
Verification of VHDL Designs Using VAL*

Larry M. Augustin, Benoit A. Gennart, Youm Huh,
David C. Luckham, and Alec G. Stanculescu

Computer Systems Laboratory
Stanford University

Stanford, California 94305

Abstract
VAL (VHDL Annotation Language) uses a small number of new

language constructs to annotate VHDL hardware descriptions. VAL
annotations, added to the VHDL entity declaration in the form of
formal comments, express intended behavior common to all architec-
tural bodies of the entity. Annotations are expressed as parallel pro-
cesses that accept streams of input signals and generate constraints
on output streams. VAL views signals as streams of values ordered
by time. Generalized timing expressions allow the designer to refer to
relative points on a stream. No concept of preemptive delayed assign-
ment or inertial delay are needed when referring to different relative
points in time on a stream. The VAL abstract state model permits
abstract data types to be used in specifying history dependent device
behavior. Annotations placed inside a VHDL architectural body de-
fine detailed correspondences between the behavior specification and
architecture. The result is a simple but expressive language exten-
sion of VHDL with possible applications to automatic checking of
VHDL simulations, hierarchical design, and automatic verification
of hardware designs in VHDL.

1.0 Introduction
The VHSIC Hardware Description Language (VHDL) supports

the design, description, and simulation of VHSIC components [8]
It provides a base language that can be used to describe hardware
ranging from simple logic gates to complex digital systems. As an
IEEE standard [ll], VHDL will provide an important common base
language for design tool development and design documentation.

VHSIC designs will incorporate anywhere from a few hundred to
perhaps a million components. Managing this complexity requires
a powerful hardware design support environment including a library
manager, profiler, simulator, and other design tools. A key problem
which such environments must address is verifying the correctness
of a design. If current practice continues, the VHDL designer will
verify designs using a simulator and manually compare huge volumes
of simulator output with an informal design specification. For large
and complex designs, this is simply not practical

VHDL Annotation Language (VAL) [l] provides an annotation
facility that allows the VHDL designer to apply simple kinds of an-
notations during the design process. VAL annotations have several
possible applications, each of which may be supported by future en-
vironment tools. In this paper, we describe VAL and its application
to automatic checking of the correctness of a VHDL design during
simulation. Other applications of annotations, such as formal ver-
ification and optimization of simulation will be discussed in later
papers.

In general, annotation languages express information about vari-
ous aspects of a program in machine readable form that is not nor-
mally part of the program itself [5]. They provide facilities for ex-
plaining the intended behavior of the program. They are intended
to reduce programming errors by making programs more readable

‘This work wa8 supported by the VHSIC Program Office, Department of the
Air Force (AFSC), under Contract F3361SS&C-1137

and by providing a great deal of error checking a t both compile and
run time. hadabi l i ty is improved by enabling the programmer to
express design decisions explicitly. Explanations may also serve as
specification and thus precede implementation of the program.

VAL allows information about various aspects of a design that
may not normally be part of a VHDL description to be expressed
explicitly in a machine processable form. Intended behavior, design
decisions, and the correspondence between specification and imple-
mentation are expressed in a simple but powerful high level language
for annotating hardware behavior. Annotations are included in the
VHDL text as formal comments. This allows the annotated descrip-
tion t o be processed without modification by the VHDL analyzer. A
preprocessor, the VAL Transformer, translates VAL annotations into
VHDL source code resulting in a self-checking VHDL description.

In the remainder of this paper, we will first give an overview of
design checking using VAL. Then we will describe VAL in more de-
tail, showing how VAL annotations are used to generate constraints
on a VHDL simulation. A brief overview of the VAL Transformer
demonstrates the feasibility of our design. We conclude with some
observations made from our experience with VAL to date, and areas
for future work.

2.0 Design Checking With VAL
A designer usually verifies a design using some form of simulation.

This task often requires the designer to manually compare the simu-
lation result with an informal design specification. Occasionally, the
designer also has a high level behavioral description (written in, for
example, C or Ada) whose output can be compared to the output
of the simulator. The design is simulated using a set of test vectors,
the behavioral model is run on the same test vectors, and the results
are compared (Figure 1).

