components Edit Misc.

Cannect Model| New,

g E\k
(e

= [Propertes (Cui-P) -3
.| GUIProperties: GUI Propeni es

[EJR

¥ Praperties (Cti-P) | Qutput Ports

ARE Status Disconnected 100% il 4.

GUI composition using the ACS GUI designer (right), resulting ARE GUI (left)

In order to be recognized as GUI-plugin by ACS and ARE, the bundle descriptor of the plugin
has to be extended with a dedicated <gui> entry, which specifies the default size in a virtual
coordinate system of 10000/10000 pixels. In the deployment model, the ACS will create
position and size information according to the area defined in the ACS GUI designer.

<gui>
<width>5000</width>
<height>3000</height>
</gui>

The gui element addition to the bundle descriptor

The AsTeRICS middleware provides some services to the plugin developers in order to allow
them displaying their GUI element onto the ARE Desktop. The middleware services
encapsulate the complexity of dealing with positioning and allow displaying all GUI elements
onto the same container: the ARE Desktop.

Page 49

AsTeRICS Developer Manual

All GUI services are defined in eu.asterics.mw.services.AREServices so developers need to
import this class in order to get access to the following methods:

void displayPanel (JPanel panel, IRuntimeComponentinstance componentinstance,
boolean display)

This method is used for displaying (or hiding) a plugin’s panel at/from the ARE
desktop. Developers need to pass

o the panel they want to be displayed (or removed)

o the plugin object, in order to help the middleware finding the desired position and
dimensions from the deployment model

o aboolean argument specifying if they wish to hide or show the given panel.
Dimension getAvailableSpace(IRuntimeComponentinstance componentinstance)

The space that each plugin will occupy on the ARE desktop is defined by the designer
on the ACS and passed to the ARE via ASAPI. Plugin developers can get the
available space for their graphical elements by calling the getAvailableSpace method
which will return the space occupied for the plugin object passed as argument.

Point getComponentPosition (IRuntimeComponentinstance componentinstance)

The positioning of plugin’s GUI elements is defined by the designer on the ACS and
passed to the ARE via ASAPI. Plugin developers can get the position of their
graphical elements by calling the getComponentPosition which will return the position
on screen for the plugin object passed as argument.

void adjustFonts(JPanel panel, int maxFontSize, int minFontSize, int offset)

This service can be used by plugin developers interested in auto-adjusting the fonts
of their GUI components depending on the space occupied for their plugins on the
ARE desktop. They need to pass

o a panel to which all the internal fonts will be auto-adjusted
o the maximum font size (in case there is more space available than needed)

o the minimum font size, in case there is too little space which causes the text to
become non-readable. Finally, the offset argument is used in case we want to
occupy a percentage of the available space.

A good approach to GUI plugin development is to analyse existing plugins which provide GUI
elements, e.g. the BarDisplay or Oscilloscope actuators, or the Slider or Cellboard sensor
components.

If the plugin uses Swing to implement a GUI-widget (e.g. Slider,...), please check the
following guidelines as well 4.2.8

Page 50

AsTeRICS Developer Manual

5.10 ARE core events notification services

The ARE core events notification service allows plugins to register/unregister to the ARE
middleware in order to receive notifications of ARE core events.

e void registerAREEventListener(IAREEventListener clazz)

It is sometimes necessary that plugins can be notified of various ARE events so they
can react as needed. This method can be called by component instances that wish to
be notified of such ARE events. Currently, the core events supported are:

o preDeployModel: registered ARE event listeners will be notified just before the
deployment of a model.

o postDeployModel: registered ARE event listeners will be notified immediately
after the deployment of a model.

o preStartModel: registered ARE event listeners will be notified just before the
currently deployed model is started.

o postStopModel: registered ARE event listeners will be notified immediately
after the deployed model has been stopped.

¢ void unregisterAREEventListener(IAREEventListener clazz)

Plugins already registered for receiving ARE core events can un-register using this
method.

5.11 Dynamic Properties

In some applications, the ACS should be able to provide several options for property values
which are not known in advance but depend on the current state of the ARE (see AsTeRUCS
User Manual, section “Dynamic Properties”).. A typical example is the selection of a file
which is available in the ARE file system (e.g. a .wav-file for the wave player plugin). This
feature is particularly useful for plugins that are hardware dependent (selecting e.g. a
soundcard or a midi player), or depend on the file system.

If a plugin is implementing a dynamic property, the values will be requested from the ARE, as
soon as the ACS is synchronized with the ARE, via the ASAPI function:

List<String> getRuntimePropertyList(String componentID, String key).

The ARE middleware will forward the request for valid property values to the component
instance with the given ID. The List<String> getRuntimePropertyList(String key) method has
to be implemented in the AbstractRuntimeComponentinstance class which every AsTeRICS
component extends.

The method implementation creates the list of valid properties and returns it to the
middleware and the latter forwards the string list to the ACS via ASAPI. The ACS will
dynamically update the property list in the properties window.

For an example of the dynamic property implementation, see the WaveFilePlayer plugin.

Page 51

AsTeRICS Developer Manual

5.12 Data Synchronization

Some plugins need data of multiple input ports to be able to start processing. Without data
synchronization it is possible that one input port of a plugin receives multiple values before
another port gets one value, although both signal channels deliver values at the same
sampling rate.

The synchronization service provides a buffering mechanism at the middleware level that can
be utilized by plugin developers in order to make sure that incoming data of selected input
ports arrives synchronized.

To use the synchronization service in the plugin code, plugin developers are expected to
extend the DefaultRuntimelnputPort instead of implementing the IRuntimelnputPort.
Basically, DefaultRuntimelnputPort provides a default implementation for the necessary
buffering methods, as shown in the table below.

public abstract class DefaultRuntimeInputPort implements IRuntimeInputPort {

private boolean buffering;
public void receiveData(final byte [] data) {

}

public void startBuffering (AbstractRuntimeComponentInstance c,
String portID) {
this.buffering = true;

J

}

public void stopBuffering (AbstractRuntimeComponentInstance c,
String portID) {
this.buffering = false;

}
public boolean isBuffered () {return this.buffering;}

The designer can define that a plugin's input port should be synchronized with some other
input ports via the ACS. This will cause an argument change of the inputPort element on the
deployment model file (e.g., <inputPort portTypelD="inB" sync="true">).

As soon as a model is deployed on the ARE, the middleware collects per component every
port noted as synchronized port. When the model is successfully deployed and started, the
ARE will buffer data which enters synchronized input ports until data on all synchronized
ports has arrived. At that point, the ARE will call a new AbstractRuntimeComponentinstance
callback method.

Developers that wish to support data synchronization need to implement the following
method at their component instances.

public void syncedValuesReceived(HashMap<String, byte[]> dataRow)

Where dataRow is a HashMap between Input Port ID and byte[]. For synchronized input
ports, instead of implementing the regular void receiveData(byte[] data) method which
delivers incoming data of a single port, developers need to implement the

Page 52

AsTeRICS Developer Manual

syncedValuesReceived method which will be called from the ARE with synchronized data
from all the input ports that have been selected.

Page 53

AsTeRICS Developer Manual

5.13 Interfacing Native C/C++ Code via JNI

5.13.1 Specifying native libraries in the Manifest

The Manifest file of a bundle which includes native libraries has to specify these .dlls as
shown in the following example:

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: asterics-sensors.mycomponent
Bundle-SymbolicName: org.asterics.mycomponent
Bundle-Version: 0.1.0
Bundle-NativeCode: lib/native/mylibl.dl1;
lib/native/mylib2.d11;
lib/native/mylib3.d11;
osname=win32;processor=x86;
osname=win;processor=x86-64;
osname=win8;processor=x86;
osname=win8;processor=x86-64;
osname=windows 8;processor=x86;
osname=windows 8;processor=x86-64;
osname=windows8;processor=x86;
osname=windows8;processor=x86-64;
osname=Windows 8.1;processor=x86;
osname=Windows 8.1;processor=x86-64
DynamicImport-Package: *

Components which interface native code via JNI and their respective manifest files can be
found in the SVN, e.g. the “webcamera” component or the signal processing plugins by
Starlab.

Note that the .jar containing the .dlls can be built manually using the command:

jar -cvfm ..\mybundle.jar META-INF\MANIFEST.MF .

5.13.2 Java-Implementation: JNI-Bridge

The recommended way to interface Java code of an ARE component with native code in a
.dll is a bridge class which encapsulates the JNI functions and callbacks and maps the
functions of the ARE component’s lifecycle-, port- and property-management to the
corresponding functions in the native code. Here is a simple example which comprises one
component property and receives data callbacks from a thread implemented in C. The
received values are transferred to the component’s output port:

package org.asterics.jni;
import org.asterics.mycomponent.MyComponentInstance;
import java.util.logging.Logger;

public class Bridge

Page 54

AsTeRICS Developer Manual

7 Statically load the native library =

static

{
System.loadLibrary ("mylibl™); // loads mylibl.dll
System.loadLibrary ("mylib2"); // loads mylib2.d1l1l
System.loadLibrary ("mylib3"); // loads mylib3.dll

}

private static final Logger logger = Logger.getAnonymousLogger () ;
private final MyComponentInstance.OutputPort my outport;

public Bridge (final MyComponentInstance.OutputPort my outport)
{
this.my outport = my outport;
}
/**
* Activates the underlying native code/hardware.
*
* @return 0 if everything was OK, a negative number otherwise
*/
native public int activate();
/**
* Deactivates the underlying native code/hardware.
*
* @return 0 if everything was OK, a negative number otherwise
*/
native public int deactivate();
/**
* Gets the value of the named property.
*
* @param key the name of the property to be accessed
* @return the value of the named property

7/
native public String getProperty(String key);
/**
* Sets the named property to the defined value.
*
* @param key the name of the property to be accessed
* @param value the value to be assigned to the named property
* @return the value previously assigned to the named property
*/
native public String setProperty(String key, final String value);
/**
* This method is called back from the native code on demand to signify
* an internal error. The first argument corresponds to an error code
* and the second argument corresponds to a textual description
* of the error.
* @param errorCode an error code
* @param message a textual description of the error
*

/
private void errorReport callback(
final int errorCode,
final String message)
{
logger.severe (errorCode + ": " + message);
}
Jx*
* This method is called back from the native code to send data
* to the component’s output port.
*
* @param datal (range is [0, Short.MAX VALUE])
=y
private void newData callback(final int datal)
{
my outport.sendData (datal) ;
}

Page 55

AsTeRICS Developer Manual

5.13.3 C-Implementation: Callbacks and JNI code

The native C-code needs to be compiled into a .dll and include the JNI header files and
libraries. An example for the Microsoft Visual Studio compiler looks as follows:

The following C-example shows how to implement a JNI-callback from a C-thread and an
ARE-compliant exchange of a component property:

#include <jni.h>

static JavaVM * g jvm;
static jobject g obj = NULL;

const char * propertyKey = "myProperty";
const char * propertyValue = "20";

JNIEXPORT jint JNICALL Java org asterics jni Bridge activate
(JNIEnv * env, jobject obj)
{

jint error code = 0;
error code = env->GetJavaVM(&g jvm);
if (error code != 0)

{
return error code;
}
jclass cls = env->GetObjectClass (obj) ;
jmethodID mid = env->GetMethodID(cls, "newData callback", "(IIII)V");
if (mid == NULL) return -1; /* method not found */
// explicitly ask for a global reference
g obj = env->NewGlobalRef (obj);

my c thread init();
return error code;

}

JNIEXPORT jint JNICALL Java org asterics jni Bridge deactivate
(JNIEnv * env, jobject obj)
{
jint error code = 0;
my c_ thread exit();
env->DeleteGlobalRef (g _obj);
return error code;

}

JNIEXPORT jstring JNICALL Java org asterics_jni Bridge getProperty
(INIEnv *env, jobject obj, jstring key)
{
const char *strKey;
Jjstring result;

if (key == NULL) return NULL; /* OutOfMemoryError already thrown*/
strKey = env->GetStringUTFChars (key, NULL) ;

if (strcmp (propertyKey, strKey) == 0)
{
result = env->NewStringUTF (propertyValue) ;

result = NULL; /* property was not found */
}
env->ReleaseStringUTFChars (key, strKey);
return result;

Page 56

AsTeRICS Developer Manual

JNIEXPORT jstring JNICALL Java org asterics jni Bridge setProperty
(JNIEnv *env, jobject obj, jstring key, jstring value)
{
const char *strKey;
const char *strValue;
jstring result;

if (key == NULL) return NULL; /* OutOfMemoryError already thrown*/
strKey = env->GetStringUTFChars (key, NULL) ;

if (value == NULL) return NULL; /* OutOfMemoryError already thrown */
strValue = env->GetStringUTFChars (value, NULL) ;

if (strcmp (propertyKey, strKey) == 0)

{
result = env->NewStringUTF (propertyValue) ;
pollingIntervalValue = strValue;

result = NULL; /* property was not found */
}

env->ReleaseStringUTFChars (key, strKey);
env->ReleaseStringUTFChars (value, strValue);
return result;

// prepare JNI callback

JIJNIEnv *env;

g_jvm->AttachCurrentThread((void **)e&env, NULL);

jclass cls = env->GetObjectClass (g obj);

jmethodID mid = env->GetMethodID(cls, "newCoordinates callback", " (IIII)V");

// perform JNI callback
env->CallVoidMethod ((jint)my new data);

This native C-code needs to be compiled into a .dll, the JNI header files and libraries have to
be specified to the compiler and linker respectively. An example for the Microsoft Visual
Studio build tools looks as follows:

cl -c -I "C:\Program Files (x86)\java\jdkl.6.0 21\include" -I "C:\Program Files
(x86)\java\jdkl.6.0 21\include\win32" -I ".\3rdparylib" my c file.cpp /ZI /nologo
/W3 /WX- /0d /Oy- /D "WIN32" /D " DEBUG" /D " WINDOWS" /D " CRT_SECURE NO WARNINGS"
/D "_VC80_UPGRADE=0x0710" /D " MBCS" /Gm- /EHsc /RTCl /MTd /GS /fp:precise
/Zc:wchar t /Zc:forScope /Gd /analyze- /errorReport:queue

link my ¢ file.obj /DLL /OUT:".\my c file.dll" /INCREMENTAL:NO /NOLOGO
/LIBPATH:"libmsvc" /LIBPATH:"3rdparylib" "odbc32.1ib" "odbccp32.1ib" "comctl32.lib"
"winmm.lib" "opengl32.lib" "o0le32.lib" "strmiids.lib" "uuid.lib" "kernel32.1lib"
"user32.1lib" "gdi32.1lib" "winspool.lib" "comdlg32.1lib" "advapi32.lib" "shell32.1ib"
"oleaut32.1lib" /NODEFAULTLIB:"libcd.lib" /NODEFAULTLIB:"atlthunk"
/NODEFAULTLIB:"LIBCMT" /MANIFESTUAC:"level='asInvoker' uiAccess='false'" /DEBUG
/SUBSYSTEM:WINDOWS /TLBID:1 /DYNAMICBASE:NO /MACHINE:X86 /ERRORREPORT:QUEUE

Note that the compiler and linker switches may differ depending on the nature of your
dependency libraries and setup.

Page 57

AsTeRICS

Developer Manual

5.14 External Helper Applications and Tools for Plugins

Some pluings make use of external helper applications which are self-contained binary
executable files and communicate with the particular ARE plugin (usually via a socket

interface). These helper applications are stored in the folder ARE/tools.

Currently, the following plugins use external tools:

Plugin Name

Helper Application and Purpose

Interface

SpeechProcessor

Tools/SpeechProcessor.exe

This application creates an instance of the
Microsoft speech server for speech synthesis
and recognition. It accepts a list of commands
from the plugin and sends back recognized
voice commands.

TCP/IP socket

OscGestureFollower

Tools/GestureFollower/gfOSC_v1.4.exe

The GestureFollower algorithm by IRCAM.
Allows training and recognition of several
signal patterns (for example from
multichannel sensor data).

TCP/IP socket, Open
Sound control (OSC)
protocol

FaceTrackerCLM

Tools/EyesStateTrainer/EyesStateDetect.exe
Tools/EyesStateTrainer/EyesStateRecord.exe
Tools/EyesStateTrainer/EyesStateTrain.exe

Training application for detection of open or
closed eyes of a user for application with the
FaceTrackerCLM plugin. The training process
is exaplained in the Model Guide for the
FaceTrackerCLM plugin.

