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Chapter 1

Introduction

At present time much effort is being spent in both developing and implementing parallel
algorithms. The experimental package SPC-PM Po 3D is part of the ongoing research of the
Chemnitz research group Scientific Parallel Computing (SPC), now part of SFB393, into
finite element methods for problems over three dimensional domains. Special emphasis is
paid to choose finite element meshes which exhibit an optimal order of the discretization
error, to develop preconditioners for the arising finite element system based on domain
decomposition and multilevel techniques, and to treat problems in complicated domains as
they arise in practice.

The package SPC-PM Po 3D is based on a set of libraries which are still under de-
velopment. They are documented in the Programmer’s Manual [4] and in other separate
papers [13, 17, 18, 19]. The aim of this User’s Manual is to provide an overview over the pro-
gram, its capabilities, its installation, and handling. Moreover, test examples are explained.
This new release describes the changes from version 2 to version 3.3, the new standard file
version 2.1, and new related tools.

In Version 3.x the program can solve the Poisson equation and the Lamé system of linear
elasticity with in general mixed boundary conditions of Dirichlet and Neumann type, see
Section 2.1. The domain  C IR? can be a various curved bounded polyhedron, see [21]. The
input is a coarse mesh, a description of the data and some control parameters. The program
distributes the elements of the coarse mesh to the processors, refines the elements, generates
the system of equations using linear or quadratic shape functions, solves this system and
offers graphical tools to display the solution. Further, the behaviour of the algorithms can
be monitored: arithmetic and communication time is measured, the discretization error is
measured, different preconditioners can be compared. There exists special versions of SPC-
PM Po 3D using a multigrid solver (M. Jung), having an error estimator (G. Kunert), or
using Globisch-Nepomnyaschikh mesh transformation technique in the solver (G. Globisch).
All these versions are adapted from the SPC-PM Po 3D-package but include major changes.
Thats why only some of this features are part of the official distribution.

The version 3.x, documented here, is the last version with uniform mesh refinement. It
is not developed further, only bugs will be fixed. The currently developed version 4 will
include adaptive mesh refinement and dynamic load balancing.

The program has been developed for MIMD computers; it has been tested on Parsytec
machines (GCPowerPlus-128 with Motorola Power PC601 processors and GCel-192 on
transputer basis) and on workstation clusters using PVM. The special case of only one
processor is included, that means the package can be compiled for single processor machines
without any change in the source files. We point out that the implementation is based on

a special data structure which allows that all components of the program run with almost
optimal performance (O(N) or O(N In N)).
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Chapter 2

Basic description

2.1 Mathematical background

Consider the Poisson problem in the notation

—Au = f in QcCR?

u = uy on 08,
% = on 0N
an - g 2
ou

= 0 on 00\ 09Q \ 0y,

or the Lamé problem for u = (u®, u®, u®)T

—pAu+ A+p)graddive = f in QCR’
u® u((f) on 899, 1=1,2,3,
t = ¢ on 90, i=1,23,
tD = 0 on 900\ 0QP\ 00y i=1,2,3

where ¢ = (t(l), @) t(3))T = S[u] - n is the normal stress, the stress tensor S[u] = (Sij)?,jzl is
defined with z = (z(V), 2(2) 2G3)T by

ou® oyl
Sij =K [m + W] + (SZ])\V *Uu,
n is the outward normal, and d;; is the Kronecker delta. The domain © C R® must be
bounded. In the present version curved boundaries can not be treated by the refinement
procedure, thus €2 is restricted to be a polyhedron.

The boundary value problem is solved by a standard finite element method, using either
tetrahedral or brick elements with linear or quadratic shape functions of the serendipity class,
see Figure 2.1. The initial mesh must be generated outside SPC-PM Po 3D. After the file
input it is distributed to the processors using a spectral bisection algorithm [24] or external
information. That means, the domain € is decomposed in non-overlapping subdomains, the
basis for our parallel algorithms. Then the elements are hierarchically refined to generate
the final finite element mesh, for a description of the algorithm see Chapter 3 in [4].

The finite element stiffness matrix and the right hand side are generated locally in the
subdomains by approximating the integrals using a quadrature rule, see Sections 4.1 and 4.2

3
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Figure 2.1: Finite elements implemented in SPC-PM Po 3D.

in [4]. The resulting system of equations is solved using a parallel version of the conjugate
gradient method with Jacobi-, Yserentant- (hierarchical basis) or BPX preconditioning,
which are described in [4, Chapter 5]. There exists also a special version using a multigrid
method (M. Jung).

The post-processing includes a simple variant of error assessing. If in special test ex-
amples the exact solution of the problem is known then the error in L,- and H'-norms
are calculated by numerical integration, additionally the error is measured in the discrete
maximum norm, see [4, Subsection 4.4.1]. In general the exact solution of the problem is
not available, thus we must rely on an error estimator. It exists a special version of SPC-
PM Po 3D with an improved variant of the residual type error estimator, see [14]. At the
moment this estimator is only available for linear tetrahedral elements and not part of the
official release.

2.2 Installation

Provided AFS (the Andrew File System) is installed, any user can install the package by
using the shell-script:

/afs/tu-chemnitz.de/home/urz/p/pester/bin/install3d name_of destdir [-version v.m]

where name_of _destdir should be a name which does not yet exist, and the optional pa-
rameter —version provides the possibility to install different versions of the package. An
explanation of various versions can be obtained by calling the script without parameters.
For a quick start do the following:

1. Install the package in name_of _destdir by calling install3d.

2. If the installation of SPC-PM Po 3D is already on AFS no changes are necessary. Oth-
erwise edit the Makefile in name_of _destdir and adjust the variables $PARDEST and
$PPCDEST or more common the variable $AFSDEST; ensure that these directories exists
at the corresponding machines. Moreover, it is useful to copy or link the directories
mesh3 and mesh4 to the working directory of the remote machines or in AFS.

3. Choose the architecture you want to work with by calling one of the shell-scripts

/usr/global/bin /setpvin,
/usr/global/bin/setparix,
or /usr/global/bin/setppc.

Some variables including $archi are now defined.
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4. Call make.

Then, after successful compilation, the executable files tet.$archi (for tetrahedral
meshes), quad.$archi (for cuboidal meshes), and ggtet.$archi/ggquad.$archi (both us-
ing Globisch/Nepomnyaschikh method for embedding unstructured meshes) should be con-
tained in your directory. If defined, a copy should be in $AFSDEST, and, for $archi=parix
and $archi=ppc, in the directories on the remote machines.

Before we are going to describe in some detail the use of the various files which were
created during the installation we explain the diverse values of the variable $archi: It is
used to distinguish the different architectures for which an executable file shall be compiled
and linked, because the compiler, libraries and especially the communication routines are
different.

e $archi=SUN4 is set after calling setpvm on a SUN4 workstation. The executable files
are tet.SUN4 and quad.SUN4, they can run under pvm, or without the daemon of
pvm, as single processor variant at a SUN workstation.

e $archi=SUNMP is set by calling setpvm on a Sun multiprocessor workstation.

e $archi=HPPA is set by calling setpvm on a HP workstation.

e $archi=HPPAMP is set by calling setpvm on a HP multiprocessor workstation.

e $archi=SGI5 is set by calling setpvm on a SGI workstation running under Irix 5.x.
e $archi=SGI64 is set by calling setpvm on a SGI workstation running under Irix 6.4.

e $archi=LINUX is set by calling setpvm on a PC or other machines running under
Linux.

e $archi=parix is set by setparix. The executable files run at Parsytec transputer
machines as the GCel-192 under the operating system PARIX.

e $archi=ppc is the setting after calling setppc which causes the compilation of an
executable file for Parsytec machines based on the Motorola Power PC601 chip, as the
Xplorer or the GCPowerPlus—128 under the operating system PARIX.

e $archi=ppcmpi could be set by the user after calling setppc which causes the compi-
lation of an executable file for Parsytec machines based on the Motorola Power PC601
chip, as the Xplorer or the GCPowerPlus-128 using the message passing interface
(MPT) instead of the PARIX routines.

In case of our latest version V3.2 after the installation a file structure as shown in Figure 2.2
is given. Except the files pfem.f, bsp.f, and getdofs.f the directory name_of_destdir contains
no source files. All needed code is included in precompiled static link libraries which could
be found in the libs directory separated by architectures. The default search path for this
libraries is given in the Makefile by the variable LIBDIR. The SPC-PM Po 3D specific link
libraries are:

libNetzA.a libNetzT.a libNetzQ.a
libSolve.a  libAssem.a libElem3D.a
libFehler.a.
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— Bsp — linked to /afs/tucz/project/stb393/FEM/Bsp
- include — linked to /afs/tucz/project/stb393/FEM /include
- libs — linked to /afs/tucz/project/stb393/FEM/libs
— mylibs
— Makedir

name-of-destdir L graph ~ — linked to /afs/tucz/project/stb393/FEM/graph
- ass4 — linked to /afs/tucz/project/stb393/FEM /ass4
-~ ass3 — linked to /afs/tucz/project/stb393/FEM/ass3
- mesh3  — linked to /afs/tucz/project/stb393/FEM /mesh3
L mesh4  — linked to /afs/tucz/project/stb393/FEM/mesh4

Figure 2.2: File structure after installation of SPC-PM Po 3DV3.2.

The way how to modify the library sources is described in section 2.3.

Sometimes it is necessary to describe problem data by function subroutines (right hand
sides, exact solution if available). These routines are contained in the file ./bsp.f. Our
approach is to save example data in files Bsp/bsp.example name and to copy the appropriate

file to ./bsp.f.

The directory Makedir contains some architecture specific files which are distinguished
by the variable $archi, see also below. The file variante.$archi is included in the main
source file and defines the length of a long vector for storing all vector data, its length must
be adapted to the size of the memory of the machine to be used. The file makefile.$archi is
included in the main makefile and contains specific options and directories which are machine
dependent. The variable $GRAF can be set to Graf or NoGraf, thus the graphic libraries are
linked or not, which results in a considerable difference in the size of the executable file.

Both, the handling of the bsp.example_name files and the setting of the $GRAF variable are
provided by the shell-script setup_ppc. This script did all the needed changes automatically
after the users choice.

A couple of meshes for tests are contained in the directories mesh3 (tetrahedral meshes)
and mesh4 (cuboidal meshes): *.std. The file structure is described in Section 3.2. These
directories are linked to /afs/tucz/project/stb393/FEM/mesh[3,4], in order to prevent that
the data files exist several times. In some cases there is a file name.txt which gives some
information about the corresponding problem name.std.

Corresponding to the mesh[3,4] directories exists the directories ass[3,4] containing as-
signment informations for an optimal distribution of the mesh among the processors. These
informations are considered, if vertvar:3 is chosen in the control file, see 2.4. The as-
signment files are created by chaco.sun and must follow the naming convention described
in [23]. The expected input for chaco is stored in the graph directory as name.graph. For
new meshes a *.graph file could be generated from the *.std using the tool std2graph.sun.

