
IFAD
IF

A
D

VDMTools

The VDM++ to C++ Code
Generator

How to contact IFAD:

☎ +45 63 15 71 31 Phone

+45 65 93 29 99 Fax

✉ IFAD Mail
Forskerparken 10A
DK - 5230 Odense M

http://www.ifad.dk Web
ftp.ifad.dk Anonymous FTP server

@ toolbox@ifad.dk Technical support
info@ifad.dk General information
sales@ifad.dk Sales and pricing

The VDM++ to C++ Code Generator — Revised for V6.8

c© COPYRIGHT 2001 by IFAD

The software described in this document is furnished under a license agreement.
The software may be used or copied only under the terms of the license agreement.

This document is subject to change without notice

The VDM++ to C++ Code Generator

Contents

1 Introduction 1

2 Invoking the Code Generator 1
2.1 Requirements for Generating Code 2
2.2 Using the Graphical Interface . 2
2.3 Using the Command Line Interface 5
2.4 Generated C++ Files . 6

3 Interfacing the Generated Code 7
3.1 Code Generating VDM++ Types - The Basics 7
3.2 Files to be Implemented by the User 11

3.2.1 Definition of Offsets for Record Tags 12
3.2.2 Implementing Implicit Functions/Operations and Specifi-

cation Statements . 13
3.2.3 Implementing the Main Program 14
3.2.4 Substituting Parts of the Generated C++ code 17

3.3 Compiling, Linking and Running the C++ code 18

4 Unsupported Constructs 19

5 Code Generating VDM Specifications - The Details 21
5.1 Code Generating Classes . 21

5.1.1 Object References in the VDM C++ Library 22
5.1.2 The Inheritance Structure of the Generated Code of Classes 23
5.1.3 The Structure of a Generated Class 27

5.2 Code Generating Types . 28
5.2.1 Motivation . 28
5.2.2 Mapping VDM++ Types to C++ 30
5.2.3 Code Generating VDM++ Type Names 36
5.2.4 Invariants . 38

5.3 Code Generating Function and Operation Definitions 39
5.4 Code Generating Instance Variables 42
5.5 Code Generating Value Definitions 44
5.6 Code Generating Expressions and Statements 45
5.7 Name Conventions . 45
5.8 Standard Library . 46

A References 47

i

The VDM++ to C++ Code Generator

B The libCG.a Library 47
B.1 cg.h . 47
B.2 cg aux.h . 49

C Handcoded C++ Files 50
C.1 DoSort userdef.h . 50
C.2 ExplSort userdef.h . 50
C.3 ImplSort userdef.h . 50
C.4 MergeSort userdef.h . 50
C.5 SortMachine userdef.h . 50
C.6 Sorter userdef.h . 50
C.7 ImplSort userimpl.cc . 51
C.8 sort pp.cc . 52

D Makefiles 55
D.1 Makefile for Unix Platform . 55
D.2 Makefile for Windows Platform 57

ii

The VDM++ to C++ Code Generator

1 Introduction

The VDM++ to C++ Code Generator supports automatic generation of C++
code from VDM++ specifications. This way, the Code Generator provides you
with a fast way of implementing applications based on VDM++ specifications.

The Code Generator is an add-on feature to the VDM++ Toolbox. Its installation
is described in the document [InstallPPMan]. The following text is an extension
to the User Manual for the IFAD VDM++ Toolbox [UserManPP] and it gives
you an introduction to the VDM++ to C++ Code Generator.

The Code Generator supports approximately 95% of all the VDM++ constructs.
As a supplement, the user is given the possibility of substituting parts of the
generated code with handwritten code.

This manual is structured in the following way:

Section 2 lists the requirements that the VDM++ specification has to satisfy in
order to generate correct C++ code. Moreover, this section describes how to
invoke the VDM++ to C++ Code Generator from the IFAD VDM++ Toolbox.
Finally, the code generated C++ files will be described.

Section 3 guides you in the writing of an interface to the generated C++ code
and it explains how to interface handwritten code to it. Furthermore, it will be
explained how to compile, link and run the C++ code.

Section 4 summarizes the VDM++ constructs not supported by the Code Gen-
erator.

Section 5 gives a detailed description of the structure of the generated C++ code.
In addition, it explains the relation between VDM++ and C++ data types, and
it describes some of the design decisions made, when developing the VDM++ to
C++ Code Generator, including the name conventions used. This section should
be studied intensively before using the Code Generator professionally.

2 Invoking the Code Generator

To get started using the Code Generator you should write a VDM++ specification
in one or several files. In the distribution of the Toolbox a specification of different
sorting algorithms is included. This specification will be used in the following in
order to describe the use of the Code Generator. This specification is described

1

The VDM++ to C++ Code Generator

in [SortEx]. It is recommended that you go through the described steps on your
own computer. In order to do so, copy the directory vdmhome/examples/sort

and cd to it.

Before generating C++ code, it has to be ensured, that the VDM++ specifica-
tion satisfies the necessary requirements. The requirements in question will be
described in Section 2.1. In Section 2.2 and 2.3 it will be explained how to gener-
ate C++ code using the VDM++ Toolbox from the graphical interface and from
the command line. In Section 2.4 the code generated C++ files will be described.

2.1 Requirements for Generating Code

The Code Generator requires that all files of the VDM++ specification are syntax
checked in order to generate correct code. That is, one can code generate a single
class, however, all files of the specification should be checked.

Moreover, the Code Generator can only generate code for classes which are type
correct.1 If a class has not been type checked before and one tries to generate
code for it, it is automatically type checked by the Toolbox.

2.2 Using the Graphical Interface

We will now describe how the sort example is code generated from the graphical
user interface of the VDM++ Toolbox.

The VDM++ Toolbox is started with the command vdmgde. In order to generate
code corresponding to the sort example, create a new project containing all the
*.rtf files which can be found in the directory /vdmhome/examples/sort. See
[UserManPP] for a description of how to configure a project.

The file(s) must first be syntax checked and type checked: if you don’t do this
manually, the Toolbox will do it automatically when the Code Generator is in-
voked. The sort example specification passes both checks with no errors. Then
the Code Generator can be invoked by selecting all the classes and pressing the
(Generate C++) button. More than one file/class can be selected, in which case
all of them are translated to C++. The result of this step is shown in Figure 1.

Code is generated for each class in the specification and the Toolbox signals this

1There exist two classes of well-formedness as explained in [LangManPP]. In the current
context we mean possible well-formed type correctness.

2

The VDM++ to C++ Code Generator

Figure 1: Code Generating the Sort Example

by writing a big C as shown in Figure 2. A number of C++ files have been
created in the directory, where your project file lies. If no project file exists, the
files will be written in the directory, where the VDM++ Toolbox was started.

When generating code for the sort example, one warning is generated by the Code
Generator, and the Error window therefore pops up as shown in Figure 3.

This warning states that the sequence concatenation pattern is not supported
by the Code Generator. This means, that the Code Generator cannot generate
executable C++ code for this construct. The generated code will be compilable,
but executing the branch containing the unsupported construct will cause a run-
time error. A detailed list of unsupported constructs is given in Section 4.

The user of the Code Generator can choose to generate code containing position
information of run-time errors. When the Output position information option is
chosen, run-time error messages will tell you the position (file name, line and
column number) in the VDM++ specification which causes the run-time error.

3

The VDM++ to C++ Code Generator

Figure 2: Code Generating the Sort Example

Figure 3: A Warning Generated by the Code Generator

This feature can be set in the option menu, as shown in Figure 4. Another option
available is the Check pre and post conditions option. This generates code which
checks operation and function pre conditions, and function post conditions. It is
also shown in Figure 4.

For the sort example, the execution of the MergeSort function will, as described
above, result in a run-time error. Without setting the described option, the exe-
cution of the corresponding C++ code will result in the following error message:

The construct is not supported: Sequence concatenation pattern

On the other hand, when setting the option, the following error message will

4

The VDM++ to C++ Code Generator

Figure 4: C++ Code Generator Options

appear:

Last recorded position:

In: MergeSort. At line: 31 column: 18

The construct is not supported: Sequence concatenation pattern

2.3 Using the Command Line Interface

The Code Generator can of course also be invoked when the VDM++ Toolbox
is run from the command line. This will be described briefly in the following.

The VDM++ Toolbox is started from the command line with the command
vppde. The -c option is used in order to generate code:

vppde -c [-r] [-P] specfile, ...

In order to code generate the sort example, the following command is executed
in the vpphome/examples/sort directory:

vppde -c *.vpp

The specification will be parsed first. If no syntax errors are detected, the specifi-
cation will be type checked for possible well-formedness. Finally, if no type errors
are detected, the specification will be translated into a number of C++ files.
Corresponding to the graphical interface, the user can set the Output position

5

The VDM++ to C++ Code Generator

information option (-r) in order to generate code with run-time position infor-
mation, and the Check pre and post conditions option (-P) to generate run-time
checks of pre and post conditions.

2.4 Generated C++ Files

Let us now go one step further and look at the files generated by the code gen-
erator.

For each VDM++ class, four files are generated:

• <ClassName>.h

• <ClassName>.cc

• <ClassName>_anonym.h

• <ClassName>_anonym.cc

The <ClassName>.h file contains the definition of the C++ class corresponding
to the VDM++ class. Moreover it contains the class definitions corresponding to
the composite types defined in the VDM++ class.

The <ClassName>.cc file contains the implementation of the functions and op-
erations defined in the VDM++ class. Moreover, for every class generated for a
record type, the implementation of its member functions is found here.

The purpose of the <ClassName>_anonym.h and <ClassName>_anonym.cc files is
to declare and implement all the anonymous types. Anonymous types are those
that are not given a name in the VDM++ specification.

Apart from these files, two more files are generated:

• CGBase.h

• CGBase.cc

These files contain part of the implementation of the object reference type. This
is described in Section 5.1.

