
Modbus Master C# Source Code Library Users Manual

Sunlux Technologies Page 1 of 37

Modbus Master C# Source Code Library

User Manual

Version 2.4

November 2008, Copyright Sunlux Technologies Ltd., All rights reserved.

Sunlux Technologies Ltd., 60-61, 1st Floor, Balaji Mansion,

Dr. Rajkumar Road., Rajajinagar, Bangalore - 560021, India

Ph: ++91 80 23322425 Fax: ++91 80 23322425

Email: info@sunlux-india.com Web: www.sunlux-india.com

mailto:info@sunlux-india.com
http://www.sunlux-india.com/

Modbus Master C# Source Code Library Users Manual

Sunlux Technologies Page 2 of 37

Table Of Contents

1.0) The Modbus Master Stack Source Code Library ..3

2.0) Important Concepts Used in SCL ...5

3.0) Pre-requisites ...6

3.1) Modbus Basics..6

3.1.1) Modbus Data types ...6

3.1.2) Modbus Device addressing ...7

3.1.3) Modbus Data Point addressing ...7

4.0) Components of the Modbus Master SCL...8

5.0) Porting the Source Code Library..9

5.1) The User Application Interface Macros and Functions...10

5.1.1) GetTimeInMilliseconds ..10

5.2) Physical Layer Interface Macros and Functions ...10

5.2.1) OpenPort ...10

5.2.2) ClosePort...12

5.2.3) ReadPort ...12

5.2.4) WritePort..13

5.2.5) Flush..14

5.2.6) OpenTCP...15

5.2.7) CloseTCP ..16

5.2.8) ReadTCP...16

5.2.9) WriteTCP...17

5.3) Stack Control Macros..19

5.3.1) DEBUGENABLED...19

5.3.2) MODBUS_TCP..19

5.3.3) LITTLE_ENDIAN ...20

6.0) Modbus Error checking and other information...21

6.1) Exception Responses ...23

7.0) Protocol Entry Functions ..24

7.1) MBDriver_InitSerialDriver ...25

7.2) MBDriver_InitTCPDriver ...25

7.3) MBSendRequest ...26

7.3.1) Parameter Values for MBSendRequest ..28

7.3.2) Response Format..31

7.4) MBDriver_DeInit..35

7.5) MBGetLastError ..35

7.6) MBGetLastError ..36

8.0) Technical Specifications..37

Modbus Master C# Source Code Library Users Manual

Sunlux Technologies Page 3 of 37

1.0) The Modbus Master Stack Source Code Library

Modbus® Protocol is a messaging structure developed by Modicon in 1979, used to

establish master-slave/client-server communication between intelligent devices. It is a de

facto standard, truly open and the most widely used network protocol in the industrial

manufacturing environment. Modbus is an application layer messaging protocol, positioned

at level 7 of the OSI model that provides client/server communication between devices

connected on different types of buses or networks. Modbus continues to enable millions of

automation devices to communicate. Today, support for the simple and elegant structure of

Modbus continues to grow. The Internet community can access Modbus at a reserved

system port 502 on the TCP stack. Modbus is a request/reply protocol and offers services

specified by function codes.

The Modbus Master Source Code Library (SCL) is an attempt towards assisting

Original Equipment Manufacturers and HMI Software vendors in quickly implementing

Modbus support into their devices/products. The Master SCL is a C# implementation of the

Modbus Master, which the OEM integrates and ports on to the native hardware. With the

SCL the OEM can implement the Modbus stack without having any knowledge of the

Modbus standard. The implementation follows strict C# standard to enable porting of the

same on different kinds of platforms.

The figure above shows the Enhanced Protocol (Performance) Architecture (EPA)

model of the Modbus Protocol Stack. At the top of the layer is the User Application, which

MODBUS TCP FRAMING

TRANSMISSION CONTROL
PROTOCOL (TCP)

INTERNET PROTOCOL (IP) MODBUS SERIAL LINE FRAMING

RS232 RS485 FO/µW... ETHERNET

PHYSICAL LAYER

MODBUS APPLICATION LAYER PROTOCOL

USER APPLICATION

 ETHERNET

Modbus Master C# Source Code Library Users Manual

Sunlux Technologies Page 4 of 37

provides the Modbus stack with the data to be sent in Modbus frames. The Modbus

Application Layer Protocol below the top layer handles the task of assembling the required

Modbus frame based on requests. The Modbus Serial Line framing layer adds the necessary

error checking bytes to the Modbus frame before transmitting it over the physical layer. The

physical layer can be any asynchronous serial device like RS232, RS485, Fiber Optic,

microwave etc. The Modbus Serial Line implementation is the most commonly used

standard today.

Another popular implementation of Modbus is the Modbus/TCP implementation. This

implementation utilizes the popular TCP stack over Ethernet as the transport media. The

Modbus TCP Framing layer handles the additional bytes to be prefixed with the Modbus

frame before handing it over to the TCP layer, which eventually transmit the data over the

Ethernet media.

The Modbus Master SCL implements the blocks shown in gray background – the

Modbus Application Layer Protocol, the Modbus Serial Line Framing Layer and the Modbus

TCP Framing layer. The SCL provides interface Macros for the user to define using which

the user can integrate the stack with his application on one side and the physical layer on

the other. A following section describes in detail the procedure for porting the stack onto a

different platform.

Modbus Master C# Source Code Library Users Manual

Sunlux Technologies Page 5 of 37

2.0) Important Concepts Used in SCL

There are some important terms like Network, Session Number, Slave number etc,

which the user must know before using this SCL. The same is briefed out here for easy

reference. For example consider a “Single Master & multiple slave network” as shown in the

figure below. The Modbus slaves are connected to the Master PC through the serial

communication ports COM1, COM2 and COM3. Then we say that the Modbus Master is

connected to three serial networks. It is to be noted that ‘n’ number of networks are

numbered as 0 to ‘n-1’. Each of the networks has multiple number of slaves. In each network

the slaves are numbered as 1, 2, 3…n. Hence two slaves on different networks may have

the same slave number. The unique identifier that differentiates all the slaves (connected to

the Modbus Master) from each other is the Session number. No two slaves connected to the

Master can have the same Session number. Whenever the Modbus master communicates

with one slave, a session is formed. Hence the slaves connected to the Master altogether

are numbered as 1, 2, 3, ..n.

Modbus Master C# Source Code Library Users Manual

Sunlux Technologies Page 6 of 37

3.0) Pre-requisites

There are some pre-requisites before the SCL can be used in terms of

information/knowledge and/or tools/techniques. The same is explained below:

Knowledge of C# programming

The SCL has been implemented fully in C#. Porting of the SCL to a specific platform

requires the user to have C# programming knowledge since the porting activity involves

implementation of some functions skeletons.

Modbus Communication terminologies and techniques

A basic knowledge of what Modbus is used for and how the communication takes place is

useful. A brief discussion of the same is included at the end of this section.

