

AsTeRICS

Developer Manual

AsTeRICS Developer Manual

 Page 2

Version History

Version Date Changed Author(s)

0.1 August 19,
2010

First draft UCY

0.2 December 20,
2010

Added ACS and Thrift guides KI-I

0.3 December 26,
2010

Added setup and build environment
descriptions, changed document structure,
updated component development guide,
added Native ASAPI and JNI development
descriptions

FHTW

0.4 March 16,
2011

Added one click build script and information
about ignoring COM ports in
CIMPortManager

FHTW

0.5 July 29, 2011 Added coding guidelines section FHTW

0.6 September
19, 2011

Added local storage information FHTW

0.8 September
28, 2011

Added header template and javadoc
example

FHTW

0.9 October 27,
2011

Integrated Plugin Tool descriptions and
CIM Protocol Description, reorganized
structure

FHTW

1.2 January 13,
2012

Reworked structure, added Introduction,
added PluginCreation Tools

FHTW

1.5 June 20th,
2012

Some minor revisions based upon user
feedback, additions of features for the final
AsTeRICS prototype

FHTW

1.5a October 23,
2012

Update of thrift, adding schema compiler
instructions for C#

KI-I

2.0 Nov 13, 2012 Added updates for final system prototype;
updated CIM protocol information

FHTW

2.2 Jul 10, 2013 Updates for Release Version 2.2, added
debugging instructions, fast raw port
controller, updated file/directory structure

FHTW

2.5 Oct 27, 2014 Updates for Release Version 2.5, added
websocket info, added usage info for
threadpool , added Java 8 install infos,
added multithreading info for plugin
development

FHTW

2.6 March 27,
2015

Updates for Release Version 2.6, added
description of single threaded model
execution concept

FHTW

AsTeRICS Developer Manual

 Page 3

Table of Contents

Version History .. 2

1 Introduction .. 7

1.1 About the AsTeRICS project ... 7

1.2 About this document .. 7

1.3 The AsTeRICS Runtime Environment ... 8

1.3.1 ARE Components .. 9

1.4 About OSGi ... 9

2 Getting Started with AsTeRICS Development ...10

2.1 The AsTeRICS Source Code Repository ..10

2.1.1 Repository structure ..10

2.2 Setting up the Eclipse IDE for ARE development ...11

2.3 Setting up build environment for JDK 8 ..13

2.4 Building ARE Middleware, Services and Components ..15

2.4.1 One Click Builds ..15

2.4.2 Understanding the component build-scripts ...16

2.5 Starting the ARE middleware and component deployments17

2.5.1 Structure of the runtime folder “./bin/ARE”: ..17

2.5.2 Structure of the loader.ini file ...17

2.5.3 AsteRICS services ..18

2.5.4 Running a deployment ..18

2.5.5 Activation of ARE webservice (REST, websocket) demo19

2.5.6 Define autostart model per command line ...19

2.5.7 Change model execution thread pooling and submit timeouts19

2.6 Debugging the ARE ..21

3 A Quick Guide to AsTeRICS Plugin Development ...23

3.1 The Plugin Creation Wizard ..24

3.1.1 Created files and folders ...25

3.2 Plugin Activation in ACS and ARE ..28

3.2.1 Component-Collection Management in the ACS ...29

4 Writing AsTeRICS Plugin Code ...30

4.1 ARE Coding Guidelines ..30

4.1.1 Port Naming Conventions ...30

4.1.2 Property Naming Conventions ...30

4.1.3 Bundle Descriptor Naming Conventions ..31

4.1.4 AsTeRICS Source File header ..31

4.1.5 JavaDoc compatible comments ...31

4.2 Implementing AsTeRICS components ..32

4.2.1 The Bundle Descriptors ...32

AsTeRICS Developer Manual

 Page 4

4.2.2 The Deployment Descriptor ...33

4.2.3 The Manifest file ..34

4.2.4 Structure of OSGi bundles containing ARE components34

4.2.5 Component lifecyle ..35

4.2.6 Step-by-Step implementation: Averager processor ...36

4.2.7 Threading ..37

4.2.8 Writing plugins using Swing ...37

4.2.9 Long lasting method calls ..38

4.2.10 Sensor callbacks ...38

4.2.11 Contributing a developed plugin (git pull request) ..38

5 Services and Utils: Infrastructure for plugins ..39

5.1 Communicating with peripherals: CIM Communication service39

5.1.1 CIMPortController ...40

5.1.2 CIMPortManager ...40

5.1.3 CIMEventHandler ..41

5.1.4 CIMProtocolPacket ...42

5.1.5 Serial ports not adhering to CIM Protocol (Raw Ports)43

5.2 Communication through a socket interface: Remote Connection Manager43

5.2.1 IRemoteConnectionListener ..43

5.2.2 RemoteConnectionManager ..44

5.3 Local Storage Service ..45

5.4 Keyboard/Mouse Native Hook Services ...45

5.5 Computer Vision Services ..45

5.6 Data Conversion Utilities ..46

5.7 Logging ..46

5.7.1 Status checking ...47

5.8 The ARE Thread Pool ..48

5.9 The ARE GUI support ..49

5.10 ARE core events notification services...51

5.11 Dynamic Properties ..51

5.12 Data Synchronization ...52

5.13 Interfacing Native C/C++ Code via JNI ...54

5.13.1 Specifying native libraries in the Manifest ..54

5.13.2 Java-Implementation: JNI-Bridge ..54

5.13.3 C-Implementation: Callbacks and JNI code ...56

5.14 External Helper Applications and Tools for Plugins ..58

6 Communication Interface Modules and Protocol ...59

6.1 Communication Mechanism and Packet Format ..60

6.2 Request / Reply - Code ..61

AsTeRICS Developer Manual

 Page 5

6.2.1 Request/Reply Code in LSB ..61

6.2.2 Mode / Status code in MSB ...62

6.3 Feature Lists and CIM-IDs of all AsTeRICS CIMs ..62

6.3.1 HID-CIM ..62

6.3.2 PT-1 GPIO – CIM (Legacy GPIO) ...63

6.3.3 Phone-CIM (Windows Phone OS) ...64

6.3.4 PT-1 ADC – CIM (Legacy ADC/DAC) ..65

6.3.5 BMA180 Accelerometer Sensor ..66

6.3.6 PT-1 Core – CIM ...67

6.3.7 EOG-CIM ..68

6.3.8 Sensorboard – CIM ...69

6.3.9 Arduino – CIM ...70

6.3.10 PT2 Core - CIM ...71

6.3.11 PT2 GPI – CIM (DigitalIn) ..73

6.3.12 PT2 GPO – CIM (DigitalOut) ...73

6.3.13 PT2 ADC – CIM (AnalogIN) ...74

6.3.14 PT2 ZigBee – CIM ...74

6.4 Demo Implementations of the CIM protocol ..75

7 Into the Deep: Concepts of the ARE middleware ...76

7.1.1 Runtime Model Concepts ..76

7.1.1.1 Components ...77

7.1.1.2 Ports ..78

7.1.1.3 Channels ..80

7.1.1.4 Component Architecture of ARE ..80

8 ARE threading concept for model execution ..83

8.1 Asynchronous method execute ..84

8.2 Synchronous method execAndWaitOnModelExecutorLifecycleThread...................84

8.3 Pro and Contra of the single threaded approach ..84

9 ASAPI Clients and Serialisation ...86

9.1 ASAPI and ARE Interconnection ..87

9.1.1 ASAPI and ARE in the configuration process ..88

9.2 Available ASAPI commands ...91

9.3 Serialisation..94

9.3.1 The Thrift definition file ..94

9.3.2 The Thrift Compiler ...95

9.3.3 The Thrift Library ...95

9.3.4 Simple Java Client ..95

10 Native ASAPI Libraries ..96

10.1 Phone Library ...96

AsTeRICS Developer Manual

 Page 6

10.1.1 Phone Library interface: ..96

10.1.2 Example of use ...98

10.2 GSM Modem Library ..99

10.2.1 GSM Modem Library interface: ..99

10.2.2 Example of use ... 101

10.3 3D-Mouse Library ... 102

10.3.1 3D-Mouse Library interface ... 102

10.3.2 Example of use ... 102

10.4 Keyboard Library .. 103

10.4.1 Keyboard Library interface .. 103

10.4.2 Example of use ... 105

11 Appendix A: OSGI-related Information .. 106

11.1 The OSGi framework and it’s layers ... 106

11.2 Modularization in OSGi .. 107

11.3 Using OSGi in AsTeRICS ... 107

12 Appendix B: Building the ACS .. 109

12.1 Setup of the Development environment .. 109

12.2 Update Process of the Schemata ... 110

13 Appendix C: Guidelines for Building Vision-Plugins ... 111

13.1 OpenCV ... 111

13.2 Boost Library .. 112

13.3 VideoInput .. 114

13.4 Building facetrackerLK ... 117

13.5 FaceTracker Library ... 118

14 References and Resources .. 119

AsTeRICS Developer Manual

 Page 7

1 Introduction

1.1 About the AsTeRICS project

AsTeRICS – the Assistive Technology Rapid Integration and Construction Set – is an open

framework for the development of Assistive Technologies, with the main focus on novel,

affordable and flexible AT-solutions. A plethora of sensor- processing- and actuator plugins

provides a powerful, AT-centred infrastructure which can be used to control home

automation equipment, entertainment and ICT-devices or use ambient assistive services by

means of desired sensor combinations – without programming a single line of code.

Interested 3rd parties like research institutions or companies in the field of AT can use the

framework to integrate their products into the existing AT-landscape.

The project has been initiated in 2010 as a Special

Targeted Research Project in the Seventh Framework

Programme of the European Commission in the ICT

work programme. For further information, please visit

the project homepage http://www.asterics.org

1.2 About this document

This document provides resources for developers to work with the AsTeRICS framework. It

includes step-by-step introductions how to set up the development environment, and a “10-

Minutes Guide to AsTeRICS Plugin Development” which outlines plugin creation for the

AsTeRICS Runtime Environment (ARE) with the AsTeRICS Plugin Wizard.

Furthermore, this document outlines important ARE services which can be used for error

reporting or communication with external modules, describes the naming conventions for

programming and plugin creation, illustrates the formation of an example ARE deployment,

and describes the usage of OSGi bundles - i.e., self-contained modules. (For a brief

overview on OSGI see chapter 1.4).

Last but not least, the developer manual also gives some deeper insights into the

middleware, the CIM port manager and the communication framework between ACS and

ARE which is based upon the ASAPI client/server architecture using Thrift. (For an

introduction to ASAPI – the AsTeRICS Application Programming Interface - see chapter 8).

To get used to the AsTeRICS system’s capabilities and concepts, it is recommend to

download and install the AsTeRICS setup (installer) package from the project homepage,

and to read the AsTeRICS User Manual, which describes the main system components: the

AsTeRICS Configuration Suite (ACS) and the AsTeRICS Runtime Envirunment (ARE).

http://www.asterics.org/

AsTeRICS Developer Manual

 Page 8

1.3 The AsTeRICS Runtime Environment

The AsTeRICS Runtime environment (ARE) is an OSGi-based middleware [3] which allows

software plugins to run in parallel. The plugins usually represent a sensor or an actuator and

are implemented as independent OSGi bundles. The runtime environment identifies

AsTeRICS plugins from other OSGi bundles based on metadata defined inside the plugins.

The ARE expects from plugin-developers to define the structure of their plugins (properties,

inputs, outputs and event ports) in XML files. Based on these XMLs, the middleware

constructs a runtime representation of each installed AsTeRICS plugin.

Furthermore, the ARE expects a runtime model (system model) which usually comes from

the AsTeRICS Configuration Suite (ACS). The ACS is running on a Windows Personal

Computer (.net 4.0 required) and mainly used to graphically design the layout of the system

as a network of interconnected components. The system model is another XML file that

defines the components participating in a specific application, connections between them,

events and other properties. Based on this file, ARE knows which plugins to activate and

how to define the data flow between them. Since the system model represents the main

communication means between the ACS and the ARE, it is expected to be a serialisable

object, easy to transfer and translate. ARE and ACS communicate through an appropriate

TCP/IP-based communication protocol named ASAPI.

The ARE also provides “services” to plugin developers (for example communication support

for COM ports) and it allows reporting errors on the runtime environment, registering event

listeners and interacting with its graphical user interface (ARE GUI).

The ARE GUI is a simple graphical environment developed to allow end-users to interact

directly with the runtime environment. It may be used to modify runtime parameters of a

model via buttons or sliders, and to monitor live signals and events of the running model.

AsTeRICS Developer Manual

 Page 9

1.3.1 ARE Components

The ARE consist of the following main parts:

 The ARE middleware

 ARE plugins (also referred to as “components”) – sensor, processor and actuator

modules which provide functional building blocks for assistive functionalities

 A service layer which provides infrastructure to the ARE components,

for example COM port and communication management for connection of the

Communication Interface Modules (CIMs)

The ARE is commonly deployed on an embedded device, running an appropriate operating

system (OS), typically an embedded variant of Windows. On top of the OS, an appropriate

Java Virtual Machine (JVM) is used to host the OSGi component framework which provides

support for modularity and dynamic loading/unloading of components.

All the core components of the framework (described in detail later) are defined as OSGi

modules. Certain components that need to access legacy code (e.g., written in C or C++) are

also deployed on top of OSGi, and are interfaced to the native code using Java Native

Interface (JNI) as needed. In this regard, and with the exception of the pluggable

components that use native code interfaces with platform-specific JNI bindings, the ARE

middleware is expected to be platform independent.

The implementation requires basically JAVA 1.7 (JDK/JRE 7) and an OSGi framework

(which is part of the source code downloads).

1.4 About OSGi

The Open Service Gateway initiative (OSGi) is an open specification that enables the

modular assembly of software built with the Java technology [3]. The OSGi Service Platform

facilitates the componentization of software modules and applications and assures

interoperability of applications and services over a variety of networked devices.

OSGi technology is the dynamic module system for Java™. Java provides the portability that

is required to support products on many different platforms. The OSGi technology provides

the standardized primitives that allow applications to be constructed from small, reusable and

collaborative components. These components can be composed into an application and

deployed; The OSGi Service Platform provides a service-oriented architecture that enables

these components to dynamically discover each other for collaboration, and thereby forms

the optimal basis for the AsTeRICS middleware.

AsTeRICS Developer Manual

 Page 10

2 Getting Started with AsTeRICS Development

2.1 The AsTeRICS Source Code Repository

The AsTeRICS source code repository is hosted at github and located at

https://github.com/asterics/AsTeRICS

The source code contains open source software modules in JAVA, C++ and C, and

proprietary modules by AsTeRICS partners which are available in binary from (.dll or .exe).

The licenses of the utilized software packages and 3rd party products can be viewed in the

file /documentation/licenses.doc

Currently, the editor for OSKA (the on-screen keyboard application) is the only commercial

software package within the AsTeRICS framework – and not included in the free downloads.

The OSKA editor is only needed if you want to design custom on-screen keyboard layouts for

OSKA (see AsTeRICS User Manual).

2.1.1 Repository structure

The source code repository is organised in the following subfolders:

The ACS folder contains the AsTeRICS Configuration Suite source code.

The Android folder contains a server application for Android phones which allows interfacing

with the AsTeRICS Android plugin to use phone functions in AsTeRICS models.

The ARE folder contains the middleware and service layers and ARE components.

The bin folder contains subfolders where ARE and ACS executable files are placed during

the build flow. These folders contain additional configuration files or dependencies, for

example the config.ini and loader.ini files which specify the modules which are loaded by the

ARE at startup.

Additionally, the bin folder contains several resources which are useful, e.g. a pre-built ACS

with demo models (in the ACS\models folder) and the OSKA application.

https://github.com/asterics/AsTeRICS

AsTeRICS Developer Manual

 Page 11

The BNCIevaluationSuite is a collection of matlab files for analysis and comparison of

algorithms for Brain Computer Interfaces (contributed by Starlab).

The CIM folder contains firmware for the microcontroller modules used to interface the

system to the environment (maintained by IMA and FHTW).

The Documentation folder contains the User- and the Developer Manual, and OSKA

manual and the licence information for the developed and all utilized source code and

libraries.

The NativeASAPI folder contains C++ libraries for mobile-phone and GSM modem access,

3d-mouse and tremor reduction from own C++ projects.

2.2 Setting up the Eclipse IDE for ARE development

The ARE framework is not bound to a specific tool flow or IDE. For the convenience of the

development process and ease-of-use for new developers, an Eclipse-based build is

available and will be described in this section. If you prefer a different IDE you can skip this

section. The described setup applies for Microsoft Windows operating systems. If Java and

the Eclipse IDE are already installed, steps 1 - 4 can be omitted.

1. Download and Install the Java Development Kit 7 (JDK 7), JDK 8 is supported as

well.

from http://www.oracle.com/technetwork/java/javase/downloads/index.html

Choose the 32bit version for your operating system, because some necessary

components for interfacing hardware are not supported by the 64bit version by now.

2. Create a System Environment Variable “JAVA_HOME” which points to the folder

where you installed the Java JDK. The dialog

for system environment variables can be

found via System Properties -> Advanced ->

Environment Variables

http://www.oracle.com/technetwork/java/javase/downloads/index.html

AsTeRICS Developer Manual

 Page 12

3. Add the JDK bin path to the System

Environment Variable “Path”

4. Download and install Eclipse Luna from http://www.eclipse.org/downloads/

Note that the 32-bit version is also recommended for 64-bit machines e.g. running

Windows-7 (as there have been reported problems with the 64-bit version)

5. Download and install ant build framework, to build AsTeRICS from the command line

(optional)

a. Download and install the apache ant build framework (version >= 1.9.1)

http://ant.apache.org/bindownload.cgi

b. Create a System Environment Variable “ANT_HOME” which points to the

installation directory of ant.

c. Add the ant bin path to the System Environment Variable “Path”

6. Download and extract the AsTeRICS source code

a. Use your favourite git client and clone the github repository

https://github.com/asterics/AsTeRICS.git

b. Or download and extract the .zip file into a desired location on your hard disk

7. Start eclipse.exe (If starting the first time, create a workspace folder as suggested)

8. Choose File -> New -> JavaProject in the Eclipse main menu, disable the option

“Use default location” and browse to the ARE subfolder:

http://www.eclipse.org/downloads/
http://ant.apache.org/bindownload.cgi
https://github.com/asterics/AsTeRICS.git

AsTeRICS Developer Manual

 Page 13

9. Then you should see something like this:

Congratulations ! – You have now a working AsTeRICS build environment !

Eclipse provides different views (Window -> Show View), where the Navigator and the

Package Explorer are most useful for Java source code development.

Note that the “Refresh” command (F5) synchronizes the Navigator view with changes in the

local file system.

2.3 Setting up build environment for JDK 8

If you follow the steps of 2.2 JDK 8 is supported without modifications. In case you have an

older installation of Eclipse (version < Luna (4.4)), you can either

a. upgrade to Eclipse Luna or

b. upgrade the used ant version to at least 1.9.1. In this case you have to tell Eclipse

where to find the new version of ant.

AsTeRICS Developer Manual

 Page 14

1. Start Eclipse and click on “Run/External Tools/External Tools Configuration”

2. Click on tab “Classpath” and set the new Ant Home by clicking onto the

respective button.

AsTeRICS Developer Manual

 Page 15

2.4 Building ARE Middleware, Services and Components

For building the ARE middleware and components (plugins), the supplied ANT build scripts

are recommended. Apache ANT is a command-line based build tool for Java applications [8].

Eclipse provides an ANT plugin which operates these build scripts (named “build.xml” in the

AsTeRICS repository). You can either use the command line ant command in a windows

shell or use the Eclipse plugin.

The middleware, the services and the components have separate build.xml files. The

middleware and services are required for building the components. To build everything, a

top-level build script is available in the ARE folder. To use this top-level build script, switch to

the Java Project Perspective, right-click the “build.xml” file located in ARE-section of the

Navigator window (as shown below) and select the second menu entry in the context menu:

“2 RunAs -> Ant Build”:

This opens the “Edit configuration and launch” window, where the build targets of the top-

level build script can be selected. These build targets provide different “on-Click” builds for

the AsTeRICS framework.

2.4.1 One Click Builds

The top-level build script allows building all components that exist in the source tree. It also

defines several properties which are inherited to all component build scripts. An important

example is the “debug” property which defines via compiler options if the code shall be

instrumented with source code level debugging information (“true”) or not (“false”).

The top-level build script provides the following targets:

 BuildARE: builds just the middleware

 BuildServices: builds the middleware and all services (eg. CIMCommunication etc.)

 BuildAll: cleans build targets, builds middleware, services and components

AsTeRICS Developer Manual

 Page 16

 BuildAll-release: cleans build targets, builds middleware, services and components

 without source-level debug information for the eclipse remote debugger

 Clean: cleans build targets (removes all jar files and the out directory)

The source level debug information is enabled by all build targets of the top-level build script

except “BuildAll-release”.

Alternatively, individual services or components can be built by selecting their associated

“build.xml” script from the corresponding subfolders In these scripts, source level debugging

information is per default disabled in the compilation step.

2.4.2 Understanding the component build-scripts

A typical ANT build script for an ARE component looks like the following:

<project name="asterics.${component.id}" default="jar" basedir=".">

 <property name="component.id" value="processor.MyComponent"/>

 <!-- set global properties for this build -->

 <property name="build" location="../out/production/${component.id}"/>

 <property name="src.java" location="src/main/java"/>

 <property name="dist" location=".."/>

 <property name="runtime" location="../../../examples/ARE"/>

 <property name="osgi" location="../../osgi"/>

 <property name="middleware" location="../../middleware"/>

 <property name="services" location="../../services"/>

 <property name="classpath" location=".."/>

 <path id="asterics.classpath">

 <pathelement location="bin"/>

 <pathelement location=

 "${osgi}/org.eclipse.osgi_3.6.0.v20100517.jar"/>

 <pathelement location="${middleware}/asterics.ARE.jar"/>

 </path>

 <property name="resources" location="src/main/resources"/>

 <target name="init">

 <!-- Create the time stamp -->

 <tstamp/>

 <!-- Create the build directory structure used by compile -->

 <mkdir dir="${build}"/>

 </target>

 <target name="compile" depends="init" description="compile the source ">

 <javac srcdir="${src.java}" destdir="${build}" verbose="true" debug="${debug}"

 classpath="${classpath}"> <classpath refid="asterics.classpath"/>

 </javac>

 </target>

 <target name="jar" depends="compile"

 description="generate the OSGi bundle" >

 <jar jarfile="${dist}/asterics.${component.id}.jar" basedir="${build}"

 manifest="${resources}/META-INF/MANIFEST.MF">

 <fileset dir="${resources}"/>

 </jar>

 <copy file="${dist}/asterics.${component.id}.jar"

 tofile="${runtime}/asterics.${component.id}.jar"/>

 </target>

</project>

In the first section of the build script, folder locations for the build intermediates, the final build

products (.jar file) and the classpath are defined. The classpath usually points to the “bin”

folder, the middleware “asterics.ARE.jar” and the osgi distribution. If a component needs

additional resources, their location has to be defined here.

AsTeRICS Developer Manual

 Page 17

Subsequently the build script defines two build targets: the compilation of the Java source

code and the creation of the .jar file. If the .jar file shall contain additional .dlls with native

code, they have to be specified in the Manifest file as shows in section 5.13.1.

After the .jar file has been created in the distribution folder, it is copied to the runtime folder

(/bin/ARE).

