
DESS: Demonstration

Expert System Shell

User Manual

Chapter 1

Introduction

DESS is an expert system shell written to demonstrate some of the basic concepts of
expert system technology, including:

• forward chaining

• backward chaining

• tracing information

• explanations

• frames, with subclass hierarchies

• reasoning with uncertainty, using a certainty factor model.

Getting started

Ensure that the DESS program is executable, e.g.

% chmod 755 dess

To start DESS, type:

% dess

To leave DESS and return to UNIX, type:

|: exit;

(Note that all DESS commands are terminated with a semi-colon.)

© Graham Kemp, University of Aberdeen 8 November 1997

DESS User Manual (Page 2) Reasoning with Facts

Chapter 2

Reasoning with Facts

Facts

Facts (or ‘‘assertions’’) in DESS are enclosed in quotes.1

Facts indicating that the barometric pressure is rising and the western sky is cloudy can
be introduced as follows:

|: ’the barometric pressure is rising’;

|: ’the western sky is cloudy’;

To find out what facts are known to the system, type:

|: show facts;

Rules

Rules in DESS have the form:

[rule <RuleName>] if <Conditions> then <Consequences>

For now, we will consider rules which contain facts. Facts on the left hand side of a rule
can be separated by ‘and’ or ‘or’. When a rule is processed, ‘and’ takes precedence over
‘or’, unless disjunctions are enclosed in parentheses. The right hand side of a rule can be
a single fact, or a conjunction of facts.

It is not necessaryto give a rule name — the system will generate a unique rule name
automatically if this is omitted from the rule definition. However, it is strongly recom-
mended that the user should give each rule a name since this will make tracing informa-
tion and explanations more meaningful.

Here are two simple rules about the weather:

|: rule r1

|: if ’the barometric pressure is rising’ and

|: ’the western sky is cloudy’

|: then ’it is going to rain today’;

|: rule r2

|: if ’it is going to rain today’

|: then ’I am not going out today’;

1 The ‘quote’ character, ‘double quote’ or ‘backquote’ can all be used, but matching
quotes must be of the same type e.g. ’this is a fact’, "It is John’s birthday" and ’He said
"Hello"’ are all valid facts.

© Graham Kemp, University of Aberdeen 8 November 1997

DESS User Manual (Page 3) Reasoning with Facts

The list rules command displays the names of all rules known to the system.

|: list rules;

r1

r2

To inspect a particular rule, e.g. r1, type:

|: show rule r1;

To look at all of the rules, type:

|: show rules;

Loading from a File

While facts and rules can be typed in at the DESS prompt, this can become tedious. If
you make a typing error when entering a rule, then you have to type the whole rule again.
When you exit from DESS, all of your rules and facts will be lost so if you want to use
them later you will have to type them all in again. Therefore, I recommend that you
always define your rules in a file, and then load the file into DESS.

The load command is used to load facts and rules from a file. Suppose that the facts
and rules described above are stored in a file called ‘weather’. They can be loaded by
typing:

|: load "weather";

A ‘%’ (percent) sign in a knowledge base file indicates the start of a comment. Every-
thing from a percent sign to the end of the line is ignored.

White space (<space>, <newline>, <tab>) can be used freely within a knowledge base
file.

Working Memory

When a fact is read, it is added to working memory so that it can be used if forward
chaining is invoked. To inspect the current contents of working memory, type:

|: wm;

2 elements in working memory.

1 : ’the barometric pressure is rising’

2 : ’the western sky is cloudy’

|:

DESS will first print the total number of items in working memory, and then list these,
printing an identifying number beside each one (later we will see how these numbers pro-
vide the user with a convenient shorthand for referring to particular working memory ele-
ments).

© Graham Kemp, University of Aberdeen 8 November 1997

DESS User Manual (Page 4) Reasoning with Facts

Forward Chaining

Forward chaining is invoked using the commandfc :

|: fc;

..

All applicable rules fired

|:

A dot is printed each time a rule fires. Tw o dots here mean that two rules were fired.
Once all applicable rules have been fired, a message is displayed and the DESS prompt
returns. Facts inferred by forward chaining are added to working memory. If we look at
how the forward chaining sequence has affected working memory, we see that two new
facts have been added:

|: wm;

4 elements in working memory.

1 : ’the barometric pressure is rising’

2 : ’the western sky is cloudy’

3 : ’it is going to rain today’

4 : ’I am not going out today’

|:

Typingshow facts will also show that four facts are now known to the system.

‘‘How’’ Explanations

Thehow command is used to inform the user how a particular working memory element
has been derived. The keywordhow is followed by the working memory element about
which we want more information , e.g.

|: how ’I am not going out today’;

By using rule r2 and knowing:

’it is going to rain today’

|:

Alternatively, we can follow the keywordhow with the number of one of the working
memory elements:

|: how 3;

By using rule r1 and knowing:

’the barometric pressure is rising’ and

’the western sky is cloudy’

|:

If we ask about a fact which was entered directly by the user, or read in from a file, the
system replies: ‘You told me’.

© Graham Kemp, University of Aberdeen 8 November 1997

DESS User Manual (Page 5) Reasoning with Facts

Clearing the Knowledge Base

Theclear command removes all facts and rules, and clears working memory.

Tracing Forward Chaining Inference

The trace command lists the tracing options available, indicating whether each is cur-
rently on or off.

|: trace;

Trace options

1 : Show the name of the chosen rule [off]

2 : Show new working memory elements [off]

|:

The keywordtrace can be followed by a list of integers, referring to option numbers.
The state of each option selected will be switched and the list of options will be displayed
again, showing new states, e.g. the following command will switch on tracing options 1
and 2 (the comma is optional):

|: trace 1, 2;

Trace options

1 : Show the name of the chosen rule [on]

2 : Show new working memory elements [on]

|:

(Repeating this command would switch them both off again.)