Simulat ion
output

I Compare 1 , Simulation

S t r u c t u r a l
Simulat ion Y

I output

Figure 1: Typical Model of Design Checking

While this process of verification is adequate for simple designs,
as designs become more complex it becomes less satisfactory. It is
limited in the extent to which it allows the designer to debug a new
design because it assumes a “black box” view of the design unit (or
entity), in which the entity is accessible only through its ports.

VAL’S model of design checking is based on generating constraints
on the entity’s input, internal state, and output (Figure 2). Input
constraints allow the simulator to check if an entity is being used cor-

Paper 4.4
48

25th ACM/IEEE Design Automation Conference@

CH2540-3/88/0000/0048$01 .OO 0 1988 IEEE

rectly. For example, if the setup or hold time on a signal is not met,
the entity can report an input constraint violation. This helps the
designer to spot the source of timing errors as opposed to having to
trace the source of the error back from the simulation result. Output
constraints behave like the post simulation comparison previously de-
scribed, with the addition that they may be executed dynamically,
during the simulation. Mapping constraints allow an additional level
of internal checking beyond the checking of ports. For example, if
the behavioral description is a state machine, the states in the be-
havioral description must be somehow encoded within the structural
model. (i.e., distributed over the states of the lower level entities in
the architecture.) Mapping constraints allow the designer to explic-
itly describe the encoding and allow the simulator to automatically
check the internal state of the structure during simulation, rather
than forcing the designer t o deduce an incorrect state transition from
the simulation result.

Behavioral
Simulat ion
Behavioral
Simulat ion

;;;Jt qq
o n s t r a i n t o n s t r a i n t o n s t r a i n t

c S t r u c t u r a l
Simulat ion c

Simulat ion
output

Figure 2: VAL Model of Design Checking

3.0 Language Basics
VAL annotations may appear in all three VHDL design units; enti-

ties, architectures, and configurations. Interface annotations in the
entity declaration express intended behavior common to all archi-
tectural bodies of the entity. They define an abstract model of the
entity's internal state and use it, in conjunction with the inputs to
the entity, to define constraints on values carried by the output ports.
In VHDL, ports of mode out cannot be read within the entity and
therefore assertions cannot normally be made about them. Unlike
VHDL, VAL interface annotations have visibility over the contribu-
tion of the entity to each of its out ports. This allows the designer
to define the entity's contribution to the output port. Constraints
may also be defined on input ports.

Annotations within the VHDL architecture (body annotattons) can
be used to constrain the values of internal signals and ports of com-
ponents. In addition, VAL annotations within the architecture have
visibility over the abstract state of the entity (defined by the interface
annotations) as well as the internal states of each component instan-
tiated in the architecture. Annotations in an architecture relating to
state are known as mapping annotations. In effect, mapping annota-
tions describe the way in which the abstract state introduced in the
interface annotations is mapped into the states of the architecture's
components.

Annotations appearing in a configuration (configuration annota-
t tons) allow the user t o configure the VAL portion of the simulation.
For example, the user may want to to select only some of entities
in a large simulation for automatic checking. Also, the state model
map, similar to a VHDL port or generic map, can be used to map a
state model assumed for a component in an architecture into the ac-
tual state model of the actual component. This allows a designer to
assume an abstract state model for a component during design and
provide a type conversion function to translate the assumed state
model of the component to the state model of the actual component.

3.1 Interface Annotations

A VAL interface annotation consists of a list of parallel processes
that execute continuously. Unlike typical programming languages
which execute a process once when it activates, a VAL process ex-
ecutes continuously while active. In many ways this is similar to
actual hardware behavior. For example, an AND gate does not be-
have by watching its inputs for a change and recomputing a new
output when a change occurs. Instead, it continuously performs the
AND operation. More formally, continuously means that the oper-
ation is performed so often that performing it any more frequently
would not produce any observable change in behavior.

