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Chapter 

1 
MILAN: A Model Based Integrated Simulation 
Framework 
The Model-based Integrated Simulation Framework (MILAN) is a model-based, 
extensible simulation integration framework that facilitates rapid evaluation of different 
performance metrics, such as power, latency, and throughput, at multiple levels of 
granularity of a large class of embedded systems by seamlessly integrating different 
widely-used simulators into a unified environment.   MILAN is a joint effort by the 
University of Southern California and Vanderbilt University and is supported by the 
DARPA Power Aware Computing and Communication Program through contract 
number F33615-C-00-1633 monitored by Wright Patterson Air Force Base. 

This document will detail the different modeling concepts supported by MILAN, the 
various simulators currently supported, and how to use MILAN.  The reader is advised 
to also examine the tutorials provided, as they provide step-by-step examples of using 
MILAN.  Additionally, documentation on the tools released with MILAN (e.g. Desert 
and HiPerE) is included and should be referenced if either of these tools will be 
employed. 

Model Integrated Computing 
MILAN is implemented using Model Integrated Computing ( please see [ 1 ],[ 2 ], and  
[ 3 ] for more information).   MIC employs domain-specific models to represent the 
system being designed. These models are then used to automatically synthesize other 
artifacts. This approach speeds up the design cycle, facilitates the evolution of the 
application, and helps system maintenance, dramatically reducing costs during the 
entire lifecycle of the system.  MIC is implemented by the Generic Modeling 
Environment (GME), a metaprogrammable toolkit for creating domain-specific 
modeling environments. GME employs metamodels that specify the modeling 
paradigm of the application domain. The modeling paradigm contains all the syntactic, 
semantic, and presentation information regarding the domain – which concepts will be 
used to construct models, what relationships may exist among those concepts, how the 
concepts may be organized and viewed by the modeler, and rules governing the 
construction of models. The modeling paradigm defines the family of models that can 
be created using the resultant modeling environment. The metamodels specifying the 
modeling paradigm are used to automatically configure GME for the domain.  



 

GME is used primarily for model-building. The models take the form of graphical, 
multi-aspect, attributed entity-relationship diagrams. The static semantics of a model 
are specified by OCL constraints [ 4 ] that are part of the metamodels. They are 
enforced by a built-in constraint manager during model building time. The dynamic 
semantics are applied by the model interpreters, i.e. by the process of translating the 
models to source code, configuration files, database schema or any other artifact the 
given application domain calls for. 

MILAN overview 
The MILAN architecture is depicted in Figure 1. The design-space of a system is 
captured by multiple-aspect, hierarchical, primarily graphical models in GME. The 
three main categories of models specify the desired application functionality, available 
hardware resources and non-functional requirements in the form of explicit 
constraints. These complex models typically specify an exponentially large design-
space. However, only a subset of this space satisfies all the constraints. A symbolic 
constraint satisfaction methodology is applied to explore and prune the design-space. 
Once a single design has been selected, model interpreters translate the models into the 
input of the selected simulators. Simulation results need to be incorporated back in the 
models. For some simulators this will necessarily be a human-in-the-loop process, 
while for others the procedure can be automated.  
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Figure 1: MILAN Architecture 

The final component in the MILAN architecture is System Synthesis. Notice that this 
step is similar to driving simulators. Instead of targeting the execution model of a 
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simulation engine, the synthesis process needs to generate code that complies with the 
runtime semantics of a runtime system. Just like there is a need to support multiple 
simulators, MILAN needs to support multiple target runtime systems.  Currently, 
MILAN is more focused on providing a simulation integration environment than 
providing system synthesis capabilities.   
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Chapter 

2 
Application Modeling 
The primary application area of a significant portion of embedded systems is signal 
processing. The most natural, and hence widely used, model of computation for signal 
processing systems is arguably dataflow. Consequently, the MILAN application 
modeling paradigm is based on a dataflow representation. The unique requirements of 
the domain, namely the need to support a wide variety of applications, many existing 
simulators and multi-granular simulation, lead to several extension to the basic 
dataflow representation. 

The MILAN application modeling paradigm supports the following: 
 hierarchy to help handle system complexity, 
 both asynchronous and synchronous dataflow, as well as their composition, 
 strongly typed dataflow, 
 modeling application functionality that is to be implemented in configurable 

hardware, i.e. FPGAs or ASICs, 
 explicit design- and implementation alternatives to capture the design space of 

the application as opposed to a point solution, 
 non-functional requirements, resource- and other constraints to guide the 

design space exploration process that identifies the candidate solutions.  
 

Dataflow 
A dataflow graph consists of a set of compute nodes and directed links connecting 
them representing the flow of data. A flat graph representation does not scale well for 
human consumption, so we extended the basic methodology with hierarchy. Figure 2 
shows the metamodel of the basic MILAN dataflow modeling paradigm using UML 
class diagram notation.  All dataflow models are build in the Dataflow aspect. 

Component and CompoundBase are abstract base classes that help capture common 
characteristics of the three main concrete dataflow classes: Primitive, Compound and 
Alternative. Compounds are the composite dataflow nodes; they contain dataflow 
graphs themselves. Alternatives contain other dataflow components, but they represent 
alternative designs or implementations for the given functionality. Only one Alternative 
will be chosen for system instantiation.  The SelectThisAlternative attribute is used to 
select which option is chosen at model interpretation time.  Desert will utilize the 
attributes when interacting with other model interpreters. 



 

Primitives are the leaf nodes in the hierarchy. They have scripts associated with them 
representing their implementation. A script is a function written in a traditional 
programming language such as C, Java or Matlab. Notice that Compounds and 
Alternatives can also have scripts. (The little curved arrow in the lower left corner of 
ScriptBase indicates that it is a class proxy, i.e. a class that is defined elsewhere in the 
metamodels. In this case, ScriptBase has several concrete subclasses, one for each 
programming language supported. They are specified in a different metamodel sheet.)  

Multi-granular Simulation Support 
Compounds and Alternatives having scripts support one form of multi-granular 
simulation. When a certain subsystem does not need to be simulated in its entirety, a 
simple script can substitute a whole subtree of the system.  In order to perform a 
multi-granular simulation, the user needs to add an appropriate script to the 
Compound or Alternative that they do not want to fully simulate.  In addition, a 
HierarchyStop atom must be added to the Compound or Alternative.  This effectively 
tells the model interpreters to not explore the hierarchy in the Compound or 
Alternative, but instead to simply use the specified script as the implementation.  This 
feature is very useful when employing top-down system design priniciples. 

Isolated Simulation Support 
Components may also have a simscript defined.  These scripts serve as lightweight data 
producers and consumers.  They are utilized whenever the user wishes to perform an 
isolated simulation.  In these cases, components that interface to the components 
being simulated are implemented with their simscripts – to ensure the interfaces for the 
components of interest are maintained.  To perform an isolated simulation, the user 
must select (see the GME manual for details on selected objects in a model) the 
components (Compounds, Alternatives, or Primitives) of interest.  When the 
interpreter is invoked, it full simulates the selected components and uses the simscripts 
specified for any other components required for the simulation.  If not components 
are selected, the interpreters assume the user wishes to perform a full or mutli-granular 
simulation.  An isolated simulation may also use mutli-granular simulation. 

For the different types of scripts, always use the name of the script object as the name 
of the function to be called.  The specification, which is an attribute of the script 
object, specifies the location (i.e. the filename) where that script is located.  

Interfacing 
Ports capture the input and output interfaces of components. Compounds contain 
DFConn connections that are associations between ports representing the flow of 
data. Notice that connecting an output port of a Primitive to an output port of another 
Primitive does not make sense, yet the metamodel allows it. On the other hand, notice 
that it is not true that the only kind of dataflow connection needed is one connecting 
output ports to input ports. For instance, input ports of Compounds must be 
connected to at least one input port of a contained component. The modeling 
approach we selected allows the generic Port to Port dataflow connection in UML and 
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uses a set of OCL constraints to specify the precise static semantics of it, e.g. the well-
formedness rules of models containing dataflow connections. For example, the 
constraint 

connections("DFConn")->forAll(c | 
      c.source.kind = c.destination.kind implies 
         c.src.parent <> c.dst.parent) 
 
is attached to Compounds. It specifies that no dataflow connection may connect two 
ports of the same kind (output or input) of the same component. Notice the usage of 
shorthand notations to access frequently used concepts such as connection, source, 
destination, parent and kind. 

 

 

Figure 2:  Hierarchical dataflow paradigm with alternatives 

Finally, Alternatives contain AltConn connections that describe how the Ports of the 
given Alternative need to be mapped to the Ports of its contained components. 

For some model interpreters, the Priority and FiringCondition attributes are used.  The 
MATLAB interpreter uses these attributes to ensure the functional simulation 
accurately mimics the run-time system semantics.  Currently, only the MATLAB 
interpreter uses these attributes. 

Synchronous and Asynchronous Dataflow 
There is extensive literature on various dataflow representations. At the two ends of 
the spectrum are synchronous and asynchronous dataflow. With synchronous 
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dataflow, the exact number of data tokens produced and consumed at all input and 
output ports of every node is fixed and known. Consequently, all valid synchronous 
dataflow graphs have static schedules [ 5 ]. However, the expressive power of the 
synchronous dataflow graph model is limited; not all systems can be described using it. 
The asynchronous dataflow model has no such limitation. The number of tokens 
produced and consumed is not known until runtime and can vary over time. Hence, 
asynchronous dataflow graphs can only be scheduled dynamically at runtime causing 
some overhead. 

MILAN has separate metamodels for the synchronous and the asynchronous dataflow 
paradigms. They both look almost identical to the one shown in Figure 2. The only 
difference between the two from a syntactical perspective is that synchronous input 
and output ports have token attributes specifying the number of data tokens consumed 
and produced respectively, while asynchronous ones do not. 

MILAN also allows composing asynchronous and synchronous dataflow graphs 
together according to the rules captured in the metamodel shown in Figure 3. Note the 
use of class proxies that refer to existing classes defined in different metamodel sheets. 
It is allowed for an asynchronous dataflow graph (ACompoundBase, i.e. Compound 
or Alternative) to contain a synchronous Component (SyncComponent), i.e. a 
subgraph (refer to Figure 2). Similarly, a synchronous dataflow Alternative 
(SyncAlternative) can contain an asynchronous component (AsyncComponent). The 
ports of the synchronous alternative have the number of tokens specified. These ports 
are then mapped to the appropriate ports of the asynchronous component. Having the 
port mapping information is the reason that it is only synchronous Alternatives that 
can contain asynchronous components. Otherwise, no token information would be 
available. 

In order to be able to connect the synchronous and asynchronous components in a 
composed dataflow graph, two new kinds of connections are also introduced in Figure 
3 (A_to_S_ALT and APort_to_SPort).  

 7



 

 

Figure 3:  Asynchronous and synchronous dataflow composition 

Data types 
The MILAN data type modeling paradigm allows the specification Data type models 
in MILAN are used for several purposes. First of all, to accurately simulate 
communication performance, the amount of data exchanged needs to be captured. 
Furthermore, as data type models are attached to dataflow components, or more 
precisely to their input and output ports, they define the interface of those 
components. When the components are attached using dataflow connections, their 
interfaces are checked to ensure that only compatible objects are connected. Finally, 
the data type models can also be used to generate the corresponding definitions in the 
target programming language ensuring consistency.  

of both simple and composite types. Simple types, such as floats and integers, specify 
their representation size, i.e. the number of bits used. Composite types can contain 
simple types and other composite types. Attributes of the fields specify extra 
information such as array size or signed/unsigned type. Data types supported by the C 
programming language can be modeled in MILAN. Preexisting data types, specified in 
a DSP library for example, can also be modeled. Their name and size in bytes are the 
only information MILAN requires. 