Now when we invoke forward chaining, the name of each selected rule is printed as that
rule fires and each fact added to working memory is printed.

|: fc;

. Firing rule: r1

Adding working memory element: ’it is going to rain today’

. Firing rule: r2

Adding working memory element: ’I am not going out today’

All applicable rules fired

|:

The following sequence shows the knowledge base being cleared and initialised with
facts and rules loaded from the file ‘weather’. Since the trace option ‘Show new working
memory elements’ is still on, the facts read from the file are printed to the screen. This
option is switched off and forward chaining is invoked. This time, the name of rules
being fired is the only tracing information displayed.

© Graham Kemp, University of Aberdeen 8 November 1997

DESS User Manual (Page 6) Reasoning with Facts

|: clear;

|: load "weather";

Adding working memory element: ’the barometric pressure is rising’

Adding working memory element: ’the western sky is cloudy’

|: trace 2;

Trace options

1 : Show the name of the chosen rule [on]

2 : Show new working memory elements [off]

|: fc;

. Firing rule: r1

. Firing rule: r2

All applicable rules fired

|:

Removing Items from Working Memory

The remove command is used to remove items from working memory. The keyword
remove is followed by the working memory elements which we want to remove, or a
list of integers corresponding to working memory elements, e.g.

|: wm;

4 elements in working memory.

1 : ’the barometric pressure is rising’

2 : ’the western sky is cloudy’

3 : ’it is going to rain today’

4 : ’I am not going out today’

|: remove ’I am not going out today’;

|: remove 3;

|: wm;

2 elements in working memory.

1 : ’the barometric pressure is rising’

2 : ’the western sky is cloudy’

|: fc;

..

All applicable rules fired

|: wm;

4 elements in working memory.

1 : ’the barometric pressure is rising’

2 : ’the western sky is cloudy’

5 : ’it is going to rain today’

6 : ’I am not going out today’

© Graham Kemp, University of Aberdeen 8 November 1997

DESS User Manual (Page 7) Reasoning with Facts

Deleting Rules from the Knowledge Base

Thedelete rule command is used to delete rules from the knowledge base, e.g.

|: clear;

|: load "weather";

|: list rules;

rule_1

rule_2

|: delete rule rule_1;

|: list rules;

rule_2

|:

Backward Chaining

The deduce command2 invokes backward chaining. DESS replies ‘YES’ if we try to
deduce a fact which is known to the system or can be derived using the rules.

|: deduce ’the barometric pressure is rising’;

YES

|: deduce ’I am not going out today’;

YES

|:

If we try to deduce a fact which is not known to the system and cannot be derived using
the rules, DESS replies ‘NO’, e.g.

|: deduce ’it is sunny’;

NO

|:

New facts established during backward chaining are not added to working memory and
are not stored explicitly. That is, typing ‘wm’ or ‘ show facts ’ will still show only two
facts.

Tracing Backward Chaining Inference

If the trace option ‘Show the name of the chosen rule’ is on then the name of each rule
tried is displayed. For each rule listed, there will be a matching line which stares whether
that rule was successful or whether it failed.

2 The commandbc (‘‘backward chain’’) can be used as a synonym fordeduce in
DESS.

© Graham Kemp, University of Aberdeen 8 November 1997

DESS User Manual (Page 8) Reasoning with Facts

|: clear;

|: load "weather";

|: trace 1,2;

Trace options

1 : Show the name of the chosen rule [on]

2 : Show new working memory elements [on]

|: deduce ’I am not going out today’;

Trying rule: rule_2

Trying rule: rule_1

Rule successful: rule_1

Rule successful: rule_2

YES

|:

Extended Example

A version of the creatures knowledge base that uses facts is given on another handout.
This is also available on-line, in:

creatures.facts

© Graham Kemp, University of Aberdeen 8 November 1997

DESS User Manual (Page 9) Object-Attribute-Value Triples

Chapter 3

Object-Attribute-Value Triples

The Problem with Facts

Using simple facts in DESS we can only write very limited, specialised rules. For exam-
ple, using facts we can define a rule which establishes John’s nationality, if it is known
that John was born in Sydney:

if ’John was born in Sydney’

then ’John is Australian’;

The first problem is that this rule only enables us to establish John’s nationality. What
about other people born in Sydney? Next, what about people born in other Australian
towns and cities? To define rules for each combination of person and town would be
tedious, if not impossible.

To deal with more general rules, we need to use richer knowledge representations than
simple facts. Specifically, we need to use variables and a means for specifying rules
which model the relationships between variables.

Object-Attribute-Value Triples

Objectsare often used in expert systems to represent real-world entities. Each object has
a unique identifier. In DESS, this is just the object’s name. Each object may have sev eral
attributes, representing that object’s properties. Each attribute may have one or moreval-
ues.

In DESS, object-attribute-value triples (OAVs) have the following syntax:

the <Attribute> of <Object> is <Value>

OAVs about where John and Mary were born, and the location of Sydney are introduced
as follows:

|: the place_of_birth of john is sydney;

|: the place_of_birth of mary is sydney;

|: the location of sydney is australia;

(Note that there are no quotes.)

DESS stores OAVs inframestructures. You don’t need to know about these for now —
they will be described in detail later. Howev er, you might find the commandshow
frames useful for inspecting objects’ properties.

© Graham Kemp, University of Aberdeen 8 November 1997

DESS User Manual (Page 10) Object-Attribute-Value Triples

|: show frames;

john

place_of_birth: sydney

mary

place_of_birth: sydney

sydney

location: australia

|:

The three OAVs entered above are added to working memory:

|: wm;

3 elements in working memory.