2.5 Starting the ARE middleware and component deployments

To test the ARE and component bundles, open the folder “/bin/ARE”, and locate the batch

file “start.bat”:

2.5.1 Structure of the runtime folder “./bin/ARE”:

This folder contains dependencies for running the ARE middleware and the .jars resulting

from ANT builds, it has the following structure:

/

+- bin/

 +- ARE/

 +- data/ folder for plugin working data

 +- models/ stored models (configurations)

 +- profile/

 +- config.ini system bundles to be started

 +- services.ini general service bundles to be started

 +- services-windows.ini windows-specific service bundles

 +- services-linux.ini linux-specific service bundles

 +- loader.ini plugin-bundles to be started

 +- org.eclipse.osgi/ osgi configuration folder

 +- 1238790741.log system log messages, stack trace

 +- tools/ plugin helper apps and dlls

 +- .logger stores console logging settings

 +- ARE.exe starts the ARE without console output

 +- areProperties stores recent window/GUI properties

 +- <my_component.jar> component bundle(s)

 +- asterics.ARE.jar ARE middleware

 +- asterics.mw.services.cimcommunication.jar CIM port manager

 +- asterics0.log application log file

 +- jtester.exe helper app for checking Java version

 +- logging.properties configuration of loglevel etc.

 +- org.eclipse.osgi_3.6.0v20100517.jar osgi distribtion

 +- sleeper.exe helper app for launcher timing

 +- start.bat starts ARE with console output

 +- start_debug.bat starts ARE with Eclipse debug support

 +- start.sh starts ARE without console on Linux

 +- start_debug.sh starts ARE with debugging on Linux

 +- VCChecker.jar helper jar for checking VC redist dependency

Important Note: The osgi configuration folder “org.eclipse.osgi” in the “profile” subdirectory

has to be deleted if .dlls in .jar bundles are updated or changed. (This folder is automatically

created when starting the ARE and holds working data for the OSGI-bundles.) The One-Click

build.xml script described in chapter 2.4.1 deletes the folder automatically.

2.5.2 Structure of the loader.ini file

AsTeRICS Developer Manual

 Page 18

The loader.ini file located in the folder “./bin/ARE/profile/” specifies bundles which will be

started by the ARE middleware automatically (using the OSGI lifecycle management

commands). This file is created by the AsTeRICS Plugin Activation Tool (see section 3.2) but

could also be updated manually. Basically it contains a list of .jar files for the built

components as shown in the following list:

asterics.actuator.AnalogOut.jar

asterics.actuator.AndroidPhoneControl.jar

asterics.actuator.ApplicationLauncher.jar

asterics.actuator.BarDisplay.jar

asterics.actuator.DigitalOut.jar

asterics.actuator.EnobioDisplay.jar

asterics.actuator.EventVisualizer.jar

asterics.actuator.FileWriter.jar

asterics.actuator.FS20Sender.jar

asterics.actuator.GSMModem.jar

asterics.actuator.ImageBox.jar

asterics.actuator.IrTrans.jar

asterics.actuator.Keyboard.jar

Please note that only the components defined in the loader.ini file will be available in the

ARE. Models involving other components cannot be deployed from the ACS, nor started.

A number of additional bundles which are needed to start the ARE middleware are specified

in the config.ini file, most notably the ARE middleware “asterics.ARE.jar”.

2.5.3 AsteRICS services

An AsteRICS service is a bundle that provides ARE-wide functionality usable by other

services or plugins. The service can be optionally disabled which means that the service

bundle is not installed and not activated. The file services.ini contains a list of general

services to be loaded. Whereas the services-windows.ini and services-linux.ini files contain

platform dependent service names. You can also create your own use-case specific services

ini file and edit the start script to load it.

2.5.4 Running a deployment

The “ARE.exe” starter application launches the ARE without console output and without

debugging instrumentation.

Alternatively, the commandline batch script “start_debug.bat” which is provided in the folder

“.bin/ARE” runs Java with additional configuration parameters including:

 the location of the OSGi distribution

 the profile subfolder which contains the config.ini file: “./bin/ARE/profile”

 debugging instrumentation for the remote debugging server connection

AsTeRICS Developer Manual

 Page 19

After starting the ARE middleware, bundles are loaded and started as specified in

“loader.ini”. If everything is properly configured, the ARE window comes up with a GUI and

provides ASAPI server functionalities for connection of the ACS or other client applications.

2.5.5 Activation of ARE webservice (REST, websocket) demo

The ARE contains a service that creates several web-based services. These include

 a webserver with document root (relative to ARE start folder): data\webservice and

URL: http://localhost:8082/

 a websocket at URL http://localhost:8082/ws/astericsData

 a REST ASAPI interface at URL http://localhost:8081/rest

 To retrieve the currently deployed model, call:

http://localhost:8081/rest/runtime/model/

The webservices are turned off by default and can be activated by a command line switch of

the ARE when using the start_debug.bat start script.

AsTeRICS\bin\ARE>start_debug.bat --webservice

When deploying and starting the demo model “WebSocket_test.acs” you can see the

websocket functionality in action. It uses the data of a SignalGenerator and forwards it

through a websocket utilizing the WebSocket plugin. The provided index.html file of the

webserver automatically connects to the given websocket and visualizes the data.

Important Note: The websocket support currently lacks a meaningful data protocol and is not

fully implemented. The purpose is just to show how it could works.

2.5.6 Define autostart model per command line

By starting the ARE with the name of a model as first command line parameter a model that

should be started automatically can be defined. The model must exist in the sub-folder

“models”.

ARE.exe CameraMouse.acs

or

start_debug.bat CameraMouse.acs

2.5.7 Change model execution thread pooling and submit timeouts

The file “areProperties” contains properties to configure GUI related features and to configure

the internal model execution behaviour. The following internal model execution properties

exist:

 ThreadPool.ModelExecutor.size=0

http://localhost:8082/
http://localhost:8082/ws/astericsData
http://localhost:8081/rest
http://localhost:8081/rest/runtime/model/

AsTeRICS Developer Manual

 Page 20

o The size of the “ModelExecutor” thread pool. By default the value is 0, which

means that a model is executed with a single thread. If the value is > 1 the

model is executed with a thread pool of that size.

o Important Note: The multi-threaded mode is deprecated and will be

removed with the next release (2.7). There is no guarantee for data integrity

and thread synchronization when executing a model.

 ThreadPoolTasks.submitTimeout=20000

o When submitting a task to be executed in the ModelExecutor thread a submit

timeout can be configured. After the time elapsed a TimeoutException is

thrown. The timeout value must be specified in milliseconds.

The submit timeout is used for starting, stopping, pausing and resuming a

model.

AsTeRICS Developer Manual

 Page 21

2.6 Debugging the ARE

If the ARE is started using the “start_debug.bat” script and source-level debug information

was added during the compilation (see section 2.3), debugging with Eclipse is supported via

a remote debugging connection. This is a convenient way for debugging an OSGI-based java

framework with a lot of plugins. To enable the debugging support in Eclipse, a Debug

Configuration is created via the dedicated menu entry:

Create a “Remote Java Application” Debug Configuration and assign a name for it, e.g.

“ARE”. Then, specify the connection properties of the Debug Configuration to use the Host

“localhost” and the Socket/Port “1044” (this port is given in the ARE build scripts for the

remote debug server to listen for incoming client connections):

Now launch the ARE using “start_debug.bat”. The messages in the console window should

indicate the establishment of the listening socket 1044 for the debugging connection:

AsTeRICS Developer Manual

 Page 22

Now, the usual debugging support of Eclipse can be used, including breakpoints in

middleware or components, variable and context watch windows, single stepping etc. All

these operations are performed in the Eclipse “Debug” perspective.

The following screenshot shows a program execution of the ARE which ran into a breakpoint

(here: the OSKA plugin was halted as a command was selected in the OSKA-application and

transferred to the ARE plugin’s command handler:

If the source-level debug information is

missing (due to compilation without

debugging support) an error message

indicates a problem, e.g. the missing line

number for breakpoint installation:

AsTeRICS Developer Manual

 Page 23

3 A Quick Guide to AsTeRICS Plugin Development

This section describes the AsTeRICS Plugin-Creation tool and the plugin-activation process.

These tools make it easy to create new plugins and make them available in ACS and ARE.

They can be started manually from their location in the AsTeRICS_runtime.zip package

(folder: “ACS/tools”) – or they can be launched from the “Misc.” – Tab in the main menu of

the ACS:

The creation of a new AsTeRICS plugin for the runtime environment involves several steps:

 creating the folder structure to store the plugin files

 creating the ANT build script file

 creating the manifest file

 creating the bundle-descriptor, which specifies the ports and properties of the plugin

 creating the source code file of the JavaInstance

o defining the ports and properties and implementing the get- and set-methods

for input-, output-, eventListener- and evenTrigger ports

o implementing the get- and set- methods for property values and the input ports

receive handlers

This process is similar for each plugin, and involves much work and sources of errors,

especially for people who work with the AsTeRICS framework for the first time.

Usually, you look for a plugin with similar specifications, copy its folder structure and then

rename and change the files as desired. But also this process needs some effort and

errors/typos can be introduced very easily.

The purpose of the AsTeRICS Plugin Creation Tools is to make it easy to create new

plugins, by providing the necessary folder structure, the bundle descriptor and a template for

the JAVA source code.

AsTeRICS Developer Manual

 Page 24

3.1 The Plugin Creation Wizard

The plugin Creation wizard allows definition of characteristics of a new plugin and creates the

needed folders and files for the Eclipse build flow, including the JAVA source code skeleton

and the plugin’s bundle descriptor.

As can be seen in the above figure, desired input- and output ports, data types, properties

and plugin-features are simply selected and added to list boxes on the screen.

Important Notes:

 the path to the target folder has to exist in the local file system, and must point to the

ARE/components directory where all plugin source files are located, e.g.:

“C:\asterics\bin\components\”.

 The plugin name must be specified in CamelCase letters (capital first letter), e.g.

“MyPlugin”. Type and Subcategory have to be specified - they define the location

where the plugin will appear in the ACS Components menu.

 It is possible to create a list of possible text-selections in a combo-box in the ACS

property editor. The data type for this property must be integer, the property gets the

number of the selected item. Text-captions for the combo-box entries must be

separated with double slash, e.g: “Mode 1//Mode 2//Mode 3”.

AsTeRICS Developer Manual

 Page 25

3.1.1 Created files and folders

After “Create Plugin!” has been pressed and the plugin creation was completed successfully,

following sub-folders and files are begin created:

The root folder contains the build script, which can be executed inside Eclipse to compile and

build the plugin (.jar) file:

The META-INF folder contains the manifest file

AsTeRICS Developer Manual

 Page 26

The “resources” folder contains the bundle descriptor (bundle_descriptor.xml):

The source code folder “src\main\java\eu\asterics\component\<pluginType>\<pluginName>”

contains a template for the plugin source code in JAVA, including the definitions of the

selected ports and properties and the needed get- and set- methods for ports and property

values. The code skeleton complies to the AsTeRICS coding guidelines and contains the

AsTeRICS source file header (only a small portion is shown in the following screenshot).

AsTeRICS Developer Manual

 Page 27

After the Eclipse IDE has been opened, Eclipse must be pushed to refresh the folder

structure by pushing F5. Furthermore, the path “src\main\java” must be configured as source

folder.

AsTeRICS Developer Manual

 Page 28

The plugin code can be built using the provided build script (right-click build.xml -> RunAs ->

Ant Build in the plugin’s folder)

To see the plugin in the ACS editor window and/or start it inside the runtime environment, the

Plugin Activation Tool can be used (see section 3).

3.2 Plugin Activation in ACS and ARE

To use a new AsTeRICS plugin which has been built using the Eclipse build flow and exists

as executable .jar file/OSGI bundle, two steps are necessary:

1. The name of the .jar file of the bundle has to be added to the “loader.ini” file of the

AsTeRICS Runtime Environment (ARE). This file is located in the /profile subfolder

of the ARE and specifies bundles/components that are loaded by the ARE at startup.

All plugins which are used in ARE models – or to be precise: the bundles which

contain those plugins – have to be loaded in the ARE framework to be available for

deployment. To add the new plugin, simply open the loader.ini file with a text editor

and add the name of the .jar file. Then, restart the ARE so that the new bundle is

loaded and activated.

AsTeRICS Developer Manual

 Page 29

2. The Plugin has to be announced to the ACS – so that it gets visible in the graphical

editor and can be used for the creation of deployment models. This is done by

adding the bundle descriptor of the new plugin to a component-collection file

(extension “.abd”) in the ACS-folder. These component collections contain all bundle-

descriptors of components which can be used in the ACS. The new plugin section

can be added either manually or can be downloaded from the running ARE via the

ACS’ Component-Collection Manager (recommended, see 3.2.1). Using the

Component Collection Manger, the downloaded collection can be stored as “default

Component Collection” for the ACS, so that all components will be available when

the ACS is started next time.

 Subsequently, the plugin can be selected in the “components” menu of the ACS, and the

ARE will activate the plugin at startup.

3.2.1 Component-Collection Management in the ACS

The ACS provides a function for downloading the bundle descriptions of all active plugins

directly from a running ARE and creating a component collection file from this information.

(“System”- tab, Button “Download Component Collection”):

The component collection will be stored as “.abd” – file in the ACS folder, subfolder

“componentcollections”. The new component collection can be used right after download, but

will not be available after an ACS restart.

Within the ACS Component-Collection Manager (in the “Miscellaneous” tab), component

collections can be selected or set as default collection for the ACS startup. For details see

the User Manual, ACS section.

Please note that the “loader.ini” – file has to be updated manually in the ARE’s “profile”

subfolder, by addition of the new .jar filename. After restart of the ARE and connection to the

ACS, the component collection can be downloaded.

AsTeRICS Developer Manual

 Page 30

4 Writing AsTeRICS Plugin Code

4.1 ARE Coding Guidelines

Coding guidelines are necessary to allow new developers to quickly find their through the

code of the ARE. They are created in such a way to provide means for developers to

understand code of each other but they also make sure that non-technical users can find

their way through a model in ACS.

The basic coding guidelines are:

 Plugins, ports and properties should be named intuitively in the bundle descriptor.

Only if necessary, the corresponding variables in the plugin code should be named

differently. However they should adhere to the naming conventions stated in section

4.1.2 and different names should be commented in the code sections which translate

the name into the variable (getInputPort(), getRuntimeProperty() …)

 Variable names should always use the Java naming conventions

 Every method should be preceded by a JavaDoc compatible header in order to allow

new developer to grasp what is going on in it

 Where reasonable code comments should be added to improve understanding of

code internals

 Code should be indented by two spaces per indentations stage. Indentations should

be done using space and not tabs. Tabs should be converted to spaces.

 Parentheses should be placed in a separate line to facilitate readability

4.1.1 Port Naming Conventions

Variables of port instances should be named with a prefix indicating what kind of port it is.

The rest of the port name should indicate the port’s use and adhere to the standard Java

variable naming conventions. The available prefixes are:

 ip: indicates that the port is an instance of IRuntimeInputPort

 op: indicates that the port is an instance of IRuntimeOutputPort

 elp: indicates that the port is an instance of IRuntimeEventListenerPort

 etp: indicates that the port is an instance of IRuntimeEventTriggererPort

A variable holding an event listener port could therefore be named elpKeyPressed.

4.1.2 Property Naming Conventions

Plugin properties should be directly mapped to a variable in the plugin code. The variable’s

should be prepended with the prefix prop and adhere to standard Java naming conventions.

Thus a property could be named InputGainValue and the corresponding variable should be

named propInputGainValue.

AsTeRICS Developer Manual

 Page 31

4.1.3 Bundle Descriptor Naming Conventions

The bundle descriptor should serve as an abstraction layer between the user who creates

models in the ACS and the developer. Thus the names for plugins, ports and properties in

the bundle descriptor should be as intuitive as possible. Names in the bundle descriptor

should not include prefixes because the added information is also conveyed in the

presentation of plugins in the ACS.

The bundle descriptor can translate intuitive names (e.g. input.switch) to the canonical

names of plugins (e.g. GpioInputInstance) allowing coexistence of a user and a developer

language. This method of name translation can be applied for plugin names, port names and

property names.

4.1.4 AsTeRICS Source File header

Every source file of the AsTeRICS project which will be released as open source under the

LGPL license should have the following header:

/*

 * AsTeRICS - Assistive Technology Rapid Integration and Construction Set

 *

 *

 * d8888 88888888888 8888888b. 8888888 .d8888b. .d8888b.

 * d88888 888 888 Y88b 888 d88P Y88b d88P Y88b

 * d88P888 888 888 888 888 888 888 Y88b.

 * d88P 888 .d8888b 888 .d88b. 888 d88P 888 888 "Y888b.

 * d88P 888 88K 888 d8P Y8b 8888888P" 888 888 "Y88b.

 * d88P 888 "Y8888b. 888 88888888 888 T88b 888 888 888 "888

 * d8888888888 X88 888 Y8b. 888 T88b 888 Y88b d88P Y88b d88P

 * d88P 888 88888P' 888 "Y8888 888 T88b 8888888 "Y8888P" "Y8888P"

 *

 *

 * homepage: http://www.asterics.org

 *

 * This project has been partly funded by the European Commission,

 * Grant Agreement Number 247730

 *

 *

 * License: GPL v3.0 (GNU General Public License Version 3.0)

 * http://www.gnu.org/licenses/gpl.html

 *

 */

4.1.5 JavaDoc compatible comments

JavaDoc compatible comments should be used to indicate the author of a source file, and to
describe the purpose of a function/method/class and the respective parameters and return
values.

Example for a source file header info:
/**

 * Bardisplayinstance.java

 * Purpose of this module:

 * Implements the Bardisplay actuator plugin

 *

 * @author Chris Veigl [veigl@technikum-wien.at]

 * Date: Mar 7, 2011

 * Time: 10:55:05 AM

 */

AsTeRICS Developer Manual

 Page 32

Example for a method of a class:
/**

* Returns the value of the given property

* @param propertyName the name of the property

* @return the property value

*/

 public Object getRuntimePropertyValue(String propertyName)

4.2 Implementing AsTeRICS components

This section describes the basic steps required for implementing an AsTeRICS component

including a brief introduction to OSGi. To illustrate the implementation steps, we take a walk-

through with the implementation of a simple processor component.

The AsTeRICS schemata of the XML descriptors include two concepts: the bundle

descriptors and the deployment descriptors.

4.2.1 The Bundle Descriptors

Bundle descriptors are used to describe the content of an individual bundle (typically

encapsulating one or more components). As such, they contain information about the

included components, their ports, their customizable properties and optionally their GUI.

The following shows a bundle descriptor of a simple processor-plugin (subtype for the ACS

components menu is “Basic Math”). The plugin provides an averaging function for n values

(property “buffer-size”) and has one input port and one output port for integer values:

<?xml version="1.0"?>

<componentTypes xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="bundle_model.xsd">

 <componentType

 id="asterics.averager"

 canonical_name="eu.asterics.component.processor.averager.AveragerComponent">

 <type subtype="Basic Math">processor</type>

 <description>Linked list-based averager</description>

 <ports>

 <inputPort id="in_1">

 <description>Input port of averager</description>

 <multiplicity>one-to-one</multiplicity>

 <mustBeConnected>true</mustBeConnected>

 <dataType>integer</dataType>

 </inputPort>

 <outputPort id="out_1">

 <description>Output port of averager</description>

 <dataType>integer</dataType>

 </outputPort>

 </ports>

 <properties>

 <property name="buffer-size"

 type="integer"

 value="50"

 description="The size of the averager's buffer"/>

 </properties>

 </componentType>

</componentTypes>

AsTeRICS Developer Manual

 Page 33

4.2.2 The Deployment Descriptor

Deployment descriptors instruct the ARE of the desired application deployment structure.

The deployment descriptor is typically composed in the AsTeRICS Configuration Suite (ACS)

but can also be written with a text editor (as the bundle descriptor). Basically the deployment

descriptor contains several component descriptions (copied from the corresponding bundle

descriptors), actual property values and the channel connection between input- and output

ports of the components.

Please note that the type_id argument of the component element in deployment descriptor

must match the id argument of the componentType element on the bundle descriptor. This is

how the ARE detects the referred plugin type in the deployment model.

The following demo deployment descriptor describes a simple model containing two plugins

and one channel:

<?xml version="1.0" encoding="UTF-8"?>

<model xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="deployment_model.xsd">

 <components>

 <component type_id="sensor.SignalSource" id="sensor.SignalSource.1">

 <description>A Source of two signal cahnnels </description>

 <ports>

 <outputPort portTypeID="outport1"/>

 <outputPort portTypeID="outport2"/>

 </ports>

 <properties>

 </properties>

 </component>

 <component type_id="actuator.SignalTarget" id="actuator.SignalTarget.1">

 <description>A Signal Target</description>

 <ports>

 <inputPort portTypeID="in_x"/>

 <inputPort portTypeID="in_y"/>

 </ports>

 </component>

 </components>

 <channels>

 <channel id="channel.1">

 <description>Connects SignalSource.1 (outport 1)

 to SignalTarget.1 (in_x)</description>

 <source>

 <component id="sensor.SignalSource.1"/>

 <port id="outport1"/>

 </source>

 <target>

 <component id="actuator.SignalTarget.1"/>

 <port id="in_x"/>

 </target>

 </channel>

 </channels>

</model>

AsTeRICS Developer Manual

 Page 34

4.2.3 The Manifest file

The Manifest file tells the bundle name and other informations like import packages and .dlls

to the OSGi. A typical Manifest looks as follows:

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: asterics-processors.averager

Bundle-SymbolicName: eu.asterics.component.processor.averager

Bundle-Version: 0.1.0

DynamicImport-Package: *

Please note the empty line at the end of the Manifest file. It seems that OSGi needs that

empty line in order to work properly. An example of a Manifest file of a component containing

native code .dlls can be found in section 5.13.

4.2.4 Structure of OSGi bundles containing ARE components

As a common OSGi bundle, an AsTeRICS component must be packaged in a JAR file,

containing the class files (object code) and the Manifest file. In addition to these, the

AsTeRICS middleware expects the bundle descriptor. At this point, it should be noted that it

is possible to include multiple AsTeRICS components in a single OSGi bundle, as long as

the bundle descriptor describes all of them.

Overall, the file structure in a typical AsTeRICS bundle looks as follows:

/

+- eu/

 +- asterics/

 +- component/

 +- ...

+- lib/

 +- native/

 +- my_library.dll

+- META-INF/

 +- MANIFEST.MF

+- bundle_descriptor.xml

The Java object code is included in the corresponding folders representing the package

structure (e.g., “/eu/asterics/component/...” etc). Optionally, if libraries are needed - native or

not-, then they are included in the “/lib” folder. The Manifest is included in the “META-INF”

folder as per the standard Java/OSGi practice. Finally, the AsTeRICS bundle descriptor is

included directly in the root of the JAR file (i.e. “/”).

AsTeRICS Developer Manual

 Page 35

4.2.5 Component lifecyle

An ARE component implementation needs to realise the actual component with its lifecycle

(i.e., ways to access its ports and properties, and methods realizing its lifecycle). This is

illustrated in the following code:

package eu.asterics.mw.model.runtime;

public interface IRuntimeComponentInstance

{

 // ------------------ Lifecycle support methods ------------------------- //

 public void start();

 public void pause();

 public void resume();

 public void stop();

 // ------------------ Component support methods ------------------------- //

 public IRuntimeInputPort getInputPort(final String portID);

 public IRuntimeOutputPort getOutputPort(final String portID);

 public IRuntimeEventListenerPort getEventListenerPort(final String eventPortID);

 public IRuntimeEventTriggererPort getEventTriggererPort(final String eventPortID);

 public Object getRuntimePropertyValue(String propertyName);

 public List<String> getRuntimePropertyList(String key);

 public Object setRuntimePropertyValue(String propertyName, Object newValue);

 public void syncedValuesReceived (HashMap <String, byte[]> dataRow);

}

The lifecycle support methods are used to intercept

AsTeRICS events concerning the component’s lifecycle.

