
Int. J. of Information Technology and Web Engineering, 1(1), 59-75, January-March 2006 59

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

Engineering Wireless
Mobile Applications

Qusay H. Mahmoud, University of Guelph, Canada

Zakaria Maamar, Zayed University, United Arab Emirates

ABSTRACT

Conventional desktop software applications are usually designed, built, and tested on a platform
similar to the one on which they will be deployed and run. Wireless mobile application
development, on the other hand, is more challenging because applications are developed on
one platform (like UNIX or Windows) and deployed on a totally different platform like a
cellular phone. While wireless applications can be much smaller than conventional desktop
applications, developers should think in small terms of the devices on which the applications
will run and the environment in which they will operate instead of the amount of code to be
written. This paper presents a systematic approach to engineering wireless application and
offers practical guidelines for testing them. What is unique about this approach is that it takes
into account the special features of the new medium (mobile devices and wireless networks),
the operational environment, and the multiplicity of user backgrounds; all of which pose new
challenges to wireless application development.

Keywords: mobile technologies; process design; screen design; software design; testing
activities; testing issues; wireless technologies

INTRODUCTION
The general mobile computing model

in a wireless environment consists of two
distinct sets of entities (Figure 1): Mobile
Clients (MCs) and fixed hosts. Some of
the fixed hosts, called Mobile Support Sta-
tions (MSSs), are enhanced with wireless
interfaces. An MSS can communicate with
the MCs within its radio coverage area

called wireless cell. An MC can communi-
cate with a fixed host/server via an MSS
over a wireless channel. The wireless chan-
nel is logically separated into two sub-chan-
nels: an uplink channel and a downlink chan-
nel. The uplink channel is used by MCs to
submit queries to the server via an MSS,
whereas the downlink channel is used by
MSSs to disseminate information or to for-

IDEA GROUP PUBLISHING

This chapter appears in the publication, International Journal of Information Technology and Web Engineering Volume 1, Issue 1
edited by Ghazi Alkhatib and David Rine © 2006, Idea Group Inc.

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITJ3052

60 Int. J. of Information Technology and Web Engineering, 1(1), 59-75, January-March 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

ward the responses from the server to a
target client. Each cell has an identifier
(CID) for identification purposes. A CID
is periodically broadcasted to all the MCs
residing in a corresponding cell.

A wireless mobile application is de-
fined as a software application, a wireless
service or a mobile service that can be ei-
ther pushed to users’ handheld wireless
devices or downloaded and installed, over
the air, on these devices.1 Such applica-
tions must work within the daunting con-
straints of the devices themselves:

• Memory: Wireless devices such as cel-
lular phones and two-way pagers have
limited amounts of memory, obliging de-
velopers to consider memory manage-
ment most carefully when designing ap-
plication objects.

• Processing power: Wireless devices
also have limited processing power (16-
bit processors are typical).

• Input: Input capabilities are limited. Most
cell phones provide only a one-hand key-
pad with twelve buttons: the ten numer-

als, an asterisk (*), and a pound sign (#).
• Screen: The display might be as small

as 96 pixels wide by 54 pixels high and 1
bit deep (black and white). The amount
of information that can be squeezed into
such a tight screen is severely limited.

In addition, the wireless environment
imposes further constraints: (1) wireless
networks are unreliable and expensive, and
bandwidth is low; (2) they tend to experi-
ence more network errors than wired net-
works; and (3) the very mobility of wire-
less devices increases the risk that a con-
nection will be lost or degraded. In order to
design and build reliable wireless applica-
tions, designers need to keep these con-
straints in mind and ask themselves, what
impact do wireless devices with limited re-
sources have on application design?

The motivation for this paper is pro-
vided in part by the above characteristics
that form some of the foundations for per-
vasive computing environments. Such char-
acteristics pose several challenges in design-
ing wireless mobile applications for mobile

Figure 1. Mobile computing model

�� �
�

�� �
�

�� �
�

� �� �� �� ��	
 ��

� �	
��

 �
���

�
������

���
��

������ ��
��

������

� �	
��

�������

��� �
��

Int. J. of Information Technology and Web Engineering, 1(1), 59-75, January-March 2006 61

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

computing. This paper provides a detailed
treatment of the impact of these character-
istics on engineering wireless mobile appli-
cations and presents a systematic approach
for designing them. In addition, it offers prac-
tical design techniques for wireless applica-
tion design and development.

WIRELESS APPLICATIONS
Wireless applications can be classi-

fied into two streams (Beaulieu, 2002;
Burkhardt, Henn, Hepper, Rintdorff, &
Schack, 2002):

1. Browser-based: Applications developed
using a markup language. This is similar
to the current desktop browser model
where the device is equipped with a
browser. The Wireless Application Pro-
tocol or WAP (http://www.openmobile
alliance.org) follows this approach (Open
Mobile Alliance, 2005).