The code corresponding to each VDM++ class is divided into a header and an
implementation file. Both files will be named with the class name. The suffix

6

The VDM++ to C++ Code Generator

for the header file will be ’.h’, whereas the suffix for the implementation file
will ’.cc’ on Unix platforms and ’.cpp’ on Windows platforms. The suffix of
the implementation file can be customised by setting the environment variable
VDMCGEXT2.

3 Interfacing the Generated Code

We have now reached the point, where a number of C++ files have been generated
from a VDM++ specification. You are now in the position to write an interface
to these C++ files in order to compile, link and run an application.

To be able to write an interface to the generated code, you must have some basic
knowledge about the generated code. This includes, first of all, the strategy used
when generating code for VDM++ constructs, especially VDM++ types. In the
following, we will give a short introduction to this topic. For more information
the reader is referred to Section 5.

3.1 Code Generating VDM++ Types - The Basics

This section gives a short introduction to the way VDM++ types are code gen-
erated.

Let us start by giving an example of generated C++ code. The signature of the
function IsOrdered,

IsOrdered: seq of int -> bool

defined in class ExplSort, is for example code generated as follows:

class type_iL : public SEQ<Int>{

...

};

Bool vdm_ExplSort::vdm_IsOrdered(const type_iL &vdm_l) {

...

};

2On the Windows 98 platform this can be set in the autoexec.bat file, and on the Windows
NT/2000 platform this can be set in the Registry

7

The VDM++ to C++ Code Generator

In order to understand this code, it is necessary to have some knowledge about
the strategy used to generate code for VDM types, as well as the used name
conventions.

The data type handling of the Code Generator is based upon the VDM C++
Library. The current version of this library (libvdm.a) is described in [LibMan].

• Basic Data Types

The basic data types are mapped to the corresponding VDM C++ library
classes, Bool, Int, Real, Char and Token.

• Quote Types

The quote types are mapped into the corresponding VDM C++ library
class Quote.

• Set, Sequence and Map Types

To handle the compound types set, sequence and map, templates are in-
troduced. These templates are also defined in the VDM C++ library. As
an example let us show how the VDM type seq of int is code generated:

class type_iL : public SEQ<Int>{

...

};

The VDM seq type is mapped into a class that inherits from the template
SEQ class. In case of seq of int, the argument of the template class is
Int, the C++ class representing the basic VDM type int. The name of
the new class is made up in the following way:

type : signals an anonymous type
i: signals int
L: signals sequence

• Composite/Record Types

Each composite type is mapped into a class that is a subclass of the VDM
C++ library Record class. For example, the following composite type de-
fined in class M

A:: r : real

i : int

8

The VDM++ to C++ Code Generator

will be code generated as:

class TYPE_M_A : public Record{

...

};

• Tuple Types

The strategy for handling tuples is very similar to that of composite types.
Each tuple type is mapped into a class that is a subclass of the VDM C++
library Tuple class. For example, the following tuple:

int * real

will be code generated as:

class type_ir2P : public Tuple{

...

};

The name of the new class is made up in the following way:

type : signals an anonymous type
i: signals int
r: signals real
2P: signals tuple with size two.

• Union Types

The union type is mapped into the VDM C++ library Generic class.

• Optional Types

The optional type is mapped into the VDM C++ library Generic class.

• Object Reference Types

For each VDM++ class a corresponding C++ class is generated. For a
VDM++ class SortMachine a corresponding C++ class vdm SortMachine
will be generated.

An object reference of an instance of class is mapped into a class type_

ref_<ClassName>.

The object reference type is described in detail in Section 5.1.

9

The VDM++ to C++ Code Generator

The composite type example has already given you an idea about the way, type
names are generated.

Types that are not given a name in the specification (anonymous types) are
prefixed with type written with small letters. Type names however are prefixed
with TYPE written with capital letters. In the record example we have seen one
example of a type name, namely TYPE M A. The other VDM++ types can of
course also be named and the name scheme used is the same as for records.

A generated type name is prefixed with TYPE. Then it is followed by the class
name, where the type is defined, and finally the chosen VDM name is concate-
nated.

Take a look at the following VDM++ specification and the name conventions
used when generating the defined types:

class M

types

A = int;

B = int * real;

C = seq of int;

end M

The three defined types above will be given the names TYPE_M_A, TYPE_M_B and
TYPE_M_C. The scope of these type names is limited to the class M. The definition
of these names is therefore placed in file M.h.

#define TYPE_M_A Int

#define TYPE_M_B type_ir2P

#define TYPE_M_C type_iL

However, the specification also contains two anonymous types int * real and
seq of int. These types can potentially be used in any class, and therefore
the name and definition of the corresponding C++ type should be declared and
defined globally3. This is done in the anonym files: <ClassName>_anonym.{h,

cc}

3The strategy is to define unique names for structurally equal types. This strategy is used
in order to solve the fact that C++ is based on type name equivalence, whereas VDM++ is
based on structural equivalence.

10

The VDM++ to C++ Code Generator

In addition to the information given about the way types are code generated, it
should be mentioned how function or operation names are generated: A function
or operation name f in a class M in a VDM specification will be given the name:
vdm_M::vdm_f.

You should now have an idea about the Code Generator’s overall strategy when
generating code for VDM specifications. More detailed information is given in
Section 5 and should be studied carefully before using the Code Generator pro-
fessionally.

3.2 Files to be Implemented by the User

We have now given some basic information about the Code Generator and the
code generated files. This section describes the work the user must do in order
to interface with the generated code.

Let us start by giving you an overview of all the C++ files involved when running
the C++ code for a VDM++ specification. These files can be split up into code
generated C++ files and handcoded C++ files. Figure 5 shows the code generated
files to the left and the handcoded files to the right. Moreover, the involved files
can be split up into C++ files per VDM++ class and C++ files per VDM++
specification.

Section 2.4 has already described the code generated C++ files. We will now
decribe the handcoded files.

To interface with the generated code the user has to perform the following tasks:

1. For each class define offsets for record tags.

2. Implement implicit functions/operations and specification statements con-
tained in the VDM++ specification.

3. Write a main program.

4. Optionally, substitute parts of the generated C++ code with handwritten
code.

5. Compile, link and run the application.

In the following we will describe these tasks one by one for the sort example.

11

The VDM++ to C++ Code Generator

<Classname>.h

<Classname>.cc

<Classname> anonym.h

<Classname> anonym.cc

<Classname> userdef.h

<Classname> userimpl.cc

CGBase.h CGBase.cc Main program

VDM++ Specification/
Project

�
�
�

��	

@
@
@
@@R

@
@
@

@@I

�
�
�
���

C++ files
per VDM++
class

C++ files
per VDM++
project

Code
generated
C++ files

Hand coded
C++ files

Figure 5: C++ Files per VDM++ Project

3.2.1 Definition of Offsets for Record Tags

A composite type (record type) consists in the VDM++ specification of a string
(the tag) and a sequence of field selections for each field in the record type:

RecTag ::

fieldsel1 : nat

fieldsel2 : bool

In the VDM C++ Library the record tag string “RecTag” is modelled with a
unique integer. However, it is important for this strategy that all record types
within one specification have their own unique tag number. For each class the
Code Generator will number the record tags sequentially from an offset basis.
The offset should be defined by the user, and it is the responsibility of the user
that the offsets defined for each class ensures that the tags are unique.

12

The VDM++ to C++ Code Generator

The definition of the offset should be written in a file called <ClassName>_userdef.

h The offset should be defined with a define directive. The name of the tag offset
should be TAG_<ClassName>.

For the sort example this implies, that the user has to implement 6 files, one for
each class. The MergeSort_userdef.h file, for example, could possibly contain
the following definition.

#define TAG_MergeSort 100

3.2.2 Implementing Implicit Functions/Operations and Specification
Statements

For every class which contains an implicit function a <ClassName>_userimpl.cc

file containing the function definition has to be written.

The sort example contains one implicit function in the ImplSort class, namely
ImplSorter. This function must be implemented in the file ImplSort_userimpl.
cc in order to interface the generated C++ code. The function has to be written
in such a way that it matches its member function declaration which can be found
in class vdm_ImplSort, defined in file ImplSort.h:

virtual type_iL vdm_ImplSorter(const type_iL &);

The function ImplSorter in class ImplSort is given the name vdm_ImplSort::

vdm_ImplSorter and has the following declaration:

type_iL vdm_ImplSort::vdm_ImplSorter(const type_iL& l) {

...

}

One possible implementation of this function is shown in Appendix C.7.

Thus, the user has to write a C++ function definition for the operation and add it
to the <ClassName>_userimpl.cc file of the class which contains the operation.

The code generator generates an include directive for each specification statement
it meets. Thus, for each specification statement the user has to implement a cor-
responding file with the name: vdm_<ClassName>_<OperationName>-<No>.cc,

13

The VDM++ to C++ Code Generator

where <OperationName> is the name of the operation in which the specifica-
tion statement appears, and <No> is a sequential numbering of the specification
statements that appear in the specific operation.

3.2.3 Implementing the Main Program

We have now implemented the files necessary to compile, link and run the code,
except for the main program.

Let us therefore write a main program for the sort example.

First of all, we will start by specifying the main program in VDM++.

01 Main: () ==> ()

02 Main () ==

03 let arr1 = [3,5,2,23,1,42,98,31],

04 arr2 = [3,1,2] in

05

06 (dcl smach : SortMachine := new SortMachine(),

07 res : seq of int = [];

08 def dos : Sorter := new DoSort() in

09 res = smach.SetAndSort(dos,arr1);

10 def expls : Sorter := new ExplSort() in

11 res = smach.SetAndSort(expls,arr2);

12 def imps : Sorter := new ImplSort() in

13 (res = smach.SetAndSort(imps,arr2)

14 imps.Post_ImplSorter(arr2,res)

15)

16 def mergs : Sorter := new MergeSort() in

17 smach.SetSort(mergs);

18 res = smach.GoSorting(arr2);

19)

We will now implement a C++ main program with the same functionality as in
the above specified VDM++ method. The main program is implemented in the
file sort_pp.cc and the complete program is shown in appendix C.8.