A C# Compiler for the .NET platform in use

The platform on which the SCL is intended to be ported on must have a C# compiler since

the entire SCL must be recompiled after the user interface function implementation.

3.1) Modbus Basics

Modbus is an application layer Master-Slave protocol used for transfer of data

between two devices. The Master device always initiates a read/write request to which the

Slave device responds. The Slave device never transmits anything on its own – it must be

triggered with a request.

3.1.1) Modbus Data types

There are four different kinds of data that Modbus can transfer:

Coils – These are digital outputs. Coils can be read or written to. A possible value

for Coils is either ‘0’ or ‘1’.

Discrete Inputs – These are digital inputs. This kind of data can only be read and

cannot be written to since they represent field inputs whose value is dependent of the field

signals.

Holding Registers – Holding Register is a two-byte value (a ushort). Registers are

used for storing analog values. A Holding Register is an analog output – it can be written to

and read also.

Input Register – An input register is an analog input. Its value can be read but it

cannot be written to for the same reason as for Digital Inputs.

Modbus Master C# Source Code Library Users Manual

Sunlux Technologies Page 7 of 37

3.1.2) Modbus Device addressing

Modbus is a multipoint protocol. This means that one master can communicate with

multiple slaves on the same communication line. Due to this a given slave must have a

unique ID with which to address it – a Modbus device address. A slave’s device address

MUST be unique on a given communication network – duplicate addresses lead to bus

collision. Modbus device addresses must lie in the range 1 to 247. The Modbus Master

Source Code Library supports broadcast addressing also. For broadcasting a message the

device address must be specified as 0 (zero). All the slaves on the specified network will

receive the same request. It should be noted that broadcasting is not possible for all the

requests. The list of commands for which broadcasting is supported is given under section

'Technical Specifications'. The Modbus Master Source Code Library can also handle

exception responses received from the slave and will produce appropriate error messages.

The same is explained in detail in section 'Exception Responses'.

3.1.3) Modbus Data Point addressing

Modbus uses unique addresses to refer to data points. Each of the four data types has

independent addresses starting from 0001 to FFFF. This means that there can be a Coil

located at 0001 and a Digital Input also at address 0001. However a slave device need not

necessarily have data points at all the addresses. The data points need not be at

consecutive locations.

Modbus Master C# Source Code Library Users Manual

Sunlux Technologies Page 8 of 37

4.0) Components of the Modbus Master SCL

The Modbus Master SCL is implemented using the following files:

ModBusMaster.cs -- This file contains the implementation of the Modbus Master

Stack as well as the class that implements the interface functions.The stack is implemented

in the class CMBMasterStack, which contains the functions used to initialize various data

structures, functions to construct modbus data structures and to send and receive modbus

frame, functions for constructing & parsing the modbus frames. This class also contains the

error handling code. The end user should not make modifications to this class. This file also

contains the class CUserData which contains all the user interface functions that must be

implemented by the end user. The user should modify only the functions under the

CUserData class.

MasterMain.cs -- This file contains demonstration code to show how the C# Modbus

classes are to be used in an application. The user may modify the code as per his

requirements.

SerialComm.cs --Microsoft has not supplied any class that encapsulates serial

RS232 communication with C#. In order to facilitate faster development for the end users, a

serial communication class called CserialComm is bundled with the C# SCL.

TcpComm.cs -- This file contains the implementation of the TCP communication

path class.

Modbus Master C# Source Code Library Users Manual

Sunlux Technologies Page 9 of 37

5.0) Porting the Source Code Library

Since the SCL has been written using C# it is possible to adapt it to different types of

physical interfaces as well as interface it into an users application. The implementation is

independent of physical transmission layer giving the user full freedom to choose the media.

Based on the physical layer chosen, the physical layer functions of the CUserData class

must be implemented by the user. Similarly the user interface of the driver (i.e. the manner in

which the SCL interacts with the user application and database) is also left open – the user

can implement it in any manner desired by him. So the porting of the SCL involves

implementing the interface functions.

The porting of the SCL to a native platform is done in three steps as below:

Implement the User Application Interface Functions of the CUserData class

• GetTimeInMilliseconds

Define and implement the Physical Layer Interface Functions

• OpenPort

• ClosePort

• ReadPort

• WritePort

• Flush

• OpenTCP

• CloseTCP

• ReadTCP

• WriteTCP

Define the Stack Control Macros

• DEBUGENABLED

• MODBUS_TCP

• LITTLE_ENDIAN

Modbus Master C# Source Code Library Users Manual

Sunlux Technologies Page 10 of 37

5.1) The User Application Interface Macros and Functions

The SCL implementation of the stack requires some information, which is user

specific for it’s functioning. To enable the SCL obtain this information several User

Application Interface functions have been defined, which the end user is expected to

implement. The stack calls these functions to obtain some user specific data from the user

application and also allow interaction between the stack and the user application. The

following functions are provided for the user to interface his application and database with

the stack:

5.1.1) GetTimeInMilliseconds

Format: uint GetTimeInMilliseconds()

This function is called by the stack to determine the system time in milliseconds. The

implementation of this function should return the system time in milliseconds. The stack uses

this function for time-out processing. The stack gets the system time just before transmitting

the request to the slave and then makes multiple successive calls to this function till the

response from the slave is obtained. On every call to this function the stack compares the

time at transmission and the presently obtained time. If the slave does not respond within

the specified Timeout period, the stack generates the ‘Timeout’ error.

Expected return value: uint, System time in Milliseconds.

Parameters: None

A sample implementation is as below:

// ModBusMaster.cs file – returns the system time i n milliseconds
uint GetTimeInMilliseconds() { return (uint)GetTick Count(); }

5.2) Physical Layer Interface Macros and Functions

The implementation of the SCL stops at the point of framing and parsing the Modbus

data – the functionality of transmitting and receiving the frames to/from the physical layer is

kept open to enable portability of the SCL to different platforms and also to different physical

layers. These functions allow the stack to use the Physical Layer chosen by the user to

transmit and receive Modbus frames. The following functions are available:

5.2.1) OpenPort

Format: bool OpenPort(string PortName,
 int BaudRate,
 int Parity,
 Byte StopBits)

Modbus Master C# Source Code Library Users Manual

Sunlux Technologies Page 11 of 37

This function is called by the stack during the application startup to initialize its

communication path. This function is expected to return a path ID or handle to the

communication path on which further Modbus communication is to happen. The path

ID/handle will have different forms in different operating systems/platforms. For e.g. on a

UNIX platform a serial communication path identifier is a simple two byte value representing

the path. On Windows it is a double word Handle to the serial communication port. The form

is different for a TCI/IP Socket connection. So based on the desired physical interface and

the port this function must return a unique communication path identifier, which will be used

for all further communications. The option of setting up the communication path by initializing

it with various parameters should be done in this function itself. A sample implementation

can be as below:

Expected Return Value: bool true – If initialisation/open successful

 false – If Initialization/open fails

Parameters: These parameters are the same, which are supplied by the user application

through the function ‘MBDriver_Init ()’ .

