
Demonstrating Prolog Usage:

Building a Simple Game
Program

Abstract
To demonstrate the use of Prolog

and how programming in Prolog is easy
and efficient, this paper describe an
implementation of the game booby-trap, a
game similar to Minesweeper found on
most personal computers with windows.

Introduction
Prolog (Programming in Logic) is a

well known programming language in the
field of Artificial Intelligence (AI).
Although Prolog has much in common
with Lisp (List Processing), only Prolog
has a built in automated reasoning system
or inference engine. Since its invention in
1972 by Alain Colmerauer and his
colleagues at the University of Aix-
Marsielle, France, there have been many
versions of Prolog. These include Turbo
Prolog 1 – now supported by the Prolog
Development Center www.pdc.dk),
BinProlog 2 (www.binnetcorp.com/
BinProlog), SICStus Prolog (Intelligent
Systems Laboratory, 1995 - www.sics.se/
sicstus) and LamdaProlog 3. There are also
many other popular Prolog’s such as
Logic Programming Associates Prolog
(LPA - www.lpa.co.uk) and AMZI Prolog
(www.amzi.com). Dozens of Prolog books
and tutorials mention other lesser-known
Prologs.

Covington 4, one of many who tout
Prologs versatility as a programming
language, points out how it can
implement a variety of algorithms; not
just those for which it was specially
designed. Prolog consists of two main
components: facts and rules. The facts

describe relationships between objects
whereas the rules define relationships
between groups of facts. Prolog is
primarily based on three main concepts:
pattern matching, automatic backtracking
and tree-based data structuring.

In the real world, logic-programming
languages such as Prolog have not fulfilled
their potential when compared to other
conventional programming languages 5.
This was not due as much to limitations
in the language as to the ebb and flow of
popular media and general computer
hype. According to Somogyi, logic-
programming languages have theoretical
advantages over conventional
programming languages, however they
have not had the same impact on the
computer industry. Although this claim
may be true in general, in AI research
many intelligent and knowledge-based
systems have been successfully developed

and deployed using Prolog 4. Many of
these applications would be much harder
to develop in languages other than Prolog.
Furthermore, Prolog is an “expressive”
programming language, which contrasts
with conventional “imperative” languages
(see sidebar on imperative languages).
Prolog contains a number of advanced
features, including high-level declarative
programming, automatic dynamic
memory allocation and deallocation, built
in database functionality, incremental
compilation and meta-programming 6. In

his book, Luger 7 states that Prolog has
made many contributions to AI problem
solving with its declarative semantics and
built-in unification.

Today, Prolog’s have been enhanced
with development environments and
many integrated tools to simplify
implementation. This paper describes the
implementation of a simple game
program using LPA Win-Prolog. This
particular Prolog offers several tools for
application development, including a tool
for developing Graphical User Interface
(GUI), namely the LPA Dialog Editor.
This tool lets you draw screens
and generate and test the Prolog code in-
situ. The LPA Dialog Editor is
implemented entirely in LPA Win-Prolog
using the buit-in predicates
described in this article.

GUI Development
The GUI, an important element in

system development, must support an
interactive interaction between the system
and the user. LPA’s Win-Prolog allows
interactive dialog development utilizing a
window dialog with GUI elements and
control features along with a message
handler to interpret the control messages.

Win-Prolog offers two class types for
developing dialogs: window class and
control class. A window class supplies a
skeleton framework for developing
dialogs. The Window control class
provides the means to embed control
objects into windows with several control
classes such as button, edit, list box,
combo box, static, scrollbar and graphics.
Using the Dialog Editor plug-in (Figure
1), the user controls objects by click and
drag on the scratch window. The Dialog
Editor plug-in is a toolkit for easy
development of GUIs and it allows easy

PCAI 38 17.4

By Wan Hussain Wan IshakBy Wan Hussain Wan Ishak

Demonstrating Prolog Usage:

Building a Simple Game
Program

creation and maintenance of the dialog code.
Clicking the export button on the toolbox lets you view the

dialog code. The code appears in a dialog code window. The code
must be paste into a program file.

Win-Prolog provides several built-in predicates for GUI
development. The Dialog Editor automatically creates some of
these predicates, such as wdcreate/7 and wccreate/8. The window
predicates are shown in Table 1.

Other predicates support the control classes. These predicates
are shown in Table 2.

Massage Handling
After designing the interface and

placing the source code into the program
file, the window handler is specified. This
handler catches any message generated by
the window and performs the specified
action. The relation between a window
and its handler can be defined using the
window_handler(Window, Handler)
predicate (Figure 2). For example, the
window handler could be exp_handler.
Hence, the relation between example
window and exp_handler is defined as
window_handler(example, exp_handler).

A Booby-Trap Game
The booby-trap game is similar to

Minesweeper except the rules and how it
plays are slightly different (Figure 3).
After the player selects a button, the game
returns a score. If the button is a trap then
the total score is reset to zero.

