
 SCOC
Ref : R&D-SOC-NT-295-V-ASTR
Issue : 0 Rev. : 1
Date : 25/04/2002
Page : i

 ESA 13345/#3 : Building Block for System On a chip

SPACEWIRE IP CORE
HARDWARE USER MANUAL

 Name and Function Date Signature

Prepared by

Tam Le Ngoc

Verified by

Marc Lefebvre

Approved by

Authorised by

Marc Souyri

Document type Nb WBS Keywords

CharNb 27880
WordsNb 5538
FileName SW_USERMAN_01.DOC

© Astrium

 SCOC
Ref : R&D-SOC-NT-295-V-ASTR
Issue : 0 Rev. : 1
Date : 25/04/2002
Page : ii

CharNb 27880
WordsNb 5538
FileName SW_USERMAN_01.DOC

�” Astrium

DOCUMENT CHANGE LOG

Issue/

Revision Date Modification Nb Modified pages Observations

0/0 Creation
0/1 25/04/02

04/03/03

 Included comments from
ESA
Adding TX clock
configuration.

PAGE ISSUE RECORD
Issue of this document comprises the following pages at the issue shown

Page Issue/
Rev.

Page Issue/
Rev.

Page Issue/
Rev.

Page Issue/
Rev.

Page Issue/
Rev.

Page Issue/
Rev.

all 0/1

 SCOC
Ref : R&D-SOC-NT-295-V-ASTR
Issue : 0 Rev. : 1
Date : 25/04/2002
Page : 3

l

i

TABLE OF CONTENTS

1 Scope ... 5

2 Documents and acronyms... 6

2.1 Applicable documents ... 6

2.2 Reference documents .. 6

2.3 Acronyms .. 7

3 Design description ... 8

3.1 Account structure ... 8

3.2 The VHDL source description ... 9

3.3 Configuration of the spacewire block... 10
3.3.1 FIFO configuration .. 10
3.3.2 Counter configuration .. 10
3.3.3 TX clock configuration ... 11

3.4 Porting of the spacewire core to different technology... 11

4 Simulation p an .. 13

4.1 Introduction.. 13

4.2 Test of the spacewire without the host interface ... 13

4.3 Test of the host interface ... 13
4.3.1 Test sequences run during the test of the host interface ... 15

4.4 Simulation description... 22
4.4.1 Simulation without the host interface.. 22
4.4.2 Simulation with the host interface... 22

4.5 Simulation report ... 23

5 Xilinx Synthes s .. 23

5.1 Set-up and device ... 23

5.2 Compilation and mapping options ... 23

5.3 Constraints.. 23

5.4 Results .. 23

5.5 Synthesis conclusion.. 25

6 Xilinx place and route.. 25

6.1 Presentation.. 25

6.2 Constraints.. 26

6.3 Result .. 26

 SCOC
Ref : R&D-SOC-NT-295-V-ASTR
Issue : 0 Rev. : 1
Date : 25/04/2002
Page : 4

6.3.1 Device utilization summary... 26
6.3.2 Constraint report .. 26

6.4 Layout conclusion.. 27

6.5 CAO Tools configuration .. 27

LIST OF FIGURES

Figure 3.3.1-1 Account structure ..8

Figure 3.3.1-1 Source files hierarchy ...9

Figure 3.5.1-1 : Austrian Aerospace test bench ...13

Figure 3.5.2-1 : Test bench for host interface test ...14

 SCOC
Ref : R&D-SOC-NT-295-V-ASTR
Issue : 0 Rev. : 1
Date : 25/04/2002
Page : 5

1 SCOPE

The present document is written in the frame of the ESA 13345/#3 contract " Building block
for System on a Chip". It is part of Phase 3 of the contract related to the design of a System
On a Chip for Space application. The present activity concerns the design of a Spacewire
VHDL core to be integrated in the System On a CHip.

This document is the Hardware User Manual of the VHDL core. It is intended for users that
would like to use the VHDL block. It explains the following elements :

• structure of the UNIX directories containing the core and the testbench,

• adaptation of the core to other technologies,

• structure of the two testbenches used to verify the core,

• test plan of the testbenches,

• run of the simulation,

• synthesis of the core.

 SCOC
Ref : R&D-SOC-NT-295-V-ASTR
Issue : 0 Rev. : 1
Date : 25/04/2002
Page : 6

2 DOCUMENTS AND ACRONYMS

2.1 APPLICABLE DOCUMENTS

AD8

SCOC Requirement Specification R&D-RP-SOC-214-MMV, Issue
2, June 2000

AD9 AMBATM Specification Rev 2.0, ARM IHI 0011A

AD10 Spacecraft Controller On a Chip Architectural
Design Document

AD11 ECSS-E-50-12 Draft 1 (ESA SpaceWire
Specification)

March 2001

2.2 REFERENCE DOCUMENTS

RD21 System-On-a-Chip Feasibility Study December 99, Issue 2, R&D-RP-
SOC-154-MMV

RD26 Austrian Aerospace Spacewire Test-bench User
Manual

November 2000

RD27 Austrian Aerospace Spacewire Protocol
Verification

November 2000

 SCOC
Ref : R&D-SOC-NT-295-V-ASTR
Issue : 0 Rev. : 1
Date : 25/04/2002
Page : 7

2.3 ACRONYMS

AD Applicable Document
APB Advanced Peripheral Bus
AHB Advanced High-Performance Bus
DMA Direct Memory Access
ESA European Space Agency
ESTEC European Space Research and Technology Centre
FPGA Field Programmable Gate Array
FSM Finite State Machine
HKPF Housekeeping Function
HKAPB Housekeeping Advanced Peripheral Bus
IP Intellectual Property
IT Interrupt
LVDS Low Voltage Differential Signals
SCoC Spacecraft Controller on a Chip
SWB SpaceWire Block
RD Reference Document
RHI RX Host Interface
SOC System-On-a-Chip
THI TX Host Interface

 SCOC
Ref : R&D-SOC-NT-295-V-ASTR
Issue : 0 Rev. : 1
Date : 25/04/2002
Page : 8

authorization

3 DESIGN DESCRIPTION

3.1 ACCOUNT STRUCTURE

The path of the working account used for the design is called "your_path" in the present
document.