Float and Integer data types are directly created as DataType models.  Both have 
attributes to allow the user to specify the type as an array, a pointer, etc.  A Library 
model uses the name of the model as the datatype, and an attribute is used to define 
where the datatype is defined (e.g. the header file).  Struct and Union types are 
constructed by using reference to the datatypes of their data members.  All of the 
datatype references have attributes to allow the user to specify this instance of the 
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datatype referenced to be an array, pointer, etc.  Other attributes allow the user to 
specify the size of any arrays. 

The synchronous and asynchronous dataflow and the data type modeling paradigms 
are composed together according to the metamodel in Figure 4. The only new concept 
is the TypeConnection connection between dataflow Ports and the TypeRefBase 
abstract base class. Both this connection and the TypeRefBase itself can be inserted 
into both synchronous and asynchronous components. TypeRefBase represents a 
reference to data type models defined elsewhere in the MILAN application models. 
TypeConnection assigns the referred type to the given port. OCL constraints ensure 
that every port has exactly one type specification and that dataflow connections are 
only allowed between ports having compatible data types.  The DataType aspect is 
used for associating component models with datatype models. 

Please see the tutorials for lessons on constructing datatype models and associating 
them with application models. 

 

Figure 4:  Composing data typing with the dataflow paradigms 

Parameters 
In order to support parametric dataflow components, such as an FFT routine with 
configurable size, MILAN allows the flexible specification of parameters as shown in 
Figure 5.   All parameterization is done in the Parameter aspect. 

Components contain ParameterPorts capturing their parameter interface. A Parameter 
can be connected to a ParameterPort supplying a value to it. Each port has a default 
value that is used if no Parameter is attached to it. Connections between parameter 
ports are also supported to allow the propagation of a parameter value down the 
dataflow hierarchy. parameterPortConn is constrained to connect ports sharing a 
parent-child relation in order to prevent parameter values propagating in an 
unrestricted fashion making the models hard to read. Furthermore, if a particular 
Parameter needs to be used in several places in the models, using connections can 
quickly become inconvenient. ParameterRef is a reference to a Parameter making it 
possible for several components to refer to the same Parameter regardless of their 
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position in the model hierarchy. Hence, the value of the parameter can be controlled 
from a single point. Both the ParameterPort and the Parameter are data typed, using 
the same modeling technique as for dataflow ports. Typing information is used to 
verify that the supplied parameter is compatible with the parameter interface of the 
component.  Parameters have an attribute allowing the user to set the value of the 
parameter.  Parameter ports also have an attribute for setting the default value of the 
parameter port. 

 

Figure 5:  Parameter specification 

Parametric modeling plays an important role in representing design spaces. A 
parametric component encapsulates multiple implementations that can be selected by 
supplying an appropriate value for the parameter.  For example, an N-point FFT 
model encapsulates a number of FFT implementations spanning the valid range of N.  
Thus, a space of options can be represented in the models instead of point-solutions.   

Multiple-aspect modeling 
Notice that the MILAN application modeling paradigm is quite complex. However, 
the dataflow, data type specification and parameter modeling are largely orthogonal 
concepts. Therefore, they can be separated into three different aspects. In the Dataflow 
aspect, only Components, Ports, dataflow- and alternative connections are shown. In 
the Type aspect, Ports, Parameters, ParameterPorts and data type references are 
displayed. Finally, Components, Parameters, ParameterPorts and their corresponding 
connections are visible in the Parameter aspect. Multiple-aspect modeling is a natural 
way to implement separation of concerns. 

Hardware Application Modeling1 
Applications implemented in configurable hardware are becoming very common. 
MILAN includes a sub-paradigm in order to support the modeling, simulation and 
synthesis of such applications.  

                                                                          

1 Portions of this section are based on and taken from: Agrawal A.: “Hardware Modeling and Simulation of 
Embedded Applications”, Master's Thesis, Vanderbilt University, May, 2002. 
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Models in this subparadigm consist of a set of modules implementing behavior and 
directed links connecting modules specifying the structure of the system. The modules 
are hierarchical, that is they can contain other modules and module associations 
forming a structural sub-graph. This helps to manage complexity. Figure 6 shows the 
metamodel of the basic MILAN hardware-modeling paradigm. 

hwModule is the basic building block. It is a hierarchical module as it can contain 
structural sub-graphs. Ports define the input and output interface of the module, while 
hwSignalConn is an association between ports representing a physical connection. 
These ports can also be connected to and from a hwBus. 

 

Figure 6:  Hardware Application paradigm 

A module that isn’t decomposed has processes associated with it. Processes specify the 
behavior of a module. This is captured as functions implemented in a hardware 
description language (VHDL or SystemC). Notice that, hwModule contains 
hwProcessBase, an abstract base class. It has different concrete subclasses to specialize 
for the language or the type of functionality the user requires. The functions can be 
event driven or sequential. Events are specified using the hwTrigger connection 
between processes and ports.  

A module can also contain data stores, internal memory elements of the module. Ports, 
busses and data stores are all strongly typed using the data type modeling technique 
described previously.  

The hardware modeling paradigm supports modeling of the system as a set of modules 
capturing the behavior with directed connections between them specifying the flow of 
data. These modules are hierarchical in nature; they can contain other modules and 
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connections between them. Figure 7 shows the class diagram of the hardware 
modeling paradigm. 

 

Figure 7:  Hardware Application Paradigm 

The main building block of the hardware paradigm is the hwModule. It is a hierarchical 
component that can contain other hwModules as well. It contains ports for 
communication between the modules, and hwSignalConn is the connection element 
representing the data path between the ports.  

The behavior of the hardware element is captured by hwFunctionBase, an abstract class. 
These functions can be specified in any language of the following language: SystemC 
or VHDL. These functions specified in the hwModule can be either sequential or 
event-triggered. Events are specified using the hwTrigger connection between the 
functions and the ports. The paradigm also supports the modeling of the memory 
elements and this is represented by hwDataStore.  

Hierarchical Modeling 
As in the overall application modeling scheme, the hwModule is a hierarchical model, 
allowing containment of other hwModules within it. Hierarchical modeling helps in 
separating the intentions of the application from its implementation. The design can be 
gradually refined at different levels of hierarchy until it is ready to capture the 
implementation. It also helps in the managing the complexity of the system. Large 
systems usually have a complex design and capturing them as one flat model without 
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any hierarchy might make the system unmanageable. Whereas hierarchy helps in hiding 
the data at different levels of granularity and thereby makes the system more 
manageable. Furthermore, the intention of the system is retained though the 
implementation might undergo changes. The functions or the behavior for the models 
can be captured at any level of granularity and in either VHDL or SystemC. 

Clocks 
 In applications realized using hardware, synchronization of various 
components is achieved through the usage of clocks. In MILAN’s hardware modeling 
environment, clocks are modeled as a separate entity.  Typically, a clock is modeled 
using hwClock, while the synchronization of various models to a particular kind of clock 
is captured by using the hwClockRef referring to the hwClock. The hwClock captures the 
necessary attributes for modeling a clock, namely, the duty-cycle, time-period, and 
initial values.  

For example, the following snapshot shows the usage of the clocks and clock 
references to synchronize the models. The ‘GlobalClock’ here in this example models 
the clock that will be used throughout the application by specifying appropriate values 
to the attributes. The model ‘VREF_HW_AZ’ is synchronized with this ‘GlobalClock’ 
through the usage of ‘Clock_ref’. It is an hwClockRef type referring to the ‘GlobalClock’. 

 

Figure 8:  Clocks and Clock reference usage 
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Multiple Aspects 
There are five major aspects in the hardware paradigm of MILAN: Hardware, Type, 
Parameter, Coarse-grain, and Substitute aspects. Basic modeling of the hardware module, its 
ports, connections with the other components, and so on are captured in the hardware 
aspect, also the basic behavior of the module is captured through scripts or functions. 
In the Coarse-grain and Substitute aspects, special scripts are added to the module. These 
scripts are used for different kinds of simulation. When a multi-granular simulation is 
performed, the simulation is stopped at a desired hierarchy level and the simulation 
scripts captured in the coarse-grain aspect of the module are used. The scripts in the 
substitute aspect are used when the module is just acting as a source or sink for the other 
modules, which are being simulated. This is required when an isolated simulation of a 
module or a group of modules is performed. When such a simulation is carried out, the 
neighboring modules connected to the modules being simulated act just a source or 
sink module. Data types are modeled in the type aspect and the ports and parameters 
are data typed in this aspect. In the Parameter aspect, the parameter ports and parameter 
values are created for the hardware module. 

Composing the hardware and dataflow paradigms 
Real-world systems usually have some functionality implemented in software while 
others in hardware. MILAN supports the composition of hardware and software 
models as shown in Figure 7. Dataflow components can contain hardware modules 
and signal connections. Furthermore, hardware and dataflow can be associated using 
the connection DFHWConn. This represents a data path between dataflow and 
hardware components. Thus, a hardware implementation of a sub-system can reside in 
any dataflow component. 
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Chapter 

3 
Resource Modeling 
The MILAN resource models define the hardware platforms available for application 
implementation. The primary motivation of the resource model is to model various 
architecture capabilities that can be exploited to perform design space exploration and 
to be able to drive a set of widely used energy and latency simulators from a single 
model. The resource model along with the application model captures the various 
mapping possibilities of the target system being modeled in MILAN. How we capture 
the mapping information is discussed in detail in the next section. 

The target hardware platforms are modeled in terms of hardware components and the 
physical connections among them.  For reconfigurable hardware, the resource model 
captures the valid configurations possible with that hardware.  Similarly, for processors 
supporting dynamic voltage scaling, the resource model supports specification of the 
various operating voltages and voltage transition cost. Several state-of-the-art memory 
components such as MICRON Mobile SRAM provide several power saving features [ 
12]. The resource model also captures there capabilities. The user models the hardware 
as a set of connected components.  The building blocks provided in the MILAN 
resource modeling paradigm include processing elements (RISC cores, DSPs, FPGAs), 
memory elements, I/O elements, interconnects, among others. The physical 
interconnections between the components are modeled through ports - similar to the 
application modeling paradigm. The resource model imposes structural and 
compositional constraints on the hardware layout to ensure validity of the model.  

The MILAN resource model is motivated by two related aspects of embedded system 
design; available target devices and widely used simulators for those devices. Various 
classes of target devices that are supported in a comprehensive manner by the resource 
model are the general purpose processors and memories. MILAN also provides a 
preliminary support for reconfigurable devices, interconnect, DSPs, and ASICs. 
Various simulators/estimators that are supported are SimpleScalar, SimplePower, 
PowerAnalyzer, and High-level Performance Estimator (described in Section 7). In the 
following, we describe the resource model in detail and provide guidelines for using 
resource model to model the target hardware and drive the simulators. The 
accompanying tutorials provide a more detailed discussion regarding the use of 
resource models. 



 

Resource Metamodel 
 

 

Figure 9: Resource Metamodel (compositional rules) 
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Resource metamodel encompasses the composition rules that governs modeling of the 
resources and configures GME for modeling the target hardware. There are several 
aspects of resource modeling, namely compositional, behavioral, and parameters. 
Aspect in this context is different than the visualization aspects used in GME and refer 
to analytical decomposition of resource modeling. 

Structural Modeling of Resources 
Structural modeling refers to how a target device is composed of different 
components. A component might be a processor, memory, or interconnect. Structural 
modeling is a high-level specification of the target device. MILAN also supports low-
level specification in terms of hardware layout (such as ones described in the previous 
chapter). Figure 9 shows the resource metamodel without the parameter associated 
with each component (models and atoms) of the metamodel. For a detailed view of 
the resource model, visualize to the MILAN modeling paradigm using GME. 

