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Abstract 
VAL (VHDL Annotation Language) uses a small number of new 

language constructs to  annotate VHDL hardware descriptions. VAL 
annotations, added to  the VHDL entity declaration in the form of 
formal comments, express intended behavior common to all architec- 
tural bodies of the entity. Annotations are expressed as parallel pro- 
cesses that  accept streams of input signals and generate constraints 
on output streams. VAL views signals as streams of values ordered 
by time. Generalized timing expressions allow the designer to  refer to  
relative points on a stream. No concept of preemptive delayed assign- 
ment or inertial delay are needed when referring to  different relative 
points in time on a stream. The VAL abstract state model permits 
abstract data types to  be used in specifying history dependent device 
behavior. Annotations placed inside a VHDL architectural body de- 
fine detailed correspondences between the behavior specification and 
architecture. The result is a simple but expressive language exten- 
sion of VHDL with possible applications to  automatic checking of 
VHDL simulations, hierarchical design, and automatic verification 
of hardware designs in VHDL. 

1.0 Introduction 
The VHSIC Hardware Description Language (VHDL) supports 

the design, description, and simulation of VHSIC components [8] 
It  provides a base language that  can be used to  describe hardware 
ranging from simple logic gates to  complex digital systems. As an 
IEEE standard [ll], VHDL will provide an important common base 
language for design tool development and design documentation. 

VHSIC designs will incorporate anywhere from a few hundred to 
perhaps a million components. Managing this complexity requires 
a powerful hardware design support environment including a library 
manager, profiler, simulator, and other design tools. A key problem 
which such environments must address is verifying the correctness 
of a design. If current practice continues, the VHDL designer will 
verify designs using a simulator and manually compare huge volumes 
of simulator output with an informal design specification. For large 
and complex designs, this is simply not practical 

VHDL Annotation Language (VAL) [l] provides an annotation 
facility that allows the VHDL designer to  apply simple kinds of an- 
notations during the design process. VAL annotations have several 
possible applications, each of which may be supported by future en- 
vironment tools. In this paper, we describe VAL and its application 
to automatic checking of the correctness of a VHDL design during 
simulation. Other applications of annotations, such as formal ver- 
ification and optimization of simulation will be discussed in later 
papers. 

In general, annotation languages express information about vari- 
ous aspects of a program in machine readable form that is not nor- 
mally part of the program itself [5]. They provide facilities for ex- 
plaining the intended behavior of the program. They are intended 
to  reduce programming errors by making programs more readable 
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and by providing a great deal of error checking a t  both compile and 
run time. hadabi l i ty  is improved by enabling the programmer to 
express design decisions explicitly. Explanations may also serve as 
specification and thus precede implementation of the program. 

VAL allows information about various aspects of a design that 
may not normally be part of a VHDL description to  be expressed 
explicitly in a machine processable form. Intended behavior, design 
decisions, and the correspondence between specification and imple- 
mentation are expressed in a simple but powerful high level language 
for annotating hardware behavior. Annotations are included in the 
VHDL text as formal comments. This allows the annotated descrip- 
tion t o  be processed without modification by the VHDL analyzer. A 
preprocessor, the VAL Transformer, translates VAL annotations into 
VHDL source code resulting in a self-checking VHDL description. 

In the remainder of this paper, we will first give an overview of 
design checking using VAL. Then we will describe VAL in more de- 
tail, showing how VAL annotations are used to generate constraints 
on a VHDL simulation. A brief overview of the VAL Transformer 
demonstrates the feasibility of our design. We conclude with some 
observations made from our experience with VAL to date, and areas 
for future work. 

2.0 Design Checking With VAL 
A designer usually verifies a design using some form of simulation. 

This task often requires the designer to manually compare the simu- 
lation result with an informal design specification. Occasionally, the 
designer also has a high level behavioral description (written in, for 
example, C or Ada) whose output can be compared to the output 
of the simulator. The design is simulated using a set of test vectors, 
the behavioral model is run on the same test vectors, and the results 
are compared (Figure 1). 