2. Native applications: Compiled applica-
tions where the device has a runtime
environment to execute applications.
Highly interactive wireless applications
are only possible with the latter model.
Interactive applications, such as mobile
computer games, are a good example.
Such applications can be developed us-
ing the fast growing Java 2 Micro Edi-
tion (J2ME) platform (http://www.java.
sun.com/j2me), and they are known as
MIDlets.

Another stream is the hybrid applica-
tion model that aims at incorporating the
best aspects of both streams above. The
browser is used to allow the user to enter
URLs to download native applications from
remote servers, and the runtime environ-
ment is used to let these applications run
on the device.

WAP Might be Dead,
but What Did We Learn?

WAP and J2ME MIDP solve similar
problems but each can learn a couple of
things from the other. There are special
features that are available in WAP but not
in MIDP and vice versa. These features
are summarized as follows:

• MIDP provides a low-level graphics
APIs that enable the programmer to
have control over every pixel of the
device’s display. This is important for
entertainment applications (such as
games) in a wireless environment.

• MIDP is the way to go for games. The
nature of MIDlets (they exist on the
device until they are explicitly removed)
allows users to run them even when the
server becomes unavailable (support for
disconnected operations).

• WML provides tags and possible pre-
sentation attributes, but it doesn’t define
an interaction model. For example,
WML defines a SELECT tag for pro-
viding a list. Some WAP-enabled devices
interpret the SELECT tag as a popup
menu list while others interpret it as a
menu that can be used for navigation.
Therefore, there is no standard interac-
tion model defined for this element. If a
developer uses it, the application may
run well on some devices and poorly on
others. MIDlets, on the other hand, pro-
vide a clearly defined standard for in-
teraction using commands.

A Micro Browser is Needed
MIDlets combine excellent online and

off-line capabilities that are useful for the
wireless environment, which suffers from
low bandwidth and network disconnection.
Integrating WAP and MIDP opens up pos-

62 Int. J. of Information Technology and Web Engineering, 1(1), 59-75, January-March 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

sibilities for new wireless applications and
over the air distribution models. Therefore,
WAP and MIDP shouldn’t be viewed as
competing but rather as complementing
technologies. In order to facilitate down-
loading wireless applications over the air,
there is a need for some kind of an envi-
ronment on the handset that allows the user
to enter a URL for a MIDlet Suite, for ex-
ample. This environment could very well
be a WAP browser as shown in Figure 2.

Similar to Java Applets that are inte-
grated into HTML, MIDlets can be inte-
grated into a WML or an XHTML page.
Such a page can then be called from a WAP
browser, and the embedded MIDlet gets
downloaded and installed on the device. In
order to enable this, a WAP browser is
needed on the device. Another alternative
approach for over-the-air provisioning is the
use of a Short Message Service (SMS)
which has been done by Siemens where
the installation of MIDlets is accomplished
by sending a corresponding SMS. If the
SMS contains a URL to a Java Application
Descriptor (JAD) file specifying a MIDlet
Suite, then the recipient can install the ap-
plication simply by confirming the SMS.

DESIGN CHALLENGES AND
POSSIBLE SOLUTIONS

In this paper, we are more concerned
with native interactive applications that can

be developed using the J2ME platform or
a similar technology. J2ME-based wireless
applications can be classified into local
(stand-alone) and network applications.
Local applications perform all their opera-
tions on a handheld wireless device and
need no access to external data sources
through a wireless network. Examples in-
clude calculators and single-player games.
Network applications, on the other hand,
consist of some components running on a
wireless device and others running on a
network, and thus depend on access to
external resources. An example would be
an e-mail application with a client residing
on a wireless phone interacting with a
Simple Mail Transfer Protocol (SMTP)
server to send/receive e-mail messages. A
major difference between local and net-
worked applications is in the way they are
tested. Local applications are easier to test
than network applications. For example, a
calculator application can run on a wire-
less device even when it is not connected
to any network, but an e-mail client will not
work without a connection to e-mail serv-
ers.

Challenges
The constraints discussed earlier pose

several crucial challenges, which must be
faced in order for wireless applications to
function correctly in the target environment.

• Transmission errors: Messages sent
over wireless links are exposed to inter-
ference (and varying delays) that can
alter the content received by the user,
the target device, or the server. Appli-
cations must be prepared to handle these
problems. Transmission errors may oc-
cur at any point in a wireless transac-
tion and at any point during the sending

Figure 2. Combining WAP and J2ME

�

Int. J. of Information Technology and Web Engineering, 1(1), 59-75, January-March 2006 63

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

or receiving of a message. They can
occur after a request has been initiated,
in the middle of the transaction, or after
a reply has been sent. While wireless
network protocols may be able to de-
tect and correct some errors, error-han-
dling strategies that address all kinds of
transmission errors that are likely to oc-
cur are still needed.