In principle, a component can be any of the following:

 READY,

 ACTIVE,

 SUSPENDED and

 STOPPED

These states and their possible transitions are illustrated

in the figure on the right:

The rest of the methods are used for supporting the component operations, namely

accessing the input/output ports of the component, as well as getting/setting its supported

properties.

AsTeRICS Developer Manual

 Page 36

4.2.6 Step-by-Step implementation: Averager processor

In the following, the implementation on a simpe “averager” component is described. This

component realizes some simple processing functionality: It collects its most recent input

from one input port and produces its average at one output port. The number of samples to

be stored and used for the computation of the average is controlled by a property.

The component shall have a single input port (named “in_1”), a single output port (named

“out_1), and a single property (named “buffer-size”) which has the type “integer” and the

default value “50”.

Using the PluginCreationWizard, the bundle descriptor, the Manifest file, the build script and

the skeleton for the JAVA-code can be generated (see section3.1).

Then the actual Java-Code which implements the plugin’s functionality can be added.

The functionality of this component is quite simple: It takes as input integer values, which are

queued in a buffer in a first in, first out order (FIFO). Whenever a new value is added, the

average of the buffer value is computed and provided in the output. The size of the buffer is

controlled by the “buffer-size” property. A possible implementation is shown below.

 public static final int DEFAULT_BUFFER_SIZE = 10;

 private final LinkedList<Integer> buffer = new LinkedList<Integer>();

 private int bufferSize = DEFAULT_BUFFER_SIZE;

 public Object setRuntimePropertyValue(String propertyName, Object newValue)

 {

 if("buffer-size".equalsIgnoreCase(propertyName))

 {

 final Object oldValue = bufferSize;

 if(newValue != null)

 {

 if(newValue instanceof Integer)

 {

 bufferSize = (Integer) newValue;

 // truncate unnecessary tail elements

 while(bufferSize < buffer.size())

 {

 buffer.removeLast();

 }

 }

 else

 {

 AstericsErrorHandling.instance.reportError(this,

 "Invalid property value for "+propertyName+":"+newValue);

 }

 }

 return oldValue;

 }

 return null;

 }

AsTeRICS Developer Manual

 Page 37

 private int addInt(final int in)

 {

 buffer.addFirst(in);

 if(buffer.size() > bufferSize) buffer.removeLast();

 float sum = 0f;

 for(int item : buffer) sum += item;

 return Math.round(sum / buffer.size());

 }

 private class InputPort1 implements IRuntimeInputPort

 {

 public void receiveData(byte[] data)

 {

 int in = ConversionUtils.byteArrayToInt(data);

 outputPort1.sendData(ConversionUtils.intToByteArray(addInt(in)));

 }

 }

 private class OutputPort1 extends DefaultRuntimeOutputPort

 {

 @Override

 public void sendData(byte[] data)

 {

 super.sendData(data);

 }

 }

}

Note that the implementation details above build upon the code which is generated by the

AsTeRICS PluginCreationWizard tool. Specifically, the above methods belong to the class of

the desired “Averager” plugin, which extends and implements the abstract class

“AbstractRuntimeComponentInstance”. This class provides some standard implementation of

the lifecycle support methods.

The implementations of the input and output ports implement or override that of the

“IRuntimeInputPort” and “DefaultRuntimeOutputPort” respectively. In the first case, the

“receiveData” method is overridden so that the input bytes are converted to an integer, then

processed using the local, private method “addInt”, and finally delegated to the output port.

The latter has actually no implementation. A dummy implementation is used to illustrated

overriding the “sendData” method, although this could be avoided altogether.

The private method “addInt” realized the core functionality of the averager component.

Finally, the get/set property value methods are implemented to allow for getting/setting the

value of the “buffer-size” property, in a straightforward manner.

4.2.7 Threading

For detailed information about the threading concept see 8.

4.2.8 Writing plugins using Swing

AsTeRICS Developer Manual

 Page 38

If a plugin provides a Swing GUI it should only use the asynchronous method

SwingUtilities.invokeLater(…)

(and not the synchronous one) to perform the GUI updates. This is to prevent a potential

thread deadlock if an action was originally triggered by a Swing GUI event e.g. by a button

click in the ARE GUI. For detailed information about the ARE threading concept see 8.

4.2.9 Long lasting method calls

If a method call performs a long lasting task and there is no need to await the termination of

it, the task should be handed over to a worker thread (see 5.8) to not block ModelExecutor

thread. For detailed information about the threading concept see 8.

4.2.10 Sensor callbacks

In case you write a plugin that uses a separate thread to generate data (e.g. FrameGrabber,

Timer,…) you should explicitly use the method

AstericsModelExecutionThreadPool.execute(…)

This is to ensure that corresponding data will be delivered within the same task execution.

For detailed information about the threading concept see 8. Below is an example of the

FacetrackerLK plugin in the callback method for new arriving coordinates:

public void newCoordinates_callback(final int point1_x,

 final int point1_y, final int point2_x, final int point2_y)

 {

 AstericsModelExecutionThreadPool.instance.execute(new Runnable() {

 @Override

 public void run() {

 opNoseX.sendData(ConversionUtils.intToBytes(point1_x));

 opNoseY.sendData(ConversionUtils.intToBytes(point1_y));

 opChinX.sendData(ConversionUtils.intToBytes(point2_x));

 opChinY.sendData(ConversionUtils.intToBytes(point2_y));

 }

 });

 }

4.2.11 Contributing a developed plugin (git pull request)

The AsTeRICS platform is designed as an open and modular platform. The idea is to make it

easy for others to develop assistive plugins any end-user in the world could benefit from.

Hence, we would love to get your contribution back to the github repository to be able to ship

the new plugin with future releases. For this purpose, please send a pull request.

https://help.github.com/articles/using-pull-requests/

https://help.github.com/articles/using-pull-requests/

AsTeRICS Developer Manual

 Page 39

5 Services and Utils: Infrastructure for plugins

The ARE Services are a set of classes that enable the direct interaction between AsTeRICS

plugins and other software to directly interact with the runtime environment. The most

significant ARE Services are:

 CIM Communication Service: the ARE CIM Communication service layer is a unified

approach to allow plugins of the ARE to communicate with their associated hardware

modules attached to the AsTeRICS platform via a COM port. A range of hardware

modules are provided which implement the dedicated Communication Interface

Module (CIM) protocol. Further details on this communication protocol and

implementation details for the ARE CIM Communication Service can be found in

chapter 5.14.

 Remote Connection Service: the remote connection services allows external software

that cannot be integrated into the standard plugin inter communication system used

by the ARE, for example because of programming language incompatibilities, to work

with the AsTeRICS system. For example, the interconnection of OSKA (the On-

Screen Keyboard Application developed by AsTeRICS partner SENSORY) and the

ARE uses the Remote Connection Service to send key selection information to the

ARE. On the other hand, the ARE can reply with cell selection commands or other

information. The actual communication is done via a protocol that can be understood

by the Java ServerSocket implementation. The port number that the external software

component connects to identifies the connecting component.

 Local Storage Service: The Local Storage Service will allow plugins to store individual

working data “per model” and “per plugin-instance”. This is necessary when plugins

need to store own calibration data, pattern recognition samples or similar data. In

course of the architectural refinements for the final prototype, a service class will be

provided which generates an according folder and respective file read- and write

methods.

 Native Hook Services for systemwide keyboard and mouse capturing

 Computer Vision services to support a unified way for frame grabbing, computer

vision processing and video frame rendering.

5.1 Communicating with peripherals: CIM Communication service

Communication between actuator and sensor components in the ARE and peripheral

devices is currently defined to use a serial communication i.e. a COM port or a virtual COM

port. Messaging via this interface can either adhere to the CIM protocol (see section 5.14) or

use any other protocol using the raw port implementation of the CIM communication

services.

All the communication with peripheral devices is done through a service in the ARE service

layer called CIM Communication. The service is provided as a separate OSGi bundle which

places its classes in the package eu.asterics.mw.services.cimcommunication. Access to the

classes is done by exporting the entire package in the bundle.

AsTeRICS Developer Manual

 Page 40

Four classes of the CIM Communication service are important to the component

programmer:

 CIMPortManager

 CIMController

 CIMProtocolPacket

 CIMEventHandler

5.1.1 CIMPortController

CIMPortController is an abstract class which hides the actual implementation of the port

controller. The port controller provides the same methods for sending packets using the CIM

protocol, for raw port implementations and for future uses such as a port controller handling

Zigbee connections.

5.1.2 CIMPortManager

All CIM ports and other COM ports are access through the main class of the package

CIMPortManager. This is implemented as a singleton with a public access method

getInstance(). Thus all calls to the CIM communication service have to be done through:

CIMPortManager.getInstance()

Upon creation the CIMPortManager detects all the connected CIMs and registers them in a

HashMap. CIMs are identified and stored by the combination of their CIM Id and their unique

number. Therefore multiple CIMs of the same CIM Id can be used on the AsTeRICS

platform.

On some computers there exist certain serial ports which do not work correctly and behave

strangely. An example of such a port is a loopback port which echoes everything written to it

or ports created by Bluetooth dongles. Since the CIMPortManager iterates through all serial

ports, these ports can cause problems in the auto detection of attached CIMs and even lock

up the runtime. Therefore a file ignore_ports.txt in the directory data/cimcommunication is

parsed upon start of the auto detection. This file should be filled with the name of the COM

ports behaving erratically one name per line.

To be able to communicate with a CIM, the CIM port manager provides several methods:

public CIMPortController getConnection(short cimId)

public CIMPortController getConnection(short cimId, long uniqueNumber)

These methods return a CIMPortController (read on for details) instance of the requested

CIM. The method using two parameters will return the instance to the port controller which

works with the CIM of the exact CIM ID and unique number. If the CIM cannot be found, null

will be returned.

AsTeRICS Developer Manual

 Page 41

Requesting a connection without naming a unique number will return the first port controller

connected to a CIM of the correct ID found in the HashMap holding all the port controllers.

Sending data to the connected peripheral can be done in several ways using the following

methods of CIMPortManager:

public int sendPacket(short cimId, byte [] data,

 short featureAddress, short requestCode, boolean crc)

public int sendPacket(CIMUniqueIdentifier cuid, byte [] data,

 short featureAddress, short requestCode, boolean crc)

public int sendPacket(CIMPortController ctrl, byte [] data,

 short featureAddress, short requestCode, boolean crc)

Basically these three methods do the same thing, however they do it at different speeds as

the first two methods will look up the port controller that the packet should be sent to. Again

the method taking only the CIM ID as a parameter will look up the first correct port controller.

The third method which is passed the CIMPortController instance returned on

getConnection() is the fastest method and should be used whenever possible.

Sending a CIM packet is done by providing the feature address and request code for a

certain packet. The feature addresses and request codes can be found in the CIM protocol

specification and the basic addresses and requests are also provided as static fields in the

CIMProtocolPacket class. If data has to be attached to a CIM protocol packet a byte array

holding said data has to be passed to the method, otherwise the data parameter of the

method has to be set to null. The caller can also decide whether a CRC checksum should be

added to the packet although this is currently unimplemented.

5.1.3 CIMEventHandler

Receiving a packet is done through use of the CIMEventHandler interface. This interface

should be implemented by plugins that wish to communicate with CIMs (or raw ports). The

interface contains two methods:

 public void handlePacketReceived(CIMEvent e);

 public void handlePacketError(CIMEvent e);

These methods are called upon correct reception of a packet or upon discovery of an error

(timeout of a reply, packet transmission errors, incorrect order of incoming packets …)

respectively by the port controller.

Upon correct reception of a CIM protocol based packet the method handlePacketReceived()

is called with an instance of CIMEventPacketReceived as parameter. After conversion of the

CIMEvent to this class, the packet can be extracted from the event and processed further.

All detected errors lead to a call of handlePacketError() with an appropriate CIMEvent

implementation. The possible implemenations are:

AsTeRICS Developer Manual

 Page 42

 CIMEventErrorPacketFault: holds information to error in packet and the broken

packet itself

 CIMEventErrorPacketLost: holds information on serial number of lost packet

To register the event handler with a specific CIM port controller, the CIMPortController class

exposes the following methods:

 addEventHandler(CIMEventHandler hdlr)

 removeEventHandler(CIMEventHandler hdlr)

A port controller can handle multiple attached event handlers and remove each one

separately.

5.1.4 CIMProtocolPacket

This class holds all the information given in a packet transferred to or from a CIM. There are

two ways the developer has to use this class. Upon sending packets the sending component

has to set the feature address and the request code. The CIMProtocolPacket class provides

the constants as static field to facilitate setting commands.

public final static byte COMMAND_REQUEST_FEATURE_LIST = 0x00;

public final static byte COMMAND_REPLY_FEATURE_LIST = 0x01;

public final static byte COMMAND_REQUEST_WRITE_FEATURE = 0x10;

public final static byte COMMAND_REPLY_WRITE_FEATURE = 0x10;

public final static byte COMMAND_REQUEST_READ_FEATURE = 0x11;

public final static byte COMMAND_REPLY_READ_FEATURE = 0x11;

public final static byte COMMAND_EVENT_REPLY = 0x20;

public final static byte COMMAND_REQUEST_RESET_CIM = (byte) 0x80;

public final static byte COMMAND_REPLY_RESET_CIM = (byte) 0x80;

public final static byte COMMAND_REQUEST_START_CIM = (byte) 0x81;

public final static byte COMMAND_REPLY_START_CIM = (byte) 0x81;

public final static byte COMMAND_REQUEST_STOP_CIM = (byte) 0x82;

public final static byte COMMAND_REPLY_STOP_CIM = (byte) 0x82;

Furthermore the class contains constants for the global features that every CIM has to

provide.

public static final short FEATURE_UNIQUE_SERIAL_NUMBER = 0;

Upon reception of an incoming packet the component associated with the CIM sending the

packet is notified and a reference to the packet is passed as an instance of

CIMProtocolPacket wrapped in a CIMEvent instance. The developer can access all the fields

of the packet via the getter methods the class provides:

public short getAreCimID()

public byte getSerialNumber()

public short getFeatureAddress()

public short getRequestReplyCode()

public byte[] getData()

public int getCrc()

AsTeRICS Developer Manual

 Page 43

5.1.5 Serial ports not adhering to CIM Protocol (Raw Ports)

Some peripherals use a proprietary protocol to transfer their data. If this is the case the user

can open a raw port through the CIMPortManager method:

public CIMPortController getRawConnection(String portName, int baudRate)

This will open the port with the name specified in the parameter portName and set the

communication to the specified Baud rate.

Data can be sent to peripheral using the sendPacket() method for the returned

CIMPortController. The packet will simply transfer the byte array passed in the data

parameter and ignore the values giving the in the other parameter fields.

Received data will be forwarded to the event handler through calls to

handlePacketReceived() with a CIMEventRawPacket as parameter. This class holds a public

member variable b which holds the value of the received byte. The event handler has to

handle the reconstruction of the proprietary packet itself.

HighSpeed Raw Ports:

public CIMPortController getRawConnection(String portName, int baudRate,

boolean highSpeed)

A second variant opf the getRawConnection method allows specification of a “highSpeed”

parameter. If highSpeed is true, the CIMPortController does not apply any connection

handling or callbacks for received data to avoid performance problems in higher bandwidth

streaming use cases. In this case, the CIMPortController can return the JAVA InputStream

for the openend COM port connection and the plug developer can use it as desired:

portController =

CIMPortManager.getInstance().getRawConnection(”COM12”,115200,true);

in = portController.getInputStream();

if (in.available() > 100) myHandlePacket ((byte) in.read());

5.2 Communication through a socket interface: Remote
Connection Manager

When using third party software that runs on the same platform (as for example the

prominently used On Screen Keyboard Application OSKA), it becomes necessary to

establish a communication between ARE and the third party application. This is managed by

the RemoteConnectionManager found in the package eu.asterics.mw.services. The main

interface to this manager are the classes RemoteConnectionManager and

IRemoteConnectionListener.

5.2.1 IRemoteConnectionListener

This interface is implemented by plugins that need to communicate via a socket

communication. The interface contains the following methods:

 void connectionEstablished();

 void dataReceived(byte [] data);

AsTeRICS Developer Manual

 Page 44

 void connectionLost();

 void connectionClosed();

connectionEstablished() is called whenever a plugin requests a connection and the

connection has been established. This can either happen if a connection has already been

established before or if the new connection has finished its setup and connection process.

dataReceived() is called whenever new data arrives from the other end of the connection.

Data is transferred in a byte array and has to be processed by the event listener.

connectionLost() is called when the connection management cannot read from or write to the

socket.

connectionClosed() is called after the connection has been closed.

5.2.2 RemoteConnectionManager

The RemoteConnectionManager is implemented as a singleton and can be accessed via a

public static member of the class. Thus access is always achieved through:

 RemoteConnectionManager.instance

A connection is opened by a call the RemoteConnectionManager’s method:

 boolean requestConnection (String port, IRemoteConnectionListener l)

This call will try to access a connection on the specified port. Although the port is actually an

integer it is passed as a String here. The method will return true if a connection on this port

has already been established and attach the remote connection listener passed in the

second argument to the connection. If there is no active connection on the specified port, the

requestConnection method will initiate the setup of the connection and return false. With this

return value the user can decide whether he needs to perform setup actions or will be able to

do this in the connectionEstablished() callback.

The socket connection handling is implemented using two threads, one for sending, one for

receiving data. The receiver thread will continuously read data from the socket and forward it

to the registered listener calling the dataReceived() method. Since incoming data is handled

in another thread than the plugin which will use the socket connection, access to the

methods handling this data or the way of passing data should be done in a synchronised

code block.

Sending data is done calling the method sendData of RemoteConnectionManager:

 public boolean writeData(String port, byte[] data)

This method is called using a String holding the port number of the connection socket and an

array of bytes to be sent. The call to this method will place the data in an outgoing queue and

return true if this was successful. Thus it is not guaranteed that the data has already been

sent when the method returns. The sender thread will grab data from the outgoing queue and

transfer it via the socket or call the connectionLost() method of the registered listener if there

are problems while sending.

AsTeRICS Developer Manual

 Page 45

Once the connection to a socket is not needed anymore, the user has to close the

connection, calling the following method of RemoteConnectionManager:

 public void closeConnection(String port)

This will close the socket connection, end all threads and return.

5.3 Local Storage Service

If a model needs to save its own calibration data, training data or other private data that can

be different in every model and every instance, the local storage service provides a method

to save different data to the same file name on a per plugin instance per model basis.

The service uses a directory tree structure that is placed in the directory the OSGi is run

from. Data is saved in a directory called “storage”. In this directory, directories for every

model name of a model that uses at least one plugin that accesses local storage can be

found. In the third directory layer, directories with the plugin instance name of every plugin

that accesses local storage can be found. Thus if a model named “timertest” uses a plugin

instance named “timer1” that saves local data this data can be found at the path location

“storage/timertest/timer1”.

The service practically consists of only one method:

public File getLocalStorageFile(IRuntimeComponentInstance component, String

fileName)

Calling this method located in the AREServices class will return a File object pointing to the

requested file name or null if the file could not be opened or the model name could not be

retrieved. After opening the file the standard JAVA ways to manipulate files apply.

5.4 Keyboard/Mouse Native Hook Services

The AsTeRICS service jnativehook (if enabled) provides access to the library

https://github.com/kwhat/jnativehook.

Additionally, the service contains the singleton NativeHookServices that initializes the library

to be usable in plugins. A plugin that wants to be a keaboard/mouse listener only has to add

the listener to the GlobalScreen instance of the library.

5.5 Computer Vision Services

The AsTeRICS services javacv and computervision (if enabled) provide access to the library

https://github.com/bytedeco/javacv, which again provides access to numerous libs in the field

of computer vision (e.g. OpenCV), frame grabbing and frame rendering. Additionally, some

helper classes are provided for face detection.

https://github.com/kwhat/jnativehook
https://github.com/bytedeco/javacv

AsTeRICS Developer Manual

 Page 46

5.6 Data Conversion Utilities

The middleware provides the class “ConversionUtils” that provide static helper methods to

convert model data types to byte arrays and vice versa. The conversion is needed to convert

incoming data of input ports or outgoing data to output ports. There are methods for each

type of conversion. If two connected ports (output to input) have different data types the data

is automatically converted to the data type of the input port.

Check the class ConversionUtils for a full list of supported methods:

https://github.com/asterics/AsTeRICS/blob/master/ARE/middleware/src/main/java/eu/asterics

/mw/data/ConversionUtils.java

5.7 Logging

The Logging support provides a uniform way of error reporting in the runtime environment so

we have utilized the Java logging libraries and the various severity levels supported. The

AsTeRICS error handling mechanism is used extensively from the runtime core classes but

also utilized by the AsTeRICS components via the AstericsErrorHandling interface.

Each component is allowed to report an error message, a debug information or a simple

information to be displayed on the screen. The ARE maintains four separate log files and

updates them whenever a new error occurs. In particular there are different loggers for

reporting severe errors, warnings, fine errors and one logger that contains them all.

ARE also maintains a status object for the current status of the runtime environment.

Whenever a fatal error occurs (either internally or caused by one of the deployed

components) the status changes to fatal error. Other possible statuses are unknown, OK,

deployed, running and paused.

The ACS can request the current status of the runtime environment and update its own state

accordingly. For example the ACS user can be informed about the current ARE status while

the ACS will terminate a connection (or refuse to establish a new one) with a non-working

ARE.

Using a Logger is the recommended way to report notifications or error descriptions to the

user. In the ARE framework, using the Java logging service is recommended. The Java

logger can be configured using the file “logging.properties” (see section 2.3.3.1) and used as

follows:

import java.util.logging.Logger;

(…)

Logger.getAnonymousLogger().info("Component started ");

ARE provides a unified logging and error reporting mechanism. The AstericsErrorHandling

class provides 4 types of loggers to be used by the ARE, deployed components and the

https://github.com/asterics/AsTeRICS/blob/master/ARE/middleware/src/main/java/eu/asterics/mw/data/ConversionUtils.java
https://github.com/asterics/AsTeRICS/blob/master/ARE/middleware/src/main/java/eu/asterics/mw/data/ConversionUtils.java

AsTeRICS Developer Manual

 Page 47

ACS. It also provides methods for status checking which are responsible for monitoring the

current status of the ARE and deployed Components.

The 4 different loggers correspond to different severity levels as follows:

Level severe: only severe errors are logged. Such errors cause an ARE failure and must be

addressed immediately. Severe loggers should be used only by ARE. Errors of this type will

be written in the “asterics_logger_severe.log” file.

Level warning: only warnings and upper level messages are logged. Warnings are important

and must be addressed soon but not as fatal as the severe errors. Warnings can be logged

by components using the following method call:

public void reportError(IRuntimeComponentInstance component, String errorMsg)

The messages will be written in the “asterics_logger_warning.log” file.

Level info: only informative and upper level messages are logged. Use this logger when you

normally wanted to print something on the screen.

public void reportInfo(IRuntimeComponentInstance component, String info)

The messages will be written in the “asterics_logger.log” file.

Level fine: only debug and upper level messages are logged. Usage of this logger is mainly

for debugging or development time. Use the following command:

public void reportInfo(IRuntimeComponentInstance component, String info)

The messages will be written in the “asterics_logger_fine.log” file.

Please note that each logger by default also logs all messages with severity level higher than

its own as well. E.g. the warning logger logs warning and severe messages, the info logger

logs informative, warning and severe messages etc.

5.7.1 Status checking

The status checking mechanism is responsible for recording the current status of the ARE or

the error state of a component. The status is recorded by creating and storing objects called

statusObjects. A statusObject stores the status of its creator as a string, its creator (the ARE

or the specific component) and the error message.