Simulat ion 
output  

I Compare 1 , Simulation 

S t r u c t u r a l  
Simulat ion Y 

I output  

Figure 1: Typical Model of Design Checking 

While this process of verification is adequate for simple designs, 
as designs become more complex it becomes less satisfactory. It is 
limited in the extent to  which it allows the designer to  debug a new 
design because it assumes a “black box” view of the design unit (or 
entity), in which the entity is accessible only through its ports. 

VAL’S model of design checking is based on generating constraints 
on the entity’s input, internal state, and output (Figure 2). Input 
constraints allow the simulator to check if an entity is being used cor- 
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rectly. For example, if the setup or hold time on a signal is not met, 
the entity can report an input constraint violation. This helps the 
designer to  spot the source of timing errors as opposed to having to 
trace the source of the error back from the simulation result. Output 
constraints behave like the post simulation comparison previously de- 
scribed, with the addition that they may be executed dynamically, 
during the simulation. Mapping constraints allow an additional level 
of internal checking beyond the checking of ports. For example, if 
the behavioral description is a state machine, the states in the be- 
havioral description must be somehow encoded within the structural 
model. (i.e., distributed over the states of the lower level entities in 
the architecture.) Mapping constraints allow the designer to  explic- 
itly describe the encoding and allow the simulator to  automatically 
check the internal state of the structure during simulation, rather 
than forcing the designer t o  deduce an incorrect state transition from 
the simulation result. 

Behavioral 
Simulat ion 
Behavioral 
Simulat ion 

;;;Jt qq 
o n s t r a i n t  o n s t r a i n t  o n s t r a i n t  

c S t r u c t u r a l  
Simulat ion c 

Simulat ion 
output  

Figure 2: VAL Model of Design Checking 

3.0 Language Basics 
VAL annotations may appear in all three VHDL design units; enti- 

ties, architectures, and configurations. Interface annotations in the 
entity declaration express intended behavior common to all archi- 
tectural bodies of the entity. They define an abstract model of the 
entity's internal state and use it,  in conjunction with the inputs to 
the entity, to  define constraints on values carried by the output ports. 
In VHDL, ports of mode out cannot be read within the entity and 
therefore assertions cannot normally be made about them. Unlike 
VHDL, VAL interface annotations have visibility over the contribu- 
tion of the entity to  each of its out ports. This allows the designer 
to define the entity's contribution to the output port. Constraints 
may also be defined on input ports. 

Annotations within the VHDL architecture (body annotattons) can 
be used to  constrain the values of internal signals and ports of com- 
ponents. In addition, VAL annotations within the architecture have 
visibility over the abstract state of the entity (defined by the interface 
annotations) as well as the internal states of each component instan- 
tiated in the architecture. Annotations in an architecture relating to 
state are known as mapping annotations. In effect, mapping annota- 
tions describe the way in which the abstract state introduced in the 
interface annotations is mapped into the states of the architecture's 
components. 

Annotations appearing in a configuration (configuration annota- 
t tons) allow the user t o  configure the VAL portion of the simulation. 
For example, the user may want to  to  select only some of entities 
in a large simulation for automatic checking. Also, the state model 
map, similar to  a VHDL port or generic map, can be used to  map a 
state model assumed for a component in an architecture into the ac- 
tual state model of the actual component. This allows a designer to  
assume an abstract state model for a component during design and 
provide a type conversion function to translate the assumed state 
model of the component to the state model of the actual component. 

3.1 Interface Annotations 

A VAL interface annotation consists of a list of parallel processes 
that  execute continuously. Unlike typical programming languages 
which execute a process once when it activates, a VAL process ex- 
ecutes continuously while active. In many ways this is similar to 
actual hardware behavior. For example, an AND gate does not be- 
have by watching its inputs for a change and recomputing a new 
output when a change occurs. Instead, it continuously performs the 
AND operation. More formally, continuously means that the oper- 
ation is performed so often that performing it any more frequently 
would not produce any observable change in behavior. 