The model Component is an abstract class with two derived sub-classes Element and Unit. 
The inclusion of Component within a Unit allows hierarchical specification of a system. 
Such a modeling specification allows the designer to visualize a target system as a Unit 
composed of various sub-Units. For example, the Xilinx Virtex-II Pro [ 13] can be 
analyzed as a Unit that consists of two Units; FPGA and PowerPC. However, it is a 
designer’s choice how to model a target device. As resource model is primarily used to 
specify mapping options for the application tasks and to drive the simulators, based on 
the application characteristic the same Xilinx Virtex-II Pro can also be visualized as a 
single Unit with no sub-Units. Such a scenario might arise if the target application is 
analyzed such that each task is mapped to the complete device without any details of 
how the interaction between FPGA and the processor is modeled. A typical instance 
of such a scenario is the use of IP libraries provided by the Vendors where the designer 
uses the IP-cores as black-boxes and only the over-all performance behavior is 
exposed during system design. Another such example is the use of SimpleScalar [ 14] 
as a simulator. Typically, while analyzing a task mapped onto a processor it is not 
required to provide details of cache configuration. The task can be modeled based on 
the performance estimates only. However, if the task is being specifically analyzed for 
different cache configurations, it is necessary to provide details of cache configurations. 
Even cache configuration is also necessary if SimpleScalar is configured to simulate a 
particular processor. Therefore, the designer should have the flexibility of modeling the 
hardware at the required granularity. 

The connectivity between the resources are described using Ports similar to the 
application model. A Port is part of an Element. Therefore any Element can be connected 
to any other Element. However, the resource model enforces the rule that all 
connections need to be through Interconnect. This is specified using OCL constraints. 
The idea of such a constraint is to ensure an order in how different Elements can be 
connected and also to provide a place to capture the performance behavior of the 
interconnect resources within the target devices. 
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Element is further classified as Storage, Interconnect, Processing, IOSpec, and ClockTree. As the 
name suggests, theses models capture the key components of the target devices. Storage 
is further classified as Cache, Memory, and BranchTargetBuffer. Processing is further classified 
as ISAProc, Configurable, and ASIC, namely three primary classes of processing 
elements. 

Such a classification of the target devices is by no means complete and is still evolving. 
The ability to evolve based is one of the key aspects of MIC (Model Integrated 
Computing) and is fully supported by GME. 

Resource Model Parameters 
Figure 10 shows a part of the resource model that specifies the parameters associated 
with the Cache.  

 

Figure 10: Parameters of Cache 
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The primary reason for having such a large list of parameters is two-fold. First the 
parameters are the place-holders for structural aspect of a component. For example, 
for a cache model it is required to capture information such as associatively, set size, 
etc. Second, parameters also capture the performance aspect of the components. For 
example, read miss latency specifies the time taken in cycle if there is a read miss while 
accessing the cache. In addition, the list of parameters is also influenced by the 
requirement of the various supported simulators. Therefore the parameters of the 
cache are also identified based on our requirement to support simulators such as 
SimpleScalar, SimplePower, and PowerAnalyzer. Figure 11 provides a sample model of 
MIPS processor suitable for the above three simulators. 

 

Figure 11: Model of a MIPS Processor 

 

Modeling of Operating States 
As energy modeling is one of the major focus of the MILAN environment, it is 
imperative that the resource modeling should provide some specific support to model 
various energy minimization support provided by the state-of-the-art devices. Some 
such capabilities are availability of different operating states and the facility of dynamic 
voltage scaling that provide a trade-off between speed and energy dissipation. In 
addition, dynamic reconfiguration of configurable devices is also emerging as a key 
technique to achieve high performance. Therefore, we have added modeling support 
to capture various operating states and state-transition costs associated with different 

 19



 

target devices. Figure 12 shows the metamodel to capture such attributes. This model 
is motivated by the concept of finite state machine (FSM).  

 

Figure 12: Metamodel for State Transitions 

 

 

Figure 13: Model of State Transitions Associated with a Device 
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Essentially, we capture the information that there are several possible states associated 
with a device and there is a certain performance cost (time and energy) associated with 
each possible transition between the states. For example, Intel PXA 250 supports three 
operating voltages (possibly more) 99.5, 199.1, and 298.6 MHz. A different amount of 
quiescent energy (when processor is idle) is associated with each of these frequencies. 
This information is captured through StateIdleEnergy parameter associated with State 
atom. Similarly, transition costs are captured through StateTranTime and StateTranEnergy. 
Figure 13 shows a sample model of state transitions. For reconfigurable devices, 
various possible configurations and reconfiguration cost are also modeled using the 
above metamodel. The association of state transition modeling to the main resource 
metamodel is specified using a ModelProxy States (Figure 9). 

Note: It is required to have a ShutDown state to denote the power-down state of each 
device. It is also required to specify a default state. While modeling the names 
“DefaultState” and “ShutDown” needs to be used if HiPerE is to be used for DSE. 
Also, the idle energy dissipation per state is to be specified as energy dissipated per 
second. It is advised to specify all the state transition costs. However, for missing costs, 
HiPerE will assume 0 energy and latency and will not flag an error. 
 

Resource Modeling and Mapping 
The association of resource models to the application model is specified as a model of 
mapping. In simple English, a mapping refers to an association of an application task 
with a processing element of the target hardware operating in a particular state. For 
detailed explanation of mapping model refer to Section 4. 

Driving Simulators from Resource Model 
In order to drive simulators, a designer has to provide the necessary information to the 
models. For example, if the designer wants to drive SimpleScalar, there is a long list of 
information that is used by SimpleScalar to configure itself to match the target 
processor its modeling [ 14]. 

The MILAN models provide the required place-holders (fields) to input the 
information needed by the simulators. All these fields are initialized by the default 
values as specified by the simulators. If there is a conflict between two simulators we 
use one of the values. The designer needs to modify (if need be) the values in the fields 
depending on the requirement. 

There is a model interpreter associated with each of the simulators. These model 
interpreters are responsible to drive the simulators. A model interpreter for a simulator 
traverses the model and extracts the required information and formats it based on the 
requirement of the simulators. Most of the simulators specify a certain format of the 
configuration file. A model interpreter generates such a configuration file and 
optionally invokes the simulator with additional input such as high-level source code 
and input (typically obtained from the application models). Model interpreters 
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associated with each simulator also captures additional information that are not specific 
to the device but are required by the simulators. One such information may be 
“Simulator scheduling policy” that is used by SimpleScalar and PowerAnalyzer. 

Additionally, there are feedback interpreters (described in Section 5.3) that extract the 
simulation result and store it back in the models. Model interpreter for the simulators 
and the associated feedback interpreters complete the simulation loop. A detailed 
description of simulation using MILAN is provided in Section 5. 

 

Figure 14: A resource model with multiple devices 

Figure 15 shows a snapshot of a model that can drive SimpleScalar and 
PowerAnalyzer. Notice, that there are several details such as PowerModels which are only 
used by PowerAnalyzer. Basically, the intelligence to identify only the required 
information for a particular simulator is embedded into the model interpreter 
associated with the simulator. Therefore, it is possible to drive different tools and 
simulators from a single model. Thus one of the key advantages of MILAN is the 
ability to provide a unified environment. Further details regarding the simulators are 
provided in Section 6. 
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Figure 15: Model that drives SimpleScalar and PowerAnalyzer 
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Resource Mapping 
A method more relating resources to applications has been developed.  In the Mapping 
aspect of the application models, references to resource models can be created.  These 
references are used to illustrate that an application component can be realized on the 
referenced hardware platform.  All Primitives need to have mapping models created. 

Configuration models are used to contain simulation information about specific 
mappings of application components to physical resources (Figure 16).  These models 
contain references to all the primitives contained in the current application hierarchy 
and to all resources that could be used to implement these components.  A connection 
is made between the application primitives and the resources to illustrate which 
application primitives were simulated on which resources.  The configuration model 
itself captures the latency, throughput, and power characteristics of the simulation 
through the use of Configuration Model attributes.  It is up to the user to ensure the 
types of data stored are consistent.  All other attributes of configuration models are 
either for informational purposes only or are for future use. 

Desert makes use of the configuration information when exploring the design space.  
It selects the “Select this Resource” attribute of the selected models.  When executing 
the SimpleScalar interpreter, the Configuration model for the current system is 
automatically created.  This eliminates the need to build the configuration models 
manually.  This behavior will be added to other model interpreters in the future. 

HiPerE also extracts the performance estimates for the design from the model for 
mapping. The values stored in the Configuration model are used for this purpose. In 
addition the Configuration model also contains a reference to type State. State model is 
used to capture the operating states of a device (Figure 17). Therefore, for an 
application, it is possible to specify (in addition to the target device) the operating state 
in the model of mapping. The model interpreter for optimization (Chapter 9) uses this 
feature to extract the mapping information for each task. 



 

 

Figure 16: Model for mapping 

 

Figure 17: Task, device, operating state 
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Design Space Exploration 
Conventional practices in embedded system development involve working with single-
point designs.  Retaining a large number of potential solutions in the form of a design 
space and postponing the selection and optimization decisions until the final stages of 
system synthesis is desirable for embedded systems design. 

Design space modeling 
In MILAN we enable representation of design spaces through two different 
mechanisms: 

1. Parametric – Parameter modeling is supported in both application and 
resource models.  In parametric modeling single or multiple configuration parameters 
abstract design variations.  Multiple, physically different designs may be obtained from 
the parameterized design space by supplying appropriate value for the configuration 
parameters. 

2. Explicit Enumeration of Alternatives – Modeling of explicit design alternatives 
is supported in the application models. Design alternatives in essence capture different 
manifestations of a single design. The design space captured with alternatives is a 
combinatorial product of the design alternatives.  Characteristically different designs 
may be obtained by selecting different combinations of alternatives. 

Large design spaces encapsulating many characteristically different solutions can be 
created for an end-to-end system specification.  Determining the best solution for a 
given set of performance requirements and hardware architecture can be a major 
challenge.  A constraint-based design space exploration method has been developed to 
address this challenge. 

Constraint representation 
Typically, in an embedded system design constraints express SWEPT (size, weight, 
energy, power, time) requirements.  Additionally, they may also express relations, 
complex interactions and dependencies between different resources, and application 
components.  Ideally, a correct design must satisfy all the system constraints.  In 
practice, however, not all constraints are considered critical.  Often trade-offs have to 
be made and some constraints have to be relaxed in favor of others.  Constraint 



 

management is a cumbersome task that has been inadequately emphasized in 
embedded systems research.  Most embedded system design practices place very little 
emphasis on constraints and treat them on an ad-hoc basis, which means either testing 
after the implementation is complete, or an over-design with respect to critical 
parameters.  Both of these situations can be avoided by elevating constraints to a 
higher level in the design process.  Two important steps in that direction are a) formal 
representation of constraints; and b) verification/pre-verification of the system design 
with respect to the specified constraints.  MILAN allows for the representation of 
constraints in the application models.  In the Constraint Aspect, a Constraint object may 
be added to the models.  As an attribute of this object, the constraint text may be 
specified using OCL.  Please see the GME user’s manual and the Desert user’s manual 
for more information on constraints and OCL. 

All constraints are added to user models in the Constraint aspect of the application 
models. 

Design space exploration and pruning 
Desert has been developed as a tool for design space exploration and pruning.  
Documentation on the use of Desert is included in the MILAN release.  For further 
information on Desert, please refer to the Desert documentation. 
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Simulation with MILAN 
MILAN simulations fall primarily into four categories: functional simulations, high-
level performance and power estimations, cycle accurate performance simulations, and 
power aware simulations.  Functional simulators are used to verify the correctness of 
the modeled system (typically without regard to the resources used) and its algorithms.  
High-level estimators are used to quickly estimate performance, energy, and power 
characteristics of the modeled system. They use the results provided by cycle accurate 
and power aware simulations of subsystems in calculating the system level 
performance and power estimates.  

Simulators 
Simulators Integrated in MILAN 
This section provides additional details of the various simulators integrated in MILAN, 
how to obtain them, and how to use them in the MILAN environment. We are not 
providing the simulators as part of the release. However, majority of the simulators are 
available freely. The simulators that are available for free are underlined. 

