
Vine installation and user manual

BitBlaze Team

August 26th, 2009: Release 1.0 and Ubuntu 9.04

Contents

1 Introduction 2

2 Installation 2

2.1 Prerequisites . 2
2.1.1 C++ compiler . 2
2.1.2 The VEX library . 3
2.1.3 STP . 3
2.1.4 Binutils libraries . 3
2.1.5 OCaml build tools . 3
2.1.6 ocamlgraph . 3
2.1.7 Other OCaml libraries . 6
2.1.8 LATEX . 6

2.2 Compiling . 6
2.2.1 Unpacking . 6
2.2.2 Configure . 6
2.2.3 Build code . 6
2.2.4 Build documentation . 6

2.3 Summary . 7

3 Vine Overview 8

4 The Vine Intermediate Language 8

5 Example 10

5.1 Generating the IL and the STP formula . 10
5.2 Querying STP . 11

6 Documentation of various utilities in Vine 12

6.1 Appreplay . 12

7 Troubleshooting 13

8 Reporting Bugs 14

1

1 Introduction

This document is a guide for setting up and running Vine, the static analysis component of the
BitBlaze Binary Analysis Framework. It assumes that you have some familiarity with Linux. The
instructions are based on the release of Vine mentioned in the header, running on a vanilla Ubuntu
9.04 distribution of Linux. It includes details about how to install Vine, and then walks through a
simple usage example intermixed with explanations about the tools used.

The example takes a trace from a simple program with symbolic keyboard input, and generates
an STP file which models the weakest precondition of the control-flow path the program took. In
other words, the conditions on the inputs that cause it to take a execute a certain path of code.
The trace file was generated using TEMU, the dynamic component of the BitBlaze Binary Analysis
Framework, but it is included in the examples directory of the Vine distribution so you can try
out the tool without using TEMU.

2 Installation

Vine is written using a combination of OCaml and C++, and distributed in source code form.
Therefore the main steps in installing it are installing the prerequisite software it requires, and
then compiling the source code. To install prerequisite software, we recommend that you use a
recent version of Ubuntu Linux, for which we have verified that all the needed packages are already
available. The compilation is performed automatically using configure and Makefile scripts like
many other Linux applications. The following subsections cover these tasks in more detail, and
then we finish by giving complete listing of the commands needed for our recommended platform.

2.1 Prerequisites

Our recommended platform for using Vine is a 32-bit x86 version of Ubuntu Linux, version 9.04
(code named “Jaunty Jackalope”); we used such a system in preparing these instructions. The
needed packages all also exist in Debian Linux, so the process there should work in almost the same
way. It is possible to use Vine with other Linux distributions, but you may need to compile some
of the prerequisite software from source. The pure OCaml parts of Vine also work fine on 64-bit
x86-64 Linux platforms, but the library it uses for the semantics of x86 instructions expects to run
on a 32-bit platform when processing 32-bit code, so a 32-bit platform is needed to make complete
use of Vine. If you are using an x86-64 version of Ubuntu or Debian, we recommend installing a
parallel 32-bit version of your OS packages using a mechanism called a “chroot”, but how to do so
is beyond the scope of this manual (or you could use another kind of virtual machine).

If you don’t have any of the prerequisites already installed, they will require about 300MB to
download, and take up about 1.1GB of disk space once installed. A build of Vine itself requires
about 320MB.

2.1.1 C++ compiler

For compiling the C++ code in Vine, we recommend the G++ compiler from GCC which is
standard on Linux; the default version in Ubuntu 9.04 is 4.3.3, and the package name is g++.

2

2.1.2 The VEX library

Vine uses the VEX library (which is also used by Valgrind) to get information about the behavior of
x86 instructions. The current version of Vine is designed to work with SVN revision r1856 of VEX,
which is maintained in the Valgrind SVN repository at svn://svn.valgrind.org/vex/trunk. For
your convenience, we have included an appropriate version of VEX with the release, and it will be
compiled automatically.

2.1.3 STP

Vine interfaces with STP, a satisfiability-modulo-theories (SMT) decision procedure for bit vec-
tor (bounded integer) arithmetic and arrays. Vine can either interact directly with the prover
through a programmatic interface, or it can produce formulas in STP’s text format. The di-
rectory stp contains x86 and x86-64 binaries for a version of STP we have tested to work well
with Vine. If you would like to use a different version of STP, it is available in source form at
http://people.csail.mit.edu/vganesh/STP_files/stp.html.