Offline, interface via
file

SSVEPStimulator

Tools/blit.exe

Creates a flickering images from a given
bitmap file and it’s x/y coordinates on the
desktop screen for Software-generated visual
stimulation in SSVEP BCI tasks.

Commandline
parameters to the
application call

SSVEPFileWriter
ProtocolSSVEPTrain
SSVEPDetect

Tools/SSVEPTrainFunction.exe

Finds significant frequencies in an SSVEP
training recording which has been generated
by the SSVEPFileWriter plugin

Offline, interface via
file:

Page 58

AsTeRICS Developer Manual

6 Communication Interface Modules and Protocol

This section describes the communication protocol between the AsTeRICS Runtime
Environment and the Communication Interface Modules (CIMs) via the USB standard
interface.

The CIM — protocol is a bi-directional communication standard between ARE and the
external modules. As described in chapter 5.1, the ARE provides services for connection and
communication with external hardware modules, if these modules support the CIM
communication protocol in their firmware. The CIM protocol defines a unique ID for the CIM
type, and commands for reading and writing so-called “features” from/to the CIM.

All USB CIMs will be identified and will communicate via USB CDC virtual serial ports. (If
desired, a CIM could be connected also via a real serial port and use the same protocol.)

Usually, no system driver development is needed to obtain a virtual COM port when a CIM is
plugged into the computer's USB port: An appropriate .inf-file is sufficient to create the COM
port in the Windows operating system. This .inf file has to be specified only at the first
connection.

Currently, two different .inf files are supplied with the AsTeRICS Runtime distribution:

e the Arduino.inf (for the Arduino UNO microcontroller which is used for general
purpose digital I/O and analog input via the Arduino processor plugin

¢ the .inf file for all IMA CIMs (Analog In, Digital In/Out, Acceleration CIM, ..)

In the communication process, the ARE acts as master and the CIM acts as slave: The CIM
will usually answer only on a request from the ARE.

Additionally, CIMs could send data without being requested from the ARE — for example
periodic updates of a value. These periodic updates use a reserved

The CIMs provide a full list of supported features upon an identification request. This offers
flexibility if a new module type is manufactured, where already known features with known
commands are integrated but the number and combination of features is different from the
previous module types.

To provide the possibility to identify CIMs of the same type in the ARE (e.g. when two GPIO
CIMS are connected), a unique serial number is hardcoded in firmware and can be queried
via a feature request.

Page 59

AsTeRICS Developer Manual

6.1 Communication Mechanism and Packet Format

The following table shows the CIM protocol structure:

Data field

Size
(bytes)

Range of
values

Description

Packet ID

“@T’ (0x4054
)

In case of the lost packet synchronization the 2-bytes packet ID
helps to identify the beginning of a packet, so that a lost
communication with the CIM will be resynchronized

ARE ID

(CIMID)

If the packet is sent from ARE to CIM, the ARE-ID identifies the
ARE software version (e.g. “OX010E” means 1.14).

If the packet is sent from CIM to ARE, the CIM-ID identifies the
CIM type in the MSB and the CIM version in the LSB (e.g.
“0x0105” means CIM type 0x01 = HID actuator, version 5).

The CIM version informs the ARE about specific feature
deviations due to hardware and/or firmware revisions.

The CIM may refuse to execute or respond to certain or all
commands from ARE, if the ARE version value is below the
minimum compatible version required

Data Size

0x0000-
0x0800

Some of the commands or the answers from CIM may require
optional data like the ADC/DAC values. The size says how
many data is attached to the command or answer. The
maximum data size is limited to 2048 bytes. If ARE sends a
higher size value, the CIM will handle it as incorrect packet and
it will not respond to it, but try to resynchronize the packet
reception. In case there is no data attached to the packet this
value will be 0x0000.

Serial packet
number

0x00-0x7f
(0x80-0xff for
event-replies
from CIM)

The serial number in a packet which is sent from ARE to CIM is
incremented by the ARE every packet, with values ranging from
0x00 to 0x7f. The CIM sends the same value in the response
packet. This helps to identify what reply belongs to which
request.

A packet which is sent from CIM to ARE without request (e.g. in
reaction to an event or periodically) will have different serial
numbers with the highest bit (0x80) set, incremented by the CIM

CIM-Feature
address

This value from 0x0000 to Oxffff defines the addressed CIM-
feature. The feature address 0x0000 holds a serial number
which is unique for all manufactured CIMs of a specific type. All
other features (and the associated addresses) will be defined for
a particular AsTeRICS CIM-Type. A feature definition includes
the amount of data which is expected in the optional data field. If
a command is not associated with a specific feature (e.g. the
request “get feature list”) the feature address can have any
value and will have no effect. For a specification of currently
defined features please refer to section 6.3.

Request Code

(Reply code)

The LSB of this value represents a command code which is
globally valid for all CIM-Types.

If sent from ARE to CIM, the MSB specifies the transmission
mode.

If sent from CIM to ARE, the MSB holds an error/status code
related to the transmission. For a detailed description of
Request/Reply codes please refer to section 6.2.

Optional data

0-2048

The packet can contain up to 2048 bytes of additional data. The
actual length is given in the “Data Size” field.

Optional CRC
checksum

Oor4

CRC32
checksum

(if CRC-Bit in “Command”-field is set)
CRC32 with 0x04c11db7 polynomial used also in e.g. ZIP or
Ethernet protocol.

Page 60

AsTeRICS Developer Manual

CIM Protocol Important notes:

o ltalic descriptions refer to communication from CIM to ARE

¢ All integer values (version, data size, serial number, feature address, command,
checksum) in the packet are stored in little-endian format in the packet.

e The minimum packet size (without optional data, without CRC) is 11 byes,
the maximum packet size (2048 bytes data, CRC) is 2063 bytes.

6.2 Request/ Reply - Code

The request-/reply codes have to be supported by all CIMs and specify a generic way to
read/write features etc. Requests are sent from ARE to CIM, replies are sent from CIM to
ARE — and are usually a direct acknowledgement to a request. The only exception is when a
CIM replies data periodically or on occurrence of an event.
All CIMs have to implement command with codes < 0x80, others can be implemented
optionally (e.g. the command 0x80-“reset CIM” could be useful to re-initialise CIM-functions,
0x82-“stop CIM” could establish a failsafe state if necessary.)

A request/reply consists of a high-byte (MSB) and a low byte (LSB). The LSB specifies the
actual command-ID. In case the packet is sent from ARE to CIM the MSB specifies the
transmission mode (e.g. with/without CRC). In case the packet is sent from CIM to ARE, the
MSB holds an error / status information

MSB (8-bit) LSB (8-bit)
Mode / Status code Request/Reply code

Every request from ARE to CIM will be acknowledged by a corresponding reply packet. A
reply packet may contain feature-associated data

6.2.1 Request/Reply Code in LSB

Request / Direction Description Expected Data

Reply code

0x00 ARE—CIM request feature list -

0x00 CIM—ARE reply feature list list of supported features
(eg. 8 bytes for 4 feature
addresses)

0x10 ARE—CIM request write feature bytes according to feature

0x10 CIM—ARE reply write feature bytes according to feature

0x11 ARE—CIM request read feature bytes according to feature

0x11 CIM—ARE reply read feature bytes according to feature

0x20 CIM—ARE event reply bytes according to feature

0x80 ARE—CIM request reset CIM =

0x80 CIM—ARE reply reset CIM -

0x81 ARE—CIM request start CIM -

0x81 CIM—ARE reply start CIM -

0x82 ARE—CIM request stop CIM =

0x82 CIM—ARE reply stop CIM -

Page 61

AsTeRICS

Developer Manual

6.2.2 Mode / Status code in MSB

Mode / Direction Description

Status code

Bit 0 ARE—CIM CRC-mode:
Bit value ==0 :CRC is not appended to packet and not checked on
receiving side
Bit value ==1: CRC is checked on receiving side,
packet is dropped if CRC wrong;

Bits 1-7 ARE—CIM Currently not used

Bit 0 CIM—ARE CRC-mode, as in received packet from ARE

Bit 1 CIM—ARE Error 1: Lost packets
(serial number mismatch)

Bit 2 CIM—ARE Error 2: CRC mismatch

Bit 3 CIM—ARE Error 3: Invalid or unsupported feature

Bit 4 CIM—ARE Error 4: Invalid ARE version

Bit 5 CIM—ARE Error 5: CIM not ready

Bit 6 CIM—ARE Currently not used

Bit 7 CIM—ARE Other Error, description available in data field

6.3 Feature Lists and CIM-IDs of all AsTeRICS CIMs

The following section defines the CIM-ID’s, the feature addresses and the expected data for

a particular feature request/reply for all AsTeRICS CIMs.

6.3.1 HID-CIM
CIM-ID Feature- Access Descritption Data
address
0x0101: 0x0000 r Unique serial number 4 bytes
HID 0x0001 w MOUSE x/y pos 4 bytes: xxyy
actuator (relative change)
version 1 0x0002 w MOUSE buttonstate 1 byte:
Bit O=left click, Bit 1=right click,
Bit3=middle click
0x0003 W MOUSE wheel 1 byte: wheel displacement
0x0010 w KEYBOARD keypress 2 bytes: keycode, modifier
0x0011 w KEYBOARD keyhold 2 bytes: keycode, modifier
0x0012 w KEYBOARD keyrelease | =-=----m—-
0x0020 w JOYSTICK joylpos-analog 4 bytes: xxyy
0x0021 w JOYSTICK joy2pos-analog 4 bytes: xxyy
0x0022 w JOYSTICK joy3pos-digital 1 byte:
Bits 0-3: left/right/up/dwn
0x0023 w JOYSTICK joybuttonstate 2 bytes:
Bits 0-9: button pressed 0/1

Page 62

AsTeRICS

Developer Manual

6.3.2 PT-1 GPIO - CIM (Legacy GPIO)

CIM-ID Feature- Access Descritption Data
address
0x0201: 0x0000 r Unique serial number 4 bytes
GPIO 0x0001 r GPIO Input State 1 byte:
version 1 Bit 0 = Input 1; Bit 7 = Input 8
sensor/ 0x0002 riw GPIO Input Threshold Voltage | 4 bytes:
actuator, bytes 0,1: threshold voltage value for
inputs 1-4 (0 to 25000 mV)
bytes 2,3: threshold voltage value for
inputs 5-8 (0 to 25000 mV)
0x0003 riw GPIO Input Pullup State 1 byte:
Bit 0 = Input 1; Bit 7 = Input 8
Value: 0 = off; 1 = on, 33K resisor
connected to 3.3 V
0x0004 riw GPIO Input Value Change 1 byte:
Event Bit O = Input 1; Bit 7 = Input 8
Value: 0 = off; 1 = on
0x0005 riw GPIO Periodic Input Value 2 bytes:
Event bytes 0,1: period time 0 (off) to 65535
milliseconds
0x0010 riw GPIO Output State 1 byte:
Bit 0 = Output 1; Bit 7 = Output 8
0x0011 riw GPIO Output Pullup State 1 byte:
Bit 0 = Output 1; Bit 3 = Output 4
Value: 0 = off; 1 = on
0x0020 w Store current CIM state to none
EEPROM as default power-on
state
0x0030 riw 5-24 V power output 2 bytes:

bytes 0,1: 0 (bypass to USB 5V),
5000-25000 mV

Page 63

AsTeRICS

Developer Manual

6.3.3 Phone-CIM (Windows Phone OS)

CIM-ID Feature- Access Descritption Data
address
0x0301: 0x0000 r Unigue serial number 4 bytes
Phone 0x0001 w Phone Application request:
actuator, Configuration: 4 bytes (init)
version 1 init reply:
4 bytes (error_code)
0x0002 w Phone Application request:
Configuration: 4 bytes (close)
close reply:
4 bytes (error_code)
0x0010 w Phone Manager: request:
make call 4 bytes: command (make call)
1 byte: phone_id_len
X bytes: phone_id
reply:
4 bytes (error_code)
0x0011 w Phone Manager: request:
accept call 4 bytes (accept)
reply:
4 bytes (error_code)
0x0012 w Phone Manager: request:
drop call 4 bytes (drop)
reply:
4 bytes (error_code)
0x0013 r Phone Manager: 1 byte: phone_id_len

receive call event

X bytes: phone_id

0x0014 w Phone Manager: get
phone state

request:

4 bytes (get phone state)
reply:

4 bytes (error_code)

1 byte (state_code)

0x0020 w Message Manager:
send SMS

request:
1 byte: phone_id_len
X bytes: phone_id
2 bytes: message_len
Y bytes: message

reply:
4 bytes (error_code)

0x0021 r Message Manager:
receive SMS event

1 byte: phone_id_len
X bytes: phone_id
2 bytes: message_len
Y bytes: message

Page 64

AsTeRICS

Developer Manual

6.3.4 PT-1 ADC - CIM (Legacy ADC/DAC)

CIM-ID Feature- Access Descritption Data
address
0x0401: 0x0000 r Unique serial number 4 bytes
ADC version | 0x0001 r GPIO Input State 1 byte:
1 sensor/ Bit 0 = Input 1; Bit 1 = Input 2
actuator, 0x0003 riw GPIO Input Pullup State 1 byte:
Bit 0 = Input 1; Bit 1 = Input 2
Value: 0 = off; 1 = on, 33K resisor
connected to 3.3 V
0x0004 riw GPIO Input Value Change 1 byte:
Event Bit 0 = Input 1; Bit 2 = Input 2
Value: 0 = off; 1 = on
0x0005 riw GPIO Periodic Input Value | 2 bytes:
Event bytes 0,1: period time O (off) to 65535
milliseconds
0x0010 riw GPIO Output State 1 byte:
Bit 0 = Output 1; Bit 1 = Output 2
0x0020 w Store current CIM state to none
EEPROM as default
power-on state
0x0040 r ADC Input Value 18 bytes:
bytes 0-1: ADCO1 input value...
byte 6-7: ADCO04 input value
0-24000 mV
bytes 8-10: ADCO5 input value
bytes 11-13: ADCO06 input value
in Ohms, 1.5E+06 is maximum
OXFFFFFF means anything above 1.5
MOhm
byte 14-15: ADCO7 input value
byte 16-17: ADCO08 input value
0-24000 mV
0x0050 riw DAC Output Value 4 bytes:

byte 0: DACO01 0..24.0 V

byte 3: DAC04 0..24.0 V
e.g. 240 is 24.0V

Page 65

AsTeRICS

Developer Manual

6.3.5 BMA180 Accelerometer Sensor

CIM-ID

Feature-
address

Access

Description

Data

0x0501
BMA180
accelerometer
sensor
version 1

0x0000

Unique serial number

4 bytes

0x0020

Store current state to
EEPROM as default
power-on state

none

0x0060

r/w

BMA180 direct register
access

READ

request byte 0: address 00-5B

reply byte 0: value

WRITE

request byte 0: address 00-5B

request byte 1: value

reply has no data

Not all registers or their bits can be
written, please see the BMA180
reference manual

NOTE: This is for PT1 HW testing
purposes only and shall be never
used for normal operation as there
can occur collision with new data
reading in a high priority interrupt
function. If you still want to use it,
disable all BMA180 interrupts in
ctrl_reg3 first. As a consequence, the
feature 0x0063 will have no new data
until the new_data_int in ctrl_reg3is
re-enabled.