• Message latency: Message latency, or
the time it takes to deliver a message, is
primarily affected by the nature of each
system that handles the message, and
by the processing time needed and de-
lays that may occur at each node from
origin to destination. Message latency
should be taken into account and users
of wireless applications should be kept
informed of processing delays. It is es-
pecially important to remember that a
message may be delivered to a user long
after the time it is sent. A long delay might
be due to coverage problems or trans-
mission errors, or the user’s device might
be switched off or have a dead battery.
Some systems keep trying, at different
times, to transmit the message until it is
delivered. Other systems store the mes-
sage then deliver it when the device is
reconnected to the network. Therefore,
it is important to design applications that
avoid sending stale information, or at
least to make sure that users are aware
that it is not up-to-date. Imagine the pos-
sible consequences of sending a stock
quote that is three days old without warn-
ing the user!

• Security: Any information transmitted
over wireless links is subject to inter-
ception. Some of that information could
be sensitive, like credit card numbers and
other personal information. The solution
needed really depends on the level of

sensitivity. To provide a complete end-
to-end security solution, you must imple-
ment it on both ends, the client and the
server, and assure yourself that inter-
mediary systems are secure as well.

Possible Solutions
Here are some practical hints useful to

consider when developing mobile applications.

• Understand the environment. Do some
research upfront. As with developing any
other software application, we must un-
derstand the needs of the potential us-
ers and the requirements imposed by all
networks and systems the service will
rely on.

• Choose an appropriate architecture.
The architecture of the mobile applica-
tion is very important. No optimization
techniques will make up for an ill-con-
sidered architecture. The two most im-
portant design goals should be to mini-
mize the amount of data transmitted over
the wireless link, and to anticipate er-
rors and handle them intelligently.

• Partition the application. Think care-
fully when deciding which operations
should be performed on the server and
which on the handheld device.
Downloadable wireless applications al-
low locating much of an application’s
functionality of the device; it can retrieve
data from the server efficiently, then
perform calculations and display infor-
mation locally. This approach can dra-
matically reduce costly interaction over
the wireless link, but it is feasible only if
the device can handle the processing that
the application needs to perform.

• Use compact data representation. Data
can be represented in many forms, some
more compact than others. Consider the

64 Int. J. of Information Technology and Web Engineering, 1(1), 59-75, January-March 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

available representations and select the
one that requires fewer bits to be trans-
mitted. For example, numbers will usu-
ally be much more compact if transmit-
ted in binary rather than string forms.

• Manage message latency. In some
applications, it may be possible to do other
work while a message is being pro-
cessed. If the delay is appreciable —
and especially if the information is likely
to go stale — it is important to keep the
user informed of progress. Design the
user interface of your applications to
handle message latency appropriately.

• Simplify the interface. Keep the
application’s interface simple enough that
the user seldom needs to refer to a user
manual to perform a task. To do so: re-
duce the amount of information displayed
on the device; make input sequences
concise so the user can accomplish tasks
with the minimum number of button
clicks; and offer the user selection lists.

AD-HOC DEVELOPMENT
PROCESS

An ad-hoc development process for
wireless applications comprises three steps:

1. Write the application. Several Integrated
Development Environments (IDEs) are
available for developing Java-based
wireless applications, for example, Sun’s
J2ME Wireless Toolkit, and Metrowerks
CodeWarrior.

2. Test the application in an emulation envi-
ronment. Once the application compiles
nicely, it can be tested in an emulator.

3. Download the application to a physical
device and test it. Once the application’s
performance is satisfactory on one or
more emulators, it can be downloaded
to a real device and tested there. If it is

a network application, it is tested on a
live wireless network to ensure that its
performance is acceptable.

It is clear that many important soft-
ware engineering activities are missing
from this ad-hoc development process. For
example, there is no formal requirements
analysis phase, and so following an ad-hoc
development process may lead to building
a product different from the one custom-
ers want. Also, testing an application with-
out knowing its requirements is not an easy
task. In addition, issues related to the oper-
ating environment such as network band-
width should be considered during the de-
sign so that the performance of the appli-
cation will be satisfactory.

WIRELESS SOFTWARE
ENGINEERING

While wireless application develop-
ment might appear to have less need for
the coordination that a process provides,
aspects of development, testing, evaluation,
deployment, and maintenance of a wire-
less application have to be integrated in the
design process throughout the full devel-
opment life cycle. We have put forward a
systematic approach to developing wire-
less applications, which is compatible with
the Rational Unified Process or RUP
(Jacobsen, Booch, & Rumbaugh, 2000) in
the sense that it is iterative and responsibil-
ity-driven. We have developed this system-
atic approach based on our experience de-
signing and building wireless applications.
We recognized that the development of a
wireless application is not a one-shot task,
and testing wireless applications is more
challenging than testing conventional desk-
top software applications; therefore, an ad-
hoc development process cannot be used.

