

Ethernet controller TCW112-CM Users manual

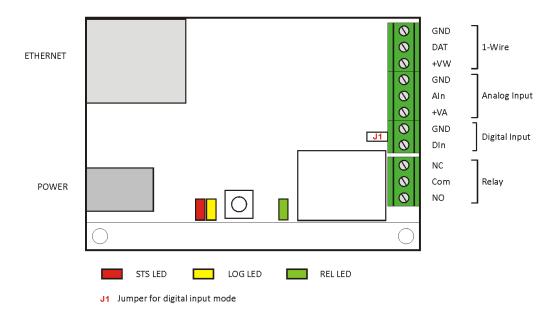
1. Short description

TCW112-CM is an Ethernet controller, which is designed to work in IP-based networks. It has 1 digital and 1 analog input, 1-Wire interface and 1 relay output. It can be managed by WEB interface and/or SNMP programs.

The relay can be activated either remotely (WEB, SNMP etc.) or locally - from status of monitored parameter (temperature, humidity, analog voltage and dry contact). Only one parameter can manage the relay at the same time, but for every parameter can be sent e-mail if it goes outside of previously predefined range. Special schematic is utilized for long 1-Wire support and various digital sensors can be used.

2. Features

- 10 Mb Ethernet connectivity;
- Password protected, web based configuration and control;
- 1 digital input with " dry contact" and "logic level" modes;
- 1 analog input with 0 to 60VDC range;
- 1 relay with NO and NC contacts;
- Long 1-Wire support for 1 temperature (TST1XX) or temperature/humidity (TSH2xx) sensor;
- SNMP v.1;
- SNMP traps sending for alert conditions;
- E-mail sending for alert conditions;
- SMTP with authentication (SSL is not supported);
- HTTP and SNMP port changing;
- HTTP and XML API commands;
- Remote FTP firmware update.


•

3. Technical parameters

Supply voltage, VDC	12 ± 2
Maximum current consumption (with activated relay), mA	120
Weight, g	45
Dimensions, mm	72 x 50 x 18
Operating temperature, °C	0 to +40
Maximum humidity in 0 to 31°C range, %RH	80
Maximum humidity at 40°C (linear slope between 31-40°C), %RH	50
Minimum high level input voltage for digital inputs, VDC	+2.5
Maximum low level input voltage for digital inputs, VDC	+0.8
Maximum input voltage for digital inputs, VDC	+5.5
Analog input range, VDC	0 to +60
Supply voltage for 1-wire bus (+VW), VDC	5.3 ± 0.2
Maximum output current for 1-wire bus (+VW), A	0.2
Supply voltage for analog sensor (+VA), VDC	5.0 ± 0.1
Maximum output current for analog sensor (+VA), A	0.1
Maximum switchable current for relay contacts, A	3
Maximum switchable voltage for relay contacts, VAC/VDC	30/24

4. Connectors and LED's

The location of the connectors and LED's are shown below:

4.1 Connectors

The device has following connectors:

- Power -ø 2mm connector, central positive;
- Ethernet RJ45 connector;
- Screw terminals:
 - **GND** ground for 1-Wire sensor;
 - **DAT** data input/output of 1-Wire sensor;
 - **+VW** power supply for 1-Wire sensor;
 - **GND** ground for analog input;

Ain analog input;

+VA power supply for analog sensors;

- **GND** ground for digital input;

- **Din** digital input, operates either in "dry contact" mode (J1 is closed) or

"logic level" mode (J1 is open);

- **Relay** normal open and normal close contacts are available.

4.2 LED indicators

Five LED's show the status of controller:

- STS (red) flashes when the main program of controller is executed;
- LOG (yellow) indicates that somebody is logged via WEB interface;
- REL (green) indicates that the relay is activated;
- **Link** (green) located on the Ethernet connector, indicates that the device is connected to the LAN;
- Act (yellow) located on the Ethernet connector, indicates that activity on the LAN is detected.

5. Powering

TCW112-CM is designed to be supplied by adapter SYS1421-0612-W2E or similar, intended for use in the conditions of overvoltage category II, and priorly assessed for compliance with safety requirements. The power supply equipment shall be resistant to short circuit and overload in secondary circuit.

When in use do not position the equipment so that it is difficult to disconnect the device from the power supply.

6. Environment information

This equipment is intended for use in a Pollution Degree 2 environment, at altitudes up to 2000 meters.

When the controller is a part of a system, the other elements of the system shall comply with the EMC requirements and shall be intended for use in the same ambient conditions.