0x0061

r'w

BMA180 bandwidth (data
sample frequency)

1 byte: bandwidth
0x00 ... 10 Hz

0x01 ... 20 Hz

0x02 ... 40 Hz

0x03 ... 75 Hz

0x04 ... 150 Hz

0x05 ... 300 Hz

0x06 ... 600 Hz

0x07 ... 1200 Hz

other values are not allowed and will
result in an error reply

0x0062

r/w

BMA180 range

1 byte: range
0x00...1¢9
0x01 ...
0x02 ...2¢g

0x03...3¢g

0x04 ...4¢g

0x05...84¢

0x06 ... 16 g

other values are not allowed and will
result in an error reply

0x0063

BMA180 X/Y/Z data

7 bytes

byte 0: TRUE if new data are acquired
since last read, otherwise false

bytes 1-2: acc_x 14-bit value

bytes 3-4: acc_y 14-bit value

bytes 5-6: acc_z 14-bit value

0x0064

r/w

Accelerometer Data Event

1 byte

0x00 ... disabled

0x01-0xFF ... enabled, feature 0x0063
X/Y/Z data is sent automatically every
time when new data are acquired.
The period is set by feature 0x0061

Page 66

AsTeRICS

Developer Manual

6.3.6 PT-1Core-CIM

CIM-1D Feature- Access

address

Descritption

Data

0x0601: 0x0000 r

Unique serial number

4 bytes

Core CIM
version 1

0x0001 r

GPIO Input State

1 byte:
Bit 0 = Input 1; Bit 3 = Input 4

0x0002 rlw

GPIO Input Threshold
Voltage

2 bytes:
bytes 0,1: threshold voltage value for
inputs 1-4 (0 to 25000 mV)

0x0003 riw

GPIO Input Pullup State

1 byte:

Bit 0 = Input 1; Bit 3 = Input 4
Value: 0 = off; 1 = on, 33K resisor
connected to 3.3V

0x0004 rlw

GPIO Input Value Change
Event

1 byte:
Bit 0 = Input 1; Bit 3 = Input 4
Value: 0 = off; 1 = on

0x0005 riw

GPIO Periodic Input Value
Event

2 bytes:
bytes 0,1: period time 0 (off) to 65535
milliseconds

0x0010 riw

GPIO Output State

1 byte:
Bit 0 = Output 1; Bit 3 = Output 4

0x0011 r/w

GPIO Output Pullup State

1 byte:
Bit 0 = Output 1; Bit 3 = Output 4
Value: 0 = off; 1 = on

0x0020 w

Store current CIM state to
EEPROM as default
power-on state

none

0x0070

clear status LCDisplay

none

2=

0x0071

clear window on status
LCDisplay

8 bytes

bytes 0,1: top left X

bytes 2,3: top left Y

bytes 4,5: width

bytes 6,7: height

* pyte per value would be now sufficient
but in case of larger display in future
word size is used

0x0072 rlw

set text window on status
LCDisplay

8 bytes

bytes 0,1: top left X

bytes 2,3: top left Y

bytes 4,5: width

bytes 6,7: height

* window must fit on the display
otherwise error is returned

0x0073 rlw

set text font

1 byte:

0 ... Terminal 6 — 6x8 pixels

1 ... Terminal 9 — 6x12 pixels

2 ... Terminal 18 — 12x24 pixels

0x0074 w

print

1 to 2048 bytes

null-terminated string, prints only part
which fits in the text window set by
feature 0x0072

Special characters:

\n - goes to next line but keeps the
column.

\r - clears the line inside the
window from the current position to
the end of the line and then it goes to
the beginning of the line. (So \r\r
clears the full line.)

\b - goes one character back and
clears it.

\t - TAB function, the step is 4
columns, clears the text from the

Page 67

AsTeRICS

Developer Manual

current position to the new one (so
1-4 characters depending on the
position)

\f - clears the whole text window
and sets the position to the top left
corner of the window.

0x0075

draw bitmap

9 to 2048 bytes

bytes 0-1: top left X

bytes 2-3: top left Y

bytes 4-5: width

bytes 6-7: height

bytes 8-2047: bitmap stream, standard
Windows 2-color BMP order

* only part which fits the display is drawn
*first byte bit 0 is (0,0), bit 7 is (7,0)

* if the bitmap width is e.g. 10 pixels,
stream has 2 bytes per row and bits 2 to
7 of the second byte are ignored

0x0076

r/w

status LCDisplay backlight

1 byte - backlight 0-100%

0x0080

read front panel buttons
state

1 byte

bit 0 ... left

bit 1 ... right

bit 2 ... down

bit3 ... up

bit 4 ... OK

1 — pressed, 0 — not pressed

0x0081

r/w

front panel buttons change
event mask

1 byte

bit O ... left

bit 1 ... right

bit 2 ... down

bit3 ... up

bit 4 ... OK

1 — enabled, 0 — disabled

6.3.7 EOG-CIM

CIM-ID

Feature-
address

Access

Descritption

Data

Oxal01:
EOG
version 1
sensor/
actuator

0x0000

Unique serial number

4 bytes

0x0001

Activate Periodic Value
Reports

2 bytes:
bytes 0,1: period time 0 (off) to 65535
milliseconds

0x0002

Channel Value Report

4 bytes: 2 channels of ADC values
Byte 1: chnl low byte

Byte 2: chnl high byte

Byte 3: chn2 low byte

Byte 4: chn2 high byte

Page 68

AsTeRICS

Developer Manual

6.3.8 Sensorboard — CIM

CIM-ID Feature- Access Descritption Data
address
0xa201: 0x0000 r Unique serial number 4 bytes
Sensor- 0x0001 w Activate Periodic Value 2 bytes:
board for Reports bytes 0,1: period time 0 (off) to 65535
low-cost eye milliseconds
tracker 0x0002 r Sensor Value Report 35 bytes of sensor values:

l:accelerometer X MSB
2:accelerometer X LSB
3:accelerometer Y MSB
4:accelerometer Y LSB
5:accelerometer Z MSB
6:accelerometer Z LSB
7:gyro X MSB

8:gyro X LSB

9:gyro Y MSB

10:gyro Y LSB

11:gyro Z MSB

12:gyro Z LSB
13:compass X MSB
14:compass X LSB
15:compass Y MSB
16:compass Y LSB
17:compass Z MSB
18:compass Z LSB
19:IR-Cam, point 1 X MSB
20:IR-Cam, point 1 X LSB
21:IR-Cam, point 1 Y MSB
22:IR-Cam, point 1 Y LSB
23:IR-Cam, point 2 X MSB
24:IR-Cam, point 2 X LSB
25:|R-Cam, point 2 Y MSB
26:IR-Cam, point 2 Y LSB
27:IR-Cam, point 3 X MSB
28:IR-Cam, point 3 X LSB
29:IR-Cam, point 3 Y MSB
30:IR-Cam, point 3 Y LSB
31:IR-Cam, point 4 X MSB
32:IR-Cam, point 4 X LSB
33:IR-Cam, point4 Y MSB
34:IR-Cam, point 4 Y LSB
35:pressure sensor

Page 69

AsTeRICS

Developer Manual

6.3.9 Arduino -CIM

CIM-ID

Feature-
address

Access

Descritption

Data

Oxa001:
Arduino
version 1
sensor/
actuator

0x0000

r

Unigue serial number

4 bytes

0x0001

riw

Set Pin Directions (input or
output)

2 bytes: Data Direction State of Port B
(DDRB) and Port D (DDRD)

Bit O : Pin = Input

Bit 1 : Pin = Output

0x0002

Set Output Pin States
or Input Pin Pullup State

2 bytes:
Byte 1: Output Pin values of PORT B
Byte 2: Output Pin values of PORTD

For Input Pins: activate pullup:
Value: 0 = off; 1 = on

0x0003

Get Input PIN Change

2 bytes:
Byte 1: input PIN values of Port B
Byte 2: input PIN values of Port D

0x0004

Activate ADC Periodic
Value Reports

2 bytes:
bytes 0,1: period time 0 (off) to 65535
milliseconds

0x0005

ADC Value Report

12 bytes: 6 channels of ADC values
Byte 1: chnl low byte
Byte 2: chnl high byte
Byte 3: chn2 low byte
Byte 4: chn2 high byte
Byte 5: chn3 low byte
Byte 6: chn3 high byte
Byte 7: chn4 low byte
Byte 8: chn4 high byte
Byte 9: chn5 low byte
Byte 10: chn5 high byte
Byte 11: chn6 low byte
Byte 12: chn7 high byte

0x0006

Set PIN Mask for auto
send back Input PIN
Change events

2 bytes:
Byte 1: input pins of Port B
Byte 2: input pins of Port D

0x0007

Set PWM channel value

2 bytes

Byte 1: channel number (0-5) + operation
mode (0Ox1x: servo, Ox2x: PWM)

Byte 2: channel value (0-255)

Page 70

AsTeRICS

Developer Manual

6.3.10 PT2 Core - CIM

CIM-ID Feature- Access | Descritption Data
address
0x0602: 0x0000 r Unique serial number 4 bytes
Core CIM 0x0001 r Digitallnput State 1 byte:
version 2 Bit 0 = Input 1; Bit 2 = Input 3
0x0003 riw Digitallnput Pullup State 1 byte:
Bit 0 = Input 1; Bit 2 = Input 3
Value: 0 = off; 1 = on, 33K resisor
connected to 3.3 V
0x0004 riw Digitallnput State Change 1 byte:
Event Bit 0 = Input 1; Bit 2 = Input 3
Value: 0 = off; 1 = on
0x0005 riw Periodic Digitallnput State 2 bytes:
Event bytes 0,1: period time 0 (off) to 65535
milliseconds
0x0010 r/w DigitalOutput State 1 byte:
Bit 0 = Output 1; Bit 1 = Output 2
0x0011 riw DigitalOutput Pullup State 1 byte:
Bit 0 = Output 1; Bit 1 = Output 2
Value: 0 = off; 1 = on
0x0020 w Store current CIM state to none
EEPROM as default
power-on state
0x0031 riw 12 V GPO power output 1 byte:
0 disable, 1-255 enable
0x0040 r Analoglnput Value 6 bytes
bytes 0-2: Input 1 value
bytes 3-5: Input 2 value
* the values are in mV or miliohms
according to the sensor type connected
0x0070 w clear status LCDisplay none
0x0071 w clear window on status 8 bytes
LCDisplay bytes 0,1: top left X
bytes 2,3: top left Y
bytes 4,5: width
bytes 6,7: height
* pyte per value would be now sufficient but
in case of larger display in future word size
is used
* the current accessible display area is 114
X 64 pixels
0x0072 riw set text window on status 8 bytes
LCDisplay bytes 0,1: top left X
bytes 2,3: top left Y
bytes 4,5: width
bytes 6,7: height
* window must fit on the display otherwise
error is returned
* the current accessible display area is 114
X 64 pixels
0x0073 riw set text font 1 byte:
0 ... Terminal 6 — 6x8 pixels
1 ... Terminal 9 — 6x12 pixels
2 ... Terminal 18 — 12x24 pixels
0x0074 w print 1 to 2048 bytes

null-terminated string, prints only part
which fits in the text window set by feature
0x0072
Special characters:

\n - goes to next line but keeps the
column.

\r - clears the line inside the window
from the current position to the end of the
line and then it goes to the beginning of the

Page 71

AsTeRICS

Developer Manual

line. (So \r\r clears the full line.)

\b - goes one character back and clears
it.

\t - TAB function, the step is 4 columns,
clears the text from the current position to
the new one (so 1-4 characters depending
on the position)

\f - clears the whole text window and
sets the position to the top left corner of the
window.

0x1f — the letters after this special
character are inverted.

Ox1le — the letters after this special
character are not inverted.

0x0075

draw bitmap

9 to 2048 bytes

bytes 0-1: top left X

bytes 2-3: top left Y

bytes 4-5: width

bytes 6-7: height

bytes 8-2047: bitmap stream, standard 16-
level grayscale

* only part which fits the display is drawn

* first byte bit 0-3 is (0,0), bit 4-7 is (1,0)

* if the bitmap width is e.g. 11 pixels, 6
bytes per row and bits 4 to 7 of the last
byte are ignored

0x0076

r/w

status LCDisplay
brightness

1 byte - brightness 0-100%
* for backward compatibility, the brightness

can be set in the CIM’s internal menu

0x0078

draw 16x16 predefined
icon

6 bytes

bytes 0-1: top left X

bytes 2-3: top left Y

bytes 4-5: icon index

0 .. minus, 1 .. plus, 2 .. up,
3 ..down, 4 .. left, 5 .. right,
6 .. play, 7 .. pause

0x0082

read touch panel state

4 bytes

bytes 0-1 ... display coordinate X
bytes 2-3 .. display coordinate Y
value -1 means not touched

0x0083

riw

touch panel event enable

1 byte

1 - enabled, 0 — disabled

when enabled, CIM send the X/Y
coordinates every time the display is
touched

0x0090

battery level

1 byte

not accessible on request, every time the
battery charge level changes, the CIM
sends the level automatically

*1-100 % when discharging,

*101-200 % when charging.

* 254 — battery missing or dead

* 255 battery status is uknown (e.g. during
startup)

Level <15 means hibernate system
immediately.

Page 72

AsTeRICS

Developer Manual

6.3.11 PT2 GPI — CIM (Digitalin)

CIM-ID Feature- Access | Descritption Data
address
0x0701: 0x0000 r Unigue serial number 4 bytes
GPI version | 0x0001 r GPIO Input State 1 byte:
1 Bit 0 = Input 1; Bit 5 = Input 6
0x0003 riw GPIO Input Pullup State 1 byte:
Bit 0 = Input 1; Bit 7 = Input 8
Value: 0 = off; 1 = on, 33K resisor
connected to 3.3 V
0x0004 riw GPIO Input Value Change 1 byte:
Event Bit 0 = Input 1; Bit 7 = Input 8
Value: 0 = off; 1 = on
0x0005 riw GPIO Periodic Input Value 2 bytes:
Event bytes 0,1: period time 0 (off) to 65535
milliseconds
0x0020 w Store current CIM state to none
EEPROM as default power-on
state
0x0077 r/w RGB status LED override 1 byte:
bit 0-1: red
bit 2-3: green
bit 4-5: blue

00 — override off
01 - always off
10 — always on

11 — blinking
6.3.12 PT2 GPO - CIM (DigitalOut)
CIM-ID Feature- Access | Descritption Data
address
0x0801: 0x0000 r Unique serial number 4 bytes
GPO 0x0010 riw GPIO QOutput State 1 byte:
version 1 Bit 0 = Output 1; Bit 4 = Output 5
outputs 1-2 are relays, 3-5 are OC
0x0011 riw GPIO Output Pullup State 1 byte:
Bit 2 = Output 3; Bit 4 = Output 5
Value: 0 = off; 1 = on
0x0020 w Store current CIM state to none
EEPROM as default power-on
state
0x0031 riw 12 V power output 1 byte:
0 disable, 1-255 enable
0x0077 riw RGB status LED override 1 byte:
bit 0-1: red
bit 2-3: green
bit 4-5: blue

00 — override off
01 — always off
10 — always on
11 — blinking

Page 73

AsTeRICS

Developer Manual

6.3.13 PT2 ADC - CIM (AnalogIN)

CIM-ID Feature- Access | Descritption Data
address
0x0901: 0x0000 r Unigue serial number 4 bytes
ADC version | 0x0020 w Store current CIM state to none
1 EEPROM as default
power-on state
0x0040 r Analoglnput Value 6 bytes
bytes 0-2: Input 1 value
bytes 3-5: Input 2 value
* the values are in mV or miliohms
according to the sensor type connected
0x0041 r/w ADC Periodic Input Value 2 bytes:
Event bytes 0,1: period time 0 (off) to 65535
milliseconds
value lower than ~50 ms results in period
of 20 to 50 ms
0x0077 r/w RGB status LED override 1 byte:
bit 0-1: red
bit 2-3: green
bit 4-5: blue

00 — override off
01 - always off
10 — always on

11 — blinking
6.3.14 PT2 ZigBee — CIM
CIM-ID Feature- Access | Descritption Data
address
0x0a01: 0x0000 r Unique serial number 4 bytes
ZigBee 0x0020 w Store current CIM state to none
version 1 EEPROM as default
power-on state
0x0077 riw RGB status LED override 1 byte:
bit 0-1: red
bit 2-3: green
bit 4-5: blue
00 — override off
01 - always off
10 — always on
11 — blinking
0x0090 w Init ZigBee pairing mode none
for 60 seconds
0x0091 w End ZigBee pairing mode none
imediately
0x0092 r Get full paired wireless 2+6xN bytes

CIMs list

byte 0-1: N...number of CIMs
followed by N-times

byte 0-3: unique serial number
byte 4-5: CIM ID

where CIM ID value means:
0x0b01 ... GPIv. 1

0x0c01 ... GPOv. 1

0x0dO01 ... Accelerometer v. 1

Page 74

AsTeRICS

Developer Manual

0x0093 r Get active paired wireless same as above but the list is limited to
CIMs list CIMs which sent at least 1 event since
the last ZigBee-CIM start
0x0094 w Erase CIM from paired list | 6 bytes
byte 0-3: unique serial number
byte 4-5: CIM ID
Note: returned error when the specified
CIM not paired
0x0095 r/w Send and receive remote 8+N bytes
wireless CIM features byte 0-3: unique serial number
byte 4-5: CIM ID

byte 6-7: data length N
byte 8-(7+N): feature data

* when CIM ID 0x0b01, sent as event by
the CIM only, N=1, byte 8: GPI input
state bit 0-5 ... input 1-6 state

* when CIM ID 0x0c01, write-only, N=1,
byte 8: bit 0-1 ... relay output 1-2 state

* when CIM ID 0x0d01, sent as event by
the CIM only, N=6, byte 8-13:
accelerometer data ax,ay,az

Note: When the connection to the
destination is lost, the response can take
up to ~5 seconds.