string PortName

int BaudRate

int Parity

byte StopBits

A sample implementation is as below:

// SerialComm.cs file – a Windows implementation fo r a serial
// communication port
bool OpenPort(string PortName, int BaudRate, int Pa rity, Byte StopBits)
{
 DCB dcb = new DCB();
 COMMTIMEOUTS TimeOut;
 hCom = CreateFile(PortName,
 GENERIC_READ | GENERIC_WRITE,
 0, /* comm devs must be opened w/exclusive-ac cess */
 IntPtr.Zero, /* no security attrs */
 OPEN_EXISTING, /* comm devs must use OPEN_EXI STING */
 0, /* not overlapped I/O */
 IntPtr.Zero); /* must be NULL for comm devic es */

if(hCom.Equals(INVALID_HANDLE_VALUE)) { return fals e; }

 fSuccess = GetCommState(hCom, ref dcb);
 if(!fSuccess) { return false; }

 dcb.BaudRate = BaudRate;
 dcb.ByteSize = 8;
 dcb.StopBits = StopBits;
 dcb.Parity = (byte)Parity;

Modbus Master C# Source Code Library Users Manual

Sunlux Technologies Page 12 of 37

 fSuccess = SetCommState(hCom, ref dcb);
 if(!fSuccess) {return false;}

 fSuccess = GetCommTimeouts(hCom, out TimeOut);
 if(!fSuccess) { return false; }

 TimeOut.ReadTotalTimeoutConstant = 0;
 TimeOut.ReadTotalTimeoutMultiplier = 0;
 TimeOut.ReadIntervalTimeout = MAXDWORD;

 fSuccess = SetCommTimeouts(hCom, ref TimeOut);
 if(!fSuccess) { return false; }

 return true;
}

5.2.2) ClosePort

Format: byte ClosePort()

The stack calls this function just before it exits, to close and free the communication

path/port used by the stack for Modbus communication. This allows other applications to use

the communication path after the Modbus stack/user application exits. The implementation

must de-initialise the communication path if required and then close it.

Expected Return Value: byte - TRUE if successful, FALSE otherwise

 Here TRUE=1 & FALSE=0

Parameters: None

A sample implementation is as below:

//SerialComm.cs file
byte ClosePort()
{
 fSuccess = CloseHandle(hCom);
 if(!fSuccess) { return FALSE;}
 return TRUE;
}

5.2.3) ReadPort

Format: byte ReadPort(byte[] Buffer,
 int NumberOfBytesToRead,
 ref int NumberOfBytesRead)

The stack calls this function to read the characters/bytes from the communication

path. This function must be implemented for the stack to function properly. The

implementation of this function must read the requested number of bytes from the specified

communication path and copy the same into the pre-allocated buffer which is passed as a

parameter. The function should also copy the number of bytes of data read into a reference

Modbus Master C# Source Code Library Users Manual

Sunlux Technologies Page 13 of 37

variable which is passed as a parameter. If an error is encountered in the reading process

(for e.g. due to network fault), the function should return FALSE (zero value) indicating

failure. Otherwise even if the number of bytes read is zero (for e.g. when there are no bytes

available at the network/port) the function should return TRUE (i.e. value 1).

Expected Return Value: byte - TRUE if No error occurs during reading

 FALSE otherwise

 Here TRUE=1 & FALSE=0

Parameters:

byte[] Buffer – A pre-allocated buffer to store received bytes.

int NumberOfBytesToRead – Num of bytes to read from port.

ref int NumberOfBytesRead – Reference to int variable to hold the number of bytes read

from the port.

A sample implementation is as below:

// SerialComm.cs file – implementation for a seri al
// communication port with no timeout processing
byte ReadPort(byte[] Buffer,
 int NumberOfBytesToRead,
 ref int NumberOfBytesRead)
{

int LocBytesRead = 0;
 fSuccess = ReadFile(hCom,
 Buffer,
 NumberOfBytesToRead,
 out LocBytesRead,
 ptrUWO);
 if(!fSuccess)
 {
 NumberOfBytesRead = LocBytesRead;
 return FALSE;
 }
 NumberOfBytesRead = LocBytesRead;
 return TRUE;
}

5.2.4) WritePort

Format: byte WritePort(byte[] Buffer,
 int NumberOfBytesToWrite,
 ref int BytesWrote)

The stack calls this function to write the Modbus reply to the communication path.

This function must be implemented for the stack to function properly. The implementation of

this function must write the requested number of bytes from the buffer (passed as a

parameter) to the specified communication path and should also put the number of bytes of

data actually written into a reference variable (passed as a parameter). If an error is

Modbus Master C# Source Code Library Users Manual

Sunlux Technologies Page 14 of 37

encountered in the writing process(for e.g. due to network fault), the function should return

FALSE (zero value) indicating failure. Otherwise the function should return TRUE (i.e. value

1).

Expected Return Value: byte - TRUE if No error occurs during Writing

 FALSE otherwise

 Here TRUE=1 & FALSE=0

Parameters:

byte[] Buffer – A pre-allocated buffer containing the data to be written to the port.

int NumberOfBytesToWrite – Number of bytes to be written to the port.

ref int BytesWrote – Reference to int variable to hold the number of bytes written to the port.

A sample implementation is as below:

// SerialComm.cs file – implementation for a seri al
// communication port
byte WritePort(byte[] Buffer,
 int NumberOfBytesToWrite,
 ref int BytesWrote)
{
 Int32 NumberOfBytesWritten = 0;
 fSuccess = WriteFile(hCom,
 Buffer,
 NumberOfBytesToWrite,
 out NumberOfBytesWritten,
 ptrUWO);
 if(!fSuccess)
 {
 BytesWrote = NumberOfBytesWritten;
 return FALSE;
 }
 BytesWrote = NumberOfBytesWritten;
 return TRUE;
}

5.2.5) Flush

Format: void Flush()

The stack calls this function to clear the communication buffer (i.e. delete residual

bytes) whenever it encounters an error in reading the Modbus frame so that it can start a

fresh with the next Modbus frame. The implementation of this function must clear all data of

the communication path.

Expected Return Value: None

Parameters: None

Modbus Master C# Source Code Library Users Manual

Sunlux Technologies Page 15 of 37

A sample implementation is as below:

// SerialComm.cs file – a Windows implementation fo r a serial
// communication port
int retval;
void Flush()
{

int retval;
 retval = PurgeComm(hCom,PURGE_TXCLEAR | PURGE_RXC LEAR);
}

5.2.6) OpenTCP

Format: bool OpenTCP(String SlaveIPAddr, int IPPort No)

This function is called by the stack during the application startup to initialize its

communication path. This function is expected to return a path ID or handle to the

communication path on which further Modbus communication is to happen. The path

ID/handle will have different forms in different operating systems/platforms. For e.g. on a

UNIX platform a serial communication path identifier is a simple two byte value representing

the path. On Windows it is a double word Handle to the serial communication port. The form

is different for a TCI/IP Socket connection. So based on the desired physical interface and

the port this function must return a unique communication path identifier, which will be used

for all further communications. The option of setting up the communication path by initializing

it with various parameters should be done in this function itself.