The following sections summarize the most important kinds of 
processes in VAL and then show how the VAL concept of relative 
time, in conjunction with these processes, models hardware behavior. 

3.1.1 Asser t ions 

An assertion process generates constraints on the simulation. Con- 
sider the VHDL entity interface for a two input AND gate shown in 
Figure 3. The identifiers input-a and input-b are input ports and 
r e s u l t  is the output port. Assertions in the form of VAL processes 
are added to define the behavior of this circuit. The behavior of 
the AND gate is specified by a single assert process that makes 
an assertion about the value carried on the output port. The key- 
words behavior  and end behavior  delimit the VAL annotations 
describing the entity's intended behavior. The assert process con- 
tinuously checks a constraint (in this case ( i n p u t a  and input-b) 
= r e s u l t ) .  It is similar to the assert statement in VHDL. If the 
constraint ever evaluates to  false, the assert process performs the 
requested action. 

-- Annotated VHDL two input AND gate 
ent i ty  TvoInputAND is 

port  (input-a, inputb  : in  b i t ;  

result : out  b i t ) ;  
-- 
- - I  behavior 
-- I  
- - I  s e v e r i t y  FAILURE 

--I r epor t  "Error  i n  TwoInputAND" ; 

- - I  end  behavior; 
end TwoInputAND; 

VAL Annotations defining the AND gate's behavior 

assert ( ( input2  and  input-b) = resu l t )  

Figure 3: Annotated VHDL AND Gate Entity Declaration 

VAL provides a family of assertion processes for generating con- 
straints. The assert process is the strictest of these, requiring the 
constraint to  be satisfied at every simulation cycle (i.e. a t  every 
delta). In this sense it corresponds directly to  the VHDL assert 
statement. Perfectly correct behaviors will often violate this con- 
straint because a zero delay signal assignment in VHDL occurs after 
a delay of delta, limiting the usefulness of the VHDL assert statement 
for checking this kind of behavior. Other VAL assertion processes 
operate by generating constraints only at certain points during the 
simulation. For example, the finally assertion process allows the 
user to specify a constraint that must hold only at the last delta 
in a simulation time point. The constraint generated by the anno- 
tation in Figure 4 will report an error for a single delta whenever a 
change in i n p u t 2  or input-b causes a change in r e s u l t  because the 
VHDL simulation of any architecture for this entity does not effect 
the change until the next delta. Replacing assert by finally checks 
only after the assignment has been completed, reflecting more closely 
the intentions of the designer. 

Unlike VHDL, VAL provides the capability to  hierarchically nest 
assertions using a guarded process. The keyword w h e n  identifies a 
guarded process that consists of two lists of processes, corresponding 
to  a then part and an else  part, and a boolean guard expression. 
(See Figure 4.) The else part is optional. The guarded process con- 
tinuously evaluates a boolean expression, and, if the expression is 
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architecture SIWLF, of TwoBitCounter is 
signal 91. 9 2 ,  Qlbar, Q2bar : b i t ;  
signal D1.  D2 : b i t ;  

Component DFlipFlop 
port(Clk, D : in  b i t ;  

9, Qbar : out  b i t ;  

Reset : in b i t ) ;  

- - I  s tate model is b i t ;  -- local state model declaration 
end component; 
for a l l :  DFlipFlop use 

entity DFlipFlop (SIMF'LE) ; 

--I  valentity; -- use the transformed version of this 
--I  valarchitecture; -- component for checking 

begin 
D F L l  : DFlipFlop 

port map(C1k. D 1 ,  91, Qlbar, Reset); 
DFL2 : DflipFlop 

port  map(Clk, D2. Q2. QZbar, Reset); 
DZ <= (91 and Q2bar) o r  (Qlbar and 92); 
D 1  <- Clk; 
B i t 0  <= Ql; 
B i t 1  <= 92; 