6.4 Demo Implementations of the CIM protocol

In the AsTeRICS Source Code package,

implementations of the CIM protocol can be found:

the following microcontroller firmware

e Folder /CIMs/Arduino: an implementation for the 8-bit Atmel ATmega328 AVR
microcontroller architecture, with features for reading / writing GPIO and ADC

o Folder /CIMs/HID actuator: an implementation for the 8-bit Atmel AT90USB1286,

with features for mouse/keyboard/joystick emulation

e Upon special request, CIM firmware for the Arm Cortex M3 or other architectures can

be delivered by AsTeRICS partners IMA of FHTW

The corresponding JAVA implementations on the ARE-side can be found in the respective
plugins (Arduino and RemoteMouse, RemoteKeyboard, RemoteJoystick)

Page 75

AsTeRICS Developer Manual

7 Into the Deep: Concepts of the ARE middleware

The following section describes the ARE architecture for executing system models in more
detail. A High-Level view of all system components looks as follows:

«devices
Personal Computer

‘ Asterics Configuration Suite

ASAPI Client

«execution envircnments
Operating System (Windows, Linux)

wdevices
Embedded Platform

Asterics Runtime Environment |

A A A
AsTeRIC S Components | | AsTeRICS ASAPI System Display
Controller Server {Opticnal)

v
‘ Jnit U 05Gi framework

‘ Jawva Virtual Machine U

«execution envircnments
Operating System [Linux)

Figure 1: High-level view of the system architecture (deployment model)

7.1.1 Runtime Model Concepts

The ARE hosts and controls the components that realize the Assistive Technology (AT)
applications. As such, it features a component-based approach, where various specialized
plug-ins (i.e., sensors, processors and actuators) are interfaced together to realize the
desired behavior. The main runtime model concepts in the ARE are the components
(plugins), the ports, and the channels (also known as bindings). These concepts are
available for introspection and reflection in runtime (i.e., their properties can be both queried
and edited).

It should be noted that these concepts describe merely types of runtime artifacts. For
instance, component specifies a special component type that can be instantiated multiple
times. In each instantiation, all attributes are static, except the properties that can be edited
in runtime. For example, a specialized signal processing processor can be instantiated
multiple times, with different property values, and can be connected to different components.
While both component instances share the same type, they are individually used and
maintained in the ARE.

Page 76

AsTeRICS Developer Manual

winterfaces
Channel

winterfaces «interfaces
Component 1.n Port

Figure 2: Simple view of the runtime model

These artifacts and their relationships are illustrated in Figure 2. This figure illustrates the
relationships between components, ports and bindings. A component consists of one or
more ports. A binding, on the other hand connects exactly two components, via two
corresponding ports. A more detailed description of the main runtime concepts and their
relationships is provided in the following paragraphs.

7111

Components

The components are the main artifacts in the ARE runtime model. As mentioned before,
components can serve one of three main roles:

Sensors: these are components which only feature output ports (i.e., they do not
depend on input from any other components). Typical sensors are commonly coupled
to underlying hardware sensors to generate their output data (e.g., a face tracking
sensor which is coupled to a web-camera), but they can also be completely realized
internally (e.g., a signal generator).

Processors: these are components which feature both input and output ports. This is
the most common type of components, and provides the foundation for forming
applications. The processor components can be either realized completely internally
(e.g., an average which keeps track of the last n values of a scalar value and always
outputs their average value) or they can be coupled to some external software library
or even coupled to a hardware component (e.g., utilize legacy libraries for complex
signal processing, or even utilize specialized hardware accelerators for highly
demanding computations).

Actuators: these are components which only feature input ports (i.e., they do not
produce any output that can be utilized by other components). The main role of
actuators is to enable the desired functionality of the applications, and for testing
(e.g., a mobile phone actuator allows to place or answer phone calls and to send
SMS' messages, while an oscilloscope actuator allows for viewing, and thus testing
or debugging, of signal generators).

! Short Text Message

Page 77

AsTeRICS Developer Manual

Concept
zinterfaces Concept
model::Component e eriane
+ getPropery(String) : String medel-FPort
+ zetPropery(String, Sting) : Sting . - —
+ getAllFortz]) : Forif] n + getPortType() - PortType
+ getnputForts]) : inputPar] + getiul Multiplicity
+ getCuiputPo - QuipuiPorif] + getDataTyp staType
+ getAllPoriDz) 3 + getBufferSi it
+ getinputPortiDa() : String[] + getProper) ing) - S.frrr..g]
+ getOutputPortiDz) : String(] + setfropery(Siring, String) - String
+ getPorByiD[Siring) - Port ﬂ i&
Is A
i i) =3 , N
- | . A K e ————
y 7 1 i ¢ | D:extends Serfal'fzabl'e: A | Deextends Serfal'fzebl'e:
1 — —
____________ | R |
PropertyfulConcept FroperyfulConcept FroperyAilEaEst PropertyfulConcept ProperyfulConcept
model:: Sensor madel::Processor Crimshaas model::InputPort model::OutputPort

1.n 1.n 1.n 1.n ? ? ‘

Figure 3: Complex view of runtime model for the component concept

These concepts are illustrated in Figure 3. A component can be any of three main
realizations: sensor, processor, and actuator. On the other hand, a port can be instantiated
either as an input or an output port. Sensors have one-or-more output ports only, actuators
have one-or-more input ports only, and processors have both one-or-more input ports and
one-or-more output ports.

7.1.1.2 Ports

The ports are the main concepts allowing interfacing between components. Ports are
classified as input or output ports, depending on their role. Each port features a buffer where
data is accumulated before it is communicated outwards (output ports) or before it is
internally consumed (input ports).

Furthermore, each port is associated with a specific data type, indicating the type of the data
communicating through the port. Examples of such data types, carrying the representation
and semantics as inherited from the Java language, are:

e Byte: a single byte

e Boolean: “true” or “false”

e String: an array of bytes, representing ASCII characters
¢ Integer: a 32-bit integer

e Double: a 64-bit double precision scalar

The main properties and relationships of the port concept are illustrated in Figure 4.

Page 78

AsTeRICS

Developer Manual

senumerations
model::DataType

dataType {readOnly}

-
-
-

model:: OutputPort

wENUM»
BYTE
CHAR
SHORT
wenumerations «enumerations INTEGER
maodel::PorfType madel::Multiplicity LONG
portType freadCnly} multiplicity {readCnid EI:_ILIJEITLE
«ENUM® wENUIM
INPUT ONE_TO_OME DataType{String)
OUTPUT ONE_TO_MANY + toString() : String
Concept
ainterfacew
model::Port

getPortType() : PorType

getiduitiplicity() : Mulfplicity

getDataType() - DataType
getBufferSize() : int
getProperty|Sining) © Sining
setPropery|Siring, Siing) :

String

o ———— —l
ProperyfulConcept

—_————— e —

| D-extends Serfalizable :

e

FroperyfulConcept
model::inputFort

| D:extends Eeﬁa-_riz_a-bl'e:

OutputPort()
OutputPort(Map<String, String=)
getPortTypel) : PortType

sddinputPortEndpeint{String, InputPort) : boclean

InputPort()
InputPort{Map<String, String=)
getPortTypel) . PortType
muziBeConnected|) : boolean

+ o 4+

removelnputPortEndpoint{String) : boclean receiveData(D) - void

sendData(D) : void

ok

Figure 4: Runtime model for the port concept

The port concept features methods for accessing the port type, its multiplicity, its data type,
and also for getting and setting property values. The main subtypes of port are the
OutputPort and the InputPort.

It should be pointed out that the input port is different from the output port by featuring an
additional method for checking whether a binding to the port is mandatory or not. This is
needed to check whether a component is resolved or not (i.e., by checking whether all its
input ports marked as “mustBeConnected” are indeed connected). This is important because
it ensures that all the defined components are functional, i.e., appropriately connected,
before they are activated.

Finally, it should be noted that special port types will also be defined for event
communication. Unlike common ports which communicate a fixed data type, event ports will
be able to communicate different events, encoded in a uniform way. Input event port types
will be defined with the “mustBeConnected” property set to false by definition. Also, output
event ports will allow the formation of multiple channels using the same output port as a
common endpoint.

Page 79

AsTeRICS Developer Manual

7.1.1.3 Channels

The channel is the main concept used for interfacing components through ports. As such, the
channels are defined via a source port in a source component and a target port in a target
component. When formed, certain checks are performed to ensure that the data types of the
source and the target ports are compatible.

Concept

xintefaces
model::Compoment

getPropery|Siring © String
zetPropery|Sinng Sining) : Sinng
getAllPortz() : Port]
getinputPorts() © inputPort]]
getOutputPortz() © OutputPortf]
getAllPortiDz() ;- String(]
getinputPortiDz() - String(f
getOutputPortiDg] : Stringf]
getPorByiD|String) : Port

S T A A 1

| Dextends Serializable | e mm——
I | D:extends Serfal'izabre:

L — I :
FroperyfulConcept Fee—
Concept ProperyfulConcept

xintefaces model::inputPort

[&]
pa

model::JutputFort

model::Channel

OutputPort()

DutputPort{Map<String, String>)

getPortType() : PortType
addinputPortEndpeint{String, InputPort) : boolean
removelnputPortEndpoint{String) : boclean
sendData({D) : void

getSourceComponent() : Component
getSourcePort(] : OutputFort
getTargetComponent(] : Component
getTargetPort() : hputPort

InputPort])
InputPort{Map<String, String=)
getPortType() : PortType
muztBeConnected() © boolean
receivelata(D) - void

o+ o+

LR O
+ o+

Figure 5: Runtime model for the binding concept

A typical binding is illustrated in Figure 5. The binding is associated to two components, and
an input and output port, one from each of them.

Typically, a source, i.e., output port might be associated to multiple targets, i.e., input ports.
Nevertheless, in this runtime model it is assumed that each binding consists of exactly one
source and one target port. One-to-many bindings are also implicitly supported via multiple
instances of one-to-one bindings.

Special channels can also be formed between event ports. In this case, both input and output
ports can be used to connect multiple channels. Event channels can be formed between
EventTriggerer and EventListeners ports. EventTriggerers generate events and
EventListeners register to an ARE service for listening to generated events. ARE is
responsible for disseminating the generated events to the plugins that have been registered
for listening to these events.

7.1.1.4 Component Architecture of ARE

This subsection describes the internal architecture of the ARE component. Naturally, the
main scope of this component is to maintain and realize the deployed model. As such, it
features the following sub-components:

e Controller: This component is responsible for coordinating the actions inside the ARE.
To achieve this, it uses the other sub-components described below.

Page 80

AsTeRICS Developer Manual

¢ ModelManager: The model manager is used to maintain and manage the model (cf.
section 7.1.1). As such, it provides methods for transforming the model from and to
standard representations (such as XML), for validating its consistency, and for editing
the properties of the modeled concepts (i.e., of the components, channels and ports).
A special feature of the model manager is that it includes an input event port that
allows it to be controlled by the Assistive Technology application for switching
between various individual models.

e Configurator: The configurator is the component which translates the model into
actual components and channels. It is thus responsible for realizing the encoded
models and also for coordinating the activation (i.e., start) and deactivation (i.e.,
pause and stop) of the corresponding components. Before realizing certain models,
the configurator utilizes the validation services of the model manager. Also, in order
to access existing ones, or create new instances of components, the configurator
uses the services available by the component repository. Finally, it also provides
support for forming new channels (or dissolving existing ones) between certain ports.

gl

ARE

Controller
IModelService ICanfigurstianSEr\-‘icEi IComponentRepaositorny

! L

Medellanager \t — Configurator E — j ComponentRepository|

!

|BundleService g

BundleManager

Figure 6: Internal architecture of the ARE

¢ ComponentRepository: The component repository serves two roles. First, it maintains
a list with the available component types, which can be changed when new
components are installed or existing ones uninstalled. Second, it maintains a
repository with the current component instances. New instances can be dynamically
created, and existing ones be dissolved.

e BundleManager: This component allows for dynamically installing (or uninstalling)
software bundles containing one or more components. This is needed to allow for
easy updating of ARE instances with new (or updated) component implementations.
For this purpose, the OSGi bundle mechanisms will be used. In essence, when a new
bundle is installed (or uninstalled), it will be checked whether it contains AsTeRICS

Page 81

AsTeRICS Developer Manual

components. If it does, the components will be registered (or unregistered) with the
component repository by reading appropriate metadata from the bundles.

The relationships between the sub-components are illustrated in Figure 6. Also, to illustrate
the interaction between these components in use, consider the sequence diagram illustrated
in Figure 7.

| .
ACS Client ! H Controller winterfaces «interfaces winterface:

IModelService IConfigurationSemvice IComponentRepositony

I
design(} .

deploy[xml)

transformModel Fromd{ML{zxml)

¥

|
]
gethodel{) :Model :
]

 §

|
deployMeodel{Model)

validateModel)

I e e
L §

T
|
|
-
Lrl"-
: loop
| createlnstance{String, String) :Component
| 1
I [
| |
| connectPorts{String, String, String, String)
| |
| |
| |
| |
| T
| |
1 1

Figure 7. Sequence diagram illustrating a typical interaction between ACS and ARE

In this diagram, an ACS client is used to design an application model (i.e., graphically in an
appropriate GUI), which is then deployed in he ARE. For this, the ASAPI protocol is used,
which however is not illustrated here to avoid cluttering (for more information on the ASAPI
see section 8).

On receiving the deploy message, the Controller (which is the main component of the ARE)
uses the model service to transform the model, which is encoded in XML, into its object
representation. The resulting model is then deployed using the configuration service. The
latter first validates the model, using the model service, and then performs a set of
commands which aim at realizing the modeled application. These commands include the
instantiation of component instances, via the component repository, and the physical
connection of the corresponding ports.

Page 82

AsTeRICS Developer Manual

8 ARE threading concept for model execution

The ARE uses a single threaded approach similar to the one of the Swing Event Dispatch
Thread (EDT) in Java for all tasks related to model deployment and execution. This means
that the following tasks are all executed within exactly one and the same thread instance:

¢ Model lifecycle
o Model deployment
o Model start/pause/stop
o Model setting property
e Model execution
o Data propagation: Sending data from an output (sendData) port to input ports
(receiveData)
o Event notification: Forwarding events from an event triggerer (raiseEvent) to
event listeners (receiveEvent)

Figure 8 illustrates a typical model and involved threads. The model is first deployed and

started within the ModelExecutor thread.

Thread Legend

Avarager.l

Cinpur ___FrameGrabber

___ Event Dispatch Thread
(EDT)

__ Timer

___ ASAPIServer

output @

Facetracker K1

Averagerll Timer.1

Dperiod AstericsModelExecutionThreadPool.
sutput @ e A: executel...)
B: execAndWaitOnModelExecutorLifecycleThread(...)

A

O inpur

ButtonGrid.1 ASAPI

Server

m} mwig
) s A

") acuan RES

[1]

——

Oscilloscopel B
ARE
D \7\ GuI

Figure 8: lllustration of threading concept for model lifecycle tasks and model execution.

Page 83

AsTeRICS Developer Manual

All methods related to model execution are also executed in the ModelExecutor thread. In
case of sensor plugins (e.g. FacetrackerLK, Timer, SignalGenerator, ButtonGrid, ...) other
threads are involved that generate event or time based data. The FacetrackerLK plugin uses
a FrameGrabber thread to grab and forward frames via a callback method. Similarly, the
Timer and SignalGenerator plugins use a thread for periodically scheduling events. Finally
the ButtonGrid gets informed about button clicks by the Java Swing Event Dispatch Thread
(EDT). If a plugin wants to send data to an output port or trigger events to the event triggerer
socket by using the respective methods (DefaultRuntimeOutputPort.sendData(...) and
DefaultRuntimeEventTriggererPort.raiseEvent(...)) the execution is automatically handed
over to the ModelExecutor thread.