The C++ file, containing the main program, should start by including all the
necessary header files. These include one header file per VDM++ class, the
header of the VDM C++ Library, called metaiv.h, and the standard library
class <fstream> (in order to generate output).

14

The VDM++ to C++ Code Generator

Let us now, step by step, translate the above listed VDM specification to C++.
Line 03 and 04 specify two integer lists. Translated to C++, one will get the
following code:

type_iL arr1, arr2;

arr1.ImpAppend ((Int)3);

arr1.ImpAppend ((Int)5);

...

arr2.ImpAppend ((Int)3).ImpAppend ((Int)1).ImpAppend ((Int)2);

Line 06 declares an object reference smach to an instance of the class SortMachine.

The following line implements this in C++:

type_ref_SortMachine smach (ObjectRef (new vdm_SortMachine ()));

Line 07 declares a variable res of type seq of int, which will later be used to
contain the sorted integer sequences. The C++ code for this is just:

type_iL res;

Let us now show how to call a specific sorting method.

As can be seen from the VDM++ specification and the generated C++ code,
the class SortMachine has an object reference to the abstract class Sorter as
an instance variable. The subclasses of Sorter implement the different sorting
algorithms. The method SetAndSort of the SortMachine class takes two pa-
rameters: An instance of a subclass of Sorter and a sequence of integers. The
method sets the mentioned instance variable to refer to the specified subclass and
thereby to a specific sorting algorithm, and it afterwards calls the Sort method
of this class with the integer sequence as parameter. The result will be a sorted
integer sequence.

Line 08 declares an object reference dos to an instance of the class DoSort, and
line 08 calls the SetAndSort method of the SortMachine class with the declared
object reference dos and the integer sequence arr1 as arguments. The result is
assigned to res.

All code generated VDM++ types have an ascii method which returns a string
containing an ASCII representation of the respective VDM value. This method

15

The VDM++ to C++ Code Generator

is being used here to print relevant log messages to standard output during ex-
ecution. A reference to the SortMachine class can be obtained by calling the
ObjGet_vdm_SortMachine function defined in the code generated class CGBase

cout << "Evaluating DoSort(" << arr1.ascii () << "):\n";

type_ref_Sorter dos (ObjectRef (new vdm_DoSort ()));

res = ObjGet_vdm_SortMachine(smach)->

vdm_SetAndSort (dos, arr1);

cout << res.ascii() << "\n\n";

In order to sort arr2 with the sorting algorithm defined in class ExplSort, the
following code can be written analogously:

cout << "Evaluating ExplSort(" << arr2.ascii () << "):\n";

type_ref_Sorter expls (ObjectRef(new vdm_ExplSort ()));

res = ObjGet_vdm_SortMachine(smach)->

vdm_SetAndSort (expls, arr2);

cout << res.ascii() << "\n\n";

In order to sort arr2 with the sorting algorithm implemented in class ImplSort,
the following code can be written:

cout << "Evaluating ImplSort(" << arr2.ascii () << "):\n";

type_ref_Sorter imps (ObjectRef(new vdm_ImplSort ()));

res = ObjGet_vdm_SortMachine(smach)->

vdm_SetAndSort (imps, arr2);

cout << res.ascii() << "\n\n";

Note, that the interface to the code is independent of having implicit or explicit
functions/operations.

One could also imagine that one wants to call the post condition function for
ImplSort. The Code Generator has generated a function called vdm_post_

ImplSorter in class vdm_ImplSort for it. This function can be called in the
ususal way.

cout << "Evaluating post condition for ImplSort:\n";

Bool p = ObjGet_vdm_ImplSort(imps)->

vdm_post_ImplSorter (arr2, res);

cout << "post_ImplSort(" << arr2.ascii () << "," <<

res.ascii () << "):\n" << p.ascii () << "\n\n";

16

The VDM++ to C++ Code Generator

Instead of calling the SetAndSort method of the SortMachine class, one can
choose to first set the desired sorting algoritm by calling SetSort and afterwards
to call the GoSorting method, as shown in line 16 to 18. We choose here the
MergeSort algorithm, well-knowing that the resulting C++ code will imply a
run-time error. The resulting code is shown in the following:

type_ref_Sorter mergs (ObjectRef(new vdm_MergeSort ()));

ObjGet_vdm_SortMachine(smach)->vdm_SetSort (mergs);

cout << "Evaluating MergeSort(" << arr2.ascii () << "):\n";

res = ObjGet_vdm_SortMachine(smach)->vdm_GoSorting(arr2);

cout << res.ascii() << "\n\n";

The described main program is implemented in the file named sort_pp.cc and
it is listed in Appendix C.8.

3.2.4 Substituting Parts of the Generated C++ code

Finally, we should say some words about the possibilities of substituting generated
C++ code with handwritten code. This can mainly be useful in two situations:

• The user wants to implement code for constructs that are not supported by
the Code Generator.

• The user wants to implement some existing components more efficiently.

For the sort example, one could imagine that the user wants to implement a
handcoded version of the MergeSorter function, as it contains a construct not
supported by the Code Generator. The user then has to substitute the code gen-
erated function vdm_MergeSort::vdm_MergeSorter with a handcoded version.
In order to do so, a new function has to be written. This must have the same
declaration header as the code generated version found in MergeSort.cc:

type_rL vdm_MergeSort::vdm_MergeSorter(const type_rL &vdm_l) {

...

}

17

The VDM++ to C++ Code Generator

In order to substitute a code generated function with a handwritten function, the
function has to be implemented in a file named MergeSort_userimpl.cc and the
following two defines have to be added to the MergeSort_userdef.h file:

#define DEF_MergeSort_USERIMPL

// a user defined file is now included.Note: For classes

// containing implicit functions/operations, an user

// implemented file is a presumption and this line should be

// obmitted.

#define DEF_MergeSort_MergeSorter

// the MergeSorter function in class MergeSort is handcoded

In this way, you can substitute specific functions generated by the Code Generator
with handwritten functions.

3.3 Compiling, Linking and Running the C++ code

After the user has handwritten the above described files, he is now in a position
to compile, link and run the C++ code.

C++ code generated by this version of the VDM++ to C++ Code Generator
must be compiled using one of the following supported compilers:

• GNU gcc version 3, on Sun Solaris 2.6, HP9000/700 running HP-UX 10 and
PC’s running Linux, or

• VC++ version 6.0 on Windows NT/2000 or Windows 98.

In order to create an executable application, the code must be linked to the
following libraries:

• libCG.a: Code generator auxiliary functions. This library is released with
the VDM++ to C++ Code Generator and is described in Appendix B.

• libvdm.a: The VDM C++ Library. This library is released with the
VDM++ to C++ Code Generator and is described in [LibMan].

• libm.a: The math library corresponding to the compiler.

18

The VDM++ to C++ Code Generator

The Makefile used in the implementation of the sort example is listed in appendix
D. To compile the main program sort_pp, you must type make sort_pp.

You can now run the main program sort_pp. Its output is listed below. Note
that a run-time error has occurred during execution of MergeSort. This is caused
by the fact that we have tried to execute an unsupported construct. The position
information which has been included in the generated code, leads to the origin of
the error in the underlying specification.

$ sort_pp

Evaluating DoSort([3,5,2,23,1,42,98,31]):

[1,2,3,5,23,31,42,98]

Evaluating ExplSort([3,1,2]):

[1,2,3]

Evaluating ImplSort([3,1,2]):

[1,2,3]

Evaluating post condition for ImplSort:

post_ImplSort([3,1,2],[1,2,3]):

true

Evaluating MergeSort([3,1,2]):

Last recorded position:

In: MergeSort. At line: 26 column: 18

The construct is not supported: Sequence concatenation pattern

$

4 Unsupported Constructs

In this version of the Code Generator the following VDM++ constructs are not
supported:

• Expressions:

– Lambda.

– Compose, iterate and equality for functions.

19

The VDM++ to C++ Code Generator

– Function type instantiation expression. However, the code generator
supports function type instantiation expression in combination with
apply expression, as in the following example:

Test:() -> set of int

Test() ==

ElemToSet[int](-1);

ElemToSet[@elem]: @elem +> set of @elem

ElemToSet(e) ==

{e}

– The concurrency part of VDM++, that is the #act, #fin #active,
#waiting and #req expressions.

• Statements:

– Always, exit, trap and recursive trap statements.

– Start and start list statements.

• Type binds (see [LangManPP]) in:

– Let-be-st expression/statements.

– Sequence, set and map comprehension expressions.

– Iota and quantified expressions.

As an example the following expression is supported by the Code Generator:

let x in set numbers in x

whereas the following is not (caused by the type bind n: nat):

let x: nat in x

• Patterns:

– Set union pattern.

– Sequence concatenation pattern.

• Threads

• Synchronization definitions

20

The VDM++ to C++ Code Generator

The Code Generator is able to generate compilable code for specifications in-
cluding these constructs, but the execution of the code will result in a run-time
error if a branch containing an unsupported construct is executed. Consider the
following function definition:

f: nat -> nat

f(x) ==

if x <> 2 then

x

else

iota x : nat & x ** 2 = 4

In this case code for f can be generated and compiled. The compiled C++ code
corresponding to f will result in a run-time error if f is applied with the value 2,
as type binds in iota expression are not supported.

Note that The Code Generator will give a warning whenever an unsupported
construct is encountered.

5 Code Generating VDM Specifications - The

Details

This section will give you a detailed description of the way VDM++ constructs are
code generated, including classes, types, functions, operations, instance variables,
values, expressions and statements.

This description should be studied intensively if you want to use the Code Gen-
erator professionally.

Note: This section focuses on the different VDM++ constructs and their mapping
to C++ code, NOT on the overall structure of the generated C++ files. The
reader is referred to Section 2.4 and Section 3 for a description of the overall
structure.