7. Safety

This device must not be used for medical, life saving purposes or for any purpose where its failure could cause serious injury or the loss of life.

To reduce the risk of fire, only flexible stranded wire, with cross section 0.5mm² or larger for wiring of digital and analog inputs and relay output of the device should be used.

To avoid electric shock and fire hazard, do not expose this product to liquids, rain, or moisture. Objects filled with liquids, such as vases, should not be placed on this device.

There is a risk of overheating (damage) of controller, if recommended free spaces to adjacent devices are not ensured. Joint part with external component shall have space for attachment/removal of the cable after installation.

Teracom does not guarantee successful operation of the product if the product was used under conditions deviating from the product specifications.

To ensure that the device works correctly follow the steps below:

- ensure that the device is installed correctly, refer this user manual;
- log in to the devices via browser program;
- make proper set up;
- set up the digital inputs to work in "dry contact" mode;

- short the "DI" and "GND";
- install sensor TSH1XX or TST1XX on 1-Wire bus;
- go to "Monitoring page" of WEB interface proper parameters value should be displayed in the same time flashing "STS" led should indicate the proper operation.

If the equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

In no event will Teracom Ltd. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

8. Maintenance

Upon completion of any service/repair to the device or once per year, safety check must be performed to determine that this product is in proper operating condition.

Clean the device only with dry cloth. Do not use a liquid cleaner or an aerosol cleaner. Do not use a magnetic/static cleaning device (dust remover) or any kind of abrasive materials to clean the device.

9. Installation

Installation consists of mounting the device, connecting to an IP network, connecting inputs and outputs, providing power and configuring via a web browser.

This device must be installed by qualified personnel.

This device must not be installed directly outdoors.

This device should be mounted in a clean and dry location room. Ventilation is recommended for installations where ambient air temperature is expected to be high.

The device should be installed in not flammable box. See Appendix-A, fig. 1 for mechanical details. Maintain spacing from adjacent equipment. Allow 50 mm of space on all sides, as shown on fig.2 in Appendix A. This provides ventilation and electrical isolation.

10. Configuration

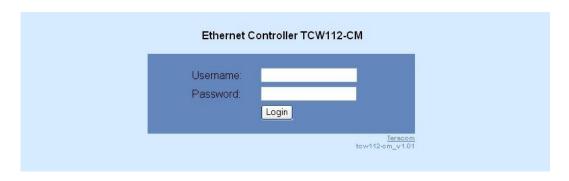
Please follow the steps below for proper installation:

- 1. Mount the controller in a dry and ventilated place.
- 2. Connect the Ethernet port to a 10/100MB Ethernet network. For direct connection to a PC use a "crossover" cable.
- 3. Connect the I/O pins of the controller according to the required application.
- 4. Connect the power supply.

If the red LED (STS) blinks, the main program of controller is executed. By default **TCW112-CM** is delivered with the following network settings:

IP address: 192.168.1.2, Subnet Mask: 255.255.255.0, Default Gateway: 192.168.1.1

Communication with **TCW112-CM** can be established by assigning a temporary IP address to the computer. This address should be in the same network (for example 192.168.1.3). To get access to the web interface, you should type http://192.168.1.2 into the browser address field.

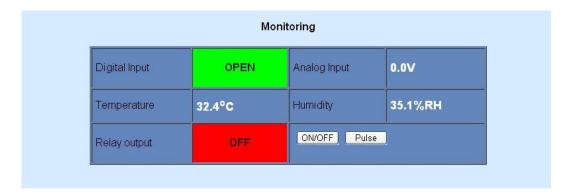


If the network settings are correct, the "Login" page will appear.

The web based interface allows configuration, monitoring and control. Recommended browser is Internet Explorer at 1024x768 resolutions.

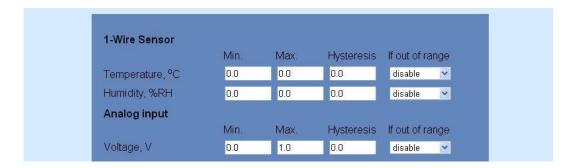
10.1 Login page

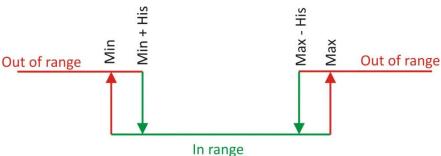
After opening the Login page, authorization data must be entered (by default username=admin , password=admin). It is recommended to change the username and password to prevent unauthorized access to the controller.