AsTeRICS Developer Manual

 Page 48

public static void setStatusObject(String status, String componentID,

String errorMsg)

The status of the ARE can be one of the following strings:

UNKNOWN: initial state for the ARE

OK: ARE is running and ready to deploy a model

DEPLOYED: A model has been deployed and the ARE is now ready to run the model

RUNNING: A model is running on the ARE

PAUSED: A model has been deployed and the ARE is in paused mode

ERROR: An error occurred

FATAL_ERROR: A fatal error occurred, model or deployment aborted

The status of a component can only be the ERROR state because this is the only state of a

component that we are interested in recording for later use. An ERROR statusObject is

automatically created when a component calls the reportError method as described above.

For retrieving the statusObjects, the following method is used:

public StatusObject[] queryStatus(boolean fullList)

This method is particularly useful for the ACS to determine the current status of the runtime

environment and of the deployed components. If the ARE or one of the components are in a

problematic state it can be reflected in the ACS.

The boolean fullList argument specifies whether the error list to be returned will include all

statusObjects generated since the ARE startup or just those that have not been requested by

the ACS before.

5.8 The ARE Thread Pool

In order to avoid resource greedy threads and to achieve best thread handling, ARE uses

one of the Thread Pool implementations provided by Java since JRE 1.5. In particular, we

have utilized the java.util.concurrent.Executors library for creating a CachedThreadPool.

A cached thread pool will create threads as needed but will reuse previously instantiated

threads when they are available and inactive. A cached thread pool is particularly useful for

many short-lived asynchronous tasks and improves the performance of the runtime

environment.

AsTeRICS Developer Manual

 Page 49

Developers are expected to use the ARE thread pool for executing their tasks that require a

new Thread. You will need to import the middleware services package in order to get access

to the AstericsThreadPool class.

5.9 The ARE GUI support

The ARE provides a panel area (“ARE Desktop”) where plugins can display their graphical

elements using the ARE GUI support classes. The ACS provides a dedicated canvas editor

that allows end users positioning and resizing graphical elements of the plugins. Based on

this information, the ARE displays plugins on the local device, maintaining the correct screen

position and aspect ratio of graphical elements with respect to the screen resolution of the

deployment device. (For more information about the usage of the ACS GUI editor and the

ARE GUI control panel refer to the User Manual.)

GUI composition using the ACS GUI designer (right), resulting ARE GUI (left)

In order to be recognized as GUI-plugin by ACS and ARE, the bundle descriptor of the plugin

has to be extended with a dedicated <gui> entry, which specifies the default size in a virtual

coordinate system of 10000/10000 pixels. In the deployment model, the ACS will create

position and size information according to the area defined in the ACS GUI designer.

 <gui>
 <width>5000</width>
 <height>3000</height>
 </gui>

The gui element addition to the bundle descriptor

The AsTeRICS middleware provides some services to the plugin developers in order to allow

them displaying their GUI element onto the ARE Desktop. The middleware services

encapsulate the complexity of dealing with positioning and allow displaying all GUI elements

onto the same container: the ARE Desktop.

AsTeRICS Developer Manual

 Page 50

All GUI services are defined in eu.asterics.mw.services.AREServices so developers need to

import this class in order to get access to the following methods:

 void displayPanel (JPanel panel, IRuntimeComponentInstance componentInstance,

boolean display)

This method is used for displaying (or hiding) a plugin’s panel at/from the ARE

desktop. Developers need to pass

o the panel they want to be displayed (or removed)

o the plugin object, in order to help the middleware finding the desired position and

dimensions from the deployment model

o a boolean argument specifying if they wish to hide or show the given panel.

 Dimension getAvailableSpace(IRuntimeComponentInstance componentInstance)

The space that each plugin will occupy on the ARE desktop is defined by the designer

on the ACS and passed to the ARE via ASAPI. Plugin developers can get the

available space for their graphical elements by calling the getAvailableSpace method

which will return the space occupied for the plugin object passed as argument.

 Point getComponentPosition (IRuntimeComponentInstance componentInstance)

The positioning of plugin’s GUI elements is defined by the designer on the ACS and

passed to the ARE via ASAPI. Plugin developers can get the position of their

graphical elements by calling the getComponentPosition which will return the position

on screen for the plugin object passed as argument.

 void adjustFonts(JPanel panel, int maxFontSize, int minFontSize, int offset)

This service can be used by plugin developers interested in auto-adjusting the fonts

of their GUI components depending on the space occupied for their plugins on the

ARE desktop. They need to pass

o a panel to which all the internal fonts will be auto-adjusted

o the maximum font size (in case there is more space available than needed)

o the minimum font size, in case there is too little space which causes the text to

become non-readable. Finally, the offset argument is used in case we want to

occupy a percentage of the available space.

A good approach to GUI plugin development is to analyse existing plugins which provide GUI

elements, e.g. the BarDisplay or Oscilloscope actuators, or the Slider or Cellboard sensor

components.

If the plugin uses Swing to implement a GUI-widget (e.g. Slider,…), please check the

following guidelines as well 4.2.8

AsTeRICS Developer Manual

 Page 51

5.10 ARE core events notification services

The ARE core events notification service allows plugins to register/unregister to the ARE

middleware in order to receive notifications of ARE core events.

 void registerAREEventListener(IAREEventListener clazz)

It is sometimes necessary that plugins can be notified of various ARE events so they

can react as needed. This method can be called by component instances that wish to

be notified of such ARE events. Currently, the core events supported are:

o preDeployModel: registered ARE event listeners will be notified just before the

deployment of a model.

o postDeployModel: registered ARE event listeners will be notified immediately

after the deployment of a model.

o preStartModel: registered ARE event listeners will be notified just before the

currently deployed model is started.

o postStopModel: registered ARE event listeners will be notified immediately

after the deployed model has been stopped.

 void unregisterAREEventListener(IAREEventListener clazz)

Plugins already registered for receiving ARE core events can un-register using this

method.

5.11 Dynamic Properties

In some applications, the ACS should be able to provide several options for property values

which are not known in advance but depend on the current state of the ARE (see AsTeRUCS

User Manual, section “Dynamic Properties”).. A typical example is the selection of a file

which is available in the ARE file system (e.g. a .wav-file for the wave player plugin). This

feature is particularly useful for plugins that are hardware dependent (selecting e.g. a

soundcard or a midi player), or depend on the file system.

If a plugin is implementing a dynamic property, the values will be requested from the ARE, as

soon as the ACS is synchronized with the ARE, via the ASAPI function:

 List<String> getRuntimePropertyList(String componentID, String key).

The ARE middleware will forward the request for valid property values to the component

instance with the given ID. The List<String> getRuntimePropertyList(String key) method has

to be implemented in the AbstractRuntimeComponentInstance class which every AsTeRICS

component extends.

The method implementation creates the list of valid properties and returns it to the

middleware and the latter forwards the string list to the ACS via ASAPI. The ACS will

dynamically update the property list in the properties window.

For an example of the dynamic property implementation, see the WaveFilePlayer plugin.

AsTeRICS Developer Manual

 Page 52

5.12 Data Synchronization

Some plugins need data of multiple input ports to be able to start processing. Without data

synchronization it is possible that one input port of a plugin receives multiple values before

another port gets one value, although both signal channels deliver values at the same

sampling rate.

The synchronization service provides a buffering mechanism at the middleware level that can

be utilized by plugin developers in order to make sure that incoming data of selected input

ports arrives synchronized.

To use the synchronization service in the plugin code, plugin developers are expected to

extend the DefaultRuntimeInputPort instead of implementing the IRuntimeInputPort.

Basically, DefaultRuntimeInputPort provides a default implementation for the necessary

buffering methods, as shown in the table below.

public abstract class DefaultRuntimeInputPort implements IRuntimeInputPort {

 private boolean buffering;
 public void receiveData(final byte [] data) {
 ;
 }
 public void startBuffering (AbstractRuntimeComponentInstance c,
 String portID) {
 this.buffering = true;
 }
 public void stopBuffering (AbstractRuntimeComponentInstance c,
 String portID) {
 this.buffering = false;
 }
 public boolean isBuffered () {return this.buffering;}
}

The designer can define that a plugin's input port should be synchronized with some other

input ports via the ACS. This will cause an argument change of the inputPort element on the

deployment model file (e.g., <inputPort portTypeID="inB" sync="true">).

As soon as a model is deployed on the ARE, the middleware collects per component every

port noted as synchronized port. When the model is successfully deployed and started, the

ARE will buffer data which enters synchronized input ports until data on all synchronized

ports has arrived. At that point, the ARE will call a new AbstractRuntimeComponentInstance

callback method.

Developers that wish to support data synchronization need to implement the following

method at their component instances.

public void syncedValuesReceived(HashMap<String, byte[]> dataRow)

Where dataRow is a HashMap between Input Port ID and byte[]. For synchronized input

ports, instead of implementing the regular void receiveData(byte[] data) method which

delivers incoming data of a single port, developers need to implement the

AsTeRICS Developer Manual

 Page 53

syncedValuesReceived method which will be called from the ARE with synchronized data

from all the input ports that have been selected.

AsTeRICS Developer Manual

 Page 54

5.13 Interfacing Native C/C++ Code via JNI

5.13.1 Specifying native libraries in the Manifest

The Manifest file of a bundle which includes native libraries has to specify these .dlls as

shown in the following example:

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: asterics-sensors.mycomponent

Bundle-SymbolicName: org.asterics.mycomponent

Bundle-Version: 0.1.0

Bundle-NativeCode: lib/native/mylib1.dll;

 lib/native/mylib2.dll;

 lib/native/mylib3.dll;

 osname=win32;processor=x86;

 osname=win;processor=x86-64;

 osname=win8;processor=x86;

 osname=win8;processor=x86-64;

 osname=windows 8;processor=x86;

 osname=windows 8;processor=x86-64;

 osname=windows8;processor=x86;

 osname=windows8;processor=x86-64;

 osname=Windows 8.1;processor=x86;

 osname=Windows 8.1;processor=x86-64

DynamicImport-Package: *

Components which interface native code via JNI and their respective manifest files can be

found in the SVN, e.g. the “webcamera” component or the signal processing plugins by

Starlab.

Note that the .jar containing the .dlls can be built manually using the command:

jar -cvfm ..\mybundle.jar META-INF\MANIFEST.MF .

5.13.2 Java-Implementation: JNI-Bridge

The recommended way to interface Java code of an ARE component with native code in a

.dll is a bridge class which encapsulates the JNI functions and callbacks and maps the

functions of the ARE component’s lifecycle-, port- and property-management to the

corresponding functions in the native code. Here is a simple example which comprises one

component property and receives data callbacks from a thread implemented in C. The

received values are transferred to the component’s output port:

package org.asterics.jni;

import org.asterics.mycomponent.MyComponentInstance;

import java.util.logging.Logger;

public class Bridge

AsTeRICS Developer Manual

 Page 55

{

 /* Statically load the native library */

 static

 {

 System.loadLibrary("mylib1"); // loads mylib1.dll

 System.loadLibrary("mylib2"); // loads mylib2.dll

 System.loadLibrary("mylib3"); // loads mylib3.dll

 }

 private static final Logger logger = Logger.getAnonymousLogger();

 private final MyComponentInstance.OutputPort my_outport;

 public Bridge(final MyComponentInstance.OutputPort my_outport)

 {

 this.my_outport = my_outport;

 }

 /**

 * Activates the underlying native code/hardware.

 *

 * @return 0 if everything was OK, a negative number otherwise

 */

 native public int activate();

 /**

 * Deactivates the underlying native code/hardware.

 *

 * @return 0 if everything was OK, a negative number otherwise

 */

 native public int deactivate();

 /**

 * Gets the value of the named property.

 *

 * @param key the name of the property to be accessed

 * @return the value of the named property

 */

 native public String getProperty(String key);

 /**

 * Sets the named property to the defined value.

 *

 * @param key the name of the property to be accessed

 * @param value the value to be assigned to the named property

 * @return the value previously assigned to the named property

 */

 native public String setProperty(String key, final String value);

 /**

 * This method is called back from the native code on demand to signify

 * an internal error. The first argument corresponds to an error code

 * and the second argument corresponds to a textual description

 * of the error.

 * @param errorCode an error code

 * @param message a textual description of the error

 */

 private void errorReport_callback(

 final int errorCode,

 final String message)

 {

 logger.severe(errorCode + ": " + message);

 }

 /**

 * This method is called back from the native code to send data

 * to the component’s output port.

 *

 * @param data1 (range is [0, Short.MAX_VALUE])

 */

 private void newData_callback(final int data1)

 {

 my_outport.sendData(data1);

 }

}

AsTeRICS Developer Manual

 Page 56

5.13.3 C-Implementation: Callbacks and JNI code

The native C-code needs to be compiled into a .dll and include the JNI header files and

libraries. An example for the Microsoft Visual Studio compiler looks as follows:

The following C-example shows how to implement a JNI-callback from a C-thread and an

ARE-compliant exchange of a component property:

#include <jni.h>

static JavaVM * g_jvm;

static jobject g_obj = NULL;

const char * propertyKey = "myProperty";

const char * propertyValue = "20";

JNIEXPORT jint JNICALL Java_org_asterics_jni_Bridge_activate

 (JNIEnv * env, jobject obj)

{

 jint error_code = 0;

 error_code = env->GetJavaVM(&g_jvm);

 if(error_code != 0)

 {

 return error_code;

 }

 jclass cls = env->GetObjectClass(obj);

 jmethodID mid = env->GetMethodID(cls, "newData_callback", "(IIII)V");

 if (mid == NULL) return -1; /* method not found */

 // explicitly ask for a global reference

 g_obj = env->NewGlobalRef(obj);

 my_c_thread_init();

 return error_code;

}

JNIEXPORT jint JNICALL Java_org_asterics_jni_Bridge_deactivate

 (JNIEnv * env, jobject obj)

{

 jint error_code = 0;

 my_c_thread_exit();

 env->DeleteGlobalRef(g_obj);

 return error_code;

}

JNIEXPORT jstring JNICALL Java_org_asterics_jni_Bridge_getProperty

 (JNIEnv *env, jobject obj, jstring key)

{

 const char *strKey;

 jstring result;

 if (key == NULL) return NULL; /* OutOfMemoryError already thrown*/

 strKey = env->GetStringUTFChars(key, NULL);

 if(strcmp(propertyKey, strKey) == 0)

 {

 result = env->NewStringUTF(propertyValue);

 }

 else

 {

 result = NULL; /* property was not found */

 }

 env->ReleaseStringUTFChars(key, strKey);

 return result;

}

AsTeRICS Developer Manual

 Page 57

JNIEXPORT jstring JNICALL Java_org_asterics_jni_Bridge_setProperty

 (JNIEnv *env, jobject obj, jstring key, jstring value)

{

 const char *strKey;

 const char *strValue;

 jstring result;

 if (key == NULL) return NULL; /* OutOfMemoryError already thrown*/

 strKey = env->GetStringUTFChars(key, NULL);

 if (value == NULL) return NULL; /* OutOfMemoryError already thrown */

 strValue = env->GetStringUTFChars(value, NULL);

 if(strcmp(propertyKey, strKey) == 0)

 {

 result = env->NewStringUTF(propertyValue);

 pollingIntervalValue = strValue;

 }

 else

 {

 result = NULL; /* property was not found */

 }

 env->ReleaseStringUTFChars(key, strKey);

 env->ReleaseStringUTFChars(value, strValue);

 return result;

}

 // prepare JNI callback

 JNIEnv *env;

 g_jvm->AttachCurrentThread((void **)&env, NULL);

 jclass cls = env->GetObjectClass(g_obj);

 jmethodID mid = env->GetMethodID(cls, "newCoordinates_callback", "(IIII)V");

// perform JNI callback

 env->CallVoidMethod((jint)my_new_data);

This native C-code needs to be compiled into a .dll, the JNI header files and libraries have to

be specified to the compiler and linker respectively. An example for the Microsoft Visual

Studio build tools looks as follows:

cl -c -I "C:\Program Files (x86)\java\jdk1.6.0_21\include" -I "C:\Program Files

(x86)\java\jdk1.6.0_21\include\win32" -I ".\3rdparylib" my_c_file.cpp /ZI /nologo

/W3 /WX- /Od /Oy- /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D "_CRT_SECURE_NO_WARNINGS"

/D "_VC80_UPGRADE=0x0710" /D "_MBCS" /Gm- /EHsc /RTC1 /MTd /GS /fp:precise

/Zc:wchar_t /Zc:forScope /Gd /analyze- /errorReport:queue

link my_c_file.obj /DLL /OUT:".\my_c_file.dll" /INCREMENTAL:NO /NOLOGO

/LIBPATH:"libmsvc" /LIBPATH:"3rdparylib" "odbc32.lib" "odbccp32.lib" "comctl32.lib"

"winmm.lib" "opengl32.lib" "ole32.lib" "strmiids.lib" "uuid.lib" "kernel32.lib"

"user32.lib" "gdi32.lib" "winspool.lib" "comdlg32.lib" "advapi32.lib" "shell32.lib"

"oleaut32.lib" /NODEFAULTLIB:"libcd.lib" /NODEFAULTLIB:"atlthunk"

/NODEFAULTLIB:"LIBCMT" /MANIFESTUAC:"level='asInvoker' uiAccess='false'" /DEBUG

/SUBSYSTEM:WINDOWS /TLBID:1 /DYNAMICBASE:NO /MACHINE:X86 /ERRORREPORT:QUEUE

Note that the compiler and linker switches may differ depending on the nature of your

dependency libraries and setup.

AsTeRICS Developer Manual

 Page 58

5.14 External Helper Applications and Tools for Plugins

Some pluings make use of external helper applications which are self-contained binary

executable files and communicate with the particular ARE plugin (usually via a socket

interface). These helper applications are stored in the folder ARE/tools.

Currently, the following plugins use external tools:

Plugin Name Helper Application and Purpose Interface

SpeechProcessor Tools/SpeechProcessor.exe

This application creates an instance of the

Microsoft speech server for speech synthesis

and recognition. It accepts a list of commands

from the plugin and sends back recognized

voice commands.

TCP/IP socket

OscGestureFollower Tools/GestureFollower/gfOSC_v1.4.exe

The GestureFollower algorithm by IRCAM.

Allows training and recognition of several

signal patterns (for example from

multichannel sensor data).

TCP/IP socket, Open

Sound control (OSC)

protocol

FaceTrackerCLM Tools/EyesStateTrainer/EyesStateDetect.exe

Tools/EyesStateTrainer/EyesStateRecord.exe

Tools/EyesStateTrainer/EyesStateTrain.exe

Training application for detection of open or

closed eyes of a user for application with the

FaceTrackerCLM plugin. The training process

is exaplained in the Model Guide for the

FaceTrackerCLM plugin.

Offline, interface via

file

SSVEPStimulator Tools/blit.exe

Creates a flickering images from a given

bitmap file and it’s x/y coordinates on the

desktop screen for Software-generated visual

stimulation in SSVEP BCI tasks.

Commandline

parameters to the

application call

SSVEPFileWriter

ProtocolSSVEPTrain

SSVEPDetect

Tools/SSVEPTrainFunction.exe

Finds significant frequencies in an SSVEP

training recording which has been generated

by the SSVEPFileWriter plugin

Offline, interface via

file:

AsTeRICS Developer Manual

 Page 59

6 Communication Interface Modules and Protocol

This section describes the communication protocol between the AsTeRICS Runtime

Environment and the Communication Interface Modules (CIMs) via the USB standard

interface.

The CIM – protocol is a bi-directional communication standard between ARE and the

external modules. As described in chapter 5.1, the ARE provides services for connection and

communication with external hardware modules, if these modules support the CIM

communication protocol in their firmware. The CIM protocol defines a unique ID for the CIM

type, and commands for reading and writing so-called “features” from/to the CIM.

All USB CIMs will be identified and will communicate via USB CDC virtual serial ports. (If

desired, a CIM could be connected also via a real serial port and use the same protocol.)

Usually, no system driver development is needed to obtain a virtual COM port when a CIM is

plugged into the computer’s USB port: An appropriate .inf-file is sufficient to create the COM

port in the Windows operating system. This .inf file has to be specified only at the first

connection.

Currently, two different .inf files are supplied with the AsTeRICS Runtime distribution:

 the Arduino.inf (for the Arduino UNO microcontroller which is used for general

purpose digital I/O and analog input via the Arduino processor plugin

 the .inf file for all IMA CIMs (Analog In, Digital In/Out, Acceleration CIM, ..)

In the communication process, the ARE acts as master and the CIM acts as slave: The CIM

will usually answer only on a request from the ARE.

Additionally, CIMs could send data without being requested from the ARE – for example

periodic updates of a value. These periodic updates use a reserved

The CIMs provide a full list of supported features upon an identification request. This offers

flexibility if a new module type is manufactured, where already known features with known

commands are integrated but the number and combination of features is different from the

previous module types.

To provide the possibility to identify CIMs of the same type in the ARE (e.g. when two GPIO

CIMS are connected), a unique serial number is hardcoded in firmware and can be queried

via a feature request.

AsTeRICS Developer Manual

 Page 60

6.1 Communication Mechanism and Packet Format

The following table shows the CIM protocol structure:

Data field Size
(bytes)

Range of
values

Description

Packet ID

2 “@T” (0x4054
)

In case of the lost packet synchronization the 2-bytes packet ID
helps to identify the beginning of a packet, so that a lost
communication with the CIM will be resynchronized

ARE ID

(CIM ID)

2 If the packet is sent from ARE to CIM, the ARE-ID identifies the
ARE software version (e.g. “0x010E” means 1.14).
If the packet is sent from CIM to ARE, the CIM-ID identifies the
CIM type in the MSB and the CIM version in the LSB (e.g.
“0x0105” means CIM type 0x01 = HID actuator, version 5).
The CIM version informs the ARE about specific feature
deviations due to hardware and/or firmware revisions.
The CIM may refuse to execute or respond to certain or all
commands from ARE, if the ARE version value is below the
minimum compatible version required

Data Size

2 0x0000-
0x0800

Some of the commands or the answers from CIM may require
optional data like the ADC/DAC values. The size says how
many data is attached to the command or answer. The
maximum data size is limited to 2048 bytes. If ARE sends a
higher size value, the CIM will handle it as incorrect packet and
it will not respond to it, but try to resynchronize the packet
reception. In case there is no data attached to the packet this
value will be 0x0000.

Serial packet
number

1 0x00-0x7f
(0x80-0xff for
event-replies
from CIM)

The serial number in a packet which is sent from ARE to CIM is
incremented by the ARE every packet, with values ranging from
0x00 to 0x7f. The CIM sends the same value in the response
packet. This helps to identify what reply belongs to which
request.
A packet which is sent from CIM to ARE without request (e.g. in
reaction to an event or periodically) will have different serial
numbers with the highest bit (0x80) set, incremented by the CIM

CIM-Feature
address

2 This value from 0x0000 to 0xffff defines the addressed CIM-
feature. The feature address 0x0000 holds a serial number
which is unique for all manufactured CIMs of a specific type. All
other features (and the associated addresses) will be defined for
a particular AsTeRICS CIM-Type. A feature definition includes
the amount of data which is expected in the optional data field. If
a command is not associated with a specific feature (e.g. the
request “get feature list”) the feature address can have any
value and will have no effect. For a specification of currently
defined features please refer to section 6.3.

Request Code

(Reply code)

2 The LSB of this value represents a command code which is
globally valid for all CIM-Types.
If sent from ARE to CIM, the MSB specifies the transmission
mode.
If sent from CIM to ARE, the MSB holds an error/status code
related to the transmission. For a detailed description of
Request/Reply codes please refer to section 6.2.

Optional data 0-2048 The packet can contain up to 2048 bytes of additional data. The
actual length is given in the “Data Size” field.