Int. J. of Information Technology and Web Engineering, 1(1), 59-75, January-March 2006 65

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

Development Activities
Our software engineering approach to

wireless application development consists of
a set of manageable activities that, if fol-
lowed properly, leads to reliable and main-
tainable wireless applications. The activities
of our approach are shown in Figure 3.

Planning. This iterative process be-
gins with a planning phase, which is an ac-
tivity that identifies the objectives of the
wireless application and specifies the scope
of the first increment. In addition, the costs
of the overall project are estimated, the
risks are evaluated, and a tentative sched-
ule is set.

Mobile user analysis. First, we
must understand the audience of the appli-
cation and the environment in which it will
operate. As an example, if the application
is a wireless network-aware application
such as a multi-player game, the study will
include the users of the application and how

they plan to use it. The output at the end of
this phase is a wireless application plan
document that serves as the mobile end-
user requirement.

Scenario analysis. This phase is simi-
lar to conventional software requirements
analysis, and therefore concepts and prin-
ciples of requirements analysis can be ap-
plied here (Pressman, 2005). In this phase,
the mobile end user, an interaction designer,
and a developer sit together to come up
with a complete scenario analysis model
that takes into account the following types
of scenario analysis:

• Screen and interaction analysis: The
basic unit of interaction between the user
and the mobile device is the screen,
which is an object that encapsulates de-
vice-specific graphic user input. There-
fore, the content to be displayed on the
screen is identified. Content may include
text fields, menus, lists, and graphics.

Figure 3. Wireless application development activities

66 Int. J. of Information Technology and Web Engineering, 1(1), 59-75, January-March 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

Interaction analysis specifies how the
user interacts with the application. In
order to find out how the user will inter-
act with the application, UML (Booch
et al., 2000) use cases are developed.

• Usage analysis: The use case model
developed during screen and interaction
analysis is mainly related to how users
interact with the application through the
screen. The whole functionality of the
application should be described with use
cases.

• Environment analysis: The environ-
ment in which the application will oper-
ate should be described in detail. This
includes the different wireless networks
and back-end systems used. In addition,
target mobile devices such as cellular
phones and PDAs on which the appli-
cation will run should be described in
detail.

The output of this phase is an infor-
mation analysis model document produced
by the interaction designer and developer
that outlines the functional requirements of
the application and the constraints of the
environment. This document is reviewed
by developers and other stakeholders and
modified as required.

Architectural design. This phase is
concerned with the overall architecture (or
structure) of the wireless application. Ar-
chitecture is very important for any appli-
cation, and no optimization techniques will
make up for an ill-considered architecture.
Design patterns can be used in this phase
to reuse experience in order to come up
with an extensible, high-performance ar-
chitecture. Some of the most important
design goals should be to minimize the
amount of data transmitted over the wire-

less link, and to anticipate errors and handle
them intelligently. Other design and archi-
tecture issues include:

• Application partitioning. Designers
need to think carefully when deciding
which operations should be performed
on the server and which on the wireless
device. J2ME allows designers to locate
much of an application’s functionality on
the device; it can retrieve data from the
server efficiently, then perform calcula-
tions and display information locally. This
approach can dramatically reduce costly
interaction over the wireless link, but it
is feasible only if the device can handle
the processing your application needs to
perform.

• Message latency. In some applications,
it may be possible to do other work while
a message is being processed. If the
delay is appreciable — and especially if
the information is likely to go stale — it
is important to keep the user informed
of progress.

The outcome of the architectural de-
sign phase is a design document that de-
tails the system architecture.

Navigation and user interface de-
sign. Once the application architecture has
been established and its components iden-
tified, the interaction designer prepares
screen mockups and navigation paths that
show how the user moves from one screen
to another to access services. Figure 4
shows a simple example where the user
will have to login before she is able to check
her messages.

The user interface is the face of the
application to users. A poorly designed user-
interface will scare the user away, and a

Int. J. of Information Technology and Web Engineering, 1(1), 59-75, January-March 2006 67

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

well-designed user interface will give a good
first impression and improves the user’s
perception of the services offered by the
application. The user interface must be
well-structured and easy to use. Here are
some guidelines that can help in designing
simple yet effective user interfaces for
mobile devices with tiny screens.

• Keep the application’s interface simple
enough that the user seldom needs to
refer to a user manual to perform a task.

• Reduce the amount of information dis-
played on the device.

• Make input sequences concise so the
user can accomplish tasks with the mini-
mum number of button clicks.

• Offer the user selection lists.
• Do not depend on any specific screen

size.

The output of this phase is a user
manual that describes the screen mockups
and the navigational paths.

Implementation. In this phase de-
velopment tools are used to implement the
wireless application. There are several tools
available for building wireless applications
such as Sun’s J2ME Wireless Toolkit. We
would recommend using a tool that allows
installing the application in various emula-
tion environments. Conventional implemen-

tation strategies and techniques such as
coding standards and code reviews can be
used in this phase.