2.1.4 Binutils libraries

Vine uses the GNU BFD (Binary File Descriptor) library and related libraries from the GNU
Binutils to parse the structure of executables, and for human-readable dissassembly. On Ubuntu
they are distributed in a package named binutils-dev (version 2.19.1 in Ubuntu 9.04).

(A technical legal point: the VEX library with which Vine links is distributed under version 2 of
the GNU GPL only, whereas versions 2.18 and later of the GNU Binutils are distributed only under
versions 3 and later of the GNU GPL. Unfortunately, versions 2 and 3 of the GPL are mutually
incompatible, so if you plan to distribute copies of Vine for platforms where the Binutils are not
system libraries in the sense of the GPL, you may wish to use version 2.17 or earlier of the Binutils
instead.)

2.1.5 OCaml build tools

Most of Vine is implemented in the functional language OCaml, so OCaml development tools
are required. In addition to the standard OCaml compiler and tools, Vine uses the Findlib li-
brary for managing OCaml packages, and the CamlIDL tool for generating interfaces to C code.
In Ubuntu 9.04, these are available as the ocaml package (version 3.10.2), the ocaml-findlib

package (version 1.2.1), and the camlidl package (version 1.05). Optionally, you can also install
the natively compiled versions of the OCaml build tools (which are somewhat faster) from the
ocaml-native-compiler package.

2.1.6 ocamlgraph

The ocamlgraph library provides graph data structures and algorithms, which Vine uses to represent
control flow graphs. Unfortunately, an interface that Vine uses changed incompatibly in version
0.99 of the library, so the source code we distribute supports only version 0.99 and later. In Ubuntu
9.04, it is available as the package libocamlgraph-ocaml-dev. Note, however, that the version
of the library packaged in earlier versions of Ubuntu is not compatible. If a recent version of
ocamlgraph is not packaged for your system, you have several options:

3

svn://svn.valgrind.org/vex/trunk
http://people.csail.mit.edu/vganesh/STP_files/stp.html

1. Compile ocamlgraph from source. You can obtain the source for the latest version of
ocamlgraph from http://ocamlgraph.lri.fr/. Note that it only supports installation in
/usr/lib or /usr/local/lib. Also, some versions of ocamlgraph have a Makefile bug that
causes them to look for interface files in the wrong location, which can be fixed by applying
the following patch to Makefile.in:

--- Makefile.in.orig

+++ Makefile.in

@@ -210,7 +210,7 @@

install-findlib: META

ifdef OCAMLFIND

- $(OCAMLFIND) install ocamlgraph META *.mli \

+ $(OCAMLFIND) install ocamlgraph META $(LIBDIR)/*.mli \

graph$(LIBEXT) graph.cmx graph.cmo graph.cmi $(CMA) $(CMXA)

endif

2. Make a backport package. If you would like to have the installation of ocamlgraph
managed by your regular package manager, another option is to build a package yourself. For
instance, a suitable package for Ubunutu 8.04 can be built and installed using Debian sources,
as follows:

sudo apt-get install libocamlgraph-ocaml-dev

sudo apt-get build-dep libocamlgraph-ocaml-dev

sudo apt-get install liblablgtk2-ocaml-dev liblablgtk2-gnome-ocaml-dev \

docbook-xsl po4a

sudo apt-get install fakeroot

svn co svn://svn.debian.org/svn/pkg-ocaml-maint/trunk/packages/ocamlgraph \

-r5983

tar xvzf ocamlgraph/upstream/ocamlgraph_0.99c.orig.tar.gz

mv ocamlgraph/trunk/debian ocamlgraph-0.99c

perl -pi -e ’s[ocaml-nox \(>= 3.10.0-9\)] #\

[ocaml-nox (>= 3.10.0-8)]’ ocamlgraph-0.99c/debian/control

(cd ocamlgraph-0.99c && dpkg-buildpackage -us -uc -rfakeroot)

sudo dpkg -i libocamlgraph-ocaml-dev_0.99c-2_i386.deb

3. Patch the Vine source. Because Vine does not use the extra functionality introduced in
the new library version, another option is to change the Vine code that uses the library back
to the older interface. This requires four one-line changes in four files under ocaml, as in the
following patch:

Index: ocaml/vine_cfg.mli

===

4

http://ocamlgraph.lri.fr/

--- ocaml/vine_cfg.mli

+++ ocaml/vine_cfg.mli

@@ -299,7 +299,7 @@

module Component :

sig

- val scc : G.t -> int * (G.V.t -> int)

+ val scc : G.t -> G.V.t -> int

val scc_list : G.t -> G.V.t list list

end

Index: ocaml/vine_cfg.ml

===

--- ocaml/vine_cfg.ml

+++ ocaml/vine_cfg.ml

@@ -1271,7 +1271,7 @@

if cfg#has_edge rb ra then false

else (cfg#add_edge rb ra; true) (* temporary backedge *)

in

- let (_,scc) = Component.scc cfg in

+ let scc = Component.scc cfg in

let group = scc a in

let newcfg = new cfg 8 cfg#get_iter_labels_function cfg#vardecls in

let (outside: ’a bb) =

Index: ocaml/vine_callstring.ml

===

--- ocaml/vine_callstring.ml

+++ ocaml/vine_callstring.ml

@@ -178,7 +178,7 @@

else

csg.graph

in

- let (_,scc) = Component.scc g in

+ let scc = Component.scc g in

let group = scc a in

let addifgroup v newg =

if scc v = group then

Index: utils/chop.ml

===

--- utils/chop.ml

+++ utils/chop.ml

@@ -243,7 +243,7 @@

fun () -> cfg#remove_edge t s

)

in

5

- let (_,scc) = Component.scc cfg in

+ let scc = Component.scc cfg in

(* make sure we really have a cycle *)

let () = assert(scc (cfg#get_id s) = scc (cfg#get_id t)) in

let group = scc (cfg#get_id s) in

2.1.7 Other OCaml libraries

Vine also uses several further OCaml libraries:

• ExtLib provides an extended standard library (e.g., more data structures) for OCaml; version
1.5.1 is in the package libextlib-ocaml-dev.

• GDome2 is a document object model for dealing with XML documents that Vine uses via its
OCaml bindings. Version 0.2.6 is available as the package libgdome2-ocaml-dev.

2.1.8 LATEX

Vine’s documentation (including this document) is written using the LATEX markup language, so
you will need to install it to rebuild the documentation. On Ubuntu 9.04, the needed parts are
included under the texlive, texlive-latex-extra, and transfig packages. To build an HTML
version of the documentation, we also use HEVEA, which is in the hevea package.

2.2 Compiling

2.2.1 Unpacking

Vine is distributed as a gzip-compressed tar archive, which you can unpack into a directory
vine-1.0 using the command “tar xvzf vine-1.0.tar.gz”.

2.2.2 Configure

To prepare the Vine source for compilation, you’ll need to run the configure script in the Vine
source directory. The script accepts all of the standard options and environment variables for
autoconf-based configure scripts, though most should not be necessary.

2.2.3 Build code

After the configuration script has finished, you can compile Vine by running make in the top-level
Vine directory. This will compile first the C++ library and then the OCaml modules.

2.2.4 Build documentation

To generate the documentation that comes with Vine, go to the vine/doc subdirectory and give
the command “make doc”.

6

2.3 Summary

To recap the steps described above, we now show a script for all of the commands needed to
compile Vine, starting with a fresh installation of Ubuntu 9.04. (This is also found as the file
docs/install-vine-release.sh in the Vine source.)

#!/bin/bash

Instructions for installing Vine release 1.0 on Ubuntu 9.04 Linux 32-bit

Commands that require root access are preceded with "sudo".

The prerequisite packages are about 300MB of downloads, and require

1.1GB once installed; Vine itself requires about 320MB.