Optional CRC
checksum

0 or 4 CRC32
checksum

(if CRC-Bit in “Command”-field is set)
CRC32 with 0x04c11db7 polynomial used also in e.g. ZIP or
Ethernet protocol.

AsTeRICS Developer Manual

 Page 61

CIM Protocol Important notes:

 Italic descriptions refer to communication from CIM to ARE

 All integer values (version, data size, serial number, feature address, command,

checksum) in the packet are stored in little-endian format in the packet.

 The minimum packet size (without optional data, without CRC) is 11 byes,

the maximum packet size (2048 bytes data, CRC) is 2063 bytes.

6.2 Request / Reply - Code

The request-/reply codes have to be supported by all CIMs and specify a generic way to

read/write features etc. Requests are sent from ARE to CIM, replies are sent from CIM to

ARE – and are usually a direct acknowledgement to a request. The only exception is when a

CIM replies data periodically or on occurrence of an event.

All CIMs have to implement command with codes < 0x80, others can be implemented

optionally (e.g. the command 0x80-“reset CIM” could be useful to re-initialise CIM-functions,

0x82-“stop CIM” could establish a failsafe state if necessary.)

A request/reply consists of a high-byte (MSB) and a low byte (LSB). The LSB specifies the

actual command-ID. In case the packet is sent from ARE to CIM the MSB specifies the

transmission mode (e.g. with/without CRC). In case the packet is sent from CIM to ARE, the

MSB holds an error / status information

MSB (8-bit) LSB (8-bit)

Mode / Status code Request/Reply code

Every request from ARE to CIM will be acknowledged by a corresponding reply packet. A

reply packet may contain feature-associated data .

6.2.1 Request/Reply Code in LSB

Request /
Reply code

Direction Description Expected Data

0x00 ARE→CIM request feature list

-

0x00 CIM→ARE reply feature list

list of supported features
(eg. 8 bytes for 4 feature
addresses)

0x10 ARE→CIM request write feature bytes according to feature

0x10 CIM→ARE reply write feature bytes according to feature

0x11 ARE→CIM request read feature bytes according to feature

0x11 CIM→ARE reply read feature bytes according to feature

0x20 CIM→ARE event reply bytes according to feature

0x80 ARE→CIM request reset CIM -

0x80 CIM→ARE reply reset CIM -

0x81 ARE→CIM request start CIM -

0x81 CIM→ARE reply start CIM -

0x82 ARE→CIM request stop CIM -

0x82 CIM→ARE reply stop CIM -

AsTeRICS Developer Manual

 Page 62

6.2.2 Mode / Status code in MSB

Mode /
Status code

Direction Description

Bit 0 ARE→CIM CRC-mode:
Bit value ==0 :CRC is not appended to packet and not checked on
receiving side
Bit value ==1: CRC is checked on receiving side,
packet is dropped if CRC wrong;

Bits 1-7 ARE→CIM Currently not used

Bit 0 CIM→ARE CRC-mode, as in received packet from ARE

Bit 1 CIM→ARE Error 1: Lost packets
(serial number mismatch)

Bit 2 CIM→ARE Error 2: CRC mismatch

Bit 3 CIM→ARE Error 3: Invalid or unsupported feature

Bit 4 CIM→ARE Error 4: Invalid ARE version

Bit 5 CIM→ARE Error 5: CIM not ready

Bit 6 CIM→ARE Currently not used

Bit 7 CIM→ARE Other Error, description available in data field

6.3 Feature Lists and CIM-IDs of all AsTeRICS CIMs

The following section defines the CIM-ID’s, the feature addresses and the expected data for

a particular feature request/reply for all AsTeRICS CIMs.

6.3.1 HID-CIM

CIM-ID Feature-
address

Access Descritption Data

0x0101:

HID
actuator
version 1

0x0000 r Unique serial number 4 bytes

0x0001 w MOUSE x/y pos
(relative change)

4 bytes: xxyy

0x0002 w MOUSE buttonstate 1 byte:
Bit 0=left click, Bit 1=right click,
Bit3=middle click

0x0003 W MOUSE wheel 1 byte: wheel displacement

0x0010 w KEYBOARD keypress 2 bytes: keycode, modifier

0x0011 w KEYBOARD keyhold 2 bytes: keycode, modifier

0x0012 w KEYBOARD keyrelease ----------

0x0020 w JOYSTICK joy1pos-analog 4 bytes: xxyy

0x0021 w JOYSTICK joy2pos-analog 4 bytes: xxyy

0x0022 w JOYSTICK joy3pos-digital 1 byte:
Bits 0-3: left/right/up/dwn

0x0023 w JOYSTICK joybuttonstate 2 bytes:
Bits 0-9: button pressed 0/1

AsTeRICS Developer Manual

 Page 63

6.3.2 PT-1 GPIO – CIM (Legacy GPIO)

CIM-ID Feature-
address

Access Descritption Data

0x0201:
GPIO
version 1
sensor/
actuator,

0x0000 r Unique serial number 4 bytes

0x0001 r GPIO Input State 1 byte:
Bit 0 = Input 1; Bit 7 = Input 8

0x0002 r/w GPIO Input Threshold Voltage 4 bytes:
bytes 0,1: threshold voltage value for
inputs 1-4 (0 to 25000 mV)
bytes 2,3: threshold voltage value for
inputs 5-8 (0 to 25000 mV)

0x0003 r/w GPIO Input Pullup State 1 byte:
Bit 0 = Input 1; Bit 7 = Input 8
Value: 0 = off; 1 = on, 33K resisor
connected to 3.3 V

0x0004 r/w GPIO Input Value Change
Event

1 byte:
Bit 0 = Input 1; Bit 7 = Input 8
Value: 0 = off; 1 = on

0x0005 r/w GPIO Periodic Input Value
Event

2 bytes:
bytes 0,1: period time 0 (off) to 65535
milliseconds

0x0010 r/w GPIO Output State 1 byte:
Bit 0 = Output 1; Bit 7 = Output 8

0x0011 r/w GPIO Output Pullup State 1 byte:
Bit 0 = Output 1; Bit 3 = Output 4
Value: 0 = off; 1 = on

0x0020 w Store current CIM state to
EEPROM as default power-on
state

none

0x0030 r/w 5-24 V power output 2 bytes:
bytes 0,1: 0 (bypass to USB 5V),
5000-25000 mV

AsTeRICS Developer Manual

 Page 64

6.3.3 Phone-CIM (Windows Phone OS)

CIM-ID Feature-
address

Access Descritption Data

0x0301:

Phone
actuator,
version 1

0x0000 r Unique serial number 4 bytes

0x0001 w Phone Application
Configuration:
 init

request:
 4 bytes (init)

reply:
 4 bytes (error_code)

0x0002 w Phone Application
Configuration:
 close

request:
 4 bytes (close)

reply:
 4 bytes (error_code)

0x0010 w Phone Manager:
 make call

request:
 4 bytes: command (make call)
 1 byte: phone_id_len
 X bytes: phone_id

reply:
 4 bytes (error_code)

0x0011 w Phone Manager:
 accept call

request:
 4 bytes (accept)

reply:
 4 bytes (error_code)

0x0012 w Phone Manager:
 drop call

request:
 4 bytes (drop)

reply:
 4 bytes (error_code)

0x0013 r Phone Manager:
 receive call event

1 byte: phone_id_len
X bytes: phone_id

0x0014 w Phone Manager: get
phone state

request:
 4 bytes (get phone state)
reply:
 4 bytes (error_code)
 1 byte (state_code)

0x0020 w Message Manager:
 send SMS

request:
 1 byte: phone_id_len
 X bytes: phone_id
 2 bytes: message_len
 Y bytes: message

reply:
 4 bytes (error_code)

0x0021 r Message Manager:
 receive SMS event

1 byte: phone_id_len
X bytes: phone_id
2 bytes: message_len
Y bytes: message

AsTeRICS Developer Manual

 Page 65

6.3.4 PT-1 ADC – CIM (Legacy ADC/DAC)

CIM-ID Feature-
address

Access Descritption Data

0x0401:
ADC version
1 sensor/
actuator,

0x0000 r Unique serial number 4 bytes

0x0001 r GPIO Input State 1 byte:
Bit 0 = Input 1; Bit 1 = Input 2

0x0003 r/w GPIO Input Pullup State 1 byte:
Bit 0 = Input 1; Bit 1 = Input 2
Value: 0 = off; 1 = on, 33K resisor
connected to 3.3 V

0x0004 r/w GPIO Input Value Change
Event

1 byte:
Bit 0 = Input 1; Bit 2 = Input 2
Value: 0 = off; 1 = on

0x0005 r/w GPIO Periodic Input Value
Event

2 bytes:
bytes 0,1: period time 0 (off) to 65535
milliseconds

0x0010 r/w GPIO Output State 1 byte:
Bit 0 = Output 1; Bit 1 = Output 2

0x0020 w Store current CIM state to
EEPROM as default
power-on state

none

0x0040 r ADC Input Value 18 bytes:
bytes 0-1: ADC01 input value...
byte 6-7: ADC04 input value
0-24000 mV

bytes 8-10: ADC05 input value
bytes 11-13: ADC06 input value
in Ohms, 1.5E+06 is maximum
0xFFFFFF means anything above 1.5
MOhm

byte 14-15: ADC07 input value
byte 16-17: ADC08 input value
0-24000 mV

0x0050 r/w DAC Output Value 4 bytes:
byte 0: DAC01 0..24.0 V
...
byte 3: DAC04 0..24.0 V
e.g. 240 is 24.0V

AsTeRICS Developer Manual

 Page 66

6.3.5 BMA180 Accelerometer Sensor

CIM-ID Feature-
address

Access Description Data

0x0501
BMA180
accelerometer
sensor
version 1

0x0000 r Unique serial number 4 bytes

0x0020 w Store current state to
EEPROM as default
power-on state

none

0x0060 r/w BMA180 direct register
access

READ

request byte 0: address 00-5B
reply byte 0: value
WRITE

request byte 0: address 00-5B
request byte 1: value
reply has no data
Not all registers or their bits can be
written, please see the BMA180
reference manual
NOTE: This is for PT1 HW testing
purposes only and shall be never
used for normal operation as there
can occur collision with new data
reading in a high priority interrupt
function. If you still want to use it,
disable all BMA180 interrupts in
ctrl_reg3 first. As a consequence, the
feature 0x0063 will have no new data
until the new_data_int in ctrl_reg3 is
re-enabled.

0x0061 r/w BMA180 bandwidth (data
sample frequency)

1 byte: bandwidth
0x00 ... 10 Hz
0x01 ... 20 Hz
0x02 ... 40 Hz
0x03 ... 75 Hz
0x04 ... 150 Hz
0x05 ... 300 Hz
0x06 ... 600 Hz
0x07 ... 1200 Hz
other values are not allowed and will
result in an error reply

0x0062 r/w BMA180 range 1 byte: range
0x00 ... 1 g
0x01 ... 1.5 g
0x02 ... 2 g
0x03 ... 3 g
0x04 ... 4 g
0x05 ... 8 g
0x06 ... 16 g
other values are not allowed and will
result in an error reply

0x0063 r BMA180 X/Y/Z data 7 bytes
byte 0: TRUE if new data are acquired
since last read, otherwise false
bytes 1-2: acc_x 14-bit value
bytes 3-4: acc_y 14-bit value
bytes 5-6: acc_z 14-bit value

0x0064 r/w Accelerometer Data Event 1 byte
0x00 ... disabled
0x01-0xFF ... enabled, feature 0x0063
X/Y/Z data is sent automatically every
time when new data are acquired.
The period is set by feature 0x0061

AsTeRICS Developer Manual

 Page 67

6.3.6 PT-1 Core – CIM

CIM-ID Feature-
address

Access Descritption Data

0x0601:
Core CIM
version 1

0x0000 r Unique serial number 4 bytes

0x0001 r GPIO Input State 1 byte:
Bit 0 = Input 1; Bit 3 = Input 4

0x0002 r/w GPIO Input Threshold
Voltage

2 bytes:
bytes 0,1: threshold voltage value for
inputs 1-4 (0 to 25000 mV)

0x0003 r/w GPIO Input Pullup State 1 byte:
Bit 0 = Input 1; Bit 3 = Input 4
Value: 0 = off; 1 = on, 33K resisor
connected to 3.3 V

0x0004 r/w GPIO Input Value Change
Event

1 byte:
Bit 0 = Input 1; Bit 3 = Input 4
Value: 0 = off; 1 = on

0x0005 r/w GPIO Periodic Input Value
Event

2 bytes:
bytes 0,1: period time 0 (off) to 65535
milliseconds

0x0010 r/w GPIO Output State 1 byte:
Bit 0 = Output 1; Bit 3 = Output 4

0x0011 r/w GPIO Output Pullup State 1 byte:
Bit 0 = Output 1; Bit 3 = Output 4
Value: 0 = off; 1 = on

0x0020 w Store current CIM state to
EEPROM as default
power-on state

none

0x0070 w clear status LCDisplay none

0x0071 w clear window on status
LCDisplay

8 bytes
bytes 0,1: top left X
bytes 2,3: top left Y
bytes 4,5: width
bytes 6,7: height
* byte per value would be now sufficient
but in case of larger display in future
word size is used

0x0072 r/w set text window on status
LCDisplay

8 bytes
bytes 0,1: top left X
bytes 2,3: top left Y
bytes 4,5: width
bytes 6,7: height
* window must fit on the display
otherwise error is returned

0x0073 r/w set text font 1 byte:
0 ... Terminal 6 – 6x8 pixels
1 ... Terminal 9 – 6x12 pixels
2 ... Terminal 18 – 12x24 pixels

0x0074 w print 1 to 2048 bytes
null-terminated string, prints only part
which fits in the text window set by
feature 0x0072
Special characters:

\n - goes to next line but keeps the
column.
 \r - clears the line inside the
window from the current position to
the end of the line and then it goes to
the beginning of the line. (So \r\r
clears the full line.)
 \b - goes one character back and
clears it.
 \t - TAB function, the step is 4
columns, clears the text from the

AsTeRICS Developer Manual

 Page 68

current position to the new one (so
1-4 characters depending on the
position)
 \f - clears the whole text window
and sets the position to the top left
corner of the window.

0x0075 w draw bitmap 9 to 2048 bytes
bytes 0-1: top left X
bytes 2-3: top left Y
bytes 4-5: width
bytes 6-7: height
bytes 8-2047: bitmap stream, standard
Windows 2-color BMP order
* only part which fits the display is drawn
* first byte bit 0 is (0,0), bit 7 is (7,0)
* if the bitmap width is e.g. 10 pixels,
stream has 2 bytes per row and bits 2 to
7 of the second byte are ignored

0x0076 r/w status LCDisplay backlight 1 byte - backlight 0-100%

0x0080 r read front panel buttons
state

1 byte
bit 0 ... left
bit 1 ... right
bit 2 ... down
bit 3 ... up
bit 4 ... OK
1 – pressed, 0 – not pressed

0x0081 r/w front panel buttons change
event mask

1 byte
bit 0 ... left
bit 1 ... right
bit 2 ... down
bit 3 ... up
bit 4 ... OK
1 – enabled, 0 – disabled

6.3.7 EOG-CIM

CIM-ID Feature-
address

Access Descritption Data

0xa101:
EOG
version 1
sensor/
actuator

0x0000 r Unique serial number 4 bytes

0x0001 w Activate Periodic Value
Reports

2 bytes:
bytes 0,1: period time 0 (off) to 65535
milliseconds

0x0002 r Channel Value Report 4 bytes: 2 channels of ADC values
Byte 1: chn1 low byte
Byte 2: chn1 high byte
Byte 3: chn2 low byte
Byte 4: chn2 high byte

AsTeRICS Developer Manual

 Page 69

6.3.8 Sensorboard – CIM

CIM-ID Feature-
address

Access Descritption Data

0xa201:
Sensor-
board for
low-cost eye
tracker

0x0000 r Unique serial number 4 bytes

0x0001 w Activate Periodic Value
Reports

2 bytes:
bytes 0,1: period time 0 (off) to 65535
milliseconds

0x0002 r Sensor Value Report 35 bytes of sensor values:

1:accelerometer X MSB

2:accelerometer X LSB

3:accelerometer Y MSB

4:accelerometer Y LSB

5:accelerometer Z MSB

6:accelerometer Z LSB

7:gyro X MSB

8:gyro X LSB

9:gyro Y MSB

10:gyro Y LSB

11:gyro Z MSB

12:gyro Z LSB

13:compass X MSB

14:compass X LSB

15:compass Y MSB

16:compass Y LSB

17:compass Z MSB

18:compass Z LSB

19:IR-Cam, point 1 X MSB

20:IR-Cam, point 1 X LSB

21:IR-Cam, point 1 Y MSB

22:IR-Cam, point 1 Y LSB

23:IR-Cam, point 2 X MSB

24:IR-Cam, point 2 X LSB

25:IR-Cam, point 2 Y MSB

26:IR-Cam, point 2 Y LSB

27:IR-Cam, point 3 X MSB

28:IR-Cam, point 3 X LSB

29:IR-Cam, point 3 Y MSB

30:IR-Cam, point 3 Y LSB

31:IR-Cam, point 4 X MSB

32:IR-Cam, point 4 X LSB

33:IR-Cam, point 4 Y MSB

34:IR-Cam, point 4 Y LSB
35:pressure sensor

AsTeRICS Developer Manual

 Page 70

6.3.9 Arduino – CIM

CIM-ID Feature-
address

Access Descritption Data

0xa001:
Arduino
version 1
sensor/
actuator

0x0000 r Unique serial number 4 bytes

0x0001 r/w Set Pin Directions (input or
output)

2 bytes: Data Direction State of Port B
(DDRB) and Port D (DDRD)
Bit 0 : Pin = Input
Bit 1 : Pin = Output

0x0002 w Set Output Pin States
or Input Pin Pullup State

2 bytes:
Byte 1: Output Pin values of PORT B
Byte 2: Output Pin values of PORTD

For Input Pins: activate pullup:
Value: 0 = off; 1 = on

0x0003 r Get Input PIN Change 2 bytes:
Byte 1: input PIN values of Port B
Byte 2: input PIN values of Port D

0x0004 w Activate ADC Periodic
Value Reports

2 bytes:
bytes 0,1: period time 0 (off) to 65535
milliseconds

0x0005 r ADC Value Report 12 bytes: 6 channels of ADC values
Byte 1: chn1 low byte
Byte 2: chn1 high byte
Byte 3: chn2 low byte
Byte 4: chn2 high byte
Byte 5: chn3 low byte
Byte 6: chn3 high byte
Byte 7: chn4 low byte
Byte 8: chn4 high byte
Byte 9: chn5 low byte
Byte 10: chn5 high byte
Byte 11: chn6 low byte
Byte 12: chn7 high byte

 0x0006 w Set PIN Mask for auto
send back Input PIN
Change events

2 bytes:
Byte 1: input pins of Port B
Byte 2: input pins of Port D

 0x0007 w Set PWM channel value 2 bytes
Byte 1: channel number (0-5) + operation
mode (0x1x: servo, 0x2x: PWM)
Byte 2: channel value (0-255)

AsTeRICS Developer Manual

 Page 71

6.3.10 PT2 Core - CIM

CIM-ID Feature-
address

Access Descritption Data

0x0602:

Core CIM
version 2

0x0000 r Unique serial number 4 bytes

0x0001 r DigitalInput State 1 byte:
Bit 0 = Input 1; Bit 2 = Input 3

0x0003 r/w DigitalInput Pullup State 1 byte:
Bit 0 = Input 1; Bit 2 = Input 3
Value: 0 = off; 1 = on, 33K resisor
connected to 3.3 V

0x0004 r/w DigitalInput State Change
Event

1 byte:
Bit 0 = Input 1; Bit 2 = Input 3
Value: 0 = off; 1 = on

0x0005 r/w Periodic DigitalInput State
Event

2 bytes:
bytes 0,1: period time 0 (off) to 65535
milliseconds

0x0010 r/w DigitalOutput State 1 byte:
Bit 0 = Output 1; Bit 1 = Output 2

0x0011 r/w DigitalOutput Pullup State 1 byte:
Bit 0 = Output 1; Bit 1 = Output 2
Value: 0 = off; 1 = on

0x0020 w Store current CIM state to
EEPROM as default
power-on state

none

0x0031 r/w 12 V GPO power output 1 byte:
0 disable, 1-255 enable

0x0040 r AnalogInput Value 6 bytes
bytes 0-2: Input 1 value
bytes 3-5: Input 2 value
* the values are in mV or miliohms
according to the sensor type connected

0x0070 w clear status LCDisplay none

0x0071 w clear window on status
LCDisplay

8 bytes
bytes 0,1: top left X
bytes 2,3: top left Y
bytes 4,5: width
bytes 6,7: height
* byte per value would be now sufficient but
in case of larger display in future word size
is used
* the current accessible display area is 114
x 64 pixels

0x0072 r/w set text window on status
LCDisplay

8 bytes
bytes 0,1: top left X
bytes 2,3: top left Y
bytes 4,5: width
bytes 6,7: height
* window must fit on the display otherwise
error is returned
* the current accessible display area is 114
x 64 pixels

0x0073 r/w set text font 1 byte:
0 ... Terminal 6 – 6x8 pixels
1 ... Terminal 9 – 6x12 pixels
2 ... Terminal 18 – 12x24 pixels

0x0074 w print 1 to 2048 bytes
null-terminated string, prints only part
which fits in the text window set by feature
0x0072
Special characters:
 \n - goes to next line but keeps the

column.
 \r - clears the line inside the window

from the current position to the end of the
line and then it goes to the beginning of the

AsTeRICS Developer Manual

 Page 72

line. (So \r\r clears the full line.)
 \b - goes one character back and clears

it.
 \t - TAB function, the step is 4 columns,

clears the text from the current position to
the new one (so 1-4 characters depending
on the position)
 \f - clears the whole text window and

sets the position to the top left corner of the
window.
 0x1f – the letters after this special

character are inverted.
 0x1e – the letters after this special

character are not inverted.

0x0075 w draw bitmap 9 to 2048 bytes
bytes 0-1: top left X
bytes 2-3: top left Y
bytes 4-5: width
bytes 6-7: height
bytes 8-2047: bitmap stream, standard 16-
level grayscale
* only part which fits the display is drawn
* first byte bit 0-3 is (0,0), bit 4-7 is (1,0)
* if the bitmap width is e.g. 11 pixels, 6
bytes per row and bits 4 to 7 of the last
byte are ignored

0x0076 r/w status LCDisplay
brightness

1 byte - brightness 0-100%
* for backward compatibility, the brightness

can be set in the CIM’s internal menu

0x0078 w draw 16x16 predefined
icon

6 bytes
bytes 0-1: top left X
bytes 2-3: top left Y
bytes 4-5: icon index
0 .. minus, 1 .. plus, 2 .. up,
3 .. down, 4 .. left, 5 .. right,
6 .. play, 7 .. pause

0x0082 r read touch panel state 4 bytes
bytes 0-1 ... display coordinate X
bytes 2-3 .. display coordinate Y
value -1 means not touched

0x0083 r/w touch panel event enable 1 byte
1 – enabled, 0 – disabled
when enabled, CIM send the X/Y
coordinates every time the display is
touched

0x0090 r battery level 1 byte
not accessible on request, every time the
battery charge level changes, the CIM
sends the level automatically
* 1-100 % when discharging,
* 101-200 % when charging.
* 254 – battery missing or dead
* 255 battery status is uknown (e.g. during
startup)
Level <15 means hibernate system
immediately.