The following sections summarize the most important kinds of
processes in VAL and then show how the VAL concept of relative
time, in conjunction with these processes, models hardware behavior.

3.1.1 Asser t ions

An assertion process generates constraints on the simulation. Con-
sider the VHDL entity interface for a two input AND gate shown in
Figure 3. The identifiers input-a and input-b are input ports and
r e s u l t is the output port. Assertions in the form of VAL processes
are added to define the behavior of this circuit. The behavior of
the AND gate is specified by a single assert process that makes
an assertion about the value carried on the output port. The key-
words behavior and end behavior delimit the VAL annotations
describing the entity's intended behavior. The assert process con-
tinuously checks a constraint (in this case (i n p u t a and input-b)
= r e s u l t) . It is similar to the assert statement in VHDL. If the
constraint ever evaluates to false, the assert process performs the
requested action.

-- Annotated VHDL two input AND gate
ent i ty TvoInputAND is

port (input-a, inputb : in b i t ;

result : out b i t) ;
--
- - I behavior
-- I
- - I s e v e r i t y FAILURE

--I r epor t "Error i n TwoInputAND" ;

- - I end behavior;
end TwoInputAND;

VAL Annotations defining the AND gate's behavior

assert ((input2 and input-b) = resu l t)

Figure 3: Annotated VHDL AND Gate Entity Declaration

VAL provides a family of assertion processes for generating con-
straints. The assert process is the strictest of these, requiring the
constraint to be satisfied at every simulation cycle (i.e. a t every
delta). In this sense it corresponds directly to the VHDL assert
statement. Perfectly correct behaviors will often violate this con-
straint because a zero delay signal assignment in VHDL occurs after
a delay of delta, limiting the usefulness of the VHDL assert statement
for checking this kind of behavior. Other VAL assertion processes
operate by generating constraints only at certain points during the
simulation. For example, the finally assertion process allows the
user to specify a constraint that must hold only at the last delta
in a simulation time point. The constraint generated by the anno-
tation in Figure 4 will report an error for a single delta whenever a
change in i n p u t 2 or input-b causes a change in r e s u l t because the
VHDL simulation of any architecture for this entity does not effect
the change until the next delta. Replacing assert by finally checks
only after the assignment has been completed, reflecting more closely
the intentions of the designer.

Unlike VHDL, VAL provides the capability to hierarchically nest
assertions using a guarded process. The keyword w h e n identifies a
guarded process that consists of two lists of processes, corresponding
to a then part and an else part, and a boolean guard expression.
(See Figure 4.) The else part is optional. The guarded process con-
tinuously evaluates a boolean expression, and, if the expression is

Paper 4.4
49

architecture SIWLF, of TwoBitCounter is
signal 91. 9 2 , Qlbar, Q2bar : b i t ;
signal D1. D2 : b i t ;

Component DFlipFlop
port(Clk, D : in b i t ;

9, Qbar : out b i t ;

Reset : in b i t) ;

- - I s tate model is b i t ; -- local state model declaration
end component;
for a l l : DFlipFlop use

entity DFlipFlop (SIMF'LE) ;

--I valentity; -- use the transformed version of this
--I valarchitecture; -- component for checking

begin
D F L l : DFlipFlop

port map(C1k. D 1 , 91, Qlbar, Reset);
DFL2 : DflipFlop

port map(Clk, D2. Q2. QZbar, Reset);
DZ <= (91 and Q2bar) o r (Qlbar and 92);
D 1 <- Clk;
B i t 0 <= Ql;
B i t 1 <= 92;

-- mapping annotattons relate the state of the counter
-- to the states of the components

- - I select state is
- - I 0 => finally(DFLZ.state = '0' and DFLl.state = '0')

--I
- - I severity w a r n i n g ;
- - I 1 => finally(DFL2.state = '0' and DFLl.state = '1 ')

- - I
- - I severity w a r n i n g ;

