RF++ User Manual Version 1.0

Home Pages: http://sourceforge.net/projects/rfpp

Contact: Yuliya Karpievitch: yuliya@stat.tamu.edu Anthony Leclerc: leclerc@cs.cofc.edu

Table of Contents

Training (growing) a new Forest	3
Training Data Information	3
Forest Parameters	4
Training Results	5
Testing a Forest and Making Predictions	6
Saving forest, variable importance scores and classifications	9
Loading an Existing Forest	11
Forest File Description	12

GUI

Training (growing) a new Forest

From the initial RF++ window we can select to train a new forest or open an existing forest.

To train a forest, select the 'Train' menu item from the 'File' pull down menu. This will open a training data tab.

🕷 RF+	++	- 0	×
<u>F</u> ile <u>H</u>	<u>l</u> elp		
T <u>r</u> ain	Alt+T		
<u>Op</u> en	Alt+O		
S <u>a</u> ve	Alt+S		
E⊻it	Alt+X		
Train a	forest	 Welcome	

Training Data Information

Two files are provided with the executable: train_100_10_1.txt and test_100_10_1.txt. These are training and testing files respectively.

🗱 RF++				_ 🗆 🗙
<u>F</u> ile <u>H</u> elp				
Training Data	Forest Parameters			
Number of Sam	iples:	1000		
Number of Varia	ables:	185		
Number of Clas	ses:	2		
🗹 Have <u>i</u> ds		⊡ <u>S</u> ame Oı	utcomes for Replicates	
Training Data Fi	le:			Browse
		V	Velcome	

In the 'Training Data' tab, information describing the dataset must be entered: number of samples in the file, number of variables and number of classes.

Samples in the training data file must be organized in rows (1 row per sample). Columns must be arranged as such: an ID is required in the in the first column if the data is clustered, this ID is optional for non-clustered data. Next, 'Number of Variables' values for each variable. The last column must be the outcome (classification) column. Note, if IDs are present, RF++ will do subject-level bootstrapping based on the values in the ID columns, where all samples with matching IDs belong to the same subject.

If the data are not clustered then subject-level bootstrapping consists of subject clusters of size one. Thus, in this case subject-level bootstrapping is equivalent to sample-level bootstrapping.

Outcomes (classifications) are integer values in the range [1,..., number of classes].

IDs are integers and are used primarily to identify clusters within the data. (Note, no double or character values are allowed).

If the data does not comply with the standard, RF++ will output an error message in the status bar located at the bottom of the GUI window.

Forest Parameters

To generate a forest specify forest parameters by clicking on the 'Forest Parameters' tab.

🗱 RF++			×
<u>F</u> ile <u>O</u> ptions	<u>H</u> elp		
Training Data	Forest Parameters		
Number of varia	bles to try at each split:	14	(Recommend value near 14)
Number of tree	s:	2000	(Recommend value of 5000 or more)
Random Seed:		1	✓ Use Proximity-based weights
Generate Fore	st		

The 1st parameter 'Number of variables to try at each split' will be automatically filled in with the square root of the number of variables entered in the 'Training Data' tab. This default value prevents overfitting the forest to the training data. The user can experiment with different values, but should not increase this number too much or overfitting may occur.

The next parameter is 'Number of trees' to grow. For best results, it is advised to grow between 2,000 and 10,000 trees. Smaller values can be used for quick experimentation with RF++, but larger numbers of trees should be used for effective analysis.

The 'Random Seed' parameter is used to seed the pseudo-random number generator. This value is useful when reproducing the results of prior experiments.

Proximity-based weights can be used for cluster-correlated data with the same replicate outcomes within a subject. This can be done by selecting the 'Proximity-based weights' checkbox.

When all fields have been filled, the forest can be grown by clicking the 'Generate Forest' button.

The progress report, including any error messages, will be displayed in the status bar at the bottom of the RF++ window frame. A 'Error reading in training samples' message may appear if the data parameters are improperly specified. This usually indicates a mismatch of the specified numbers of variables and/or samples with the corresponding values read from the training file. The progress report will change from 'Growing Forest...' to 'Calculating Statistics' and finally to 'Done'.