Simulator Note Additional info 

MATLAB 
Simulator 

A functional simulator for codes 
written in MATLAB 
 

http://www.mathworks.com/ 

SimpleScalar 

A cycle-accurate simulator for the 
Alpha, PISA, ARM, and x86 
instruction sets  
 

http://www.simplescalar.com/

JouleTrack 

A web based software energy 
profiling tool for StrongARM  
SA-1100 device  
 

http://www-
mtl.mit.edu/research/anantha/
jouletrack/JouleTrack/ 

PowerAnalyzer 
A power estimator based on 
SimpleScalar processor simulator  
 

http://www.eecs.umich.edu/~
jringenb/power/ 
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SimplePower 

An execution driven, cycle-accurate 
RT level energy estimation tool also 
based on SimpleScalar  
 

http://www.cse.psu.edu/~mdl
/software.htm 

ARMulator 
ARM core emulator distributed as 
part of the ARM Developer Suite  
 

http://www.arm.com/ 

Code Composer 
Studio 

Software and development tool for 
TI DSPs  
 

http://www.ti.com 

SystemC Design and simulation of 
reconfigurable hardware components http://www.systemc.org/ 

ActiveHDL 

FPGA design and simulation 
environment for VHDL, Verilog or 
Mixed VHDL / Verilog and EDIF 
based designs  
 

http://www.aldec.com/Active
HDL/ 

HiPerE 
A high-level performance estimator 
for designs modeled in MILAN  
 

Distributed with the release 

Mambo A cycle-accurate Power-PC simulator. 
Please contact 
milan@isis.vanderbilt.edu for 
contact information. 

EMSEM An energy simulator for ARM-Linux. http://www.ee.princeton.edu/
~tktan/emsim/ 

 

 

 
Model interpretation 
Dynamic model semantics are assigned to the models by model interpreters. They are 
effectively translators that map the design models to executable models that are, in 
turn, executed by the different simulation engines or runtime systems. Model 
interpreters traverse the application and resource models and generate the information 
necessary to drive the individual simulators or runtime kernels. The information takes 
many forms: source code, configuration files, static schedules, etc.  
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Interpreters typically produce native code for both asynchronous and synchronous 
dataflow models as well as hardware models.  This generated glue code ensures that the 
components, whose implementation is provided by the user in the form of the scripts, 
are correctly used. For example, the data type models are used not only to insure that 
dataflow connections are type consistent but also to generate data type definitions in 
the target language enduring consistency. For synchronous dataflow models, a static 
schedule is also generated along with the source code.   

MATLAB  
Application models can be functional verified using MATLAB if MATLAB scripts 
have been provided as implementations.  The tools will produce a MATLAB file that, 
when executed, calls the individual scripts according to either asynchronous or 
synchronous dataflow semantics.  The user may choose several asynchronous 
semantics.  Please see [ 6 ] for more detail. 

Please see the tutorials for more details on utilizing MATLAB for functional 
simulation. 

SimpleScalar 
SimpleScalar is a cycle-accurate simulator for MIPS processor [ 14]. There are two 
components for simulation using SimpleScalar. MILAN needs to provide the source 
code in C and the configuration for SimpleScalar. The “SimpleScalar code generator” 
model interpreter can be used to generate the “C” code required by this simulator. It is 
possible to generate both synchronous and asynchronous implementation of the 
application. While synchronous implementation is an ordered invocation of tasks 
based on their dependencies, the asynchronous implementation uses Active kernel. 

The configuration file for SimpleScalar is generated using the “SimpleScalar Config 
Generator” model interpreter. The generated file can be provided as input to 
SimpleScalar to simulate the target processor. This model interpreter should be 
invoked inside the model if the processor (a Unit type) which is needed to be 
simulated. 

Please see the tutorials for more details on utilizing the SimpleScalar simulator. 

PowerAnalyzer 
PowerAnalyzer is a power estimator based on SimpleScalar [ 17]. The C code needed 
for PowerAnalyzer is also generated using “SimpleScalar code generator” model 
interpreter. The configuration file for PowerAnalyzer is generated using the 
“PowerAnalyzer Config Generator” model interpreter. The generated file can be 
provided as input to PowerAnalyzer to simulate the target processor. This model 
interpreter should be invoked inside the model if the processor (a Unit type) which is 
needed to be simulated. 

Please see the tutorials for more details on utilizing the PowerAnalyzer simulator. 
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SimplePower 
SimplePower is a power estimator based on SimpleScalar [ 16]. The C code needed for 
SimplePower is also generated using “SimpleScalar code generator” model interpreter. 
The configuration file for SimplePower is generated using the “SimplePower Config 
Generator” model interpreter. The generated file can be provided as input to 
SimplePower to simulate the target processor. This model interpreter should be 
invoked inside the model if the processor (a Unit type) which is needed to be 
simulated. This model interpreter generated a .sh file and a .txt file. The .txt file is the 
configuration file for cache and the .sh file invokes SimplePower. 

Please see the tutorials for more details on utilizing the SimplePower simulator. 

JouleTrack 
JouleTrack is a web-based simulator and therefore is different from the other 
simulators integrated into MILAN [ 15]. JouleTrack needs a single C file to perform 
simulation on StrongARM SA-1100 processor. The SimpleScalar code generator 
model interpreter can be used to generate the C code required by JouleTrack. The 
designer needs to specify the operating frequency manually at the website. 

ARMulator 
ARMulator is used to perform functional simulation of a high-level source code in C 
on an ARM core. The ARM code generator model interpreter can be used to generate 
the C code required by ARMulator. 

CodeComposer Studio 
All of these interpreters produce similar artifacts.  For the code generators, header and 
implementation files are generated.  If asynchronous dataflow models are used, the 
Active kernel must be linked into the system.  See the tutorial on the dataflow 
modeling tools for more information on using the kernel.  If synchronous dataflow 
models are used, only a single header and implementation file are generated.  By 
compiling these files along with your component implementations, the simulators can 
be utilized. 

Many of these tools also have configuration interpreters.  These interpreters produce 
simulation specific files that configure the simulators to mimic the modeled hardware 
resources.  The use of the configuration files will vary according to the simulator. 

Please see the tutorials for more details on utilizing the SimpleScalar simulator. 

SystemC 
When utilizing the SystemC interpreters, the hardware application models are used to 
generate SystemC compliant source code.  This code is generated in a directory of the 
user’s choice and must be compiled with the SystemC libraries and headers.  It is the 
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responsibility of the user to compile the resulting source code.  Then, the SystemC 
executable can be used for functional verification of the system. 

Please see the tutorials for more details on utilizing the SystemC simulator. 

ActiveHDL 
When utilizing the VHDL interpreters, the hardware application models are used to 
generate VHDL source code.  This code is generated in a directory of the user’s choice 
and must be compiled with the ActiveHDL tools.  The simulator can then be used for 
functional verification of the modeled system. 

HiPerE 
High-level Performance Estimator (HiPerE) is used to derive rapid high-level 
performance estimates for models in MILAN [ 9]. While using this estimator, the 
application model is used to generate the necessary input file. It is required that the 
designer must have chosen a single design (possibly through the selection of a 
configuration from the DESERT output). Invoke the model interpreter for HiPerE 
(HiPerE Config Generator) at the highest level of the application model. Now HiPerE 
supports evaluation of multiple designs based on duty-cycle specifications. 

Please see the tutorials and Section 7 for more details on utilizing HiPerE. 

EMSIM 
EMSIM can be used to perform energy simulation of a high-level source code in C on 
an ARM core running Liinux.  The EMSIM code generator model interpreter can be 
used to generate the C code required by EMSIM. 

 

Feedback of simulation results 
Another type of interpreter MILAN requires is the feedback interpreter.  These 
interpreters are always simulator-specific as they must deal with the simulator output.  
They are used to interpret simulation results, manipulate the produced data, and insert 
the required performance, power, and energy estimates back into the models in the 
form of performance attributes of the mapping models.  See Figure 1 to see how these 
interpreters fit into the MILAN architecture.   

Currently, only the SimpleScalar feedback interpreter is included in MILAN.  Please 
see the section on the MILAN XTK for more information on feedback interpreters.  
To utilize the interpreter, execute the feedback interpreter from the system root model.  
Two dialog boxes will appear.  The first requires the location of the configuration file 
(this is created by executing the SimpleScalar model interpreter).  The second asks for 
the results of the SimpleScalar simulation.  These results are then examined and stored 
in the model for future use. 
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High-level Performance Estimator 
One of the major challenges in system-level performance estimation is lack of standard 
interface among the component specific simulators which makes it difficult to integrate 
the simulators to simulate a heterogeneous architecture. HiPerE addresses this issue by 
combining component specific performance estimates through interpretive simulation 
to derive system-level performance values. High-level Performance Estimator 
(HiPerE) is a generic tool suitable for MILAN models that provides rapid estimates of 
latency, energy, and area (in case of configurable components) for a given design. 
HiPerE provides the support for hierarchical simulation in MILAN where a designer 
can initially use fast simulators based on models at high abstraction level (e.g. 
instruction level) for rapid design space exploration and later use detailed but slow 
simulators (e.g. cycle-accurate or RT-level) to perform a focused design space 
exploration. HiPerE provides the second level of design space exploration based on 
the designs identified by tools such as DESERT (Section 4). 

 

Figure 18: Overview of HiPerE 

Figure 18 provides an overview of HiperE. Further details can be obtained in [[ 9]. In 
MILAN, various optimizations may be performed before invoking HiPerE. In case an 
optimization is performed, a subset of designs identified by the optimization technique, 



 

are evaluated by HiPerE. A designer can also choose not to perform any optimization 
and apply a brute force technique to evaluate each possible design exploiting the rapid 
estimation capability of HiPerE. 

For performance estimation of a given design, HiPerE needs the mapping (specified 
by the design). Mapping identifies the computing element a task is mapped to and 
provides the operating voltage (or configuration) if the element is the processor (or the 
reconfigurable logic). HiPerE uses the mapping information to identify the appropriate 
component specific estimates (associated in the model Configuration) for latency and 
energy. The designer provides initial values for all the performance parameters. 
Alternatively, the designer can exploit the simulation support in MILAN to generate 
the estimates and automatically save in the MILAN models. In addition to these 
inputs, the application task graph which captures dependency among tasks is also 
provided from the application model. The task graph provides the order of execution 
(using topological sort) for the tasks. For the memory component, the designer 
provides a schedule of power states. Currently, we support change of power state for 
the memory only at the task boundaries. 

The output of HiPerE is system-level energy and latency estimates. Along with these 
estimations, HiPerE also generates an activity report for each component in the target 
architecture. An activity report identifies various voltage settings, configurations, and 
power states for the processor, RL, and the memory component respectively during 
the course of execution. It also provides the duration of idle time (if any) between 
execution of tasks for the processor and the reconfigurable component. 

Component Specific Performance Estimation 
Component specific performance estimation refers to the evaluation of performance 
parameters specific to a task in a particular voltage setting or configuration. There are 
several techniques to estimate component specific performance values such as 
Complexity Analysis, Graph Interpolation, Trace Analysis, and Cycle-accurate and RT-
level Simulation. While complexity analysis does not require a simulator, all the other 
techniques use a simulator based on an architecture model at an appropriate level of 
abstraction. 

Isolated simulation feature of the MILAN framework is used to perform component 
specific simulation [ 8]. This feature refers to the ability to simulate a single application 
task on a specific hardware component. The resulting performance estimates are used 
to automatically update the performance parameters. Once a task has been selected for 
isolated simulation, based on the computing element it is mapped to, MILAN 
generates an appropriate simulator-configuration file and a source file (in a high-level 
language) that implements the task. While modeling the application, the designer 
provides source and destination scripts for each task that generate input for the task 
and consume output from the task. These two scripts are used by MILAN during the 
generation of a program that implements the task. For example, if FFT is a task 
mapped onto a MIPS processor and SimpleScalar is the chosen simulator, MILAN 
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generates a C code implementing FFT and a SimpleScalar configuration file. After the 
simulation is performed, the performance estimate is provided as a feedback to 
MILAN which is used to update the initial performance estimates provided by the 
designer. 