Last tested 2009-08-17

This script will build Vine in a "$HOME/bitblaze" directory,

assuming that vine-1.0.tar.gz is in /tmp.

cd ~

mkdir bitblaze

cd bitblaze

Prerequisite packages:

For compiling C++ code:

sudo apt-get install g++

For OCaml support:

sudo apt-get install ocaml ocaml-findlib libgdome2-ocaml-dev camlidl \

libextlib-ocaml-dev ocaml-native-compilers

Ocamlgraph >= 0.99c is required; luckily the version in Ubuntu 9.04

is now new enough.

sudo apt-get install libocamlgraph-ocaml-dev

For the BFD library:

sudo apt-get install binutils-dev

For building documentation:

sudo apt-get install texlive texlive-latex-extra transfig hevea

Vine itself:

tar xvzf /tmp/vine-1.0.tar.gz

(cd vine-1.0 && ./configure)

(cd vine-1.0 && make)

(cd vine-1.0/doc/howto && make doc)

7

Instruction
Lifting

Binary Format
Interface

Front End

Code Generator

Optimizations

Vine

Language
Intermediate

Back End

Program

Verification

Graphs Additional

Program

Analysis

Figure 1: Vine Overview

3 Vine Overview

Figure 1 shows a high-level picture of Vine. The Vine static analysis component is divided into a
platform-specific front-end and a platform-independent back-end. At the core of Vine is a platform-
independent intermediate language (IL) for assembly. Previously, we also used the name IR (in-
termediate representation) for this language, and that abbreviation persists in some command and
option names, and as a file extension. The IL is designed as a small and carefully specified language
that faithfully represents the assembly languages. Assembly instructions in the underlying archi-
tecture are translated to the Vine IL, a process we refer to as lifting, via the Vine front-end. All
back-end analyses are performed on the platform-independent IL. Thus, program analyses can be
written in an architecture-independent fashion and do not need to directly deal with the complexity
of an instruction set such as x86. This design also provides extensibility—users can easily write
their own analysis on the IL by building on top of the core utilities provided in Vine.

The Vine front-end currently supports translating 32-bit x86 to the IL. It uses a set of third-
party libraries to parse different binary formats and produce assembly. The assembly is then
translated into the Vine IL in a syntax-directed manner.

The Vine back-end supports a variety of core program analysis utilities. The back-end has
utilities for creating a variety of different graphs, such as control flow and program dependence
graphs. The back-end also provides an optimization framework. The optimization framework
is usually used to simplify a specific set of instructions. We also provide program verification
capabilities such as symbolic execution, calculating weakest preconditions, and interfacing with
decision procedures. Vine can also write out lifted Vine instructions as valid C code via the code
generator back-end.

To combine static and dynamic analysis, we also provide an interface for Vine to read an
execution trace generated by a dynamic analysis component such as TEMU. The execution trace
can be lifted to the IL for various further analysis.

4 The Vine Intermediate Language

The Vine IL is the target language during lifting, as well as the analysis language for back-end
program analysis. The semantics of the IL are designed to be faithful to assembly languages.
Table 1 shows the syntax of Vine IL. The lexical syntax of identifiers and strings are as in C.

8

program ::= decl* stmt*

decl ::= var var;

stmt ::= lval = exp; | jmp(exp); | cjmp(exp, exp, exp); | halt(exp); | assert(exp);
| label label: | special string; | { decl* stmt*}

label ::= identifier

lval ::= var | var[exp]

exp ::= (exp) | lval | name(label) | exp 3b exp | 3u exp | const

| let lval = exp in exp | cast(exp)cast_kind:τreg

cast_kind ::= Unsigned | U | Signed | S | High | H | Low | L
var ::= identifier:τ

3b ::= + | - | * | / | /$ | % | %$ | << | >> | @>> | & | ^ | |
| == | <> | < | <= | > | >= | <$ | <=$ | >$ | >=$

3u ::= - | !
const ::= integer:τreg

τ ::= τreg | τmem

τreg ::= reg1_t | reg8_t | reg16_t | reg32_t | reg64_t
τmem ::= mem32l_t | mem64l_t | τreg[const]

Table 1: The grammar of the Vine Intermediate Language (IL).

Integers may be specified in decimal, or in hexadecimal with a prefix of 0x. Comments may be
introduced with //, terminated by the end of a line, or with /*, terminated by */.