The development of a program such
as this game involves the following steps:

Select and drag - Create the buttons and
edit control to display the score.

Defined the handler - The handler is
used to link the button with the
appropriate user defined action.

PCAI 39 17.4

Figure 1: The Dialog Editor plug-in.

Figure 2: Creating and defining handler for the example window.

Table 1: Built-in Predicates for
Window Development

Predicate Description
wdcreate/7 Create a dialog window

wcreate/8 Create a window

wccreate/8 Create a control window

wucreate/6 Create a user MDI window

wtcreate/6 Create a text window

wcount/4 Get windows char, word and line counts

wtext/2 Get or set the window text

Preparing the trap button - Some
buttons are randomly selected and set
as traps.

Click & draw
The developer selects the button

control from the toolbox and places it on
the scratch window (Figure 4). After the
buttons are arranged side-by-side in rows
and columns, the edit control used for
displaying the score is added. Two
additional buttons are added to perform
the New Game and Close functions.

Handler
Each button has its own unique ID

number as a reference. When the user

clicks a button, the handler for the
appropriate button is called, with the
unique id, and the appropriate action is
performed. In this
game, only the New
and Close buttons have
a specific action and all
of the others buttons
shared the same action
– depending on
whether or not the
button is a trap.
Buttons listed in id/1
are the trap buttons
while the others are not
(List 1).

Preparing the trap button
The program randomly selects 50

buttons to be defined as a trap – assert in
working memory (List 2).

Conclusion
Due to its vast capabilities, Prolog

can be a difficult language to master or
even to teach. However, programming
with Prolog can be easy. As in many
languages, programming by using existing
example simplifies application
development. While we illustrated how to
develop a simple game program called
booby-trap, we also demonstrated some of
Prologs capabilities and how users can
easily use this language to develop many
types of applications. By providing high-
level access to the Windows GUI, Prolog
development environments, such as LPA,
offers a Prolog system where areas such as
games and intelligent interfaces are
directly now addressable by the Prolog
(only) developer. Next generation
applications such as InFlow, IdeaProcessor
and IntellX hint at some of the potential
achievable using this powerful
combination (see www.orgnet.com , www.a-
i-a.com/englishHomePage/IdeaProcessor.html
and www.business-integrity.com/
IntellX.html for more information.)

PCAI 40 17.4

Table 2: Built-in Predicates for
Control Classes

Control
Class Predicate Description

Button Class wbtnsel/2 Get or set the selection status of the given radio
or checkbox “button”.

List box class wlbxadd/3 Add an item to a list box

wlbxdel/2 Delete an item from a list box

wlbxfnd/4 Find a string in a list box

wlbxget/3 Get an item from a list box

wlbxsel/3 Get or set selection in a list box

Edit box class wedtsel/3 Get or set selection in an “edit” control window

wedtfnd/6 Find a text string in an “edit” control window

wedtlin/4 Get offsets a line in an “edit” control window

wedtpxy/4 Convert between linear offset and x, y
coordinates in “edit” windows

wedttxt/2 Get or set the text of the given “edit” window

Figure 3: The Booby Trap Game Screen.

References
1. Schildt, H. (1987). Advanced Turbo Prolog
Version 1.1. Osborne Mc-Graw-Hill:
California.

2. Tarau, P. (1995). BinProlog 4.00 User
Guide. Download from citeseer.nj.nec.com
/2676.html on 18 Januari 2003.

3. Brisset, P., and
Ridoux, O. (1994)
The architecture of
an implementation
of LambdaProlog:
Prolog/Mali. In
Proceedings of the
Workshop on
Implementation of
Logic Programming,
ILPS’94, Ithaca, NY.
The MIT Press,
November 1994.
Download from
http://citeseer.nj.
nec.com/article/
brisset95arch
itecture.html on 18
Januari 2003.

4. Covington, M. A.,
Nute, D., and
Vellino, A. (1997).
Prolog Programming
in Depth. Prentice-
Hall: New Jersey.

5. Somogyi, Z.,
Henderson, F.,
Conway, T, and
O’Keefe, R. (1995)
Logic Programming
for the Real World.
In Donald A. Smith

(Ed.), Proceedings of the ILPS’95
Postconference Workshop on Vision for the
Future of Logic Programming. pp: 83-94,
Portland, Oregon.

6. Roth, A., and Spenser, C. (1993) The
Benefits of Prolog. Software Development.
Miller Freeman Inc.

PCAI 41 17.4

Listing 1: Booby-Trap Handler

% Run the dialog by typing "start"
% Create the dialog and defined the
% handler

start:-
% create the window
create_booby_dialog, !,
% defining the handler
window_handler(booby,booby_handler),
% show the dialog
show_dialog(booby),
% randomly choose the trap button
create_trap(50).

% The handlers
% Called when user clicked the [X] on
% the upper-right of the window
booby_handler(booby,msg_close,_,close).

% Called when user clicked close button
booby_handler((booby,1128),

msg_button,_,close).