Expected Return Value: bool true – If initialisation/open successful

 false – If Initialization/open fails

Parameters: These parameters are the same, which are supplied by the user application

through the function ‘MBDriver_Init ()’ .

string SlaveIPAddr

int IPPortNo

A sample implementation is as below:

// TcpComm.cs file – implementation for a TCP/IP communication.
bool OpenTCP(String SlaveIPAddr,int IPPortNo)
{
 MBSock = new Socket (AddressFamily.InterNetwork,
 SocketType.Stream,
 ProtocolType.Tcp);
 IPAddress IPAdd = IPAddress.Parse (SlaveIPAddr);
 int IPortNo = System.Convert.ToInt16 (IPPortNo);

Modbus Master C# Source Code Library Users Manual

Sunlux Technologies Page 16 of 37

 IPEndPoint ipEnd = new IPEndPoint (IPAdd,IPortNo);
 MBSock.Connect (ipEnd);
 if(MBSock.Connected) {return true;}
 else {return false;}
}

5.2.7) CloseTCP

Format: byte CloseTCP()

The stack calls this function just before it exits, to close and free the communication

path/port used by the stack for Modbus communication. This allows other applications to use

the communication path after the Modbus stack/user application exits. The implementation

must de-initialise the communication path if required and then close it.

Expected Return Value: byte – TRUE(1) if successful.

 – FALSE(0) if not successful.

Parameters: None

A sample implementation is as below:

// TcpComm.cs file – implementation for a TCP/IP
// communication.
byte CloseTCP()
{

MBSock.Close();
return TRUE;

}

5.2.8) ReadTCP

Format: byte ReadTCP(byte[] buffer,
 int NumberOfBytesToRead,
 ref int NumberOfBytesRead)

The stack calls this function to read the characters/bytes from the communication

path. This function must be implemented for the stack to function properly. The

implementation of this function must read the requested number of bytes from the specified

communication path and copy the same into the pre-allocated buffer which is passed as a

parameter. The function should also copy the number of bytes of data read into a reference

variable which is passed as a parameter. If an error is encountered in the reading process

(for e.g. due to network fault), the function should return FALSE (zero value) indicating

failure. Otherwise even if the number of bytes read is zero (for e.g. when there are no bytes

available at the network/port) the function should return TRUE (i.e. value 1).

Modbus Master C# Source Code Library Users Manual

Sunlux Technologies Page 17 of 37

Expected Return Value: byte - TRUE if No error occurs during reading

 FALSE otherwise

 Here TRUE=1 & FALSE=0

Parameters:

byte[] Buffer – To hold the data read from the port.

int NumberOfBytesToRead – Number of bytes to read from the port.

ref int NumberOfBytesRead – Reference to int variable to hold the numebr of bytes read

from the port.

A sample implementation is as below:

// TcpComm.cs file – implementation for a TCP/IP
// communication.
byte ReadTCP(byte[] buffer,
 int NumberOfBytesToRead,
 ref int NumberOfBytesRead)
{

try{
NumberOfBytesRead =

MBSock.Receive(buffer,
 NumberOfBytesToRead,
 0);

}
catch(SocketException e){ return FALSE; }
return TRUE;

}

5.2.9) WriteTCP

Format: byte WriteTCP(byte[] byData,
 int NumberOfBytesToWrite,
 ref int NumberOfBytesWritten)

The stack calls this function to write the Modbus reply to the communication path.

This function must be implemented for the stack to function properly. The implementation of

this function must write the requested number of bytes from the buffer (passed as a

parameter) to the specified communication path and should also put the number of bytes of

data actually written into a reference variable (passed as a parameter). If an error is

encountered in the writing process(for e.g. due to network fault), the function should return

FALSE (zero value) indicating failure. Otherwise the function should return TRUE (i.e. value

1).

Expected Return Value: byte - TRUE if No error occurs during reading

 FALSE otherwise

 Here TRUE=1 & FALSE=0

Parameters:

Modbus Master C# Source Code Library Users Manual

Sunlux Technologies Page 18 of 37

byte[] byData – To hold the data that is to be written to the port.

int NumberOfBytesToWrite – Number of bytes written to the port.

ref int NumberOfBytesWritten – Reference to the variable to hold the Number of bytes

written to the port.

A sample implementation is as below:

// TcpComm.cs file – implementation for a TCP/IP
// communication.
byte WriteTCP(byte[] byData,

 int NumberOfBytesToWrite,
 ref int NumberOfBytesWritten)

{
try

 {
NumberOfBytesWritten =

MBSock.Send(byData);
return TRUE;

}
catch(SocketException e)
{

Console.Write("SocketException: {0}", e);
return FALSE;

}
}

Modbus Master C# Source Code Library Users Manual

Sunlux Technologies Page 19 of 37

5.3) Stack Control Macros

The Stack Control Macros control the behavior of the stack by changing the control

flow by means of pre-processor directives. By setting appropriate values for these macros

the user can control the compilation process. The following macros are provided:

5.3.1) DEBUGENABLED

For ease of debugging the SCL uses several “Console.Write” and

“Console.WriteLine” statements internally. However since these debugging statements

consume considerable amount of code memory and also take up a lot of execution time, the

DEBUGENABLED macro has been provided using which the user can enable or disable

printing of debugging statements. To enable debugging define the above symbol – else

undefine it.

Example:

// ModBusMaster.cs, SerialComm.cs, TcpComm.cs file s – Enables the
// “Console.Write” and “Console.WriteLine” statemen ts in the stack.
#define DEBUGENABLED

// ModBusMaster.cs, SerialComm.cs, TcpComm.cs files – Disables the
// “Console.Write” and “Console.WriteLine” statements in the stack.
#undef DEBUGENABLED

5.3.2) MODBUS_TCP

This symbol must be defined if the Modbus stack is being used for communication

over TCP. The framing methodology followed for a serial line Modbus communication and

Modbus TCP communication is different. The Modbus/TCP specifications are different from

the Serial standard mainly in two ways

Serial uses a two byte CRC at the end of the frame whereas Modbus/TCP does not

(since error checking and correction are handled in other layers of TCP itself)

Modbus/TCP uses an additional 6 byte header before the slave address field of a

frame.