The class AstericsModelExecutionThreadPool contains the code for the single threaded
functionality and provides two types of public methods to be used by developers.

8.1 Asynchronous method execute
public void execute (Runnable r)

Hands over the given Runnable and adds it to a bounded blocking queue (default size: 500).
The Runnable tasks are executed asynchronously in the ModelExecutor thread and rejected
if the queue is full. This is especially important if a sensor thread produces too many
callbacks and hence Runnables to execute. If the ModelExecutor thread is too slow because
of hardware limitations or because it is blocked by another execution, new incoming calls are
simply rejected to avoid knocking out the ARE. The method is meant to be used for data
and event notification tasks.

8.2 Synchronous method
execAndWaitOnModelExecutorLifecycleThread

public void execAndWaitOnModelExecutorlLifecycleThread (Runnable r) throws
InterruptedException, ExecutionException, TimeoutException

or

public <V> V execAndWaitOnModelExecutorLifecycleThread(Callable<V> c)
throws Exception

Performs a synchronous execution of the given Runnable/Callable in the ModelExecutor
thread. If the execution blocks longer than the configured timeout interval (default 20000ms,
see 2.5.7) a TimeoutException is thrown. The method is meant to be used for lifecycle
tasks and used by the ARE GUI, the ASAPIServer the RESTServer and other ARE
components.

8.3 Pro and Contra of the single threaded approach

Using a single thread brings many advantages like

e Easier plugin development (no need to consider data integrity and thread
synchronization)
e More reliable hardware access (Some libraries require a single threaded access)

Page 84

AsTeRICS Developer Manual

e Deterministic (sequential) execution of model data propagation and event notification

On the other hand a hanging I/O call, a long lasting method call or a thread deadlock block
the whole model execution or lifecycle task. In such a case it wouldn’t even be possible to
stop a model. This problem is accomplished by a fallback strategy which is to automatically
switch to a new ModelExecutor thread in case of a timeout or a rejected task.

Page 85

AsTeRICS Developer Manual

9 ASAPI Clients and Serialisation

The AsTeRICS Application Programming Interface (ASAPI) is an interface to enable
advanced communications between the AsTeRICS Runtime Environment (ARE) and
external clients. In principle, ASAPI is a service that is provided by the ARE and can be
consumed by different clients deployed on the same (as the ARE) or remote devices.

While the ARE is implemented on top of JAVA/OSGi, ASAPI clients are assumed to be
implemented on top of a variety of platforms. For this purpose, the actual interfacing between
clients and the ARE is done at a low TCP/UDP/IP level. For this purpose, either a custom
TCP/UDPI/IP protocol will be developed, or an existing solution such as Google Protocol
Buffers, XML RPC, or Apache Thrift could be used.

adevices adevices
Client {e.g., Windows) Server (e.g., Embedded Linux}
ACS ARE
! T
: aUsEx] alUSER
W W
ainterfaces sinterfaces
ASAPI Client ASAPI Server
s | b z:_\
s | b |
|
CiC++ c# JAVA LA
T T T !
f f T |
T ; T L
| | | wexecution emdronments :
x‘lllr x‘lllr "-1:" Netwaork Infrastructure w
TCPiIP-based ASAPI| Protocol Implementation

Figure 9: Basic architecture of ASAPI

The basic architecture of ASAPI is illustrated in Figure 9. The “ASAPI Server” is provided by
a JAVA based implementation, which utilizes the ARE to provide the specified functionality.
On the client side, two interfaces provide the needed functionality: The “ASAPI Client” which
extends the “ASAPI Server” with commands for discovering and connecting/disconnecting to
the server side, and the “ASAPI Native” which provides specialized functionality for deploying
certain components directly in the client, bypassing the ARE. These relationships are
illustrated in the above figure.

The functionality of a full ASAPI Client is defined in deliverable 2.1 — System Specification
and Architecture [1], section 4.4,

Page 86

AsTeRICS Developer Manual

9.1 ASAPI and ARE Interconnection

The following figure shows the ASAPI protocol connection to the ARE and the ASAPI native
interface which provides certain functions for PC AT developers aside the ARE (e.g. mobile
phone access or special PC peripherals which will be investigated during WP6). The native
interface can provide well defined functions (as sending an SMS) which do not imply signal
processing plugins of the ARE, and can thus be accomplished directly on the PC.

As soon as the AsTeRICS Runtime Environment and the embedded platform are involved,
the ASAPI command and data protocol can be used to interact with the ARE.

The ASAPI protocol is a platform independent specification per se. To implement an ASAPI
client, templates in JAVA (server side) and C# (client side) will be provided as an early
outcome of WP4.

Embedded Plattform

ARE
Java / OSGi

ASAPI (VS/.NET))

ASAPI (Java)

A,

3rd party SW

ASAPI (VS/.NET)
incl. native C# API

Figure 10: ASAPI client implementations with/without native functions

The following diagrams show two possible scenarios for ASAPI / ARE interconnection (1),
one for the configuration of the ARE and one for the operation thereof (2).

Usually, these scenarios will involve primary and secondary users of the AsTeRICS system:

- AT developers use the Configuration Suite to set up the model for the desired AT-
configuration, tailored to a specific use case or end user (1),

- End users start the system (power up the embedded platform or start the ARE on PC
or netbook) to get their desired AT-configuration (which operated stand alone or in
connection with 3"-party applications on a PC or netbook (2).

Page 87

AsTeRICS

Developer Manual

9.1.1 ASAPI and ARE in the configuration process

Setting up a model

ASAPI Control Interface
- configure plugins
- manage model

PC

AsTeRICS Configuration Suite

- query plugins()

- set plugin parameters()
- query model()

- deploy model()

ASAPI Client

A

v Embedded Platform

ASAPI Server

JINI

ARE Universal HID
(Java/OSGi) actuator plugin
SVM Plugin SVM Plugin
. . . IR Gateway Tremor
Sbbeiuon EncholBlion Plugin NI NI Reduction Plugin
N N OpencV. OpenCV/
4 A A A A
/ Y Y Y Y
IPICHIEND Enobio IR Gateway Webcam SIMIESE

Gripper

CAM

Figure 11: AsTeRICS configuration scenario, model setup

Figure 11 shows the configuration process of the AsTeRICS Runtime Environment by the
AsTeRICS Configuration Suite via ASAPI. The ASAPI client of the ACS connects to the
ARE’s ASAPI server. It queries the available plugins and their parameters. (In the above
figure, some exemplary plugins are shown for demonstration purpose).

The ACS offers dynamic graphic configuration dialogs to the user, which allows adjustment
of all the plugin parameters. Plugins can be graphically connected. This process does not
need any functional representation of the plugins, only a description of the plugins’ ports,
data types and parameters. All these setup actions are performed via ASAPI control
commands. The finalized model can be deployed to the ARE.

Page 88

AsTeRICS

Developer Manual

Monitoring, verifying and adjusting a model:

ASAPI Control Interface
- configure plugins
- manage model

ASAPI Data Interface
- get live data from plugins
- send data to plugins

PC

AsTeRICS Configuration Suite

Oscilloscope / Meter /
Data Display

1

ASAPI Client

- query plugins()

- set plugin parameters()
- query model()

- deploy model()

- get data from plugins

A

Embedded Platform

ASAPI Server

ARE

(Java/OSGi)

JINI

Universal HID
actuator plugin

Gripper Plugin

Enobio Plugin
JINI

IR Gateway
Plugin

SVM Plugin

SVM

Plugin

N

INI

OpenCV ‘

OpenCV ‘

Tremor
Reduction Plugin

A

4

A

A

Pneumatic
Gripper

Enobio

IR Gateway

A 4

Webcam

SVM Mi

A

ini USB

CAM

Figure 12: AsTeRICS configuration scenario, verification and error checking

To verify the setup process, a data connection to desired plugins can be opened in the
Configuration Suite. Thus, live sensor values and their transformation due to the applied
signal processing plugins can be monitored using feedback elements of the ACS like
oscilloscope or bar graphs. Parameters of the plugins can be modified using ASAPI control
commands until the desired behaviour of the ARE is present.

Additionally to the live data transmission for feedback purpose, status and error information
can be queried from the ARE to determine the state of particular plugins.

Page 89

AsTeRICS Developer Manual

ASAPI and ARE in the runtime system:

PC

ASAPI Control Interface

- configure plugins
-manage model | | | 0 gTE===== -

3rd party application
e.g. SENSORY — OSKA

ASAPI Data Interface |
| p -

- get live data from plugins ASAPI Client
| copocccccsccss Universal HID
- send data to plugins | +native functions (e | s O, '
i :
A '
.
[] [} :
.
ASAPI Native Interface : : :
- connect PC peripheral s 0]
directly via C++/ .Net o 0 H
['
0 H
] "
v 0 '
v v Embedded Platform g
:
ASAPI Server H
INI
ARE Universal HID
(Java/OSGi) actuator plugin
] | | svMPlugin | | SVMPlugin | |
IR Gateway Tremor
CHREEIREO Encbicliiol Plugin INI INI Reduction Plugin
INI ‘ N OpencV ‘ OpencCV ‘
4 A A A A

Y Y Y Y

Pneumatic SVM Mini USB

Gripper

Enobio IR Gateway Webcam CAM

Figure 13: AsTeRICS runtime scenario

A fully configured ARE can run as a stand-alone process providing its functionality or
communicate with PC AT-software. A connection between ARE and ACS is no longer
required at that time.

The above runtime scenario consists of a configured ARE, with connected plugins that
interface the external sensors (Enobio, SVM) and actuators (pneumatic gripper, IR gateway).

Third party applications running on the PC can optionally:

e (uery or send data by using ASAPI data commands

e use the ASAPI native interface to access supported PC peripherals like mobile
phone, 3D mouse

e use ASAPI to connect to the running ARE and send control commands to modify
model or plugin settings

If the Universal HID actuator USB dongle is used, the PC application can obtain data from
the embedded platform via a mouse, joystick or keyboard hook which is provided via the
ASAPI native interface (thereby omitting a dedicated TCP/IP connection to the ARE via the
ASAPI client).

Page 90

AsTeRICS

Developer Manual

9.2 Available ASAPI commands

Method Description

Methods to setup and deploy a model

String [] getAvailableComponentTypes();

Returns an array containing all
the available (i.e., installed)
component types. These are
encoded as strings, representing
the absolute class hame (in Java)
of the corresponding
implementation.

String getModel();

Returns a string encoding the
currently deployed model in XML.
If there is no model deployed,
then an empty one is returned.

String getModelFromFile ();

Returns a string encoding of the
model defined in the filename
passed as argument. If there is
no model, an empty string is
returned.

void deployModel(String modellnXML) throws AsapiException;

Deploys the model encoded in
the specified string into the ARE.
An exception is thrown if the
specified string is either not well-
defined XML, or not well defined
ASAPI model encoding, or if a
validation error occurred after
reading the model.

void deployFile(String filename) throws AsapiException;

Deploys the model associated to
the specified filename. An
exception is thrown if the
specified filename is not found.

public void newModel() throws AREAsapiException

Deploys a new empty model into
the ARE. In essence, this is
equivalent to creating an empty
model and deploying it. This
results to freeing all resources in
the ARE (i.e., if a previous model
reserved any).

void newModel();

Deploys a new empty model into
the ARE. In essence, this is
equivalent to creating an empty
model and deploying it using
deployModel(String) above. This
results in freeing all resources in
the ARE (i.e., if a previous model
reserved any).

void runModel() throws AsapiException;

It starts or resumes the execution
of the model. It throws
AsapiException if an error occurs
while validating and starting the
deployed model.

public void pauseModel() throws AsapiException;

Briefly stops the execution of the
model. Its main difference from
the stopModel() method is that it
does not reset the components
(e.g., the buffers are not cleared).

Page 91

../AppData/Local/AppData/Local/AppData/Local/AppData/Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html
../AppData/Local/AppData/Local/AppData/Local/AppData/Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html
../AppData/Local/AppData/Local/AppData/Local/AppData/Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html

AsTeRICS

Developer Manual

It throws an AsapiException if the
deployed model is not started
already, or if the execution
cannot be paused.

public void stopModel() throws AsapiException;

Stops the execution of the model.
Unlike the pauseModel method,
this one resets the components,
which means that when the
model is started again it starts
from scratch (i.e., with a new
state). It throws AsapiException if
the deployed model is not started
already, or if the execution
cannot be stopped.

public void storeModel(String modellnXML, String filename)
throws AREAsapiException

Stores the XML model specified
by the string parameter in the file
specified by the filename
parameter . Throws an
AREAsapiException if the file
cannot be created or if the model
cannot be stored.

public String[] listAllStoredModels() throws AREAsapiException

Returns a list with all stored
models. Throws
AREAsapiException if the models
directory could not be found.

public boolean deleteModelFile (String filename) throws
AREAsapiException

Deletes the file of the model
specified by the filename
parameter. Throws
AREAsapiException if the file
could not be found or could not
be deleted.

public void autostart()

It is called on startup by the
middleware in order to autostart
a default model without the need
of pressing deploy and start
model first.

Methods to read and edit the model

String [] getComponents();

Returns an array that includes all
existing component instances in
the model (even multiple
instances of the same
component type).

String [] getChannels(String componentID);

Returns an array containing the
IDs of all the channels that
include the specified component
instance either as a source or
target.

void insertComponent(String componentID, String componentType)
throws AsapiException;

Used to create a new instance of
the specified component type,
with the assigned ID. Throws an
exception if the specified
component type is not available,
or if the specified ID is already
defined.

void removeComponent(String componentID) throws AsapiException;

Used to delete the instance of the
component that is specified by
the given ID. Throws an
exception if the specified
component ID is not defined.

Page 92

../AppData/Local/AppData/Local/AppData/Local/AppData/Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html
../AppData/Local/AppData/Local/AppData/Local/AppData/Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html
../AppData/Local/AppData/Local/AppData/Local/AppData/Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html
../AppData/Local/AppData/Local/AppData/Local/AppData/Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html
../AppData/Local/AppData/Local/AppData/Local/AppData/Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html

AsTeRICS

Developer Manual

public String [] getAllPorts(String componentID) throws AsapiException;

Returns an array containing the
IDs of all the ports (i.e., includes
both input and output ones) of
the specified component
instance. An exception is thrown
if the specified component
instance is not defined.

public String [] getinputPorts(String componentID) throws
AsapiException;

Returns an array containing the
IDs of all the input ports of the
specified component instance.
An exception is thrown if the
specified component instance is
not defined.

String [] getOutputPorts(String componentID) throws AsapiException;

Returns an array containing the
IDs of all the output ports of the
specified component instance.
An exception is thrown if the
specified component instance is
not defined.

void insertChannel(String channellD, String sourceComponentlD,String
sourcePortID, String targetComponentID,
String targetPortID)throws AsapiException;

Creates a channel between the
specified source and target
components and ports. Throws
an exception if the specified ID is
already defined, or the specified
component or port IDs is not
found, or if the data types of the
ports do not match. Also, an
exception is thrown if there is
already a channel connected to
the specified input port (only one
channel is allowed per input port
except for event ports that can
have multiple event sources).

void removeChannel (String channellD) throws AsapiException;

Removes an existing channel
between the specified source and
target components and ports.
Throws an exception if the
specified channel is not found.

Methods to read and edit properties (even while running)

String [] getComponentPropertyKeys(String componentID);

Reads the IDs of all properties
set for the specified component.

String getComponentProperty (String componentID, String key);

Returns the value of the property
with the specified key in the
component with the specified ID
as a string.

String setComponentProperty (String componentID, String key, String
value);

Sets the property with the
specified key in the component
with the specified ID with the
given string representation of the
value.

String [] getPortPropertyKeys(String portiD);

Reads the IDs of all properties
set for the specified port.

String getPortProperty(String componentID, String portID, String key);

Returns the value of the property
with the specified key in the
component with the specified 1D
as a string.

String setPortProperty(String componentID, String portID, String key,
String value);

Sets the property with the
specified key in the port with the

Page 93

../AppData/Local/AppData/Local/AppData/Local/AppData/Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html
../AppData/Local/AppData/Local/AppData/Local/AppData/Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html
../AppData/Local/AppData/Local/AppData/Local/AppData/Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html
../AppData/Local/AppData/Local/AppData/Local/AppData/Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html
../AppData/Local/AppData/Local/AppData/Local/AppData/Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html

AsTeRICS Developer Manual

specified ID with the given string
representation of the value.