Testing. Software testing is a sys-
temic process to find differences between
the expected behavior of the system speci-
fied in the software requirements docu-
ment and its observed behavior. In other
words, it is an activity for finding errors in
the software system and fixing them so
users can be confident that they can de-
pend on the software. Errors in software
are generally introduced by people involved
in software development (including ana-
lysts, architects, designers, programmers,
and the testers themselves). Examples of
errors include mismatch between require-
ments and implementation.

Many developers view the subject of
software testing as “not fashionable,” and,
as a result, too few of them really under-
stand the job software testers do. Testing
is an iterative process and should start from
the beginning of the project. Software de-
velopers need to get used to the idea of
designing software with testing in mind.
Some of the new software development
methodologies such as eXtreme Program-
ming (XP) (Beck, 1999) stress incremen-
tal development and testing. XP is ideally
suited for some types of applications, de-
pending on their size, scope, and nature.

Figure 4. Screen mockups

68 Int. J. of Information Technology and Web Engineering, 1(1), 59-75, January-March 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

User interface design, for example, ben-
efits highly from rapid prototyping and test-
ing usability with actual users.

Wireless applications, like all other
types of software, must be tested to en-
sure functionality and usability under all
working conditions. Testing is even more
important in the wireless world because
working conditions vary a lot more than they
do for most software. For example, wire-
less applications are developed on high-end
desktop machines but deployed on
handheld wireless devices with very dif-
ferent characteristics.

One way to make testing simple is to
design applications with testing in mind.
Organizing the system in a certain way can
make it much easier to test. Another impli-
cation is that the system must have enough
functionality and enough output informa-
tion to distinguish among the system’s dif-
ferent functional features. In our approach,
and similar to many others, the system’s
functional requirements (features that the
system must provide) are described using
the Unified Modeling Language (Booch et
al., 2000) to create a use-case model, then
detailing the use cases in a consistent writ-
ten form. Documenting the various uses of
the system in this way simplifies the task
of testing the system by allowing the tester
to generate test scenarios from the use
cases. The scenarios represent all expected
paths users will traverse when they use the
features that the system must provide.

Deployment. Deploying and running
applications in an emulation environment is
a very good way to test the logic and flow
of your application generally, but you will
not be certain it will satisfy users until you
test it on a real physical device connected
to a wireless network. Your application’s

performance may be stunning in the emu-
lator, which has all the processing power
and memory of your desktop machine at
its command, but will it perform well on
the handheld device, with its limited
memory and processing power, low band-
width, and other constraints? In this phase,
the application is deployed on a live net-
work and evaluated.

Customer Evaluation. Once the ap-
plication has been deployed, it is ready to
be downloaded by users for evaluation and
usage. In this phase, users start using the
deployed application and report any prob-
lems they may experience to the service
provider.

Maintenance. Software mainte-
nance encompasses four activities: error
correction, adaptation, enhancement, and
reengineering (Pressman, 2005). The ap-
plication will evolve over time as errors are
fixed and customers request new features.
In this phase, users report errors to and
request new features from the service pro-
vider, and developers fix errors and en-
hance the application.

TESTING ISSUES AND
TESTING ACTIVITIES

The wide variety of mobile devices
such as wireless phones and PDAs re-
sults in each device running a different
implementation of the J2ME environment.
Varying display sizes add to the complex-
ity of the testing process. In addition, some
vendors provide proprietary API exten-
sions. As an example, some J2ME ven-
dors may support only the HTTP proto-
col, which the MIDP 1.0 specification re-
quires, while others support TCP sockets
and UDP datagrams, which are optional.

Int. J. of Information Technology and Web Engineering, 1(1), 59-75, January-March 2006 69

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

Here are some guidelines for testing wire-
less applications.

Implementation Validation. Ensur-
ing that the application does what it is sup-
posed to be is an iterative process that you
must go through during the implementation
phase of the project. Part of the validation
process can be done in an emulation envi-
ronment such as the J2ME Wireless Toolkit
(Sun Microsystems, 2005), which provides
several phone skills and standard input
mechanisms. The toolkit’s emulation envi-
ronment does not support all devices and
platform extensions, but it allows for the
application to look appealing and to offer a
user-friendly interface on a wide range of
devices. Once the application has been
tested on an emulator, you can move on to
the next step and test it on a real device,
and in a live network.

Usability Testing. In usability test-
ing, the focus is on the external interface
and the relationships among the screens of
the application. As an example, consider
an e-mail application that supports entry and
validation of a user name and password,
enables the user to read, compose, and send
messages, and allows maintenance of re-
lated settings, using the screens shown in
Figure 3, among others.