All these AFS-directories are readable and executable for any user. M. Pester is ad-

ministrating these directories and can include further AFS-users to a list of people who are
allowed to add files in these directories.
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The directory mesh3 contains also a couple of files with the extension .out. These files
were created with the mesh-generator PARMESH3D, see [11], and can be processed with the
program mesh3/renfindsun on a SUN4 workstation. This program produces a file with the
right data structure and with boundary conditions, which are set by a dialog with the user.
Moreover, renfindsun can optionally re-numerate the nodes to minimize the bandwidth of
the resulting stiffness matrix, see Section 3.3.

The program mesh3/oldnetz produces a restricted class of tetrahedral meshes, see Sub-
section 3.4. The program mesh3/xbc in an XView-application to view meshes and to set or
to change boundary conditions interactively, see Section 3.6.

In the main directory name_of _destdir there is the main Makefile, the essential FOR-
TRAN source files, some text files with helpful informations, the executables f3_sgi and
f3_sun providing the graphical interface GRAPE (see A), the executable chaco.sun for
pre-loadbalacing (see [23]), and the files control.tet /control.quad which are described in
Section 2.4. The Makefile is used to compile source files, to create libraries, to link the
executable file and to copy it to the appropriate machine (george.informatik or kain.hrz).
The destination for the remote copy is defined by two variables $PARDEST and $PPCDEST in
the Makefile, which should be adjusted by the user, see above. Note that it is possible to
link only a special program by calling make tet, make ggtet, make quad, or make ggquad,
respectively.

The Makefile can also be used to remove the libraries, tar-files, and executable files: make
clean removes the target files for the current architecture, and make CLEAN removes them
for all architectures. Only the files of the installation as well as user created files remain.
The additional option make tar creates a archive with all sources, includes, Makefiles, and
meshes. Some more information about the Makefile could be obtain by calling make help.

2.3 Modifying source files under the CVS

The whole source tree of SPC-PM Po 3D is under CVS control to keep the source manage-
ment easy and transparent. As mentioned in section 2.2 the standard installation includes
no source files except the main program pfem.f, the function subroutines bsp.f, and getdofs.f
which influences the behaviour of the 2D-graphic.

To modify the sources of the libraries the source tree of each one had to be checked out
of the CVS using the shell-command

cvs co MODULNAME
where MODULNAME is one of
NetzA, NetzT, NetzQ, Solve, Assem, Elem3D, Fehler.

Before performing this checkout the correct environment must be set by executing one of
the scripts setpvm, setppc or setparix. The cvs command creates a directory MODULNAME
containing the latest sources, the LIBLISTE and a CVS directory needed by the version
control.

To link now the program with the local libraries instead of the global ones some modi-
fications in the global Makefile are needed:

1. Refer to all local directories you want to process during compilation behind the variable
MYLIBS at line 41.
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2. Substitute $(ALIBDIR) with $(MYLIBDIR) in the lines 136 to 143 to link with the
local version of a library.

After doing so, a simple make in the main directory should create the default 4 executa-
bles for the chosen architecture $archi. All makefiles work together with the LIBLISTE
in their directory, a text file providing the source files to be included in the library. If a
user wants to include additional source files, he/she should add it in the corresponding file
LIBLISTE.

The CVS must also be used to redistribute modified sources. In the following a short
description of possible transactions:

cvs co MODULNAME creates a subdirectory MODULNAME including the latest sources,
the Makefile, and LIBLISTE for the corresponding library

in the subdirectory MODULNAME. . .

cvs update updates the local source files with the global ones

cvs -n update shows the changes since the last cvs co or cvs update

cvs diff -D today [files...] shows differences between the local files and the last version
checked in (also -D yesterday is possible, use cvs diff -D today
-D yesterday to compare two archived versions)

cvs commit files... checks in the named files

cvs release propagates that no changes will be made in the next time

For further details on the CVS see http://www.loria.fr/"molli/cvs/doc/cvs_toc.html,
http://www.tu-chemnitz.de/ pester/cvs/cvs_exp.html, or the manpages.

2.4 The files control.tet and control.quad

The mesh and the boundary conditions are described in files with the extension .std, see
Subsection 3.2. Additionally, there is a couple of variables controlling the execution of the
program. They are described together with their standard values in Table 2.1. Some of the
variables contain numbers of quadrature formulas. They are given for the different types of
elements in Tables 2.2 — 2.6. Note that the exactness of the quadrature formulas belongs
to the master element, it may change for the actual element through transformation by
multiplication with a nonconstant jacobian. The standard values have changed during the
evolution of the program.

These standard values can be overwritten by defining other values in a file control.tet or
control.quad, respectively. The lines in this file have the form

variable : value,
or variable : value_lin/value_quad.

The “” is relevant, variable must be written in lower case. There is no check of the
usefulness of the value. Different values for the linear and the quadratic case can be given
for all integer variables. This is especially useful for the quadrature rules and for ndiag. If
a variable appears more than once in the file then the last value is taken.

Note that these files can be omitted, if only standard values shall be used. As an example
consider the case that the user likes to change the stop criterion in the CG method to
e < 1071°. He/she has two possibilities: Either one can change this during the execution, see
the last paragraph in Section 2.5. Or he/she introduces the file control.tet (or control.quad)
with one line

epsilon : 1.E-10
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Variable

Standard

values

Possible
value

Description

lin_quad

[1,2]

kind of shape functions
1 : linear shape functions
2 : quadratic shape functions

vertvar

[1,2,3]

kind of coarse grid partitioning
1 : trivial partitioning
2 : partitioning via recursive spectral bisection
3 : read partitioning from file

femakkvar

[1,2,3]

there are three variants of accumulation of dis-
tributed data, see [2]

loesvar

.—.
—
Ut

~

choice of the preconditioner:
1: Jacobi
2 : Yserentant without coarse grid solver
3 : Yserentant with coarse grid solver
4 : BPX without coarse grid solver
5 : BPX with coarse grid solver

nint2ass

14/31

number of the quadrature formula used for assem-
bling Neumann boundary data.

15t digit : quadrilaterals, see Table 2.2

204 digit : triangles, see Table 2.3

nint3ass

121/121

number of quadrature formula for 3D elements used
in the assembling.
15t digit : tetrahedra, see Table 2.4
24 digit : hexahedra (bricks), see Table 2.6
374 digit : pentahedra (triangular prisms),
see Table 2.5

nint2error

14/31

as nint2ass, but used in the error estimator for the
integration of the jump of the normal derivatives

nint3error

531/531

as nint3ass, but used for the integration of 3D
integrals in the error calculation

ion

integer

controls the amount of output of the program

> 0 : message after each ion-th CG-iteration
: no information about the iteration
: no startup screen and no problem info
: no information on numbers of coupling
faces / edges / nodes
no menus
no input request messages

<-10:
< —11:

iter

200

integer>()

maximal number of iterations in the CG algorithm

epsilon

1.E—4

real>0

stop criterion for the CG (relative decrease of the
norm of the residual)

ndiag

70

integer>()

upper estimate for the number of nonzero entries in
any row of the stiffness matrix. If it is chosen too
large, the program may suffer from lack of memory
and if it is chosen too small, the number is itera-
tively increased = waste of time

verf

reale[0,1]

mesh refinement parameter for a certain class of
examples, see Subsection 4.1.7.
0 : no change of the mesh

Table 2.1: Variables in control.tet / control.quad.
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Formula | Number of o exact for
X Description S
number points x'y’ with
1 1 midpoint (center of gravity) i,7 <1
2 4 2x2 Gaussian points 1,7 <3
3 9 3x3 Gaussian points 1,7 <5hH
Table 2.2: Quadrature formulas for quadrilaterals.
Formula | Number of L exact for
. Description e
number points x'y! with
1 1 center of gravity 1,7 <1
2 3 midpoints of the edges 1,7 <2
3 4 Gaussian points 1,7 <3
4 7 Gaussian points 1,7 <5hH
Table 2.3: Quadrature formulas for triangles.
Formula | Number of L exact for
. Description PP
number points x'y! 2% with
1 1 center of gravity i+7+ k<1
2 4 Gaussian points 1+ + k<2
3 5 Gaussian points 1+ +k<3
4 11 Gaussian points 1+j+k<A4
5 14 Gaussian points 1 +7+kE<5S
Table 2.4: Quadrature formulas for tetrahedra.
Formula | Number of | the formula is a cross product of the formulas exact for
number points for triangle for interval (z-direction) riyl 2F with
1 1=1-1 center of gravity midpoint 1+73<1,k<1
2 3=3-1 | midpoints of edges midpoint 1+ <2, k<1
3 4=4-1 4 Gaussian points midpoint 1+7 <3 k<1
4 6 =3-2 | midpoints of edges 2 Gaussian points 1+ <2,k<3
5 8 =4-2 | 4 Gaussian points 2 Gaussian points 1+ <3 k<3
6 12=4-3 | 4 Gaussian points 3 Gaussian points 1+ <3, k<5
7 14 =7-2 | 7 Gaussian points 2 Gaussian points 1+7<5k<3
8 21 =7-3 | 7 Gaussian points 3 Gaussian points 1+ 7 <5k<5
Table 2.5: Quadrature formulas for pentahedra.
Formula | Number of o exact for
. Description P
number points x'y! 2% with
1 1 midpoint (center of gravity) i,k <1
2 8 2x2x2 Gaussian points 1,7,k <3
3 27 3x3x3 Gaussian points 1,7,k <5
4 6 midpoints of the faces 1+ +k<3
5 14 Irons formula 1+ +k<5

Table 2.6: Quadrature formulas for hexahedra.
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As an example, we display here the file control.tet as it is contained in the distribution of
SPC-PM Po 3D:

File zur Anpassung von Standardwerten fuer PFEM

Kommentarzeilen sollten mit ’!’ beginnen
Datenzeilen haben die Form:’schluesselwort:wert’
Der Doppelpunkt ist wichtig
Grosz-/Kleinschreibung ist signifikant

Die Richtigkeit der Werte wird nicht ueberprueft

Folgende Schluesselworte sind zulaessig, ihr Name entspricht der
zu besetzenden Variable, deren Bedeutung und zulaessige Werte
gehen aus dem Quelltext Netz/Tetraeder/control.f hervor.

lin_quad 1
vertvar 3
femakkvar 3
loesvar 5
nint2ass 14

nint3ass 311
nint2error 11
nint3error 311

ion 1
iter 200
epsilon 1E-4
ndiag 70
verf 0.

Fuer alle Integer-Werte koennen zwei Werte fuer linear/quadratisch angegeben
werden. Trennzeichen ’/’ erforderlich !!!

Diese Liste musz bei Veraenderung von standard.f gegebenenfalls
aktualisiert werden.

Bei Mehrfachdefinition gilt die Letzte (Reihenfolge im File)
Bei Nichtdefinition kommen die Werte aus control.f zur Anwendung

loesvar : 5
lin_quad : 1
nint2ass : 34
nint2error : 34
nint3ass : 121/232
nint3error : 531/531
ion : 10

iter : 500

! epsilon : 1.e-6
ndiag : 150/200

! verf : 0.5
vertvar : 2
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2.5 Output information/a typical run of the program

Output information can be classified into two groups:
e information that is printed in dependence of the variable ion, see Table 2.1,

e information that can be called by choosing a menu item.