Before moving to system-level performance estimation, we derive composite 
performance estimate for each task. Composite performance estimate includes all the 
set-up cost for task execution including the cost of execution. This estimate includes 
cost for execution, data access, memory activation, and reconfiguration or voltage 
variation. For example, assume that a task T is mapped onto the reconfigurable logic  
with configuration Cj and Ck be the previous configuration. If we assume that no 
memory power state transition occurred, the composite latency performance can be 
evaluated as a summation of the following: 

• reconfiguration cost with source configuration Ck and destination 
configuration Cj.  

• data read cost from the source memory 

• execution cost for task T on the reconfigurable component in configuration Cj 

• data write cost to the destination memory 

Similar composite estimate is derived for energy dissipation of task T. In the following 
subsection, the component specific performance estimate of a task refers to the 
composite performance estimate for that task. 

System-Level Performance Estimation 
We employ an interpretive simulation technique to evaluate system-level energy and 
latency and to generate the activity report. Essentially, HiPerE tries to emulate the 
system as though the application is being executed on the target hardware. As 
discussed in the previous section the performance of each task of the application is 
already encapsulated as performance estimates. So during system-level estimation the 
following execution details are considered while evaluating system-wide performance: 

• effect of parallel execution of tasks: dependency between the tasks as 
obtained from the application model and mapping information as obtained 
from the model for mapping are analyzed to create a individual processor 
specific list of tasks. HiPerE assumes best case for parallel execution and no pre-emption 

• idle period for processors: due to task dependencies, idle durations gets 
introduced between task executions. While this does not affect over all time, 
idle durations contribute to energy dissipation 
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• memory storage cost: memory access cost is already encapsulated into the 
components specific cost. However, memory components dissipate a 
significant energy to store data. HiPerE evaluates energy dissipation for each 
memory component using over-all execution time and average power 
dissipation 

 

Figure 19: A Sample output from HiPerE 

Activity Report 
The activity report is generated based on the processed task graph with the mapping 
information and the time of completion for each task. The designer can exploit the 
activity report to identify bottlenecks and optimization opportunities. One possible 
optimization is to take advantage of the idle time and use a lower DVS setting to 
execute a task slowly in order to save energy. Figure 19 shows a sample output from 
HiPerE. Due to space constraints the first two tables are truncated. User can generate 
the complete table by invoking HiPerE for the SignalFlow demo. 
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There are two sets of tables in the activity report. The first set of tables capture the 
details of task execution for each processing element. Each table has one row for each 
task executed on the processor. The tasks are ordered based on their dependency. 
Each row provides the name of the task, the operating state of the device while 
executing the task, total time consumed and energy dissipated, time and energy for 
state transition (if any), time and energy for the idle period (if any) before execution of 
the task, time and energy for just task execution, and finally, the start time and end time 
for the task. These tables summarize the activity on a device. 

The second set of tables provides a list of idle periods, length of idle period, and start 
and end time of the idle period. This information can be used to identify optimization 
possibility that take advantage of the idle time available to reduce energy without 
affecting over-all latency. 

HiPerE is implemented using Java. HiPerE is also integrated into the MILAN 
framework. Therefore, it is possible to automatically generate input for HiPerE and 
execute it to obtain the performance estimates.  

Generating input for HiPerE 
HiPerE input is generated using “HiPerE Config Generator” model interpreter. This 
model interpreter is invoked at the highest level of the application model. It is 
necessary that all the alternatives are resolved (by selecting ONE choice). You will find 
a file “hipere_input_format.txt” that explains the general structure of the HiPerE input 
configuration file. It is only required if you wish to provide your own input and use 
HiPerE as a stand-alone performance estimator. 

Using HiPerE 
To run HiPerE, you need the java run time environment (jre) installed on your 
machine. To invoke HiPerE go to the directory where the HiPerE class files are 
installed (typically) and type the following command: 

 java –cp classes hipere.HiPerE2_0  (with appropriate options) 

The help message can be retrieved using –help option. 
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Format: HiPerE2_0 -config <config file> -output <outputfile> 
             -visual <on|off> -help 
             -TUnit <1|2|3> //1-micro sec, 2-mili sec, 3-second 
             -EUnit <1|2|3> //1-micro joule, 2-mili joule, 3-joule

-Concise <on|off>
ere 

tion Explanation 

nfig input configuration file generated from the model 
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output output file to store HiPerE output (in absence it uses system output) 

visual “off” if you do not want a HTML output; default is “on” 

TUnit unit for time values; default micro Sec 

EUnit unit for energy values; default mili Joule 

Concise “yes” if you want a shorter version of the output 

 

In addition, you can use the jar file provided (as the binary release) to invoke HiPerE. 
Locate the file hiperev2.jar and use the following command: 

 java –jar HiPerE2.jar (with appropriate options) 

The config file required by HiPerE is generated by the “HiPerE Config Generator” 
model interpreter. Please see the tutorials for more details on utilizing HiPerE. 

Installing Java 

There is no special requirement for java installation for HiPerE. You can follow the 
normal procedure as available at http://java.sun.com/. Java 2 Platform, Standard 
Edition is good for HiPerE. 

Note: In order to use the Design Browser, use java version 1.4.1 and above. (We have 
tested the design browser using java version 1.4.1_02-b06) 

Performance Estimation based on Duty-Cycle 
HiPerE is enhanced to support performance estimation based on duty cycle 
specification. Duty-cycle in the context of application execution refers to the 
proportion of time during which a component, device, or system is operated. Support 
for duty-cycle includes being able to estimate performance for a length of time or 
number of execution instances while taking into account, start up and shut down cost, 
idle energy dissipation, and rate of input. 

In addition, a duty-cycle aware estimator needs to support applications with multi-rate 
execution. An application modeled as a set of tasks is said to be multi-rate if different 
tasks have different rate of execution. A multi-rate application needs to adapt based on 
the input or environment condition. Hence, we have enhanced HiPerE to estimate 
performance of different execution instances based on rate of execution of individual 
tasks. 

The basic technique to invoke HiPerE remains the same. There have been some 
additional input options (to specify duty-cycle) that can be specified while executing 
HiPerE. We discuss the additional options below. 
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Format: HiPerE2_0 -config <config file>
             -output <outputfile> 
             -visual <on|off> -help 
             -TUnit <1|2|3> //1-micro sec, 2-mili sec, 3-second 
             -EUnit <1|2|3> //1-micro joule, 2-mili joule, 3-joule
             -Concise <on|off> 
             -DutyCycle <0|1> // 0-no duty cycle otherwise 1 
             -Times <integer>  
             -Duration <integer> 
             -VarRate <task name> <integer> 
             -InpRate <float> 
             -EOption <off|idle> 
             -EMode <1|2> 
             -Stream d[i/e]NUM 
ere the additional parameters refer to, 

tion Explanation 

tyCycle whether to process for duty cycle or not 

mes how many times to simulate (precedence over duration) 

ration how long to simulate 

rRate for a task what is the rate, <task> <rate> 

pRate rate of input (Hz) 

ption if device is idle, then let idle or switch off 

ode follow EOption (1) or swich off if enough slack (2) 

ream if calling HiPerE in series d i des_id, d des_id, …, d e des_id 

sign Browser for HiPerE 
e MILAN design browser is a graphical front-end to HiPerE. The input to the 
wser is the set of designs identified in step one. Figure 20 shows a snapshot of the 

sign browser. Use the XML file (*_back.xml) created by DESERT as input. Among 
 features supported are display of mapping information of the designs identified by 
 optimization heuristics, invocation of HiPerE on one or more designs, duty-cycle 

rameter specification, and visual comparison of the designs based on the estimates 
latency and energy dissipation. 

ing the design browser, the designer can perform trade-off analysis using the 
imation capabilities of HiPerE. Designer can also evaluate the performance impact 
allowing the processing components to idle or shutting the components down when 
t used. HiPerE also produces an activity report for the entire duration of simulation 
 a duty-cycle based scenario which can be viewed and analyzed through the design 
wser. 

 39



 

The design browser needs two configuration files, the output file of DESERT, and a 
dtd file. In order to generate the configuration files, use the model interpreter for 
HiPerE. Choose the “For the design browser” option. It will create two files; 
“value.txt” and “template.txt”. These two file and the output of DESERT 
“*_back.xml: should be moved to a single directory along with a dtd file 
DesertIfaceBack.dtd. The dtd file is required by the XML parser used by the design 
browser. template.txt provides a template to the design browser for creating input for 
HiPerE. value.txt provides the estimates for different mappings modeled in MILAN. 

Now you need to start the design browser. The design browser is written in Jython and 
internally it invokes HiPerE. However, we have converted the Jython code into java 
files and created an executable jar file. You will find the jar file in the MILAN directory 
by the name JyMILAN.jar. Invoke it using “java –jar JyMILAN.jar”. Make sure that 
the file “DesertIfaceBack.dtd” is along with the DESERT output “*_back.xml”. You 
will see a window popup. Select the appropriate DESERT output file. The browser 
will extract the designs and display (Figure 20). 

Note: If you are modifying HiPerE or the design browser and want to create your 
own jar file, after creating the jar file from the jython scripts you need to manually add 
the XML package and HiPerE2.jar to create the working jar for the design browser. 

 

Figure 20: Design browser for HiPerE 
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The browser has two display areas. The upper half shows the designs and also the 
performance estimates (last three columns) when HiPerE is invoked. The lower half 
shows the results. The browser supports several features. You can select the designs 
and see the details through Action->Mapping. Multiple designs can be selected by 
the usual shift+ mouse drag. HiPerE can be invoked for the selected design using 
Action->HiPerE. Once HiPerE is invoked you will see a window for options using 
which various Duty Cycle parameters can be specified (Figure 21). Using the design 
browser, the designs can be evaluated for different duty-cycle parameter values. The 
result from HiPerE is displayed along with the designs (). If you select one design then 
the activity report appears in the lower half of the design browser. If you select 
multiple designs and then invoke HiPerE, an HTML file with links to activity report 
for each design is created. The links can be visited individually to access the activity 
report for individual design. Action->Main HTML can be used as the back button. 
The design browser also allows sorting of the designs based on performance values for 
easy comparison. 

 

Figure 21: Input to the design browser 

Note: At this point, we do not support estimation of area as a performance metric. 
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Chapter Chapter 

8 
Extensibility Toolkit (XTK) 
The Extensibility Toolkit allows end users to easily extend the capabilities of MILAN.  
This toolkit is released as a beta with MILAN version 1.0.  Planned additions include 
GME support for an updated high level interpreter interface and the ability to 
automatically customize this interface from metamodels.   Currently, the XTK allows 
for the easy addition of model interpreters based on the application modeling paradigm 
and the generation of feedback interpreters from high level models.  The first full 
release of the XTK will be with MILAN v.1.1. 

 
Feedback Interpreter Generation 
The feedback interpreter generation is composed of a GME modeling language used 
to represent feedback algorithms and a GME model interpreter used to generate 
MILAN model interpreters from the algorithm models.  This section of the manual 
will explain the feedback metamodel and give some specific examples of feedback 
interpreters.  This framework has been used to generate the SimpleScalar feedback 
interpreter that is distributed with MILAN. 

All feedback interpreters make use of the configuration files that can be generated 
from MILAN code generators.  These feedback files inform the feedback interpreter 
in which Configuration models to store the results of the simulation.  The feedback 
interpreters read in the results of the simulator, process the raw data, and store the 
results in back in the Configuraion models (from the MILAN application model).  
Feedback interpreters use as input the text generated by simulation engines.  The 
feedback generation process assumes this information is available in a text file. 

Figure 22 is the Feedback Generation metamodel.  A feedback interpreter is composed 
of Operands, Operators, and Results and their relations.  Each of these types is explained in 
detail below. 

Operands 
Operands are broken down into IntegerConstants, FloatConstants, Integer Variables, and 
FloatVariables.  IntegerConstants and FloatConstants have an attribute that allows the user to 
define the value of the constant.  IntegerConstants and FloatConstants are used to define 
const data members in the resulting interpreter.  Thus, their values cannot change. 