The base types in the Vine IL are 1, 8, 16, 32, and 64-bit-wide bit vectors, also called registers.
1-bit registers are used as booleans; false and true are allowed as syntactic sugar for 0:reg1_t

and 1:reg1_t respectively. There are also two kinds of aggregate types, which we call arrays and
memories. Both are usually used to represent the memory of a machine, but at different abstraction
levels. An array consists of distinct elements of a fixed register type, accessed at consecutive indices
ranging from 0 up to one less than their declared size. By contrast, memory indices are always byte
offsets, but memories may be read or written with any type between 8 and 64 bits. Accesses larger
than a byte use a sequence of consecutive bytes, so accesses at nearby addresses might partially
overlap, and it is observable whether the memory is little-endian (storing the least significant byte
at the lowest address) or big-endian (storing the most significant byte at the lowest address).
Generally, memories more concisely represent the semantics of instructions, but arrays are easier
to analyze, so Vine analyses will convert memories into arrays, a process we sometimes call de-

endianization. The current version of Vine supports two little-endian memory types, with either
32-bit or 64-bit address sizes.

Expressions in Vine are side-effect free. Variables and constants must be labeled with their
type (separated with a colon) whenever they appear. The binary and unary operators are similar
to those of C, with the following differences:

• Not-equal-to is <>, rather than !=.

• The division, modulus, right shift, and ordered comparison operators are explicitly marked for
signedness: the unadorned versions are always unsigned, while the signed variants are suffixed
with a $ (for “signed”), or in the case of right shift prefixed with an @ (for “arithmetic”).

• There is no distinction between logical and bitwise operators, so & also serves for &&, | also
serves for ||, and ! also serves for ~.

There is no implicit conversion between types of different widths; instead, all conversions are
through an explicit cast operator that specifies the target type. Widening casts are either Unsigned

9

(zero-extending) or Signed (sign-extending), while narrowing casts can select either the High or
Low portion of the larger value. (For brevity, these are usually abbreviated by their first letters.)
A let expression, as in functional languages, allows the introduction of a temporary variable.

A program in Vine is a sequence of variable declarations, followed by a sequence of statements;
block structure is supported with curly braces. (In fact, the parser allows declarations to be in-
termixed with statements, but the effect is as if the declarations had all appeared first.) Some
documents also refer to statements as “instructions,” but note that more complex machine instruc-
tions translate into several Vine statements. The most frequent kind of statement is an assignment
to a variable or to a location in an array or memory variable. Control flow is unstructured, as in
assembly language: program locations are specified with labels, and there are unconditional (jmp)
and conditional (cjmp) jumps. The argument to jmp and the second and third arguments to cjmp

may be either labels (introduced by name), or a register expression to represent a computed jump.
The first argument to cjmp is a reg1_t that selects the second (for 1) or third (for 0) argument as
the target.

A program can halt normally at any time by issuing the halt statement. We also provide
assert, which acts similar to a C assert: the asserted expression must be true, else the machine
halts. A special in Vine corresponds to a call to an externally defined procedure or function.
The argument of a special indexes what kind of special, e.g., what system call. The semantics of
special is up to the analysis; its operational semantics are not defined. We include special as an
instruction type to explicitly distinguish when such calls may occur that alter the soundness of an
analysis. A typical approach to dealing with special is to replace special with an analysis-specific
summary written in the Vine IL that is appropriate for the analysis.

5 Example

We now illustrate the use of Vine with an example. In it, we will take a trace generated by TEMU
from a program that parses an integer and checks whether it is equal to 5. We will use Vine to
build a version of the execution path in which the input is symbolic, and compute a path condition:
a formula over the inputs which, if true, causes execution to take the same path. Finally, we will
use STP to solve the path condition and reconstruct an input that would cause the program to
take the same path. The trace is included in the examples directory under the name five.trace.

5.1 Generating the IL and the STP formula

We start with a trace (generated, for instance, by TEMU) that records the instructions executed
on a program run, the data values they operated on, and which data values were derived from a
distinguished set of (“tainted”) input values. We’re going to do operations where we consider that
input to be a symbolic variable, but the first step is to interpret the trace. The x86 instructions in
the trace are a pretty obscure representation of what is actually happening in the program, so we’ll
translate them into a cleaner intermediate language (IL, abbreviated IR in command options).

First, let us check if we have got a meaningful trace. One way to do so is to print the trace,
and see that at least the expected instructions are marked as tainted. For this, you may use the
trace_reader command utility in Vine. As shown below, in the output you should be able to
see the compare instruction that comapares the input to the immediate value 5. The presence of
tainted operands in any instruction are indicated by the record containing “T1”.

10

% cd bitblaze/vine

% ./trace_utils/trace_reader -trace examples/five.trace | grep T1

...