We explain this information by following a typical run with ion = 1. After calling the
program we get an introduction screen with the number of the version, the names of main
authors, the length of the working vector, and the number of processors used. Then we get
a copy of the control parameters and the input request for a problem file.

urei@kain:fem), xr8 tet.ppc

run -a pp8 tet.ppc

run : Requesting network by calling nrm.

run : Creating 4 * 2 descriptor by calling mkdesc.
run : Starting D-Server at kain link 5.

# #HHdSHEE R R R R #
# #
# SSSS PPPPP CcccC PPPPP M M  PPPPP 333 #
#SS SS PP PP CC CC PP PP MM MM PP PP 33 33 #
# SS PP PP CC PP PP MMM MMM PP PP 33 #
# SSSS PPPPP CC ### PPPPP MM MMM MM  PPPPP 000 333 #
# SS PP cC PP MM M MM PP 00 00 33 #
# SS SS PP CC CC PP MM MM PP 00 00 33 33 #
# SSSS PP CcccC PP MM MM PP 000 333 #
# #
# ##HdS A R R #
# #
# Programm-Modul 3D-Potentialprobleme #
# Version: 3.30 #
# #
# TU Chemnitz, Sonderforschungsbereich 393 #
# Th.Apel, A.Meyer, M.Meyer, F.Milde, M.Pester, M.Thess #
# #
# Fakultaet fuer Mathematik #
# #
# 16-MB-Variante ( 3500000 Worte) - bis zu 1024 Prozessoren #
# in Benutzung: 8 Proz. #
# Gelinkt mit bsp.z #
# #
# ##tdHa GG R R S H #

stk o ok ok sk sk sk ok sk s ok sk sk sk ok sk ok sk s ok sk sk o sk sk ok k sk o ok ok
* Belegung der Steuerparameter *

* (kann mittels File control.tet angepasst werden) *
KKK KKK KKK KKK KSR Kok K ook ook ok ok ok ok Kk ok ok ok Kok KKk Kok ok ok

* *
* vertvar = 2 lin_quad 1 *
* nen2d 3 nen3d = 4 *
* femakkvar = 3 loesvar = 5 *
* nint2ass = 34 nint3ass =121 *
* nint2error = 34 nint3error = 531 *
* iter = 500 epsilon = 0.10E-03 *
* ion = 10 ndiag = 70 *
* *
* Verzeichnis fuer Netze : mesh3/ *

K 3K 5K 3K K K K K K K K K K K 3k K K dk 5k 5k 5k k 5k %k %k >k 3k 5k 5k >k 5k 3k 3k 3k 3k >k %k %k >k >k >k 3k 5k >k %k %k %k %k %k Xk Xk Xk

Filename: cubusi
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The file name is typed in, here cubusl (the input of a question mark generates a ls-command
for the appropriate directory). Then we are asked for the number of refinement steps. It is
also possible to escape by typing -1 for a new mesh, -2 to quit, or -3 for new parameters.

GEWUENSCHTE ZAHL VON VERFEINERUNGSSCHRITTEN

-1 = NEUES NETZ

-2 = PROGRAMM BEENDEN

-3 = NEUE PARAMETER
EINGABE : 2

After this we get information on the current state of the program and to the input mesh.

EINLESEN DER NETZDATEN AUS : mesh3/cubusl.std

Wuerfel, Kantenlaenge 10, oben/unten Dirichlet (Typ 2: u=z/10)
Gerhard Globisch
07.11.1994

Poisson-Gleichung .
PARMESH, RENFINDSUN the input file (extension

3D Std)

data_read done
No error

copy of the information of

EINLESEN BEENDET, IER= 0
VERTEILUNG DER TETRAEDER DURCH REKURSIVE SPEKTRALBISEKTION.

Anzahl der Elemente in den Prozessoren:

3 3 3 3 3 3 3 3 information on the progress
1 1 2 2 1 1 2 2

f the recursi ral bi-
o 1 1 1 o 1 1 1 of the recursive spectral b

section

==> in 2 Tetr. 2-mal Flaechen getauscht.
NETZ VERFEINERT VFS=1
NETZ VERFEINERT VFS=2

3K 3K 3K K K K K K K K K K K K K 3k K K -k ok k k 5k 5k %k 5k 5k >k >k 3k 3k 3k 3k 3k 5k >k %k >k >k >k >k 5k >k 3k 3k 3k 5k 5k %k %k %k >k >k 3 % % % %k %k

*% AUSGABEMENUE Kk
3k >k 3k ok 3k 3k >k ok ok 3k k >k 3k sk 3k >k ok Sk sk >k S Sk k ok sk k >k sk Sk k ok S 5k >k K Sk k ok sk sk 3k 3k k >k 3k Sk ke k ok k %k ok sk k >k 3k %k xk k%
* 0 : WEITER *
* 4 : AUSGABE DER NETZDATEN *
* 5 : AUSGABE DER RANDKETTENDATEN *
* 8 : AUSGABE DER NETZDATEN IN STANDARDFILE *

stk ok sk ok ook ok ke ok sk ok ok sk ok ok sk ok sk sk sk ok ook ok sk ok ok sk ok s sk sk ok sk ok ok sk ok sk sk ok s ok sk ok sk ok ok e ok ok ok k
-> EINGABE : 0O

At this stage, the coarse mesh data are read in and distributed to the processors, the mesh
is hierarchically refined. Now the possibility is given to print out some informations about
the refined mesh and the chain fields, and to store the refined mesh as *.std file. Choosing
0 we go on.

3K 3K 3K K K K K K K K K K K K K 3k K K 5k sk k dk k 5k 5k >k >k 5k >k >k 3k k 3k 3k 3k 5k 5k %k %k 5k >k >k 5k >k 3k 3k 3k 5k 5k %k %k %k >k >k 3 % % % %k %k

* AUSGABEMENUE *
3k >k ok 2k 3k >k >k ok K sk sk %k ok K sk ok ok dk 5k %k vk dk k ok K sk 3k sk ke >k ok dk 5k Kk ok dk >k ok sk 5k 3k ke k >k 3k vk sk Kk ok %k k ok 3k >k >k 3k %k xk *k %k
* 0 : WEITER *
* 1 : 3D-GRAFIK MIT GRAPE *
* 2 : 2D-GRAFIK SCHNITT/OBERFLAECHE *
* 4 : AUSGABE DER NETZDATEN *
* 5 : AUSGABE DER RANDKETTENDATEN *

stk ok sk ok ok sk ok ke ok sk ok ok sk ok ke sk ok kol sk ok ook ok s ook sk ok s sk sk ok sk ook sk ok sk sk ok ok sk ok sk sk ok ok e ok ok ok k
-> EINGABE : 0O
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Now the possibility to visualize the generated mesh either in 3D or 2D is given. We go on
choosing 0 or just pressing [enter |

START GENERIEREN/ASSEMBLIEREN
Zeiten fuer Warten+Kommunikation [s]

Prozessor
log. /phys. input : in % :  output: in % : gesamt:
0 0 O 0.00 0.00 0.00 0.00 0.00
1 1 0 0.00 0.00 0.00 0.00 0.01 time information for as-
2 3 0 0.00 0.00 0.00 0.00 0.01 sembling process
3 2 0 0.00 0.00 0.00 0.00 0.01
4 0 1 0.00 0.00 0.00 0.00 0.00
5 1 1 0.00 0.00 0.00 0.00 0.01
6 3 1 0.00 0.00 0.00 0.00 0.01
7 2 1 0.00 0.00 0.00 0.00 0.01
reine Arithmetikzeit (max): 0.01
ASSEMBLTEREN BEENDET . .
Coars-Grid-Matrix-Generation: Ier= 0 1nﬁnﬂnatguloniﬂuacoarse
Groesse der Matrix (VBZ) 30 grid matrix
* Probleminformationen (lokal Prozessor P):
- globale Anzahl Crosspoints 8
- Anzahl der Knoten (lokal) 35
- davon: 1lok. Crosspoints 4
Summe der Randketten : 30 information on data on
Koppelknoten 34 processor 0
innere Knoten 1
- Anzahl der Koppelkanten 6
- Anzahl der Koppelflaechen 4
* Probleminformationen ( global ):
- Anzahl der Prozessoren: 8
- Anzahl der Knoten 125
- davon : Koppelknoten : 119 global information
- interne Knoten : 6
-> Gesamtanzahl der Freiheitsgrade : 125

* Start der Simulation: Vorkonditionierung Nr. 5
<enter>

Now the stiffness matrix as well as the coarse grid matrix are assembled. After an
the system of equation is solved, giving information on the convergence and on times for
communication and arithmetics. After providing the possibility to save the graphic of time
usage the program finally stops in the next menu.

IT (r,w) (As,s) ALFA BETA Eta
1 3.850645E+01 5.718772E+01 -6.733342E-01 0.000000E+00 1.00
2 2.147706E+01 1.432139E+02 -1.499650E-01 5.577524E-01 0.56
3 3.863126E+00 2.177399E+01 -1.774193E-01 1.798722E-01 0.32
4 5.871520E-01 2.966601E+00 -1.979208E-01 1.519888E-01 0.25
5 1.974870E-01 1.042542E+00 -1.894283E-01 3.363473E-01 0.27
6 4.499389E-02 2.041502E-01 -2.203960E-01 2.278322E-01 0.26
7 T7.271924E-03 2.561211E-02 -2.839252E-01 1.616203E-01 0.24
8 1.445351E-03 5.632380E-03 -2.566146E-01 1.987577E-01  0.23
9 2.842315E-04 9.748493E-04 -2.915645E-01 1.966522E-01 0.23

10 9.355177E-05 2.828425E-04 -3.307558E-01 3.291394E-01 0.24

11 2.334666E-05 1.145204E-04 -2.038646E-01 2.495588E-01 0.24

12 2.409204E-06 1.059402E-05 -2.274118E-01 1.031926E-01 0.22
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13 4.041727E-07 1.625228E-06 -2.486868E-01 1.677619E-01 0.22
14 6.576520E-08 1.625228E-06 -2.486868E-01 1.627156E-01 0.21
IT= 14

Zeiten fuer Warten+Kommunikation [s]

Prozessor
log. /phys. input : in % :  output: in % :  gesamt:
0O 0 O 0.18 47.11 0.17 43.91 0.38
i 1 0 0.26 69.20 0.09 25.98 0.38
2 3 0 0.23 59.90 0.13 34.40 0.38
3 2 0 0.29 78.01 0.06 17.08 0.38
4 0 1 0.19 50.94 0.17 46.18 0.38
5 1 1 0.29 76.30 0.07 18.96 0.38
6 3 1 0.24 65.05 0.11 29.36 0.38
7T 2 1 0.29 77.64 0.06 17.08 0.38
reine Arithmetikzeit (max): 0.03
+ HB2BPX (max): 0.00

Filename for PS output:

K K K K K K K K K K K K K K K K K ok ok ok %k 5k 5k %k %k ok ok 3k ok ok ok K %k %k %k %k %k %k ok 3k 3k 3k 5k ok 5k 5k 5k %k %k %k %k %k >k >k 3k %k 5k %k %k k

*% AUSGABEMENUE K%
3k 3k 5k ok 3k >k >k ok K sk sk ok ok sk k ok ok ke 5k k vk vk k ok sk sk 3k sk k >k ok dk 5k 2k ok dk >k ok 3k %k 3k ok k k ok vk k >k ok >k >k ok kK >k >k 3k >k xk *k %k
* 0 : WEITER *
* 1 : 3D-GRAFIK MIT GRAPE *
* 2 : 2D-GRAFIK SCHNITT/OBERFLAECHE *
* 4 : AUSGABE DER NETZDATEN *
* 5 : AUSGABE DER RANDKETTENDATEN *
* 6 : AUSGABE DER LOESUNG *
* 7 : AUSGABE VON FEHLERNORMEN *

stk o sk ok ook ok ke ok sk ok ok sk ok ok sk ok sk ke ok sk ok ok sk ok sk ok ok sk ok s sk sk ok sk ook sk ok sk sk ok ok sk ok ke sk ok ok ok ok ok
-> EINGABE : 6

With item 0 we exit the menu, with item 1 we are asked for the host name for displaying, then
we start the data transfer to the interactive graphics package GRAPE, see [19], provided the
program f3_sun or f3_sgi runs at the own workstation (host name). In this case a control and
a graphics window will appear in order to display the grid and /or solution. One solution
(starting with the first degree of freedom) can appear at one time. Using the control window
we can make visible the other degrees of freedom by pressing the buttons with the names
of the corresponding functions. Pressing the continue button in the control window the
program on the parallel computer is forced to continue, for example to compute a new
solution. During this time the graphical program may go on displaying the old data until
the FE3D neu button is pressed to receive new data from the parallel computer (again via
menu item 1). With Exit we can finish the graphics program.