 

IntegerVariables and Float Variables are used to define variables to be populated by either 
the results of a simulation engine or by intermediate calculations in the feedback 
interpreter.  Their value can change during the course of interpretation.  The attribute 
ketPhrase is used to define the keyword directly preceding the value of interest in the 
output of the simulator.  Other attributes allow the user to specify the separate used in 
the output of the simulator (e.g. which character is used to separate the keyPhrase from 
the value), the number of tokens (i.e. character strings) to skip between the keyPrase and 
the value, and the number of lines to skip between the keyPrase and the value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: Feedback generation metamodel 

 
Operators 
Operators are used to perform operations on the constants and variables in the 
feedback algorithm.  The outputs of Operators are either variables or Results.  Addition 
and Multiplication perform their mathematical operations on the inputs (any number of 
inputs).  Subtraction and Division perform their mathematical operators on the two 
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inputs.  UserSupplied allows the modeler to extend the functionality of the feedback 
interpreter by supplying custom C++ code.  It is up to the user to ensure any 
UserSupplied function has the correct number of arguments, and in the correct order.  
The user must add the code with this functionality to the workspace of the generated 
feedback interpreter. 

The position of the inputs on the screen determines their role in the operation.  
Operands are ordered according to decreasing Y and X coordinates in the model.  
Assume A and B are operands and A is the higher ordered operand (e.g. higher in the 
Y coordinate in model).  Division between A and B would be A / B.  Subtraction 
between A and B would be A – B. 

Due to the positioning requirement of some feedback interpreters, multiple operands 
of the same name are allowed.  In this case, all instances of the operand with the same 
name refer to the same operand in the resulting interpreter.  Values of variables are not 
reset due to multiple references to the same name operand. 

Results 
Results are used to identify those values that need to be recorded in the MILAN 
application models.   These are the results of the feedback algorithm.  Results can 
currently be of three types: Latency, Energy, and Throughput.  Each of these will cause the 
value passed to it to be recorded in the MILAN application models. 

Examples 
Figure 23 shows the feedback interpreter specification for SimpleScalar.  In this 
example, the variable cycles retrieves the value identified by the term simcycles (specified as 
an attribute to cycles) in the SimpleScalar output.  This value is then recorded as the 
latency in the configuration of the MILAN application model. 

 

Figure 23: SimpleScalar feedback interpreter model 

For a more complex example, please see Figure 24.  This illustrates calculating the  
expression (user(A, B) x constA) / constB and recording this value as the latency.  A and 
B are variables extracted from the simulation output.  ConstA and ConstB are 
constants specified by the user.  User is a user supplied function. 
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Figure 24: Complex feedback model 

Usage 
After building the feedback algorithm model, the user will run the XTK interpreter.  
This will generate a C++ workspace for the feedback interpreter.  The user must then 
add any UserSpecified code to the C++ workspace.  Upon compiling, the feedback 
interpreter is generated and registered for use with the MILAN paradigm. 

Feedback Interpreter Usage 
When a feedback interpreter is invoked, a dialog box prompts the user for two files.  
The first is the location of the configuration file created by the simulator configuration 
interpreter.  The other is the location of the simulator output.  It is up to the user to 
ensure the inputs to the feedback interpreter are consistent. 

 

The Graph Library 
Many of the MILAN application interpreters perform similar operations (e.g. flattening 
the application hierarchy) before specific generation activities.  The graph library 
consists of an object network and a “builder” set of operations.  This object network 
can be constructed using the builder and then simulator specific generation tasks can 
be performed on the object network.   In effect, this allows for a common code base 
to be utilized by many different interpreters.  This section will describe the interfaces to 
the graph library and how to utilize them to create new MILAN interpreters. 

Class Structure and Interface 
Figure 25 illustrates the class diagram for the Graph library.  A single container is used 
as the access point to the object network.  The container aggregates Node objects – 
each node corresponds to a leaf node in the flattened data flow model.  Nodes contain 
ports, which are used to connect to other ports – effectively representing the data flow 
connections.  Lastly Blocks are a special type of Node.  They are used to represent sub-
graphs (e.g. when an asynchronous graph is contained in a synchronous graph). 
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Figure 25: Graph library class diagram 

 

The files contained in the XTK/GraphLib/Graph directory implement the graph 
library.  Please see these files for further details on the interface.  A list of the more 
important data members and functions are supplied below.  This is not a complete list 
of functions for the classes.  Please see the source code for other functionality.  For 
example, functions used to construct the object network are not listed here. 

Container 

Data members: 
DFType 

specifies the type of the container/graph 
 

Member functions: 
DFType GetType()   

returns the type of the graph 
Clist *GetNodes()    

returns the nodes contained in the graph 
CNode* GetNode(int n)  

return a specific node 
int NumberOfNodes()  

get the number of nodes in the graph 
int NumberOfConnections()  

get the number of connections in the graph 
void Clean()    

remove unused nodes/ports in the graph 
void Renumber()    

renumber the nodes 
void CountConnections()   

find the number of dataflow connections in the graph 
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void RenumberConnections() 
renumber the dataflow connections in the graph 

int NumberOfResources()  
return the number of hardware resources used in the graph 

 

Node 

Data members: 
CString name   

name of the node 
CString c_spec   

location of the c file 
CString m_spec   

location of the matlab file 
CString j_spec   

location of the java file 
CString sysc_spec  

location of the sysc file 
CString c_func   
 c function name 
CString m_func   

matlab function name 
CString j_func   

java function name 
CString sysc_func  

sysc function name 
CBuilderObject *model  

ptr to the GME model 
long NodeID   

unique node ID 
CBuilderObject *resource  

ptr to the GME resource model 
int resource_number  

unique resource ID 
 
Member functions: 
CList<CPort*, CPort*> *GetInPorts() 
 return a list of input ports 
CList<CPort*, CPort*> *GetOutPorts()  

return a list of output ports 
void GetAllPorts(CList<CPort*, CPort*> *l) 

return a list of all ports 
int NumberOfOutPorts() 
 return the number of output ports 
int NumberOfInPorts() 
 return the number of input ports 
const CBuilderObject *GetModel() 
 return a pointer to the GME model 
long GetID() 
 return the unique node ID 
CString &GetName()  
 return the node name 

 47



 

CBuilderObject *GetResource() 
 return a pointer to the GME resource model 
int GetResourceNumber() 
 return the resource id number 
 
Block  
 
NB:  The Block class is derived from the Node class. 
 
Data members: 
CList<CNode*, CNode*> *Nodes 
 Nodes contained in the block 
 
Member functions: 
CList<CNode*, CNode*> *GetNodes() 
 return the list of contained nodes 
CNode* GetNode(int n) 
 return the specified node pointer 
int NumberOfNodes() 
 return the number of nodes contained 
 
Port 
 
Data members: 
long id 
 unique port id 
CList<CPort*,CPort*> *OutConns 
 list of ports this is connected to as a src 
CList<CPort*,CPort*> *InConns 

list of ports this is connected to as a dst 
int index 
 port index number 
CList<long,long> *connID 
 list of connections this port participates in 
PortDir port_direction 
 inport or outport 
bool array 
 is this ports data type an array (SYNC only) 
bool pointer 
 is this ports data type a pointer (SYNC only) 
bool array_of_pointers 
 is this ports data type an array of pointers (SYNC only) 
int array_size 
 if this ports data type is an array, what size (SYNC only) 
 
Member functions: 
PortDir GetPortDir(void) 
 return the port direction 
long GetID() 
 return the port id 
CList<long,long> *GetConnID() 
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 return the connection ids this port plays a part in 
CList<CPort*,CPort*> *GetOutConnections() 
 return the ports this port connects to as a src 
CList<CPort*,CPort*> *GetInConnections() 
 return the ports this port connects to as a dst 
int GetTokens() 

return the number of data tokens produced consumed (SYNC 
only) 

int NumberOfInConnections() 
 the number of input connections to this port 
int NumberOfOutConnections() 
 the number of output connections from this port 
int GetIndex() 
 return the port index  
bool GetArray() 
 return whether the data type is an array  
bool GetPointer() 

return whether the data type is a pointer  
bool GetArrayOfPointers()  

return whether the data type is an array of pointers 
int GetArraySize()  

return whether the array size 
 
 
Files 
In the XTK/GraphLib directory, there are several files needed.   

The  componet.cpp and component.h files are generic interpreter sources that make 
use of the graph library.  They are commented with where to add your simulator 
specific generation codes.  Please see the SimpleScalar interpreter source code for a 
concrete example of using the graph library.   

XTK/GraphLib/Graph contains the graph library source code.  This needs to be 
compiled into a library that can be included in your interpreters. 

XTK/GraphLib/GraphBuilder contains the graph builder code.  These source files 
need to be included in you interpreter to utilize the graph library. 

XTK/GraphLib/configuration contains the configuration generation code.  This code 
is commonly used in interpreters to allow for automatic feedback from the target 
simulator output. 

Example interpreters that utilize the graph library include the MATLAB, SimpleScalar, 
PowerAnalyzer, Armulator, and EMSIM interpreters.  Please see the available MILAN 
source code for these examples. 

Please note the SimpleScalar interpreter has been developed using the BONX toolkit 
supplied with GME.   The previous implementation of the interpreter is available in 
the source release of GME, if desired. 
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Chapter 

9 
 

Optimal Mapping of Tasks onto Adaptive 
Computing Systems 
Synchronous data flow (SDF) graph is a well-known application model suitable 
for a large class of signal and image processing applications. A simplified version 
of SDF is a linear data flow which models an application as an ordered set of tasks 
where each task can have at most one input and one output. Due to a simple and 
regular structure, linear data flow is well suited for formal algorithmic analysis and 
optimization [ 18]. Several applications of interest to military and general 
consumers such as automatic target recognition, automated object tracking, 
MPEG decoder/encoder, software defined radio, etc. can be modeled as a linear 
data flow graph.  
 
Reconfigurable devices and processors supporting dynamic voltage and frequency 
scaling are some of the examples of adaptive computing systems (ACS). Such 
systems are ideal for low-power and high-performance implementation of 
embedded applications. While mapping a linear array of tasks onto an ACS, 
various optimization problems are encountered. In this chapter we discuss various 
support provided in MILAN to model and solve such optimization problems. 
 
General Definition of the Optimization Problem 
We consider the mapping of a linear array of tasks onto an ACS. An ACS is associated 
with several operating states. A mapping in our case refers to identification of a set of 
operating states such that each task is associated with an operating state (Figure 26). 
Hence, the ACS may need to modify its operating state between the executions of two 
consecutive tasks. Each operating state is associated with certain amount of latency and 
energy cost for each task that can be executed in the state. State transition cost includes 
latency and energy dissipation. Such a model poses several design challenges such as 
optimization of a single performance metric (e.g. latency or energy) and optimization 
of one metric while meeting a pre-specified requirement of another metric 
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Figure 26: Mapping of a linear array of tasks onto an ACS 

 
We define a general-purpose model for different optimization problems associated 
with ACS. In our model, each component within an ACS is associated with a 
number of operating states. In case of a single device, an operating state can be a 
configuration (if device is an FPGA) or an operating voltage (if device is a 
processor supporting DVS). In case of multiple devices, we define the system 
states as a set of unique combinations of different operating states of individual 
components. For example, if an ACS has an FPGA and a processor each with 3 
operating states then there are 9 different system-states. For ease of analysis, while 
mapping onto a single device, the set of operating states are the set of system 
states. 
 