Example:

// ModBusMaster.cs, SerialComm.cs, TcpComm.cs MasterM ain.cs files –
// Chooses the communication to take place over TCP/IP
#define MODBUS_TCP

// ModBusMaster.cs, SerialComm.cs, TcpComm.cs MasterM ain.cs files –
// Chooses the communication to take place over Serial
#undef MODBUS_TCP

Modbus Master C# Source Code Library Users Manual

Sunlux Technologies Page 20 of 37

5.3.3) LITTLE_ENDIAN

If the hardware architecture chosen follows the LITTLE_ENDIAN style of storing

ushorts, then this symbol must be defined. Depending on the operating system and the

hardware platform, there are two ways of storing a ushort variable in memory. In the first

case called the BIG ENDIAN style the high byte of the ushort is stored first and then the low

byte of the ushort. This style can generally be found in MOTOROLA based CPU

architectures. In the other style called the LITTLE ENDIAN, the low byte of the ushort is

stored first and then the high byte of the ushort. This style is more prominent in CPU’s

following the INTEL architecture. Modbus follows the BIG ENDIAN style of packing ushorts

in its frames. So on platforms supporting LITTLE ENDIAN style the two bytes forming the

ushort must be reversed if the data is to be copied properly. This is internally done in the

stack if the LITTLE_ENDIAN symbol is defined.

Example:

// ModBusMaster.cs file
// Selects the system on which the stack is running as Little Endian
#define LITTLE_ENDIAN

// ModBusMaster.cs file
//Selects the system on which the stack is running as Big Endian
#undef LITTLE_ENDIAN

NOTE : If the hardware architecture chosen follows the LITTLE ENDIAN style then

this macro should be defined, shown above. If it follows BIG ENDIAN style then this macro

should be undefined.

Modbus Master C# Source Code Library Users Manual

Sunlux Technologies Page 21 of 37

6.0) Modbus Error checking and other information

The Modbus Library stores information about the errors it encounters in executing

Modbus requests. The user application can read this error information using method

“MBGetLastError” to check which error occurred during the last Modbus request handling.

This method has the following structure:

MbErrorCodes MBGetLastError ()

The possible error codes are defined under enumeration type MbErrorCodes.

MbErrorCodes
Enum

NoError

NotEnoughMemory

UnknownServiceRequ…

InvalidRegisterAddress

ExceedsMaxItems

TimeOutOccured

BadCRC

SlaveIdMismatch

NetworkWriteError

NetworkReadError

InvalidSlaveId

TransactionIdMismatch

BadSequence

Defines a set of error codes that can be returned by the class library. The last

occurred error in the library can be retrieved by calling MbGetLastError.

Enumerator:

• NoError : The last requested Modbus service completed successfully.

• NotEnoughMemory : Insufficient memory to complete requested service.

• UnknownServiceRequest : Requested Modbus service is not known to this

library.

• InvalidRegisterAddress : Specified register address is invalid. This error

code is present for backward compatibility only and is no longer used.

• ExceedsMaxItems : The no. of Modbus items specified in the request

exceeds the maximum supported. The limit for the number of items specified

depends on the requested Modbus service.

Modbus Master C# Source Code Library Users Manual

Sunlux Technologies Page 22 of 37

• TimeOutOccured : Timeout occured waiting for response from the Modbus

slave.

• BadCRC : Received Modbus response message had a bad CRC.

• SlaveIdMismatch : Slave ID field in the received response message did not

match the one in the request message.

• NetworkWriteError : Could not write to the selected communication port.

• NetworkReadError : Could not read from the selected communication port.

• InvalidSlaveId : Slave ID specified is invalid for the requested service. Valid

slave numbers are : for read functions 1 to 247 and for write functions 0 to

247, where 0 is for broadcasting.

• TransactionIdMismatch : The transaction ID field in the received response

message does not match the one in the request message.

• BadSequence : Bad method call sequence (for e.g. calling MBSendRequest

before InitCommPath).

If this method returns MbErrorCodes.ExceptionResponse, then MBGetLastExceptionCode

must be called to get the exception code of the exception response.

Modbus Master C# Source Code Library Users Manual

Sunlux Technologies Page 23 of 37

6.1) Exception Responses

Exception Responses are those sent by the slave for a master request when it is

unable to perform the requested task. The Master library is designed and implemented to

receive such exception responses and store the exception response code in the member

variable ‘mbLastException’. User should note that no action is taken within the stack on

receiving the exception responses except for Exception Code 5. The users application

should take appropriate actions depending on the exception response.

Some Modbus slaves do not support exception responses. Such devices usually do

not send any response under such “exception” conditions in which case the master will

experience a time out.

The last occurred exception code can be retrieved by a call to the function

‘MBGetLastExceptionCode’.

byte MBGetLastExceptionCode()

The list of exception responses supported is as below:

Excp.
Code

Constant Variables Description

1 ILLEGALFUNCTION Illegal Function. The slave does not support the
requested function

2 ILLEGALDATAADDRESS Illegal data address. The data address received in
the query is not a supported address in the slave.
This response is sent by a slave when a master
makes read/write request on a non-existent
variable address.

3 ILLEGALDATAVALUE Illegal data value. A value contained in the query
data field is not an allowable value for the slave.
The slave sends this response when it receives a
write request from the master with a “value” which
is considered illegal for the variable.

4 SLAVEDEVICEFAILURE Slave device failure. An unrecoverable error
occurred while the slave was attempting to perform
the requested action.

5 ACKNOWLEDGE Acknowledge. The slave has accepted the request
and is processing it. But a long duration of time will
be required to do so. This response is returned to
prevent a time out error from occurring in the
master.

6 SLAVEDEVICEBUSY Slave device busy. The slave is engaged in
processing a long–duration program command.
The master should retransmit the message later
when the slave is free.

7 NEGATIVEACKNOWLEDGE Negative Acknowledge. The slave cannot perform
the program function received in the query.

8 MEMORYPARITYERROR Memory Parity Error. The slave attempted to read
extended memory, but detected a parity error in
the memory. The master can retry the request, but
service may be required on the slave device.

Modbus Master C# Source Code Library Users Manual

Sunlux Technologies Page 24 of 37

7.0) Protocol Entry Functions

The end user needs to call only the protocol entry functions in his application

program to avail the functionality of the protocol. There are three entry functions which the

user can make use of. The Modbus driver must be initialized by calling ‘MBDriver_Init’

function before calling any other function. Once initialized the user can make use of

‘MBSendRequest’ for Modbus transactions. This function constructs the Modbus frame,

sends it to the specified slave, receives the response, parses it and returns the received

data to the user. Using this function ‘MBSendRequest’ the user can send the commands

described in the section below. At the end of the Modbus transactions ‘MBDriver_DeInit’

function should be called. An example of such a call is as given below:

void main(void)
{
 int i, Index=0;
 byte SessionNo=1;
 ushort VarAddress=0x0001;
 ushort NItems=3;
 byte Retries=1, FunctionCode=3;
 byte retvalbool;
 uint TimeOut = 2000, OldTime, NewTime;

 string PortName = "COM2";
 int BaudRate = 9600;
 int Parity = 0;

byte StopBits = 2;

 ushort[] Coildata = new ushort[255];

 // Create and instantiate Modbus Master driver
 CMBMasterStack MBMasterStack = new CMBMasterSt ack();