String [] getChannelPropertyKeys(String channellD); Reads the IDs of all properties
set for the specified component.
Reads the IDs of all properties
set for the specified channel.

String getChannelProperty(String channellD, String key); Returns the value of the property
with the specified key in the
channel with the specified ID as a

string.
String setChannelProperty(_ Sets the property with the
String channellD, String key, String value); specified key in the channel with

the specified ID with the given
string representation of the value.

Methods for status checking

String queryStatus(); Queries the status of the ARE
system (i.e., OK, FAIL, etc).

public String getLogFile() Serializes and returns as a string
the Log file.

Table 1: ASAPI server interface

Method | Description
Methods to discover and connect/disconnect to AREs
InetAddress [] searchForARES(); Searches in the local area network (LAN) for

available instances of the ARE. The exact protocol
for discovery can vary (e.g., it could be based on
UPnP, SLP, or a custom protocol).

ASAPI_Server connect(InetAddress ipAddress); Connects to the ARE at the specified IP address.
The method returns an instance of the ASAPI
Server interface (described above), masking the
functionality provided by the target ARE through
ASAPI.

void disconnect(ASAPI_Server asapi_server); Disconnects from the specified instance of the
ASAPI Server, invalidating the reference.

Table 2: ASAPI client interface

9.3 Serialisation

The serialisation of the data including the calling mechanism is done by Apache Thrift [14].
For the reference implementations (ASAPI server for ARE in Java and ASAPI client for ACS
in C-Sharp), the version 0.8.0 has been used. The following tutorial shows the way from the
interface definition to a working Java client.

9.3.1 The Thrift definition file

In the thrift definition file, all functions which should be serializable have to be defined. The
“ASAPI.thrift” file is used by the Thrift compiler to generate the server and client functions

Page 94

../AppData/Local/AppData/Local/AppData/Local/AppData/Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/ASAPI_Server.java.html
../AppData/Local/AppData/Local/AppData/Local/AppData/Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/ASAPI_Server.java.html

AsTeRICS Developer Manual

9.3.2 The Thrift Compiler

The source code of the Thrift compiler is part of the Thrift bundle, being available at [14]. For
persons, who like the usage of precompiled programs, a Windows version of the Thrift 0.8.0
compiler is available at https://dist.apache.org/repos/dist/release/thrift/0.8.0/thrift-0.8.0.exe

The compiler supports several target languages, the most commons are C++, C#, Java and
php. The usage is command line based and quite simple. To get the needed Java files, the
following command has to be used:

thrift --gen java asapi.thrift

This command generates the folder gen-java containing the files AsapiServer.java and
AsapiException.java. For a more detailed description of the Thrift compiler, please see the
compiler manual.

9.3.3 The Thrift Library

For the usage of the generated files, a library file must also be generated. The source code
of the libraries is also available in the thrift-bundle from [http://incubator.apache.org/thrift/].
For all languages, being supported by the compiler, are libraries available. In the source
code folders of the libraries is also a language specific instruction — please follow the
instruction to generate the library file. In the case of Java, after successfully following the
instructions, the file 1ibthrift.jar will be generated.

In the case of Java, the Thrift library needs additional logging libraries. The usage of the
Simple Logging Facade for Java (SLF4J) framework [15] is recommended. The Thrift 0.8.0
library was successfully tested with version 1.6.0 of SLF4J

9.3.4 Simple Java Client

All preconditions are now fulfilled, the Java client can be created now. Beside the two
generated files AsapiServer.java and AsapiException.java, a main file is needed. The
key lines concerning the Thrift usage are:

try {
TTransport transport = new TSocket (10.0.0.1, 9090);
TProtocol protocol = new TBinaryProtocol (transport);
AsapiServer.Client client = new Calculator.Client (protocol);
transport.open();

client.NewModel ()

} catch (TException x)

; // Example function call
{
x.printStackTrace () ;

}

Important: the files 1ibthrift.jar, sl1f4j-api-1.6.0.jar and s1f4j-simple-1.6.0.3ar
must be included in the build path.

Page 95

https://dist.apache.org/repos/dist/release/thrift/0.8.0/thrift-0.8.0.exe

AsTeRICS Developer Manual

10 Native ASAPI Libraries

Native ASAPI is a software development kit for 3rd party developers to help them adapt their
application for people with motor disabilities. Native ASAPI will be delivered as a set of DLL
libraries for the Microsoft Windows Operating system. Native ASAPI works independently of
ARE.

10.1 Phone Library

The Phone Library is designed to control mobile phones. The library uses Bluetooth
connection to connect to the Phone Library Server Application running on the mobile phone.
Currently the Phone Library uses the Microsoft Bluetooth stack; other stacks will be
considered. The Library is delivered as a PhoneLibrary.dll file.

Currently the Phone Library Server Application for Windows Mobile operating system has
been developed. The Server application works on the phones running Windows Mobile 5.0
and above.

To install Server application (Serverinstall.cab file):
e On Windows XP install the ActiveSync application.

e Connect the phone to PC using USB cable. On Windows 7, if you connect the
Windows Mobile phone for the first time, the Microsoft Windows Mobile Device Center
application will be installed automatically.

e Using ActiveSync or Windows Mobile Device Center copy the Server installer to the
phone.

e Run the Server installer. The server application will be installed.

10.1.1 Phone Library interface:
The library interface is declared in the PhoneLibrary.h file.

Phone library interface functions are declared with the “C” linkage. The Phone Library
functions return a positive value if it succeeds. If a function fails, it returns a value lower than
0 and the returned value is the code of the error.

Library functions:

Function Description

int init(DeviceFound deviceFound, NewSMS Initializes the Phome Library. The deviceFound,
newSMS, PhoneStateChanged newSMS and phoneStateChanged parameters are
phoneStateChanged, LPVOID param) pointers to the call-back functions implemented in the

Phone Library user application. The param parameter
is a parameter defined by the user and passed to the
call-back functions.

int close() Closes the library.

int searchDevices() Starts searching for devices. For each discovered
device the DeviceFound call-back function is called

int connectToDevice(unsigned _int64 Connects to the device defined by the deviceAddress

Page 96

AsTeRICS

Developer Manual

deviceAddress, int port)

parameter.

int disconnect()

Disconnects the device.

int makePhoneCall (LPWSTR recipientID)

recipient phone ID.

Makes a phone call. The recipientlD parameter is the

int acceptCall()

Accepts incoming phone calls.

int dropCall()

disconnects phone calls.

This function drops an incoming phone call or

int getPhoneState(PhoneState &phoneState)

Gets actual phone state of the mobile phone.

subject)

int sendSMS(LPWSTR recipientID, LPWSTR

message content.

Sends SMSs. The recipientlD parameter is the
recipient phone ID, the subject parameter is the

Table 3: Phone library functions

Library call-back functions definitions:

Function

Description

LPVOID param)

typedef void (__stdcall *DeviceFound) (unsigned
_int64 deviceAddress, LPWSTR deviceName,

finishes.

This function is called when a new device is found.
The deviceAddress parameter is the address of the
discovered device. The deviceName parameter is the
name of the device. If the returned deviceAddress
parameter is equal to 0, the device search process

typedef void (__stdcall *NewSMS) (LPWSTR
PhonelD, LPWSTR subject, LPVOID param)

This function is called when there is a new SMS
available. The PhonelD parameter is the sender phone
ID. The subject parameter is the SMS content.

LPVOID param)

typedef void (__stdcall *PhoneStateChanged)
(PhoneState phoneState, LPWSTR phonelD ,

ID.

This function is called when the phone state is
changed. The phoneState parameter defines current
state of the phone. The phonelD is the remote phone

Error codes returned by functions: (declared in the PhoneLibraryErrors.h file):

Table 4: Phone library call-back functions

Code

Description

-1

Default error.

-2

Library is not initialized.

-3

Library is initialized.

-4

Library initialization error.

-5

No respond from remote device.

-20

Library is searching for the devices now.

-21

Device is not found.

-31

Device is connected.

-32

Error during connecting to the device.

-33

Device is not connected.

-34

Default port error.

-50

Phone ID or SMS content is empty

-1001

Remote device default error.

-1011

Bluetooth initialization error on the remote device.

-1015

Packet error.

-1031

Messenger module initialization error on the remote device.

-1032

Messenger module is not initialized on the remote device.

-1033

Message send error on the remote device.

-1051

Phone module initialization error on the remote device.

-1052

Phone module is not initialized on the remote device.

-1053

Phone accept the call error on the remote device.

-1054

Phone drop the call error on the remote device.

-1055

Phone make the call error on the remote device.

-1072

Messenger module and Phone module is not initialized on the
remote device.

Table 5: Phone library error codes

Page 97

AsTeRICS Developer Manual

Other Phone Library interface data:

Data Description

enum PhoneState Indicates current phone state.

{

PS_IDLE=1,

PS_RING,

PS_CONNECTED

b

#define Default_port -1 Indicates the default port number, which can be used
in the connectToDevice method.

Table 6: Other Phone library interface data
10.1.2 Example of use

Call-back functions definitions:

void stdcall newSMS (LPWSTR PhoneID, LPWSTR subject, LPVOID param)
{

//get incoming SMS:

getSMS (PhonelID, subject);

void stdcall phoneStateChanged (PhoneState phoneState, LPWSTR phoneID , LPVOID
param)
{
//auto answer on incoming phone call:
if (phoneState==PS RING)
{
acceptCall () ;

Initialization of the library and connect to the phone:

int InitLib (unsigned _int64 deviceAddress)
{
int result;
result = init (deviceFound, newSMS, phoneStateChanged, NULL) ;
if (result < 0)
{
return O;
}
result=connectToDevice (deviceAddress, -1) ;
if (result<0)
{

return 0;

Page 98

AsTeRICS

Developer Manual

Send SMS:

int SendSMS (LPWSTR recipientID,
{

return sendSMS (recipientID,

LPWSTR subject)

subject) ;

Make phone call:

int MakePhoneCall (LPWSTR recipientID)
{

return makePhoneCall (recipientID) ;

Disconnect the phone and close the library:

int CloseLib ()

{
disconnect () ;
return close();

10.2 GSM Modem Library

The GSM Model Library interfaces the GSM modem devices connected to the platform. It

can be used to send and receive SMS.

10.2.1 GSM Modem Library interface:

The library interface is declared in the GSMModemLibrary.h file:

Library functions:

Function

Description

int init(LPWSTR com, NewSMSAuvailable
newSMSAvailable,ErrorCallback errorCallback,
LPWSTR pin, LPWSTR smsCenterNumber
,LPVOID param)

Initializes the library. The com parameter defines the
modem serial port. The newSMSAvailable and
errorCallback parameters are pointers to the call-back
functions implemented in the user application. The pin
parameter is the PIN code. If the PIN code is not
required, this parameter should be empty. The
smsCenterNumber parameter contains the user SMS
center number. If the number of SMS center is not
required this parameter should be empty.The param
parameter is a parameter defined by the user and
passed to the call-back functions.

int close()

Closes the library.

int sendSMS(LPWSTR recipientlD, LPWSTR
subject)

Sends SMSs. The recipientID parameter is the
recipient phone ID, the subject parameter is the
message content.

Int getModemPortNumber(ModemSearchResult
modemSearchResult,LPVOID param)

Starts to search modems. For each modem found, the
modemSearchResult call-back function is called. The
param parameter is passed to the
modemSearchResult call-back function.

Table 7: GSM Modem library functions

Page 99

AsTeRICS

Developer Manual

GSM Mode Library functions are declared with the “C” linkage. A function returns a positive
value if it succeeds. If the function fails, it returns a value lower than 0 and the returned value
is the code of the error.

Library call-back functions definitions:

Function

Description

typedef void (__stdcall *NewSMSAvailable) This function is called when there is a new SMS
(LPCWSTR phonelD, LPCWSTR subject, LPVOID available. The PhonelD parameter is the sender phone

LPVOID param)

param) ID. The subject parameter is the SMS content. The
param parameter it is parameter defined by user.
typedef void (__stdcall *ErrorCallback) (int result, This function is called when en error is found. The

result parameter is the error code. The param
parameter it is parameter defined by user.

param)

typedef void (__stdcall *ModemSearchResult) This function is called when the modem is found. The
(LPCWSTR port,LPCWSTR modemName, LPVOID | port parameter contains the modem port. The

modemName parameter contains the modem name.
The param parameter it is parameter defined by user.

Table 8: GSM Modem library call-back functions

Error codes returned by functions: (The error codes are declared in the Errors.h file)

Code Description

-1 Default error.

-2 Library is not initialized.

-3 Library is initialized.

-4 Library initialization error.

-5 Library is during initialization
-10 COMM initialize false

-11 No respond on the AT command
-12 Cannot register to the GSM network
-13 Modem initialize false

-14 Write to the modem port error
-15 Read from the mode port error
-16 Not enough space in a buffer
-17 No modem answer

-19 The AT command failed

-20 SMS read error

-21 SMS send error

-22 Phone ID is empty

-23 Message content is empty

-24 Error respond from the modem
-25 Undefined modem answer

-26 The string is not a number
-100 SMS was not sent

2 Library is initialized correctly

Table 9: GSM Modem library errors

Page 100

AsTeRICS

Developer Manual

10.2.2 Example of use

Call-back functions definitions:

}

{

}

{

if ((wcslen (port)>0) &&(wcslen (modemName) >0))

{
//get the port for the connection with modem
getPort (port) ;

void _ stdcall newSMS (LPWSTR PhoneID, LPWSTR subject, LPVOID param)

//get incoming SMS:
getSMS (PhonelID, subject);

void stdcall errorCallback (int result, LPVOID param)

If(result==2)

LibraryIsInitialized=true;

void stdcall modemSearchResult (LPCWSTR port, LPCWSTR modemName, LPVOID param) {

Find the modem, Initialize the library and send SMS:

{

int InitLib ()

int result=0;
result=getModemPortNumber (modemSearchResult, NULL) ;
//wait for call-back function:

result= init (serialPort, newSMS, errorCallback,””,””,NULL);
//wait for initialize of the library

Result= sendSMS (phoneNumber, “Test SMS”) ;

Page 101

AsTeRICS

Developer Manual

10.3 3D-Mouse Li

brary

The 3D Mouse Library is designed to help in adapting 3Dconnexion 3D Mouse devices for
people with motor disabilities. It works with the 3D Mice connected to PC via USB such as:
SpacePilot Pro, SpaceExplorer and SpaceNavigator.

10.3.1 3D-Mouse Libr

ary interface

The library interface is declared in the Mouse3DLibrary.h file.

Library functions:

Function Description

intinit () Initializes the 3D Mouse Library

int close () Closes the Library

int Gets the actual state of the 3D mouse. Parameters are axis, axis
get3DMouseState(long rotation and button state.

*x, long *y, long *z, long

*Rx, long *Ry, long *Rz,

long* buttons)

Table 10: 3D Mouse Library functions

3D Mouse library interface functions are declared with the “C” linkage. The 3D Mouse Library
function returns a positive value if it succeeds. If the function fails, it returns a value lower
than 0 and the returned value is the code of the error.

Error codes returned by

functions:

The error codes are dec

lared in the Mouse3DLibraryErrors.h file.

Number Description

-1 Default error.

-2 Library is not initialized.

-3 Library is initialized.

-4 Library initialization error

-5 The 3D Mouse device not found.
-6 Data acquire error.

10.3.2 Example of us

Table 11: 3D Mouse Library errors

e

Getting 3D Mouse state:

buttons)
{

if (nResult<0)
{

return

}

int getState(long *x, long *y, long *z, long *Rx, long *Ry, long

int nResult = init ()

nResult;

*Rz,

long*

Page 102

AsTeRICS

Developer Manual

result = get3DMouseState (x,
if (nResult<0)
{

Yr Zy

return nResult;
}
result =close();
if (nResult<0)
{
return nResult;

}

return 1;

Rx, Ry, Rz, buttons);

10.4 Keyboard Library

The Keyboard Library is designed for developers who need to adapt the computer keyboard
for the specialized needs of motor disabled people. For example if the application has to use
standard keyboard input for the scanning and send the keys in different way. Developers
using this library will be able to get information about all system key events and send key
events to other applications. The library uses Low Level Keyboard Hook.