AsTeRICS Developer Manual

 Page 73

6.3.11 PT2 GPI – CIM (DigitalIn)

CIM-ID Feature-
address

Access Descritption Data

0x0701:

GPI version
1

0x0000 r Unique serial number 4 bytes

0x0001 r GPIO Input State 1 byte:
Bit 0 = Input 1; Bit 5 = Input 6

0x0003 r/w GPIO Input Pullup State 1 byte:
Bit 0 = Input 1; Bit 7 = Input 8
Value: 0 = off; 1 = on, 33K resisor
connected to 3.3 V

0x0004 r/w GPIO Input Value Change
Event

1 byte:
Bit 0 = Input 1; Bit 7 = Input 8
Value: 0 = off; 1 = on

0x0005 r/w GPIO Periodic Input Value
Event

2 bytes:
bytes 0,1: period time 0 (off) to 65535
milliseconds

0x0020 w Store current CIM state to
EEPROM as default power-on
state

none

0x0077 r/w RGB status LED override 1 byte:
bit 0-1: red
bit 2-3: green
bit 4-5: blue
00 – override off
01 – always off
10 – always on
11 – blinking

6.3.12 PT2 GPO – CIM (DigitalOut)

CIM-ID Feature-
address

Access Descritption Data

0x0801:

GPO
version 1

0x0000 r Unique serial number 4 bytes

0x0010 r/w GPIO Output State 1 byte:
Bit 0 = Output 1; Bit 4 = Output 5
outputs 1-2 are relays, 3-5 are OC

0x0011 r/w GPIO Output Pullup State 1 byte:
Bit 2 = Output 3; Bit 4 = Output 5
Value: 0 = off; 1 = on

0x0020 w Store current CIM state to
EEPROM as default power-on
state

none

0x0031 r/w 12 V power output 1 byte:
0 disable, 1-255 enable

0x0077 r/w RGB status LED override 1 byte:
bit 0-1: red
bit 2-3: green
bit 4-5: blue
00 – override off
01 – always off
10 – always on
11 – blinking

AsTeRICS Developer Manual

 Page 74

6.3.13 PT2 ADC – CIM (AnalogIN)

CIM-ID Feature-
address

Access Descritption Data

0x0901:

ADC version
1

0x0000 r Unique serial number 4 bytes

0x0020 w Store current CIM state to
EEPROM as default
power-on state

none

0x0040 r AnalogInput Value 6 bytes
bytes 0-2: Input 1 value
bytes 3-5: Input 2 value
* the values are in mV or miliohms
according to the sensor type connected

0x0041 r/w ADC Periodic Input Value
Event

2 bytes:
bytes 0,1: period time 0 (off) to 65535
milliseconds
value lower than ~50 ms results in period
of 20 to 50 ms

0x0077 r/w RGB status LED override 1 byte:
bit 0-1: red
bit 2-3: green
bit 4-5: blue
00 – override off
01 – always off
10 – always on
11 – blinking

6.3.14 PT2 ZigBee – CIM

CIM-ID Feature-
address

Access Descritption Data

0x0a01:

ZigBee
version 1

0x0000 r Unique serial number 4 bytes

0x0020 w Store current CIM state to
EEPROM as default
power-on state

none

0x0077 r/w RGB status LED override 1 byte:
bit 0-1: red
bit 2-3: green
bit 4-5: blue
00 – override off
01 – always off
10 – always on
11 – blinking

 0x0090 w Init ZigBee pairing mode
for 60 seconds

none

 0x0091 w End ZigBee pairing mode
imediately

none

 0x0092 r Get full paired wireless
CIMs list

2+6xN bytes
byte 0-1: N...number of CIMs
followed by N-times
byte 0-3: unique serial number
byte 4-5: CIM ID
where CIM ID value means:
0x0b01 ... GPI v. 1
0x0c01 ... GPO v. 1
0x0d01 ... Accelerometer v. 1

AsTeRICS Developer Manual

 Page 75

 0x0093 r Get active paired wireless
CIMs list

same as above but the list is limited to
CIMs which sent at least 1 event since
the last ZigBee-CIM start

 0x0094 w Erase CIM from paired list 6 bytes
byte 0-3: unique serial number
byte 4-5: CIM ID
Note: returned error when the specified
CIM not paired

 0x0095 r/w Send and receive remote
wireless CIM features

8+N bytes
byte 0-3: unique serial number
byte 4-5: CIM ID
byte 6-7: data length N
byte 8-(7+N): feature data

* when CIM ID 0x0b01, sent as event by
the CIM only, N=1, byte 8: GPI input
state bit 0-5 ... input 1-6 state
* when CIM ID 0x0c01, write-only, N=1,
byte 8: bit 0-1 ... relay output 1-2 state
* when CIM ID 0x0d01, sent as event by
the CIM only, N=6, byte 8-13:
accelerometer data ax,ay,az
Note: When the connection to the
destination is lost, the response can take
up to ~5 seconds.

6.4 Demo Implementations of the CIM protocol

In the AsTeRICS Source Code package, the following microcontroller firmware

implementations of the CIM protocol can be found:

 Folder /CIMs/Arduino: an implementation for the 8-bit Atmel ATmega328 AVR

microcontroller architecture, with features for reading / writing GPIO and ADC

 Folder /CIMs/HID_actuator: an implementation for the 8-bit Atmel AT90USB1286,

with features for mouse/keyboard/joystick emulation

 Upon special request, CIM firmware for the Arm Cortex M3 or other architectures can

be delivered by AsTeRICS partners IMA of FHTW

The corresponding JAVA implementations on the ARE-side can be found in the respective

plugins (Arduino and RemoteMouse, RemoteKeyboard, RemoteJoystick)

AsTeRICS Developer Manual

 Page 76

7 Into the Deep: Concepts of the ARE middleware

The following section describes the ARE architecture for executing system models in more
detail. A High-Level view of all system components looks as follows:

Figure 1: High-level view of the system architecture (deployment model)

7.1.1 Runtime Model Concepts

The ARE hosts and controls the components that realize the Assistive Technology (AT)

applications. As such, it features a component-based approach, where various specialized

plug-ins (i.e., sensors, processors and actuators) are interfaced together to realize the

desired behavior. The main runtime model concepts in the ARE are the components

(plugins), the ports, and the channels (also known as bindings). These concepts are

available for introspection and reflection in runtime (i.e., their properties can be both queried

and edited).

It should be noted that these concepts describe merely types of runtime artifacts. For

instance, component specifies a special component type that can be instantiated multiple

times. In each instantiation, all attributes are static, except the properties that can be edited

in runtime. For example, a specialized signal processing processor can be instantiated

multiple times, with different property values, and can be connected to different components.

While both component instances share the same type, they are individually used and

maintained in the ARE.

AsTeRICS Developer Manual

 Page 77

Figure 2: Simple view of the runtime model

These artifacts and their relationships are illustrated in Figure 2. This figure illustrates the

relationships between components, ports and bindings. A component consists of one or

more ports. A binding, on the other hand connects exactly two components, via two

corresponding ports. A more detailed description of the main runtime concepts and their

relationships is provided in the following paragraphs.

7.1.1.1 Components

The components are the main artifacts in the ARE runtime model. As mentioned before,

components can serve one of three main roles:

 Sensors: these are components which only feature output ports (i.e., they do not

depend on input from any other components). Typical sensors are commonly coupled

to underlying hardware sensors to generate their output data (e.g., a face tracking

sensor which is coupled to a web-camera), but they can also be completely realized

internally (e.g., a signal generator).

 Processors: these are components which feature both input and output ports. This is

the most common type of components, and provides the foundation for forming

applications. The processor components can be either realized completely internally

(e.g., an average which keeps track of the last n values of a scalar value and always

outputs their average value) or they can be coupled to some external software library

or even coupled to a hardware component (e.g., utilize legacy libraries for complex

signal processing, or even utilize specialized hardware accelerators for highly

demanding computations).

 Actuators: these are components which only feature input ports (i.e., they do not

produce any output that can be utilized by other components). The main role of

actuators is to enable the desired functionality of the applications, and for testing

(e.g., a mobile phone actuator allows to place or answer phone calls and to send

SMS1 messages, while an oscilloscope actuator allows for viewing, and thus testing

or debugging, of signal generators).

1
 Short Text Message

AsTeRICS Developer Manual

 Page 78

Figure 3: Complex view of runtime model for the component concept

These concepts are illustrated in Figure 3. A component can be any of three main

realizations: sensor, processor, and actuator. On the other hand, a port can be instantiated

either as an input or an output port. Sensors have one-or-more output ports only, actuators

have one-or-more input ports only, and processors have both one-or-more input ports and

one-or-more output ports.

7.1.1.2 Ports

The ports are the main concepts allowing interfacing between components. Ports are

classified as input or output ports, depending on their role. Each port features a buffer where

data is accumulated before it is communicated outwards (output ports) or before it is

internally consumed (input ports).

Furthermore, each port is associated with a specific data type, indicating the type of the data

communicating through the port. Examples of such data types, carrying the representation

and semantics as inherited from the Java language, are:

 Byte: a single byte

 Boolean: “true” or “false”

 String: an array of bytes, representing ASCII characters

 Integer: a 32-bit integer

 Double: a 64-bit double precision scalar

The main properties and relationships of the port concept are illustrated in Figure 4.

AsTeRICS Developer Manual

 Page 79

Figure 4: Runtime model for the port concept

The port concept features methods for accessing the port type, its multiplicity, its data type,

and also for getting and setting property values. The main subtypes of port are the

OutputPort and the InputPort.

It should be pointed out that the input port is different from the output port by featuring an

additional method for checking whether a binding to the port is mandatory or not. This is

needed to check whether a component is resolved or not (i.e., by checking whether all its

input ports marked as “mustBeConnected” are indeed connected). This is important because

it ensures that all the defined components are functional, i.e., appropriately connected,

before they are activated.

Finally, it should be noted that special port types will also be defined for event

communication. Unlike common ports which communicate a fixed data type, event ports will

be able to communicate different events, encoded in a uniform way. Input event port types

will be defined with the “mustBeConnected” property set to false by definition. Also, output

event ports will allow the formation of multiple channels using the same output port as a

common endpoint.

AsTeRICS Developer Manual

 Page 80

7.1.1.3 Channels

The channel is the main concept used for interfacing components through ports. As such, the

channels are defined via a source port in a source component and a target port in a target

component. When formed, certain checks are performed to ensure that the data types of the

source and the target ports are compatible.

Figure 5: Runtime model for the binding concept

A typical binding is illustrated in Figure 5. The binding is associated to two components, and

an input and output port, one from each of them.

Typically, a source, i.e., output port might be associated to multiple targets, i.e., input ports.

Nevertheless, in this runtime model it is assumed that each binding consists of exactly one

source and one target port. One-to-many bindings are also implicitly supported via multiple

instances of one-to-one bindings.

Special channels can also be formed between event ports. In this case, both input and output

ports can be used to connect multiple channels. Event channels can be formed between

EventTriggerer and EventListeners ports. EventTriggerers generate events and

EventListeners register to an ARE service for listening to generated events. ARE is

responsible for disseminating the generated events to the plugins that have been registered

for listening to these events.

7.1.1.4 Component Architecture of ARE

This subsection describes the internal architecture of the ARE component. Naturally, the

main scope of this component is to maintain and realize the deployed model. As such, it

features the following sub-components:

 Controller: This component is responsible for coordinating the actions inside the ARE.

To achieve this, it uses the other sub-components described below.

AsTeRICS Developer Manual

 Page 81

 ModelManager: The model manager is used to maintain and manage the model (cf.

section 7.1.1). As such, it provides methods for transforming the model from and to

standard representations (such as XML), for validating its consistency, and for editing

the properties of the modeled concepts (i.e., of the components, channels and ports).

A special feature of the model manager is that it includes an input event port that

allows it to be controlled by the Assistive Technology application for switching

between various individual models.

 Configurator: The configurator is the component which translates the model into

actual components and channels. It is thus responsible for realizing the encoded

models and also for coordinating the activation (i.e., start) and deactivation (i.e.,

pause and stop) of the corresponding components. Before realizing certain models,

the configurator utilizes the validation services of the model manager. Also, in order

to access existing ones, or create new instances of components, the configurator

uses the services available by the component repository. Finally, it also provides

support for forming new channels (or dissolving existing ones) between certain ports.

Figure 6: Internal architecture of the ARE

 ComponentRepository: The component repository serves two roles. First, it maintains

a list with the available component types, which can be changed when new

components are installed or existing ones uninstalled. Second, it maintains a

repository with the current component instances. New instances can be dynamically

created, and existing ones be dissolved.

 BundleManager: This component allows for dynamically installing (or uninstalling)

software bundles containing one or more components. This is needed to allow for

easy updating of ARE instances with new (or updated) component implementations.

For this purpose, the OSGi bundle mechanisms will be used. In essence, when a new

bundle is installed (or uninstalled), it will be checked whether it contains AsTeRICS

AsTeRICS Developer Manual

 Page 82

components. If it does, the components will be registered (or unregistered) with the

component repository by reading appropriate metadata from the bundles.

The relationships between the sub-components are illustrated in Figure 6. Also, to illustrate

the interaction between these components in use, consider the sequence diagram illustrated

in Figure 7.

Figure 7: Sequence diagram illustrating a typical interaction between ACS and ARE

In this diagram, an ACS client is used to design an application model (i.e., graphically in an

appropriate GUI), which is then deployed in he ARE. For this, the ASAPI protocol is used,

which however is not illustrated here to avoid cluttering (for more information on the ASAPI

see section 8).

On receiving the deploy message, the Controller (which is the main component of the ARE)

uses the model service to transform the model, which is encoded in XML, into its object

representation. The resulting model is then deployed using the configuration service. The

latter first validates the model, using the model service, and then performs a set of

commands which aim at realizing the modeled application. These commands include the

instantiation of component instances, via the component repository, and the physical

connection of the corresponding ports.

AsTeRICS Developer Manual

 Page 83

8 ARE threading concept for model execution

The ARE uses a single threaded approach similar to the one of the Swing Event Dispatch

Thread (EDT) in Java for all tasks related to model deployment and execution. This means

that the following tasks are all executed within exactly one and the same thread instance:

 Model lifecycle

o Model deployment

o Model start/pause/stop

o Model setting property

 Model execution

o Data propagation: Sending data from an output (sendData) port to input ports

(receiveData)

o Event notification: Forwarding events from an event triggerer (raiseEvent) to

event listeners (receiveEvent)

Figure 8 illustrates a typical model and involved threads. The model is first deployed and

started within the ModelExecutor thread.

Figure 8: Illustration of threading concept for model lifecycle tasks and model execution.

AsTeRICS Developer Manual

 Page 84

All methods related to model execution are also executed in the ModelExecutor thread. In

case of sensor plugins (e.g. FacetrackerLK, Timer, SignalGenerator, ButtonGrid, …) other

threads are involved that generate event or time based data. The FacetrackerLK plugin uses

a FrameGrabber thread to grab and forward frames via a callback method. Similarly, the

Timer and SignalGenerator plugins use a thread for periodically scheduling events. Finally

the ButtonGrid gets informed about button clicks by the Java Swing Event Dispatch Thread

(EDT). If a plugin wants to send data to an output port or trigger events to the event triggerer

socket by using the respective methods (DefaultRuntimeOutputPort.sendData(…) and

DefaultRuntimeEventTriggererPort.raiseEvent(…)) the execution is automatically handed

over to the ModelExecutor thread.

The class AstericsModelExecutionThreadPool contains the code for the single threaded

functionality and provides two types of public methods to be used by developers.

8.1 Asynchronous method execute

public void execute(Runnable r)

Hands over the given Runnable and adds it to a bounded blocking queue (default size: 500).

The Runnable tasks are executed asynchronously in the ModelExecutor thread and rejected

if the queue is full. This is especially important if a sensor thread produces too many

callbacks and hence Runnables to execute. If the ModelExecutor thread is too slow because

of hardware limitations or because it is blocked by another execution, new incoming calls are

simply rejected to avoid knocking out the ARE. The method is meant to be used for data

and event notification tasks.

8.2 Synchronous method
execAndWaitOnModelExecutorLifecycleThread

public void execAndWaitOnModelExecutorLifecycleThread(Runnable r) throws

InterruptedException, ExecutionException, TimeoutException

or

public <V> V execAndWaitOnModelExecutorLifecycleThread(Callable<V> c)

throws Exception

Performs a synchronous execution of the given Runnable/Callable in the ModelExecutor

thread. If the execution blocks longer than the configured timeout interval (default 20000ms,

see 2.5.7) a TimeoutException is thrown. The method is meant to be used for lifecycle

tasks and used by the ARE GUI, the ASAPIServer the RESTServer and other ARE

components.

8.3 Pro and Contra of the single threaded approach

Using a single thread brings many advantages like

 Easier plugin development (no need to consider data integrity and thread

synchronization)

 More reliable hardware access (Some libraries require a single threaded access)

AsTeRICS Developer Manual

 Page 85

 Deterministic (sequential) execution of model data propagation and event notification

On the other hand a hanging I/O call, a long lasting method call or a thread deadlock block

the whole model execution or lifecycle task. In such a case it wouldn’t even be possible to

stop a model. This problem is accomplished by a fallback strategy which is to automatically

switch to a new ModelExecutor thread in case of a timeout or a rejected task.

AsTeRICS Developer Manual

 Page 86

9 ASAPI Clients and Serialisation

The AsTeRICS Application Programming Interface (ASAPI) is an interface to enable

advanced communications between the AsTeRICS Runtime Environment (ARE) and

external clients. In principle, ASAPI is a service that is provided by the ARE and can be

consumed by different clients deployed on the same (as the ARE) or remote devices.

While the ARE is implemented on top of JAVA/OSGi, ASAPI clients are assumed to be

implemented on top of a variety of platforms. For this purpose, the actual interfacing between

clients and the ARE is done at a low TCP/UDP/IP level. For this purpose, either a custom

TCP/UDP/IP protocol will be developed, or an existing solution such as Google Protocol

Buffers, XML RPC, or Apache Thrift could be used.

Figure 9: Basic architecture of ASAPI

The basic architecture of ASAPI is illustrated in Figure 9. The “ASAPI Server” is provided by

a JAVA based implementation, which utilizes the ARE to provide the specified functionality.

On the client side, two interfaces provide the needed functionality: The “ASAPI Client” which

extends the “ASAPI Server” with commands for discovering and connecting/disconnecting to

the server side, and the “ASAPI Native” which provides specialized functionality for deploying

certain components directly in the client, bypassing the ARE. These relationships are

illustrated in the above figure.

The functionality of a full ASAPI Client is defined in deliverable 2.1 – System Specification

and Architecture [1], section 4.4.

AsTeRICS Developer Manual

 Page 87

9.1 ASAPI and ARE Interconnection

The following figure shows the ASAPI protocol connection to the ARE and the ASAPI native

interface which provides certain functions for PC AT developers aside the ARE (e.g. mobile

phone access or special PC peripherals which will be investigated during WP6). The native

interface can provide well defined functions (as sending an SMS) which do not imply signal

processing plugins of the ARE, and can thus be accomplished directly on the PC.

As soon as the AsTeRICS Runtime Environment and the embedded platform are involved,

the ASAPI command and data protocol can be used to interact with the ARE.

The ASAPI protocol is a platform independent specification per se. To implement an ASAPI

client, templates in JAVA (server side) and C# (client side) will be provided as an early

outcome of WP4.

Embedded Plattform

ARE

Java / OSGi

PC

ACS (VS/.NET)

ASAPI (VS/.NET))

ASAPI (Java)

3rd party SW

ASAPI (VS/.NET)

incl. native C# API

CELL

PHONE

3D-

mouse

Figure 10: ASAPI client implementations with/without native functions

The following diagrams show two possible scenarios for ASAPI / ARE interconnection (1),

one for the configuration of the ARE and one for the operation thereof (2).

Usually, these scenarios will involve primary and secondary users of the AsTeRICS system:

- AT developers use the Configuration Suite to set up the model for the desired AT-

configuration, tailored to a specific use case or end user (1),

- End users start the system (power up the embedded platform or start the ARE on PC

or netbook) to get their desired AT-configuration (which operated stand alone or in

connection with 3rd-party applications on a PC or netbook (2).

AsTeRICS Developer Manual

 Page 88

9.1.1 ASAPI and ARE in the configuration process

Setting up a model

PC

AsTeRICS Configuration Suite

Embedded Platform

ARE

 (Java/OSGi)

Gripper Plugin Enobio Plugin
IR Gateway

Plugin

ASAPI Server

Tremor

Reduction Plugin

SVM Plugin SVM Plugin

ASAPI Client

Pneumatic

Gripper
IR GatewayEnobio Webcam

SVM Mini USB

CAM

JNI JNI

JNI JNI

OpenCV OpenCV

- query plugins()

- set plugin parameters()

- query model()

- deploy model()

 ASAPI Control Interface

 - configure plugins

 - manage model

Universal HID

actuator plugin

JNI

Figure 11: AsTeRICS configuration scenario, model setup

Figure 11 shows the configuration process of the AsTeRICS Runtime Environment by the

AsTeRICS Configuration Suite via ASAPI. The ASAPI client of the ACS connects to the

ARE’s ASAPI server. It queries the available plugins and their parameters. (In the above

figure, some exemplary plugins are shown for demonstration purpose).

The ACS offers dynamic graphic configuration dialogs to the user, which allows adjustment

of all the plugin parameters. Plugins can be graphically connected. This process does not

need any functional representation of the plugins, only a description of the plugins’ ports,

data types and parameters. All these setup actions are performed via ASAPI control

commands. The finalized model can be deployed to the ARE.

AsTeRICS Developer Manual

 Page 89

Monitoring, verifying and adjusting a model:

PC

AsTeRICS Configuration Suite

Embedded Platform

ARE

 (Java/OSGi)

Gripper Plugin Enobio Plugin
IR Gateway

Plugin

ASAPI Server

Tremor

Reduction Plugin

SVM Plugin SVM Plugin

ASAPI Client

Pneumatic

Gripper
IR GatewayEnobio Webcam

SVM Mini USB

CAM

 ASAPI Control Interface

 - configure plugins

 - manage model

JNI JNI

JNI JNI

OpenCV OpenCV

- query plugins()

- set plugin parameters()

- query model()

- deploy model()

- get data from plugins

Oscilloscope / Meter /

Data Display

ASAPI Data Interface

 - get live data from plugins

 - send data to plugins

Universal HID

actuator plugin

JNI

Figure 12: AsTeRICS configuration scenario, verification and error checking

To verify the setup process, a data connection to desired plugins can be opened in the

Configuration Suite. Thus, live sensor values and their transformation due to the applied

signal processing plugins can be monitored using feedback elements of the ACS like

oscilloscope or bar graphs. Parameters of the plugins can be modified using ASAPI control

commands until the desired behaviour of the ARE is present.

Additionally to the live data transmission for feedback purpose, status and error information

can be queried from the ARE to determine the state of particular plugins.

AsTeRICS Developer Manual

 Page 90

ASAPI and ARE in the runtime system:

Embedded Platform

ARE

 (Java/OSGi)

 PC

3rd party application

e.g. SENSORY – OSKA

ASAPI Client

+native functions

Universal HID

actuator plugin

JNI

Gripper Plugin Enobio Plugin
IR Gateway

Plugin

ASAPI Server

Tremor

Reduction Plugin

SVM Plugin SVM Plugin

Pneumatic

Gripper
IR GatewayEnobio Webcam

SVM Mini USB

CAM

JNI JNI

JNI JNI

OpenCV OpenCV

 ASAPI Control Interface

 - configure plugins

 - manage model

ASAPI Data Interface

 - get live data from plugins

 - send data to plugins

CELL

PHONE

3D-

mouse

ASAPI Native Interface

 - connect PC peripheral

 directly via C++ / .Net

Universal HID

module

Figure 13: AsTeRICS runtime scenario

A fully configured ARE can run as a stand-alone process providing its functionality or

communicate with PC AT-software. A connection between ARE and ACS is no longer

required at that time.