- - I 2 -> finally(DFL2.state - ' 1 ' and DFLl.state = '0')

- - I
- - I severity warning;
- - I 3 => finally(DFL2.state = '1' and DFLl.state = '1')

- - I
- - I severity warning;
- - I end select;
end SIWLE;

report "Counter s ta te does not match fl ipflop state"

report "Counter s ta te does not match f l i p f l o p state"

report "Counter s ta te does not match fl ipflop state"

report "Counter s ta te does not match fl ipflop state"

Figure 7: Twc-bit Counter Architecture

archi tecture S of
TESTEENCE i s
component
TESTXNTITY : A;

4.0 VAL Transformer

archi tecture SXXPANDED
of, TESTEENCE is
component TESTJNTITY :

A-OUTSTATE;

The VAL Transformer runs as a pre-processor on an annotated
VHDL description to generate a self-checking VHDL description.

4.1 Structure of the Translation
The translation algorithm is based on the generation of an addi-

tional architecture called the MONITOR that contains an instantiation
of the architecture under test and can check its outputs using the as-
sertions in the entity declaration. The concept is similar to plugged
a device into a bed of nails for testing. The monitor body has vis-
ibility over all signals traveling between the actual entity body and
the other components in the simulation. One advantage of this ap-
proach is that VAL assertions can also measure the contribution of
the entity body's outputs to their environment. A difficult problem
in the translation is providing visibility over the component's state
needed for the mapping annotations. This is solved by creating an
additional port in the entity declaration and passing the state on the
port.

The design units involved in the translation are shown in Figure 8.
Assume an entity A exists containing VAL annotations. Three design
units are generated; two entity declarations and an architecture. The

architecture (named MONITOR) contains the VHDL translation of the
VAL annotations that appeared in the entity declaration. This in-
cludes the annotations which maintain the entity's state model. The
ports of architecture MONITOR are the same as for entity A with the
addition of an out port of the same type as the entity's state model.
This out port is used to provide visibility over the state of com-
ponents of type A to any annotations within any architecture that
instantiates a component of type A. The generated entity A-OUTSTATE
describes the interface for MOBITOR.

Architecture MOBITOR contains a component SOCKET having the
same ports as entity A with the addition of an in port of the same
type as the entity's state model. A translated version of the orig-
inal architecture body T of A is plugged into this socket. Because
the entity's state is passed into the SOCKET through a port, it is vis-
ible to annotations within the architectural body. The translated
version of T , TXXPANDED, contains a translation of the VAL annota
tions appearing in the architecture into VHDL. Its entity interface
is described by AINSTATE.

e n t i t y A i s
-- VAL annotations

e n t i t y A-OUTSTATE is
-- entity A plus an
-- additional out por t

-- entity A plus an
-- additional in pori

ATOUTSTATE is
component SOCKET :

A-INSTATE ;

I 1 I I
archi tecture TIXPANDED
of AINSTATE i s
-- VHDL translation H --of VAL annotations

' archi tecture T
of A i s
- - V A L Annotations

I I I I

Figure 8: Relationship Between Design Units

4.2 Translation of Major Language Constructs
Given the environment for handling scoping and visibility among

design units described above, a translation algorithm can be given
for each of the language constructs in VAL. The complete details of
the VAL to VHDL translation can be found in [7]. The translation
mechanism for the f i n a l l y assertion and time qualified assertions
are presented here to give the general flavor of the translation pro-
cess.