1 : the place_of_birth of john is sydney

2 : the place_of_birth of mary is sydney

3 : the location of sydney is australia

|:

Querying OAVs

We can include variables in OAVs in place of either the object identifier or attribute value
(but not both). DESS variables begin with an upper-case letter or a question mark. OAVs
typed in by the user which contain variables arequeries, and all known values matching
the variable are displayed, e.g.

|: the place_of_birth of Who is sydney;

john

mary

|: the place_of_birth of john is Where;

sydney

|:

If there is no known value for an object-attribute pair, DESS replies ‘UNKNOWN’ in
response to a query.

|: the nationality of john is What;

UNKNOWN

|:

Rules containing OAVs

OAVs can appear on the left hand side and/or the right hand side of a rule. Here is a rule
that infers someone is Australian if they were born in an Australian city:

© Graham Kemp, University of Aberdeen 8 November 1997

DESS User Manual (Page 11) Object-Attribute-Value Triples

|: rule nationality

|: if the place_of_birth of Person is City and

|: the location of City is australia

|: then the nationality of Person is australian;

Notice that both object and value in an OAV triple can be variables, and that the same
variable can occur on both sides of a rule. This is an improvement, but is still restricted
to reasoning about Australians. We can generalise the nationality rule to work for coun-
tries other than Australia:

|: rule nationality

|: if the place_of_birth of Person is City and

|: the location of City is Country and

|: the name_for_citizen of Country is Adjective

|: then the nationality of Person is Adjective;

To support this rule, the following OAV introduces an object called ‘australia’, and
records the ‘name_for_citizen’ to be ‘australian’:

|: the name_for_citizen of australia is australian;

Backward Chaining

Backward chaining can be used to test whether a given value corresponds to a particular
object-attribute pair. If the given OAV is stored or can be inferred from known informa-
tion using the current rule base, DESS replies ‘YES’. Otherwise, DESS replies ‘NO’.

|: deduce the nationality of john is american;

NO

|: deduce the nationality of john is australian;

YES

If backward chaining is invoked with an OAV that has a variable in place of an explicit
value, DESS will attempt to infer possible values for the variable.

|: deduce the nationality of john is What;

australian

User Input During Backward Chaining

When trying to satisfy a condition on the left hand side of a rule, DESS first tried to find
whether a piece of information is known to the system or can be derived using rules and
what is already known. Sometimes the system will not know all relevant information
when backward chaining is initiated. In some of these cases it is reasonable for the user
to be asked to provide some missing piece of information. This can only be done when
the system has been told that a particular attribute is ‘askable’.

The syntax for notifying DESS that a particular attribute is ‘askable’ is:

askable<Attribute> <Prompt>

The following command will cause the system to prompt the user to type in a person’s
place of birth when this attribute is needed:

© Graham Kemp, University of Aberdeen 8 November 1997

DESS User Manual (Page 12) Object-Attribute-Value Triples

|: askable place_of_birth ’where was this person born? ’;

If we invoke backward chaining to infer Sue’s nationality, the system will prompt for
Sue’s place of birth:

|: deduce the nationality of sue is What;

Frame sue: where was this person born? sydney

australian

|:

(Note that the user mustnot type a semi-colon after the reply.)

‘‘Why’’ Explanations

During backward chaining, the user may type ‘why’ then asked for an attribute value. In
response to this, DESS will explain why the user is being asked for this particular piece
of information. This explanation consists of the instantiated rule whose antecedents the
system is attempting to satisfy. After providing this explanation, the system repeats the
prompt.

|: deduce the nationality of tom is What;

Frame tom: where was this person born? why

rule nationality

if

the place_of_birth of tom is City and

the location of City is Country and

the name_for_citizen of Country is Adjective

then

the nationality of tom is Adjective

Frame tom: where was this person born? sydney

australian

|:

DESS Remembers Inferred OAVs

Attribute values entered by the user or inferred by backward or forward chaining are
stored in object frames so that these values can be used later without having to be derived
a second time. If we look at the frame recording information about Tom, we see that both
his place of birth and nationality have been stored.

|: show frame tom;

tom

nationality: australian

place_of_birth: sydney

|:

If we now inv oke backward chaining to deduce Tom’s nationality, DESS replies ‘aus-
tralian’ by retrieving the stored value from the frame.

© Graham Kemp, University of Aberdeen 8 November 1997

DESS User Manual (Page 13) Object-Attribute-Value Triples

|:deduce the nationality of tom is What;

australian

|:

(If the trace option that shows the names of rules used was on, we would see that the rule
called ‘nationality’ is only used the first time that we deduce Tom’s nationality).

Forward Chaining

Suppose working memory contains the following OAVs:

|: wm;

4 elements in working memory.

1 : the place_of_birth of john is sydney

2 : the place_of_birth of mary is sydney

3 : the location of sydney is australia

4 : the name_for_citizen of australia is australian

|:

The fc command invokes forward chaining. If the the nationality rule is in the rule base,
this rule will fire twice — once for John and once for Mary:

|: fc;

..

All applicable rules fired

|: wm;

6 elements in working memory.

1 : the place_of_birth of john is sydney

2 : the place_of_birth of mary is sydney

3 : the location of sydney is australia

4 : the name_for_citizen of australia is australian

5 : the nationality of john is australian

6 : the nationality of mary is australian

|:

‘‘How’’ Explanations

Thehow command is used to obtain an explanation of how an OAV in working memory
has been derived.

|: how the nationality of john is australian;

By using rule nationality and knowing:

the place_of_birth of john is sydney and

the location of sydney is australia and

the name_for_citizen of australia is australian

|:

As an alternative to typing the OAV in full, the keywordhow can be followed by the
number of a working memory element.

© Graham Kemp, University of Aberdeen 8 November 1997

DESS User Manual (Page 14) Object-Attribute-Value Triples

Arithmetic Expressions

In addition to scalar values and variables, arithmetic expressions can be given as attribute
values within OAVs. This enables us to include calculations within rules. For example,
the following rule will derive someone’s weight in pounds if their weight in kilograms is
known:

|: rule kg_to_lb

|: if the weight_in_kg of Person is X

|: then the weight_in_lb of Person is X * 2.20462;

If the system knows that John’s weight in kilograms, then John’s weight in pounds can be
derived by either forward or backward inference.