-- mapping annotattons relate the state of the counter 
-- to the states of the components 

- - I  select state is 
- - I  0 => finally(DFLZ.state = '0' and DFLl.state = '0') 

--I 
- - I  severity w a r n i n g ;  
- - I  1 => finally(DFL2.state = '0' and DFLl.state = '1 ' )  

- - I  
- - I  severity w a r n i n g ;  

- - I  2 -> finally(DFL2.state - ' 1 '  and DFLl.state = '0') 

- - I  
- - I  severity warning; 
- - I  3 => finally(DFL2.state = '1' and DFLl.state = '1') 

- - I  
- - I  severity warning; 
- - I  end select; 
end SIWLE; 

report "Counter s ta te  does not  match fl ipflop state" 

report  "Counter s ta te  does not match f l i p f l o p  state" 

report "Counter s ta te  does not match fl ipflop state" 

report "Counter s ta te  does not match fl ipflop state" 

Figure 7: Twc-bit Counter Architecture 

archi tecture  S of 
TESTEENCE i s  
component 
TESTXNTITY : A; 

4.0 VAL Transformer 

archi tecture  SXXPANDED 
of, TESTEENCE is  
component TESTJNTITY : 

A-OUTSTATE; 

The VAL Transformer runs as a pre-processor on an annotated 
VHDL description to generate a self-checking VHDL description. 

4.1 Structure of the Translation 
The translation algorithm is based on the generation of an addi- 

tional architecture called the MONITOR that contains an instantiation 
of the architecture under test and can check its outputs using the as- 
sertions in the entity declaration. The concept is similar to plugged 
a device into a bed of nails for testing. The monitor body has vis- 
ibility over all signals traveling between the actual entity body and 
the other components in the simulation. One advantage of this ap- 
proach is that VAL assertions can also measure the contribution of 
the entity body's outputs to their environment. A difficult problem 
in the translation is providing visibility over the component's state 
needed for the mapping annotations. This is solved by creating an 
additional port in the entity declaration and passing the state on the 
port. 

The design units involved in the translation are shown in Figure 8. 
Assume an entity A exists containing VAL annotations. Three design 
units are generated; two entity declarations and an architecture. The 

architecture (named MONITOR) contains the VHDL translation of the 
VAL annotations that appeared in the entity declaration. This in- 
cludes the annotations which maintain the entity's state model. The 
ports of architecture MONITOR are the same as for entity A with the 
addition of an out port of the same type as the entity's state model. 
This out port is used to provide visibility over the state of com- 
ponents of type A to any annotations within any architecture that 
instantiates a component of type A. The generated entity A-OUTSTATE 
describes the interface for MOBITOR. 

Architecture MOBITOR contains a component SOCKET having the 
same ports as entity A with the addition of an in port of the same 
type as the entity's state model. A translated version of the orig- 
inal architecture body T of A is plugged into this socket. Because 
the entity's state is passed into the SOCKET through a port, it  is vis- 
ible to annotations within the architectural body. The translated 
version of T ,  TXXPANDED, contains a translation of the VAL annota 
tions appearing in the architecture into VHDL. Its entity interface 
is described by AINSTATE.  

e n t i t y  A i s  
-- VAL annotations 

e n t i t y  A-OUTSTATE is 
-- entity A plus an 
-- additional out por t  

-- entity A plus an 
-- additional in  pori 

ATOUTSTATE is  
component SOCKET : 

A-INSTATE ; 

I 1 I I 
archi tecture  TIXPANDED 
of AINSTATE i s  
-- VHDL translation H --of VAL annotations 

' archi tecture  T 
of A i s  
- - V A L  Annotations 

I I I I 

Figure 8: Relationship Between Design Units 

4.2 Translation of Major Language Constructs 
Given the environment for handling scoping and visibility among 

design units described above, a translation algorithm can be given 
for each of the language constructs in VAL. The complete details of 
the VAL to VHDL translation can be found in [7]. The translation 
mechanism for the f i n a l l y  assertion and time qualified assertions 
are presented here to give the general flavor of the translation pro- 
cess. 