The organization is shown hereafter:

/home/scoc/archi/spacewire/cur

co
dr

f

do
cr

ef

ro
ut

ag
e

si
m

en
v1

si
m

en
v2

so
ur

ce

sp
w

re
f

sy
nt

h

tb tb
re

f

w
or

k

w
or

k2

Figure 3.3.1-1 Account structure

The SOURCE directory contains all the VHDL files of the Spacewire VHDL core (SWB).

The CODRF, DOCREF, SPWREF, TBREF directories contain documentations, testbench
and emulators provided by Austrian Aerospace to test the spacewire protocol on the link
side.

The Modelsim compilation of the Austrian Aerospace test bench is stored in the WORK2
directory.

The SIMENV2 directory is used to simulate the Austrian Aerospace bench.

The TB directory contains the second test bench mainly used to test the host interface of the
spacewire core.

The result of the Modelsim compilation of the second testbench is stored in the WORK
directory.

The SIMENV1 directory is dedicated to launch the second testbench simulation. The sw.tb
file contains all the tests performed on the spacewire.

The SYNTH directory contains specific files for the synthesis made with the Synplify
software. These files are spacewire.prj (project file) and spacewire.sdc (constraints file). All
the result files are in the REV_X sub-directory such as the spacewire.edf edif file and the
spacewire.srr report file.

The ROUTAGE directory contains the result files of the Xilinx software that performs the
place and route task.

 SCOC
Ref : R&D-SOC-NT-295-V-ASTR
Issue : 0 Rev. : 1
Date : 25/04/2002
Page : 9

3.2 THE VHDL SOURCE DESCRIPTION

All the VHDL source files and the level hierarchy are shown hereafter:

spacewire.vhd

TOP
LEVEL

LEVEL 2

tx_mgt.vhd
rx_mgt.vhd

tx_select.vhd
txcnt.vhd

txshiftreg.vhd
ds_gen.vhd
tx_ack.vhd

LEVEL 3

tx.vhd

clk_tx_gen.vhd
sw_fifo.vhd (TX FIFO)
sw_fifo.vhd (RX FIFO)

sw_counters.vhd
sw_resync.vhd

sw_reg.vhd
delay_cnt.vhd
init_fsm.vhd

ahb_mst_slv_tx.vhd
sw_fifo.vhd (AHB FIFO)

ahb_tx_int.vhd
ahb_mst_rx.vhd

rx_resync.vhd
rx_decod.vhd

rx_shiftreg.vhd
disconnection.vhd

tx_resync.vhd

sw.vhd

host_int.vhd

rx.vhd

Figure 3.3.1-1 Source files hierarchy

The top file spacewire_noamba.vhd does not include the host interface. The architecture
spacewire_noamba is used to the Austrian Aerospace testbench. In SCOC project, the top
file spacewire.vhd is used. In this case the sw_noamba.vhd file is replaced by the sw.vhd
file.

 SCOC
Ref : R&D-SOC-NT-295-V-ASTR
Issue : 0 Rev. : 1
Date : 25/04/2002
Page : 10

3.3 CONFIGURATION OF THE SPACEWIRE BLOCK

Some parameters can be personalized in the VHDL code in order to dimension the FIFO
size, to change counter widths and to choose the TX clock type (gated or not).

3.3.1 FIFO configuration

For each FIFO (RX, TX or AHB) , the user can specify :

• The address width of the FIFO corresponding to the FIFO depth (xxFIFOABITS). The
recommended values are the following:

o for RX RXFIFOABITS must be greater than or equal to 6

o for TX TXFIFOABITS must be greater than or equal to 3

o for AHB AHBFIFOABITS must be greater than or equal to 2. This FIFO is a 32
bit word size FIFO, its size depends on the AHB latency.

xxFIFODBITS is the width of the data. Its is set at 9 and shall not be changed.

xxFIFODEPTH is the number of words of the FIFO. It is worked out from xxFIFOABITS and
shall not be modified.

These parameters are included in the sw_pack.vhd file.

The configuration of the RX FIFO, TX FIFO and AHB FIFO is described hereafter.

constant RXFIFOABITS : integer:= 6;

constant RXFIFODBITS : integer:= 9; -- shall not be modified

constant RXFIFODEPTH : integer:= 2** RXFIFOABITS ; -- shall not be modified

constant TXFIFOABITS : integer:= 3;

constant TXFIFODBITS : integer:= 9; -- shall not be modified

constant TXFIFODEPTH : integer:= 2** TXFIFOABITS ; -- shall not be modified

constant AHBFIFOABITS : integer:= 2;

constant AHBFIFODBITS : integer:= 32; -- shall not be modified

constant AHBFIFODEPTH : integer:= 2** AHBFIFOABITS ; -- shall not be modified

3.3.2 Counter configuration

 SCOC
Ref : R&D-SOC-NT-295-V-ASTR
Issue : 0 Rev. : 1
Date : 25/04/2002
Page : 11

The size of the counter used for the 6.4 µs delay generation is defined by the DELAYWIDTH
constant. The maximum value for DELAYWIDTH is 16 since only 16 bits are reserved in the
Time_Out Register to store the maximum value of the counter.