 /* Initialize the Modbus serial driver */

Retvalbool = MBMasterStack.MBDriver_InitSerialDrive r(PortName,
 BaudRate,
 Parity,
 StopBits);
if(retvalbool==0) {

Console.WriteLine("\nModbus Driver Initialisation f ailed");
return;

}

 /* Send and Receive the Modbus Request and Res ponse */

retvalbool = MBMasterStack.MBSendRequest(SessionNo ,
 FunctionCode,
 VarAddress, NItems,
 Coildata, TimeOut,
 Retries);

if(retvalbool==1){

Console.Write("\nModbus request success\n"); } /* if
Successful */
else{

Modbus Master C# Source Code Library Users Manual

Sunlux Technologies Page 25 of 37

MBErrNo = MBMasterStack.MBGetLastError();
Console.WriteLine("Modbus request failure, ErrNum = {0}",

MBErrNo); /* if Error occurred */

}

 /* Deintialize the Modbus serial driver after t ransaction */
 MBMasterStack. MBDriver_DeInit();

} /*end of main*/

The prototypes of the entry functions and the files in which these functions are

defined are as follows.

7.1) MBDriver_InitSerialDriver
Format: byte MBDriver_InitSerialDriver(string Port Name,
 int BaudRate,
 int Parity,
 byte StopBits)

This function initializes the specified communication path with the specified

parameters and it also initializes some data structures required by the stack. This function

should be called before calling any other functions. This function is relevant only for

asynchronous serial communication ports. The parameters are as explained below:

Parameters:

Sl. No. Parameter Name Description Data Type
1 PortName Network or Port over which to open

the Modbus communication.
string

2 BaudRate Baud Rate for data transfer int
3 Parity Parity checking type for data

transfer
int

5 StopBits Stop Bits for data transfer byte

Return Value: byte - MBDEFS_TRUE: If initialisation successful

 MBDEFS_FALSE: If initialisation fails

 Here MBDEFS_TRUE = 1 and MBDEFS_FALSE = 0

7.2) MBDriver_InitTCPDriver
Format: byte MBDriver_InitTCPDriver(String SlaveIPA ddr,int IPPortNo)

This function is the Modbus TCP equivalent of MBDriver_InitSerialDriver and is

relevant only to TCP communication ports.

Parameters:

Modbus Master C# Source Code Library Users Manual

Sunlux Technologies Page 26 of 37

Sl. No. Parameter Name Description Data Type
1 SlaveIPAddr Network over which to open the

Modbus communication
string

2 IPPortNo IP Port Number int

Return Value: byte - MBDEFS_TRUE: If initialisation successful

 MBDEFS_FALSE: If initialisation fails

 Here MBDEFS_TRUE = 1 and MBDEFS_FALSE = 0

7.3) MBSendRequest
Format: byte MBSendRequest(byte SlaveNo, byte Fun ctionCode,

 ushort VarAddress, ushort NItems,
 ushort[] data, uint TimeOut,
 byte Retries)

This function is used to send the request and receive the response from the Modbus

slave.

Parameters:

Sl.
No.

Parameter
Name

Description Data
Type

 Values

1 SlaveNo Slave ID from which data is to
be read

byte 1 - 247

2 FunctionCode Type of data to be requested
from the slave

byte Supported list
given in Technical
Specification
section.

3 VarAddress Starting variable address of the
data to be read

ushort 1 – 65535

4 NItems No of items of the specified type
to be read

ushort **Number of Coils
/ Discrete-
Inputs / Registers.

5 data Memory allocated data buffer for
receiving the requested data

ushort Valid data buffer
with memory
allocated for
receiving ‘Items’

6 TimeOut Time out in milliseconds for the
Read operation

uint As decided by the
end user.

7 Retries No of retries in case of
transmission failure

byte As decided by the
end user.

Return Value: byte - MBDEFS_TRUE: If initialisation successful

 MBDEFS_FALSE: If initialisation fails

 Here MBDEFS_TRUE = 1 and MBDEFS_FALSE = 0

Modbus Master C# Source Code Library Users Manual

Sunlux Technologies Page 27 of 37

Return value of ‘MBDEFS_FALSE’ indicates an error. In case of an error refer to the

error code in the member variable ‘MBErrNo’.

**For Serial communication:

Number of coils/Discrete inputs: 1 to 2008

Number of Registers: 1 to 125

For Modbus TCP communication:

Number of coils/Discrete inputs: 1 to 1976

Number of Registers: 1 to 123

This is as per Modbus Standard Specifications

Modbus Master C# Source Code Library Users Manual

Sunlux Technologies Page 28 of 37

7.3.1) Parameter Values for MBSendRequest

The tables below indicate the possible values to be passed as parameters to the

MBSendRequest function for different function codes. The tables are provided for better

understanding of the usage of the above function. The columns on the left indicate the

parameters and the ones on the left describe the value to be entered for the same. The

SlaveAdd, TimeOut and Retries fields are the same for all function codes and are hence

described in the first table below and not repeated in the others.

Function Code - FC 0x01/ FC 0x02/ FC 0x03/ FC 0x04
SlaveAdd

1 byte Modbus Slave Address to communicate with

FunctionCode 0x01/0x02/0x03/0x04

VarAddress 2 Byte Register/Coil Start Address
Nitems 2 Byte Quantity of Registers/Coils
*MBData Not used
TimeOut Time Out period to wait for response in milliseconds
Retries No. of Retries to perform before aborting transaction

Function Code - FC 0x05
FunctionCode 0x05
VarAddress 2 Byte Coil Start Address
Nitems Not Used
*MBData 0001/0000 (ON/OFF)

Function Code - FC 0x06
FunctionCode 0x06
VarAddress 2 Byte Register Start Address
Nitems Not Used
*MBData Register Value

Function Code - FC 0x07
FunctionCode 0x07
VarAddress Not Used
Nitems Not Used
*MBData Not Used

Function Code - FC 0x08
FunctionCode 0x08
VarAddress Not Used
Nitems Not Used
*MBData MBData[0] - Subfunction code and MBdata[1] - Data

Modbus Master C# Source Code Library Users Manual

Sunlux Technologies Page 29 of 37

Function Code - FC 0x0B
FunctionCode 0x0B
VarAddress Not Used
Nitems Not Used
*MBData Not Used

Function Code - FC 0x0C
FunctionCode 0x0C
VarAddress Not Used
Nitems Not Used
*MBData Not Used

Function Code - FC 0x0F/FC 0x10
FunctionCode 0x0F/0x10
VarAddress 2 Byte Register/Coil Start Address
Nitems 2 Byte Quantity of Registers/Coils
*MBData Registers/Coils Data

Function Code - FC 0x11
FunctionCode 0x11
VarAddress Not Used
Nitems Not Used
*MBData Not Used

Function Code - FC 0x14
FunctionCode 0x14
VarAddress Not Used
Nitems 2 Byte Total number of Reference Types Groups.
*MBData (1 Byte Reference Type, 2 Byte File Number, 2 Byte

Record Number, 2 Byte Register Length) * Nitems.
(**See description below)

**Note:

MBData[0] – Reference Type1

MBData[1] – File Number1

MBData[2] – Record Number1

MBData[3] – Record Length1

MBData[4] – Reference Type2

MBData[5] – File Number2

MBData[6] – Record Number2

MBData[7] – Record Length2 and so on.