4.2.1 Translation of Finally Assertion
The general form of the finally assertion is:
finally <test-expression>

C report <message-erpression>l

C severity <severity_expression>] ;

Within the MONITOR architecture a process is created for each fi-
nally assertion. (See Figure 9.) This process is sensitive to all of

Paper 4.4
52

-- DFlipFlop entity specification
entity DFlipFlop is

generic (SETUP, HOLD, DELAY : Poslnteger);
port (Clk : in b i t ; -- Clock input

D : in b i t ; -- Data input

Q : out b i t ; -- Output
Qbar : out b i t) ;

--I s t a te model is b i t ;

- - I behavior
-- Assertions about generics
- - I assert (DELAY >= HOLD)
--I report “Error i n generic constant“ ;
-- State maintenance
--I when (Clk’Changed(’0’) then
-- I
--I then D -> StateCDELAYl ;
--I else report “Data not stable“ ;

- - I end when;
- - I end when;
-- Check outputs
- - I assert ((State = Q) and (not State = Qbar))
- - I report “Simulator error - D latch” ;

- - I end behavior;
end DFlipFlop;

-- A single bit of memory

when (D’Stable during C-SETUP, HOLD])

Figure 5: Annotated D Flip-Flop Entity Declaration

Clk’Changed(’0’) becomes true, the guarded process checking the
setup and hold time of the data becomes active. Note that the
expression during C-SETUP, BOLD] checks the interval SETUP time
units in the past and BOLD time units in the future. If the data re-
mains stable over this interval, the internal state of the D flip-flop is
modified after a time DELAY. The assertion processes constrains the
ports of the VHDL body t o match the state bit, and its negation, a t
all times.

The constraint DELAY >= HOLD is worth exploring further. Con-
ceptually, this implies that the output can never take on a new value
before that new value is latched into the internal state. If DELAY <
HOLD were true, then the output could change after DELAY time units,
but the hold constraint might not yet be met, in which case the out-
put value should never have changed. In other words, if DELAY <
HOLD then the behavior is non-causal. This is more obvious if the
VAL description in Figure 5 is rewritten such that the reference point
is the point a t which the state is assigned a new value. The relevant
lines become,

w h e n D’s tab le
dur ing C-SETUP-DELAY, HOLD-DELAY] then

D [-DELAY] -> s t a t e CO] ;
end when;

If HOLD-DELAY > 0, then the assignment to the new value of state
depends on an event that hasn’t happened yet - the stability of the
input during the hold time.

3.2 Body and Mapping Annotations
Any of the VAL processes, with the exception of drive, can appear

in the entity body. Body annotations specify implementation details
and allow more detailed consistency checking between the interface
annotations (the entity’s functional description) and the VHDL ar-
chitecture (implementation). Body annotations have visibility over
all VHDL signals and ports normally visible at the point a t which the
annotation appears, the entity’s state model, and the state models
of all entities instantiated as components.

The description of the two-bit modulo four counter in Figures 6

and 7 together show how mapping annotations may be used to check
the internal state of an entity. The reset signal sets the state of
the counter. Whenever a transition from ’1’ to ’0’ on the clock
(Clk) occurs, the counter counts up one. B i t O represents the least
significant bit of the counter and B i t l the MSB. The VAL state
model is an integer and assert processes generate constraints on the
output ports based on the VAL state.

entity TwoBitCounter is
port (Clk : in b i t ;

reset : in b i t ;
B i t O . B i t l : out b i t) ;

- - I s t a te model is integer;
- - I behavior
--I when reset then
--I s t a te <- 0;

--I elsewhen Clk’changed(’0’) then
--I s ta te <- (state + 1) mod 4;

- - I end when;
-- I select s ta te is
-- I
- - I
- - I severity warning;

--I 1 => f inal ly(Bit0 = ’1’ a n d B i t l = ’0’)

--I
--I severity warning;

--I
--I
--I severity warning;

--I
--I
--I severity warning;

- - I end select;
- - I end behavior;
end TwoBitCounter;

0 => f inal ly(Bit0 = ’0’ and B i t l = ’0’)

report “Counter - Output error“;

report “Counter - Gutput error“;

2 => finallyCBit0 = ’ 0 ’ a n d B i t l = ’1’)

report “Counter - Output error“;

3 => finallyCBit0 = ’1’ a n d B i t l = ’1 ’)

report “Counter - Output error“;

Figure 6: Two-bit Counter Entity Declaration

The architecture SIMPLE of the counter contains two D-type flip-
flops. Each flip-flop is similar to the ones described previously with
the exception of a reset signal and the omission of timing information
(to keep the examples short enough to fit in this paper). Each flip-
flop has a state model consisting of a single bit. The states of the
flip-flops (DF’LI.state and DFL2.state) are related to the state of
the counter (s t a t e) by mapping annotations.