The size of the counter used to store the number of RX FIFO empty space is defined by the
CWIDTH constant.

The CMAX constant has the value of RXFIFODEPTH but in std_logic_vector format.

These constants are included in the sw_pack.vhd.

constant DELAYWIDTH : integer:= 8;

constant CWIDTH : integer:= 7;

constant CMAX : std_logic_vector((CWIDTH-1) downto 0):= conv_std_logic_vector(2**
RXFIFOABITS, CWIDTH); -- shall not be modified

3.3.3 TX clock configuration

The TX frequency can be generated by either a gated clock with a 2(n+1) frequency divider
or a not-gated clock using an enable clock signal. In the last case, a n+1 frequency divider is
used.

Configuration:

⇒ To use a gated TX clock, you must have: “constant GATED_TX_CLK : Boolean := true;”

⇒ To use a not-gated TX clock, you must have: “constant GATED_TX_CLK : Boolean :=
false;”

3.4 PORTING OF THE SPACEWIRE CORE TO DIFFERENT TECHNOLOGY

All the Spacewire code is written in synthesizable VHDL. Most of the code is independent
from the target technology. The specific parts concern only :

• The three FIFOs : RX, TX and AHB. Each FIFO is made by a dual port RAM. By now, the
VHDL code is targeted for Xilinx and Synplify. Thus the synthesis tool is able to recognize
that the VHDL code corresponds to Xilinx RAMB block. This part would have to be
changed for another technology, otherwise fil-flops will be inferred.

• The TX clock generator that is not included in the spacewire block. The user has to
generate this high frequency clock, the Spacewire Block contains only the divider that
generates the TX clock.

In addition there are 4 clocks used in the Spacewire Block that the user must balance
according to the capability of the target technology :

• The System clock clk_sw that controls about 700 flip flops

 SCOC
Ref : R&D-SOC-NT-295-V-ASTR
Issue : 0 Rev. : 1
Date : 25/04/2002
Page : 12

• The Input TX clock clk_txin that controls about 20 flip flops

• The TX clock obtained after divide of clk_txin clock that controls about 150 flip flops.

• The RX clock clk_rx that controls about 150 flip flops.

 SCOC
Ref : R&D-SOC-NT-295-V-ASTR
Issue : 0 Rev. : 1
Date : 25/04/2002
Page : 13

4 SIMULATION PLAN

4.1 INTRODUCTION

Two testbenches are used:

• A testbench based on the Austrian Aerospace testbench. This testbench is used to test
the Spacewire VHDL core on the link side. Some sequences were added to the Austrian
Aerospace testbench provided by ESA to test the time code.

• A testbench developed by Astrium that allows testing the host interface.

4.2 TEST OF THE SPACEWIRE WITHOUT THE HOST INTERFACE

The spacewire VHDL core without its host interface is connected to the Austrian Aerospace
spacewire emulator as depicted in Figure 3.3.3-1. The verification is done by reading the
FIFOs data and comparing them to expected results.

Astrium
SpaceWire Block
Under Verification

d_in

d_out

s_out

s_inSpacewire Emulator

d_in

d_out

s_out

s_in

spwr_ctrl_user

spwr_check_user

spwr_ctrl

spwr_check

Figure 3.3.3-1 : Austrian Aerospace test bench

The Austrian Aerospace test bench checks the protocol initialization, the TX interface, the RX
interface and the Time Code, FCT and data management.

The test cases performed are:

• Link Startup

• Normal operation

• Error cases

• Stress Cases (TX and RX rates are different)

For more information, read protocol_verification.pdf and testbench_user_manual.pdf
included in the /your_path/docref directory.

4.3 TEST OF THE HOST INTERFACE

 SCOC
Ref : R&D-SOC-NT-295-V-ASTR
Issue : 0 Rev. : 1
Date : 25/04/2002
Page : 14

Two spacewire blocks are connected together in Astrium testbench as depicted in Figure
 3.3.3-1.

Spacewire1

Spacewire2

d_in

d_out

s_out

s_in

d_in

d_out

s_out

s_in

SoftMem

Arbiter

emu_set_sig

emu_test_sig

clk,clk_tx,rstn
,test_mode_h
ard,tickin_ctm

err_int,nom_int,
tickout_ctm

emu_ahb
slv_sm

emu_ahb
slv

emu_ahb
mst

emu_mem_
spy

AHB BUS

emu_apb
mst

APB BUS
emu_controleur

character
generator

gen_char

emu_spwr

Figure 3.3.3-1 : Test bench for host interface test

This test checks the TX AHB master and slave interfaces and the RX AHB master interface.
Checking the TX AHB master/slave of one spacewire is done by verifying that the data
received by the other spacewire block is correct. The RX AHB master is checked for normal
operations and for operations performed when the host memory area limit is reached.

VHDL blocks have been developed to emulate the behaviour of the spacewire block
environment. The VHDL emulators used for the test are:

• emu_spwr generates error characters for Spacewire 2 to simulate transmission
errors.

• emu_apbmst is used for the spacewire block configuration through APB bus.

• emu_set_sig sets signals.

• emu_test_sig checks signals.

• arbiter manages the AHB master/slave traffic

• emu_ahbslv_sm interfaces between AHB slave and SoftMem

 SCOC
Ref : R&D-SOC-NT-295-V-ASTR
Issue : 0 Rev. : 1
Date : 25/04/2002
Page : 15

• SoftMem is an advanced memory block

• emu_mem_spy checks the memory data

• emu_ahbslv is an AHB slave used to give RETRY, SPLIT or ERROR response to the
spacewire

• emu_ahbmst: is an AHB master used to communicate with the spacewire AHB slave
interface

4.3.1 Test sequences run during the test of the host interface

4.3.1.1 introduction

Only one simulation is run that contains 39 test sequences. The testbench checks the
correctness of the results by reading in the memory or by checking signal activation. The
following paragraphs give a brief description of each test.