Training Results

After a forest is built, the Out-of-Bag (OOB) statistics are computed and 3 new tabs appear: 'Training Error', 'Variable Importance' and 'Testing/Predicting Data' tabs.

The 'Training Error' tab displays OOB sample-level and subject-level (when applicable) error rate(s) and confusion matrices.

🔉 RF++								_
<u>F</u> ile <u>O</u> pt	ions <u>H</u> elp)						
◀ т	raining Dat	a For	est Paramet	ers	Tr	aining Error	Variable Imp	ortance 🕨
Sample- Sample- 434 66	level Er level Co 75 425	ror Rate: nfusion Ma	0.141 atrix: (ro	ows	= prec	icted, co	ls = actual)	*
Subject Subject 48 2	-level E -level C 3 47	rror Rate onfusion I	: 0.05 Matrix: (rows	= pre	dicted, co	ols = actual)	
Sample- ID	level 00 True P Class C	B Classif: redicted lass	ications: Class 1	Cla	ss 2			
1	1 1 1	1 1	0.6622 0.6243	0.3	378 757 450			
	1 1 1	1 1 1	0.6608	0.4	439 392 189			
1	1 1	1 1	0.6932	0.3	068 959			
	1 1 1	1 1 1	0.5905	0.3	757 095 378			
22	2 2 2	1 1 1	0.6774 0.6145 0.5656	0.3 0.3 0.4	226 855 344			
2	2	2	0.4316	0.5	684 682			_
Full cluste	ered with n	umsubjects	= 100		Elapse	d Time = 72	seconds	

The 'Variable Importance' tab displays variable importance scores for 2 variable importance measures side-by-side. Variables in each column are sorted in decreasing order of importance.

🏭 RF++						×
<u>F</u> ile <u>O</u> pti	ions <u>H</u> elp					
∢ Tr	aining Data	Forest Parameter	rs	Training Error	Variable Importance	
Permutat Proporti 36 156 29 134 11 25 21 120 68 20 45 124 2	tion-based Score 0.0485 0.0401 0.0289 0.0018 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0008 0.0007 0.0006 0.0007 0.0007 0.0007 0.0007 0.0006 0.0007 0.0007 0.0006 0.00007 0.0007 0.0006 0.0006 0.0007 0.0006 0.0007 0.0007 0.0006 0.0006 0.0007 0.0006 0.0007 0.0006 0.0007 0.0006 0.0007 0.0006 0.0007 0.0006 0.0007 0.0007 0.0006 0.0007	Mean Decrea Margin (MDM) ID 36 36 0 156 0 29 0 134 0 120 0 120 0 120 0 120 0 22 0 20 0	<pre>ise in i) iscore i.0752 i.0623 i.0623 i.0014 i.00013 i.0013 i.0013 i.0012 i.0012 i.0012 i.0012 i.0010 i.0010</pre>			
			Elap	sed Time = 73	seconds	

Testing a Forest and Making Predictions

The 'Training/Prediction Data' tab is used to test the performance of the trained forest or to make predictions for unknown cases. This tab is similar to the 'Training Data' tab, but the 'Number of Variables' and 'Number of Classes' fields are automatically filled in form the training dataset and are unchangeable (*greyed out*). The user needs to provide the number of samples in the testing/prediction data file and check the 'Have outcomes' checkbox if the column of outcomes is present in the file. This column should be present only in the testing file (not in the file where prediction of the unknown cases are to be made). Note that, this column is never included in the count of variables.

👭 RF++			- - ×
<u>F</u> ile <u>H</u> elp			
 Forest Parameters Training Number of Samples: Number of Variables: Number of Classes: 	ng Error Va 1000 185 2	riable Importance	Testing/Prediction Data
🗹 Have įds	☑ Same Out	comes for Replicat	es
✓ Have <u>o</u> utcomes Testing/Prediction Data File: /trun	k/gensample:	s/simulations/sim2_	ts/100_10_1.txt Browse
Test/Classify			
Full clustered with numsubjects =	100	Elapsed Time = 5	9 seconds

Classifications are displayed in the 'Testing/Prediction Classifications' tab. When testing, sample classifications are displayed first, then sample error rate and the sample confusion matrix. If subject-level classification is appropriate, i.e. the data is cluster-correlated and outcomes for each subject replicates belong to the same class, the subject-level classifications, then the subject error rate and subject confusion matrix are displayed.