3.3 Configuration Annotations
Configuration annotations serve two purposes. First, they provide

a local state model mapping declaration to map the local state model
defined in a component declaration to the actual state model defined
by the component’s interface annotations. The state model mapping
declaration indicates the function to use in mapping between the
state model of the actual entity and the state model of the component
instance. I t appears within a configuration specification at the same
point as other binding indications.

Second, they provide Configuration information so that VAL gen-
erated architectures may be automatically substituted for original
component architectures for checking. The user may not want to
use a VAL annotated entity in place of the original VHDL entity for
all components in a simulation, particularly if the component is a li-
brary unit for which no annotated description exists. The v a l e n t i t y
construct allows the user to select the components of an architecture
to be monitored. The VAL Transformer will only generate code to
monitor components marked with v a l e n t i t y . The next section on
the VAL Transformer explains how components are monitored.

Paper 4.4
51

architecture SIWLE of TsoBi tCounter is
signal 91, 92, Qlbar, Qlbar : b i t ;
signal D1. D2 : b i t ;

component DFlipFlop
port(Clk, D : in b i t ;

9 . Qbar : out b i t ;

Reset : in b i t) ;

- - I s tate model is b i t ; -- local state model declaration
end component ;

for all: DFlipFlop use

entity DFlipFlop (SIMPLE) ;
--I valentity; -- use the transformed version of this
--I valarchitecture; -- component for checking

begin
D F L l : DFlipFlop

port map(Clk, D 1 , Ql, Qlbar. Reset);
DFL2 : DflipFlop

port rap(C1k. D2. 92. Qlbar, Reset);

D2 <= (91 and Q2bar) or (Qlbar and 92);
D 1 <= Clk;
B i t 0 <= 91;
B i t 1 <= 92;

-- mapping annotations relate the d a t e of the counter
-- to the states of the components
- - I select state is
- - I 0 => finally(DFL2.state = '0' and DFLl.state = '0')

- - I
--I severity warning;
--I
--I report "Counter s ta te does not match f l i p f l o p state"

- - I severity saming;
- - I 2 -> finally(DFLZ.state - '1' and DFLl.state = '0')

- - I report "Counter state does not match fl ipflop state"

- - I severity warning;
- - I 3 => finally(DFL2.state = '1' and DFLl.state = '1')

- - I r epo r t "Counter s ta te does not match f l i p f l o p state"

- - I severity warning;
- - I end select;
end SIWLE;

report "Counter s ta te does not match f l i p f l o p state"

1 => finally(DFL2.state = '0' and DFLl.state = '1')

Figure 7: Two-hit Counter Architecture

archi tecture S of
TESTEENCE i s
component
TESTXNTITY : A;

. . .

4.0 VAL Transformer

archi tecture SXXPANDED
of, TESTEENCH is - component TESTXNTITY :

A-OUTSTATE;

The VAL Transformer runs as a pre-processor on an annotated
VHDL description to generate a self-checking VHDL description.

4.1 Structure of the Translation
The translation algorithm is based on the generation of an addi-

tional architecture called the MONITOR that contains an instantiation
of the architecture under test and can check its outputs using the as-
sertions in the entity declaration. The concept is similar to plugged
a device into a bed of nails for testing. The monitor body has vis-
ibility over all signals traveling between the actual entity body and
the other components in the simulation. One advantage of this ap-
proach is that VAL assertions can also measure the contribution of
the entity body's outputs to their environment. A difficult problem
in the translation is providing visibility over the component's state
needed for the mapping annotations. This is solved by creating an
additional port in the entity declaration and passing the state on the
port.