...

804845a: cmpl $0x5,-0x4(%ebp) I@0x00000000[0x00000005] \

T0 M@0xbffffac4[0x00000005] T1 {15 (1001, 0) (1001, 0) \

(1001, 0) (1001, 0) }

Of course, the real output of that command contains many of instructions, but we’ve picked
out a key one: an instruction from the main program (you can tell because the address is in the
0x08000000 range) in which a value from the stack (-0x4(%ebp)) is compared (a cmpl instruction)
with a constant integer 5 ($0x5).The later fields on the line represent the instruction operands and
their tainting.

We can then use the appreplay utility to both convert the trace into IL for and then to generate
an STP formula given the constraints on the symbolic input. The invocation looks like:

% ./trace_utils/appreplay -trace examples/five.trace \

-stp-out five.stp -ir-out five.il -wp-out five.wp

...

Time to create sym constraint from TM: 0.288464

This command line produces the final STP file as foo.stp, and the intermediate files foo.il

and foo.wp to demonstrate the steps of the processing. Remember that Vine uses its own IL to
model the semantics of instructions in a simpler RISC-like form. The IL and WP output files are
in this IL language. If you aren’t interested in these files, you can omit the -ir-out and -wp-out

options. You can learn about other options that may be supplied to appreplay in Section 6.
In essence, appreplay models the logic of the executed instructions, generating a path constraint

needed to force the execution down the path taken in the trace. A variable post is introduced,
which is the conjunction of the conditions seen along the path. In the file foo.il, you can see this
variable is assigned at each conditional branch point as post = post∧condition, where a condition is
a variable modeling the compare operation’s result that must be true to force execution to continue
along the path taken. (Because the language is explicitly typed and appreplay is careful to generate
unique names, the full name of the post variable is likely something like post_1034:reg1_t, where
the part after the colon tells you it’s a one-bit (boolean) variable.)

This weakest precondition formula is then converted to the format of the STP solver’s input.

5.2 Querying STP

Now, in the last step we wish to ask the question “what input values force the execution down the
path taken in the execution?”. In the formula we’ve built, this is equivalent to asking for a set of
assignments that make the variable post true. We use STP to solve this formula for us. The STP

11

file has the symbolic INPUT variable marked free (along with the initial contents of memory), and
it asserts that the final value of post is true.

A symbolic formula F is valid if it is true in all interpretations. In other words, F is valid if all
assignments to the free (symbolic) variables make F true. Given a formula, STP decides whether
it is valid or not. If it is invalid, then there exists at least one set of inputs that make the formula
false, and STP can report such an assignment (a counterexample). We use this feature to get the
assignment to the free INPUT variable in the formula that makes the execution follow the traced
path. Since we don’t need to impose any additional constraints, beyond the ones included in post,
the formula we ask STP to try to falsify is FALSE, which should be easily to falsify as long as the
constraints are satisfiable.

To do this, we add the following 2 lines at the end of the STP file and run STP on it:

% cat >>five.stp

QUERY(FALSE);

COUNTEREXAMPLE;

% ./stp/stp five.stp

Invalid.

ASSERT(INPUT_1001_0_61 = 0hex35);

STP’s reply of Invalid. indicates it has determined that the query formula FALSE is not valid:
there is an assignment to the program inputs that satisfies the other assertions in the file (i.e.,
would lead the program to execute the same path that was observed), but still leaves FALSE false.
As a counterexample it gives one such input (in this case, the only possible one), in which the input
has the hex value 0x35 (ASCII for 5).

6 Documentation of various utilities in Vine

Here is a slightly more detailed explanation of the Vine utilities used in the example.

6.1 Appreplay

• -trace : specifies the TEMU execution trace file to process

• -state and -state-range are used to initialize ranges of memory locations from a TEMU
state snapshot.

• -conc-mem-idx is an optimization to do some constant propagation, which appears to help
STP quite a bit. This will likely become deprecated once some of the STP optimization issues
are resolved.

• -prop-consts is another optimization that propagates all constant values using Vine’s eval-
uator.

• -use-thunks if set to true, the generated IR will have calls to functions to update the pro-
cessor’s condition codes (EFLAGS for the x86). If false, this code will be inlined instead. For
most analysis purposes this should be disabled. It may be useful for generating a smaller IR
with the intent of giving it to the evaluator rather than to STP.