Modbus Master C# Source Code Library Users Manual

Sunlux Technologies Page 30 of 37

Function Code - FC 0x15
FunctionCode 0x15
VarAddress Not Used
Nitems 0x0001
*MBData

1 Byte Reference Type,2 Byte File Number,2 Byte
Record Number,2 Byte Register Length,Data (2
Bytes each).(**See description below)

**Note:

MBData[0] – Reference Type

MBData[1] – File Number

MBData[2] – Record Number

MBData[3] – Record Length

MBData[4] – Record Data1

MBData[5] – Record Data2 and so on

Function Code - FC 0x16
FunctionCode 0x16
VarAddress 2 Byte Register Address
Nitems Not Used
*MBData

2 Bytes AND Mask, 2 Bytes OR Mask(**See
description below)

**Note

MBData[0] – AND Mask value

MBData[1] – OR Mask value

Function Code - FC 0x17
FunctionCode 0x17
VarAddress [to Read] 2 Bytes Register Start Address
Nitems [to Read] 2 Bytes Quantity of Registers
*MBData

[to Write] 2 Bytes Register Start Address, 2 Bytes
Quantity of
Registers, Data(2 Bytes each)(**See description
below)

**Note

MBData[0] – Write Register Start address

MBData[1] – Number of Items to write

MBData[2] – Write Data1

MBData[3] – Write Data2 and so on.

Modbus Master C# Source Code Library Users Manual

Sunlux Technologies Page 31 of 37

Function Code - FC 0x18
FunctionCode 0x18
VarAddress 2 Byte FIFO Pointer Address
Nitems Not Used
*MBData

Not Used

Function Code - FC 0x2B
FunctionCode 0x2B
VarAddress Not Used
Nitems N Bytes
*MBData

1 Byte MEI Type, MEI Type Specific Data((N-1)
Bytes)

7.3.2) Response Format

The tables below indicate the meaning of the values contained in the parameters of

MBSendRequest function after it has completed its execution. This function copies some of

the data received in the response frames into parameteric variables which the user can use

for further processing. The SlaveAdd, TimeOut and Retries fields are the same for all

function codes and are hence described in the first table below and not repeated in the

others.

Function Code - FC 0x01/ FC 0x02/ FC 0x03/ FC 0x04
SlaveAdd Slave Address as contained in the response frame
FunctionCode 0x01/0x02/0x03/0x04
VarAddress 2 Byte Register/Coil Start Address in the response

frame
Nitems 2 Byte Quantity of Registers/Coils in the response

frame
*MBData Status / Value of Registers/Coils
TimeOut Time Out
Retries Retries

Note: For Coils, MBData[0] = Status of Coil With VarAddress, MBData[1] = Status of

Coil With (VarAddress+1) and so on. Similarly For Registers, MBData[0] = Value of

Register With VarAddress, MBData[1] = Value of Register With (VarAddress+1) and so on.

Function Code - FC 0x05
FunctionCode 0x05
VarAddress 2 Byte Coil Start Address
Nitems Not Used

Modbus Master C# Source Code Library Users Manual

Sunlux Technologies Page 32 of 37

Function Code - FC 0x05
*MBData 0001/0000 (ON/OFF)

Function Code - FC 0x06
FunctionCode 0x06
VarAddress 2 Byte Register Start Address
Nitems Not Used
*MBData Register Value

Function Code - FC 0x07
FunctionCode 0x07
VarAddress Not Used
Nitems Not Used
*MBData

MBData[0] have 8 Exception status starting from
LSB.

Function Code - FC 0x08
FunctionCode 0x08
VarAddress Not Used
Nitems Not Used
*MBData MBData[0] - Subfunction code and MBData[1] - Data

Function Code - FC 0x0B
FunctionCode 0x0B
VarAddress Not Used
Nitems Not Used
*MBData

MBData[0] - Status and MBData[1] – Event counter
value

Function Code - FC 0x0C
FunctionCode 0x0C
VarAddress Not Used
Nitems Not Used
*MBData

MBData[0] – Status, MBData[1] – Event counter
value, MBData[2] – Message counter value ,
MBData[3] – Total Events and MBData[4] to
MBData[4 + MBData[3]] – Event Bytes.

Function Code - FC 0x0F/FC 0x10
FunctionCode 0x0F/0x10
VarAddress 2 Byte Register/Coil Start Address
Nitems 2 Byte Quantity of Registers/Coils
*MBData Not Used

Modbus Master C# Source Code Library Users Manual

Sunlux Technologies Page 33 of 37

Function Code - FC 0x11
FunctionCode 0x11
VarAddress Not Used
Nitems Not Used
*MBData **See the description below.

**Note:

MSB of MBData[0] – Total Bytes of valid data in the buffer MBData,

LSB of MBData[0] – Slave Id,

MSB of MBData[1] – Total Bytes of valid data in the buffer MBData,

LSB of MBData[1] – Slave Id,

MSB of MBData[2] – Run Indicator Status,

LSB of MBData[2] – Device Specific Data Byte[0],

MSB of MBData[3] – Device Specific Data Byte[1],

LSB of MBData[3] – Device Specific Data Byte[2] and so on.

IMPORTANT: Data stored in this buffer as bytes(unsigned char type) and not as two

bytes(unsigned short type).

Function Code - FC 0x14
FunctionCode 0x14
VarAddress Not Used
Nitems 2 Byte Total number of Reference Types Groups.
*MBData

(1 Byte Reference Type, 2 Byte File Number, 2 Byte
Record Number, 2 Byte Register Length) *
Nitems.(**See description below)

**Note:

MBData[0] – File Response Length1,assume MBData[0]= n.

MBData[1] – Reference Type1

MBData[2] – Record Data 1

MBData[3] – Record Data 2

...................

MBData[n/2] – Record Data n/2

MBData[(n/2)+1] – File Response Length2,assume MBData[0]= m.

MBData[(n/2)+2] – Reference Type2

MBData[(n/2)+3] – Record Data 1

MBData[(n/2)+4] – Record Data 2

..................

MBData[(n/2)+(m/2)] – Record Data m/2 and so on.

Modbus Master C# Source Code Library Users Manual

Sunlux Technologies Page 34 of 37

Function Code - FC 0x15
FunctionCode 0x15
VarAddress Not Used
Nitems 0x0001
*MBData

1 Byte Reference Type,2 Byte File Number,2 Byte
Record Number,2 Byte Register Length,Data (2
Bytes each).(**See description below)

**Note:

MBData[0] – Reference Type

MBData[1] – File Number

MBData[2] – Record Number

MBData[3] – Record Length

MBData[4] – Record Data1

MBData[4] – Record Data2 and so on.