4.2.1 Translation of Finally Assertion 
The general form of the finally assertion is: 
finally <test-expression> 

C report <message-erpression>l 

C severity <severity_expression>] ; 

Within the MONITOR architecture a process is created for each fi- 
nally assertion. (See Figure 9.) This process is sensitive to all of 
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-- DFlipFlop entity specification 
entity DFlipFlop is 

generic (SETUP, HOLD, DELAY : Poslnteger);  
port  (Clk : in b i t ;  -- Clock input 

D : in b i t ;  -- Data input 

Q : out  b i t ;  -- Output 
Qbar : out  b i t ) ;  

--I s t a te  model is b i t ;  

- - I  behavior 
-- Assertions about generics 
- - I  assert (DELAY >= HOLD) 
--I report “Error i n  generic constant“ ; 
-- State maintenance 
--I when (Clk’Changed(’0’) then 
-- I  
--I then D -> StateCDELAYl ; 
--I else report “Data not stable“ ; 

- - I  end  when; 
- - I  end  when;  
-- Check outputs 
- - I  assert ( (State  = Q )  and (not  State  = Qbar)) 
- - I  report “Simulator error - D latch” ; 

- - I  end behavior; 
end DFlipFlop; 

-- A single bit of memory 

when (D’Stable during C-SETUP, HOLD]) 

Figure 5: Annotated D Flip-Flop Entity Declaration 

Clk’Changed( ’0’ ) becomes true, the guarded process checking the 
setup and hold time of the data becomes active. Note that the 
expression during C-SETUP, BOLD] checks the interval SETUP time 
units in the past and BOLD time units in the future. If the data re- 
mains stable over this interval, the internal state of the D flip-flop is 
modified after a time DELAY. The assertion processes constrains the 
ports of the VHDL body t o  match the state bit, and its negation, a t  
all times. 

The constraint DELAY >= HOLD is worth exploring further. Con- 
ceptually, this implies that  the output can never take on a new value 
before that  new value is latched into the internal state. If DELAY < 
HOLD were true, then the output could change after DELAY time units, 
but the hold constraint might not yet be met, in which case the out- 
put value should never have changed. In other words, if DELAY < 
HOLD then the behavior is non-causal. This is more obvious if the 
VAL description in Figure 5 is rewritten such that the reference point 
is the point a t  which the state is assigned a new value. The relevant 
lines become, 

w h e n  D’s tab le  
dur ing  C-SETUP-DELAY, HOLD-DELAY] then 

D [-DELAY] -> s t a t e  CO] ; 
end when;  

If HOLD-DELAY > 0, then the assignment to  the new value of state 
depends on an event that  hasn’t happened yet - the stability of the 
input during the hold time. 

3.2 Body and Mapping Annotations 
Any of the VAL processes, with the exception of drive, can appear 

in the entity body. Body annotations specify implementation details 
and allow more detailed consistency checking between the interface 
annotations (the entity’s functional description) and the VHDL ar- 
chitecture (implementation). Body annotations have visibility over 
all VHDL signals and ports normally visible at the point a t  which the 
annotation appears, the entity’s state model, and the state models 
of all entities instantiated as components. 

The description of the two-bit modulo four counter in Figures 6 

and 7 together show how mapping annotations may be used to  check 
the internal state of an entity. The reset signal sets the state of 
the counter. Whenever a transition from ’1’ to  ’0’ on the clock 
(Clk) occurs, the counter counts up one. B i t O  represents the least 
significant bit of the counter and B i t l  the MSB. The VAL state 
model is an integer and assert processes generate constraints on the 
output ports based on the VAL state. 

entity TwoBitCounter is 
port  (Clk : in b i t ;  

reset  : in b i t ;  
B i t O .  B i t l  : out  b i t ) ;  