On item 2 the window of our 2D interactive graphics interface is opened and asked for
the kind of visualization. Possible choices are the solution plot on the surface, the solution
plot of a chosen plane of intersection, or quit. In the first two cases the user is prompted for
some information on the perspective of the plot and related things. For more details how
to operate with the 2D interface see [20].

The choice of item 4 leads to the output of the local mesh data to files

netzred.number _of _processor.dat

(one file per processor). The same is done by item 4 with the coordinates of the nodes stored
in Kettes, for the term Kette see [2]; they are stored in files
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kettinf.Pnumber_of processor.dat.

With menu item 6 we get a table of values into a file loesung.dat or on screen. The table
includes the local node numbers, their coordinates, the calculated solution, the solution
using the function u from bsp.f (probably the previously known exact solution), and their
difference for each processor, see the printout.

AUSGABE DER WERTETABELLE DER LOESUNG

AUSGABE IN FILE LOESUNG.DAT (J/N) :n

PROZESSOR  0: NUMNP= 0

PROZESSOR  1: NUMNP= 35

| NR | X | Y | Z IBER. LOESUNG| EXAKTE LSG.| DIFFERENZ |
| 1] 10.000] 0.000| 10.000]| 1.00000]| 1.00000| 0.00000D+00 |
| 2| 10.000| 10.000|] 10.000} 1.00000]| 1.00000| 0.00000D+00 |
| 3] 0.000| 10.000| 10.000] 1.00000]| 1.00000| 0.00000D+00 |
| 4| 10.000]| 0.000| 0.000| 0.00000 | 0.00000| 0.00000D+00 |
| 5| 10.000]| 0.000| 7.500]| 0.74999| 0.75000|-0.77712D-05|
| 6| 10.000]| 0.000| 5.000| 0.50000]| 0.50000]-0.20307D-05 |
| 71 10.000]| 0.000| 2.500]| 0.24999 | 0.25000/-0.10760D-04 |
| 8| 10.000]| 2.500] 10.000]| 1.00000]| 1.00000| 0.00000D+00 |
| 9| 10.000]| 5.000] 10.000]| 1.00000]| 1.00000| 0.00000D+00 |
| 101 10.000] 7.500| 10.000]| 1.00000]| 1.00000| 0.00000D+00 |
| 11] 7.500]| 2.500| 10.000]| 1.00000]| 1.00000| 0.00000D+00 |
| 12] 5.000| 5.000| 10.000]| 1.00000]| 1.00000| 0.00000D+00 |
| 13] 2.500]| 7.500] 10.000]| 1.00000]| 1.00000| 0.00000D+00 |
| 14| 10.000]| 7.500]| 7.500]| 0.75000 | 0.750001-0.14338D-05|
| 151 10.000]| 5.000| 5.000| 0.50000]| 0.50000| 0.26510D-05|
| 161 10.000]| 2.500| 2.500] 0.24999| 0.25000]-0.59909D-05 |
| 17| 7.500] 10.000| 10.000] 1.00000]| 1.00000| 0.00000D+00 |
| 18] 5.000| 10.000| 10.000] 1.00000]| 1.00000| 0.00000D+00 |
| 19] 2.500| 10.000| 10.000] 1.00000]| 1.00000| 0.00000D+00 |
| 20| 2.500]| 7.500]| 7.500]| 0.75001 | 0.75000| 0.59876D-05|
N

- NAECHSTER PROZESSOR; A - ABBRUCH; SONST - WEITER (NUMNP=

35) 7 : a

If the output is on screen it stops after displaying 20 nodes and the user is prompted how
to proceed. You can switch to the next processor by pressing N, cancel output with A, or

proceed displaying with any other key.
Menu item 7 gives the results of local and global error calculations/estimations.

>k >k >k >k >k >k >k >k >k >k >k >k >k >k >k >k >k >k >k 3k 3k 5k 5k %k %k %k >k %k %k >k >k >k >k 5k 5k %k %k %k >k >k %k %k >k 3k 3k >k >k >k %k %k %k %k %k %k %k * * %k %k *k

ok AUSGABEMENUE *ok
3k >k >k ok 3k 3k k >k 3k ke 3k k >k 3k ke dk %k 3k ok sk k ok sk 5k 3k ke k k ke vk sk ok ok sk k ok k k ok ke k 5k ok vk sk Kk ok k K >k sk >k >k ok vk %k >k k %k k
* 0 : WEITER *
* 1 : 3D-GRAFIK MIT GRAPE *
* 2 : 2D-GRAFIK SCHNITT/OBERFLAECHE *
* 4 : AUSGABE DER NETZDATEN *
* 5 : AUSGABE DER RANDKETTENDATEN *
* 6 : AUSGABE DER LOESUNG *
* 7 : AUSGABE VON FEHLERNORMEN *

stk ok ok o sk ok ok ok ke ok sk ok s ok sk ok ke ook ok ok s ok sk ok ko sk ok sk ek sk ok sk ok sk ook sk ok ke sk ok ok ok ook sk ok sk ok ok ok ok
-> EINGABE : 7

AUSGABE VON FEHLERNORMEN (LOKAL):

|PROZ| MAX-NORM | L2-NORM| H1-NORM|
| 0l 0.00000E+00| 0.00000E+00| 0.00000E+00 |
I 1| 0.10760E-04| 0.32158E-04| 0.40438E-04|
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| 2] 0.24787E-04| 0.72468E-04| 0.69347E-04|
| 3] 0.24787E-04| 0.82577E-04| 0.60800E-04|
| 4] 0.00000E+00| 0.00000E+00| 0.00000E+00 |
| 5| 0.73617E-05| 0.39079E-04| 0.35490E-04 |
| 6| 0.78932E-05| 0.26933E-04| 0.28801E-04|
| 7| 0.24787E-04| 0.52470E-04| 0.63799E-04 |
AUSGABE VON FEHLERNORMEN (GLOBAL):

| MAX-NORM | L2-NORM| H1-NORM|

| 0.24787E-04| 0.13457E-03| 0.12767E-03]|

3K 3K 3K K K K K K K K K K K K K 3k 3k K 5k k ok k k 5k 5k >k 5k 5k >k >k 3k 3k 3k 3k 3k 5k 5k %k >k 5k >k >k 5k >k 5k 3k 3k 5k 5k %k %k %k >k >k 3 % % % %k %k

K AUSGABEMENUE K
3k 3k ok 2k 3k >k >k ok K sk 5k >k ok sk sk ok ok dk 5k ok vk vk k ok sk sk 3k sk k >k ok dk %k 2k ok dk k ok 3k 5k 3k ok k k ok vk k >k ok >k k ok 3k >k >k 3k %k Xk Kk %k
* 0 : WEITER *
* 1 : 3D-GRAFIK MIT GRAPE *
* 2 : 2D-GRAFIK SCHNITT/OBERFLAECHE *
* 4 : AUSGABE DER NETZDATEN *
* 5 : AUSGABE DER RANDKETTENDATEN *
* 6 : AUSGABE DER LOESUNG *
* 7 : AUSGABE VON FEHLERNORMEN *

sk ok ke ke o sk sk sk ok sk sk o sk sk sk sk sk ok ok sk sk sk sk sksk sk sk ok keok sk ok sk sk skesk sk sk sk sk ok ok stk ok sk sk sk sk sk ok sk ok ok ok sk
-> EINGABE : 0O

GEWUENSCHTE ZAHL VON VERFEINERUNGSSCHRITTEN
-1 = NEUES NETZ

-2 = PROGRAMM BEENDEN
-3 = NEUE PARAMETER
EINGABE : -2

K K K K K K K K K K K K K K K K K ok ok ok 5k 5k ok %k ok ok ok K ok ok ok K %k %k %k %k ok %k ok 3k 3k 3k 5k ok 5k 5k 5k %k %k %k %k %k >k >k 3k 3k %k %k %k k

* PROGRAMMENDE *
sk ok ke ke o o sk ok ok ok ke o ok sk sk ok k ks ke s o ok sk sk sk ok K ke k sk k ke o ok ok sk sk sk sk k ok ok ke ke s ok ok ok sk sk ok k ok k ok ok

run : Returning network by calling nrm.

run : Terminating with result = 0.
urei@kain:fem,

The choice of item 0 led to the main menu, see above.
Some of the information is also written in the files fort.08 and fort.09, but this is only
for test reasons and permanently changing. Furthermore, we note that at the stage

* Start der Simulation: Vorkonditionierung Nr. 5
<enter>

some special letters can be entered to control the PCCG iteration process

for a change of the preconditioner (loesvar),

for a change of the maximal number of iterations (iter),
for a change of the stop tolerance (epsilon),

for a scaling of the coarse grid matrix,

for a change of the variable ion.

N & 0 H <

These corrections are valid only during the following CG iteration and do not overwrite the
standard values of these variables, see Subsection 2.4. An exception is ion.
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Chapter 3

Meshes and boundary conditions

3.1 General remarks

The program SPC-PM Po 3D has not been designed to generate coarse meshes or boundary
data. It is assumed that these data are prepared before and stored in a file with extension
.std. The structure of such files is described in [16]; we summarize it briefly in Section 3.2.

There are several ways to create such an input file. For the easiest domains one can just
create it with an editor. Moreover, several mesh generators have been programmed in the
past. Because they use different file structures there have been developed adapter programs,
see Appendix A. In Section 3.3 we describe the adapter program mesh3/renfindsun (author
G. Globisch) which writes files of the structure appropriate for SPC-PM Po 3D. This program
has two additional features: re-numeration of the nodes to minimize the profile of the coarse
grid matrix and an interactive definition of boundary conditions.

For five classes of meshes which were used already with the sequential program FEM-
PS3D, there is the tool mesh3/oldnetz (author F. Milde) which is described in Section 3.4.