4.3.1.2 TX AHB master interface test 1: nominal operation

Data packets are transmitted using TX AHB master and the received data are checked in the
SoftMem.

• Spacewire 1 & 2: programmation: tx_mode=master, linkstart=1
• Spacewire 1& 2: descriptor initialization
• Spacewire 1& 2: memory area 1 initialization
• Spacewire 1 & 2: memory area 1 validation
• Received data are stored in the Softmem
• Comparison between reference data and received data

4.3.1.3 RX AHB master interface test 1: area middle address= area end address

• Spacewire 1& 2 programmation: tx_mode=1, test_mode_tx=1linkstart=1
• Spacewire 1& 2: descriptor initialization
• Spacewire 1& 2: memory area 1 initialization
• Spacewire 1 & 2: memory area 1 validation
• Spacewire 1 & 2: interrupts clearing
• Spacewire 2: verify that no null is written at area 1 end
• Spacewire 1 & 2: check the exceed_mem IT and no_area_valid IT generation

4.3.1.4 RX AHB master interface test 2: RX FIFO is full and RX FIFO dumping

• Spacewire 1& 2: memory area 1 initialization
• Spacewire 1 & 2: memory area 1 validation

4.3.1.5 RX AHB master interface test 3: area middle address<area end address

• Spacewire 1& 2: programmation: tx_mode=1, test_mode_tx=1linkstart=1
• Spacewire 1& 2: descriptor initialization
• Spacewire 1& 2: memory area 1 initialization
• Spacewire 1 & 2: memory area 1 validation
• Spacewire 1 & 2: interrupts clearing

 SCOC
Ref : R&D-SOC-NT-295-V-ASTR
Issue : 0 Rev. : 1
Date : 25/04/2002
Page : 16

• Spacewire 1 & 2: verify that a null is written at area 1 end
• Spacewire 1 & 2: check the no_area_valid IT generation

4.3.1.6 RX AHB master interface test 4: RX FIFO dumping

• Spacewire 1& 2: memory area 1 initialization
• Spacewire 1 & 2: memory area 1 validation

4.3.1.7 RX AHB master interface test 5: memory area swap

• Spacewire 1& 2: programmation: tx_mode=1, test_mode_tx=1linkstart=1
• Spacewire 1& 2: descriptor initialization
• Spacewire 1& 2: memory area 1 initialization
• Spacewire 1& 2: memory area 2 initialization
• Spacewire 1 & 2 memory area 1 & 2 validation
• Spacewire 1 & 2: verify the memory area swap by reading the area1_used and

area2_used flag
• Spacewire 1 & 2: verify that the status "10" is in the header of the last packet written

in the area 1 because this packet is not entirely stored in the area1
• Spacewire 1 & 2: verify that the last part of this packet is stored in the area 2
• Spacewire 1& 2: memory area 1 reinitialization
• Spacewire 1 & 2: memory area 1 validation
• Spacewire 1 & 2: check the change from the area 2 to area 1

4.3.1.8 RX AHB master interface test 6: RX FIFO dumping

• Spacewire 1& 2: memory area 1 initialization
• Spacewire 1 & 2: memory area 1 validation

4.3.1.9 TX AHB master interface test 2: packet abortion

The spacewire 1 transmits data to the spacewire2 then receives an abortion command.

• Spacewire 1 & 2: interrupts clearing
• Spacewire :1 descriptor initialization
• Spacewire 2: memory area 1 validation
• Spacewire 1: abort_packet flag activated
• Spacewire 2: verify the EEP_REC IT activation
• Spacewire 2: check the status "01" in the last packet header

4.3.1.10 Test of Area1_valid and Area2_valid flags

These flags cannot be reset by the user except in test mode.

• Spacewire 1: write and read of areax_valid in test mode
• Spacewire 1: write and read of areax_valid in normal mode

4.3.1.11 TX AHB master interface test 3: new transfer after packet abortion

• Spacewire 1 descriptor initialization
• Spacewire 1: check the end_list IT activation
• Compare the data received by the spacewire 2 with the reference

4.3.1.12 Test of the interrupts (IT)

 SCOC
Ref : R&D-SOC-NT-295-V-ASTR
Issue : 0 Rev. : 1
Date : 25/04/2002
Page : 17

• Spacewire 1: force ITmask to 0000 then check the value
• Spacewire 1: force ITmask to FFFF then check the value
• Spacewire 1: force all the internal IT to 0 then activate only one IT each time and

check each IT by reading the IT register
• Spacewire 1: check the nominal or error IT output with the emu_test_sig emulator

4.3.1.13 Test of time code

The spacewire 1 sends time codes during the data transmission. The spacewire 2 is checked
for time code reception.

• Spacewire 2: force all internal IT to 0
• Spacewire 1: descriptor initialization
• Spacewire 1: Tickin_ctm activation
• Spacewire 2: Check the tickout bit activation in the IT register. Check the tickout_ctm

output activation.
• Spacewire 2: force all internal IT to 0
• Spacewire 2: Check the received time code value
• Spacewire 1: Activate the tickin bit of the management register
• Spacewire 2: Check the tickout bit activation in the IT register. Check the tickout_ctm

output activation.
• Spacewire 2: Check the received time code value

4.3.1.14 TX AHB slave interface test 1: ERROR response

Verify the generation of error response to unfit request.

• Spacewire 2: tx_mode=master
• Spacewire 2: TX AHB slave write access requested
• Spacewire 2: check the wrong_mode IT activation
• Spacewire 2: TX AHB slave read access requested
• Spacewire 2: check the rd_access_error IT activation

4.3.1.15 TX AHB master interface test 4

 Check the reception of RETRY, SPLIT or ERROR response when the FSM reads the packet
size.