🚻 RF	++					×
<u>F</u> ile (<u>)</u> ptions <u>H</u>	lelp				
•	Variable Im	portance	Testing/Pred	liction Data	Testing/Prediction Classifications	; •
Sampl I	e-level D True Class	Classifi Predict Class	cations: ed Class 1	Class 2		<u>_</u>
	$egin{array}{ccc} 1 & 1 \ 1 & 1 \ 1 & 1 \ 1 & 1 \ \end{array}$	1 1 1	0.6180 0.5800 0.7035	0.3820 0.4200 0.2965		
	1 1 1 1 1 1	1 1 1	0.7465 0.5995 0.7470	0.2535 0.4005 0.2530		
10	 9 2 9 2	2	0.2615	0.7385		
Sampl Sampl 45	e-level e-level 4 85 6 415	Error Ra Confusio	te: 0.1310 n Matrix: (ro	ws = pred:	icted, cols = actual)	
Subje I	ct-level D True Class	CLassif Predict	ications: ed Class 1	Class 2		
	1 1 2 2 3 1 4 2	1 2 1 2	0.6769 0.4870 0.5971 0.3558	0.3231 0.5131 0.4030 0.6442		
91 91 101	8 2 9 1 9 2	2 1 2	0.3386 0.5931 0.3185	0.6614 0.4070 0.6815		
Subje Subje 41	ct-level ct-level 8 5 2 45	Error R Confusi	ate: 0.0700 on Matrix: (r	ows = pred	dicted, cols = actual)	•
				Elapsed	Time = 1 seconds	7//

The following columns are displayed: sample/subject IDs, true class, predicted class, followed by the proportions of votes for each of the classes.

8 8	RF++							x
<u>F</u> ile	<u>H</u> elp	o						
•	Vari	iable Imp	oortance	Testing/Pred	liction	Data	Testing/Prediction Classifications	
	100	I	1	0.1638	0.83	362		
	100	1	1	0.1758	0.82	242		
	100	1	1	0.1339	0.86	61		
	100	1	1	0.1558	0.84	142		
Sam	ple-	level E	Error Rat	e: 0.0000				
Sam	ple-	level (Confusion	Marix: (rov	√s =	predi	.cted, cols = actual)	
	500	Θ						
	Θ	500						
Sub	ject	-level	CLassifi	cations:				
	ID	True	Predicte	d Class O	Clas	ss 1		
		Class	Class					
	1	Θ	Θ	0.8057	0.19	943		
	2	1	1	0.1772	0.82	228		
	3	Θ	Θ	0.8237	0.17	763		
	4	1	1	0.1349	0.80	551		
	5	Θ	Θ	0.8622	0.13	378		
	6	1	1	0.1625	0.83	375		
	7	Θ	Θ	0.8694	0.13	306		
	2	1	1	0 1771	0.82	22 <u>9</u>		-
					E	Elapsed	d Time = 6 seconds	///

When making predictions, a true outcome column should not be present. Error rate(s) and confusion matrices will not be computed.

Saving forest, variable importance scores and classifications

To save a forest, select on of the following tabs: 'Training Data', 'Forest Parameters', or 'Training Error', then select the 'Save' menu item from the 'File' pull down menu. Forests are saved with the ".rff' file extension. Training error and confusion matrices are also saved in this file.