In this example, start the test at the
Login window. Enter a user name and a pass-
word and press the soft button labeled Login.
Enter a valid user name and password. The
application should display the main menu.
Does it? The main menu should display a
SignOut button. Does it? Press the SignOut
button. Does the application return to the
Login screen? Write yourself a note to raise
the question, “Why does the user ‘log’ in but
‘sign’ out?” Now enter an invalid user name

or password. The program should display a
meaningful message box with an OK button.
Does it? Press the OK button. Does the ap-
plication return to the Login screen?

You need to test the GUI navigation
of the entire system, making notes about
usability along the way. If, for example, the
user must traverse several screens to per-
form a function that’s likely to be very
popular, you may wish to consider moving
that particular function up the screen lay-
ers. Some of the questions you should ask
during usability testing include: is the navi-
gation depth (the number of screens the
user must go through) appropriate for each
particular function, does the application
minimize text entry (painful on a wireless
phone) or should it provide more selection
menus, can screens of all supported de-
vices display the content without truncat-
ing it, and if you expect to deploy the appli-
cation on foreign devices, does it support
international character sets?

Network Performance Testing.
The goal of this type of testing is to verify
that the application performs well in the
hardest of conditions (for example, when
the battery is low or the phone is passing
through a tunnel). Testing performance in
an emulated wireless network is very im-
portant. The drawback with testing in a live
wireless network is that so many factors
affect the performance of the network it-
self that you cannot repeat the exact test
scenarios. In an emulated network envi-
ronment, it is easy to record the result of a
test and repeat it later, after you have modi-
fied the application, to verify that the per-
formance of the application has improved.

Server-Side Testing. It is very likely
that wireless applications communicate with

70 Int. J. of Information Technology and Web Engineering, 1(1), 59-75, January-March 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

server-side applications. If your application
communicates with servers you control,
you have a free hand to test both ends of
the application. If it communicates with
servers beyond your control (such as
quotes.yahoo.com), you just need to find
the prerequisites of use and make the best
of them. You can test server-side applica-
tions that communicate over HTTP con-
nections using testing frameworks such as
HttpUnit (http://httpunit.sourceforge.net),
and measure a Web site’s performance
using httperf (http://citeseer.nj.nec.com/
mosberger98httperf.html), a tool designed
for measuring the performance of Web
servers.

Testing Checklists
Here we provide checklists that are

useful when testing your application, in both
emulation and live environments. These
checklists include tests that are usually per-
formed by certification programs offered
by Nokia and Motorola (Motorola Appli-
cation Certification Program).

Navigation Checklist. Here are
some items to check for when testing the
navigational paths of wireless applications:

• Successful startup and exit: Verify that
your application starts up properly and
its entry point is consistent. Also make
sure that the application exits properly.

• Application name: Make sure your ap-
plication displays a name in the title bar.

• Keep the user informed: If your appli-
cation does not start up within a few sec-
onds, it should alert the user. For large
applications, it is a good idea to have a
progress bar.

• Readable text: Ensure that all kinds of
content are readable on both grayscale

and color devices. Also make sure the
text does not contain any misspelled
words.

• Repainting screens: Verify that screens
are properly painted and that the appli-
cation does not cause unnecessary
screen repaints.

• Soft buttons: Verify that the functional-
ity of soft buttons is consistent through-
out the application. Verify that the whole
layout of screens and buttons is consis-
tent.

• Screen navigation: Verify that the most
commonly used screens are easily ac-
cessible.

• Portability: Verify that the application
will have the same friendly user inter-
face on all devices it is likely to be de-
ployed on.

Network Checklist. Some of the
items that should be inspected when test-
ing wireless applications are:

• Sending/Receiving data: For network-
aware applications, verify that the ap-
plication sends and receives data prop-
erly.

• Name resolution: Ensure that the ap-
plication resolves IP addresses correctly,
and sends and receives data properly.

• Sensitive data: When transmitting sen-
sitive data over the network, verify that
the data is being masked or encrypted.

• Error handling: Make sure that error
messages concerning network error con-
ditions (such as no network coverage)
are displayed properly, and that when
an error message box is dismissed, the
application regains control.

• Interruptions: Verify that, when the de-
vice receives system alerts, SMS mes-

Int. J. of Information Technology and Web Engineering, 1(1), 59-75, January-March 2006 71

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

sages, and so on while the application is
running, messages are properly dis-
played. Also make sure that when the
message box is dismissed the applica-
tion continues to function properly.

PROVISIONING
WIRELESS APPLICATIONS

Developers usually build, test, and
evaluate an application on a platform simi-
lar to the one on which it will be deployed
and ran. Development of wireless applica-
tions is more challenging because they typi-
cally are developed on one platform (such
as Solaris or MS Windows) but deployed
on a totally different one (such as a cell
phone or PDA). One consequence is that,
while emulators enable developers to do
some of their testing on the development
platform, ultimately they must test and
evaluate the application in the very differ-
ent environment of a live wireless network.