The controller supports one active session – only one user can operate the device. If another user tries to login, the message "Someone's logged in" appears:

The active session will be terminated automatically, if the current user stays inactive for 2 minutes.

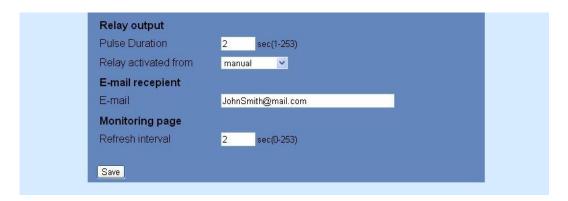
10.2 Monitoring page


After successful authorization, the "Monitoring page" appears:


The "Monitoring page" provides information about the state of the digital and analog inputs, relay status, temperature and humidity (if a sensor is connected).

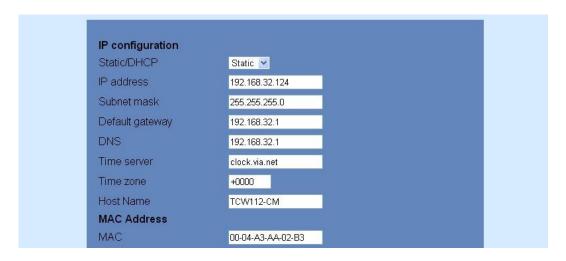
10.3 I/O setup page

For temperature, humidity and analog voltage - MIN, MAX and HISTERESYS values can be set. These values arranged windows for monitored parameter.


Every going out of range generates e-mail (if enabled), with appropriate "Subject" and "Message". Leaving range is considered when the parameter goes lower than MIN values or higher than MAX. Coming back in the range is consider when the parameter goes lower than (MAX – HISTERESYS) or higher than (MIN + HISTERESYS).

For digital input, conditional e-mail sending can be arranged by following part of the page:

Relay can be activated automatically depends of value of monitored parameter (humidity, temperature, analog voltage and changes on digital input) or manually. Only one parameter can be assigned for relay activation, at the same time:


When manual activation is selected, "Pulse" and "ON/OFF" buttons on "Monitoring page" are active. The duration of pulse for relay activation can be set from 1 to 253 seconds.

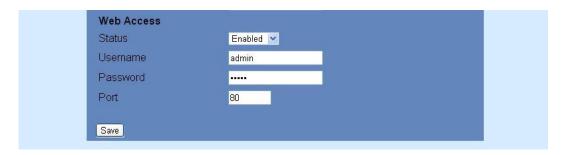
Automatic monitoring page refresh interval can be set from 1 to 253 second. If 0 is chosen - no automatic refresh.

10.4 Network Setup page

The Network parameters are set on this page. The following parameters can be changed:

- Static/DHCP IP Address can be static or dynamic (DHCP server should be present in the network);
- IP address, Subnet mask, Default gateway these fields are active if IP address is static;
- **DNS** these fields is mandatory, if domain names are used instead of IP addresses. By default DNS has the same IP address as Default gateway;
- Time Server and Time Zone these fields are used when e-mail is sent;
- Host Name up to 16 symbols, it appears as a "Subject" in sent e-mails;
- MAC device MAC address.

The good practice is to change the default IP address of controller immediately after first power-on. This will avoid collisions if many devices are used in the same network. It may be necessary to clear the arp cache, each time you connect a new device to the network. This is done by typing *arp -d* in the command prompt window of computer.


To set up the SMTP server details, the following fields should be completed:

- Mailserver [IP:port] domain or IP address + port of SMTP mail server. To use domain name,
 IP address in field DNS must be correct;
- **E-mail** sender e-mail;
- Username and Password authentication details for mail server.

Mail server is considered server for sending mails. Secure Socket Layer is not supported.

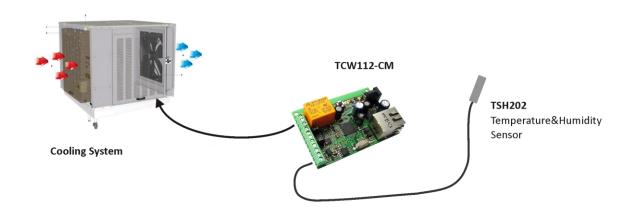
Authentication details for WEB access to **TCW112-CM** can be set in the last section. Only one user is supported.