5.1 Code Generating Classes

For each VDM++ class a corresponding C++ class is generated. The inheritance
structure of the VDM++ classes corresponds exactly to the inheritance structure

21

The VDM++ to C++ Code Generator

of the generated C++ classes. However, the generated classes are tightly coupled
to the VDM C++ Library, as it is the case for all the generated types in the
Code Generator. In order to fully understand how the type system works in
the generated code you should read the documentation of this library [LibMan].
However, we will give a small introduction to the VDM C++ Library below.

5.1.1 Object References in the VDM C++ Library

The VDM C++ Library is structured with two superclasses: Common and
MetaivVal. For every VDM++ type a corresponding C++ class exists which is
a subclass to Common, and correspondingly for every kind of value in VDM++
a corresponding C++ class exists which is a subclass to MetaivVal. Thus, the
VDM C++ Library is structured in a type and a value system, as it is illustrated
in Figure 6.

Map
Object

Ref
· · · Int

Map-
Val

vdm-
Base

· · · IntVal

Common

�
�
�
�

@
@
@

@

p -

MetaivVal

�
�
�
�

@
@

@
@

Figure 6: The overall Structure of VDM C++ Library

When an object of a class, say Int, is created then an object of IntVal is created
automatically too, which contains the integer value. In addition the pointer p

from the Int object will be set to point to that IntVal object.

Let us now have look at how the VDM++ type “object reference” is reflected
in the VDM C++ Library. As for all other types, the VDM C++ Library pro-
vides two classes: in the value part system the class vdmBase and in the type
part system class ObjectRef. When creating an instance of an ObjectRef, the
constructor takes a pointer to an object of the corresponding value part side as
input, that is an object of class vdmBase. The declaration of one of the typically
used constructors of the ObjectRef class is listed below:

22

The VDM++ to C++ Code Generator

class ObjectRef : public Common {

public:

...

ObjectRef(vdmBase* = NULL);

...

}

5.1.2 The Inheritance Structure of the Generated Code of Classes

The Code Generator uses the object reference support of the VDM C++ Library
in the following way. All the C++ classes corresponding to VDM++ classes
inherit from the vdmBase class. In addition, for every class in the VDM++ spec-
ification a corresponding class is generated that represents the object reference of
exactly this VDM++ class. This C++ class inherits from the ObjectRef class.

The inheritance structure of the generated C++ class of the sorting example and
the VDM C++ Library is shown in Figure 7.

23

The VDM++ to C++ Code Generator

· · · Object
Ref

· · · · · · vdm-
Base

· · ·

Common

p -

Metaiv
Val

type ref -
Merge-

Sort

type ref -
ExplSort

type ref -
ImplSort

type ref -
DoSort

type ref
Sort-

Machine

type ref
Sorter

�
�
�
��

�
�
�
��

@
@

@
@@

vdm
Sorter

vdm
Sort

Machine

vdm
Merge-

Sort

vdm
ExplSort

vdm
ImplSort

vdm
DoSort

@
@
@

@@

�
�
�
��

CGBase

@
@
@

@@

Figure 7: The inheritance structure of the C++ classes of the sorting example
and the VDM C++ Library

In the type system part specialised object reference classes are generated type_

ref_<Classname> for each VDM++ class. Consider the declaration the class
type_ref_DoSort:

24

The VDM++ to C++ Code Generator

class type_ref_DoSort : public virtual type_ref_Sorter {

public:

type_ref_DoSort() : ObjectRef() {}

type_ref_DoSort(const Generic &c) : ObjectRef(c) {}

type_ref_DoSort(vdmBase * p) : ObjectRef(p) {}

const char * GetTypeName() const { return "type_ref_DoSort"; }

} ;

The class contains a constructor that takes a pointer to the vdmBase class. Con-
structing an object reference to an object of class ExplSort can be done in the
following way:

type_ref_DoSort ds (new vdm_DoSort());

As it can be seen from Figure 7, the generated C++ classes do not inherit directly
from the vdmBase, but through the class CGBase. This class is also generated
by the Code Generator.

The CGBase class is declared and defined in the files CGBase.cc and CGBase.h.
Apart from the class definition the CGBase files also consist of definitions of some
extern functions. Altogether, this code provides functions that make it possible
to extract the value part (that is the actual C++ object reference) of the object
reference type.

For the Sorting example consider an extract of the CGBase.h file:

class CGBase : public vdmBase {

private:

....

public:

virtual vdm_DoSort * Get_vdm_DoSort() { return 0; }

....

virtual vdm_Sorter * Get_vdm_Sorter() { return 0; }

};

vdm_DoSort * ObjGet_vdm_DoSort(const ObjectRef &obj);

...

vdm_Sorter * ObjGet_vdm_Sorter(const ObjectRef &obj);

enum {

VDM_DoSort,

...

25

The VDM++ to C++ Code Generator

VDM_Sorter

};

For each VDM++ class a global function is generated: ObjGet_vdm_<ClassName>
. The function takes an ObjectRef and returns a pointer to the corresponding
object of the C++ class. Furthermore, a unique tag is defined for each class
description.

An example of constructing an object reference and applying the functions within
the class DoSort is given below:

type_iL somelist;

type_ref_DoSort ds (new vdm_DoSort);

ObjGet_vdm_Sorter(ds)->vdm_Sort(somelist);

As the implementation of the VDM C++ Library is based on reference counters,
it will delete the pointer to the instance of class vdm_A when no existing objects
of class ObjectRef refer to it. To illustrate this, consider the following example:

{

type_ref_DoSort ds(new vdm_DoSort);

{

type_ref_DoSort tmp(new vdm_DoSort);

ds = tmp; // at this point the first vdm_DoSort

// pointer will be deleted.

}

} // The second vdm_DoSort pointer will be deleted when

// this scope is closed.

You should never directly declare a pointer to a vdm class and instantiate this
to an ObjectRef. This can go wrong because the VDM C++ Library is based on
reference counters, and will delete the objects when there is pointer (at least from
the point of view of the VDM C++ Library) that points at the object reference.

{

vdm_DoSort * ds_p = new vdm_DoSort(); // Never do this

{ // Never do this

type_ref_DoSort tmp(ds_p); // Never do this

26

The VDM++ to C++ Code Generator

... // Never do this

} // Now the ds_p will be deleted. // Never do this

... // Never do this

}

5.1.3 The Structure of a Generated Class

The generated C++ classes contain:

• C++ functions that implement VDM++ functions and operations.

• Some auxiliary functions for object reference gymnastics.

• Constructors/destructors of the class.

The access modifiers in the class follow those specified in the VDM++ class, with
the exception of type definitions, for which it is not meaningful to give an access
modifier. Thus for example a function which is public at the VDM++ level will
be code generated as a public member of the corresponding C++ class, and so
on.

Consider the declaration of the C++ vdm_DoSort class:

class vdm_DoSort : public virtual vdm_Sorter {

friend class init_DoSort ;

public:

vdm_DoSort * Get_vdm_DoSort () { return this; }

ObjectRef Self () { return ObjectRef(Get_vdm_DoSort()); }

int vdm_GetId () { return VDM_DoSort; }

vdm_DoSort ();

virtual ~vdm_DoSort () {}

private:

virtual type_iL vdm_DoSorting (const type_iL &);

virtual type_iL vdm_InsertSorted (const Int &, const type_iL &);

public:

virtual type_iL vdm_Sort (const type_iL &);

};

27

The VDM++ to C++ Code Generator

The class consists of the VDM++ functions vdm_DoSorting, vdm_InsertSorted
and vdm_Sort.

The auxiliary functions are:

• Get vdm DoSort: returns the reference pointer to the object self.

• Get vdm Self: returns the object reference pointer to the object self.

• vdm GetId: returns the unique tag of the class.

5.2 Code Generating Types

In Section 3.1 we have already given a short introduction to the way VDM++
types are mapped into C++ code.

Here we will give a more detailed description of this topic.

Section 5.2.1 gives a motivation for the strategy used when code generating
VDM++ types. Section 5.2.2 then describes the mapping of each VDM++ type
into C++ code. Section 5.2.3 summarizes the used name conventions for types.

5.2.1 Motivation

The type scheme of the Code Generator can be split into two parts:

• The type scheme used in function headers of the generated C++ code.

• The type scheme used in the rest of the generated C++ code.

The type scheme used in function headers uses C++ types that have been code
generated. The type scheme used in the rest of the generated code uses the fixed
implementation of each VDM++ data type found in the VDM C++ Library.
The VDM C++ library (libvdm.a) is described in [LibMan].

Let us imagine we have a VDM function with a seqofchar as input parameter.
Then the corresponding C++ function will take a parameter of type type_cL as
input. The type type_cL is a code generated type, where c resembles the VDM
type char, and L resembles the VDM type seq. The function implementation

28

The VDM++ to C++ Code Generator

however uses only the type Sequence found in the VDM C++ Library instead of
the type type_cL.

The code generated types obviously improve the generated C++ code. They
offer the possibility of catching more type errors at compilation time, and they
are more informative for the user.

With the introduction of new types a new problem arise: We have to ensure, that
a seq of char in class A is the same type as a seq of char in class B.

class A

types

C = seq of char

end A

class B

types

D = seq of char

end B

In VDM++ the types A‘C and B‘D are equivalent. This is however not the case
in C++, because C++ uses name equivalence except for the basic data types.

The generated code has to ensure two things:

• An anonymous VDM++ type may only be code generated once in order to
ensure type correctness in the generated code.

• The generated type name should be readable and understandable.

The first problem is solved by generating <Class Name>_anonymfiles. The <Class
Name>_anonym.hfile contains type declarations for all types that are potentially
declared by other classes (anonymous types) as well. The <ClassName>_anonym.
cc contains the implementation of these types. Moreover, it contains macro
defintions for them.

Note, that types which are not anonymous, i.e. composite types and type names,
are not declared in the <ClassName> anonym.h file, but instead in the <ClassNa
me>.hfile.

Let us show you the anonymous header file generated for class A in the above
listed example.