• Spacewire 1: descriptor initialization
• Emu_ahbslv generates RETRY, SPLIT then ERROR response when the TX AHB

master FSM reads the packet size
• Spacewire 1: verify the amba_error IT activation

4.3.1.16 TX AHB master interface test 5

 Check the reception of RETRY, SPLIT or ERROR response when the FSM reads the data
address.

• Spacewire 1: descriptor initialization, IT reset
• Emu_ahbslv generates RETRY, SPLIT then ERROR response when the TX AHB

master FSM reads the data address
• Spacewire 1: verify the amba_error IT activation

 SCOC
Ref : R&D-SOC-NT-295-V-ASTR
Issue : 0 Rev. : 1
Date : 25/04/2002
Page : 18

4.3.1.17 TX AHB master interface test 6

Check the reception of RETRY, SPLIT or ERROR response when the FSM reads the data
value.

• Spacewire 1: descriptor initialization, IT reset
• Emu_ahbslv generates RETRY, SPLIT then ERROR response when the TX AHB

master FSM reads the data value
• Spacewire 1: verify the amba_error IT activation

4.3.1.18 TX AHB master interface test 7

Check the reception of RETRY, SPLIT or ERROR response when the FSM reads the next
packet address.

• Spacewire 1: descriptor initialization, IT reset
• Emu_ahbslv generates RETRY, SPLIT then ERROR response when the TX AHB

master FSM reads the next packet address
• Spacewire 1: verify the amba_error IT activation

4.3.1.19 Test of LINK_NOT_ENABLED IT

• Spacewire 1: autostart=0, link_start=0, link_disabled=0
• Spacewire 1: check the link_not_enabled IT activation
• Spacewire 1: IT reset
• Spacewire 1: autostart=1, link_start=1, link_disabled=1
• Spacewire 1: check the link_not_enabled IT activation

4.3.1.20 TX AHB slave interface test 2: nominal operation

• Spacewire 1: IT reset, packet abortion
• Spacewire 1: Reception of data packet through the AHB slave interface (single &

burst transfers)
The data is transmitted to the spacewire 2 then stored in the softmem. A data check is
performed in the softmem by the emu_mem_spy.

4.3.1.21 RX AHB master interface test 7

Check the reception of RETRY, SPLIT or ERROR response when the FSM is in WR_DATA
state.

• Spacewire 2: in TX AHB slave mode, initialization of the areas
• Emu_ahbmst: write a data packet into Spacewire 1
• The data packet is transmitted from the Spacewire 1 to the Spacewire 2
• Spacewire 2: storage of the received data by writing into the emu_ahbslv
• Emu_ahbslv: responses with RETRY,SPLIT or ERROR when the RX AHB master

FSM is in the WR_DATA state
• Check the amba_error IT and the memory

4.3.1.22 RX AHB master interface test 8

 SCOC
Ref : R&D-SOC-NT-295-V-ASTR
Issue : 0 Rev. : 1
Date : 25/04/2002
Page : 19

Check the reception of RETRY, SPLIT or ERROR response when the FSM is in
WR_HEADER state.

• Spacewire 2: in TX AHB slave mode, initialization of the areas
• Emu_ahbmst: write data packets into Spacewire 1
• Data packets are transmitted from the Spacewire 1 to the Spacewire 2
• Spacewire 2: storage of the received data by writing into the emu_ahbslv
• Emu_ahbslv: responses with RETRY,SPLIT or ERROR when the RX AHB master

FSM is in the WR_HEADER state
• Check the amba_error IT and the memory

4.3.1.23 RX AHB master interface test 9

 Check the reception of RETRY, SPLIT or ERROR response when the FSM is in WR_NULL
state.

• Spacewire 2: in TX AHB slave mode, initialization of the areas
• Emu_ahbmst: write data packets into Spacewire 1
• Data packets are transmitted from the Spacewire 1 to the Spacewire 2
• Spacewire 2: storage of the received data by writing into the emu_ahbslv
• Emu_ahbslv: responses with RETRY,SPLIT or ERROR when the RX AHB master

FSM is in the WR_NULL state
• Check the amba_error IT and the memory

4.3.1.24 RX AHB master interface test 10

Verify the recovery of the data once an error response appears (quantity of data to be
recovered=2).

• Spacewire 2: in TX AHB slave mode, initialization of the areas
• Emu_ahbmst: write a data packet into Spacewire 1
• The data packet is transmitted from the Spacewire 1 to the Spacewire 2
• Spacewire 2: storage of the received data by writing into the emu_ahbslv
• Emu_ahbslv: responses with RETRY,SPLIT or ERROR when the RX AHB master

FSM is in the WR_DATA state
• Check the amba_error IT and the memory

4.3.1.25 RX AHB master interface test 11

Check the recovery of the data once an error response appears (quantity of data to be
recovered=1).

• Spacewire 2: in TX AHB slave mode, initialization of the areas
• Emu_ahbmst: write a data packet into Spacewire 1
• The data packet is transmitted from the Spacewire 1 to the Spacewire 2
• Spacewire 2: storage of the received data by writing into the emu_ahbslv
• Emu_ahbslv: responses with RETRY,SPLIT or ERROR when the RX AHB master

FSM is in the WR_DATA state
• Check the amba_error IT and the memory

4.3.1.26 RX AHB master interface test 12

 SCOC
Ref : R&D-SOC-NT-295-V-ASTR
Issue : 0 Rev. : 1
Date : 25/04/2002
Page : 20

 Start a new area to store one data left from the current packet.