- - I  s t a te  model is integer; 
- - I  behavior 
--I when reset  then 
--I s t a te  <- 0; 

--I elsewhen Clk’changed(’0’) then 
--I s ta te  <- (state + 1) mod 4; 

- - I  end  when;  
-- I  select s ta te  is 
-- I  
- - I  
- - I  severity warning; 

--I 1 => f inal ly(Bit0 = ’1’  a n d  B i t l  = ’0’) 

--I 
--I severity warning; 

--I 
--I 
--I severity warning; 

--I 
--I 
--I severity warning; 

- - I  end  select; 
- - I  end  behavior; 
end TwoBitCounter; 

0 => f inal ly(Bit0 = ’0’ and B i t l  = ’0’) 

report “Counter - Output error“; 

report “Counter - Gutput error“; 

2 => finallyCBit0 = ’ 0 ’  a n d  B i t l  = ’1’)  

report “Counter - Output error“; 

3 => finallyCBit0 = ’1’ a n d  B i t l  = ’1 ’ )  

report “Counter - Output error“; 

Figure 6: Two-bit Counter Entity Declaration 

The architecture SIMPLE of the counter contains two D-type flip- 
flops. Each flip-flop is similar to  the ones described previously with 
the exception of a reset signal and the omission of timing information 
(to keep the examples short enough to  fit in this paper). Each flip- 
flop has a state model consisting of a single bit. The states of the 
flip-flops (DF’LI.state and DFL2.state) are related to  the state of 
the counter ( s t a t e )  by mapping annotations. 

3.3 Configuration Annotations 
Configuration annotations serve two purposes. First, they provide 

a local state model mapping declaration to  map the local state model 
defined in a component declaration to  the actual state model defined 
by the component’s interface annotations. The state model mapping 
declaration indicates the function to use in mapping between the 
state model of the actual entity and the state model of the component 
instance. I t  appears within a configuration specification at the same 
point as other binding indications. 

Second, they provide Configuration information so that VAL gen- 
erated architectures may be automatically substituted for original 
component architectures for checking. The user may not want to  
use a VAL annotated entity in place of the original VHDL entity for 
all components in a simulation, particularly if the component is a li- 
brary unit for which no annotated description exists. The v a l e n t i t y  
construct allows the user to  select the components of an architecture 
to be monitored. The VAL Transformer will only generate code to 
monitor components marked with v a l e n t i t y .  The next section on 
the VAL Transformer explains how components are monitored. 
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architecture SIWLE of TsoBi tCounter  is 
signal 91, 92, Qlbar, Qlbar : b i t ;  
signal D1. D2 : b i t ;  

component DFlipFlop 
port(Clk, D : in  b i t ;  

9 .  Qbar : out b i t ;  

Reset : in b i t ) ;  

- - I  s tate model is b i t ;  -- local state model declaration 
end component ; 

for all: DFlipFlop use 

entity DFlipFlop (SIMPLE) ; 
--I valentity; -- use the transformed version of this 
--I valarchitecture; -- component for checking 

begin 
D F L l  : DFlipFlop 

port map(Clk, D 1 ,  Ql,  Qlbar. Reset); 
DFL2 : DflipFlop 

port  rap(C1k. D2. 92. Qlbar, Reset); 

D2 <= (91 and Q2bar) or (Qlbar and 92); 
D 1  <= Clk;  
B i t 0  <= 91; 
B i t 1  <= 92; 

-- mapping annotations relate the d a t e  of the counter 
-- to the states of the components 
- - I  select state is 
- - I  0 => finally(DFL2.state = '0' and DFLl.state = '0') 

- - I  
--I severity warning; 
--I 
--I report "Counter s ta te  does not match f l i p f l o p  state" 

- - I  severity saming; 
- - I  2 -> finally(DFLZ.state - '1' and DFLl.state = '0') 

- - I  report "Counter state does not match fl ipflop state" 

- - I  severity warning; 
- - I  3 => finally(DFL2.state = '1' and DFLl.state = '1') 

- - I  r epo r t  "Counter s ta te  does not  match f l i p f l o p  state" 

- - I  severity warning; 
- - I  end select; 
end SIWLE; 

report "Counter s ta te  does not  match f l i p f l o p  state" 

1 => finally(DFL2.state = '0' and DFLl.state = '1') 

Figure 7: Two-hit Counter Architecture 

archi tecture  S of 
TESTEENCE i s  
component 
TESTXNTITY : A; 

. . .  