29

The VDM++ to C++ Code Generator

A_anonym.h looks like:

class type cL;

#define TYPE A D type_cL

#ifndef TAG type cL

#define TAG type cL (TAG A + 1)

#endif

#ifndef DECL type cL

#define DECL type cL 1

class type cL : public SEQ<Char>

...

#endif

The first #define statement defines a macro for type D in module A. It will
be replaced with type type_cL. The TAG_type_cL ensures a unique tag for the
type type_cL in the generated code. The two #ifndef statements ensure that the
TAG_type_cL and the type_cL are only defined once, either in the file A_anonym.h
or in the file B_anonym.h.

The second problem is solved by the chosen name conventions for generated C++
types. The strategy for generating type names is to unfold types into what we
could call a canonical form and then give the canonical form a name based on the
type names and type constructors involved. The next two subsections will give
you more information about the used notation.

5.2.2 Mapping VDM++ Types to C++

This section describes how VDM types are mapped into C++ types.

• The Boolean Type

The VDM bool type is mapped to the VDM C++ library class Bool and
it is abbreviated with the character b.

• The Numeric Types

The VDM nat, nat1 and int types are all mapped to the VDM C++
library class Int and they are abbreviated with the character i. The VDM

30

The VDM++ to C++ Code Generator

real and rat types are mapped to the VDM C++ library class Real and
they are abbreviated with the character r.

• The Character Type

The VDM type char is mapped to the VDM C++ library class Char and
it is abbreviated with the character c.

• The Quote Type

The VDM Quote type is mapped to the VDM C++ library class Quote

and it is abbreviated with the character Q. As for all types, a unique tag
has to be ensured for quotes. In the following we will show how the quote
<Hello> is code generated.

The following code will be added in the file <ClassName> anonym.h:

extern const Quote quote_Hello;

#define TYPE A C Quote

#ifndef TAG quote Hello

#define TAG quote Hello (TAG A + 1)

#endif

The following code will be added in the file <Clasname> anonym.cc:

if !DEF_quote_Hello && DECL_quote_Hello

define DEF_quote_Hello 1

const Quote quote_Hello("Hello");

#endif

The declared quote value may now be referenced as quote_Hello in the
C++ code.

• The Token Type

The token type is implemented using the C++ class Record. However, the
tag of token records is always equal to TOKEN, which is a macro declared
in the file cg_aux.h (see Appendix B), and the number of fields in token
records is always equal to 1. The VDM++ value mk token(<HELLO>) can
e.g. be constructed in the following way:

Record token(TOKEN, 1);

token.SetField(1, Quote("HELLO"));

31

The VDM++ to C++ Code Generator

• The Sequence Type

To handle the compound types set, sequence and map, templates are in-
troduced. These templates are also defined in the VDM C++ library and
they are based on the C++ classes Set, Sequence and Map in the C++
VDM library.

The seq type is abbreviated with the character L. As an example let us
show how the VDM type seq of int is code generated:

class type_iL : public SEQ<Int> {

public:

type_iL() : SEQ<Int>() {}

type_iL(const SEQ<Int> &c) : SEQ<Int>(c) {}

type_iL(const Generic &c) : SEQ<Int>(c) {}

const char * GetTypeName() const { return "type_iL"; }

} ;

The VDM seq type is mapped into a class that inherits from the template
SEQ class. In case of seq of int, the argument of the template class is
Int, the C++ class representing the basic VDM type int. The name of
the new class is made in the following way:

type : signals an anonymous type
i: signals int
L: signals sequence

Note also that several constructors for the type_iL class have been gener-
ated together with a GetTypeName function.

• The Set Type

The VDM set type is handled in the same way as the VDM seq type. The
template class SET is used rather than SEQ and the type is abbreviated with
the character S.

• The Map Type

The VDM map type is handled in the same way as the VDM seq type.
The template class MAP is used rather than SEQ and the Map template class
takes two arguments rather than one. The map type is abbreviated with the
character M.

• The Composite/Record Type

32

The VDM++ to C++ Code Generator

Each composite type is mapped into a class that is a subclass of the VDM
C++ library Record class. For example, the following composite type de-
fined in a class M

A:: c : real

k : int

will be code generated as:

class TYPE_M_A : public Record {

public:

TYPE_M_A() : Record(TAG_TYPE_M_A, 2) {}

TYPE_M_A(const Generic &c) : Record(c) {}

const char * GetTypeName() const { return "TYPE_M_A"; }

TYPE_M_A &Init(Real p1, Int p2);

Real get_c() const;

void set_c(const Real &p);

Int get_k() const;

void set_k(const Int &p);

} ;

As you can see, a record named A in a class M will be given the name:
TYPE_M_A.

Several member functions have been added to the generated C++ class
definition:

– Two constructors have been added.

– The function GetTypeName has been added.

– An initialisation function Init has been added. This function ini-
tialises the record fields to the corresponding values of the input pa-
rameters and returns a reference to the object.

– For each field in the record, two member functions have been added
in order to get and set its value. The names of these functions match
the names of the corresponding VDM record field selectors. If a field
selector is missing, the position of the element in the record will be
used instead, e.g. get_1.

The implementation of the Init function and the set/get functions can
be found in the implementation file of the class, where the record type has
been defined. For the above defined record type, the following code can be
found in the file M.cc:

33

The VDM++ to C++ Code Generator

TYPE_M_A &TYPE_M_A::Init(Real p1, Int p2) {

SetField(1, p1);

SetField(2, p2);

return * this;

}

Real TYPE_M_A::get_c() const { return (Real) GetField(1); }

void TYPE_M_A::set_c(const Real &p) { SetField(1, p); }

Int TYPE_M_A::get_k() const { return (Int) GetField(2); }

void TYPE_M_A::set_k(const Int &p) { SetField(2, p); }

• The Tuple/Product Type

The strategy for handling tuples is very similar to that of composite types.
Each tuple type is mapped into a class that is a subclass of the VDM C++
library Tuple class. For example, the following tuple:

int * real

will be code generated as:

class type_ir2P : public Tuple {

public:

type_ir2P() : Tuple(2) {}

type_ir2P(const Generic &c) : Tuple(c) {}

const char * GetTypeName() const { return "type_ir2P"; }

type_ir2P &Init(Int p1, Real p2);

Int get_1() const;

void set_1(const Int &p);

Real get_2() const;

void set_2(const Real &p);

} ;

The name of the new class is made in the following way:

type : signals anonymous type
i: signals int
r: signals real
2P: signals tuple with two subtypes/elements

34

The VDM++ to C++ Code Generator

There is however one difference between the code generation of composite
types and tuple types. The VDM++ tuple type is an anonymous type.
Therefore, the C++ type definition is found in the <ClassName>_anonym.

h file, not in the <Classname>.h file. Likewise, the implementation of
the member functions is found in the <Classname>_anonym.cc, not in the
<Classname>.cc file.

• The Union Type

The union type is mapped into the VDM C++ library Generic class.

• The Optional Type

The optional type is mapped into the VDM C++ library Generic class.

Note, nil is a special VDM++ value (not a type).

• The Object Reference Type

In Section 5.1 it has been described how two C++ classes are generated for
each VDM++ class. One of these represents the class itself and the other
one is used for handling a reference to the VDM++ class.

Look at the following example:

class M

types

A = seq of N

end M

class N

...

end N

Class M defines a type A that is a reference to an object of class N. When
code generating this example, five classes will be defined: vdm_M, vdm_

N, type_ref_M, type_ref_N and type_1NRL. The last one represents the
defined type seqofN. The name of the new class is made in the following
way:

type : signals anonymous type
1: signals numbers of characters in the name of the class
N: signals class N
R: signals object reference
L: signals sequence

35

The VDM++ to C++ Code Generator

Moreover, the following macro will be defined in file M_anonym.h:

5.2.3 Code Generating VDM++ Type Names

The type system of VDM++ and C++ differs as C++ uses name equivalence
and VDM++ uses structural equivalence. In VDM++

type

A = seq of int;

B = seq of int

type A and B are equivalent because they are structural equal. However, the
corresponding example in C++ is not equivalent because the name of A and B
are different.

The Code Generator solves this problem by generating equal names for structural
equal types. Thus, the corresponding generated C++ code is (in essence):

class type_iL

class type_iL : public SEQ<Int> {

public:

...

} ;

#define TYPE_ClassName_A type_iL

#define TYPE_ClassName_B type_iL

Thus all type name definitions are defined through #define directives to a name
reflecting the structural content of the type definition.

A generated type name is prefixed with TYPE followed by the class name, where
the type is defined and finally the chosen VDM name is concatenated.

All anonymous types, i.e. types that are not given a name in the VDM++
specification are prefixed with type and a constructed name that reflects the
structure of the type. The type name is based on an unfolding of the VDM type
and the use of a reverse polish notation.

36

The VDM++ to C++ Code Generator

The table below sketches the naming convention. The names of the VDM types
and type constructors are in the first column. In the second row the scheme for
generating names corresponding to the VDM type is listed. In the second column
<tp>’s should be replaced by generated type names for the corresponding VDM
type. E.g. the VDM type map char to int is given the name ciM as char

translates to c, int translates to i and the map type constructor takes the two
argument types and combines with what we could see as a reverse polish operator
M, giving ciM. The naming conventions will be described further in the rest of this
note.

VDM translation examples

bool b b

nat1 i i

nat i i

int i i

real r r

rat r r

char c c

quote Q <Hello> translates to Q

token T token translates to T

set <tp>S set of char translate to cS

sequence <tp>L sequence of real translates to rL

map <tp1><tp2>M map set of int to char translates
to iScM

product <tp1>..<tpn><n>P int * char * sequence of real

translates to icrS3P

composite <length><name>C the composite type Comp translates to
4CompC. Notice that <length> is the
number of characters in the name of the
composite type.

union U int | char | real translates to U

optional <tp>O [int] translates to iO

object ref <length><name>R a reference to an object of class
Cl translates to 2ClR. Notice that
<length> is the number of characters
in the name of the objects class.