As another example, suppose we have a rule for converting someone’s height in feet to
their height in inches:

|: rule feet_to_inches

|: if the height_in_feet of Person is X

|: then the height_in_inches of Person is 12 * X;

and we note that John is 6 feet tall:

|: the height_in_feet of john is 6;

We can then invoke backward chaining to test whether John is 72 inches tall:

|: deduce the height_in_inches of john is 72;

YES

|:

Expressions in DESS can contain integers, floating point numbers, and variables (whose
values must be established before the expression is evaluated, e.g. the variable may
appear in an earlier antecedent, as in the two rules shown above). DESS expressions can
include the usual arithmetic operators: ‘+’, ‘ - ’, ‘ * ’ and ‘/ ’. Sub-expressions can be
nested inside round brackets.

Arithmetic Comparisons

The six comparison operators supported by DESS are: ‘=’, ‘ <>’, ‘ >’, ‘ <’, ‘ >=’, ‘ =<’.
The expressions on either side of a comparison operator are as described in the previous
section.

The following rule identifies whether someone is a teenager:

|: rule teenager

|: if the age of Person is Age and

|: Age >= 13 and

|: Age =< 19

|: then the age_group of Person is teenager;

Suppose John is 17 years old:

© Graham Kemp, University of Aberdeen 8 November 1997

DESS User Manual (Page 15) Object-Attribute-Value Triples

|: the age of john is 17;

DESS will be able to infer that John is a teenager using either forward or backward chain-
ing. The following script shows the result of invoking forward chaining:

|: wm;

1 elements in working memory.

1 : the age of john is 17

|: fc;

.

All applicable rules fired

|: wm;

2 elements in working memory.

1 : the age of john is 17

2 : the age_group of john is teenager

|: how 2;

By using rule teenager and knowing:

the age of john is 17 and

17 >= 13 and

17 =< 19

|:

Multi-valued Attributes

All of the OAVs considered so far have single-valued attributes. In order to model many
real-world situations we must be able to represent attributes with more than one value —
a book may have more than one author; a patient may have more than one symptom; a
mechanical assembly can have sev eral sub-components.

We use the termcardinality to describe the number of values an attribute may have.

Some systems allow the user to specify the maximum and/or minimum number of values
an attribute may have, and the system will report an error of this number is violated.
DESS supports single-valued attributes and multi-valued attributes (which may have zero
or more values), but does not enforce the cardinality of the latter.

In DESS, OAVs with multi-valued attributes have the keyword ‘include’ instead of ‘is’:

|: the hobbies of liz include swimming;

|: the hobbies of liz include skating;

The following rule states that skaters will own skates:

|: rule owns_skates

|: if the hobbies of Person include skating

|: then the possessions of Person include skates;

Using this rule, DESS will infer that Liz owns skates:

© Graham Kemp, University of Aberdeen 8 November 1997

DESS User Manual (Page 16) Object-Attribute-Value Triples

|: deduce the possessions of liz include What;

skates

|: show frame liz;

liz

possessions: skates

hobbies: skating

hobbies: swimming

|:

© Graham Kemp, University of Aberdeen 8 November 1997

DESS User Manual (Page 17) Frames

Chapter 4

Frames

Introduction to Frames

In some expert systems, real world objects are represented byframes. The properties of
an object are represented byslots. The properties of a slot are represented by slotfacets.

Specific, or instanceframes represent actual real world entities.Generic, or prototype
frames represent knowledge about a general concept. That is, they represent classes to
which individual instances may belong.

Frames can be related to one-another, reflecting relationships between classes and entities
in the real world. The most important relationships that need to be modelled are ‘‘sub-
class-of ’’ and ‘‘instance-of ’’. Both of these relationships allow properties to be inherited.

Relationship to OAVs

In Chapter 3, we used object-attribute-value triples to represent data. In DESS, OAVs are
stored in frame structures. When we type in an OAV ,

|: the place_of_birth of john is sydney;

the value ‘sydney’ is inserted into the ‘value’ facet of the ‘place_of_birth’ slot of the
frame called ‘john’. If no frame called ‘john’ exists, one is created.

When an OAV containing a variable is typed, the query is answered by retrieving all pos-
sible values for the variable from frame structures.

Creating New Frames Explicitly

We can introduce new frames and initialise their slots explicitly. When introducing a new
frame in this way, we must declare it to be a generic frame by stating that it is a subclass
of some other generic frame, or an instance frame by stating that it is an instance of some
generic frame. (It is not necessary for the related class frame to exist! It is sufficient to
invent the name another class simply as a ‘‘place-holder’’.) Thus, a new frame represent-
ing the class of employees can be introduced as follows:

|: employee subclass of person;

This command will create a new generic frame called ‘employee’. There does not have
to be a generic frame called ‘person’.

We can create a new instance frame as follows:

|: tom instance of employee;

When introducing a new class, we can give default values for particular slots. For exam-
ple, the following declaration crates a generic frame called ‘accountant’ and specifies a
default salary of 10000 for all accountants:

© Graham Kemp, University of Aberdeen 8 November 1997

DESS User Manual (Page 18) Frames

|: accountant subclass of employee with

|: salary: 10000;

We can also give initial values for properties in an instance frame. Several values can be
given for a multi-valued property by listing these inside square brackets (separated by
commas).

|: liz instance of employee with

|: salary: 16000

|: hobbies: [cycling,squash,tennis];

Slot Cardinality

By default, all slots in DESS are single-valued. Thus, only one value can be stored in
their value facet. However, DESS also supports multi-valued slots. There are two ways
to make a slot multi-valued.

The first is to give sev eral values for that slot when the frame is introduced (as with Liz’s
hobbies in the example above).