To generate hexahedral meshes exists the tool mesh4/qnet (author U. Reichel). In
Section 3.5 we describe its functionality and the mesh classes it provides.

In Section 3.6 we introduce the tool mesh3/xbc (author D. Lohse) which is an XView-
application to visualize meshes and boundary conditions which are stored in *.std files.
Furthermore, it is possible to (re-)define boundary conditions with this tool.

Another tool written by D. Lohse is the program geo_conv, which is explained in Sec-
tion 3.7. It gives the possibility to move a given mesh in space (translation, rotation), and
to combine two or more meshes to a new one. So it is relative easy to construct complex
forms from simple geometric solids.

3.2 Structure of the input file *.std

The input file is a (7-bit) ASCII-file which contains data lines, control lines and key word
lines (both starting with a “#”), and comment lines (starting with “##”), see for example
Cubusl.std in Table 3.3.

The file starts with a control line defining the version

#VERSION: 2.1

in order to circumvent incompatibilities when the data structure is extended or changed.
The latest version of the standard file format is 2.1. described in citelohse:98a. The file
input is stopped either by reaching the end of the file or the statement

19
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Figure 3.1: View of the cube, which is described in CubusI.std.

#END_OF _DATA

After the #VERSION statement there may be optional information statements, see Table 3.1
for a selection. Moreover, it is possible to redefine some internal array dimensions via such
statements, see [15, 16]. The information part and the data part of the file are separated
by a #HEADER statement. It determines the maximal number of data lines of the different

types.

#HEADER: count
vertices edges faces solids regions \
dirfaces neumfaces materials facegeoms

where count (4-9) is the number parameters in the header. Note that the backslash marks
a continuation of the line, dirfaces and neumfaces means the number of faces with Dirichlet
and Neumann data, respectively.

The actual data blocks follow now in any permutation. A block consists of a key word
line and a number of data lines. Note that the key word line may contain an integer. The key
words and the structure of the data lines is summarized in Table 3.2, for a full explanation
see [15, 16].

The file Cubusl.std (see Table 3.3) may serve as an introductory example which describes
the partition of a cube © = [0,1]® into 6 congruent tetrahedra, compare Table 3.4 and
Figure 3.1 for the understanding of the topology. Here, no #REGION is defined; a region name
is useful to join some objects to one area. So defined regions could get special properties in
the program. If undefined, all elements belong to one region with the name 1. Note that
the meaning of the #REGION block has substantially changed from version 1 to version 2
standard files, see [15, 16].

Another essential change in version 2 of the standard file is the block #FACE_GEQ referred
by the face type. This feature provides a wide range of possibilities for easily creating meshes
with curved boundaries. For a detailed explanation we refer to [21].



3.2. STRUCTURE OF THE INPUT FILE *.STD
Statement Description
#DESCRIPTION : string | description of the file for cataloguing
#DATE : date date of creation of the file
#USER : username Login name of the creator of the file
#PROGRAM : name name of the creating program
#DIMENSION : 3D geometrical dimension of the problem, here only 3D useful
#EQN_TYPE : string problem type, defines e.g. the meaning of the material data

#DEG_OF FREE : integer | number of degrees of freedom (standard: 5)

Table 3.1: Selection of information statements in the input file

Key word line Description
#VERTEX: name  xcoord  ycoord — zcoord
I R R R
#EDGE: name  type start end {[middle] | [pointer datal}
1 I I I I I arbitrary
type = 1: ignored
#FACE: name type n  edgel ... edgen [pointer datal
I I I I I I arbitrary
type=1/0: plain face
type>1: pointer to a face geometrie in #FACE_GEQ:
#SOLID: name type n  facel ... facem [pointer datal
1 I I I I I arbitrary
type = 1/0: standard material
type > 1: pointer to material name in #MATERIAL:
#REGION: name type n  solid.1 ... solidn
I [ I I I
type =1 ignored
#DIRICHLET: name
[
tyIp ‘ d;b{ta L ozln ter :fé?ggary (one line per d.o.f.)
type = 0: no Dirichlet condition for this d.o.f.
type = 1: constant value, given in data
type = 2:  boundary values are given by a linear function in
global coordinates
uo(z,y, 2) = data[l] - x + data|2] - y + data[3] - z +
datal4].
type > 100: function pointer, boundary values are taken from
function subroutine in bsp.f
#NEUMANN: in analogy to #DIRICHLET
#MATERIAL: name n  data_l ... datan
I I R R
#FACE_GEQ: name  type_of-geo n  datal ... datan
I I I R R
for possible values of type_of-geo see [21]

Table 3.2: Structure of the data blocks in the input file

21
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#VERSION: 1.0 #FACE: 18
#DESCRIPTION: 6 kongruente Tetraeder 11 3 1 2 13
#DATE: 13.7.1995 2 1 3 3 4 13
#USER: Thomas Apel 3 1 3 1 6 14
#DIMENSION: 3D 4 1 3 9 5 14
#EQN_TYPE: Poisson 5 1 3 2 7 15
#DEG_OF_FREE: 1 6 1 3 10 6 15
#HEADER: 8 7 1 3 3 7 16
8 19 18 6 0 4 0 O 8 1 3 11 8 16
#VERTEX: 8 9 1 3 4 8 17
1 0. 0. 0. 10 1 3 12 5 17
2 1. 0. O. 11 1 3 9 10 18
3 1. 1. 0. 12 1 3 11 12 18
4 0. 1. O. 13 1 3 13 7 19
5 0. 0. 1. 14 1 3 18 5 19
6 1. 0. 1. 15 1 3 1 15 19
7T 1. 1. 1. 16 1 3 14 10 19
8 0. 1. 1. 17 1 3 4 16 19
#EDGE: 19 18 1 3 11 17 19
1 1 1 2 #SOLID: 6
2 1 2 3 1 1 4 1 5 13 15
3 1 3 4 2 1 4 15 3 6 16
4 1 4 1 3 1 4 16 4 11 14
5 1 1 5 4 1 4 2 7T 13 17
6 1 2 6 5 1 4 17 9 8 18
7T 1 3 7 6 1 4 18 10 12 14
8 1 4 8 #DIRICHLET: 4
9 1 5 6 1
10 1 6 7 1 0.0
11 1 7 8 2
12 1 8 b5 1 0.0
13 1 1 3 11
14 1 1 6 1 1.0
15 1 2 7 12
16 1 4 7 1 1.0
17 1 1 8 #END_OF _DATA
18 1 5 7
19 1 1 7
Table 3.3: The file CubusI.std
Tetrahedron | Names of faces Names of edges Names of nodes
1 1 5 13 151 2 13 7 15 19,1 2 3 7
2 5 3 6 161 15 19 6 14 10| 1 2 6 7
3 6 4 11 1410 14 19 5 9 18| 1 5 6 7
4 2 7 13 173 4 13 7 16 191 4 3 7
5 7 9 8 1814 16 19 8 17 11| 1 4 8 7
6 8 10 12 14}11 17 19 5 12 18| 1 5 8 7

Table 3.4: Names of faces, edges, and nodes of the 6 tetrahedra in CubusI.std.
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3.3 The tools renfindsun and renedgsun

Because of the importance of the files file.std for the package SPC-PM Po 3D the program
renfindsun shall be described in more detail here. The program renfindsun converts the
ASCII output file *.out (see [10, 22] for a description of the structure of the file) of the
parallel mesh generator parmesh3d (tetrahedral meshes) into the file *.std, see 3.2 for this
data structure. This means a change of the node related data structure into the edge/face
structure. Note that renfindsun may also store the output data as file.edg. This is another
file type for the edge related data structure, see [10]. It organized similarly to file.out.

This transfer includes the setting of boundary conditions (type and data) to the boundary
faces by a dialog with the user. There are two possibilities, namely face by face or by
defining face groups. The second variant is described in 3.4.2. The first possibility consists
in the face-wise screen output of the coordinates of the three nodes and in prompting for the
description of the related boundary condition for each degree of freedom. For both methods,
this information consists of the kind (Dirichlet, Neumann, 3™ kind/Robin), the type, and
eventually some real values, see Table 3.2. The mesh and the boundary conditions can be
visualized by means of the program xbc, which is also capable to impose/change boundary
conditions, see Section 3.6.

Moreover, the user can determine whether he/she wants to re-numerate the nodal points
of the mesh in order to reduce the bandwidth/profile of the corresponding matrix (adja-
cency matrix to the edge graph). The corresponding algorithm is implemented to be an
efficient combination of minimal degree ordering and nested dissection, see [9]. The numer-
ical expense is O(N%) for two-dimensional meshes, where N denotes the number of nodes;
in the three-dimensional case we were not able to prove an estimate. Note that files which
have already the structure file.std can be re-numerated by the program renedgsun, even
a repeated application of renedgsun can further reduce the bandwidth /profile.

The mesh generator parmesh3d can also construct meshes consisting of tetrahedra having
curved boundaries. The corresponding internal data structure is given in [10]. But to date
there is no agreement about the file structure for curved elements. The corresponding
extension of the related programs will be done in the future.

3.4 Generation of meshes via oldnetz

3.4.1 Mesh generation

The program oldnetz is compiled for a SUN4 workstation and can be used interactively to
generate 5 different families of meshes, to describe the boundary conditions, and to store
this information in a file file.std with the data structure as given in Section 3.2. The user
is requested to enter the number of the family and the corresponding parameters, for a short
description see Figures 3.2 — 3.6. For refining meshes using the parameter p see [3, 5, 6, 7).

3.4.2 Setting boundary conditions

If a mesh contains not only a few elements then it is boring to enter the boundary conditions
face by face. Thus a dialog with the user was programmed to define groups of faces and
to enter the type and the data of the boundary condition once for the whole group. This
procedure is repeated for each degree of freedom.
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0 r-b r
. b .
- - Input parameter:
1 g mesh refinement parameter (here p =
0.4)
N number of circular arcs
3 K number of nodes at the edge
R outer radius (radius of the middle cir-
4 cle of the torus)
A z-coordinate of this middle circle
B radius of of the sector in the cross sec-
E—N tion

Figure 3.2: Description of the 15 family, a 90°-sector of a torus: perspective view, top view,
and cross section.

Input parameter:
g mesh refinement parameter (here 1 =
1)
1 N number of slices in the cross section
(see figure)

9 K number of nodes at the edge
R outer radius (radius of the middle cir-
cle of the torus)
3 A z-coordinate of this middle circle
B length of the cathete in the cross sec-
4=N tion

Figure 3.3: 2°¢ family: as before but with another cross section.
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Input parameter:

w internal angle of the sector

g mesh refinement parameter (here y =
0.4)

N number of circular arcs

K number of nodes at the edge

R radius of the circular edge (the middle
circle of the torus)

A z-coordinate of this middle circle

B radius of of the sector in the cross sec-
tion

IS number of sectors for mesh genera-
tion (here 4)

Figure 3.4: 3™ family: sector of a torus with arbitrary internal angle w.

Input parameter:

w internal angle of the sector

g mesh refinement parameter (here p =
0.6)

N number of circular arcs

K number of nodes at the edge

R radius of the cylinder

A height of the cylinder

IS number of sectors for mesh genera-
tion (here 4)

Figure 3.5: 4 family: sector of a cylinder with arbitrary internal angle w.