The design units involved in the translation are shown in Figure 8.
Assume an entity A exists containing VAL annotations. Three design
units are generated; two entity declarations and an architecture. The

architecture (named MOIIITOR) contains the VHDL translation of the
VAL annotations that appeared in the entity declaration. This in-
cludes the annotations which maintain the entity's state model. The
ports of architecture MOIIITOR are the same as for entity A with the
addition of an out port of the same type as the entity's state model.
This out port is used to provide visibility over the state of com-
ponents of type A to any annotations within any architecture that
instantiates a component of type A. The generated entity A-OUTSTATE
describes the interface for MOIIITOR.

Architecture MOIIITOR contains a component SOCKET having the
same ports as entity A with the addition of an in port of the same
type as the entity's state model. A translated version of the orig-
inal architecture body T of A is plugged into this socket. Because
the entity's state is passed into the SOCKET through a port, it is vis-
ible to annotations within the architectural body. The translated
version of T, TXXPANDED, contains a translation of the VAL annota
tions appearing in the architecture into VHDL. Its entity interface
is described by AINSTATE.

archi tecture MONITOR of
?,OUTSTATE is 4 component SOCKET :

A-INSTATE;

I I I I
archi tecture TXXPANDED
of AlNSTATE i s
-- VHDL translation H --of VAL annotattons

' archi tecture T
of A is
- - V A L Annotations - I I

Figure 8: Relationship Between Design Units

4.2 Translation of Major Language Constructs
Given the environment for handling scoping and visibility among

design units described above, a translation algorithm can he given
for each of the language constructs in VAL. The complete details of
the VAL to VHDL translation can he found in [7]. The translation
mechanism for the f i n a l l y assertion and time qualified assertions
are presented here to give the general flavor of the translation pro-
cess.

4.2.1 Translation of Finally Assertion
The general form of the finally assertion is:
finally <test-expression>

[report <message_expression>l

[severity <severity~expression>l ;

Within the MONITOR architecture a process is created for each fi-
nally assertion. (See Figure 9.) This process is sensitive to all of

Paper 4.4
52

the signals in the <test-expression> and , in addition, to a wake-
up signal VAL-CBE. When the process is activated due to a change
in one of the signals in <test-expression>, it remembers the new
value of <test-expression> and sets the signal VAL-CBE t o wake
itself up a t the beginning of the next time point to check the re-
membered value of <test-expression>. The remembered value of
<test-expression> will be the value set a t the end of all the deltas
in the previous simulation point.

process (<test-expression sensi t ivi ty l is t>.VAL-CBE)

variable OLDB : BOOLEAN := TRUE;
va r i ab le I B : BOOLEAN :- TRUE;

begin
if not VAL-GBE’QUIET then

assert OLDB
report <message-expression>
severity <severity-expression>;

end if;
I B :s <testsxpression>;
if (IB /= OLDB) then

OLDB := m;
VAL-GEE <= not VALSBE a f te r I f s ;

end if;
end process;

Figure 9: Translation of Finally

4.2.2 Translation of Time Qualified Expressions

In general, a time qualified boolean expression will have the fol-
lowing form:

expr during [Tl,T2]

This is translated into VHDL by creating a virtual signal (GBExpr)
driven by the boolean expression and then checking the stability of
the signal over the requested time interval. The translation looks
like:

signal GBExpr : boolean;

GBExpr <= expr ;
. . .

GBExpr’STABLE(T2 - T I)

Recall that T2 >= Ti in the time qualified boolean expression, and
therefore the argument of the attribute ’STABLE must be positive or
zero. Nested time qualified expressions generate successive applica-
tions of the ’STABLE attribute.

5.0 Experience, Status, and Future Work
The VAL Transformer is currently under development. A pro-

totype transformer for a subset of VAL is currently running with
VHDL 7.2. We are currently implementing a VHDL 1076 version
of the Transformer. Very preliminary experiments show that anno-
tat,ions in general may slow down the simulation by 20% t o 70%,
depending of the extent of their use. VAL provides a mechanism
(the configuration annotations) for selecting the components that
are monitored. This allows the user to select the level of checking
necessary for a given application.