10.5 SNMP Setup page

TCW112-CM supports SNMP v.1 that enables trap delivery to an SNMP management application. This enables the device to be part of large monitoring and control networks. The possible settings for "SNMP" section are:

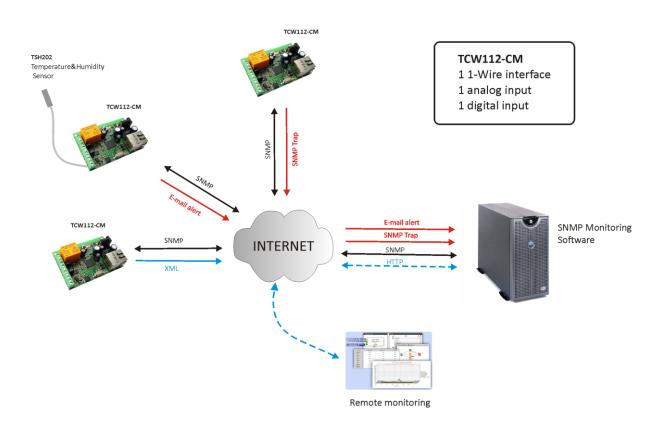
- **SNMP Configuration** enable/disable SNMP;
- SNMP Port allows standard port changing;
- Write/Read community performs client authentication;
- **SNMP Traps** enable/disable SNMP trap messages;
- IP address IP address of the receiving host;
- Community string performs client authentication;
- Trap Interval time interval in seconds for SNMP trap messages;
- Max. Traps number maximum number of SNMP trap messages sent, if trap condition is present.

SNMP traps are sent if:

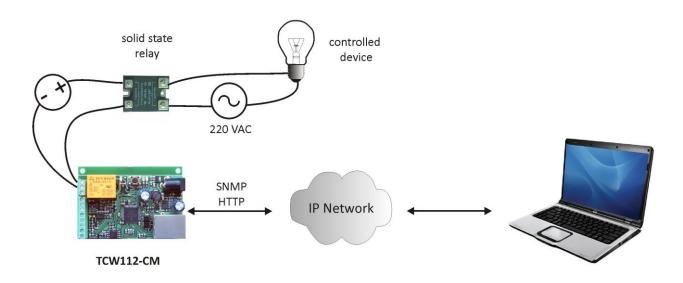

- event occurs (status change) on digital input;
- measured voltage on analog input goes outside the range;
- measured temperature goes outside the range;
- measured humidity goes outside the range;
- restart condition

11. Application examples

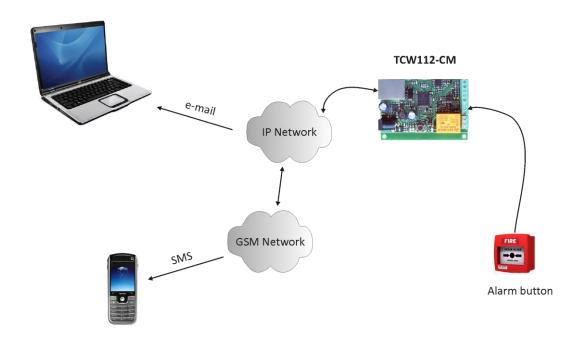
The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Teracom Ltd. cannot assume responsibility or liability for actual use based on the examples and diagrams.


11.1 Temperature and humidity control

TCW112-CM supports 1-Wire temperature and humidity sensors, which makes it suitable for use in heating and cooling systems.


11.2 Data acquisition

TCW112-CM can be used in Data Acquisition Systems (DAQ). The device uses SNMP v.1 protocol for communication with monitoring and management software applications.


11.3 Remote control

The controlled device is connected in series with the relay contacts. Users can operate **TCW112-CM** using a web browser or SNMP applications.

11.4 Remote monitoring

A relay contact of monitored device is connected to the digital input. When an event occurs – the controller can sends an e-mail and/or SNMP trap.

12. 1-Wire Bus

1-Wire is a registered trademark of Maxim Integrated Products, Inc. It is designed to connect several sensors over a short wiring. The bus carries power and a single data wire. It is not suitable for long distances or environments with EMC interference. We strongly recommend to read Maxim's 1-Wire tips at http://www.maxim-ic.com/app-notes/index.mvp/id/148.

We recommend keeping the total wiring length under 60m, although functionality has been achieved in longer distance. We cannot guarantee error-free operation over mentioned wiring length.

We guarantee proper operation only with our 1-Wire sensors series TST1XX and TSH2XX.