Input parameter:
N reciprocal value of the mesh size

Figure 3.6: 5™ family: Fichera corner.
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To define the group one enters conditions of the form

< x <zt
<y <y,
< z <zt
<y <1
<r, <rf,
<r,<rf.

S 3 3 wve w5

v R

In this way all nodes are marked which satisfy all the conditions given. The group consists of
all faces which have only marked nodes. Note the special case when no condition is entered;
then all boundary faces are in the group.

After defining the group of faces the user is asked for

e the kind of boundary condition (1 - Dirichlet, 2 - Neumann'),

e the type and the data for the boundary conditions, see Table 3.2 for the explanation.

Then the next group of boundary faces can be defined or one may exit this menu. In the
second case one is asked for a filename to store the data and the program terminates.
Note that faces can be included in groups several times, then the boundary condition
is always redefined for these faces. This feature can be use for correcting errors or to enter
complicated boundary data. For example, if all faces but one have Dirichlet conditions, one
can first enter the Dirichlet condition for all faces and then redefine the exceptional face.

3.5 Mesh generation with qnet

The program gnet is compiled for SUN4 and HPPA workstations and provides the interactive
generation of 6 kinds of hexahedral meshes. The generated meshes can be stored in *.std file
with the structure as given in Section 3.2. After calling the program it provides a menu and
the user is prompted for the mesh type. Appropriate choices are shown in Figures 3.7(a) -
3.7(f). In addition to this 6 kinds of meshes gnet provides the possibility to create a general
cutting area, which means it can create any mesh which could be obtained by cutting
elements from a cube mesh.

After a mesh type was chosen, gnet asks for the z-, y-, z-Dimension and for the number
of sections in each direction. In case of the cube with a split it asks further for the angle of
the split.

If the general cutting area was chosen first a cube is generated and the user is asked if
elements should be caught. Saying yes the user must determine a range of elements to be
caught. This is done by giving the from and to section of each direction. As an example,
you have created a cube with three sections in each direction and now you want to cut a
hole in y-direction. The correct choice is to cut from 2 to 2 in 2-, from 1 to 3 in y-, and from
2 to 2 in z-direction. After each cut the user will be asked if he want to do another cut. If
not, the program goes on offering a plane move. For the meaning of this feature another
example. Say you have generated a cube Q = [0,1]> with 2 sections in each direction. So
you have a cube consisting of 9 planes. The cube planes are:

z,y €10,1], 2 €{0,0.5,1},

z,z €[0,1], y € {0,0.5,1}, and
y,z €[0,1], z € {0,0.5,1}.

!The menu offers also boundary condition of 3" kind, but SPC-PM Po 3D can not treat them yet.
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(b) Fichera corner

(a) ordinary cube

(d) tripod

(c) piano

(f) SPC mesh

(e) cube with a slit

Figure 3.7: Mesh families offered by gnet.
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Figure 3.8: Example of a general cutting area with a hole in y-direction and moved planes.

Each of this planes could now be moved along an axis. After choosing the plane orientation
qnet offers all possible planes in a menu and you can choose one and change its height.
This could be continued until you cancel. Then the mesh will be saved. As an example see
Figure 3.8.

If you want to create a so called SPC mesh you will be asked for the kind (1 to 3), which
makes a difference in the used font and in element count. Then you must enter the section
height and the number of sections for each letter. The SPC meshes have no real practical
use, they are only for demonstration.

The generated meshes are all version 2 standard files with no boundary conditions set.
To set boundary conditions the xbc program must be used.

3.6 The program xbc

3.6.1 Description

xbc was planned as a tool to check the integrity of files *.std and as test environment for
routines managing standard files. It is grown up to a visualization tool for objects stored
in the standard file format (general polyhedra in boundary representation as well as 3D
meshes) with the capability to create and to manipulate boundary values on that objects.

The program needs an XView environment, there is no plain X-Windows nor Motif based
version.

3.6.2 Command Line Parameters

All the standard XView command line parameters are available, e.g. -display displayname
or -fg colorname. xbc -help shows a list of these parameters. Although all of these param-
eters work, there is no test of bad usage implemented.

Two additional parameters allow a quick file access:

e -InPath pathname is the main path for the input files, if no -InPath is present, the
actual working directory is used as path for the input files.

e -InFile filename : is the name of the input file relative to the input path.
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A list of all implemented parameters is shown by xbc -Help. All other parameters will be
interpreted as file names. If no input file is specified, the user has to enter file name and
path manually in the File menu.

3.6.3 Loading and Saving Files

If a file name is specified in the command line, xbc loads this file automatically. The user can
enter the file name manually by opening the File menu and choosing the Load File button.

Loading a file xbc first reads the information part, shows this information and asks
for confirmation. During the loading process xbc checks the integrity of the data. Any
problems will be shown in error messages and the user will be asked for continuing the
reading procedure.

After a successful load procedure the Show-button becomes available. It switches to the
view window.

To save a file it’s necessary to choose the Save File button in the File menu and to enter
the file name manually. There is no command line parameter for a standard save file.

3.6.4 The View Window

The view window, figure 3.9, is used to visualize the object and to choose faces to set
boundary conditions. There are two buttons and two menus in the view window:

e The Back button switches to the main window.

e The Repaint button is reserved for a general hidden line algorithm that will be imple-
mented soon.

e The Settings menu is used to control the behaviour of xbc.
e The BC menu contains tools to manipulate the boundary conditions.

The object in the view window can be rotated by moving the mouse holding the middle
mouse button down. A single click with this button forces a refresh of the viewport.

Faces without boundary conditions are shown in gray, faces with Dirichlet conditions
in red, and faces with Neumann conditions blue. The presence of both types of boundary
conditions is represented by violet color.

3.6.5 The BC Menu

In the current release V0.9 only the Set BC button of the BC menu is active. It is used to
manipulate values of boundary conditions. Pressing this button opens an Object Selection
window and enables the selection mode for the mouse buttons.

Pressing the left mouse button in the viewport selects the visible face at the mouse
pointer. The right mouse button unselects the face. It is also possible to select or unselect
faces by editing the Face Name line in the Object Selection window. The Reset button in
this window unselects all. Selected faces change their color to yellow.

The Cancel button terminates the whole value setting process, the OK button finishes
the selection process and opens the Set BC Values window, see left side of figure 3.10 . This
window allows the simple choice of the kind of boundary condition (Dirichlet/Neumann) as
well as the input of the actual number of the degree of freedom, the equation type (Poisson
or Lamé) and the set of values of that boundary condition.
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Figure 3.9: The View Window of xbc.

If more than one degree of freedom is used for some faces it is necessary to set all degrees
of freedom in one step by using the Apply button of the Set BC Values window. A Set BC
procedure finished by the OK button overwrites all settings of the chosen faces. Cancel stops
the whole setting process.

The meaning of the equation types are:

e Free : No BC is given at the current degree.
e Const : The BC is constant on the surface, the value is given in the field Value 1.

e Lin Glob : The BC is given by u = V1sxx + V2 xy+ V3 % 2+ V4, (x,y,2) are the
coordinates in the global system.

e User: The values of the BC will be given by special routines of the user program.

3.6.6 The Settings Menu

The Settings menu controls the general behaviour of xbe. It includes two buttons, the View
Control button and the Zoom menu.

The View Control button opens a window which allows to choose the drawing method
(Solid; Hidden Line; Wire Frame), see right side of figure 3.10. This window is also used to
control the visibility of the names (e.g. integers) of objects like vertices, edges, or faces.
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Figure 3.10: Left: The Set BC Values window. Right: The View Control window.

The Zoom menu offers some standard zoom factors and the capability to enter user
defined factors (using the Other button).

3.7 Mesh construction and manipulation with geo_conv

The program geo_conv was designed to join two or more objects provided as standard files
to one new object and to save this in a new standard file. To do so, the input objects
could be displaced, rotated and mirrored. Notes, edges, and faces which are joined could
be identified and fusioned. The program is text oriented, menu driven, and offers an online
help. It is also able to operate in batch mode.

A program call should be as follows:

geo_conv [-v] [-t] [-c <cfgfile>] [-p <protfile>] [-e <exefile>]
[<filename> [<filename> ...]];

is no filename given, the user is prompted for a filename after the program start.

The configuration file <cfgfile> contain :set-commands and additional types for face
geometries.

All executed commands, its outputs and error messages could be saved in the protocol
file <protfile>. An existing protocol file could be used as control file <execfile> in batch
mode. With switch -t the program operates in trace-mode, which means the every line
in the control file must be confirmed before execution. Is no control file given, the switch
remains meaningless. The switch -v must given for displaying the current program version.

Note that the order of the given parameters is essential for there right recognition.

For a short command list type help at the command prompt after start. For a detailed
description of the commands, the protocol, control, and config file we refer to the manual,
which could be found under /afs/tucz/project/stb393/FEM /doc/geo-conv in various forms.
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Chapter 4

Examples

4.1 Poisson equation

4.1.1 Introduction

We consider the Poisson equation with in general mixed Dirichlet and Neumann boundary
conditions:

—Au = f in €,
u = uy on 08,
Ju
- g on 0,
ou

o = 0 on N\ 0% \ 08s.

In the next subsections we describe some test examples, which demonstrate that our code
gives the right result and works very effectively.

4.1.2 cubusl.std with bsp.z

The file cubusl.std describes a cube Q = (0,10)* with Dirichlet boundary conditions ug = 0
at the bottom face {z € Q: z = 0} and ug = 1 at the top face {z € Q : z = 10}. That
means the boundary conditions are not taken from bsp.f but directly from the file, and for
the successful test the program should be linked with bsp.z. This means a setting

f=0
for the right hand side and
z 1
10’ U, =0, wu,=0, u,=——

10
for the exact solution which is used to calculate error norms.
In this example, there is no discretization error, thus the error is proportional to error
tolerance in the solver. If not, check first the integration rules, for example:

u =

121 in the linear case,

Nint3ass — ' i
1ntsoass { 231 in the quadratic case,

Nint3error = 211 ((uw — up)? is quadratic).

33
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Level linear elements quadratic elements
Lo Lo H? Lo Lo H!
0 0 5.77e+2 | 1.82e+2 | 1.84e—13 | 1.63e—12 | 6.35e—13
1 2.49e+0 | 1.42e42 | 9.05e+1 | 3.85e—9 | 2.21e—8 | 2.25e—8
2 1.07e+0 | 3.60e+1 | 4.54e+1 | 5.66e—9 | 3.28e—8 | 3.59e—8
3 3.89e—1 | 9.07e+0 | 2.27e+1 | 1.37e—8 | 3.31e—8 | 5.70e—8
4 1.26e—1 | 2.27e+0 | 1.14e+1 | 1.05e—8 | 1.28e—7 | 1.0le—7
5 3.89e—2 | 5.70e—1 | 5.70e+0 — — —
Table 4.1: Discretization error for u = 22.
Level linear elements quadratic elements
Lo L, H? Lo L, H!
0 0 8.72e+3 | 2.82e+3 | 7.05e+1 | 9.69e+2 | 6.28e+2
1 8.60e+1 | 2.36e+3 | 1.50e+3 | 9.89e+0 | 1.22e+2 | 1.61e+2
2 3.28e+1 | 6.31e+2 | 7.76e+2 | 1.24e+0 | 1.56e+1 | 4.18e+1
3 1.15e+1 | 1.62e+2 | 3.93e+2 | 1.61e—1 | 1.99e+40 | 1.07e+1
4 3.58e+0 | 4.11e+1 | 1.97e+2 | 2.04e—2 | 2.52e—1 | 2.72e+0
5 1.06e+0 | 1.03e+1 | 9.87e+1 — — —

Table 4.2: Discretization error for v = 2°.