The second is to put ‘multi’ into a slot’s cardinality facet. In DESS, any number of facet
and facet value pairs can be given in a list following the slot name. For example, we can
create a frame representing Sue, inserting ‘reading’ into the value facet of the slot called
‘hobbies’ and ‘multi’ into the cardinality facet of that slot.

|: sue instance of person with

|: hobbies: [value: reading, cardinality: multi];

Since the ‘hobbies’ slot has been declared to be multi-valued, if we state that Sue also
enjoys archery at some later stage, then archery will be added to the values for this slot,
rather than replacing reading as Sue’s hobby:

|: the hobbies of sue include archery;

|: the hobbies of sue include What;

archery

reading

|:

Listing Frames

The commandlist frames prints the names of all frames known to the system.
These are indented with respect to the classes to which frames belong, thus reflecting the
class hierarchy. For example, suppose we load a frame version of the creatures knowl-
edge base (given in a separate handout). The commandlist frames will give the fol-
lowing output:

© Graham Kemp, University of Aberdeen 8 November 1997

DESS User Manual (Page 19) Frames

|: list frames;

creature

mammal

carnivore

cheetah

tiger

ungulate

giraffe

zebra

bird

ostrich

penguin

albatross

|:

Inspecting Frames

The commandshow frame is used to display information about a particular frame, e.g.

|: show frame mammal;

mammal subclass_of creature

body_covering: hair

reproduction: live_birth

feeds_young_on: milk

motion: walks

|:

The name of the class of which the given frame is an instance or a subclass is printed,
together with the kind of relationship that holds between the two frames. The values
stored in value facets of the local frame are also displayed.

The contents of all frames can be displayed using the commandshow frames .

Deleting Frames

The commanddelete frame can be used to delete a particular frame.

Any other frames which depend on that frame are also deleted. That is, if a generic frame
is deleted, all subclasses and instances of that frame will also be deleted, e.g.

© Graham Kemp, University of Aberdeen 8 November 1997

DESS User Manual (Page 20) Frames

|: delete frame penguin;

|: delete frame carnivore;

|: list frames;

creature

mammal

ungulate

giraffe

zebra

bird

ostrich

albatross

|:

Rules Involving Class Membership

Statements about class membership with the syntax:

<Class Variable>is an instance of<Class Name>

can appear in DESS rules. Thus, rules can be used to infer class membership.

rule mammal

if the body_covering of Creature is hair or

the feeds_young_on of Creature is milk

then Creature is an instance of mammal;

Class membership statements can also appear among a rule’s antecedents, e.g.

rule ungulate_1

if Creature is an instance of mammal and

the food of Creature is grass

then the feeding_type of Creature is ungulate;

Inheritance

Generic frames are also known as prototype frames, because they can be thought of as
providing a prototype for information about object instances. When no value is stored for
a particular attribute in a particular frame, it is possible for a default value to beinherited
from a another frame.

Considering the frames describing creatures, no information about an ungulate’s body
covering is stored in the ‘ungulate’ frame. However, an ‘ungulate’ is a subclass of ‘mam-
mal’ and thus can inherit the default body covering stored in the ‘mammal’ frame.

|: the body_covering of ungulate is What;

hair

|:

In this situation, we refer to ‘mammal’ as thesuperclassof ‘ungulate’. Moreover, it is a
direct superclass — mammal is an indirect superclass of ‘giraffe’.

© Graham Kemp, University of Aberdeen 8 November 1997

DESS User Manual (Page 21) Frames

Suppose we add two instances: Stretch (a giraffe) and Swifty (a cheetah):

|: stretch instance of giraffe;

|: swifty instance of cheetah;

|: list frames;

creature

mammal

carnivore

cheetah

swifty

tiger

ungulate

giraffe

stretch

zebra

bird

ostrich

penguin

albatross

|:

We can now ask questions about these particular creatures, e.g.

|: the legs_and_neck of stretch is What;

long

|: the legs_and_neck of swifty is What;

short

|:

We hav e not made any statements about the legs and neck of either animal. However,
Stretch inherits the value ‘long’ for this attribute because it is an instance of giraffe.
Swifty inherits the value ‘short’ from the frame ‘creature’, which is a distant superclass.

An attribute value stored with a particular instance can override a default value stored in a
generic frame. For example, suppose Snowy is an white tiger:

|: snowy instance of tiger with

|: colour: white;

When we enquire about Snowy’s colour, this overriding value is returned:

|: the colour of snowy is What;

white

|:

All inheritance in DESS isoverriding (or ‘supersedes’ inheritance). That is, a value for a
particular attribute in a more specialised frame will be used instead of any in more gen-
eral frames. Some systems also support ‘merge’ inheritance, where the values in a more
specialised frame are used in addition to those in more general frames.

Some systems allow instance frames to be directly related to more than one generic
frame, and allow each generic frame to be a direct subclass of more than one generic

© Graham Kemp, University of Aberdeen 8 November 1997

DESS User Manual (Page 22) Frames

frame. This enables a frame to inherit properties from several others. This situation is
known asmultiple inheritanceand care must be taken when a frame inherits a particular
property from more than one ‘‘parent’’ frame — the system must resolve the conflict by
selecting which inheritance route will be used. DESS ‘‘avoids’’ this problem by only
allowing single-inheritance.

Demons

Demons are pieces of code that can be stored in a frame slot. This is sometimes called
procedural attachment. These pieces of code are usually executed either when a slot
value is accessed or modified.

A demon can be used to derive a slot value on demand. In DESS, this is achieved by giv-
ing a rule as the value of a slot’s ‘‘when_accessed’’ facet. For example, rather than stor-
ing both a person’s year of birth and age in instance frames, it is sufficient to store just the
year of birth, and then calculate their age when it is needed.

person subclass of living_thing with

age: [when_accessed:

if the year_of_birth of Person is Year

then the age of Person is 1997 - Year];

Clearly, a more sophisticated rule could take into account a person’s date of birth, and
could retrieve the present year from the system’s clock instead of assuming that it is still
1997 — however, this simplistic example illustrates the idea.

It is expected that a ‘‘when-accessed’’ demon will have as its consequent an OAV :

the <Attribute> of <Object> is <Value>

where <Attribute> is the name of the slot whose value the demon will calculate,
<Object> is a variable representing the object instance, and<Value> is an expression
that will provide the slot value. DESS invokes backward chaining to establish the conse-
quent of a ‘‘when-accessed’’ rule.