• Spacewire 2: in TX AHB slave mode, initialization of the areas
• Emu_ahbmst: write a data packet into Spacewire 1
• The data packet is transmitted from the Spacewire 1 to the Spacewire 2
• Spacewire 2: storage of the received data by writing into the emu_ahbslv
• The current area is full and there is one data left
• Spacewire 2: storage of the left data into a new area
• Check the amba_error IT and the memory

4.3.1.27 RX AHB master interface test 13

 Start a new area to store 2 data left from the current packet.

• Spacewire 2: in TX AHB slave mode, initialization of the areas
• Emu_ahbmst: write a data packet into Spacewire 1
• The data packet is transmitted from the Spacewire 1 to the Spacewire 2
• Spacewire 2: storage of the received data by writing into the emu_ahbslv
• The current area is full and there are 2 data left
• Spacewire 2: storage of the left data into a new area
• Check the amba_error IT and the memory

4.3.1.28 RX AHB master interface test 14

 Start a new area to store 4 data left from the current packet.

• Spacewire 2: in TX AHB slave mode, initialization of the areas
• Emu_ahbmst: write a data packet into Spacewire 1
• The data packet is transmitted from the Spacewire 1 to the Spacewire 2
• Spacewire 2: storage of the received data by writing into the emu_ahbslv
• The current area is full and there are 4 data left
• Spacewire 2: storage of the left data into a new area
• Check the amba_error IT and the memory

4.3.1.29 RX AHB master interface test 15

 Start a new area to store a new packet.

• Spacewire 2: in TX AHB slave mode, initialization of the areas
• Emu_ahbmst: write a data packet into Spacewire 1
• The data packet is transmitted from the Spacewire 1 to the Spacewire 2
• Spacewire 2: storage of the received data by writing into the emu_ahbslv
• The current area is full and there is no data left
• Spacewire 2: storage of the left data into a new area
• Check the amba_error IT and the memory

4.3.1.30 RX AHB master interface test 16

 Packet contains less than 4 data.

• Spacewire 2: reception of a packet containing 3 data
• Spacewire 2: storage, the area becomes full

 SCOC
Ref : R&D-SOC-NT-295-V-ASTR
Issue : 0 Rev. : 1
Date : 25/04/2002
Page : 21

• Spacewire 2: loads a new area then stores next packet
• Check the memory

4.3.1.31 RX AHB master interface test 17

 Packet contains less than 4 data.

• Spacewire 2: reception of a packet containing 3 data
• Spacewire 2: storage, the area becomes full
• Spacewire 2: loads a new area then stores a new packet containing less than 4 data
• Check the memory

4.3.1.32 RX AHB master interface test 18: Area2_valid flag clearing

• Spacewire 2: area2 initialization
• Spacewire 2: storage, the area 2 becomes full
• Check the flag

4.3.1.33 RX AHB master interface test 19: Check the last part of the packet

• Spacewire 2: area2 initialization
• Spacewire 2: storage, the area 2 becomes full but the packet is not entirely stored
• Spacewire 2: storage of the last part of the packet into the new area
• Check the memory for the last packet part

4.3.1.34 TX AHB master interface test 8: the FSM reads a packet size = 0

• Spacewire 1: TX AHB master mode, descriptor programmation
• Spacewire 1: the FSM reads a packet size = 0
• Spacewire 1: the FSM reads the next packet address
• Spacewire 1: the FSM reads the next packet then transmits it
• Check in the memory for the next packet

4.3.1.35 Test 1 of the interface between the AHB FIFO and the TX FIFO

 Test the abort_packet signal in WR_SIZE state.

• Spacewire 1: TX AHB slave mode
• Spacewire 2: initialization of the memory area
• Emu_ahbmst: writes the packet size
• The Abort_packet flag is asserted while the FSM of the ahb_tx_int block is in the

WR_SIZE state
4.3.1.36 Test 2 of the interface between the AHB FIFO and the TX FIFO

Test the abort_packet signal in WR_DAT state.

The same scenario as in 4.3.1.35, but the abort_packet flag is asserted in the WR_DAT
state.

4.3.1.37 Test of the TX FIFO flush when the link is disabled

• Fill the TX FIFO with data
• Disables the link while the TX FIFO is not empty

 SCOC
Ref : R&D-SOC-NT-295-V-ASTR
Issue : 0 Rev. : 1
Date : 25/04/2002
Page : 22

• Observe the TX FIFO flush

4.3.1.38 Test 1 to increase the test coverage: test of the sw_reg block

• RD/WR accesses to the TIMEOUT register
• RD access to the CUR_BUF_END register
• WR access to the TIMECODE register
• RD/WR accesses to invalid register address

4.3.1.39 Test 2 to increase the test coverage: adds an EEP to the RX FIFO

• Spacewire 1: transmission of data to the Spacewire 2
• Spacewire 2: link disabled while it receives data
• Spacewire 2: an EEP is added into the RX FIFO

4.3.1.40 Test of the initialization protocol to increase the test coverage

• Go from ERRORWAIT state to ERRORRESET state
• Go from READY state to ERRORRESET state
• Go from STARTED state to ERRORRESET state
• Go from CONNECTING state to ERRORRESET state
• Go from RUN state to ERRORRESET state
• Generation of ESC error, character sequence error, outstanding error, credit error,

disconnection error

4.4 SIMULATION DESCRIPTION

To compile the VHDL code for simulation, go into the /your_path/simenv1 directory then type
"compile". Do the same in the /your_path/simenv2 directory.

4.4.1 Simulation without the host interface

The Austrian Aerospace testbench is in the /your_path/tbref directory. The script files are in
the /your_path/codrf directory. The spacewire emulator is in the /your_path/spwref directory.