13. Control and monitoring using SNMP

TCW112-CM can be configured and monitored through SNMP (Simple Network Management Protocol). This could be done using every SNMPv.1 compatible program. Parameters that can be changed, are grouped according to their functions in the tables below. To obtain a valid OID number it is necessary to replace "**x**" symbol with "**1.3.6.1.4.1.38783**". To save the changes **configurationSaved** (OID x.3.7.0) should be set to "1".

13.1 Product

OID	Name	Access	Description	Syntax
x .1.1.0	name	read-only	Device name	String
x .1.2.0	version	read-only	Firmware version	String
x .1.3.0	date	read-only	Firmware release date	String

13.2 Setup

network					
OID	Name	Access	Description	Syntax	
x.2.1.1.0	deviceIPAddress	read-write	Device IP address	IpAddress	
x.2.1.2.0	subnetMask	read-write	Subnet Mask	IpAddress	
x.2.1.3.0	gateway	read-write	Gateway IP address	IpAddress	
x.2.1.4.0	deviceMACAddress	read-write	Device MAC address	OCTET STRING (SIZE(6))	
x.2.1.5.0	dhcpConfig	read-write	DHCP configuration ON/OFF	INTEGER { off(0), on(1) }	
x.2.1.6.0	dns	read-write	Domain Name Server Address	IpAddress	
x .2.1.7.0	hostName	read-write	Host Name	String (SIZE (038))	

SNMP					
OID	Name	Access	Description	Syntax	
x.2.4.1.0	snmpConfiguration	read-write	SNMP Configuration ENABLED/DISABLED	INTEGER { disabled(0), enabled(1) }	
x. 2.4.2.0	trapEnabled	read-write	Indicates if this trap entry is enabled or not	INTEGER { no(0), yes(1) }	
x. 2.4.3.0	trapReceiverIPAddress	read-write	Trap receiver IP address	IpAddress	
x. 2.4.4.0	trapCommunity	read-write	Trap community	String (SIZE (013))	
x.2.4.5.0	trapInterval	read-write	Trap Interval	INTEGER (1253)	
x.2.4.6.0	maxNumberOfTraps	read-write	Max Number of Traps	INTEGER (1253)	

oneWireSensor -> temperature					
OID	Name	Access	Description	Syntax	
x.2.5.1.1.0	temperatureMin	read-write	Temperature minimum value	INTEGER (-4001250)	
x.2.5.1.2.0	temperatureMax	read-write	Temperature maximum value	INTEGER (-4001250)	
x.2.5.1.3.0	temperatureHyst	read-write	Temperature hysteresis	INTEGER (01250)	
x.2.5.1.4.0	temperatureAction	read-write	Temperature Action	INTEGER { noAction(0), sendMail(1) }	

oneWireSens	oneWireSensor -> humidity						
OID	Name	Access	Description	Syntax			
x.2.5.2.1.0	humidityMin	read-write	Humidity minimum value	INTEGER (01000)			
x.2.5.2.2.0	humidityMax	read-write	Humidity maximum value	INTEGER (01000)			
x.2.5.2.3.0	humidityHyst	read-write	Humidity hysteresis	INTEGER (01000)			
x.2.5.2.4.0	humidityAction	read-write	Humidity Action	INTEGER { noAction(0), sendMail(1) }			

analogInput					
OID	Name	Access	Description	Syntax	
x .2.6.1.0	voltageMin	read-write	Voltage minimum value	INTEGER (01000)	
x .2.6.2.0	voltageMax	read-write	Voltage maximum value	INTEGER (01000)	
x .2.6.3.0	voltageHyst	read-write	Voltage hysteresis	INTEGER (01000)	
x .2.6.4.0	voltageAction	read-write	Voltage Action	INTEGER { noAction(0), sendMail(1) }	

digitalInput						
OID	Name	Access	Description	Syntax		
x.2.7.1.0	digitalInputAction	read-write	Digital Input Action	INTEGER { noAction(0), maillfOpenToClosed(1), maillfClosedToOpen(2) }		

Relay					
OID	Name	Access	Description	Syntax	
x.2.8.1.0	relayControl	read-write	Relay Control Item	<pre>INTEGER { manual(0), temperature(1), humidity(2), analogInput(3), digitalInput(4) }</pre>	
x.2.8.2.0	relayPulseWidth	read-write	Relay Pulse Width	INTEGER (1253)	

recipients				
OID	Name	Access	Description	Syntax
x.2.9.1.0	recipientEmailAddress	read-write	recipient e-mail address	String (SIZE (038))