Wireless applications fall into two
broad categories:

• Local applications perform all their op-
erations on a handheld wireless device
and need no access to external data
sources through a wireless network.
Examples include calculators and single-
player games.

• Network applications consist of some
components running on a wireless de-
vice and others running on a network,
and thus depend on access to external
resources. An example would be an e-
mail application, with a client residing on
a wireless phone that interacts with an
SMTP server to send messages.

Although these two types of applica-
tions are different, they are deployed in the
same way. The big difference shows up

later: Local applications are easier to test
than network applications. For example, a
calculator application can run on a wire-
less phone even when it is not connected
to any network, but an e-mail client won’t
work without a connection to the SMTP
server that actually transmits the messages.

Over the Air Provisioning
For some time, wireless portals in

Europe such as Midletcentral have allowed
customers to download applications directly
to their phones, over the air. Over-the-air
provisioning of wireless applications (OTA)
is finally available in North America. Nextel
customers, for example, can download net-
work-aware wireless applications without
an update data cable. OTA is the deploy-
ment of wireless Java applications (MIDlet
suites) from the Internet to wireless devices
over a wireless network. Users need not
connect their devices to the desktop with a
data cable or visit a service center to install
or upgrade software. To take advantage of
OTA, you must equip your handheld device
with a mechanism to discover MIDlet suites
available for download, using the device’s
browser (such as a WAP browser) or a resi-
dent application written specifically to iden-
tify downloadable MIDlet suites. The pro-
cess of downloading MIDlets over the air is
illustrated in Figure 5.

RELATED WORK
The explosive growth of the wireless

mobile application market raises new engi-
neering challenges (Morisio & Oivo, 2003);
what is the impact of the wireless Internet
on engineering wireless mobile applications
for the new wireless infrastructure and
wireless handheld devices? Due to the lim-
ited experience with wireless technologies
and developing wireless applications, little

72 Int. J. of Information Technology and Web Engineering, 1(1), 59-75, January-March 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

work has been in the area of wireless soft-
ware engineering. We found a special is-
sue in the IEEE Transactions on Software
Engineering on “Software Engineering for
the Wireless Internet” (Morisio & Oivo,
2003). However, out of the six papers ac-
cepted in the special issue only two papers
deal with the development process.
Ocampo, Boggio, Munch, and Palladino
(2003) provided an initial reference process
for developing wireless Internet applica-
tions, which does not differ significantly
from traditional iterative process models but
includes domain-specific guidance on the
level of engineering processes. Satoh
(2003) developed a framework for build-
ing and testing networked applications for
mobile computing. The framework is aimed
to emulate the physical mobility of portable
computing devices through the logical mo-
bility of applications designed to run on
them; an agent-based emulator is used to
perform application-level emulation of its
target device.

More recently, Chen (2004) proposed
a methodology to help enterprises develop

business strategies and architectures for
mobile applications. It is an attempt to for-
mulate a life cycle approach to assisting
enterprises in planning and developing en-
terprise-wide mobile strategies and appli-
cations. This methodology is more con-
cerned with business strategies rather than
technical details, and thus it is targeted at
managers rather than developers. And fi-
nally, Nikkanen (2004) presented the de-
velopment work of a browser-agnostic
mobile e-mail application. It reports on ex-
periences porting a legacy WAP product
to a new XHTML-based browser applica-
tion and offers guidelines for developing
mobile applications.

Our work is different in the sense that
we provide a detailed treatment of the im-
pact of the characteristics of mobile de-
vices and the wireless environment on en-
gineering wireless mobile applications; we
discuss the challenges and offer practical
solutions for developing mobile applications.
We present a systematic approach for de-
signing wireless mobile application. Our
approach is iterative just like in Ocampo et

Figure 5. Over-the-air provisioning

Int. J. of Information Technology and Web Engineering, 1(1), 59-75, January-March 2006 73

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

al. (2003), but differs in the sense that our
process has more focus on requirements
elicitation and more importantly scenario
analysis. We do not provide a testing
framework, but our testing strategy and
checklist is more practical than using just
an emulated environment. Finally, unlike the
work reported in Chen (2004), our method-
ology is targeted at developers and research-
ers rather than managers. And, unlike the
work in Nikkanen (2004), our guidelines and
systematic approach is not limited to WAP-
based applications, but can be applied to
engineering any wireless application.

CONCLUSION AND
FUTURE WORK

As the wireless Internet becomes a
reality and software developers become
comfortable with the methods and pro-
cesses required to build software, we rec-
ognize that the methods developed for con-
ventional systems are not optimal for wire-
less applications. In particular, wireless
application development doesn’t always fit
into the development model originated to
cope with conventional large software sys-
tems. Most wireless application systems
will be smaller than any medium-size
project; however, a software development
method can be just as critical to a small
software project success as it is to that of
a large one. In this paper, we have pre-
sented and discussed a systematic approach
to wireless application development, and
presented practical guidelines for testing
wireless applications. The proposed ap-
proach takes into account the special fea-
tures of the wireless environment. We have
successfully used the approach presented
to develop various wireless applications
ranging from a stock portfolio management

application to a mobile agent platform for
mobile devices (Mahmoud, 2002). Our fu-
ture work includes evaluating the effective-
ness of the proposed methodology, docu-
menting wireless software design patterns,
and building tools to automate the task of
testing wireless applications.