Suppose we add a frame representing a John, who was born in 1980:

john instance of person with

year_of_birth : 1980;

If we now ask the system for John’s age, the ‘‘when-accessed’’ demon from the ‘‘person’’
frame’s ‘‘age’’ slot is inherited since John is an instance of person, and the system calcu-
lates that John is seventeen years old:

|: the age of john is What;

17

|:

An additional action performed by DESS is to store the newly calculated value in the
frame called ‘‘john’’, so that if John’s age is needed again, the ‘‘cached’’ value can be
retrieved, and it is not necessary to calculate that value again. This is not so important for
this example, but if the when-accessed demon is computationally expensive, the perfor-
mance of the system will be improved if derived values are cached.

© Graham Kemp, University of Aberdeen 8 November 1997

DESS User Manual (Page 23) Frames

Since backward chaining is invoked to establish a value for a slot, it is possible that the
user may be asked for additional information if an antecedent of the ‘‘when-accessed’’
rule uses an attribute value that is unknown, but askable. For example, suppose we ask
about Tom’s age, when nothing is known about Tom, other than that he is a person, and
suppose that someone’s year of birth is askable:

|: tom instance of person;

|: the age of tom is What;

Frame tom: when was this person born? 1976

21

|:

We could, of course, ask ‘‘why’’ the question prompting for Tom’s year of birth is being
asked, and DESS would print the text of the ‘‘when-accessed’’ rule.

Algorithm used by DESS for Retrieving Attribute Values

When answering an OAV query, DESS uses the following algorithm when trying find the
value for a given attribute (when value(s) are found, they are returned):

(a) look for stored values in the local frame

(b) look for a ‘when-accessed’ method in the local frame, and use it

(c) if the local frame cannot provide a value, and the local frame is an instance or sub-
class of another, let that ‘super’ frame be the new local frame, and repeat from (a)

(d) otherwise, no value can be retrieved

Even if no value can be found by inspecting the frames, it may be possible to establish a
value for a given property using inference.

Copying Data from Frames to Working Memory

When a frame is introduced explicitly, the data that it contains is not added to working
memory automatically. Thus, if we want to use forward chaining to reason with this data,
we must first copy it into working memory. The commandadd frame copies into
working memory the contents of a given frame, together with any default attribute values
that are inherited from other frames, e.g.

© Graham Kemp, University of Aberdeen 8 November 1997

DESS User Manual (Page 24) Frames

|: wm;

0 elements in working memory.

|: show frame stretch;

stretch instance_of giraffe

|: add frame stretch;

|: wm;

12 elements in working memory.

1 : stretch is an instance of giraffe

2 : the body_covering of stretch is hair

3 : the colour of stretch is tawny

4 : the eyes of stretch is point_sideways

5 : the feeds_young_on of stretch is milk

6 : the feet of stretch is hoofs

7 : the food of stretch is grass

8 : the legs_and_neck of stretch is long

9 : the marking of stretch is dark_spots

10 : the motion of stretch is walks

11 : the reproduction of stretch is live_birth

12 : the teeth of stretch is blunt

|:

© Graham Kemp, University of Aberdeen 8 November 1997

DESS User Manual (Page 25) Uncertainty

Chapter 5

Uncertainty

Certainty Factors

DESS uses a MYCIN-like certainty factor model for representing and reasoning with
uncertain knowledge and data. In DESS, each rule, fact and object-attribute-value triple
has a certainty factor. Certainty factors are values in the range -1.0 to +1.0. A value of
+1.0 means that we are sure of something; a value of -1.0 means that something is defi-
nitely untrue. A certainty factor of zero means that we know nothing about whether a
piece of knowledge is true or not.

In DESS, if no certainty factor is given explicitly, the system assumes that a piece of
knowledge or data is true, and uses a certainty factor of 1.0 implicitly. Thus, in earlier
sections, we did not need to declare certainty factors when adding to the knowledge base.

Certainty Factors of Facts

Suppose facts ‘A’, ‘C’, ‘D’ and ‘E’ are known with certainty factors of 0.8, 0.9, 0.7 and
0.5, respectively. These facts and their certainty factors are made known to DESS as fol-
lows:

|: ’A’ with cf 0.8;

|: ’C’ with cf 0.9;

|: ’D’ with cf 0.7;

|: ’E’ with cf 0.5;

Since all of the certainty factors are greater that zero, this means that we believe that each
is true to a greater or lesser extent — there is most confidence in ‘C’ being true, and ‘E’ is
the fact about which we are least certain.

Certainty Factors of Rules

A certainty factor is associated with each rule consequent. This represents our confidence
in a consequent being true if all of the antecedents are true.

First, consider rule b1 which states that ‘B’ is definitely true if ‘A’ is true. In DESS, we
would express this rule as

rule b1

if ’A’

then ’B’ with cf 1.0;

or simply:

rule b1

if ’A’

then ’B’;

© Graham Kemp, University of Aberdeen 8 November 1997

DESS User Manual (Page 26) Uncertainty

since DESS assumes 1.0 as a default value for a rule’s certainty factor.

Of course, we may not know with complete certainty that the antecedents are true. In
these cases, we need to combine the certainty factors of the antecedents and of the rule to
establish a certainty factor for the consequent. This is done in two steps. The first is
‘‘antecedent combination’’ which means finding the antecedent certainty factor for the
rule. This is done simply by taking the minimum of the certainty factors of the
antecedents to be the certainty factor for the left hand side of the rule. The second step
involves multiplying the antecedent certainty factor by the certainty factor that the conse-
quent is true given the antecedents.

As an example, rule b1 has only one antecedent, so its certainty factor (0.8) will be the
antecedent certainty factor for rule b1. The rule certainty factor for rule b1 is 1.0. Multi-
plying 0.8 by 1.0 gives 0.8 as the certainty factor for fact ‘B’ using rule b1.

Suppose we have a second rule for establishing ‘B’:

rule b2

if ’C’ and ’D’ and ’E’

then ’B’ with cf 0.6;

The antecedent certainty factor for rule b2 is the minimum of the certainty factors of the
individual antecedents, i.e. the minimum of 0.8, 0.9, 0.7 and 0.5, which is 0.5. Multiply-
ing this by the rule certainty factor for rule b2 (0.6), we get 0.3 as the certainty factor for
fact ‘B’ using rule b2.