3

4.1.3

With these examples we test the discretization error orders. Again we have Q = (0,10)3
with Dirichlet boundary conditions at 9Q; = {x € Q: z = 0 or z = 10} but this time the
boundary values are taken from the corresponding function in the file bsp.f.

If we copy bsp.z (u = 5) to bsp.f we get no discretization error, see Subsection 4.1.2.
With bsp.z2 the exact solution is u 2 (f = —2) and we get an error with linear

cubusu.std with bsp.z, bsp.z2, and bsp.z3

=z
elements but no error with quadratic elements. The third example bsp.z3 corresponds with
u = 2* (f = —62) and we observe in both cases the optimal order of the error h¥—m*1
(k...degree of the shape functions, m...order of the Sobolev space H™(2), m = 0,1, to
measure the error). Tables 4.1 and 4.2 contains the values.

The tests were carried out with

Nint3ass — 221 for linear elements ( f-¢ is quadratic for u = 23),
N 331  for quadratic elements (f-¢ is cubic for u = 23),
_ 2 . .
Vint3error — 511 ((u—wup)? is of degree 6, but 5 is the best formula
programmed),
Epsilon = 10710,
LoesVar = 4 BPX without coarse grid solver.
4.1.4 cubusug.std

The example differs from cubusu.std only by the boundary conditions. Again we have
Dirichlet boundary conditions on 9Q; = {x € Q: 2 = 0 or z = 10}, but on the remaining
part of the boundary we have Neumann conditions 992 = 99 \ 9. The values of uy and
g are taken from bsp.f. The use of bsp.z yields no discretization error which can be used as
a test.
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Level | Nodes | Jacobi | Yserentant | BPX
1 27 12 16 10
2 125 24 32 16
3 729 46 49 19
4 4913 82 64 21
5 35937 159 85 22

Table 4.3: Numbers of iterations for cubus2.std, bsp.xy and 8 or 16 processors (Yserentant
and BPX without coarse grid solver here).

Level | cube48 | cube96 | cubel92 | cube384 | cube768
0 27 45 65 123 205
1 125 225 369 725 1305
2 729 1377 2465 4905 9265
3 4913 9537 17985 35931 69729
4 35937 70785 | 137345 | 274593 | 540865
5 274625 | 545025 | 1073409 | 2146625 —
6 2146689 — — — —

Table 4.4: Number of nodes for different refinement levels.

4.1.5 cubus2.std

The domain and the mesh cubus2.std are identical to cubusl. The boundary conditions are
891:{£€QIZ:0}, 892289\891,

where the values of ug and ¢ are taken from bsp.f. For example, one can link with bsp.xy
as bsp.f which corresponds to ug = zy, f = g = 0. Table 4.3 shows the number of iterations
for different preconditioners in this case. We used Epsilon = 10~ and linear elements.

4.1.6 cube*.std with bsp.xy

The family of meshes cube48.std, cube96.std, cubel92.std, cube384.std, and cube768.std
was generated in order to have test examples with equidistributed coarse meshes on any

number 2F, k =0,...,7 , of processors and with numbers of nodes as large as possible, see
Table 4.4. The number of elements of cuben in level [ is n - 2!. The domain is the cube
(0,2)3.

The meshes were generated using the mesh-generator PARMESH3D [11] from 2D refer-
ence meshes, see Figure 4.1, which are reproduced several times into the third dimension.
Thus prisms with triangular basis can be formed and divided in three tetrahedra each.
The corresponding reference meshes and the number of their reproduction is given in Ta-
ble 4.5. Note that cube384 and cube768 represent different meshes than cube48 and cube96,
respectively, with one refinement step, though they have the same number of elements.

The mesh data are stored in the files cube*.out which can be processed by the program
renfindsun in order to describe boundary conditions and to create the data structure of
standard files. The boundary conditions in the standard files cuben.std are 0Q; = {z €
Q:z=0or z = 2} where the boundary conditions are taken from the function u in bsp.f.
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(a) (b) (c)

Figure 4.1: 2D reference meshes for the cube* family.

mesh cubed8 | cube96 | cubel92 | cube384 | cube768
2D reference (a) (a) (b) (c) (c)
number of reproductions 2 4 4 2 4

Table 4.5: The cube* family and their corresponding reference meshes.

In Table 4.6 we document tests with these meshes with bsp.xy used as bsp.f and different
preconditioners.

The files cubena.std define 0; = 9Q and were used in [1, 2] to compare two communi-
cation routines. The results are not reproducible because since then a scaling error in the
hierarchical list was discovered and removed, which influenced the number of iterations. In
Table 4.7 we give some results with the correct version of preconditioner. The tests were
carried out with bsp.xy as bsp.f, which means

—Au=01in Q, u = zy on 012,

linear shape functions, cubel92a.std, Epsilon = 10 %, LoesVar = 2 (Yserentant without
coarse grid solver).

4.1.7 amw?*.std with bsp.amw

The amw family of meshes describes the domain
3
Q={z=(rcosp,rsingp,z) e R*: 0 <r <1, 0<g0<§7r, 0<z<1},

which was used extensively in the papers [3, 5, 6] (but on serial computers). The two
digits in the filename gives the number of intervals in r- and z-direction, that means their
reciprocal value corresponds to the mesh size. The d as the last letter of the base name
stands for global Dirichlet boundary conditions 92; = 9€). Contrary, in amw22.std we have
0 ={ued:z=0}
The meshes are useful in connection with bsp.amw, where the exact solution is given by
Ao 2
uw=(10+z)r"sinAp, = 3
For this and only this domain 2 a value verf # 0 in control.tet is useful in order to control
an anisotropic mesh refinement. The following coordinate transformation is carried out
(I...refinement level,  =verf ...grading parameter):

1 I+2
)"
2
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cube48 cubel92
LoesVar LoesVar
Level 3 5 Level 3 5
1 2 d=0.07 4 d=0.1 1 2 d=0.05 4 d=0.05
1 17 | 19 21 14 13 1 27 | 25 22 18 18
2 34 | 33 36 17 17 2 52 | 40 38 21 18
3 67 | 47 52 21 21 3 98 | 58 57 24 22
4 131 | 69 70 23 23 4 191 | 80 80 25 25
5 249 | 93 97 25 25 5 364 | 101 98 26 26
cube384 cube768
LoesVar LoesVar
Level 3 5 Level 3 5
: 2 d=0.05 4 d=0.1 ! 2 d=0.05 4 d=0.1
1 40 | 35 37 31 31 1 38 | 33 27 27 18
2 85 | 53 53 45 45 2 80 | 46 41 32 24
3 172 | 74 76 60 60 3 161 | 67 61 38 35
4 338 | 100 110 71 71 4 323 | 95 84 42 38
5 — | 138 — 77 — — — | — — — —

Table 4.6: Tteration numbers for different preconditioners in different examples.

Input/Output time, FEMAKKVar=1 Input/Output time, FEMAKKVar=2
Number of processors Number of processors
Level 16 16 64 Level 16 16 64
8 nodes | 16 nodes | 32 nodes 8 nodes | 16 nodes | 32 nodes
1 0.28 0.25 0.48 1 0.29 0.25 0.48
2 0.86 0.78 1.12 2 0.54 0.50 0.90
3 1.52 1.43 1.94 3 1.08 0.99 1.64
4 3.46 3.08 4.10 4 2.94 2.58 3.71
Total time, FEMAKKVar=1 Total time, FEMAKKVar=2
Number of processors Number of processors
Level 16 16 64 Level 16 16 64
8 nodes | 16 nodes | 32 nodes 8 nodes | 16 nodes | 32 nodes
1 0.30 0.28 0.51 1 0.32 0.30 0.51
2 0.94 0.84 1.16 2 0.66 0.61 0.97
3 1.96 1.83 2.11 3 1.59 1.44 1.85
4 8.36 7.11 5.34 4 8.08 6.75 5.05

Table 4.7: Comparison of two data accumulation algorithms [2] for different numbers of
processors and different problem sizes (running on Parsytec GCPP, time in seconds).
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Level amwlld amwl2d amw21d amw22d
Elements | Nodes | Elements | Nodes | Elements | Nodes | Elements | Nodes
0 12 12 24 18 48 30 96 45
1 96 45 192 75 384 135 768 225
2 768 225 1536 405 3072 765 6144 1377
3 6144 1377 12288 2601 24576 5049 49152 9537
4 49152 9537 98304 18513 196608 36465 393216 70785
5 393216 70785 786432 | 139425 | 1572864 | 276705 | 3145728 | 545025
6 3145728 | 545025 — — — — — —

Figure 4.2: (a) coarse mesh with z

Table 4.8: Number of nodes for different refinement levels.

(a)

refinement step with u = 1.

(b)

(c)

0, (b) one refinement step with u = 0,

(c) one

1
(220 + Y2a) 7,

r =
ho— { r i <t
rt ifr>t "’
Tnew h - x4,
Ynew = N Yola-

For yp = verf = 1 we get a change in the coordinates only for points with » > ¢, that means
they are moved on the curved boundary, see Figure 4.2.

In Tables 4.9 and 4.10 we show some results for the error behaviour for different values
of u = verf. The tests were carried out with amw22d.std and the following parameters

Nint3ass — 121 for linear elements,
- 231 for quadratic elements,
Nint3error = 511,
Nint2ass = 11,
Nint2error — 11 for linear elements,
N 12 for quadratic elements,
Epsilon = 10710,
LoesVar = 4 (BPX without coarse grid solver).

4.1.8 fichera™.std

The domain mesh is Q = (—1,1)* \ [0, 1]* which is known as a Fichera corner. It was used
with the sequential code for the tests in [7], but not yet on the parallel computer. The digit
* means in analogy to 4.1.7 the reciprocal of the meshsize.
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Level

linear elements

quadratic elements

L

L,

Hl

L

Ly

Hl

T W DN =

4.0797e—1
3.3811e—1
2.3133e—1
1.5039e—1
9.5848e—2

1.6819e—1
7.6697e—2
3.2269e—2
1.3063e—2
5.1834e—3

2.3825e+0
1.5922e+4-0
1.0164e+0
6.4116e—1
4.0279e—1

2.0854e—1
1.4325e—1
9.3024e—2
5.9467e—2

3.5542e—2
1.3205e—2
4.8989%¢—3
1.8467e—3

9.2351e—1
0.6153e—1
3.4802e—1
2.1748e—1

Table 4.9: Discretization error for verf = = 1.