37

The VDM++ to C++ Code Generator

VDM translation examples

recursive type F the type T defined as
T = map int to T translates to
iFM, i.e. the first unfolding of the
type. A recursive type will always
be given the name F in a generated
type name. An exception to this is
a recursive composite type which will
get the name as described above. See
the following section for more details

In the table above, the <length> part used for handling composite and object
references is used in order to ensure that type names may be read without ambi-
guity.

The unfolding of types into a canonical representation is made difficult by the
existence of recursive types. Therefore the name of a recursive type will be
represented by the name F. For example the type A in A = map int to A will
be represented by the type name iFM. The type generated for B in the following
type definition B = sequence of A will be FL.

Composite types will not be unfolded but are represented by their name, e.g.
Comp :: .. is represented by the type 4CompC.

5.2.4 Invariants

When an invariant is used to restrict a type definition in the specification, an
invariant function is also available. This invariant function can be called in the
same scope as its associated type definition (see [LangManPP]). The VDM++
to C++ Code Generator generates C++ function definitions corresponding to
invariants. As an example, consider the following VDM++ type definition in
class M:

S = set of int

inv s == s <> {}

The function declaration corresponding to the VDM++ function inv S is listed
below. This declaration is placed in the protected part of the C++ class vdm_M

in file M.h:

38

The VDM++ to C++ Code Generator

Bool vdm_inv_S(const type_iS &);

The implementation of this invariant function is found in file M.cc.

Note that the VDM++ to C++ Code Generator does not support dynamic check
of invariants, and invariant functions must therefore be called explicitly.

5.3 Code Generating Function and Operation Definitions

In VDM++, functions and operations can be defined either explicitly or implic-
itly. The VDM++ to C++ Code Generator generates C++ function declarations
of both implicit and explicit function and operation definitions. These declara-
tions can be found in the <ClassName>.h file.

Let us show two examples of generated C++ function declarations:

The operation definition Sort in the VDM++ class ExplSort is explicit and
leads to the following C++ function declaration in class vdm_ExplSort in file
ExplSort.h:

virtual type_iL vdm_Sort(const type_iL &);

The function defintion ImplSorter in the VDM++ class ImplSort is implicit
and leads to the following C++ function declaration in class vdm_ImplSort in
file ImplSort.h:

virtual type_iL vdm_ImplSorter(const type_iL &);

Note: The C++ function declarations are declared as virtual and public in order
to correspond to the VDM++ semantic. In VDM++ all functions and operations
are virtual and public, in C++ this is only the case, when they are declared as
such.

Let us show another example of a function declaration. Look at the function f

in the following VDM++ specification.

class M

types

39

The VDM++ to C++ Code Generator

A :: ...;

B = seq of int

functions

f: seq of int * B -> A

...

end M

The following function header will be generated for the function f:

type_1NRL vdm_M_f(type_iL p1, TYPE_M_B p2) {

...

}

Note, that type names are used in the function signature rather than the name
of the corresponding unfolded type. This is as close to the VDM specification as
we can get it. The same strategy will be used in variable declarations.

Explicit Function and Operation Definitions

The VDM++ to C++ Code Generator generates C++ function definitions for
explicit VDM++ function and operation definitions. These function definitions
are placed in the corresponding <ClassName>.cc file. For the above mentioned
explicit operation Sort in the VDM++ class ExplSort, the following C++ func-
tion definition is added to the file ExplSort.cc:

type_iL vdm_ExplSort::vdm_Sort(const type_iL &vdm_l) {

...

}

The shown examples give you an idea about how function or operation names are
generated: A function or operation name f in a class M in a VDM specification
will be given the name: vdm_M::vdm_f.

Implicit Function and Operation Definitions

Obviously, for implicit function or operation defintions, no C++ function defin-
tion is added to the generated C++ code. Instead, the Code Generator generates

40

The VDM++ to C++ Code Generator

an include preprocessor in the implementation file. For the class ImplSort which
contains an implicit function, as described, the preprocessor below will appear in
the implementation file ImplSort.cc:

#include "ImplSort userimpl.cc"

It is then the user’s responsibility to implement the implicit function of class
ImplSort in the file ImplSort_userimpl.cc. Note that a compile time error will
occur if this file is not created and that the linker will object if an implicit function
is not implemented. See Section 3.2.2 for information about implementing implicit
functions and operations.

Pre and Post Conditions

Post conditions on operation specifications are ignored by the VDM++ to C++
Code Generator. However, when pre and post conditions are specified for func-
tions, corresponding pre and post functions are available (see [LangManPP]). For
each of these functions, a C++ function declaration and a C++ function defini-
tion will be generated. The pre and post functions are members of the generated
C++ class with access modifier given by that of the corresponding VDM++
function.

Let us show the C++ code which is generated for the post condition of function
ImplSorter in class ImplSort:

The following function declaration is found in file ImplSort.h:

Bool vdm_post_ImplSorter(const type_iL &, const type_iL &);

The implementation of the function can be found in file ImplSort.cc.

Runtime checks of pre and post conditions can be optionally generated (either by
selecting the corresponding check box in the graphical user interface, or by spec-
ifying the -P option on the command line). For instance, consider the function
RestSeq from the ExplSort class:

RestSeq: seq of int * nat -> seq of int

RestSeq(l,i) ==

[l(j) | j in set (inds l \ {i})]

41

The VDM++ to C++ Code Generator

pre i in set inds l

post elems RESULT subset elems l and

len RESULT = len l - 1;

When generate with runtime checking of pre and post conditions, the following
code is produced:

type_iL vdm_ExplSort::vdm_RestSeq (const type_iL &vdm_l,

const Int &vdm_i) {

if (!this->vdm_pre_RestSeq((Generic) vdm_l,

(Generic) vdm_i).GetValue())

RunTime("Run-Time Error: Precondition failure in RestSeq");

Sequence varRes_4;

...

if (!this->vdm_post_RestSeq((Generic) vdm_l, (Generic) vdm_i,

(Generic) varRes_4).GetValue())

RunTime("Run-Time Error: Postcondition failure in RestSeq");

return (Generic) varRes_4;

}

In this way, assertions at the VDM++ level can be evaluated in the generated
code.

Substituting generated C++ functions with handwritten function code

It should be mentioned, that it is possible to substitute generated C++ functions
with handwritten C++ code. Section 3.2.4 describes the situations where this
is useful and the steps that the user has to perform in order to interface the
handwritten code with the generated code.

5.4 Code Generating Instance Variables

The code generation of instance variables is very straightforward. Instance vari-
ables are translated into member variables of the corresponding C++ class. These
member variables are placed in the protected part of the generated class defini-
tion.

Consider the following instance variable declaration in VDM++:

42

The VDM++ to C++ Code Generator

class A

instance variables

public i: nat;

private j : real;

protected k: int := 4;

message: seq of char :=[];

inv len message <= 30;

...

end A

The corresponding member declarations generated by the Code Generator in file
A.h will become:

class vdm_A : public virtual CGBase {

private:

Real vdm_j;

Sequence vdm_message;

protected:

Int vdm_k;

public:

Int vdm_i;

public

...

vdm_A (); // constructor of class A

};

The implementation of the constructor function for class A can be found in file
A.cc. It initializes the instance variables as shown below:

vdm_A::vdm_A() {

vdm_k = (Int) 4;

vdm_message = Sequence();

...

}

Note: Invariant definitions specified in instance variable blocks are ignored by
the Code Generator.

43

The VDM++ to C++ Code Generator

Moreover, you probably wonder why the Code Generator generates the type
Sequence, instead of the type type_cL. As it has been mentioned in Section 5.2,
the code generated types are only used in the interface to the user. For internal
use however, the Code Generator uses the fixed implementation of each VDM++
data type found in the VDM C++ Library.

5.5 Code Generating Value Definitions

Let us now explain the code generated for the definition of constant values.

VDM++ value definitions are translated to static member variables of the gener-
ated C++ class. The initialisation of the value variables is done by the generated
C++ Init_<ClassName> class which is instantiated in the ”.cc” file.

Consider the example below:

class A

values

public mk_(a,b) = mk_(3,6);

c : char = ’a’;

protected d = a + 1;

end A

The generated header file A.h will look like:

class vdm_A : public virtual CGBase {

private:

static Char vdm_c;

protected:

static Int vdm_d;

public:

static Int vdm_a;

static Int vdm_b;

...

end vdm_A

The implementation file will look like:

44

The VDM++ to C++ Code Generator

Char vdm_A::vdm_a;

Int vdm_A::vdm_b;

Int vdm_A::vdm_c;

Int vdm_A::vdm_d;

class init_A {

public:

// constructor

init_A() {

...

... pattern match code for the tuple pattern.

vdm_A::vdm_a = (Int) 3;

vdm_B::vdm_b = (Int) 6;

vdm_A::vdm_c = (Char) ’a’;

vdm_A::vdm_d = vdm_A::vdm_a + (Int) 1

}

}

// instantiation of class init_A

init_A Init_A;

5.6 Code Generating Expressions and Statements

VDM++ expressions and statements are code generated, such that the generated
code behaves like it is expected from the specification.

The undefined expression and the error statement are translated into a call of
the function RunTime (see Appendix B). This call terminates the execution and
reports that an undefined expression was executed.

5.7 Name Conventions

A variable in the specification will be translated to a variable in the generated
C++ code. The naming strategy used by the VDM++ to C++ Code Generator
is to rename all these variables to: vdm_<name>, where <name> is the name
appearing in the specification. The function f will e.g. be named vdm_f. In
addition the following names are used by the Code Generator:

45

The VDM++ to C++ Code Generator

• length_record : A static variable defining the number of fields in the record
record .

• pos_record_field : A static variable defining the position/index (an integer)
of the field selector field in the record record .

• name_number : A temporary variable used by the generated C++ code.
The specification/topology statements are numbered in the order in which
they are defined in the method, starting by one.

Underscores (‘_’) and single quotes (‘’’) appearing in variables in the specification
will be exchanged with underscore-u (‘_u’) and underscore-q (‘_q’), respectively,
in the generated C++ code.