Multiple Consequent Combination

In the previous section, we saw that ‘B’ could be inferred with a certainty factor of 0.8
using rule b1 and a certainty factor of 0.3 using rule b2. Both of these rules on their own
support the conclusion that ‘B’ is true. Intuitively, considering these two pieces of evi-
dence together increases our confidence that ‘B’ is true. We now show how numerical
certainty factors can be combined to reflect this.

Suppose some fact (or attribute value) is already known with a certainty factor of CFp,
and that using some other rule now brings evidence that the same item is true with a cer-
tainty factor of CFn. The way that these two certainty factors are combined depends on
their signs. We consider three cases.

First, if both certainty factors are positive then each supports the conclusion, and combin-
ing will result in a new certainty factor CF that is greater than both CFp and CFn. CF is
calculated as follows:

CF = CFp + CFn * (1 - CFp)

i.e.

CF = CFp + CFn - CFp * CFn

The second case is when both certainty factors are negative. Both suggest that the con-
clusion is false, and taken together reduce still further out belief that the conclusion might
be true. In this case, the new certainty factor CF will have a lower value than both CFp
and CFn, and is calculated using the following formula:

© Graham Kemp, University of Aberdeen 8 November 1997

DESS User Manual (Page 27) Uncertainty

CF = CFp + CFn * (1 + CFp)

i.e.

CF = CFp + CFn + CFp * CFn

Finally, if the two certainty factors have opposite signs, then one piece of evidence sup-
ports the conclusion, while the other argues against the conclusion. In this case, the new
certainty factor CF is calculated using the following formula:

CF = (CFp + CFn) / (1 - min(|CFp|, |CFn|)

The new certainty factor will lie between CFp and CFn.

Certainty Factors of OAVs

Each object-attribute-value has an associated certainty factor. If no certainty factor is
given explicitly, a default value of 1.0 is used.

Here are some OAVs based on [Jackson, page 47].

the stain of organism_1 is gramneg;

the morphology of organism_1 is rod with cf 0.8;

the morphology of organism_1 is coccus with cf 0.2;

the aerobicity of organism_1 is aerobic with cf 0.6;

the aerobicity of organism_1 is faculative with cf 0.4;

The attributes are single-valued, so the morphology cannot be both rod and coccus. How-
ev er, DESS allows alternative values to be recorded when there is uncertainty about the
true value, and the certainty factors of each alternative value is stored.

rule enterobacteriaceae

if the stain of X is gramneg and

the morphology of X is rod and

the aerobicity of X is aerobic

then the class of X is enterobacteriaceae with cf 0.8;

The antecedent certainty factor is 0.6 (the minimum of 1.0, 0.8 and 0.6). This is multi-
plied by the rule certainty factor to give 0.48 as the certainty factor that the class of
organism_1 is enterobacteriaceae.

|: deduce the class of organism_1 is What;

enterobacteriaceae with cf 0.48

|:

The same conclusion would be reached with the same certainty factor by forward chain-
ing:

© Graham Kemp, University of Aberdeen 8 November 1997

DESS User Manual (Page 28) Uncertainty

|: fc;

.

All applicable rules fired

|: wm;

6 elements in working memory.

1 : the stain of organism_1 is gramneg

2 : the morphology of organism_1 is rod with cf 0.8

3 : the morphology of organism_1 is coccus with cf 0.2

4 : the aerobicity of organism_1 is aerobic with cf 0.6

5 : the aerobicity of organism_1 is faculative with cf 0.4

6 : the class of organism_1 is enterobacteriaceae with cf 0.48

|:

© Graham Kemp, University of Aberdeen 8 November 1997

DESS User Manual (Page 29) Reaction Systems

Chapter 6

Reaction Systems

Introduction to Reaction Systems

In the previous chapters, we have been concerned withdeduction systemswhere the out-
come of inference is that some new assertions become known by virtue of rule
antecedents being known to be true. Deduction systems deal with static worlds where
nothing established to be true can ever become false.

In contrast,reaction systemscan model dynamic situations, and thus can be used for con-
structive problem solving. As an example of a dynamic situation, suppose we want to
model the task of packing machine parts into boxes for shipping. In performing this task,
part number 4321 may initially be on a shelf in the warehouse. When it is placed into a
packing box, its location changes — it is now in a box and no longer on the warehouse
shelf. Thus, an initial assertion that part 4321 is on the warehouse shelf, which was true
at one time, is now false.

A simple reaction system that bags groceries (Adapted from P.H. Winston, ‘‘Artificial
Intelligence’’, Third Edition, Addison-Wesley, 1992) is given in a lecture handout.

‘‘If-delete-add’’ Rule Syntax

In reaction systems, if the conditions on the left hand side of a rule are true then actions
on the right hand side of that rule can be performed. These actions may include adding a
new assertion or deleting an existing assertion. This extra freedom is reflected in DESS
syntax through ‘‘if-delete-add’’ rules. The following rule (taken from the ‘‘BAGGER’’
program) illustrates this syntax:

rule B4

if ’step is bag-large-items’ and

the items_to_be_bagged of order include Item and

the size of Item is large and

the current_bag of order is Bag and

the number_of_large_items of Bag is L and

L < 6

delete the items_to_be_bagged of order include Item and

the number_of_large_items of Bag is L

add the contents of Bag include Item and

the number_of_large_items of Bag is L + 1;

Note that several items may be deleted from working memory and several added by a sin-
gle rule.

Either the ‘‘delete’’ part or the ‘‘add’’ part may be omitted.

In addition to the contents of working memory changing, frame structures are modified
when reaction rules are fired.