12

• -use-post-var if this is set to true, then assert statements will be rewritten to update
a variable ’post’, such that at the end of the trace post will have value true if and only if
all assertions would have passed. This is mostly for backwards compatibility for before we
introduced the assert statement.

• -deend performs ”deendianization”, i.e. rewrites all memory expressions to equivalent array
expressions. This should usually be enabled.

• -concrete initializes all the ’input’ symbols to the values they had in the trace.

• -verify-expected is mostly for regression/sanity tests, in conjunction with -concrete.
-verify-expected adds assertions to verify the all operands subsequently computed from
those symbols have the same value as they did in the trace, as they should in this case.

• -include-all translates and includes all instructions, rather than only those that (may)
operate on tainted data. Generally not desirable, but sometimes useful for debugging.

• -ir-out specify the output ir file.

• -wp-out and -stp-out tell appreplay to compute the weakest precondition (WP) over the
variable post (described above), and convert the resulting IR to an STP formula. the formula
holds for inputs that would follow the same execution path as in the trace.

7 Troubleshooting

This section lists some errors that you may encounter while using Vine, and gives suggestions on
resolving them.

• Incompatible types in Vine˙cfg

File "vine_cfg.ml", line 1301, characters 16-33:

This expression has type G.V.t -> int but is here used with type ’a * ’b

This error occurs if you try to compile Vine with a version of the ocamlgraph library older
than 0.99, which has an incompatible type for one function. It can be avoided by using a
newer version of the library, or worked around by modifying the Vine source; see Section 2.1.6
for more details.

• Size assertion in VEX

vex: priv/host-x86/hdefs.c:2332 (emit_X86Instr):

Assertion ‘sizeof(UInt) == sizeof(void*)’ failed.

13

This error occurs if you try to use a 64-bit version of Vine to process 32-bit x86 code. Because
the VEX library does not support cross-platform operation, Vine can only translate x86 code
when compiled in 32-bit mode. However, you can still compile and run an x86 version of Vine
on an x86-64 platform (see Section 2.1 for further discussion). You can also generate a Vine
IL file on a 32-bit platform and then do further processing on a 64-bit one.

• OCaml stack overflow

Fatal error: exception Stack_overflow

This error occurs when an OCaml program tries to use more stack space than is available. If
it occurs even on a very small input, it could be caused by an infinite recursion bug, but more
commonly it is caused by processing a large data structure with a recursive algorithm. One
potential fix is to increase the amount of stack space available. For native-compiled OCaml
programs, stack usage is limited by the operating system’s stack size resource limit, which
may have a small default value such as 8MB. You can remove this limit with a shell command,
such as ulimit -s unlimited in an sh-style shell or limit stacksize unlimited in a csh-
style shell; see your shell’s documentation for more details. Sometimes debugging versions
of programs use more stack space, so if you encounter this error with the .dbg version of a
program, try the version without that suffix. If the error was caused by recursion, a stack
backtrace should reveal what function was the culprit; to obtain one, rerun the program with
the OCAMLRUNPARAM environment variable set to b.

8 Reporting Bugs

Though we cannot give any guarantee of support for Vine, we are interested in hearing what you
are using it for, and if you encounter any bugs or unclear points. Please send your questions, feature
suggestions, bugs (and, if you have them, patches) to the bitblaze-users mailing list. Its web page
is: http://groups.google.com/group/bitblaze-users.

14

http://groups.google.com/group/bitblaze-users

	1 Introduction
	2 Installation
	2.1 Prerequisites
	2.1.1 C++ compiler
	2.1.2 The VEX library
	2.1.3 STP
	2.1.4 Binutils libraries
	2.1.5 OCaml build tools
	2.1.6 ocamlgraph
	2.1.7 Other OCaml libraries
	2.1.8 LaTeX

	2.2 Compiling
	2.2.1 Unpacking
	2.2.2 Configure
	2.2.3 Build code
	2.2.4 Build documentation

	2.3 Summary

	3 Vine Overview
	4 The Vine Intermediate Language
	5 Example
	5.1 Generating the IL and the STP formula
	5.2 Querying STP

	6 Documentation of various utilities in Vine
	6.1 Appreplay

	7 Troubleshooting
	8 Reporting Bugs