5.8 Standard Library

Math Library

If a specification using the Math library (the math.vpp file) is code generated the
functions of the library must be implemented in a file named MATH_userimpl.cc

as these functions are implicitly defined. A default implementation of this file
exists in the directory vpphome/cg/include.

IO Library

If a specification using the IO library (the io.vpp file) is code generated the
functions of the library must be implemented in a file named IO_userimpl.cc as
these functions are implicitly defined. A default implementation of this file exists
in the directory vpphome/cg/include.

If use is made of the freadval function in the IO library, the class initialiser
function is extended (see Section 5.5 for details of initialiser functions). freadval
is used to read a VDM value from a file. In order to behave correctly on files
containing record values, the function AddRecordTag is used in the initialiser
function to establish the correct relationship between textual record tag names,
and the integer tag values used within the generated code. AddRecordTag is
provided as part of the libCG.a library (See Appendix B). For example, suppose
that class M defines a record type A. In the function init M the following line
would appear:

46

The VDM++ to C++ Code Generator

AddRecordTag("M‘A", TAG_TYPE_M_A);

In this way, when a value of type M‘A is read from a file, it will be translated into
a record value with the correct tag.

A References

[InstallPPMan] The VDM Tool Group. VDM++ Installation Guide. Tech-
nical Report, IFAD, October 2000.

[LangManPP] The VDM Tool Group. The IFAD VDM++ Language. Tech-
nical Report, IFAD, April 2001.
ftp://ftp.ifad.dk /pub/vdmtools/doc/langmanpp letter.pdf.

[LibMan] The VDM Tool Group. The VDM C++ Library. Technical
Report, IFAD, October 2000.

[SortEx] The VDM Tool Group. VDM++ Sorting Algorithms. Octo-
ber 2000. Available in both postscript and RTF formats.

[UserManPP] The VDM Tool Group. VDM++ Toolbox User Manual. Tech-
nical Report, IFAD, October 2000.
ftp://ftp.ifad.dk/pub/vdmtools/doc /usermanpp letter.pdf.

B The libCG.a Library

The library, libCG.a, is a library of fixed definitions which is used by the gener-
ated code. The interface to libCG.a is defined in cg.h and cg_aux.h.

B.1 cg.h

The functions RunTime and NotSupported are called when a run-time error occurs
or when a branch containing an unsupported construct is executed. Both these
functions will print an error message and the program will exit (exit(1)). If
position information is available at the time when one of these functions are

47

The VDM++ to C++ Code Generator

called, the last recorded position in the VDM++ source specification will be
printed. This is the case when the code has been generated using the run-time
position information option.

The functions PushPosInfo, PopPosInfo, PushFile and PopFile are used by the
generated code to maintain the position information stack (if run-time position
information has been included in the generated code).

ParseVDMValue is intended for use by hand implementations of the IO standard
library. It takes the name of a file, and a Generic reference, and reads the VDM
value from the given file. This value is placed in the given reference. The function
returns true or false, according to whether it was successful or not.

/***

* * WHAT

* * Code generator auxiliary functions

* * ID

* * $Id: cg.h,v 1.15 2001/06/12 15:04:34 paulm Exp $

* * PROJECT

* * Toolbox

* * COPYRIGHT

* * (C) 1994 IFAD, Denmark

***/

#ifndef _cg_h

#define _cg_h

#include <string>

#include "metaiv.h"

void PrintPosition();

void RunTime(wstring);

void NotSupported(wstring);

void PushPosInfo(int, int);

void PopPosInfo();

void PushFile(wstring);

void PopFile();

void AddRecordTag(const wstring&, const int&);

bool ParseVDMValue(const wstring& filename, Generic& res);

// OPTIONS

48

The VDM++ to C++ Code Generator

bool cg_OptionGenValues();

bool cg_OptionGenFctOps();

bool cg_OptionGenTpInv();

#endif

B.2 cg aux.h

The definitions in cg_aux.h contain auxiliary definitions which are dependent of
the library used to implement the VDM++ data types4.

The functions Permute, Sort, Sortnls, Sortseq, IsInteger and GenAllComb

are used by the generated code corresponding to different types of expressions.

/***

* * WHAT

* * Code generator auxiliary functions which are

* * dependent of the VDM C++ Library (libvdm.a)

* * ID

* * $Id: cg_aux.h,v 1.13 1998/10/28 13:42:58 hanne Exp $

* * PROJECT

* * Toolbox

* * COPYRIGHT

* * (C) 1994 IFAD, Denmark

***/

#ifndef _cg_aux_h

#define _cg_aux_h

#include <math.h>

#include "metaiv.h"

#define TOKEN -3

Set Permute(const Sequence&);

Sequence Sort(const Set&);

bool IsInteger(const Generic&);

4In this version of the VDM++ to C++ Code Generator it is only possible to use the VDM
C++ Library.

49

The VDM++ to C++ Code Generator

Set GenAllComb(const Sequence&);

#endif

C Handcoded C++ Files

C.1 DoSort userdef.h

#define TAG_DoSort 200

C.2 ExplSort userdef.h

#define TAG_ExplSort 400

C.3 ImplSort userdef.h

#define TAG_ImplSort 300

C.4 MergeSort userdef.h

#define TAG_MergeSort 100

C.5 SortMachine userdef.h

#define TAG_SortMachine 4500

C.6 Sorter userdef.h

#define TAG_Sorter 4600

50

The VDM++ to C++ Code Generator

C.7 ImplSort userimpl.cc

We have chosen to implement vdm_ImplSort::vdm_ImplSorter as a handwritten
version of MergeSort.

static type_iL Merge(const type_iL&, const type_iL&);

type_iL vdm_ImplSort::vdm_ImplSorter(const type_iL& l) {

int len = l.Length();

if (len <= 1)

return l;

else {

int l2 = len/2;

type_iL l_l, l_r;

int i=1;

for (; i<=l2; i++)

l_l.ImpAppend(l[i]);

for (; i<=len; i++)

l_r.ImpAppend(l[i]);

return Merge(vdm_ImplSorter(l_l), vdm_ImplSorter(l_r));

}

}

type_iL Merge(const type_iL& _l1, const type_iL& _l2)

{

type_iL l1(_l1), l2(_l2);

if (l1.Length() == 0)

return l2;

else if (l2.Length() == 0)

return l1;

else {

type_iL res;

Real e1 = l1.Hd();

Real e2 = l2.Hd();

if (e1 <= e2)

return res.ImpAppend(e1).ImpConc(Merge(l1.ImpTl(), l2));

else

return res.ImpAppend(e2).ImpConc(Merge(l1, l2.ImpTl()));

}

}

51

The VDM++ to C++ Code Generator

C.8 sort pp.cc

/***

* * WHAT

* * Main C++ program for the VDM++ sort example

* * ID

* * $Id: sort_pp.cc,v 1.10 2000/10/23 12:14:08 paulm Exp $

* * PROJECT

* * Toolbox

* * COPYRIGHT

* * (C) 1994 IFAD, Denmark

***/

#if defined(_MSC_VER)

#include <fstream>

#else

#include <fstream.h>

#endif

#include "metaiv.h"

#include "SortMachine.h"

#include "Sorter.h"

#include "ExplSort.h"

#include "ImplSort.h"

#include "DoSort.h"

#include "MergeSort.h"

// The main program.

int main()

{

// let arr1 = [3,5,2,23,1,42,98,31],

// arr2 = [3,1,2]:

type_iL arr1, arr2;

arr1.ImpAppend ((Int)3);

arr1.ImpAppend ((Int)5);

arr1.ImpAppend ((Int)2);

arr1.ImpAppend ((Int)23);

arr1.ImpAppend ((Int)1);

arr1.ImpAppend ((Int)42);

arr1.ImpAppend ((Int)98);

arr1.ImpAppend ((Int)31);

52

The VDM++ to C++ Code Generator

arr2.ImpAppend ((Int)3).ImpAppend ((Int)1).ImpAppend ((Int)2);

// dcl smach : SortMachine := new SortMachine(),

// res : seq of int = [];

type_ref_SortMachine smach (ObjectRef (new vdm_SortMachine ()));

type_iL res;

// def dos : Sorter := new DoSort() in

// res = smach.SetAndSort(dos,arr1);

cout << "Evaluating DoSort(" << arr1.ascii () << "):\n";

type_ref_Sorter dos (ObjectRef (new vdm_DoSort ()));

res = ObjGet_vdm_SortMachine(smach)->vdm_SetAndSort (dos,arr1);

cout << res.ascii() << "\n\n";

// def expls : Sorter := new ExplSort() in

// res = smach.SetAndSort(expls,arr2);

cout << "Evaluating ExplSort(" << arr2.ascii () << "):\n";

type_ref_Sorter expls (ObjectRef(new vdm_ExplSort ()));

res = ObjGet_vdm_SortMachine(smach)->vdm_SetAndSort (expls,arr2);

cout << res.ascii() << "\n\n";

// def imps : Sorter := new ImplSort() in

// (res = smach.SetAndSort(imps,arr2)

// imps.Post_ImplSorter(arr2,res))

cout << "Evaluating ImplSort(" << arr2.ascii () << "):\n";

type_ref_Sorter imps (ObjectRef(new vdm_ImplSort ()));

res = ObjGet_vdm_SortMachine(smach)->vdm_SetAndSort (imps,arr2);

cout << res.ascii() << "\n\n";

cout << "Evaluating post condition for ImplSort:\n";

Bool p = ObjGet_vdm_ImplSort(imps)->vdm_post_ImplSorter (arr2, res);

cout << "post_ImplSort(" << arr2.ascii () << "," <<

res.ascii () << "):\n" << p.ascii () << "\n\n";

// def mergs : Sorter := new MergeSort() in

// smach.SetSort(mergs);

type_ref_Sorter mergs (ObjectRef(new vdm_MergeSort ()));

ObjGet_vdm_SortMachine(smach)->vdm_SetSort (mergs);

53

The VDM++ to C++ Code Generator

// res = smach.GoSorting(arr2);

cout << "Evaluating MergeSort(" << arr2.ascii () << "):\n";

res = ObjGet_vdm_SortMachine(smach)->vdm_GoSorting(arr2);

cout << res.ascii() << "\n\n";

return 0;

}

54

The VDM++ to C++ Code Generator

D Makefiles

D.1 Makefile for Unix Platform

WHAT

Makefile for the code generated VDM++ sort example.