Function Code - FC 0x16
FunctionCode 0x16
VarAddress 2 Byte Register Address
Nitems Not Used
*MBData

2 Bytes AND Mask, 2 Bytes OR Mask(**See
Description Below)

**Note

MBData[0] – AND Mask value

MBData[1] – OR Mask value

Function Code - FC 0x17
FunctionCode 0x17
VarAddress [to Read] 2 Bytes Register Start Address
Nitems [to Read] 2 Bytes Quantity of Registers
*MBData

Read Register Values

Function Code - FC 0x18
FunctionCode 0x18
VarAddress 2 Byte FIFO Pointer Address(**See Description

Below)
Nitems Not Used
*MBData

Byte Count, FIFO Count, FIFO Register
Values(**See Description Below)

Modbus Master C# Source Code Library Users Manual

Sunlux Technologies Page 35 of 37

 **Note

MBData[0] – Byte Count

MBData[1] – FIFO Count

MBData[2] – FIFO Register Value 1

MBData[3] – FIFO Register Value 2 and so on.

Function Code - FC 0x2B
FunctionCode 0x2B
VarAddress Not Used
Nitems N Bytes
*MBData

MEI Type Specific Data((N-1) Bytes)(**See
Description Below)

**Note

MBData[0] – Total no. of bytes in the MBData buffer, say MBData[0] = n.

MSB of MBData[1] – MEI Type Specific Data 0

LSB of MBData[1] – MEI Type Specific Data 1

MSB of MBData[2] – MEI Type Specific Data 2

LSB of MBData[2] – MEI Type Specific Data 3

..................................

 of MBData[...] – MEI Type Specific Data n

7.4) MBDriver_DeInit
Format: byte MBDriver_DeInit()

This function closes the communication path and deinitializes the data structures,

which were used by the stack. This function has to be called before closing the user

application.

Parameters: None

Return Value: byte - MBDEFS_TRUE: If De-initialisation successful

 MBDEFS_FALSE: If De-initialisation fails

 Here MBDEFS_TRUE = 1 and MBDEFS_FALSE = 0

7.5) MBGetLastError
Format: MbErrorCodes MBGetLastError()

The MBGetLastError function retrieves the stack's last-error code value. The last

error code is maintained on a per-request basis. An application can retrieve the last error

Modbus Master C# Source Code Library Users Manual

Sunlux Technologies Page 36 of 37

code by calling the MBGetLastError function. The possible error codes returned by this

application is described in the “Modbus Error checking and other information” section.

Parameters: None

Return Value: MbErrorCodes - Return error code for unsuccessfull operation.

 Return value of ‘0’ indicates a successfull operation.

7.6) MBGetLastError

Format: byte MBGetLastExceptionCode()

Parameters: None

Return Value: byte - Returns the exception code of the last received exception response.

See section on Error Handling for a list of possible Exception Codes.

This function must be called to retrieve the exception code when MBGetLastError returns

MbErrorCodes.ExceptionResponse.

Modbus Master C# Source Code Library Users Manual

Sunlux Technologies Page 37 of 37

8.0) Technical Specifications

Parameter Value
Standard - Modbus Application Protocol Specification V1.1, Nov

2002, Schneider Electric, www.modbus.org
- Modbus Application Protocol Specification V1.1b, Dec
28, 2006, Modbus-IDA , http://www.modbus-ida.org

Other references:
1. Modbus over Serial Line Specification &
Implementation guide V1.02, Dec 20, 2006,
www.modbus.org
2. Modicon Modbus Protocol Reference Guide, PI–
MBUS–300 Rev. J, June 1996, MODICON Inc.

Functions Supported 01 (0x01) Read Coils
02 (0x02) Read Discrete Inputs
03 (0x03) Read Holding Registers
04 (0x04) Read Input Registers
05 (0x05) Write Single Coil*
06 (0x06) Write Single Register*
07 (0x07) Read Exception Status (Serial Line only)
08 (0x08) Diagnostics (Serial Line only)
00 (0x00) Return Query Data
01 (0x01) Restart Communications Option
02 (0x02) Return Diagnostic Register
04 (0x04) Force Listen Only Mode
10 (0x0A) Clear Counters and Diagnostic Register
11 (0x0B) Return Bus Message Count
12 (0x0C) Return Bus Communication Error Count
13 (0x0D) Return Bus Exception Error Count
14 (0x0E) Return Slave Message Count
15 (0x0F) Return Slave No Response Count
16 (0x10) Return Slave NAK Count
17 (0x11) Return Slave Busy Count
18 (0x12) Return Bus Character Overrun Count
11 (0x0B) Get Comm Event Counter (Serial Line only)
12 (0x0C) Get Comm Event Log (Serial Line only)
15 (0x0F) Write Multiple Coils*
16 (0x10) Write Multiple registers*
17 (0x11) Report Slave ID (Serial Line only)
20 / 6 (0x14 / 0X06) Read File Record
21 / 6 (0x15 / 0x06) Write File Record
22 (0x16) Mask Write Register
23 (0x17) Read/Write Multiple registers
24 (0x18) Read FIFO Queue
43 (0x2B) Encapsulated Interface Transport
14 (0x0E) Read Device Identification

Porting Methodology User Definable Functions for User Database Interface
And Physical Layer Interface

Development Language C#

Supported platforms Portable to any C# supporting platform

*These Functions support Broadcasting.

	1.0) The Modbus Master Stack Source Code Library
	2.0) Important Concepts Used in SCL
	3.0) Pre-requisites
	3.1) Modbus Basics
	3.1.1) Modbus Data types
	3.1.2) Modbus Device addressing
	3.1.3) Modbus Data Point addressing

	4.0) Components of the Modbus Master SCL
	5.0) Porting the Source Code Library
	5.1) The User Application Interface Macros and Functions
	5.1.1) GetTimeInMilliseconds

	5.2) Physical Layer Interface Macros and Functions
	5.2.1) OpenPort
	5.2.2) ClosePort
	5.2.3) ReadPort
	5.2.4) WritePort
	5.2.5) Flush
	5.2.6) OpenTCP
	5.2.7) CloseTCP
	5.2.8) ReadTCP
	5.2.9) WriteTCP

	5.3) Stack Control Macros
	5.3.1) DEBUGENABLED
	5.3.2) MODBUS_TCP
	5.3.3) LITTLE_ENDIAN

	6.0) Modbus Error checking and other information
	6.1) Exception Responses

	7.0) Protocol Entry Functions
	7.1) MBDriver_InitSerialDriver
	7.2) MBDriver_InitTCPDriver
	7.3) MBSendRequest
	7.3.1) Parameter Values for MBSendRequest
	7.3.2) Response Format

	7.4) MBDriver_DeInit
	7.5) MBGetLastError
	7.6) MBGetLastError

	8.0) Technical Specifications