Level

linear elements

quadratic elements

L

L,

Hl

Lo

L,

Hl

U W N =

2.8163e—1
1.3241e—1
6.0739e—2
2.5277e—2
1.0240e—2

1.9642e—1
7.2266e—2
1.8634e—2
5.0494e—3
1.3128e—3

2.2927e+0
1.3627e+0
7.1794e—1
3.7083e—1
1.8848e—1

1.3677e—1
4.9917e—2
2.2336e—2
1.2162e—2

7.8165e—2
2.0029e—2
4.4908e—3
8.2507e—4

1.2327e+0
4.3328e—1
1.5496e—1
0.5923e—2
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Table 4.10: Discretization error for verf = y = 0.5 with linear elements and verf = ;= 0.3
with quadratic elements.

4.1.9 fem.std

The domain consists of the letters FEM which have a different size in the third direction.
The coarse mesh consists of 93 elements with 122 nodes.
conditions at the bottom face 9Q; = {z € 9Q : z = 0}. In Figure 4.4 we demonstrate
isolines at the surface of the domain (calculated with bsp.xy, Level=2).

\

Figure 4.3: Fichera corner.

Figure 4.4: Isolines on FEM.

We have Dirichlet boundary
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4.2 Lamé system

4.2.1 Introduction

We consider the Lamé equation system

—pAu~+ (A + p) grad dive = f

for u = (u™, u® u®)T with the boundary conditions
u = u(()i) on 89&”, 1=1,..., 3,
tD = g0 onoy) i=1,..., 3,
= 0 onodQ\o"\ ool i=1,..3,

where t = (tM,t® tGNT is the normal stress.

4.2.2 druck.std

This is again the cube Q = (0,10)3, divided into six tetrahedra. The boundary conditions
are

U = 0 on {x € 900 : z = 0},
( 0 )
u = 0 on {x € 90 : z =10},
-2
t = 0 elsewhere.

The exact solution is not known. With v = 0.3, E = 2-10° we get a deformation as shown
in Figure 4.5.
4.2.3 zug.std and zugl.std

The two files zug.std and zugl.std describe the same example, but they were created by
different, programs. We have again the cube Q = (0,10)%. The boundary conditions are

u = 0 on {z € 00 : 2z =0},

N
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Figure 4.5: Cube under pressure. Figure 4.6: Cube under pull.
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on {z € 9Q: 2z =10},

~
I
o = O O

elsewhere.

The exact solution is not known. We calculated again with v = 0.3, E = 2 - 10, the result
is shown in Figure 4.6.

4.2.4 The etest family

For tests of the validity of the computer results we use the following example, which is
described by bsp.etest:

consequently f =0, t = n. There is no discretization error, thus the error is in the range
of the error of the solver.

We prepared two test examples: In etestd.std and etestdu.std the whole boundary is of
Dirichlet type, while in etest.std and etestu.std also Neumann boundary conditions appear:

T

u = Yy on {z € 0Q:2=0orz=10},
2
n

t = elsewhere.

The files with and without the u at the end of the basename differ by the way the boundary
conditions are described. In the version without the u the data of the conditions are defined
in the file, whereas in the version with u the functions from bsp.f are called.

There is a third pair of files in this family: etest1.std and etestlu.std, which differs from
the first two pairs by the Neumann condition

T

u = Yy on {z € 0Q:2=0orz=10},
P
0

t = elsewhere.

In this case the exact solution is not known.

4.2.5 lame22d.std with bsp.lame

This is a test with a known solution which has the typical behaviour near an edge. The
domain and the meshes are the same as in 4.1.7, the exact solution is

r°/°1\/3(— cos ggo + cos %80) — (5sin 890 +sin %gp)]
u= r5/9[\/§(—3singg0+sin 5%) + (—cos §p + cos T )]
r?/*sin 2

and with v = % we get f =01in ©Q and u = 0 on the faces forming the edge. In lame22d.std
there are Dirichlet boundary conditions defined on the whole boundary, the values are taken
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from bsp.f = bsp.lame. Unfortunately the system is very badly conditioned because v is
close to %: % —v= %, which results in very high iteration numbers.

Examples of the error behaviour for different values for verf are given in the file
mesh3/lame22d.txt. The numbers are not really promising, may be there is still an er-
ror anywhere. Hints are welcome.



Appendix A

Mesh generation and related
programs

Our research group has been developing several programs for the automatic generation
of meshes (2D/3D, sequential/parallel) and their visualization. Due to historical reasons,
the pre-, main-, and postprocessing tools use input and output files with different data
structure. Therefore a few little programs for converting the files from one structure into
the other have been made available. This is useful for reusing meshes in other programs for
example for benchmark tests. A survey of the programs and tools is given in Figure A.1,
stressing their connection with respect to the data structure. A detailed description of the
programs is beyond the scope of this manual, we restrict ourselves to the following list. Note
that $AFS stands for /afs/tu-chemnitz.de/project/stb393/FEM/bin; such programs can be
accessed from all computers with AFS installed, the drive letter f: for DOS files stands for
riemann_home2:\ public\numwork.

Graphical editors

GRAFED: (f:\femtools\grafedv2.exe) Graphical editor for describing geometrical data in
2D at PC, storing them as file.inp (M. Fritz), see also [8].

NETS: (k:\util\nets\net.exe) as GRAFED, but storing data as file.net (M. Seibt, M. Pe-
ster).
Automatic mesh generation

PARMESH3D: ($AFS/parix/parmesh3d.px, $AFS/ppc/parmesh3d.px) Automatic parallel
2D /3D mesh generation [10, 11], output files have structure file.out or 2D-file.wqf
(G. Globisch).

PREMESH: ($AFS/SUN4/premeshg, f:\femtools\premesh.exe) Sequential 2D grid genera-
tion in a UNIX and DOS version [22] (M. Goppold).

Converting data structures

GRAFEDSUN: ($AFS/SUN4/grafedsun) Converting file.inp (see GRAFED) into
file.bsp (see FEM@BEM) and vice versa (G. Haase).

GUNDOLFSUN: ($AFS/SUN4/gundolfsun) Converting file.net (see NETS) into file.bsp
(see FEM@BEM) and vice versa (G. Haase).

43
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’—>|FEMGDBEM|

t .
2D-file.bsp 2D—file.bsp 3D‘f"Tere"'5td_’
______ R
'GUNDOLFSUN/ ! | B-E-NEPG-SU-N- i
. GRAF EDSUN - 1 _____ | @ by PATRAN— 3D—file.std — m
_____ Lo
2D~ f"e net  2p-file.inp— _ 'RENFINDSUN i+ 3D-file edg
e PARMESHS3D.PX [3Dfile.outs] “-7----===-------
NETS 3D—file.inp—
f GRAPE |
2D—f|le net ADAPMESH
_________________ 2D—file.inp ~— -+ 2D—file.wqf
. TRANSFERSUN @ by hand I BALMESH | jﬁvq
Y
2D fnle inp PREMESHG

—2D—file.wqf
GRAFED — 2D—file.inp~| PREMESH.EXE FEMGP |~ -

‘ POS2NET I—>2D—flle net

2D/(3D)—f||e.|np 2D-fileout =00 bte-==ii-=—-
DECOMP

VINP |SHOWNET |
@ ...main processing [_]...mesh generation/visualization [_J...converting data structures

I

Figure A.1: Connection of the tools corresponding to the data structure.

POS2NET: ($AFS/SUN4/pos2net) Converting file.wqf into file.net, involving a renum-
bering of the nodes and the setting of boundary conditions (G. Globisch).

RENEDGSUN: ($AFS/SUN4/renedgsun) Renumbering the nodes to minimize the matrix
profile, input and output are files of *.std structure (G. Globisch).

RENFINDSUN: ($AFS/SUN4/renfindsun) Conversion of file.out (3D; node related,
see [10, 22]) into file.std (3D; edge related, see 3.2), involving a renumbering of
the nodes to minimize the matrix profile and the interactive setting of boundary con-
ditions (G. Globisch), see also 3.3, 3.4.2.

TRANSFERSUN: ($AFS/SUN4/transfersun) Converting file.net (see NETS) into
file.inp (see GRAFED) (G. Globisch).

NET4STD: ($AFS/SUN4/netdstd, $AFS/HPPA /netdstd, $AFS/LINUX/netdstd) Takes
*.net files as surface and extends them into the third dimension (M. Pester).

Visualization!

F3: ($AFS/SUN4/f3_sun (dynamically linked), $AFS /SUN4/f3grape.sun (statically linked),
$AFS/SGI5/f3-sgi (dynamically linked), $AFS/SGI5/f3grape.sgi (statically linked))
Visualization of 3D data received via socket connection [19]; based on GRAPE
(M. Meyer).

see also Graphical editors above
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GRAFEM: (f:\femtools\grafem.exe) Visualization of 2D FEM data including the solution,
data type file.wql [22] (G. Haase).

GRAPE: ($AFS/SUN4/grape.sun)  Visualization of 3D data files file.out (node related
structure) based on GRAPE [25] (Th. Hommel).

SHOWNET: ($AFS/SUN4/shownet) Visualization of 2D FEM data including the solution
(isolines), data type file.out, possible output as ps-file (F. Bréuer).

VINP: (f:\femtools\vinp.exe, $AFS/SUN4/vinp) Visualization of 2D data files file.inp [22]
(M. Goppold).

XBC: ($AFS/SUN4/xbc, $AFS/SUN4/xbc) Visualization of 3D data files file.std (edge
related) and modification of boundary conditions (D. Lohse), see also Section 3.6.

Other preprocessing

DECOMP: ($AFS/SUN4/decomp) Spectral graph partitioning of finite element meshes for
parallel computations (M. Goppold).

CHACO: ($AFS/SUN4/chaco, $AFS/HPPA /chaco, $AFS/LINUX /chaco) Partitioning of fi-
nite element meshes for loadbalacing of parallel computations, see[23] and the citations
therein.

STD2GRAPH: ($AFS/SUN4/std2graph, $AFS/HPPA /std2graph) Generating of input files
for chaco from *.std files (U. Reichel).

Q2T: ($AFS/SUN4/q2t, $AFS/HPPA/q2t) Converting hexahedral *.std files into tedrahe-
dral *.std files (U. Reichel).

Main processing

FEMGP: Package for solving 2D-boundary value problems on sequential computers,
see [22], based on files file.wqf, and partially file.out (M. Jung, T. Steidten,
W. Queck, and others).

FEMMBEM: Package for solving 2D-boundary value problems using a coupled FEM-BEM-
strategy on parallel computers, based on files file.bsp, see [12] (G. Haase, M. Jung,
and others).

FEMPS3D: Package for solving the Poisson equation over 3D domains on sequential com-
puters, see [3], based on internal mesh generation and on another file structure
*ada (Th. Apel, F. Milde).

SPC-PM CFD: (/afs/tucz/home/urz/p/pester/workctd/pmhi.ppc.px) Parallel simulation
of fluid dynamics in 2D (St. Meinel, A. Meyer).

SPC-PM EL 2D: (/afs/tucz/home/urz/p/pester/workel/pmhi.ppc.px) Parallel simulation
of elasticity in 2D (A. Meyer).

SPC-PM Po 2D: (/afs/tucz/home/urz/p/pester/worksy/pmhi.ppc.px) Parallel simulation
of potential problems in 2D (A. Meyer).
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The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.
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