🗱 RF++					- • ×
<u>F</u> ile <u>H</u> elp					
Trainir	ng Data	Forest Paramete	ers Training Erro	r Vari	iable Importance 🕨
Sample-leve Sample-lev 426	Save F	Rate: 0.127			
74 4	<u>N</u> ame:	forest.rff			
Subject-le Subject-le	Save in <u>f</u> o	lder: <u>D</u> tmp			
48	▼ <u>B</u> rowse	for other folders			
	I 🗋 lea		Create Folder		
	Places		Name		▼ Modified
	leclero		🗋 20_3_1_train.rff		Yesterday
Full clustered	🗋 Deskt	op	20_3_1_train_nowt.	.rff	Yesterday
	🖸 File Sy	stem	20_3_1_train_prox.	rff	Yesterday
		-	🗋 iris_100.rff		Yesterday
]		_	
	♣ <u>A</u> do	Bernove		RF	F files (*.rff)
				🗶 <u>C</u> ancel	Save

Variable Importance measures are saved by first clicking on the 'Variable Importance' tab and then selecting the 'Save' menu item from the 'File' pull down menu. This file is identical to the text displayed to the user in RF++ window.

-	RF++						□ ×			
Eile	e <u>H</u> elp									
•	Trai	ning Data Forest Parameters Training Error Variable Impo								
Pe	rmutati	Save 1	Training	Variable Importan	ce		4			
	ID 36	<u>N</u> ame:	[ir	nportant_vars.txt						
	29 156	Save in fo	older:) GUI						
	26 42 108	▼ <u>B</u> rows	e for othe	er folders		current subtral				
	142 60		cierc y							
	180 123		c		5	07/03/07				
	10	Deski	top	🗁 smol	ka	07/03/07				
Sin	nple clus	🔂 File Sy	ystem	🗁 tmp		Yesterday	////			
				🔁 unus	ed	06/24/07				
				iris_t	estcl.txt	Tuesday 🚽	L			
		♣ <u>A</u> d	d _	Remove		TXT files (*.txt)				
					X (Cancel 🔚 Save				

Classifications/predictions can be saved by first clicking on the 'Testing/Prediction Classifications' tab and then selecting the 'Save' menu item from the 'File' pull down menu from the.

🗱 RF++						×
<u>F</u> ile <u>H</u> elp						
 Variable 	e Importance	Testing/Pr	ediction Data	Testing/Pred	diction Classificatio	ns
Sample-lev ID Tr	Save Testi	ng/Prediction	Classifications			*
1	<u>N</u> ame:	some_class	sification_result	ts.txt		
	Save in <u>f</u> older	D tmp				
1	➡ Browse for	other folders				
1		yuliya GU	tmp		Create Folder	
	<u>P</u> laces		Name		▼ Modified	
1	leclerc		100_3_1_te	estcl.txt	Yesterday	
1 2	Desktop		100_3_1_te	estcl_nowt.txt	Yesterday	
	🖸 File System	n	🗋 100_3_1_te	estcl_prox.txt	Yesterday 🗖	1111
			iris_100_tes	stcl.txt	Yesterday	
	Add	- <u>R</u> emove		KT files (*.txt) 👻		
				X Cano	el 🔚 Save	

Loading an Existing Forest

A previously forest can be loaded by selecting the 'Open' menu item from the 'File' pull down menu. After a forest is loaded, 4 tabs that describe the forest are displayed. The first 3 tabs describe the forest: 'Training Data', 'Forest Parameters', and 'Training Error'. The 'Testing/Prediction Data' tab is opened for the user to specify testing or prediction dataset parameters in order to test performance of the forest or to make predictions for unknown cases.

Forest File Description

XML File

The XML schema for a forest is defined in the file 'forest.xsd'. This schema defines a forest consisting of forest attributes such as number of samples used to grow a forest, number of trees, etc. followed by a sequence of trees. Each tree is a sequence of nodes. Nodes are listed in level-order, though knowledge of this ordering is unnecessary for parsing.

The correct linkage structure of a tree can be determined by using the node attribute 'id' which uniquely identifies a node. Each non-terminal node also contains ids of the left and right children nodes. An example of a forest in XML format is listed in the supplementary file 'forest.xml'.

Text File

The forest is saved as a text file with the '.rff' extension. It is best to read the descriptions provided for the XML file syntax, files 'forest.xsd' and 'forest.xml'. The '.rff' file contains more information then the XML file, such as the confusion matrices that is useful when a trained forest is loaded into RF++ GUI. An example is available in the supplementary file 'forest.rff'.