4.0 VAL Transformer 

archi tecture  SXXPANDED 
of, TESTEENCH is - component TESTXNTITY : 

A-OUTSTATE; 

The VAL Transformer runs as a pre-processor on an annotated 
VHDL description to generate a self-checking VHDL description. 

4.1 Structure of the Translation 
The translation algorithm is based on the generation of an addi- 

tional architecture called the MONITOR that contains an instantiation 
of the architecture under test and can check its outputs using the as- 
sertions in the entity declaration. The concept is similar to plugged 
a device into a bed of nails for testing. The monitor body has vis- 
ibility over all signals traveling between the actual entity body and 
the other components in the simulation. One advantage of this ap- 
proach is that VAL assertions can also measure the contribution of 
the entity body's outputs to their environment. A difficult problem 
in the translation is providing visibility over the component's state 
needed for the mapping annotations. This is solved by creating an 
additional port in the entity declaration and passing the state on the 
port. 

The design units involved in the translation are shown in Figure 8. 
Assume an entity A exists containing VAL annotations. Three design 
units are generated; two entity declarations and an architecture. The 

architecture (named MOIIITOR) contains the VHDL translation of the 
VAL annotations that appeared in the entity declaration. This in- 
cludes the annotations which maintain the entity's state model. The 
ports of architecture MOIIITOR are the same as for entity A with the 
addition of an out port of the same type as the entity's state model. 
This out port is used to provide visibility over the state of com- 
ponents of type A to any annotations within any architecture that 
instantiates a component of type A. The generated entity A-OUTSTATE 
describes the interface for MOIIITOR. 

Architecture MOIIITOR contains a component SOCKET having the 
same ports as entity A with the addition of an in port of the same 
type as the entity's state model. A translated version of the orig- 
inal architecture body T of A is plugged into this socket. Because 
the entity's state is passed into the SOCKET through a port, it is vis- 
ible to annotations within the architectural body. The translated 
version of T, TXXPANDED, contains a translation of the VAL annota  
tions appearing in the architecture into VHDL. Its entity interface 
is described by AINSTATE. 

archi tecture  MONITOR of 
?,OUTSTATE is  4 component SOCKET : 

A-INSTATE; 

I I I I 
archi tecture  TXXPANDED 
of AlNSTATE i s  
-- VHDL translation H --of VAL annotattons 

' archi tecture  T 
of A is  
- - V A L  Annotations - I I 

Figure 8: Relationship Between Design Units 

4.2 Translation of Major Language Constructs 
Given the environment for handling scoping and visibility among 

design units described above, a translation algorithm can he given 
for each of the language constructs in VAL. The complete details of 
the VAL to VHDL translation can he found in [7]. The translation 
mechanism for the f i n a l l y  assertion and time qualified assertions 
are presented here to give the general flavor of the translation pro- 
cess. 

4.2.1 Translation of Finally Assertion 
The general form of the finally assertion is: 
finally <test-expression> 

[ report <message_expression>l 

[ severity <severity~expression>l ; 

Within the MONITOR architecture a process is created for each fi- 
nally assertion. (See Figure 9.) This process is sensitive to all of 
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the signals in the <test-expression> and , in addition, to a wake- 
up signal VAL-CBE. When the process is activated due to  a change 
in one of the signals in <test-expression>,  it remembers the new 
value of <test-expression> and sets the signal VAL-CBE t o  wake 
itself up a t  the beginning of the next time point to  check the re- 
membered value of <test-expression>.  The remembered value of 
<test-expression> will be the value set a t  the end of all the deltas 
in the previous simulation point. 