10.4.1 Keyboard Library interface

Library functions:

The library interface is declared in the KeyboardLibrary.h file.

Function

Description

KEYBOARDLIBRARY_API int __stdcall
init(HookCallBack hookCallBack, LPVOID param)

Initializes the library. The hookCallBack parameter is a
pointer to the call-back function. The param parameter
is a parameter defined by user.

KEYBOARDLIBRARY_API int __stdcall close()

Closes the library.

KEYBOARDLIBRARY_API int _stdcall startHook()

Starts key events hooking

KEYBOARDLIBRARY_API int __stdcall stopHook()

Stops key events hooking.

KEYBOARDLIBRARY_API int __stdcall
sendKeyByScanCode(int scanCode, SendKeyFlags
flags)

Simulates a key event using a key scan code.

KEYBOARDLIBRARY_API int __stdcall
sendKeyByVirtualCode(int virtualCode,
SendKeyFlags flags)

Simulates a key event using a virtual key code.

KEYBOARDLIBRARY_API int __stdcall
sendText(LPWSTR text)

Simulates text being typed in, defined by the text
parameter.

KEYBOARDLIBRARY_API int __ stdcall
blockKeys(BlockOptions blockOptions)

Blocks or Passes key events. The blockOptions
parameter defines the function's behaviour.

Table 12: Keyboard Library functions

Keyboard library interface functions are declared with the “C” linkage. The Keyboard Library
function returns a positive value if it succeeds. If the function fails, it returns a value lower
than 0 and the returned value is the code of the error.

Page 103

AsTeRICS

Developer Manual

Call-back function:

Function

Description

typedef int (__stdcall *HookCallBack) (int
scanCode, int virtualCode,HookMessage message,
HookFlags flags, LPVOID param);

This function is called if there is a new key event. The
scanCode parameter defines the scan code of the key,
the virtualCode parameter defines the virtual key code,
the message defines message type, the flags
parameter defines additional information about the key
event, the param parameter is a parameter passed by
the user. If the returned vaule is lest than 0, the library
will block the event, if the returned value is greather
than 0 the library will pass the event. If the returned
value is O the library will block or pass the event
according to the BlockKeys function.

Table 13: Keyboard Library call-back functions

Error codes returned by functions:

The error codes are declared in the KeyboardLibraryErrors.h file.

Number Description
-1 Default error.
-2 Library is not initialized.
-3 Library is initialized.
-4 Library initialization error.
-5 Hook in not initialized.
-6 Hook is initialized.
-7 Hook initialization error.
-8 Hook stopping error.
-9 Error during key send.
Table 14: Keyboard Library errors
Others:
Data Description
enum HookFlags Flags which defines additional information about the
{ event: HF_ExtendedKey - the extended key is sent,
HF_None=0, HF_InjectedKey - the key event is sent by application
HF_ExtendedKey=1, not by the keyboard, HF_AltKeyPressed - the Alt key is
HF_InjectedKey=2, pressed, HF_KeyPress — the key is pressed down,
HF_AltKeyPressed=4, HF_SentFromLibrary — the key is sent from the library.
HF_KeyPress=8,
HF_SentFromLibrary =0x10
k
enum HookMessage Defines message type: key event down, key event up,
{ system key event up or system key event up
HM_None=0,
HM_KEYDOWN=1,
HM_KEYUP,
HM_SYSKEYDOWN,
HM_SYSKEYUP
2
enum SendKeyFlags Used in the SendKeyByScanCode and
{ SendKeyByVirtualCode functions. These flags defines
SKF_KeyDown=1, the event type: key event up, key event down, extended
SKF_KeyUP=2, key sent. The SKF_KeyPress flag is defindes as
SKF_KeyPress=3, SKF_KeyPress=SKF_KeyDown|SKF_KeyUP.
SKF_KeyExtended=4,
2

Page 104

AsTeRICS Developer Manual

enum BlockOptions Used in the BlockKeys function. It defines the function's
{ behaviour. It can take the following values: BO_PassAll,
BO_BlockAll=1, BO_PassSentFromLibrary, BO_BlockAll. If it takes the
BO_PassSentFromLibrary=2, BO_PassSentFromLibrary value, the function passes
BO_PassAll=3 keyboard events generated by SendKeyByScanCode,
h SendKeyByVirtualCode and SendText functions and
blocks all other keyboard events.

Table 15: Other Keyboard Library interface data

10.4.2 Example of use

The call-back function will block or pass the event according to the blockKeys function:

int stdcall hookCallBack (int scanCode, int virtualCode,HookMessage message,
HookFlags flags, LPVOID param)
{

return 0;

Initialization of the library: starting hook, setting library to pass event generated by the library
and block all other key events:

void initKeyboardLibrary ()
{
int result =init (hookCallBack,0);
if (result>0)
{
startHook () ;
blockKeys(BO_PassSentFromLibrary);

Sending Ctrl-V key combination from the library:

#define Vkey 0x56

#define LeftCtrlkey O0xA2

void sendCtrlvV ()

{
sendKeyByVirtualCode (LeftCtrlkey, SKF KeyDown) ;
sendKeyByVirtualCode (Vkey, SKF_KeyDown) ;
sendKeyByVirtualCode (Vkey, SKF_KeyUP) ;
sendKeyByVirtualCode (LeftCtrlkey, SKF KeyUP) ;

Stopping hook and closing the library:

void closeLibrary ()
{
stopHook () ;
close();

Page 105

AsTeRICS Developer Manual

11 Appendix A: OSGl-related Information

11.1 The OSGi framework and it’s layers

The core component of its specification is the OSGi framework. The Framework provides a
standardized environment to applications (called bundles) and is divided in a number of
layers.

LO: Execution environment
L1: Modules

L2: Life Cycle management
L3: Service registry

A ubiquitous security system is deeply intertwined with all the layers.

Figure 14: OSGi layers (from http://www.osgi.org/About/Technology)

The LO Execution environment is the specification of the Java environment. Java 2
Configurations and Profiles, like J2SE, CDC, CLDC, MIDP, etc are all valid execution
environments. The OSGi platform has also standardized an execution environment based on
Foundation Profile and a smaller variation that specifies the minimum requirements on an
execution environment to be useful for OSGi bundles.

The L1 Modules layer defines the class loading policies. The OSGi Framework is a powerful
and rigidly specified class-loading model. It is based on top of Java but adds modularization.
In Java, there is normally a single classpath that contains all the classes and resources.
The OSGi Modules layer adds private classes for a module as well as controlled linking
between modules. The module layer is fully integrated with the security architecture, enabling
the option to deploy closed systems, walled gardens, or completely user managed systems
at the discretion of the manufacturer.

The L2 Life Cycle layer adds bundles that can be dynamically installed, started, stopped,
updated and uninstalled. Bundles rely on the module layer for class loading but add an API
to manage the modules in run time. The lifecycle layer introduces dynamics that are normally

Page 106

AsTeRICS Developer Manual

not part of an application. Extensive dependency mechanisms are used to assure the correct
operation of the environment.

The L3 layer adds a Service Registry. The service registry provides a cooperation model for
bundles that takes the dynamics into account. Bundles can cooperate via traditional class
sharing. However, class sharing is not very compatible with dynamically installing and
uninstalling code. The service registry provides a comprehensive model to share objects
between bundles. A number of events are defined to handle the coming and going of
services. Services are just Java objects that can represent anything. Many services are
server-like objects, like an HTTP server, while other services represent an object in the real
world, for example a Bluetooth phone that is nearby. The service model is fully security
instrumented. The service security model provides an elegant way to secure the
communication between bundles passes.

11.2 Modularization in OSGi

One of the most useful features of OSGi is that it allows for modularization of bundles. In
principle, the developer is allowed to specify exactly which classes should be imported and
which ones exported (at a package level).

As outlined in 4.2.3, each bundle specifies a manifest file (placed in a JAR file at “/META-
INF/MANIFEST.MF”) where it can specify this kind of details. For example, the main
AsTeRICS middleware bundle could specify the following manifest file:

Manifest-Version: 1.0
Bundle-ManifestVersion: 2

Bundle-Name: asterics.middleware
Bundle-SymbolicName: org.asterics.mw
Bundle-Version: 0.1.0

Bundle-Activator: org.asterics.mw.Main
DynamicImport-Package: *

Export-Package: org.asterics.mw.component

The two last lines indicate that the required packages should be dynamically imported as
needed, while the “org.asterics.mw.component” package should be made available for
use by other bundles deployed within the same OSGi environment.

For further information about OSGI please refer to [9].

11.3 Using OSGi in AsTeRICS

The OSGi is an ideal framework for realizing some of the AsTeRICS components. In
particular, OSGi is intended to provide the underlying framework for the AsTeRICS Runtime
Environment (ARE) as well as the several pluggable components (i.e., sensors, processors
and actuators).

The ARE middleware is realized as a collection of modules which provide bundle discovery,
lifecycle management, communications, the server-side of the ASAPI communication

Page 107

AsTeRICS Developer Manual

system, etc. Furthermore, OSGi is used to manage the different components as individual
bundles.

After the ARE has been started, the OSGi commands can be used to monitor bundles and
manage their lifecycle:

Double-click on “start.bat”...

C:\test-deployment>java -Djava.util.logging.con

fig.file=logging.properties -jar org.eclipse.osgi 3.6.0.v20100517.jar -configura
tion profile -console

0sgi> ss

Framework is launched.

id State Bundle
0 ACTIVE org.eclipse.osgi 3.6.0.v20100517
1 ACTIVE org.asterics.middleware 0.1.0

0osgi> install file:asterics.sensor.webcamera.jar
Bundle id is 2

osgi> start 2

osgi> install file:asterics.processor.averager.jar
Bundle id is 3

osgi> start 3

osgi> install file:asterics.actuator.mouse.jar
Bundle id is 4

osgi> start 4

0sgi> ss

id State Bundle

0 ACTIVE org.eclipse.osgi 3.6.0.v20100517

1 ACTIVE org.asterics.middleware 0.1.0

2 ACTIVE org.asterics.webcamera 0.1.0

3 ACTIVE eu.asterics.component.processor.averager 0.1.0
4 ACTIVE eu.asterics.component.actuator.mouse 0.1.0
osgi>

Page 108

AsTeRICS Developer Manual

12 Appendix B: Building the ACS

12.1 Setup of the Development environment

The following steps are necessary to build the ACS from it's SVN sources:

1. Install Visual Studio

The ACS buildflow is testet with VS 2010, the usage of VS 2010 [10] is
recommended. Using the free VS2010 express version is possible (with some
restriction — for example no editor for GUI creation).

2. Install SVN plugin for Visual Studio

If the subversion repository should be accessed within VisualStudio, please install a
SVN-extension for VS. The plugin “AnkhSvn” is recommended [11], it can be
downloaded at:

http://ankhsvn.open.collab.net/

3. Install Microsoft Ribbon Library
The Microsoft Ribbon Library [12] has to be installed.

The Ribbon Library used for the compilation of the ACS is version v4.0.0.11019.1 It
can be downloaded at:

http://www.microsoft.com/download/en/details.aspx?id=11877
4. Install the ResXFileCodeGenerator

For making the Resource file (for language support) also available in the .xaml
format, a new code generator has to be installed. This is not required for the building
process of the ACS, but it helps when developing/editing the XAML-Files. Downlaod
the CodeGenerator for the Homepage
(http://www.codeproject.com/KB/dotnet/ResXFileCodeGeneratorEx.aspx

) and install it.

If you are using VS2010, also add the “ResXFileCodeGeneratorEx.reg” to your
Windows-registry by double clicking it. This file can be found in the “HowTo” subfolder
of the SVN.

More on this code generator can be found at [13]

Page 109

http://ankhsvn.open.collab.net/
http://www.codeproject.com/KB/dotnet/ResXFileCodeGeneratorEx.aspx

AsTeRICS Developer Manual

12.2 Update Process of the Schemata

The XML Schemata describes the structure of plugin (input and output ports, events,
properties, GUI, ...) as well as the model itself. See section 4.2.1 The Bundle Descriptors
and section 4.2.2 The Deployment Descriptor for further details. Reading and writing these
xml files will be done using generated classes. The xsd.exe compiler from the Microsoft
Visual Studio (e.g. located at “C:\Program Files (x86)\Microsoft SDKs\Windows\
v7.0A\Bin\xsd.exe”) will be used, fulfilling these tasks. The commands

xsd.exe bundle model.xsd /c /l:cs

xsd.exe deployment model.xsd /c /l:cs

creates the files bundle_model.cs and deployment_model.cs, being used in the ACS. See
the ACS sourcecode for more information about the files.

Page 110

AsTeRICS Developer Manual

13 Appendix C: Guidelines for Building Vision-Plugins

These notes want to provide a quick help to compile and link the computer vision supported
plugins. As of the day of the release of this document there are two principal plugins:
facetrackerLK and facetrackerCLM. They both depends on several C/C++ third parties
libraries that the developers need to configure correctly in order to complete with success the
building process. Here’s a list of the required libraries for each plugin:

e facetrackerLK:
o OpenCv (recommended version > 2.3.x).
o videolnput (latest available).

e facetrackerCLM:
o OpenCv (recommended version 2.3.x).
o videolnput (latest available).
o Boost Library (recommended version > 1.47).
o Facetracker, based on the source code by Jason SiragihZ.

OpenCyv and Boost library sources are easily available respective on the official maintainer’s
sites. This is not completely true instead for what concerns videolnput and FaceTracker for
which specific instruction will be given separately.

As a brief disclaimer it is important to take into consideration that this guide is for developers
that have a proper knowledge of the basics of application building on a Windows system.
The base tools on which we base this section are Visual Express 2010 and Eclipse.

Let’s get started then.

13.1 OpenCV

The best way to achieve our goal is to download the original packages available from the
WillowGarage webpage® and read thoroughly the install guide® therefore in this section we
will give only a brief overview of the building process.

For the impatient, at the time of the writing of this section OpenCV distributes an installer that
extracts in a folder both the sources and the prebuilt binaries. Once the installer completes
copying the files what we need to do is to move headers and libraries into a location where
the preconfigured Visual Express projects expect to find them.

2 http://web.mac.com/jsaragih/FaceTracker/FaceTracker.html|
% http://opencv.willowgarage.com/wiki/

* http://opencv.willowgarage.com/wiki/InstallGuide

Page 111

AsTeRICS Developer Manual

In our case this folder is AsTeRICS\ARE\components\libraries\3rdparty\opencv, as we can
see in Figure 16. The folders that should be moved into it are the includes and the libraries.
The user can choose whether to link against the static or a dynamic version of the binaries.
Figure 16 shows the content of the build folder as installed by the original opencyv installer.

opency b build » x86 » vl » - |¢¢|| Search vcl0 R
harewith v New folder =~ 0 @
- MName . Date modified Type
E bin 17/08/2011 05:13 File folder
lib 17/08/2011 05:13 File folder

staticlib 17/08/2011 05:31 File folder

Figure 15: Folder structure created by the OpenCV installer

If the choice is to use the dynamic libraries then also the “bin“folder should be added to the
PATH system variable. This is not needed if the static version is used (just rename the name
of the folder to “lib“ when copying.

[=]
@uvl < ARE » components » libraries » 3rdparty » opencv » - |6¢|| Search apency PI
Organize Include in library Share with « New folder ==~ i \'@'\
@ actuator.oscilloscope * Name Date modified Type
actuator.phonecontrol

e g . include File folder
#. actuator.platformdigitalout . X

lib File folder
@ actuator.platformlcd X

share File folder
% actuator.remotejoystick

| opencv.id Text Document
#. actuator.remotekeyboard — = = =
|| OpenCVConfig.cmake 09,/01/2012 18:17 CMAKE File
#. actuatorremotemouse
. actuator.syntheticvoice
% actuator.textdisplay
% actuator.wavefileplayer
#%. libraries
. 3rdparty
% upmc

out

Figure 16: AsTeRics third party folder structure

As a final remark, please note that the opencv now uses the Threading Building Blocks®
(TBB) from Intel (instead of OpenMP) to provide where possible parallelisation of the heavy
computations often required by algorithms. The TBB runtime library is shipped in the same
package as the opencv-2.3.1 under the “common” folder.