(C) 1994, IFAD, Denmark

ID

$Id: Makefile,v 1.14 2000/10/23 12:13:41 paulm Exp $

PROJECT

Toolbox

COPYRIGHT

(C) 1994 IFAD, Denmark

#

REMEMBER to change the variable TBDIR to fit your directory structure.

#

CCPATH = /opt/gcc-2.95.2/bin/

CC = $(CCPATH)gcc

CCC = $(CCPATH)g++

GCC = $(CC)

CXX = $(CCC)

TBDIR = /opt/toolbox

VPPDE = $(TBDIR)/bin/vppde

INCL = -I$(TBDIR)/include

LIB = -L$(TBDIR)/lib -lvdm -lCG -lm

CFLAGS = -g $(INCL)

CCFLAGS = $(CFLAGS)

CXXFLAGS= $(CCFLAGS)

all: sort_pp

ALLFILES = DoSort ExplSort ImplSort MergeSort SortMachine Sorter

GENCCFILES = DoSort.cc DoSort.h DoSort_anonym.cc DoSort_anonym.h \

ExplSort.cc ExplSort.h ExplSort_anonym.cc ExplSort_anonym.h \

ImplSort.cc ImplSort.h ImplSort_anonym.cc ImplSort_anonym.h \

MergeSort.cc MergeSort.h MergeSort_anonym.cc MergeSort_anonym.h \

55

The VDM++ to C++ Code Generator

Sorter.cc Sorter.h Sorter_anonym.cc Sorter_anonym.h \

SortMachine.cc SortMachine.h SortMachine_anonym.cc SortMachine_anonym.h \

CGBase.cc CGBase.h

sort_pp : sort_pp.o $(ALLFILES:%=%.o) CGBase.o

$(CCC) -o sort_pp sort_pp.o $(ALLFILES:%=%.o) CGBase.o $(LIB)

DoSort.o: DoSort.cc DoSort.h DoSort_anonym.h DoSort_anonym.cc \

CGBase.h Sorter.h DoSort_userdef.h

ExplSort.o: ExplSort.cc ExplSort.h ExplSort_anonym.h \

ExplSort_anonym.cc CGBase.h Sorter.h ExplSort_userdef.h

ImplSort.o: ImplSort.cc ImplSort.h ImplSort_anonym.h \

ImplSort_anonym.cc CGBase.h Sorter.h ImplSort_userimpl.cc \

ImplSort_userdef.h

MergeSort.o: MergeSort.cc MergeSort.h MergeSort_anonym.h \

MergeSort_anonym.cc CGBase.h Sorter.h MergeSort_userdef.h

SortMachine.o: SortMachine.cc SortMachine.h CGBase.h Sorter.h \

MergeSort.h

Sorter.o: Sorter.cc Sorter.h CGBase.h

CGBase.o: CGBase.cc CGBase.h

sort_pp.o: $(GENCCFILES)

SPECFILES = dosort.vpp explsort.vpp implsort.vpp mergesort.vpp \

sorter.vpp sortmachine.vpp

$(GENCCFILES): $(SPECFILES)

$(VPPDE) -c -P $^

###

Generation of postscript of the sort.tex document

###

VDMLOOP = vdmloop

GENFILES = sort.aux sort.log sort.ind sort.idx sort.ilg vdm.tc

init:

cp mergesort.init mergesort.vpp

vdm.tc:

cd test; $(VDMLOOP)

56

The VDM++ to C++ Code Generator

cp -f test/$@ .

%.tex: $(SPECFILES) vdm.tc

vppde -lrNn $(SPECFILES)

sort.ps: $(SPECFILES).tex

latex sort.tex

makeindex sort

latex sort.tex

latex sort.tex

dvips sort.dvi -o

clean:

rm -f *.o sort_pp

rm -f sort.ps sort.dvi

rm -f $(SPECFILES:%=%.tex)

rm -f $(SPECFILES:%=%.aux)

rm -f $(GENFILES)

rm -f $(GENCCFILES)

D.2 Makefile for Windows Platform

WHAT

Windows NT nmake makefile for the VDM++ sort example.

(for VC++ 5.0)

(C) 1994, IFAD, Denmark

ID

$Id: Makefile.winnt,v 1.11 2000/10/23 12:13:41 paulm Exp $

PROJECT

Toolbox

COPYRIGHT

(C) 1994 IFAD, Denmark

57

The VDM++ to C++ Code Generator

TBDIR=g:/Program Files/The IFAD VDM++ Toolbox v6.6

CPP = cl

CPPFLAGS = -nologo -c -GX -MT -I"$(TBDIR)/cg/include"

LDFLAGS = "$(TBDIR)/cg/lib/CG.lib" "$(TBDIR)/cg/lib/vdm.lib"

VPPDE = "$(TBDIR)"/bin/vppde

COMPILE=$(CPP) $(CPPFLAGS)

.SUFFIXES: .cpp .obj .exe

.cpp.obj:

$(COMPILE) -Tp $<

.obj.exe:

$(CPP) $(LDFLAGS) $^

all: sort_pp.exe

GENCCFILES = DoSort.cpp DoSort.h DoSort_anonym.cpp DoSort_anonym.h \

ExplSort.cpp ExplSort.h ExplSort_anonym.cpp ExplSort_anonym.h \

ImplSort.cpp ImplSort.h ImplSort_anonym.cpp ImplSort_anonym.h \

MergeSort.cpp MergeSort.h MergeSort_anonym.cpp \

MergeSort_anonym.h Sorter.cpp Sorter.h Sorter_anonym.cpp \

Sorter_anonym.h SortMachine.cpp SortMachine.h \

SortMachine_anonym.cpp SortMachine_anonym.h CGBase.cpp CGBase.h

OBJS = DoSort.obj ExplSort.obj ImplSort.obj MergeSort.obj \

SortMachine.obj Sorter.obj CGBase.obj

sort_pp.exe: sort_pp.obj $(OBJS)

sort_pp.obj: sort_pp.cpp SortMachine.h Sorter.h ExplSort.h \

ImplSort.h DoSort.h MergeSort.h

DoSort.obj: DoSort.cpp DoSort.h DoSort_anonym.h DoSort_anonym.cpp \

CGBase.h Sorter.h DoSort_userdef.h

ExplSort.obj: ExplSort.cpp ExplSort.h ExplSort_anonym.h \

ExplSort_anonym.cpp CGBase.h Sorter.h ExplSort_userdef.h

ImplSort.obj: ImplSort.cpp ImplSort.h ImplSort_anonym.h \

ImplSort_anonym.cpp CGBase.h Sorter.h ImplSort_userdef.h \

ImplSort_userimpl.cpp

58

The VDM++ to C++ Code Generator

MergeSort.obj: MergeSort.cpp MergeSort.h MergeSort_anonym.h \

MergeSort_anonym.cpp CGBase.h Sorter.h MergeSort_userdef.h

SortMachine.obj: SortMachine.cpp SortMachine.h \

SortMachine_anonym.h SortMachine_anonym.cpp CGBase.h \

Sorter.h MergeSort.h SortMachine_userdef.h

Sorter.obj: Sorter.cpp Sorter.h CGBase.h

CGBase.obj: CGBase.cpp CGBase.h

SPECFILES = dosort.rtf explsort.rtf implsort.rtf mergesort.rtf \

sorter.rtf sortmachine.rtf

$(GENCCFILES): $(SPECFILES)

$(VPPDE) -c -P $^

##

Generation of test coverage of the sort.tex document

##

VDMLOOP = vdmloop

GENFILES = dosort.rtf.rtf explsort.rtf.rtf implsort.rtf.rtf \

mergesort.rtf.rtf sorter.rtf.rtf sortmachine.rtf.rtf \

vdm.tc

init:

cp mergesort.init mergesort.rtf

vdm.tc:

cd test; $(VDMLOOP)

cp -f test/$@ .

%.rtf.rtf: $(SPECFILES) vdm.tc

vppde -lrNn $(SPECFILES)

clean:

rm -f *.obj sort_pp.exe

rm -f $(GENFILES)

rm -f $(GENCCFILES)

59

	Introduction
	Invoking the Code Generator
	Requirements for Generating Code
	Using the Graphical Interface
	Using the Command Line Interface
	Generated C++ Files

	Interfacing the Generated Code
	Code Generating VDM++ Types - The Basics
	Files to be Implemented by the User
	Definition of Offsets for Record Tags
	Implementing Implicit Functions/Operations and Specification Statements
	Implementing the Main Program
	Substituting Parts of the Generated C++ code

	Compiling, Linking and Running the C++ code

	Unsupported Constructs
	Code Generating VDM Specifications - The Details
	Code Generating Classes
	Object References in the VDM C++ Library
	The Inheritance Structure of the Generated Code of Classes
	The Structure of a Generated Class

	Code Generating Types
	Motivation
	Mapping VDM++ Types to C++
	Code Generating VDM++ Type Names
	Invariants

	Code Generating Function and Operation Definitions
	Code Generating Instance Variables
	Code Generating Value Definitions
	Code Generating Expressions and Statements
	Name Conventions
	Standard Library

	References
	The libCG.a Library
	cg.h
	cg_aux.h

	Handcoded C++ Files
	DoSort_userdef.h
	ExplSort_userdef.h
	ImplSort_userdef.h
	MergeSort_userdef.h
	SortMachine_userdef.h
	Sorter_userdef.h
	ImplSort_userimpl.cc
	sort_pp.cc

	Makefiles
	Makefile for Unix Platform
	Makefile for Windows Platform