process ( <test-expression sensi t ivi ty  l is t>.VAL-CBE ) 

variable OLDB : BOOLEAN := TRUE; 
va r i ab le  I B  : BOOLEAN :- TRUE; 

begin 
if not VAL-GBE’QUIET then 

assert OLDB 
report  <message-expression> 
severity <severity-expression>; 

end if; 
I B  :s <testsxpression>;  
if (IB /= OLDB) then 

OLDB := m; 
VAL-GEE <= not VALSBE a f te r  I f s ;  

end if; 
end  process; 

Figure 9: Translation of Finally 

4.2.2 Translation of Time Qualified Expressions 

In general, a time qualified boolean expression will have the fol- 
lowing form: 

expr during [Tl,T2] 

This is translated into VHDL by creating a virtual signal (GBExpr) 
driven by the boolean expression and then checking the stability of 
the signal over the requested time interval. The translation looks 
like: 

signal GBExpr : boolean; 

GBExpr <= expr ; 
. . .  

GBExpr’STABLE(T2 - T I )  

Recall that T2 >= Ti in the time qualified boolean expression, and 
therefore the argument of the attribute ’STABLE must be positive or 
zero. Nested time qualified expressions generate successive applica- 
tions of the ’STABLE attribute. 

5.0 Experience, Status, and Future Work 
The VAL Transformer is currently under development. A pro- 

totype transformer for a subset of VAL is currently running with 
VHDL 7.2. We are currently implementing a VHDL 1076 version 
of the Transformer. Very preliminary experiments show that anno- 
tat,ions in general may slow down the simulation by 20% t o  70%, 
depending of the extent of their use. VAL provides a mechanism 
(the configuration annotations) for selecting the components that 
are monitored. This allows the user to  select the level of checking 
necessary for a given application. 

VAL has been used in the design and debugging of several bench- 
marks of moderate size. These include the traffic light controller 
specified in [6] and described in VHDL in [9], the two-bit counter 
from which earlier examples have been taken, the ALU in [IO], and 
a simple 16-bit CPU. In all cases the VAL annotation has provided 
a clean and simple specification of the intended behavior. Perhaps 
more importantly, the design checking provided by VAL significantly 
increased our confidence in the correctness of the design. In one in- 
stance (the two-bit counter described earlier), an outright design 

bug missed by the designer in reviewing the VHDL simulation out- 
put was flagged and quickly located when the same simulation was 
automatically checked using VAL. Mapping annotations were par- 
ticularly useful in isolating the cause of the error. The reason for 
this is that  they allow the subcomponent(s) related to  an error to  
be immediately identified, since an error is detected as soon as an 
assertion is violated, not just a t  the outputs of a component. 

Currently we are focusing on gaining more experience with anno- 
tating larger benchmarks. Language extensions such as additional 
abstraction mechanisms may be necessary for large and complex en- 
tities. Additional kinds of annotations, such as package, type and 
subtype constraints akin to  those in (51 might also be useful. While 
the current mapping annotations have so far proved adequate, their 
coarse granularity doesn’t provide the detailed level of constraint 
checking that  might be needed. As an aid in debugging, A means 
of enabling and disabling more detailed assertions would be useful. 
Finally, VAL’S semantics were kept simple to allow the potential ap- 
plication of formal verification methods [2,3]. Formal verification 
would provide a degree of verification beyond or perhaps in addition 
to  the current model of simulation time constraint checking. 

We view VAL as a trend in hardware design languages, and not 
as a finished project. The next development will probably be con- 
structs for expressing design hierarchy. These are clearly required, 
even to  develop our current VAL checker into a design debugger for 
use with VHDL simulators. Hierarchy constructs are quite clearly 
needed to  pursue more ambitious applications of design languages 
such as mathematical verification of designs and (semi-automatic or 
interactive) synthesis. 
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