There are several interesting research
problems in the emerging area of wireless
mobile applications and services. Some of
these research issues include: novel mo-
bile services in the area of m-commerce
and health care; security and privacy is-
sues; mobile agents for mobile services;
discovery and interaction of mobile services;
enabling roaming of applications and pro-
files between different wireless standards;
and location-aware and context-aware
mobile services. We are currently address-
ing some of these research problems, and
research results will be presented in future
articles.

ACKNOWLEDGMENTS
The authors would like to thank the

anonymous reviewers for the many help-
ful suggestions for improving this paper. The
first author was supported in part by the
Natural Sciences and Engineering Re-
search Council of Canada (NSERC) Dis-
covery Grant No. 045635.

REFERENCES
Beaulieu, M. (2002). Wireless Internet

applications and architecture. Boston:
Addison-Wesley.

Beck, K. (1999). Extreme programming
explained: Embrace change. Addison-
Wesley.

Booch, G., Rumbaugh, J., & Jacobsen, I.
(2000). The Unified Modeling Lan-
guage user guide. Boston: Addison-
Wesley.

74 Int. J. of Information Technology and Web Engineering, 1(1), 59-75, January-March 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

Burkhardt, J, Henn, H., Hepper, S.,
Rintdorff, K., & Schack, T. (2002). Per-
vasive computing technology and ar-
chitecture of mobile Internet applica-
tions. London: Addison-Wesley.

Chen, M. (2004). A methodology for build-
ing mobile computing applications. In-
ternational Journal of Electronic
Business, 2(3), 229-243.

Jacobsen, I., Booch, G., & Rumbaugh, J.
(2000). The unified software develop-
ment process. Boston: Addison-Wesley.

Httperf. Retrieved January 13, 2005, from
http://www.hpl.hp.com/research/linux/
httperf

HttpUnit. Retrieved January 13, 2005, from
http://httpunit.sourceforge.net

Mahmoud, Q. (2002). MobiAgent: An
agent-based approach to the wireless
Internet. Journal of Internet Comput-
ing, special issue on Wireless Internet,
3(2), 157-162.

Morisio, M., & Oivo, M. (2003). Software
engineering for the wireless Internet
[Guest Editor’s Introduction]. IEEE
Transactions on Software Engineer-
ing, 29(12), 1057-1058.

Motorola Application Certification Program.
(n.d.). Retrieved February 10, 2005,
from http://qpqa.com/motorola/iden

Nikkanen, M. (2004). User-centered de-
velopment of a browser-agnostic mobile
e-mail application. In Proceedings of
the Third Nordic Conference on Hu-
man-Computer Interaction, Tampere,
Finland (pp. 53-56). New York: ACM
Press.

Ocampo, A., Boggio, D., Munch, J., &
Palladino, G. (2003). Towards a refer-
ence process for developing wireless
Internet services. IEEE Transactions
on Software Engineering, 29(12),
1122-1134.

Open Mobile Alliance. (2005). Retrieved
from March 15, 2005, http://
www.openmobilealliance.org

Pressman, R. S. (2005). Software engi-
neering: A practitioner’s approach
(6th ed.). New York: McGraw Hill.

Satoh, I. (2003). A testing framework for
mobile computing software. IEEE
Transactions on Software Engineer-
ing, 29(12), 1112-1121.

Sun Microsystems J2ME. (2005). Re-
trieved from http://java.sun.com/j2me

Sun Microsystems J2ME Wireless Toolkit.
(2005). Retrieved from http://
java.sun.com/products/j2mewtoolkit

ENDNOTE
1 We use the terms wireless application

and mobile application interchangeably
throughout this article.

Int. J. of Information Technology and Web Engineering, 1(1), 59-75, January-March 2006 75

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

Qusay H. Mahmoud (qmahmoud@cis.uoguelph.ca) earned his PhD in computer
science from Middlesex University (UK) in 2002. Currently, he is an assistant
professor in the Department of Computing and Information Science, University of
Guelph, and associate chair of the Distributed Systems and Wireless &
Telecommunications Systems Technology program at the University of Guelph-
Humber. His research interests include wireless computing, agent technology, and
Web-based systems.

Zakaria Maamar (zakaria.maamar@zu.ac.ae) earned his PhD in computer science
from Laval University (Canada) in 1998. Currently, he is an associate professor in
the College of Information Systems, Zayed University (Dubai, UAE). His research
interests lie in the areas of mobile computing, Web/mobile services, and software
agents.