13.3 Monitor and control

OID	Name	Access	Description	Syntax
x.3.1.0	digitalInputState	read-write	Digital Input State	INTEGER { closed(0), open(1) }
x .3.2.0	relayState	read-write	Relay State	INTEGER { off(0), on(1) }
x .3.3.0	relayPulse	read-write	Relay Pulse	INTEGER { off(0), on(1) }
x.3.4.0	voltx10Int	read-only	Voltage x10 in Integer format	INTEGER (01000)
x .3.5.0	tempx10Int	read-only	Temperature x10 in Integer format	INTEGER (-4001250)
x .3.6.0	humix10Int	read-only	Humidity x10 in Integer format	INTEGER (01000)
x .3.7.0	configurationSaved	read-write	Configuration save status SAVED/UNSAVED	INTEGER { unsaved(0), saved(1) }
x .3.8.0	restartDevice	read-write	Restart Device	INTEGER { cancel(0), restart(1) }

14. XML and HTTP API commands

XML is often preferred choice when it comes to M2M communication and system integration. The monitored values are transmitted in **status.xml** file that can be easily processed by software applications.

Below is the structure of the XML file, which is located at: http://your.ip.address/status.xml:

<Monitor>
 <Device>TCW112-CM</Device>
 <FW>tcw112-cmv1.01</FW>

<DigitalInput > OPEN < / DigitalInput >

<Relay>ON</Relay>

<AnalogInput >5.2</AnalogInput >

<Temperature>---</Temperature >

<Humidity>---</Humidity >

</Monitor>

TCW112-CM_R1

Device Type

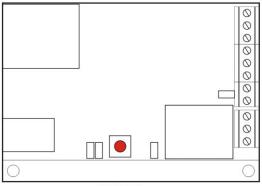
Firmware version

Page 12

Digital input state

Relay state

Analog input value Temperature value Humidity value


The relay can be controlled by sending HTTP commands:

Command	Description
http://your.ip.address/?r1=1	Turn Relay ON
http://your.ip.address/?r1=0	Turn Relay OFF
http://your.ip.address/?tg1=1	Toggle Relay state
http://your.ip.address/?pl1=1	Pulse relay

15. Factory default settings

TCW112-CM can be restored to its factory default settings following the steps below:

- Turn off the power supply from the unit;
- Press and hold the RESET button then turn on the power supply;
- The LED's STS and LOG will flash 14 times, after that they will turn on. In this moment the RESET button should be released.

RESET

The factory default settings are:

User Name (Admin)	admin
Password (Admin)	admin
IP Address	192.168.1.2
Subnet Mask	255.255.255.0
Default Gateway	192.168.1.1
SNMPConfiguration	disabled
readCommunity	public
writeCommunity	private

16. Firmware update

TCW112-CM supports remote firmware update. To update the device follow the steps below:

- Download the TCW1XX_Update_Tool program from <u>www.teracom.cc</u>;
- Download the latest firmware version file (*.cod) from www.teracom.cc;
- Start the program and update the firmware.

Attention! Don't turn off the power supply during the update. Turning off the power supply will damage the device.

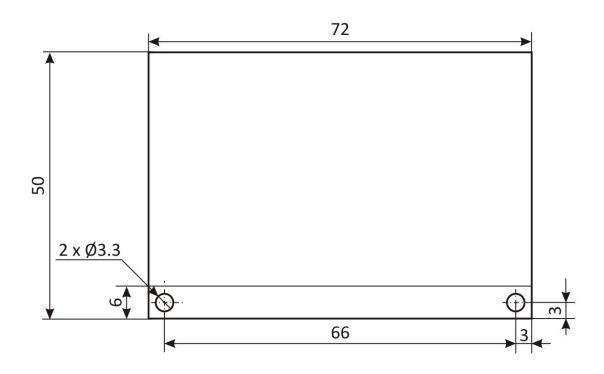


Fig.1

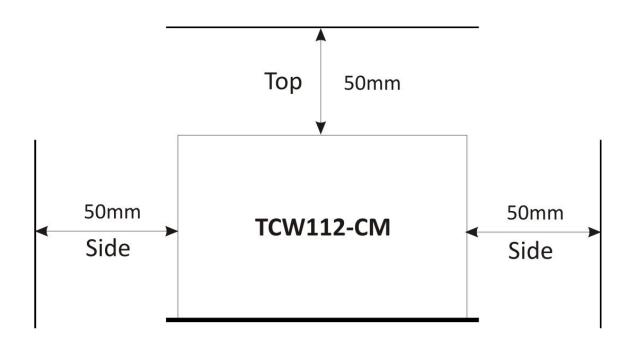


Fig.2