Example:

```
150 4 0 0 3
2
1234567
100
50 3 1.6 150 -1
43.7579 2 1.9 95 -1
55 -1 0 55 2
45 -1 0 45 0
42.64 2 4.9 50 -1
46 -1 0 46 1
4 -1 0 4 2
50 2 4.8 150 -1
47.3958 3 0.6 96 -1
50.1481 3 1.7 54 -1
39 -1 0 39 0
53.1404 0 4.9 57 -1
5 2 5 8 -1
46 -1 0 46 2
1 -1 0 1 2
54.0357 3 1.6 56 -1
1.66667 \ 1 \ 2.2 \ 3 \ -1
5 -1 0 5 2
55 -1 0 55 1
1 - 1 0 1 2
1 -1 0 1 2
2 -1 0 2 1
1504003
2
4
50 3 0.6 150 -1
46 -1 0 46 0
53.2308 3 1.7 104 -1
52.5077 2 4.9 65 -1
35.2051 0 5.9 39 -1
```

... (the rest of the trees)

The numbers in the file are as follows:

1504003

number_of_samples number_of_variables have_ids clustered_outcomes number_of_classes have_ids -0/1 - 0 if no IDs were present in the training data, 1 if IDs were present. clustered_outcomes -0/1 - 0 if training data is not clustered and/or outcomes were not the same for all replicates within a subject. 1 if training data was clustered with outcomes for all replicates within a subject belonging to the same class. If this is 1, then subject-level classifications and error rates are produced in addition to the sample-level classification and error rate.

2

number_of_variables_to_split_at_each_node

1234567 random seed

100 number_of_trees

50 3 1.6 150 -1

Gini_score split_variable split_variable_value sample_size_reached_this_node class

Gini score is used to decide which variable and its value will produce the best separation of training data into distinct classes. Sample size that reached a particular node is printed for purposes of seeing how the splits are made and how many samples a split separates from the rest of the samples in a particular node. The 1^{st} node is the root node that has all the samples, so we see the total number of the samples – 150, which is the same as in the 1^{st} line of the file.

Variables are numbered 1,2,3,... Class (last value in the line) is in the range 1,2,... for terminal nodes (nodes that produce classifications) and -1 for nodes inside the tree that do not produce the classification and are split further.

Trees are separated by a new line. After all the trees are written out more forest information is added:

0 100

- 0 which_tree_weight weight_vector_size
 - which_tree_weight -0/1, 0 if no tree weights were used, 1 if proximity-based weights used
- 100 weight_vector_size number equal to the number of trees in the forest as each tree has a weight

1111...111

Tree weights, as one long line with number of trees values in it. Here the weights are set to 1 and thus do not affect the voting.

50 0 4 0 46 2 0 4 48

Sample-level confusion matrix. Matrix shows the numbers of the Out-of-bag (OOB) samples classified into each of the classes. Rows are the predicted outcome, columns are true outcome. Values on the diagonal are the correct classifications, all values off diagonal were classified incorrectly as the class in different row. Class labels are not printed here, classes are ordered as class1,2,... in rows and columns.

0

subject-level_confusion_matrix identifier (flag) - 0/1, 0 if no subject-level confusion matrix follows, 1 if subject-level confusion matrix printed.

Forest file output with the subject level confusion matrix

More information is stored in the forest file if subject-level classification is done. In the following example 2 classes were available.

2 100 0.516667 0.433333 0.433333 0.4 0.513333 0.39 0.39 0.39 0.546667 0.433333 ... 0.576667 122 36 28 114 1 43 11 7 39 <End of file> ------2 2 100 2 - proximity based weights are used 100 - number of trees in the forest (small for the purpose of the example)

0.516667 0.433333 0.433333 0.4 0.513333 0.39 0.39 0.39 0.546667 0.433333 ... 0.576667

tree weights, 100 weights

122 36 28 114 sample-level confusion matrix

1

flag (indicator) if subject-level confusion matrix follows, 1 means subject level matrix is present
43 11
7 39
subject-level confusion matrix

Generally, the users do not need to be familiar with the syntax of these files. RF++ will save and load these files automatically. If someone wants to further investigate the rules used to grow trees and consequently a forest the ".rff" and XML files will provide valuable insight into the rules.