Each application task is associated with a performance (energy and latency) 
estimate for each system-state. Further, a transition between different system-
states incurs certain performance cost. We assume that system-state transitions 
can occur only between task executions. The latency (energy) cost of transition 
between system states is the max (sum) of the costs of transitions between 
individual operating states. 
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Figure 27: System states and operating states 

Based on the above, for example, minimization of energy while meeting a given 
latency requirement can be defined as: 
    Let T be the set of the tasks and S be the set of all possible system states. Given 
a set of tasks, T1 through Tn (Ti∈T) to be executed in linear order (Ti+1 executes 
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after execution of Ti,1≤i<n), find an optimal sequence of system-states Π( 
=S1,S2,…,Sn) (Si∈S) which minimizes energy or latency or minimizes energy while 
meeting a given latency constraint (upper-bound) Γc. 
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where Etotal and Γtotal are the overall energy dissipation and latency of the system, 
Eij and Γij are energy dissipated and time taken for execution by task Ti in system-
state Sj, and qkj and rkj are the energy dissipated and time taken during transition 
from system-state Sk to system-state Sj. Similarly, other optimization problems can 
be defined. One example of such optimization problem can be minimizing just 
that latency or energy. 
 
In MILAN, we have provided support for solving the optimization problems 
described above. We have classified the optimization problems in two categories; 
single-metric optimization problem and multi-metric optimization problems. We 
have developed a dynamic programming based solution to solve the single-metric 
optimization problem. For the multi-metric optimization problems we make use 
of the tools DESERT and HiPerE. In this chapter, we will mainly focus on the 
solution for single-metric optimization problem. The last section of this chapter 
will discuss the special modeling necessary to solve the multi-metric optimization 
problem. 
 
 

Solving single-metric optimization problems 
Linear Array Interpreter can identify an optimal mapping of a linear array of tasks 
onto a device or a group of devices, so the execution cost – which can be either 
latency or energy consumption – is minimal. 
  
Let’s look closer at the application model. It consists of a linear (ordered) array of 
tasks where a task can start executing only after the previous one has finished. 
Each task is associated with a set of execution costs. An execution cost refers to 
latency or energy dissipation for a task when it is mapped onto a device operating 
in a particular system state. We assume that every task processes output from the 
previous one, so no two tasks can be executed simultaneously. System state 
transitions such as reconfiguration of an FPGA or voltage scaling of a processor 
may only occur between two successive task executions. Such transitions are also 
associated with latency and energy dissipation. We define such costs as transition 
costs. Transition cost may also include memory access, data transfer, and other 
costs. In short, a transition cost is cost of “everything” between the executions of 
two adjacent tasks. 
 
Each task can have several options of implementation based on what devices it 
can be mapped to and what operating states (of the device) it can be executed in. 
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Each option has a cost of execution and is associated with, or mapped onto, a 
device. If two adjacent tasks are implemented using the same device operating in 
the same state, then our solution assumes that the reconfiguration cost between 
these tasks is 0. 
 
Target hardware platforms 
Our solution can be applied to a variety of hardware platforms. Some examples 
are: 

• The most obvious one is an FPGA, which reconfigures in between tasks. 
Here, a reconfiguration cost is the cost of modifying the configuration of 
the FPGA for the mapped task. 

• One can have more than one FPGA with communication channels 
between the devices. It may be useful when there are several devices with 
different capabilities. For instance, one device can execute certain task 
more efficiently than another device. In this case, the reconfiguration cost 
is the sum of costs of reconfiguration of individual devices plus the cost 
communication. 

• Processors supporting dynamic frequency and voltage scaling. Such 
voltage or frequency transitions also involve latency and energy 
dissipation. 

 
It is also possible to optimize devices consisting of a combination of 
reconfigurable and non-reconfigurable hardware modules using our solution. The 
non-reconfigurable devices may also contribute towards reconfiguration costs 
since data transfer, memory access, etc. may occur in between executions of two 
tasks no matter what hardware platforms have been chosen to execute them. 
 
What information the user must provide: 
The user has to specify execution cost of every option for each task and the state 
transition cost for each possible pair of operating states for each device. As 
described earlier, an option for a task is an implementation of a task on a device in 
an operating state. 
 
All the costs (latency or energy) must be equal to or more than 0. One can set a 
cost to “–1” in order to disable the corresponding task option or state transition. 
 
Mapping of a linear array of tasks onto a single device 
A single device can be either a reconfigurable device like an FPGA or a processor 
supporting dynamic voltage/frequency scaling. Let’s use an FPGA as an example 
of a single device here. Various operating states are the different configurations 
for the FPGA. The state transition cost is the cost of reconfiguration of the 
FPGA to the appropriate configuration. Here, reconfiguration costs can also 
include some additional costs like, for example, memory access costs (if the FPGA 
needs to store data outside of it during reconfiguration). We are mapping a linear 
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array of tasks onto such a device. Various options for the tasks refer to mapping 
of the tasks onto different configurations. 
 
Mapping of a linear array of tasks onto multiple devices 
The above example can be easily expanded to a multi-device one. In this case, the 
Linear Array Interpreter does some extra job in order to convert a multi-device 
problem into a form understood by the interpreter’s dynamic programming solver. In 
this case, an option of a task is a combination of options of individual devices. In other 
words, if one has three devices in an application, then a configuration will be a three-
tuple (Device 1: Option 1, Device 2: Option 3, Device 3: Option 2) (Figure 27). 
The number of options is the product of numbers of options of individual devices of 
the application. For some options, there can be cases when the task can be executed by 
more than one device. In such a case, a device that has the smallest execution cost for 
the task is selected. 

Our application model allows parallel reconfigurations. The resulting reconfiguration 
cost is an aggregation of the individual device reconfiguration costs. If the optimized 
metric is latency, then the aggregation rule takes the maximum of the individual costs. 
If it is energy, then the aggregation rule takes the sum of the individual costs. This 
approach is summarized on Figure 27. 

Modeling of the Application, Resource, and Mapping 
MILAN metamodel is used to configure GME 3 to facilitate modeling of the 
application and the target ACS. A detailed description of how one can create or 
modify such an application model can be found in the tutorials. In this chapter, 
we’ll briefly discuss the representation of applications of this type in GME 3. 
 
GME 3 stores information about the modeled application in a tree-like structure 
that can be found on the right side in the figure below. 
 
Folder Dataflow contains folders describing tasks. Folder ComputationalResources 
contains folders describing devices and their possible configurations. Some of the 
data is not visible from the tree browser. It includes properties of folders, 
connections, etc. 
 
Each task folder contains individual folders for each possible option of 
implementation. The execution cost of a task by an option is stored as one of the 
properties of the folder corresponding to the option. Each option folder contains 
a link to a configuration object located inside the corresponding device folder 
located in the folder ComputationalResources. 
Dataflow is indicated by directed connections that can be seen on the left side of 
the figure above. 
Reconfiguration information is stored in the following way. (See the figure below.) 
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Figure 28: GME 3 with a linear task of arrays application 

 
Figure 29: Reconfiguration information in GME 3 
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On the figure above you can see a group of configuration objects connected by 
arrows indicating possible reconfigurations. The configuration objects do not 
carry any information whatsoever and serve just as identifiers of configurations. 
Each arrow indicating a possible reconfiguration a property containing the 
reconfiguration’s cost. Each task is associated with all possible mappings in the 
Mapping aspect. Each mapping corresponds to an association of the task with a 
device and an operating state (figure below). 
 

 
Figure 30: Mapping of Task, Device, and State 

This representation has components that are disregarded by the interpreter. These 
components are present because of legacy/compatibility issues. 
 
 

 
Figure 31: Input options for the MI 
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While optimizing for a single metric, the model interpreter provides a choice 
between energy and latency (Figure 31). Internally, the technique for optimizing 
for latency and energy is same. However, in case of multiple target machines, we 
allow parallel state transitions.  
 

Solving Multi-metric Optimization Problems 
The dynamic programming based solution does not solve multi-metric 
optimization problems. Therefore, we make use of the basic design flow in 
MILAN and a suitable modeling technique to specify and solve the multi-metric 
optimization problems. 
 
MILAN already integrates DESERT, an ordered binary decision diagram based 
design space exploration tool. Given a design space and performance constraints, 
DESERT explores the design space and identifies the designs that meet the 
performance constraints. However, using DESERT, it is not possible to directly 
model state transition costs. Therefore, we have developed a technique, which 
combines application modeling and constraint specification to model the multi-
metric optimization problems for ACS. We introduce a pseudo task between each 
pair of tasks to model state transitions. (See Figure 32 for an illustration.) 
 

 
Figure 32: Task and reconfiguration modules in a model for processing by DESERT 

Each choice of mapping for the pseudo task uniquely corresponds to a possible 
system-state transition. (see Figure 33). However, because we introduced pseudo 
tasks for state transitions, we need to ensure that the choice for state transition 
between two consecutive tasks reflect the choice of operating states for the tasks. 
In order to do so, we use the facility of specifying compositional constraints in 
MILAN. 
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Figure 33: Modeling of reconfiguration options 

Based on the application modeling, in absence of any constraints, a combination of any 
choice for each SyncAlternative (tasks and reconfigurations) is a valid design. Let us 
assume that each task (Task1, Task2, Task3) shown in Figure 32 can be executed in 
configurations Config1, Config2, and Config3. Let TaskIJ represent the mapping of 
TaskI on ConfigJ. In such scenario, there is no guarantee that if Config1 (Task11) is 
chosen for Task1 and Config2 (Task22) is chosen for Task2, then only reconfiguration 
from Config1 to Config2 (Reconf1_2) should be chosen for Reconfiguration1 (Figure 
33). Therefore, we need a set of constraints to ensure that only valid designs are 
evaluated for performance constraints (explained later). A constraint (for the problem 
discussed above) is: 
 
(self.children("Task1").implementedBy()=self.children("Task1").chi
ldren("Task11") and 
self.children("Task2").implementedBy()=self.children("Task2").chil
dren("Task22") ) implies 
self.children("Reconfiguration1").implementedBy()=self.children("R
econfiguration1").children("Reconf1_2")  
 
In similar fashion, a set of constraints are created to ensure valid combination of 
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possible configuration for the tasks and the reconfiguration cost and introduced into 
the model. 
 
If a designer wants to ensure that certain task should not be executed in certain 
configuration it can be specified as 
 
not(self.children("Task1").implementedBy() =  
                     self.children("Task1").children("Task11")) 
 
Similarly, to ensure that a task should be executed only on one configuration you can 
write a constraint as 
 
self.children("Task1").implementedBy() = 
                      self.children("Task1").children("Task11") 
 
In order to use DESERT for design space exploration, along with the model, it is 
required to specify performance constraints. DESERT applies the performance 
constraints and eliminates the designs that do not meet the constraints. At the early 
stages of DSE it is not possible (without extensive pen-and-paper calculation) to 
identify a set of performance constraints that will reduce the design space to a 
reasonable size that can be evaluated by HiPerE. Therefore, one can perform several 
experiments with different values and arrive at reasonable values for each type of 
constraint. The latency and energy requirement of the application is specified as latency 
and energy constraint as follows: 
 

LatConstraint =  self.latency() < a latency value 

EnergyConstraint = self.energy() < an energy value 

 

Following modeling and constraint specification, DESERT is invoked to identify the 
design(s) that meet(s) the constraints. DESERT does not identify a single optimal 
design. Instead, based on the constraints specified, DESERT identifies a set of designs 
that meet the constraints. Therefore, we use High-level Performance Estimator 
(HiPerE) to evaluate the pruned design space. HiPerE evaluates the designs identified 
by DESERT based on their performance estimate. Refer to Section 7 for more details 
regarding HiPerE. 
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Modeling and Performance Estimation of FPGAs 
MILAN provides a preliminary support for modeling and performance estimation of 
FPGA based designs. In this chapter, we will provide some details of our approach 
and an overview of the modeling and estimation capability. We will also discuss some 
additional capabilities that will be added in the next releases of MILAN. 