To execute these simulations, go to the /your_path/simenv2 directory, compile the test bench
by typing "compile" then type "RUN" to launch the simulation.

Then, check the transcript window of Modelsim.

4.4.2 Simulation with the host interface

The test bench tb5.vhd is in the /your_path/tb directory.

The sofmem block uses a file named ram.dat that contains the elements of a linked list. The
data in this file are randomly generated by using the script generate.csh. The script files
sw.tb and constante.tb contain commands for the emulators. The user must type "tbpp sw.tb
. . $PROJ/archi/spec_emu" to update testbench, each time the sw.tb or constante.tb file is
modified.

 SCOC
Ref : R&D-SOC-NT-295-V-ASTR
Issue : 0 Rev. : 1
Date : 25/04/2002
Page : 23

To execute the simulation, go to the /your_path/simenv1 directory, compile the test bench if
necessary by typing "compile" then type "run_simu5" to launch the simulation.

The transcript file shall not contain any error message.

4.5 SIMULATION REPORT

The VHDL simulation has been performed. All the functions have been checked. No
functional error has been detected.

5 XILINX SYNTHESIS

Synthesis scripts are in your_path/synth

5.1 SET-UP AND DEVICE

Synplify is used for the synthesis.

The Xilinx component must be specified, the following component was chosen for our
breadboard :

• Technology VIRTEX-E
• Part XCV2000E
• Package BG560
• speed_grade -6

5.2 COMPILATION AND MAPPING OPTIONS

The following options are set in Synplify :

• default_enum_encoding = default
• symbolic_fsm_compiler = true
• resource_sharing = true
• top_module = “spacewire”
• fanout_limit = 100

5.3 CONSTRAINTS

The constraints are:

• clk_txin = 110 MHz
• clk_tx (internal) = 110 MHz
• clk_sw (system clock) = 25 MHz
• clk_rx (internal) = 55 MHz

5.4 RESULTS

 Performance Summary

 SCOC
Ref : R&D-SOC-NT-295-V-ASTR
Issue : 0 Rev. : 1
Date : 25/04/2002
Page : 24

 Requested Estimated Requested Estimated

Clock Frequency Frequency Period Period

Slack

--

clk_tx 109.9 MHz 106.7 MHz 9.1 9.4 -

0.3

c_rx.clk_rx 55.0 MHz 84.0 MHz 18.2 11.9 6.3

clk_sw 25.0 MHz 40.7 MHz 40.0 24.6

15.5

clk_txin 109.9 MHz 119.0 MHz 9.1 8.4 0.7

===

==

Resource Usage Report

Mapping to part: xcv2000ebg560-6

Cell usage:

FDCE 533 uses

FD 37 uses

FDC 302 uses

FDC_1 10 uses

FDCE_1 1 use

FDP 10 uses

FDE 25 uses

FDPE 36 uses

GND 1 use

VCC 1 use

FDR 36 uses

MUXF5 15 uses

MUXF6 1 use

XORCY 250 uses

MUXCY_L 337 uses

FDRE 36 uses

FDS 16 uses

MULT_AND 51 uses

keepbuf 2 uses

MUXCY 4 uses

 SCOC
Ref : R&D-SOC-NT-295-V-ASTR
Issue : 0 Rev. : 1
Date : 25/04/2002
Page : 25

O primitives: I/

OBUF 247 uses

IBUF 124 uses

BUFGP 2 uses

I/O Register bits: 1

Register bits not including I/Os: 1041 (2%)

Internal tri-state buffer usage summary

BUFTs + BUFEs: 36 of 19200 (0%)

RAM/ROM usage summary

Dual Port Rams (RAM16X1D): 77

Global buffer usage summary

BUFGs + BUFGPs: 2 of 4 (50%)

Mapping Summary:

Total LUTs: 1973 (5%)

Found clock clk_tx with period 9.09091ns

Found clock clk_sw with period 40ns

Found clock clk_txin with period 9.09091ns

Found clock clk_rx with period 18.1818ns

5.5 SYNTHESIS CONCLUSION

ected transmission rate is about 100 Mbits/s, so the

6 XILINX PLACE AND ROUTE

6.1 PRESENTATION

 performed in the /your_path/routage directory.

The synthesis is successful. The exp
timing report is satisfactory.

The place and route task is

The input netlist file is spacewire.edf.

 SCOC
Ref : R&D-SOC-NT-295-V-ASTR
Issue : 0 Rev. : 1
Date : 25/04/2002
Page : 26

 to the ports. So the timings on the AMBA bus are not

S

100 MHz

lk_txin (clk_tx) : 100 MHz

lk_tx";

Note: The AMBA interface is connected
taken into account.

6.2 CONSTRAINT

Input TX clock (clk_txin) :

System clock (clk_sw) : 20 MHz

TX clock obtained after divide of c

RX clock (clk_rx) : 50 MHz

NET "clk_tx" TNM_NET = "c
TIMESPEC "TS_clk_tx" = PERIOD "clk_tx" 10 ns HIGH 50 %;
NET "clk_txin" TNM_NET = "clk_txin";
TIMESPEC "TS_clk_txin" = PERIOD "clk_txin" 10 ns HIGH 50 %;
NET "c_rx/clk_rx" TNM_NET = "c_rx/clk_rx";
TIMESPEC "TS_c_rx_clk_rx" = PERIOD "c_rx/clk_rx" 20 ns HIGH 50 %;
NET "clk_sw" TNM_NET = "clk_sw";
TIMESPEC "TS_clk_sw" = PERIOD "clk_sw" 50 ns HIGH 50 %;
The two clocks clk_tx and clk_rx must be routed by using "backbones" of the Virtex
structures. The following constraints must be added:

NET "clk_tx" USELOWSKEWLINES;

NET "c_rx/clk_rx" USELOWSKEWLINES;

6.3 RESULT

6.3.1 Device utilization summary

 2 out of 4 50% Number of External GCLKIOBs

 Number of External IOBs 371 out of 404 91%

 Number of LOCed External IOBs 0 out of 371 0%

 Number of SLICEs 1332 out of 19200 6%

 Number of GCLKs 2 out of 4 50%

 Number of TBUFs 36 out of 19520 1%

6.3.2 Constraint report

 Constraint | Requested | Actual | Logic

 | | | Levels

--

 SCOC
Ref : R&D-SOC-NT-295-V-ASTR
Issue : 0 Rev. : 1
Date : 25/04/2002
Page : 27

 TS_clk_tx = PERIOD TIMEGRP "clk_tx" 10 n | | |

 S HIGH 50.000000 % | | |

--

 TS_clk_txin = PERIOD TIMEGRP "clk_txin" | 10.000ns | 9.172ns | 5

 10 nS HIGH 50.000000 % | | |

--

 TS_c_rx_clk_rx = PERIOD TIMEGRP "c_rx/clk | 20.000ns | 10.122ns | 6

 _rx" 20 nS HIGH 50.000000 % | | |

--

 TS_clk_sw = PERIOD TIMEGRP "clk_sw" 50 n | 50.000ns | 19.761ns | 7

 S HIGH 50.000000 % | | |

--

All constraints were met.

Dumping design to file spacewire.ncd.

All signals are completely routed.

Total REAL time to PAR completion: 4 mins 2 secs

Total CPU time to PAR completion: 4 mins 1 secs

Placement: Completed - No errors found.

Routing: Completed - No errors found.

Timing: Completed - No errors found.

Timing summary:

Timing errors: 0 Score: 0

Constraints cover 35204 paths, 0 nets, and 6738 connections (75.5%

coverage)

Design statistics:

 Minimum period: 19.761ns (Maximum frequency: 50.605MHz)

6.4 LAYOUT CONCLUSION

 The timings are met.

6.5 CAO TOOLS CONFIGURATION

trium to develop the spacewire core is the following:

anager 4.1i

The place and route is successful.

The configuration of the tools used by As

• VHDL simulator : Mentor Modelsim version 5.5a

• Synthesis tool : Synplify version 6.0

• place and route tool : Xilinx Design M

 SCOC
Ref : R&D-SOC-NT-295-V-ASTR
Issue : 0 Rev. : 1
Date : 25/04/2002
Page : 28

-----%-----%-----%-----%-----

	SCOPE
	DOCUMENTS AND ACRONYMS
	APPLICABLE DOCUMENTS
	REFERENCE DOCUMENTS
	ACRONYMS

	DESIGN DESCRIPTION
	ACCOUNT STRUCTURE
	THE VHDL SOURCE DESCRIPTION
	CONFIGURATION OF THE SPACEWIRE BLOCK
	FIFO configuration
	Counter configuration
	TX clock configuration

	PORTING OF THE SPACEWIRE CORE TO DIFFERENT TECHNOLOGY

	SIMULATION PLAN
	INTRODUCTION
	TEST OF THE SPACEWIRE WITHOUT THE HOST INTERFACE
	TEST OF THE HOST INTERFACE
	Test sequences run during the test of the host interface
	introduction
	TX AHB master interface test 1: nominal operation
	RX AHB master interface test 1: area middle address= area en
	RX AHB master interface test 2: RX FIFO is full and RX FIFO
	RX AHB master interface test 3: area middle address<area end
	RX AHB master interface test 4: RX FIFO dumping
	RX AHB master interface test 5: memory area swap
	RX AHB master interface test 6: RX FIFO dumping
	TX AHB master interface test 2: packet abortion
	Test of Area1_valid and Area2_valid flags
	TX AHB master interface test 3: new transfer after packet ab
	Test of the interrupts \⠀䤀吀尩
	Test of time code
	TX AHB slave interface test 1: ERROR response
	TX AHB master interface test 4
	TX AHB master interface test 5
	TX AHB master interface test 6
	TX AHB master interface test 7
	Test of LINK_NOT_ENABLED IT
	TX AHB slave interface test 2: nominal operation
	RX AHB master interface test 7
	RX AHB master interface test 8
	RX AHB master interface test 9
	RX AHB master interface test 10
	RX AHB master interface test 11
	RX AHB master interface test 12
	RX AHB master interface test 13
	RX AHB master interface test 14
	RX AHB master interface test 15
	RX AHB master interface test 16
	RX AHB master interface test 17
	RX AHB master interface test 18: Area2_valid flag clearing
	RX AHB master interface test 19: Check the last part of the
	TX AHB master interface test 8: the FSM reads a packet size
	Test 1 of the interface between the AHB FIFO and the TX FIFO
	Test 2 of the interface between the AHB FIFO and the TX FIFO
	Test of the TX FIFO flush when the link is disabled
	Test 1 to increase the test coverage: test of the sw_reg blo
	Test 2 to increase the test coverage: adds an EEP to the RX
	Test of the initialization protocol to increase the test cov

	SIMULATION DESCRIPTION
	Simulation without the host interface
	Simulation with the host interface

	SIMULATION REPORT

	XILINX SYNTHESIS
	SET-UP AND DEVICE
	COMPILATION AND MAPPING OPTIONS
	CONSTRAINTS
	RESULTS
	SYNTHESIS CONCLUSION

	XILINX PLACE AND ROUTE
	PRESENTATION
	CONSTRAINTS
	RESULT
	Device utilization summary
	Constraint report

	LAYOUT CONCLUSION
	CAO TOOLS CONFIGURATION