VAL has been used in the design and debugging of several bench-
marks of moderate size. These include the traffic light controller
specified in [6] and described in VHDL in [9], the two-bit counter
from which earlier examples have been taken, the ALU in [IO], and
a simple 16-bit CPU. In all cases the VAL annotation has provided
a clean and simple specification of the intended behavior. Perhaps
more importantly, the design checking provided by VAL significantly
increased our confidence in the correctness of the design. In one in-
stance (the two-bit counter described earlier), an outright design

bug missed by the designer in reviewing the VHDL simulation out-
put was flagged and quickly located when the same simulation was
automatically checked using VAL. Mapping annotations were par-
ticularly useful in isolating the cause of the error. The reason for
this is that they allow the subcomponent(s) related to an error to
be immediately identified, since an error is detected as soon as an
assertion is violated, not just a t the outputs of a component.

Currently we are focusing on gaining more experience with anno-
tating larger benchmarks. Language extensions such as additional
abstraction mechanisms may be necessary for large and complex en-
tities. Additional kinds of annotations, such as package, type and
subtype constraints akin to those in (51 might also be useful. While
the current mapping annotations have so far proved adequate, their
coarse granularity doesn’t provide the detailed level of constraint
checking that might be needed. As an aid in debugging, A means
of enabling and disabling more detailed assertions would be useful.
Finally, VAL’S semantics were kept simple to allow the potential ap-
plication of formal verification methods [2,3]. Formal verification
would provide a degree of verification beyond or perhaps in addition
to the current model of simulation time constraint checking.

We view VAL as a trend in hardware design languages, and not
as a finished project. The next development will probably be con-
structs for expressing design hierarchy. These are clearly required,
even to develop our current VAL checker into a design debugger for
use with VHDL simulators. Hierarchy constructs are quite clearly
needed to pursue more ambitious applications of design languages
such as mathematical verification of designs and (semi-automatic or
interactive) synthesis.

References

[l] L. M. Augustin, B. A. Gennart, Y. Huh, D. C. Luckham, and
A. G. Stanculescu. VAL: An annotation language for VHDL.
In ICCAD ’87 Digest of Technical Papers, pages 418-421, Santa
Clara, CA, November 1987.

0. J . Dahl. Can Program Proving be Made Practical? Technical
Report, Institute of Informatics, University of Oslo, May 1978.

M. Gordon. How to Specifg and Verify Hardwam Using Higher
Order Logic. Lecture Notes, University of Texas at Austin, 1984.

D. C. Luckham, A. Stanculescu, Y . Huh, and S.Ghosh. The se-
mantics of timing constructs in hardware description languages.
In ICCD ’88, pages 10-14, Port Chester, New York, October
1986.

D. C. Luckham and F.W. vonHenke. An overview of ANNA,
a specification language for Ada. IEEE Software, 2(2):9-22,
March 1985.

[6] C. Mead and L. Conway. Introduction to VLSI Systems.
Addison-Wesley, 1980.

[7] A. G. Stanculescu. VHDL Annotation Language (VAL): Trans-
formation of Annotated Entities. Technical Report under prepa-
ration, Computer Systems Laboratory, Stanford University,
1987.

[8] VHDL Design Analysis and Justification. Intermetrics, July
1984. IR-MD-018-1.

[9] VHDL User’s Manual: Volume 111 - Benchmarks. Iutermetrics,
Inc., 4733 Bethesda Ave., Bethesda, MD 20814, July 1984. IR-
MD-029.

[lo] VHDL User’s Manual: Volume I - Tutorial. Intermetrics, Inc.,
4733 Bethesda Ave., Bethesda, MD 20814, August 1985. IR-
MD-065-1.

[2]

[3]

[4]

[5]

[Il l VHDL Language Reference Manual: IEEE Draft Standard
ior6/~. 1987.

Paper 4.4
53