13.2 Boost Library

The Boost libraries® are required only for the facetrackerCLM plugin. As the opencv, boost
has a rich “Getting Started” section which we invite developers to read. Boost uses BJam as
building tool. Once downloaded the source should be unpacked in a local directory. The first

® http://threadingbuildingblocks.org/

® http://www.boost.org/

Page 112

AsTeRICS Developer Manual

step consists in building of the bjam executable. It is sufficient to execute the “bootstrap.bat”
batch file in the boost root directory. Now open a console Terminal and change directory and
issue the following command:

bjam toolset=msvc variant=release link=static threading=multi runtime-link=static install

This command tells the build manager to build a release, static and multithreaded version of
the boost libraries which links statically to the microsoft runtime.

The build process will start, taking some time. It's time to take a break. The command will
create and install the boost libraries into the C:\Boost directory (this behaviour can be
changed by specifying a different directory with the option —prefix=<PREFIX> in the
command line).

The VC projects which uses the boost libraries look for the required includes and libraries
specified by two environment variables: BOOST_INCLUDES and BOOST_LIBS. It is
therefore necessary to set both accodingly to where the boost libraries were installed. In our
case the environment variables will be set to the values as in Figure 17 and Figure 18.

W Local Disk (C:) » Boost » include » boost-1 47 » v|¢¢|’;

rary - Share with = Mew folder

MName Date modified Type

| boost 21/02/2012 18:46 File folder

Figure 17: Boost include path

r »|Local Disk (C:) » Boost » lib - | 44|

library « Share with - Mew folder

i MName Date modified Type
%4 libboost_chrona-vel00-mt-s-1_47.lib 21,/02/2012 18:48 Object File

':",3 libboost_date_time-vcl00-mt-s-1_47.lib 21/02/2012 18:48 Object File
%4 libboost_exception-vel00-mt-s-1_47.lib 21,/02/2012 18:48 Object File
%3 libboost_filesystem-vel00-mt-s-1_47.lib 21/02/2012 18:48 Object File

% [T T SO T ., SR S B [2 2 M AN A0.AD [1 M- iy et

m

Figure 18 - Boost library path.

As a final note please keep in mind that the boost libraries use the autolinking feature that
allows the linker to figure out which will be the required libraries during linking time.

Page 113

AsTeRICS Developer Manual

13.3 Videolnput

Although videolnput is available on the internet as a precompiled static library we need to
setup a custom project because the distributed package will not run in a multithreaded
environment such as AsTeRICS.The suggested version to download is the one available on
the gameoverhack github repository’. Download the zipped package® and unpack it on the
hard drive. For our purposes Videolnput also requires the Microsoft Windows SDK 7.1 (or the
latest available). The SDK, available from the Microsoft website®. The SDK will provide all
required DirectShow headers and libraries as explained in the following steps. Be sure to
include also the “Samples” in the installation process.

Although Videolnput source also include DirectShow headers and libraries as well as DirectX
libraries we will not use any of them because the building process could be quite
problematic. Following these instructions instead will lead to a cleaner building process. To
avoid every problem the suggestion is to remove all .lib files inside the folder.

Our starting point is the Visual Express solution videolnput.sin located in the folder “VC-
2008-videolnputcompileAsLib”, see Figure 19.

VC2008-videoInputcompileAsLib » « [4 ||| Search vC2008-videoinputea... 2 |

rewith v Newfolder E~ 0 @

=
Mame Date modified Type Size

Debug File folder

Release File folder

%2 dxguid.lib Object File Library 119 KB
L %4 ole32lib Object File Library 72 KB
I %4 oleaut32lib Object File Library B4 KB
% quartzlib Object File Library 3 KB
%4 strmbasd.lib Object File Library 6764 KB
%4 strmbase.lib Object File Library T45 KB
%3 strmiids.lib Object File Library 302 KB
%4 uuid.lib Object File Library 1426 KB
jj videolnput.ncb WC++ Intellisense ... 15107 KB
[Z4 videolnput.sin Microsoft Visual 5... 1KB
=5 videolnput.suo Visual Studio Solu... 66 KB
| videolnput.suo.old QLD File 63 KB
A videolnput.vcproj VC++ Project 4KB
=5 videolnput.veproj.gameoveri7.gameov... Visual Studio Proj... 2KB

Figure 19 - videolnput solution.

When VC10 has finished conversion of the project, it will open as a Debug target but for
efficiency we will switch from Debug to Release.

In order all actions that have to be taken:

1) Change reference SDK: switch Platform Toolset from v100 to Windows7.1SDK, see
Figure 20

! https://github.com/gameoverhack/videolnput
® https://github.com/gameoverhack/videolnput/zipball/master

® http://www.microsoft.com/download/en/details.aspx?id=8442

Page 114

AsTeRICS

Developer Manual

1> Commaon Properties 4
4 Configuration Properties Output Directory $(SolutionDir)$(Configuration)\
General Intermediate Directory ${Configuration)\
Debugging Target Mame 5(ProjectName)
VC++ Directories Target Extension lib
b GG+ Extensions to Delete on Clean *.cdf;".cache™.obj;"ilk;* resources ™ tb; ™ ti;* tih;* tmp; *.rsp;
b Librarian Build Log File SntDin\S(MSBuildProjecthame) Jog

XML Decument Generator
Browse Information

Build Events

Custom Build Step

Enable Managed Incremental Build

Platform Toolset Windows7.15DK

[]

w100
a0

Configuration Type Windows715DK
Use of MFC andard WIndows
Llee of AT Mot Llcing AT

Character Set

Commen Language Runtime Support

Use Unicode Character Set

Ne Commen Language Runtime Support

Figure 20 - Switching Platform Toolset

2) Additional Include directory for the DirectShow and modify the path to “extra” folder as in

Figure 21

onfiguration: [Active(ReIease)

v] Platform: [Active(Win_?Z)

'l ’ Configuration Ma

[» Commen Properties
a4 Cenfiguration Properti
General
Debugging
WC++ Directories
a CfC++
General
Optimization
Preprocessor
Code Generatio|
Language
Precompiled Hy

Additional Include Directories \W
i[>+][]
Jlibs\extra -
CA\Program Files\Microsoft SDEs\Windows\wi . 1\Samplesimultimediatdirectshow\baseclasses
[l 1 | [
Inherited values:

Figure 21 - Setting the DirectShow include path.

3) Remove redundant library settings. Leave only “strmiids.lib“, Figure 22

onfiguration: lActive(Release)

et

- | Platform: | Active(Win32)

'] [Configuraticn Manager...

> Common Properties
4 Configuration Properties
General
Debugging
WC++ Directories
o C/C++
a Librarian
General
Command Line

[> XML Document Generator

[> Browse Information
[> Build Events
[» Custermn Build Step

Cutput File
Additional Dependencies
Additional Library Directories

S(0utDir)S(TargetMame)$(TargetExt)
dxguid.lib;ole32.lib;strmiids.lib;uuid.lib;%(AdditionalDepe

Suppress SH 4 ional Dependencies
Module Defl

Ignore All D| Etrmiids.lib

Ignore Spec|

-

Export Nam|
Farce Symby
Use Uniced
Link Library|
Error Repord] Inherited values:
Treat Lib W

4

Figure 22 —Library settings.

Page 115

AsTeRICS Developer Manual

4) Comment out DEBUG and _DEBUG pre-processing definitions in videolnput.cpp:

Solution Explorer > [X QEEECILIRSTAESTE Conversion Report
=& = (Global Scope)
; Solution 'videoInput' (1 project) =1 //THE SOFTWARE IS PROVIDED "AS IS", WITHOUT

//IMPLIED, INCLUDING BUT NOT LIMITED TOQ THE
J//FITNESS FOR A PARTICULAR PURPOSE AND NONII
. 3 Header Files //AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOI
[Resource Files JS/LIABILITY, WHETHER IN AN ACTION OF CONTRA(
//OUT OF OR IN CONNECTION WITH THE SOFTWARE

4 |7 Source Files //THE SOFTWARE.
¢ videoInput.cpp

4 -ﬂ videolnput
> [zd External Dependencies

f#define DEBUG 1
/#define _DEBUG 1

#include "videoInput.h”
#include "tchar.h”

//Include Directshow stuff here so we don't
#include "DShow.h™

#include "streams.h”

#include "mygedit.h”

#include "vector”

#include "Aviriff.h"

#include "Windows.h"

Figure 23 - Remove troubling defines when targeting Release targets.

5) Uncomment VI_COM_MULTI_THREADED define statement in videolnput.h:

[/7if you need VI to use multi threaded com
kdefine WI_COM MULTI_THREADED

J/STUFF ¥OU DON'T CHANGE

//videoInput defines

#define WI_VERSION @8.1995

#define VI_MAX CAMERAS 28

#define WI_NUM_TYPES 19 //DON'T TOUCH (I'm not touching you ;-)
#define WI_NUM_FORMATS 18 //DON'T TOUCH

Figure 24 - Enable COM multithreading.
6) Build! Just wait.

7) Post-Build: when the building process ends we’ll find (hopefully) the compiled static
library in the Release folder in the same folder as the solution. Finally we are ready to
compile and link the videolnput library and use it inside the plugins’ projects. In order to do
that it is necessary to move videolnput headers and libraries to the third party folder in the
ARE\components directory. Figure 25 shows the contents of the videolnput folder inside the
ARE\components\libraries\3rdparty folder, videolnput.h and mygedit.h should go into
“include” and videolnput.lib goes into “lib”.

Page 116

AsTeRICS Developer Manual

AsTeRICS >IARE v components b libraries » 3rdparty » wvideolnput >I v|&’|

Mew folder

Documents library

videoInput

Name Date medified Type

% include 07/02/2012 22:45 File folder
. lib 12/02/2012 11:33 File folder

Figure 25 - videolnput final installation.

13.4 Building facetrackerLK

Once the Opencv 2.3.1 and Videolnput are in place, the building process of the
facetrackerLK plugin is straightforward. The “webcam.sIn” solution is configured with three
targets: Relase (VI), Release (cv231) and Release (cv097).

The Relase (VI) target will use Videolnput to acquire from the webcam and OpenCV-2.3.1 for
processing, while Release (cv231) will use OpenCV-2.3.1 for both tasks. Lastly the target
Release (cv097) will use Videolnput for image acquisition and an old version of the OpenCV
for processing. If we want to opt for the Videolnput based video capturing then we will
proceed as in Figure 26.

-i_f;], webcam - Microsoft Visual C++ 2010 Express
File Edit WView Project Build Debug Tools Windd Help

iﬂ'J'ﬁHlﬁi|ﬁ —|5°'I:E|| € - ™ ',E“'_:'I,;| P |Re|easef‘u‘]] '||Wir132 -||
N o oksaneaa.

Solution Explorer Ml facetrackerlK.cpp

(Global Scope)

g Solution ‘'webcam' (2 projects)
7 facetrackerlK
;"3 webcam

=k
i

* AsTeRICS - Assistive Technoleogy Rapid Ii

Figure 26 - Specifying the build target.

If all goes well during the building process then we will get the facetrackerLK.dll ready to be
bundled in the usual jar archive that will be executed in the ARE framework.

A warning is due, the current project is configured to link against a custom build of the
opencyv library which requires a set of additional libraries (libjpeg, libpng, libtiff, zlib etc) as
well as the tbb.lib. When not required it is possible that the linker will throw an error. In this
case it is necessary to edit the header “opencv_includes.h” which contains a set of pragma
directives targeting those libs.

Page 117

AsTeRICS Developer Manual

Before doing so we should pay attention if the Java code that invokes the DLLs and the
MANIFEST file are properly set. In case we want to choose the recommended solution
based on the most recent opencv-2.3.1 then make sure that the lines in the class Bride.java
look like in Figure 27. Otherwise uncomment the lines (above) that loads the opencv-0.97
DLLs and comment the line (below) that loads the TBB dynamic library.

g~ @ i%-0-Q- wWE- sy POAEN H-H S
4] Bridge,java &3

& build.xml & build.xml [4] Bardisplaylnstance.j [4] GULjava [J] FacetrackerCLMInstan = MANIFEST.MI

* Statically load the native library
= static
i
//5ame for both versions
Sy=stem. loadLlibrary("facetrackerLE") ;
LstericsErrorHandling.instance.getLogger () .fine ("Loading “"facetrackerlLE.dll\" ... ok!"):

//USING opencv087

Uncomment the following lines if building the opencv037 based wersion.

System. loadlibrary ("cxcore097") ;

AstericsErrorHandling.instance.getLogger () .fine ("Loading \"cxcore037.dl1l\" ... ok!"};
System.loadlibrary ("cv097") ;
AstericsErrorHandling.instance.getLogger () .fine ("Loading \"cv097.d11\" ... ok!™);
Syztem.loadlibrary ("highguiog7T"™) ;
AstericsErrorHandling.instance.getLogger () . fine ("Loading \"highguio37.d11%™ ... ok!™):

f/opencw0aT

Uncomment this if building the opencv 2.3.1 based version.

//USING opencwv23l

Sy=stem. loadLibrary("thb") ;
LstericsErrorHandling.instance.getLogger () .fine ("Loading “\"tbb.dl1%"™ ... ok!"):

S anen et

Figure 27 - Loading the right dependencies in Bridge.java for the facetrackerLK plugin.

Lastly it is sufficient to make sure that the actual MANIFEST.MF file matches the
MANIFEST_videoinput.MF that is distributed with the release.

13.5 FaceTracker Library

At the time of writing we decided not to include the static library built upon the original
sources made available by the author to the consortium. As soon as a decision will be made
a mechanism for building the plugins, which depend on the FaceTracker library, will be put in
place. This is not a problem anyway for the runtime distribution as the FaceTracker is
compiled statically to the distributed plugins.

Page 118

AsTeRICS Developer Manual

14

10
11

12

13
14

15

References and Resources

AsTeRICS Deliverable D2.1 — “System Specification and Architecture” - https://bscw.integriert-
studieren.jku.at/bscw/bscw.cqi/40517

AsTeRICS Deliverable D2.3 — “Report on API-specification for sensors to be integrated into the
AsTeRICS Personal Platform” - https://bscw.integriert-studieren.jku.at/bscw/bscw.cqi/43571

Open Service Gateway initiative (OSGi) - open specification - http://www.osgi.org

Tortoise SVN client for Windows: http://tortoisesvn.tigris.org/

Java Development Kit 6 (JDK 6): http://www.oracle.com/technetwork/java/javase/downloads/index.html

Eclipse Integrated Development Environment: http://www.eclipse.org/downloads/

Subclipse SVN plugin for Eclipse: http://subclipse.tigris.org/serviets/ProjectProcess?pagelD=p4wYuA

Apache ANT - commandline based build tool for Java applications: http://www.ant.apache.org

OSGi — Tutorial by Nearchos Paspallis:
http://nearchos.blogspot.com/2008/12/starting-with-osgi-tutorial-1.html

Microsoft Visual Studio 2010 - http://www.microsoft.com/visualstudio/en-us/products/2010-editions

AnkSVN — SVN support plugin for Visual Studio - http://ankhsvn.open.collab.net/

The Microsoft Ribbon Library - http://www.microsoft.com/downloads/en/details.aspx?FamilylD=2bfc3187-
74aa-4154-a670-76ef8bc2a0b4

The ResXFileCodeGenerator - http://www.codeproject.com/KB/dotnet/ResXFileCodeGeneratorEx.aspx

Apache Thrift - http://thrift.apache.org/

Simple Logging Facade for Java (SLF4J) framework - http://www.slf4j.org/index.html

Page 119

https://bscw.integriert-studieren.jku.at/bscw/bscw.cgi/40517
https://bscw.integriert-studieren.jku.at/bscw/bscw.cgi/40517
https://bscw.integriert-studieren.jku.at/bscw/bscw.cgi/43571
http://www.osgi.org/
http://tortoisesvn.tigris.org/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.eclipse.org/downloads/
http://subclipse.tigris.org/servlets/ProjectProcess?pageID=p4wYuA
http://www.ant.apache.org/
http://nearchos.blogspot.com/2008/12/starting-with-osgi-tutorial-1.html
http://www.microsoft.com/visualstudio/en-us/products/2010-editions
http://ankhsvn.open.collab.net/
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=2bfc3187-74aa-4154-a670-76ef8bc2a0b4
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=2bfc3187-74aa-4154-a670-76ef8bc2a0b4
http://www.codeproject.com/KB/dotnet/ResXFileCodeGeneratorEx.aspx
http://www.slf4j.org/index.html