The above runtime scenario consists of a configured ARE, with connected plugins that

interface the external sensors (Enobio, SVM) and actuators (pneumatic gripper, IR gateway).

Third party applications running on the PC can optionally:

 query or send data by using ASAPI data commands

 use the ASAPI native interface to access supported PC peripherals like mobile

phone, 3D mouse

 use ASAPI to connect to the running ARE and send control commands to modify

model or plugin settings

If the Universal HID actuator USB dongle is used, the PC application can obtain data from

the embedded platform via a mouse, joystick or keyboard hook which is provided via the

ASAPI native interface (thereby omitting a dedicated TCP/IP connection to the ARE via the

ASAPI client).

AsTeRICS Developer Manual

 Page 91

9.2 Available ASAPI commands

Method Description

Methods to setup and deploy a model

String [] getAvailableComponentTypes();

Returns an array containing all
the available (i.e., installed)
component types. These are
encoded as strings, representing
the absolute class name (in Java)
of the corresponding
implementation.

String getModel();

Returns a string encoding the
currently deployed model in XML.
If there is no model deployed,
then an empty one is returned.

String getModelFromFile ();

Returns a string encoding of the
model defined in the filename
passed as argument. If there is
no model, an empty string is
returned.

void deployModel(String modelInXML) throws AsapiException;

Deploys the model encoded in
the specified string into the ARE.
An exception is thrown if the
specified string is either not well-
defined XML, or not well defined
ASAPI model encoding, or if a
validation error occurred after
reading the model.

void deployFile(String filename) throws AsapiException;

Deploys the model associated to
the specified filename. An
exception is thrown if the
specified filename is not found.

public void newModel() throws AREAsapiException Deploys a new empty model into
the ARE. In essence, this is
equivalent to creating an empty
model and deploying it. This
results to freeing all resources in
the ARE (i.e., if a previous model
reserved any).

void newModel();

Deploys a new empty model into
the ARE. In essence, this is
equivalent to creating an empty
model and deploying it using
deployModel(String) above. This
results in freeing all resources in
the ARE (i.e., if a previous model
reserved any).

void runModel() throws AsapiException;

It starts or resumes the execution
of the model. It throws
AsapiException if an error occurs
while validating and starting the
deployed model.

public void pauseModel() throws AsapiException;

Briefly stops the execution of the
model. Its main difference from
the stopModel() method is that it
does not reset the components
(e.g., the buffers are not cleared).

../AppData/Local/AppData/Local/AppData/Local/AppData/Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html
../AppData/Local/AppData/Local/AppData/Local/AppData/Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html
../AppData/Local/AppData/Local/AppData/Local/AppData/Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html

AsTeRICS Developer Manual

 Page 92

It throws an AsapiException if the
deployed model is not started
already, or if the execution
cannot be paused.

public void stopModel() throws AsapiException;

Stops the execution of the model.
Unlike the pauseModel method,
this one resets the components,
which means that when the
model is started again it starts
from scratch (i.e., with a new
state). It throws AsapiException if
the deployed model is not started
already, or if the execution
cannot be stopped.

public void storeModel(String modelInXML, String filename)
 throws AREAsapiException

Stores the XML model specified
by the string parameter in the file
specified by the filename
parameter . Throws an
AREAsapiException if the file
cannot be created or if the model
cannot be stored.

public String[] listAllStoredModels() throws AREAsapiException Returns a list with all stored
models. Throws
AREAsapiException if the models
directory could not be found.

public boolean deleteModelFile (String filename) throws
AREAsapiException

Deletes the file of the model
specified by the filename
parameter. Throws
AREAsapiException if the file
could not be found or could not
be deleted.

public void autostart() It is called on startup by the
middleware in order to autostart
a default model without the need
of pressing deploy and start
model first.

Methods to read and edit the model

String [] getComponents();

Returns an array that includes all
existing component instances in
the model (even multiple
instances of the same
component type).

String [] getChannels(String componentID);

Returns an array containing the
IDs of all the channels that
include the specified component
instance either as a source or
target.

void insertComponent(String componentID, String componentType)
throws AsapiException;

Used to create a new instance of
the specified component type,
with the assigned ID. Throws an
exception if the specified
component type is not available,
or if the specified ID is already
defined.

void removeComponent(String componentID) throws AsapiException; Used to delete the instance of the
component that is specified by
the given ID. Throws an
exception if the specified
component ID is not defined.

../AppData/Local/AppData/Local/AppData/Local/AppData/Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html
../AppData/Local/AppData/Local/AppData/Local/AppData/Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html
../AppData/Local/AppData/Local/AppData/Local/AppData/Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html
../AppData/Local/AppData/Local/AppData/Local/AppData/Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html
../AppData/Local/AppData/Local/AppData/Local/AppData/Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html

AsTeRICS Developer Manual

 Page 93

public String [] getAllPorts(String componentID) throws AsapiException;

Returns an array containing the
IDs of all the ports (i.e., includes
both input and output ones) of
the specified component
instance. An exception is thrown
if the specified component
instance is not defined.

public String [] getInputPorts(String componentID) throws
AsapiException;

Returns an array containing the
IDs of all the input ports of the
specified component instance.
An exception is thrown if the
specified component instance is
not defined.

String [] getOutputPorts(String componentID) throws AsapiException;

Returns an array containing the
IDs of all the output ports of the
specified component instance.
An exception is thrown if the
specified component instance is
not defined.

void insertChannel(String channelID, String sourceComponentID,String
sourcePortID, String targetComponentID,
String targetPortID)throws AsapiException;

Creates a channel between the
specified source and target
components and ports. Throws
an exception if the specified ID is
already defined, or the specified
component or port IDs is not
found, or if the data types of the
ports do not match. Also, an
exception is thrown if there is
already a channel connected to
the specified input port (only one
channel is allowed per input port
except for event ports that can
have multiple event sources).

void removeChannel (String channelID) throws AsapiException;

Removes an existing channel
between the specified source and
target components and ports.
Throws an exception if the
specified channel is not found.

Methods to read and edit properties (even while running)

String [] getComponentPropertyKeys(String componentID); Reads the IDs of all properties
set for the specified component.

String getComponentProperty (String componentID, String key); Returns the value of the property
with the specified key in the
component with the specified ID
as a string.

String setComponentProperty (String componentID, String key, String
value);

Sets the property with the
specified key in the component
with the specified ID with the
given string representation of the
value.

String [] getPortPropertyKeys(String portID); Reads the IDs of all properties
set for the specified port.

String getPortProperty(String componentID, String portID, String key);

Returns the value of the property
with the specified key in the
component with the specified ID
as a string.

String setPortProperty(String componentID, String portID, String key,
String value);

Sets the property with the
specified key in the port with the

../AppData/Local/AppData/Local/AppData/Local/AppData/Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html
../AppData/Local/AppData/Local/AppData/Local/AppData/Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html
../AppData/Local/AppData/Local/AppData/Local/AppData/Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html
../AppData/Local/AppData/Local/AppData/Local/AppData/Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html
../AppData/Local/AppData/Local/AppData/Local/AppData/Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html

AsTeRICS Developer Manual

 Page 94

 specified ID with the given string
representation of the value.

String [] getChannelPropertyKeys(String channelID);

Reads the IDs of all properties
set for the specified component.
Reads the IDs of all properties
set for the specified channel.

String getChannelProperty(String channelID, String key); Returns the value of the property
with the specified key in the
channel with the specified ID as a
string.

String setChannelProperty(
String channelID, String key, String value);

Sets the property with the
specified key in the channel with
the specified ID with the given
string representation of the value.

Methods for status checking

String queryStatus();

Queries the status of the ARE
system (i.e., OK, FAIL, etc).

public String getLogFile() Serializes and returns as a string
the Log file.

Table 1: ASAPI server interface

Method Description

Methods to discover and connect/disconnect to AREs

InetAddress [] searchForAREs();

Searches in the local area network (LAN) for
available instances of the ARE. The exact protocol
for discovery can vary (e.g., it could be based on
UPnP, SLP, or a custom protocol).

ASAPI_Server connect(InetAddress ipAddress);

Connects to the ARE at the specified IP address.
The method returns an instance of the ASAPI
Server interface (described above), masking the
functionality provided by the target ARE through
ASAPI.

void disconnect(ASAPI_Server asapi_server);

Disconnects from the specified instance of the
ASAPI Server, invalidating the reference.

Table 2: ASAPI client interface

9.3 Serialisation

The serialisation of the data including the calling mechanism is done by Apache Thrift [14].

For the reference implementations (ASAPI server for ARE in Java and ASAPI client for ACS

in C-Sharp), the version 0.8.0 has been used. The following tutorial shows the way from the

interface definition to a working Java client.

9.3.1 The Thrift definition file

In the thrift definition file, all functions which should be serializable have to be defined. The

“ASAPI.thrift” file is used by the Thrift compiler to generate the server and client functions

../AppData/Local/AppData/Local/AppData/Local/AppData/Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/ASAPI_Server.java.html
../AppData/Local/AppData/Local/AppData/Local/AppData/Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/ASAPI_Server.java.html

AsTeRICS Developer Manual

 Page 95

9.3.2 The Thrift Compiler

The source code of the Thrift compiler is part of the Thrift bundle, being available at [14]. For

persons, who like the usage of precompiled programs, a Windows version of the Thrift 0.8.0

compiler is available at https://dist.apache.org/repos/dist/release/thrift/0.8.0/thrift-0.8.0.exe

The compiler supports several target languages, the most commons are C++, C#, Java and

php. The usage is command line based and quite simple. To get the needed Java files, the

following command has to be used:

thrift --gen java asapi.thrift

This command generates the folder gen-java containing the files AsapiServer.java and

AsapiException.java. For a more detailed description of the Thrift compiler, please see the

compiler manual.

9.3.3 The Thrift Library

For the usage of the generated files, a library file must also be generated. The source code

of the libraries is also available in the thrift-bundle from [http://incubator.apache.org/thrift/].

For all languages, being supported by the compiler, are libraries available. In the source

code folders of the libraries is also a language specific instruction – please follow the

instruction to generate the library file. In the case of Java, after successfully following the

instructions, the file libthrift.jar will be generated.

In the case of Java, the Thrift library needs additional logging libraries. The usage of the

Simple Logging Facade for Java (SLF4J) framework [15] is recommended. The Thrift 0.8.0

library was successfully tested with version 1.6.0 of SLF4J

9.3.4 Simple Java Client

All preconditions are now fulfilled, the Java client can be created now. Beside the two

generated files AsapiServer.java and AsapiException.java, a main file is needed. The

key lines concerning the Thrift usage are:

try {

 TTransport transport = new TSocket(10.0.0.1, 9090);

 TProtocol protocol = new TBinaryProtocol(transport);

 AsapiServer.Client client = new Calculator.Client(protocol);

 transport.open();

 client.NewModel(); // Example function call

} catch (TException x) {

 x.printStackTrace();

}

Important: the files libthrift.jar, slf4j-api-1.6.0.jar and slf4j-simple-1.6.0.jar

must be included in the build path.

https://dist.apache.org/repos/dist/release/thrift/0.8.0/thrift-0.8.0.exe

AsTeRICS Developer Manual

 Page 96

10 Native ASAPI Libraries

Native ASAPI is a software development kit for 3rd party developers to help them adapt their

application for people with motor disabilities. Native ASAPI will be delivered as a set of DLL

libraries for the Microsoft Windows Operating system. Native ASAPI works independently of

ARE.

10.1 Phone Library

The Phone Library is designed to control mobile phones. The library uses Bluetooth

connection to connect to the Phone Library Server Application running on the mobile phone.

Currently the Phone Library uses the Microsoft Bluetooth stack; other stacks will be

considered. The Library is delivered as a PhoneLibrary.dll file.

Currently the Phone Library Server Application for Windows Mobile operating system has

been developed. The Server application works on the phones running Windows Mobile 5.0

and above.

To install Server application (ServerInstall.cab file):

 On Windows XP install the ActiveSync application.

 Connect the phone to PC using USB cable. On Windows 7, if you connect the

Windows Mobile phone for the first time, the Microsoft Windows Mobile Device Center

application will be installed automatically.

 Using ActiveSync or Windows Mobile Device Center copy the Server installer to the

phone.

 Run the Server installer. The server application will be installed.

10.1.1 Phone Library interface:

The library interface is declared in the PhoneLibrary.h file.

Phone library interface functions are declared with the “C” linkage. The Phone Library

functions return a positive value if it succeeds. If a function fails, it returns a value lower than

0 and the returned value is the code of the error.

Library functions:

Function Description

int init(DeviceFound deviceFound, NewSMS
newSMS, PhoneStateChanged
phoneStateChanged, LPVOID param)

Initializes the Phome Library. The deviceFound,
newSMS and phoneStateChanged parameters are
pointers to the call-back functions implemented in the
Phone Library user application. The param parameter
is a parameter defined by the user and passed to the
call-back functions.

int close() Closes the library.

int searchDevices() Starts searching for devices. For each discovered
device the DeviceFound call-back function is called

int connectToDevice(unsigned _int64 Connects to the device defined by the deviceAddress

AsTeRICS Developer Manual

 Page 97

deviceAddress, int port) parameter.

int disconnect() Disconnects the device.

int makePhoneCall (LPWSTR recipientID) Makes a phone call. The recipientID parameter is the
recipient phone ID.

int acceptCall() Accepts incoming phone calls.

int dropCall() This function drops an incoming phone call or
disconnects phone calls.

int getPhoneState(PhoneState &phoneState) Gets actual phone state of the mobile phone.

int sendSMS(LPWSTR recipientID, LPWSTR
subject)

Sends SMSs. The recipientID parameter is the
recipient phone ID, the subject parameter is the
message content.

Table 3: Phone library functions

Library call-back functions definitions:

Function Description

typedef void (__stdcall *DeviceFound) (unsigned
_int64 deviceAddress, LPWSTR deviceName,
LPVOID param)

This function is called when a new device is found.
The deviceAddress parameter is the address of the
discovered device. The deviceName parameter is the
name of the device. If the returned deviceAddress
parameter is equal to 0, the device search process
finishes.

typedef void (__stdcall *NewSMS) (LPWSTR
PhoneID, LPWSTR subject, LPVOID param)

This function is called when there is a new SMS
available. The PhoneID parameter is the sender phone
ID. The subject parameter is the SMS content.

typedef void (__stdcall *PhoneStateChanged)
(PhoneState phoneState, LPWSTR phoneID ,
LPVOID param)

This function is called when the phone state is
changed. The phoneState parameter defines current
state of the phone. The phoneID is the remote phone
ID.

Table 4: Phone library call-back functions

Error codes returned by functions: (declared in the PhoneLibraryErrors.h file):

Code Description

-1 Default error.

-2 Library is not initialized.

-3 Library is initialized.

-4 Library initialization error.

-5 No respond from remote device.

-20 Library is searching for the devices now.

-21 Device is not found.

-31 Device is connected.

-32 Error during connecting to the device.

-33 Device is not connected.

-34 Default port error.

-50 Phone ID or SMS content is empty

-1001 Remote device default error.

-1011 Bluetooth initialization error on the remote device.

-1015 Packet error.

-1031 Messenger module initialization error on the remote device.

-1032 Messenger module is not initialized on the remote device.

-1033 Message send error on the remote device.

-1051 Phone module initialization error on the remote device.

-1052 Phone module is not initialized on the remote device.

-1053 Phone accept the call error on the remote device.

-1054 Phone drop the call error on the remote device.

-1055 Phone make the call error on the remote device.

-1072 Messenger module and Phone module is not initialized on the
remote device.

Table 5: Phone library error codes

AsTeRICS Developer Manual

 Page 98

Other Phone Library interface data:

Data Description

enum PhoneState
{
PS_IDLE=1,
PS_RING,
PS_CONNECTED
};

Indicates current phone state.

#define Default_port -1 Indicates the default port number, which can be used
in the connectToDevice method.

Table 6: Other Phone library interface data

10.1.2 Example of use

Call-back functions definitions:

void __stdcall newSMS (LPWSTR PhoneID, LPWSTR subject, LPVOID param)

{

 //get incoming SMS:

 getSMS(PhoneID, subject);

}

void __stdcall phoneStateChanged (PhoneState phoneState, LPWSTR phoneID , LPVOID

param)

{

 //auto answer on incoming phone call:

 if(phoneState==PS_RING)

 {

 acceptCall();

 }

}

Initialization of the library and connect to the phone:

int InitLib (unsigned _int64 deviceAddress)

{

 int result;

 result = init(deviceFound, newSMS, phoneStateChanged, NULL);

 if(result < 0)

 {

 return 0;

 }

 result=connectToDevice(deviceAddress,-1);

 if(result<0)

 {

 return 0;

 }

}

AsTeRICS Developer Manual

 Page 99

Send SMS:

int SendSMS(LPWSTR recipientID, LPWSTR subject)

{

 return sendSMS(recipientID, subject);

}

Make phone call:

int MakePhoneCall(LPWSTR recipientID)

{

 return makePhoneCall(recipientID);

}

Disconnect the phone and close the library:

int CloseLib()

{

 disconnect();

 return close();

}

10.2 GSM Modem Library

The GSM Model Library interfaces the GSM modem devices connected to the platform. It

can be used to send and receive SMS.

10.2.1 GSM Modem Library interface:

The library interface is declared in the GSMModemLibrary.h file:

Library functions:

Function Description

int init(LPWSTR com, NewSMSAvailable
newSMSAvailable,ErrorCallback errorCallback,
LPWSTR pin, LPWSTR smsCenterNumber
,LPVOID param)

Initializes the library. The com parameter defines the
modem serial port. The newSMSAvailable and
errorCallback parameters are pointers to the call-back
functions implemented in the user application. The pin
parameter is the PIN code. If the PIN code is not
required, this parameter should be empty. The
smsCenterNumber parameter contains the user SMS
center number. If the number of SMS center is not
required this parameter should be empty.The param
parameter is a parameter defined by the user and
passed to the call-back functions.

int close() Closes the library.

int sendSMS(LPWSTR recipientID, LPWSTR
subject)

Sends SMSs. The recipientID parameter is the
recipient phone ID, the subject parameter is the
message content.

Int getModemPortNumber(ModemSearchResult
modemSearchResult,LPVOID param)

Starts to search modems. For each modem found, the
modemSearchResult call-back function is called. The
param parameter is passed to the
modemSearchResult call-back function.

Table 7: GSM Modem library functions

AsTeRICS Developer Manual

 Page 100

GSM Mode Library functions are declared with the “C” linkage. A function returns a positive

value if it succeeds. If the function fails, it returns a value lower than 0 and the returned value

is the code of the error.

Library call-back functions definitions:

Function Description

typedef void (__stdcall *NewSMSAvailable)
(LPCWSTR phoneID, LPCWSTR subject, LPVOID
param)

This function is called when there is a new SMS
available. The PhoneID parameter is the sender phone
ID. The subject parameter is the SMS content. The
param parameter it is parameter defined by user.

typedef void (__stdcall *ErrorCallback) (int result,
LPVOID param)

This function is called when en error is found. The
result parameter is the error code. The param
parameter it is parameter defined by user.

typedef void (__stdcall *ModemSearchResult)
(LPCWSTR port,LPCWSTR modemName, LPVOID
param)

This function is called when the modem is found. The
port parameter contains the modem port. The
modemName parameter contains the modem name.
The param parameter it is parameter defined by user.

Table 8: GSM Modem library call-back functions

Error codes returned by functions: (The error codes are declared in the Errors.h file)

Code Description

-1 Default error.

-2 Library is not initialized.

-3 Library is initialized.

-4 Library initialization error.

-5 Library is during initialization

-10 COMM initialize false

-11 No respond on the AT command

-12 Cannot register to the GSM network

-13 Modem initialize false

-14 Write to the modem port error

-15 Read from the mode port error

-16 Not enough space in a buffer

-17 No modem answer

-19 The AT command failed

-20 SMS read error

-21 SMS send error

-22 Phone ID is empty

-23 Message content is empty

-24 Error respond from the modem

-25 Undefined modem answer

-26 The string is not a number

-100 SMS was not sent

2 Library is initialized correctly

Table 9: GSM Modem library errors

AsTeRICS Developer Manual

 Page 101

10.2.2 Example of use

Call-back functions definitions:

void __stdcall modemSearchResult (LPCWSTR port,LPCWSTR modemName, LPVOID param){

 if((wcslen(port)>0)&&(wcslen(modemName)>0))

 {

 //get the port for the connection with modem

 getPort(port);

 }

}

void __stdcall newSMS (LPWSTR PhoneID, LPWSTR subject, LPVOID param)

{

 //get incoming SMS:

 getSMS(PhoneID, subject);

}

void __stdcall errorCallback (int result, LPVOID param)

{

 If(result==2)

 {

 LibraryIsInitialized=true;

 }

}

Find the modem, Initialize the library and send SMS:

int InitLib ()

{

 int result=0;

 result=getModemPortNumber(modemSearchResult,NULL);

 //wait for call-back function:

 ...

 result= init(serialPort, newSMS, errorCallback,””,””,NULL);

 //wait for initialize of the library

 ...

 Result= sendSMS(phoneNumber,”Test SMS”);

}

AsTeRICS Developer Manual

 Page 102

10.3 3D-Mouse Library

The 3D Mouse Library is designed to help in adapting 3Dconnexion 3D Mouse devices for

people with motor disabilities. It works with the 3D Mice connected to PC via USB such as:

SpacePilot Pro, SpaceExplorer and SpaceNavigator.

10.3.1 3D-Mouse Library interface

The library interface is declared in the Mouse3DLibrary.h file.

Library functions:

Function Description

int init () Initializes the 3D Mouse Library

int close () Closes the Library

int
get3DMouseState(long
*x, long *y, long *z, long
*Rx, long *Ry, long *Rz,
long* buttons)

Gets the actual state of the 3D mouse. Parameters are axis, axis
rotation and button state.

Table 10: 3D Mouse Library functions

3D Mouse library interface functions are declared with the “C” linkage. The 3D Mouse Library

function returns a positive value if it succeeds. If the function fails, it returns a value lower

than 0 and the returned value is the code of the error.

Error codes returned by functions:

The error codes are declared in the Mouse3DLibraryErrors.h file.

Number Description

-1 Default error.

-2 Library is not initialized.

-3 Library is initialized.

-4 Library initialization error

-5 The 3D Mouse device not found.

-6 Data acquire error.

Table 11: 3D Mouse Library errors

10.3.2 Example of use

Getting 3D Mouse state:

int getState(long *x, long *y, long *z, long *Rx, long *Ry, long *Rz, long*

buttons)

{

 int nResult = init()

 if(nResult<0)

 {

 return nResult;

 }

AsTeRICS Developer Manual

 Page 103

 result = get3DMouseState(x, y, z, Rx, Ry, Rz, buttons);

 if(nResult<0)

 {

 return nResult;

 }

 result =close();

 if(nResult<0)

 {

 return nResult;

 }

 return 1;

}

10.4 Keyboard Library

The Keyboard Library is designed for developers who need to adapt the computer keyboard

for the specialized needs of motor disabled people. For example if the application has to use

standard keyboard input for the scanning and send the keys in different way. Developers

using this library will be able to get information about all system key events and send key

events to other applications. The library uses Low Level Keyboard Hook.

10.4.1 Keyboard Library interface

Library functions:

The library interface is declared in the KeyboardLibrary.h file.

Function Description

KEYBOARDLIBRARY_API int __stdcall
init(HookCallBack hookCallBack, LPVOID param)

Initializes the library. The hookCallBack parameter is a
pointer to the call-back function. The param parameter
is a parameter defined by user.