© Graham Kemp, University of Aberdeen 8 November 1997

DESS User Manual (Page 30) Reaction Systems

Conflict Resolution

Conflict resolution strategies are needed in reaction systems because it is generally
important that a particular rule in the conflict set should be selected for firing in prefer-
ence to others. Since firing that rule may delete elements from working memory, other
rules in the conflict set for that cycle may now be ineligible for firing. Thus the conflict
resolution can select which rules will fire and which will not, rather than just selecting the
order in which rules will fire (as in deduction systems).

The conflict resolution strategies supported by DESS arerule ordering and refractori-
ness. Thus, the first rules loaded into the rule base are given priority over those loaded
later (rules will be loaded in the order in which they appear in the source file).

Contexts

Some synthetic tasks can be divided into subtasks which must be completed in sequence.
During each of these steps, a subset of the rules will be applicable. A reaction system can
usecontextsuses to ensure that only rules relevant current subtask are considered. This
means associatingcontext symbolswith rules, and only considering rules for the current
subtask when building the conflict set.

Contexts can be implemented simply in DESS using facts representing context symbols
in the antecedents of a rule. It is best to make the context symbol the first antecedent,
since the current context can be checked quickly and easily.

Some rules serve only to manipulate contexts. The following rule, taken from the
BAGGER program, changes the current context from the ‘check order’ subtask to the
‘bag large items’ subtask:

rule B2

if ’step is check-order’

delete ’step is check-order’

add ’step is bag-large-items’;

Since the context symbol is this rule’s only antecedent, this rule will always be in the con-
flict set while the system is performing the ‘check order’ subtask. Therefore, it should be
the last rule for that context, so that all other applicable rules for the context are tried first
before the system progresses to the next subtask.

User Input During Forward Chaining

In Chapter 3, we saw how some attributes could be declared to be ‘askable’, thus
enabling the system to prompt the user to supply a value during backward chaining.
However, reaction systems work by forward chaining. Therefore we need some other
way of prompting for input. This can be done by introducing a prompt within a rule
using the following syntax:

ask <prompt>

This pattern can occur in a DESS rule wherever a value can appear. For example, the fol-
lowing rule, taken from the BAGGER program, has a question on the left hand side of a
comparison.

© Graham Kemp, University of Aberdeen 8 November 1997

DESS User Manual (Page 31) Reaction Systems

rule B1

if ’step is check-order’ and

the items_to_be_bagged of order include potato_chips and

not(the items_to_be_bagged of order include pepsi) and

ask ’Do you want Pepsi added to the order (y/n)? ’ = y

then the items_to_be_bagged of order include pepsi;

If the first three antecedents are satisfied, the value typed by the user in response to the
question is compared with ‘y’. If the user types ‘y’, the rule fires and the consequent is
added as a new assertion.

DESS cannot (at present) respond to ‘‘why’’ requests typed by the user in response to
these prompts.

Tracing Reaction Systems

If trace option 2 is on, DESS will report all elements removed from working memory as
well as those added to working memory.

© Graham Kemp, University of Aberdeen 8 November 1997

DESS User Manual (Page 32) Appendix A

Appendix A

Reasoning with Facts — Creatures Knowledge Base

(Adapted from P.H. Winston, ‘‘Artificial Intelligence’’, Third Edition, Addison-Wesley,
1992)

Assume that the file ‘‘creatures_A’’ contains the following rules:

rule mammal_1

if ’body covering is hair’

then ’creature is a mammal’;

rule mammal_2

if ’feeds young on milk’

then ’creature is a mammal’;

rule bird_1

if ’body covering is feathers’

then ’creature is a bird’;

rule bird_2

if ’motion is flies’ and

’reproduction is eggs’

then ’creature is a bird’;

rule feeding_type_1

if ’creature is a mammal’ and

’food is meat’

then ’feeding type is carnivore’;

rule feeding_type_2

if ’creature is a mammal’ and

’teeth are pointed’ and

’feet are claws’ and

’eyes point forward’

then ’feeding type is carnivore’;

rule feeding_type_3

if ’creature is a mammal’ and

’food is grass’

then ’feeding type is ungulate’;

© Graham Kemp, University of Aberdeen 8 November 1997

DESS User Manual (Page 33) Appendix A

rule feeding_type_4

if ’creature is a mammal’ and

’feet are hoofs’

then ’feeding type is ungulate’;

rule species_1

if ’feeding type is carnivore’ and

’colour is tawny’ and

’marking is dark spots’

then ’species is cheetah’;

rule species_2

if ’feeding type is carnivore’ and

’colour is tawny’ and

’marking is black stripes’

then ’species is tiger’;

rule species_3

if ’feeding type is ungulate’ and

’colour is tawny’ and

’marking is dark spots’ and

’legs and neck are long’

then ’species is giraffe’;

rule species_4

if ’feeding type is ungulate’ and

’colour is black and white’

then ’species is zebra’;

rule species_5

if ’creature is a bird’ and

’motion is walks’ and

’colour is black and white’ and

’legs and neck are long’

then ’species is ostrich’;

rule species_6

if ’creature is a bird’ and

’motion is swims’ and

’colour is black and white’

then ’species is penguin’;

rule species_7

if ’creature is a bird’ and

’motion is flies’

then ’species is albatross’;

© Graham Kemp, University of Aberdeen 8 November 1997

DESS User Manual (Page 34) Appendix A

To load these rules, we type:

|: load "creatures_A";

Suppose we now add the following facts:

|: ’body covering is hair’;

|: ’food is grass’;

|: ’colour is black and white’;

We can use either backward chaining of forward chaining to infer the species.

Backward Chaining

|: deduce ’species is tiger’;

NO

|: deduce ’species is zebra’;

YES

|:

Forward Chaining

|: wm;

3 elements in working memory.

1 : ’body covering is hair’

2 : ’food is grass’

3 : ’colour is black and white’

|:fc;

...

All applicable rules fired

|: wm;

6 elements in working memory.

1 : ’body covering is hair’

2 : ’food is grass’

3 : ’colour is black and white’

4 : ’creature is a mammal’

5 : ’feeding type is ungulate’

6 : ’species is zebra’

|:

© Graham Kemp, University of Aberdeen 8 November 1997