Challenges in FPGA Modeling and Performance Analysis 
Our focus is on FPGA based designs for typical signal processing algorithms that 
contain loops and are data oblivious. Matrix multiply, motion estimation, etc. are some 
such examples. There are numerous ways to map an algorithm onto an FPGA as 
opposed to mapping onto a traditional processor such as a RISC processor or a DSP, 
for which the architecture and the components such as ALU, data path, memory, etc. 
are well defined. For FPGAs, the basic element is the lookup table (LUT), which is too 
low-level an entity to be considered for high-level modeling. Therefore we use domain 
specific modeling technique to facilitate high-level modeling of FPGAs. 

Domain Specific Modeling 
Domain-specific modeling technique facilitates high-level energy modeling for a 
specific domain. The overview of domain specific modeling approach is provided in 
Figure 34. A domain corresponds to a family of architectures and algorithms that 
implements a given kernel. For example, a set of algorithms implementing matrix 
multiplication on a linear array is a domain. Detailed knowledge of the domain is 
exploited to identify the architecture parameters for the analysis of the energy 
dissipation of the resulting designs in the domain. By restricting our modeling to a 
specific domain, we reduce the number of architecture parameters and their ranges, 
thereby significantly reducing the design space. A limited number of architecture 
parameters also facilitate development of power functions that estimate the power 
dissipated by each component (a building block of a design). For a specific design, the 
component specific power functions, parameter values associated with the design, and 
the cycle specific power state of each component are combined to specify a system-
wide energy function. Additional details about domain specific modeling can be found 
in [ 20]. 



 

 

Figure 34: Domain specific modeling (high-level concept) 

Modeling of FPGA in MILAN 
Modeling in MILAN is divided into three parts; modeling a library of components, 
modeling of FPGA based designs, and associating the design with the application 
model. Modeling of a design involves modeling of the datapath and the control flow. 

A library of components refers to a set of frequently used design elements such as 
multiplier, adder, register, mux, etc. MILAN provides a hierarchical modeling support 
to model the components and creating a library. The hierarchy consists of three types 
of components; micro, macro, and basic blocks. A basic block is target FPGA specific. 
The basic blocks specific to Xilinx Virtex II Pro are LUT, embedded memory cell, I/O 
Pad, embedded multiplier, and interconnects. In contrast, for Actel ProASIC 500 series 
of devices, there will be no embedded multiplier. Micro blocks are basic architecture 
components such as adders, counters, multiplexers, etc. designed using the basic 
blocks. A macro block is an architecture component that is used by some instance of 
the target class of architectures associated with the domain. For example, if linear array 
of processing elements (PE) is our target architecture, a PE is a macro block. Figure 34 
provides a glimpse of the metamodel used in MILAN to capture library of 
components. 

Each component is associated with area, power dissipation, and a set of component 
specific parameters. Power states is one such parameter which refers to various 
operating states of each building block. Power dissipation is associated with power 
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states. For example, we can model two states, ON and OFF for each micro and basic 
block. In the ON state the component is active and in the OFF state it is clock gated. 
For macro blocks it is possible to have more than 2 states due to different combination 
of states of the constituent micro and basic blocks. Power is specified as a function or 
constant value In addition, each block can be associated with a set of variables. 
Precision, depth and width for memory, size of register or memory are some example 
of variables that can be associated with a component. 

 

Figure 35: FPGA library modeling meta 

 62



 

Figure 37 provides a glimpse of a library modeled in MILAN. In the right side of the 
figure, you can see a list of components as part of a library. In the main window, you 
can see the model of a component named MAC4 with two power states. 

 

Figure 36: FPGA design modeling meta 

Once a library of component is created, model for different designs are created. Model 
for a design involves model of the datapath and the control flow. Model of the data 
path is a hierarchical specification of the components provided in the library. Figure 36 
provides a part of the metamodel used to specify a design. A data path can contain any 
component from the library or a LogicBlock. LogicBlock is only used to provide a 
hierarchy in the design. Therefore, a LogicBlock can contain any component from the 
library or a LogicBlock. 

The model for control flow is relatively tricky. Our focus of the modeling and 
estimation capability is rapid energy, latency, and area estimation. Area can be 
estimated based on the model of the data path (sum of the components&#8217; 
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areas). In order to model the control flow we make use of CPS matrices. Component 
Power State (CPS) matrices capture the power state for all the components in each 
cycle. For example, consider a design that contains k different types of components 
(C_1,...,C_k) with n_i components of type i. If the design has the latency of T cycles, 
then k two dimensional matrices are constructed where the i-th matrix is of size Txn_i. 
An entry in a CPS matrix represents the power state of a component during a specific 
cycle and is determined by the algorithm (Figure 38).  

 

Figure 37: Libray of components 

However, specification of such a matrix is not easy. Hence, we take advantage of the 
typical loop oriented structures of kernels such as matrix multiply, FFT, etc. for which 
the FPGA based designs are created. If we analyze the CPS matrices, we can observe 
that another easy way to specify the same information is through a table. Such table 
would contain a number of rows where each row is a 3-tuple (component, state, #of 
cycles in this state). As we are interested only in performance estimation, this much of 
information is enough. 
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Figure 38: CPS matrices 

Properly formatted text files are specified in the ControlAspect as an attribute of 
Model ControlFlow. The files are formatted as follows: 

cycles <total number of cycles> 
frequency <operating frequency> 
<name of the component> <power state> <total number of cycle in this power state> 
<name of the component> <power state> <total number of cycle in this power state> 
<name of the component> <power state> <total number of cycle in this power state> 
.... .... .... 
.... .... .... 
<name of the component> <power state> <total number of cycle in this power state> 

The above approach is based on the algorithm designer’s workbench discussed in [ 19]. 

Performance Estimation 
MILAN provides a preliminary version of performance estimator for FPGA based 
designs. The estimator is preliminary in the sense that it does not support 
parameterized specification of the designs or the components. This model intrerpreter 
(FPGAPerFEstimator) can be used to estimate performance of designs and Macro 
blocks. It assumes that all basic and micro blocks are already associated with power and 
area estimates. 

FPGA based design and Application Design 
The model for mapping in MILAN can contain (inside the model Configuration) a 
reference (Copy and Paste Special) to FPGA designs. Thus you can associate the 
FPGA designs with the tasks in the application model. Once the reference is included, 
one can use the model interpreter specified above to automatically estimate 
performance and update appropriate attributes in the model Configuration. Figure 39 
shows a sample mapping where the FPGA based design (logoc1) is associated with a 
task in the application model. Once performance is estimated using the model 
interpreter and stored in the model Configuration, HiPerE, DESERT, and other DSE 
tools can make use of the estimates. 
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Figure 39: Mapping of an FPGA based design to the application model 
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Modeling and DSE based on Memory 
Configurations 
Studies have shown that in a system implementing a signal processing application, 
energy dissipation due to memory is comparable to energy dissipated by the processing 
elements [ 12][ 24]. Therefore, MILAN supports evaluation of designs based on 
memory configurations. User can model different choices for the design of the 
memory element (on-chip or external SDRAM) and evaluate the designs based on the 
choices available for memory. In addition, as memory is always needed by the end 
system to store data and instruction, MILAN provides a better estimate of 
performance when we model memory in addition to the processing elements. 

Modeling Memory Configurations 
The candidate memory elements considered by MILAN are the state-of-the-art low 
power memories that offer low power operating modes [ 12]. We model the memories 
based on the operating states supported. Some sample operating states supported by 
Micron Mobile SDRAM are Active, PowerDown, and ShutDown. Operating states can also 
be referred to as power states. In addition, given two operating states A and B, we 
assume that the transitions from A to B and B to A are associated with transition costs. 
Transition cost includes latency and energy dissipated during the transition. 

 

Figure 40: Modeling memory power states 



 

 

We model the operating states for each device using an augmented finite state machine 
(FSM). Figure 40 shows a sample model for a device with 3 operating states. Each 
node in an FSM represents one operating state. Each pair of nodes is connected with a 
pair of directed edges. Each edge corresponds to a state transition from the state 
represented as the source node to the state represented as the destination node. Each 
edge is also associated with the latency cost and the energy dissipation during the 
transition. Each operating state is associated with an estimate of average power 
consumed while idling (P1, P2, P3 in Figure 40). This information allows us to 
compute the total energy dissipated when the device is idling in a particular state. The 
model also indicates a state as the default state (shown in gray). Unless specified, the 
default state is the operating state of the device when the device powers up. In 
addition, there is one operating state per device representing power down. 

 

Figure 41: Modeling memory in MILAN 
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In order to model a memory in MILAN, once we identify the different power states 
we can instantiate a Memory model. A model for States can be instantiated within 
Memory. Within States, one can specify the different power states, transitions between 
states, and a default power state. MILAN expects that Active, Idle, and ShutDown be 
specified as the minimal power states. Active is when the memory is involved in data 
access, Idle is when the memory is idle, and ShutDown is when the memory is 
switched off. 

We typically refer to the datasheets provided by the vendors to populate the models. 
Based on the model discussed above, we need to identify the average power dissipation 
while memory is in a particular state and the transition costs between two states. In 
order to add the transition costs, click on the dotted line and in the Attributes window 
you can enter the values and units. Figure 5 shows the attributes for one state transition 
(Latency = 100 micro sec and Energy = 30 micro Joule). Similarly, if you single click 
on any state, you can enter average power dissipated by the state (Figure 41).  

Enhancements to HiPerE 
Table below summarizes the features provided by HiPerE that can be exploited for 
memory configuration based DSE. We assume that the designs are evaluated based on 
a duty cycle specification. Therefore, the designs are evaluated based on a period of 
time within which the design processes multiple input frames. The MILAN User 
Manual (Section on HiPerE) discusses the duty cycle based design space exploration. 
 
Option Values Description 
EOption off, idle switch off devices or idle devices (default idle) 
EMode 1,2 1- follow EOption, 2- safe (only when enough slack) 
Memory M1:M2:..:E Names are M1, M2, etc. (which memories to select) 
Pipelines true, false stream the data through or not 
PrintMemAct true, false print memory activation schedule or not 

 
User can use EOption to provide a global option of whether to switch off devices or 
leave idle when they are not performing task execution. EMode is used to specify the 
mode of optimization. User can specify whether to follow EOption or switch off 
devices only if there is enough time to switch off and switch on a device. This is useful 
because some components like processor can have a long boot-up time and hence 
switching off can be detrimental to overall latency or real-time requirements. As 
MILAN allows modeling of different memory components, user can specify the 
memory components that need to be evaluated for a design. We have also 
implemented a preliminary version of tradeoff analysis between pipelined design and 
sequential design. A pipelined design assumes that there is an end-to-end pipelined 
implementation available. In such a case, the design is significantly faster. Our DSE 
technique assumes 10% latency overhead in addition to the latency cost of the slowest 
task in a pipelined design and evaluates performance accordingly. Finally, HiPerE can 

 69



 

be instructed to print memory activation schedule. Figure 42 provides a screen-shot of 
the HiPerE input window. 
 
Performing DSE 
 

 

Figure 42: Enhanced HiPerE 

Design space exploration (DSE) is performed by invoking HiPerE with appropriate 
parameter values. User should try different combination of the parameter values based 
on the design requirement to evaluate the designs using the DesignBrowser. Refer to 
Tutorial 5 for a detailed illustration of DSE using MILAN. 

DSE using memory configurations follows the generic design flow supported by 
MILAN. The generic design flow is a three step process (Figure 43). The first step uses 
DESERT to evaluate the designs and identify a set of designs that meet the given 
performance and design constraints. In this second step, HiPerE is used to further 
evaluate the designs identified by DESERT. Finally, the integrated simulators are used 
to evaluate the designs selected after the evaluation using HiPerE. We refer to such 
design flow as a hierarchical design space exploration. Few important things to note 
that DESERT typically handles very large (>> 105  designs) design spaces. Hence, we 
use DESERT to evaluate designs based on end-to-end constraint of a single instance 
of application execution. However, as HiPerE handles significantly lesser number of 

 70



 

designs (< 102), we use HiPerE to evaluate based on other aspects such as duty cycle 
specification and memory configuration. Therefore, the techniques discussed in this 
section is used in the second step.  

 

 

Figure 43: MILAN design flow 
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