KEYBOARDLIBRARY_API int __stdcall close() Closes the library.

KEYBOARDLIBRARY_API int __stdcall startHook() Starts key events hooking

KEYBOARDLIBRARY_API int __stdcall stopHook() Stops key events hooking.

KEYBOARDLIBRARY_API int __stdcall
sendKeyByScanCode(int scanCode, SendKeyFlags
flags)

Simulates a key event using a key scan code.

KEYBOARDLIBRARY_API int __stdcall
sendKeyByVirtualCode(int virtualCode,
SendKeyFlags flags)

Simulates a key event using a virtual key code.

KEYBOARDLIBRARY_API int __stdcall
sendText(LPWSTR text)

Simulates text being typed in, defined by the text
parameter.

KEYBOARDLIBRARY_API int __stdcall
blockKeys(BlockOptions blockOptions)

Blocks or Passes key events. The blockOptions
parameter defines the function's behaviour.

Table 12: Keyboard Library functions

Keyboard library interface functions are declared with the “C” linkage. The Keyboard Library

function returns a positive value if it succeeds. If the function fails, it returns a value lower

than 0 and the returned value is the code of the error.

AsTeRICS Developer Manual

 Page 104

Call-back function:

Function Description

typedef int (__stdcall *HookCallBack) (int
scanCode, int virtualCode,HookMessage message,
HookFlags flags, LPVOID param);

This function is called if there is a new key event. The
scanCode parameter defines the scan code of the key,
the virtualCode parameter defines the virtual key code,
the message defines message type, the flags
parameter defines additional information about the key
event, the param parameter is a parameter passed by
the user. If the returned vaule is lest than 0, the library
will block the event, if the returned value is greather
than 0 the library will pass the event. If the returned
value is 0 the library will block or pass the event
according to the BlockKeys function.

Table 13: Keyboard Library call-back functions

Error codes returned by functions:

The error codes are declared in the KeyboardLibraryErrors.h file.

Number Description

-1 Default error.

-2 Library is not initialized.

-3 Library is initialized.

-4 Library initialization error.

-5 Hook in not initialized.

-6 Hook is initialized.

-7 Hook initialization error.

-8 Hook stopping error.

-9 Error during key send.

Table 14: Keyboard Library errors

Others:

Data Description

enum HookFlags
{
 HF_None=0,
 HF_ExtendedKey=1,
 HF_InjectedKey=2,
 HF_AltKeyPressed=4,
 HF_KeyPress=8,
 HF_SentFromLibrary =0x10
};

Flags which defines additional information about the
event: HF_ExtendedKey - the extended key is sent,
HF_InjectedKey - the key event is sent by application
not by the keyboard, HF_AltKeyPressed - the Alt key is
pressed, HF_KeyPress – the key is pressed down,
HF_SentFromLibrary – the key is sent from the library.

enum HookMessage
{
 HM_None=0,
 HM_KEYDOWN=1,
 HM_KEYUP,
 HM_SYSKEYDOWN,
 HM_SYSKEYUP
};

Defines message type: key event down, key event up,
system key event up or system key event up

enum SendKeyFlags
{
 SKF_KeyDown=1,
 SKF_KeyUP=2,
 SKF_KeyPress=3,
 SKF_KeyExtended=4,
};

Used in the SendKeyByScanCode and
SendKeyByVirtualCode functions. These flags defines
the event type: key event up, key event down, extended
key sent. The SKF_KeyPress flag is defindes as
SKF_KeyPress=SKF_KeyDown|SKF_KeyUP.

AsTeRICS Developer Manual

 Page 105

enum BlockOptions
{
 BO_BlockAll=1,
 BO_PassSentFromLibrary=2,
 BO_PassAll=3
};

Used in the BlockKeys function. It defines the function's
behaviour. It can take the following values: BO_PassAll,
BO_PassSentFromLibrary, BO_BlockAll. If it takes the
BO_PassSentFromLibrary value, the function passes
keyboard events generated by SendKeyByScanCode,
SendKeyByVirtualCode and SendText functions and
blocks all other keyboard events.

Table 15: Other Keyboard Library interface data

10.4.2 Example of use

The call-back function will block or pass the event according to the blockKeys function:

int __stdcall hookCallBack (int scanCode, int virtualCode,HookMessage message,

HookFlags flags, LPVOID param)

{

 return 0;

}

Initialization of the library: starting hook, setting library to pass event generated by the library

and block all other key events:

void initKeyboardLibrary()

{

 int result =init(hookCallBack,0);

 if(result>0)

 {

 startHook();

 blockKeys(BO_PassSentFromLibrary);

 }

}

Sending Ctrl-V key combination from the library:

#define Vkey 0x56

#define LeftCtrlkey 0xA2

void sendCtrlV()

{

 sendKeyByVirtualCode(LeftCtrlkey,SKF_KeyDown);

 sendKeyByVirtualCode(Vkey,SKF_KeyDown);

 sendKeyByVirtualCode(Vkey,SKF_KeyUP);

 sendKeyByVirtualCode(LeftCtrlkey,SKF_KeyUP);

}

Stopping hook and closing the library:

void closeLibrary()

{

 stopHook();

 close();

}

AsTeRICS Developer Manual

 Page 106

11 Appendix A: OSGI-related Information

11.1 The OSGi framework and it’s layers

The core component of its specification is the OSGi framework. The Framework provides a

standardized environment to applications (called bundles) and is divided in a number of

layers.

L0: Execution environment

L1: Modules

L2: Life Cycle management

L3: Service registry

A ubiquitous security system is deeply intertwined with all the layers.

Figure 14: OSGi layers (from http://www.osgi.org/About/Technology)

The L0 Execution environment is the specification of the Java environment. Java 2

Configurations and Profiles, like J2SE, CDC, CLDC, MIDP, etc are all valid execution

environments. The OSGi platform has also standardized an execution environment based on

Foundation Profile and a smaller variation that specifies the minimum requirements on an

execution environment to be useful for OSGi bundles.

The L1 Modules layer defines the class loading policies. The OSGi Framework is a powerful

and rigidly specified class-loading model. It is based on top of Java but adds modularization.

In Java, there is normally a single classpath that contains all the classes and resources.

The OSGi Modules layer adds private classes for a module as well as controlled linking

between modules. The module layer is fully integrated with the security architecture, enabling

the option to deploy closed systems, walled gardens, or completely user managed systems

at the discretion of the manufacturer.

The L2 Life Cycle layer adds bundles that can be dynamically installed, started, stopped,

updated and uninstalled. Bundles rely on the module layer for class loading but add an API

to manage the modules in run time. The lifecycle layer introduces dynamics that are normally

AsTeRICS Developer Manual

 Page 107

not part of an application. Extensive dependency mechanisms are used to assure the correct

operation of the environment.

The L3 layer adds a Service Registry. The service registry provides a cooperation model for

bundles that takes the dynamics into account. Bundles can cooperate via traditional class

sharing. However, class sharing is not very compatible with dynamically installing and

uninstalling code. The service registry provides a comprehensive model to share objects

between bundles. A number of events are defined to handle the coming and going of

services. Services are just Java objects that can represent anything. Many services are

server-like objects, like an HTTP server, while other services represent an object in the real

world, for example a Bluetooth phone that is nearby. The service model is fully security

instrumented. The service security model provides an elegant way to secure the

communication between bundles passes.

11.2 Modularization in OSGi

One of the most useful features of OSGi is that it allows for modularization of bundles. In

principle, the developer is allowed to specify exactly which classes should be imported and

which ones exported (at a package level).

As outlined in 4.2.3, each bundle specifies a manifest file (placed in a JAR file at “/META-

INF/MANIFEST.MF”) where it can specify this kind of details. For example, the main

AsTeRICS middleware bundle could specify the following manifest file:

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: asterics.middleware

Bundle-SymbolicName: org.asterics.mw

Bundle-Version: 0.1.0

Bundle-Activator: org.asterics.mw.Main

DynamicImport-Package: *

Export-Package: org.asterics.mw.component

The two last lines indicate that the required packages should be dynamically imported as

needed, while the “org.asterics.mw.component” package should be made available for

use by other bundles deployed within the same OSGi environment.

For further information about OSGI please refer to [9].

11.3 Using OSGi in AsTeRICS

The OSGi is an ideal framework for realizing some of the AsTeRICS components. In

particular, OSGi is intended to provide the underlying framework for the AsTeRICS Runtime

Environment (ARE) as well as the several pluggable components (i.e., sensors, processors

and actuators).

The ARE middleware is realized as a collection of modules which provide bundle discovery,

lifecycle management, communications, the server-side of the ASAPI communication

AsTeRICS Developer Manual

 Page 108

system, etc. Furthermore, OSGi is used to manage the different components as individual

bundles.

After the ARE has been started, the OSGi commands can be used to monitor bundles and

manage their lifecycle:

Double-click on “start.bat”...

C:\test-deployment>java -Djava.util.logging.con

fig.file=logging.properties -jar org.eclipse.osgi_3.6.0.v20100517.jar -configura

tion profile -console

osgi> ss

Framework is launched.

id State Bundle

0 ACTIVE org.eclipse.osgi_3.6.0.v20100517

1 ACTIVE org.asterics.middleware_0.1.0

osgi> install file:asterics.sensor.webcamera.jar

Bundle id is 2

osgi> start 2

osgi> install file:asterics.processor.averager.jar

Bundle id is 3

osgi> start 3

osgi> install file:asterics.actuator.mouse.jar

Bundle id is 4

osgi> start 4

osgi> ss

id State Bundle

0 ACTIVE org.eclipse.osgi_3.6.0.v20100517

1 ACTIVE org.asterics.middleware_0.1.0

2 ACTIVE org.asterics.webcamera_0.1.0

3 ACTIVE eu.asterics.component.processor.averager_0.1.0

4 ACTIVE eu.asterics.component.actuator.mouse_0.1.0

osgi>

AsTeRICS Developer Manual

 Page 109

12 Appendix B: Building the ACS

12.1 Setup of the Development environment

The following steps are necessary to build the ACS from it’s SVN sources:

1. Install Visual Studio

The ACS buildflow is testet with VS 2010, the usage of VS 2010 [10] is

recommended. Using the free VS2010 express version is possible (with some

restriction – for example no editor for GUI creation).

2. Install SVN plugin for Visual Studio

If the subversion repository should be accessed within VisualStudio, please install a

SVN-extension for VS. The plugin “AnkhSvn” is recommended [11], it can be

downloaded at:

http://ankhsvn.open.collab.net/

3. Install Microsoft Ribbon Library

The Microsoft Ribbon Library [12] has to be installed.

The Ribbon Library used for the compilation of the ACS is version v4.0.0.11019.1 It

can be downloaded at:

http://www.microsoft.com/download/en/details.aspx?id=11877

4. Install the ResXFileCodeGenerator

For making the Resource file (for language support) also available in the .xaml

format, a new code generator has to be installed. This is not required for the building

process of the ACS, but it helps when developing/editing the XAML-Files. Downlaod

the CodeGenerator for the Homepage

(http://www.codeproject.com/KB/dotnet/ResXFileCodeGeneratorEx.aspx

) and install it.

If you are using VS2010, also add the “ResXFileCodeGeneratorEx.reg” to your

Windows-registry by double clicking it. This file can be found in the “HowTo” subfolder

of the SVN.

More on this code generator can be found at [13]

http://ankhsvn.open.collab.net/
http://www.codeproject.com/KB/dotnet/ResXFileCodeGeneratorEx.aspx

AsTeRICS Developer Manual

 Page 110

12.2 Update Process of the Schemata

The XML Schemata describes the structure of plugin (input and output ports, events,

properties, GUI, …) as well as the model itself. See section 4.2.1 The Bundle Descriptors

and section 4.2.2 The Deployment Descriptor for further details. Reading and writing these

xml files will be done using generated classes. The xsd.exe compiler from the Microsoft

Visual Studio (e.g. located at “C:\Program Files (x86)\Microsoft SDKs\Windows\

v7.0A\Bin\xsd.exe”) will be used, fulfilling these tasks. The commands

xsd.exe bundle_model.xsd /c /l:cs

xsd.exe deployment_model.xsd /c /l:cs

creates the files bundle_model.cs and deployment_model.cs, being used in the ACS. See

the ACS sourcecode for more information about the files.

AsTeRICS Developer Manual

 Page 111

13 Appendix C: Guidelines for Building Vision-Plugins

These notes want to provide a quick help to compile and link the computer vision supported

plugins. As of the day of the release of this document there are two principal plugins:

facetrackerLK and facetrackerCLM. They both depends on several C/C++ third parties

libraries that the developers need to configure correctly in order to complete with success the

building process. Here’s a list of the required libraries for each plugin:

 facetrackerLK:
o OpenCv (recommended version > 2.3.x).
o videoInput (latest available).

 facetrackerCLM:
o OpenCv (recommended version 2.3.x).
o videoInput (latest available).
o Boost Library (recommended version > 1.47).
o Facetracker , based on the source code by Jason Siragih2.

OpenCv and Boost library sources are easily available respective on the official maintainer’s

sites. This is not completely true instead for what concerns videoInput and FaceTracker for

which specific instruction will be given separately.

As a brief disclaimer it is important to take into consideration that this guide is for developers

that have a proper knowledge of the basics of application building on a Windows system.

The base tools on which we base this section are Visual Express 2010 and Eclipse.

Let’s get started then.

13.1 OpenCV

The best way to achieve our goal is to download the original packages available from the

WillowGarage webpage3 and read thoroughly the install guide4 therefore in this section we

will give only a brief overview of the building process.

For the impatient, at the time of the writing of this section OpenCV distributes an installer that

extracts in a folder both the sources and the prebuilt binaries. Once the installer completes

copying the files what we need to do is to move headers and libraries into a location where

the preconfigured Visual Express projects expect to find them.

2
 http://web.mac.com/jsaragih/FaceTracker/FaceTracker.html

3 http://opencv.willowgarage.com/wiki/

4
 http://opencv.willowgarage.com/wiki/InstallGuide

AsTeRICS Developer Manual

 Page 112

In our case this folder is AsTeRICS\ARE\components\libraries\3rdparty\opencv, as we can

see in Figure 16. The folders that should be moved into it are the includes and the libraries.

The user can choose whether to link against the static or a dynamic version of the binaries.

Figure 16 shows the content of the build folder as installed by the original opencv installer.

Figure 15: Folder structure created by the OpenCV installer

If the choice is to use the dynamic libraries then also the “bin“ folder should be added to the

PATH system variable. This is not needed if the static version is used (just rename the name

of the folder to “lib“ when copying.

Figure 16: AsTeRics third party folder structure

As a final remark, please note that the opencv now uses the Threading Building Blocks5

(TBB) from Intel (instead of OpenMP) to provide where possible parallelisation of the heavy

computations often required by algorithms. The TBB runtime library is shipped in the same

package as the opencv-2.3.1 under the “common” folder.

13.2 Boost Library

The Boost libraries6 are required only for the facetrackerCLM plugin. As the opencv, boost

has a rich “Getting Started” section which we invite developers to read. Boost uses BJam as

building tool. Once downloaded the source should be unpacked in a local directory. The first

5
 http://threadingbuildingblocks.org/

6
 http://www.boost.org/

AsTeRICS Developer Manual

 Page 113

step consists in building of the bjam executable. It is sufficient to execute the “bootstrap.bat”

batch file in the boost root directory. Now open a console Terminal and change directory and

issue the following command:

bjam toolset=msvc variant=release link=static threading=multi runtime-link=static install

This command tells the build manager to build a release, static and multithreaded version of
the boost libraries which links statically to the microsoft runtime.

The build process will start, taking some time. It’s time to take a break. The command will
create and install the boost libraries into the C:\Boost directory (this behaviour can be
changed by specifying a different directory with the option –prefix=<PREFIX> in the
command line).

The VC projects which uses the boost libraries look for the required includes and libraries
specified by two environment variables: BOOST_INCLUDES and BOOST_LIBS. It is
therefore necessary to set both accodingly to where the boost libraries were installed. In our
case the environment variables will be set to the values as in Figure 17 and Figure 18.

Figure 17: Boost include path

Figure 18 - Boost library path.

As a final note please keep in mind that the boost libraries use the autolinking feature that

allows the linker to figure out which will be the required libraries during linking time.

AsTeRICS Developer Manual

 Page 114

13.3 VideoInput

Although videoInput is available on the internet as a precompiled static library we need to

setup a custom project because the distributed package will not run in a multithreaded

environment such as AsTeRICS.The suggested version to download is the one available on

the gameoverhack github repository7. Download the zipped package8 and unpack it on the

hard drive. For our purposes VideoInput also requires the Microsoft Windows SDK 7.1 (or the

latest available). The SDK, available from the Microsoft website9. The SDK will provide all

required DirectShow headers and libraries as explained in the following steps. Be sure to

include also the “Samples” in the installation process.

Although VideoInput source also include DirectShow headers and libraries as well as DirectX

libraries we will not use any of them because the building process could be quite

problematic. Following these instructions instead will lead to a cleaner building process. To

avoid every problem the suggestion is to remove all .lib files inside the folder.

Our starting point is the Visual Express solution videoInput.sln located in the folder “VC-

2008-videoInputcompileAsLib”, see Figure 19.

Figure 19 - videoInput solution.

When VC10 has finished conversion of the project, it will open as a Debug target but for

efficiency we will switch from Debug to Release.

In order all actions that have to be taken:

1) Change reference SDK: switch Platform Toolset from v100 to Windows7.1SDK, see

Figure 20

7
 https://github.com/gameoverhack/videoInput

8
 https://github.com/gameoverhack/videoInput/zipball/master

9
 http://www.microsoft.com/download/en/details.aspx?id=8442

AsTeRICS Developer Manual

 Page 115

Figure 20 - Switching Platform Toolset

2) Additional Include directory for the DirectShow and modify the path to “extra” folder as in

Figure 21

Figure 21 - Setting the DirectShow include path.

3) Remove redundant library settings. Leave only “strmiids.lib“, Figure 22

Figure 22 –Library settings.

AsTeRICS Developer Manual

 Page 116

4) Comment out DEBUG and _DEBUG pre-processing definitions in videoInput.cpp:

Figure 23 - Remove troubling defines when targeting Release targets.

5) Uncomment VI_COM_MULTI_THREADED define statement in videoInput.h:

Figure 24 - Enable COM multithreading.

6) Build! Just wait.

7) Post-Build: when the building process ends we’ll find (hopefully) the compiled static

library in the Release folder in the same folder as the solution. Finally we are ready to

compile and link the videoInput library and use it inside the plugins’ projects. In order to do

that it is necessary to move videoInput headers and libraries to the third party folder in the

ARE\components directory. Figure 25 shows the contents of the videoInput folder inside the

ARE\components\libraries\3rdparty folder, videoInput.h and myqedit.h should go into

“include” and videoInput.lib goes into “lib”.

AsTeRICS Developer Manual

 Page 117

Figure 25 - videoInput final installation.

13.4 Building facetrackerLK

Once the Opencv 2.3.1 and VideoInput are in place, the building process of the

facetrackerLK plugin is straightforward. The “webcam.sln” solution is configured with three

targets: Relase (VI), Release (cv231) and Release (cv097).

The Relase (VI) target will use VideoInput to acquire from the webcam and OpenCV-2.3.1 for

processing, while Release (cv231) will use OpenCV-2.3.1 for both tasks. Lastly the target

Release (cv097) will use VideoInput for image acquisition and an old version of the OpenCV

for processing. If we want to opt for the VideoInput based video capturing then we will

proceed as in Figure 26.

Figure 26 - Specifying the build target.

If all goes well during the building process then we will get the facetrackerLK.dll ready to be

bundled in the usual jar archive that will be executed in the ARE framework.

A warning is due, the current project is configured to link against a custom build of the

opencv library which requires a set of additional libraries (libjpeg, libpng, libtiff, zlib etc) as

well as the tbb.lib. When not required it is possible that the linker will throw an error. In this

case it is necessary to edit the header “opencv_includes.h” which contains a set of pragma

directives targeting those libs.

AsTeRICS Developer Manual

 Page 118

Before doing so we should pay attention if the Java code that invokes the DLLs and the

MANIFEST file are properly set. In case we want to choose the recommended solution

based on the most recent opencv-2.3.1 then make sure that the lines in the class Bride.java

look like in Figure 27. Otherwise uncomment the lines (above) that loads the opencv-0.97

DLLs and comment the line (below) that loads the TBB dynamic library.

Figure 27 - Loading the right dependencies in Bridge.java for the facetrackerLK plugin.

Lastly it is sufficient to make sure that the actual MANIFEST.MF file matches the

MANIFEST_videoinput.MF that is distributed with the release.

13.5 FaceTracker Library

At the time of writing we decided not to include the static library built upon the original

sources made available by the author to the consortium. As soon as a decision will be made

a mechanism for building the plugins, which depend on the FaceTracker library, will be put in

place. This is not a problem anyway for the runtime distribution as the FaceTracker is

compiled statically to the distributed plugins.

AsTeRICS Developer Manual

 Page 119

14 References and Resources

1 AsTeRICS Deliverable D2.1 – “System Specification and Architecture” - https://bscw.integriert-

studieren.jku.at/bscw/bscw.cgi/40517

2 AsTeRICS Deliverable D2.3 – “Report on API-specification for sensors to be integrated into the

AsTeRICS Personal Platform” - https://bscw.integriert-studieren.jku.at/bscw/bscw.cgi/43571

3 Open Service Gateway initiative (OSGi) - open specification - http://www.osgi.org

4 Tortoise SVN client for Windows: http://tortoisesvn.tigris.org/

5 Java Development Kit 6 (JDK 6): http://www.oracle.com/technetwork/java/javase/downloads/index.html

6 Eclipse Integrated Development Environment: http://www.eclipse.org/downloads/

7 Subclipse SVN plugin for Eclipse: http://subclipse.tigris.org/servlets/ProjectProcess?pageID=p4wYuA

8 Apache ANT - commandline based build tool for Java applications: http://www.ant.apache.org

9 OSGi – Tutorial by Nearchos Paspallis:

http://nearchos.blogspot.com/2008/12/starting-with-osgi-tutorial-1.html

10 Microsoft Visual Studio 2010 - http://www.microsoft.com/visualstudio/en-us/products/2010-editions

11 AnkSVN – SVN support plugin for Visual Studio - http://ankhsvn.open.collab.net/

12 The Microsoft Ribbon Library - http://www.microsoft.com/downloads/en/details.aspx?FamilyID=2bfc3187-

74aa-4154-a670-76ef8bc2a0b4

13 The ResXFileCodeGenerator - http://www.codeproject.com/KB/dotnet/ResXFileCodeGeneratorEx.aspx

14 Apache Thrift - http://thrift.apache.org/

15 Simple Logging Facade for Java (SLF4J) framework - http://www.slf4j.org/index.html

https://bscw.integriert-studieren.jku.at/bscw/bscw.cgi/40517
https://bscw.integriert-studieren.jku.at/bscw/bscw.cgi/40517
https://bscw.integriert-studieren.jku.at/bscw/bscw.cgi/43571
http://www.osgi.org/
http://tortoisesvn.tigris.org/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.eclipse.org/downloads/
http://subclipse.tigris.org/servlets/ProjectProcess?pageID=p4wYuA
http://www.ant.apache.org/
http://nearchos.blogspot.com/2008/12/starting-with-osgi-tutorial-1.html
http://www.microsoft.com/visualstudio/en-us/products/2010-editions
http://ankhsvn.open.collab.net/
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=2bfc3187-74aa-4154-a670-76ef8bc2a0b4
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=2bfc3187-74aa-4154-a670-76ef8bc2a0b4
http://www.codeproject.com/KB/dotnet/ResXFileCodeGeneratorEx.aspx
http://www.slf4j.org/index.html