% Called when user clicked new button
booby_handler((booby,1129),

msg_button,_,R):-
!,
start.

% Called when user clicked any button
% and the button is a trap
booby_handler((booby,ID),

msg_button,_,R):-
id(ID),
wtext((booby,ID),`F`),
wtext((booby,8000),`0`),
!,fail.

% Called when user clicked any button
booby_handler((booby,ID),

msg_button,_,R):-
wtext((booby,ID),`$`),
wtext((booby,8000),X),
number_string(Score,X),
NewScore is Score + 10,
number_string(NewScore,X2),
wtext((booby,8000),X2),
!,fail.

% Create the trap button
create_trap(0). % stopping criteria

% Randomly select the trap button
create_trap(Num_trap):-

% 128 are the total number of buttons
X is rand(128),
Btt_ID is ip(X),
not(id(Btt_ID)),!,
assert(id(Btt_ID)),
Red_Num_trap is Num_trap - 1,
create_trap(Red_Num_trap).

Listing 2: Randomly creating the trap
button.

Figure 4: selects the button control from the toolbox and places it on the scratch window

Appendix
% abolishing and declaring id/1 as a dynamic predicate
:- abolish(id/1), dynamic(id/1).

% creating dialog
create_booby_dialog:-

_S1 = [dlg_ownedbyprolog,ws_sysmenu,ws_caption],
_S2 = [ws_child,ws_visible,ws_tabstop,bs_pushbutton],
_S3 = [ws_child,ws_visible,ss_right],
_S4 =

[ws_child,ws_visible,ws_tabstop,ws_border,es_left,es_multiline,es_autohscroll,es_autovscroll],
wdcreate(booby, `BOOBY-TRAP GAME`, 398, 212, 362, 271, _S1),

% create buttons
buttons(1,1,20,40,_S2),

wccreate((booby,1128), button, `CLOSE`, 270, 210, 70, 30, _S2),
wccreate((booby,10000), static, `Score : `, 170, 10, 70, 20, _S3),
wccreate((booby,8000), edit, `0`, 250, 10, 90, 20, _S4),
wccreate((booby,1129), button, `NEW`, 20, 210, 70, 30, _S2).

% create 128 buttons - then stop
buttons(Num,128,Left,Top,Prop):-

!,
createbutton(128,Left,Top,Prop).

% reset counter to 1
% only 16 buttons in a row
buttons(17,Id,Left,Top,Prop):-

NewTop is Top + 20,
buttons(1,Id,20,NewTop,Prop).

% create the buttons
buttons(Num,Id,Left,Top,Prop):-

createbutton(Id,Left,Top,Prop),
NewNum is Num + 1,
NewId is Id + 1,
NewLeft is Left + 20,
buttons(NewNum,NewId,NewLeft,Top,Prop).

% create the button
createbutton(Id,Left,Top,Prop):-

wccreate((booby,Id), button, ``, Left, Top, 20, 20, Prop).

7. Luger. G. F. (2002). Artificial Intelligence:
Structures and Strategies for Complex
Problem Solving. Addison-Wesley: US.

8. Bratko, I. (1998) PROLOG Programming
for Artificial Intelligence. Addison-Wesley:
US.

9. Bringsjord, S. (2002) AI Research to AI
Business, and Back: Automatic Story
Generation and Intelligent Document
Production. PC AI January/February 2002,
pp: 36 – 43.

10. Dixon, M. L. E., Grant, P. W., Moseley, L.
G., and Spenser, C. (1998) A Flex-based
Expert System for Sewage Treatment Works
Support. PC AI, 12(4), 35 – 38.

11. Intelligent Systems Laboratory (1995)
SICStus Prolog User’s Manual. Download
from citeseer.nj.nec.com/482697.html on 18
January 2003.

12. Murphy, T. (1993) As you know, I love
Prolog: LPA 386 Prolog. AI Expert. Miller
Freeman Inc.

13. Spenser, C. (1997) LPA Prolog in Action.
PC AI, 11(6), 40-42.

14. Taha, Z. (1988) Pemanduan Arah Robot
Menggunakan Prolog. Siri Seminar Sains
Komputer II, 18.1 – 18.7. Universiti
Kebangsaan Malaysia: Bangi.

15. Westwood, D. (1999). LPA Win-Prolog
3.6 Technical Reference. Logic Programming
Association.

Wan Hussain Wan Ishak is on the Faculty of
Information Technology Universiti Utara
Malaysia and can be reached at
hussain@uum.edu.my

PCAI 42 17.4

Imperative Programming
The imperative programming style describes computation in terms of program state changes and statements that change the

program state. An example of a program state change would be selecting the “reply” button in an email program. Before that, the
email program was displaying an email for you to read. After the state change, you now have a new email that is ready for you to edit
(not just read).

Imperative programming languages have primitives very similar to the CPU’s machine instructions. For example, Branch
statements, memory assignment statements and add instructions. Imperative programs consist of a series of commands for the
computer to perform. Almost all computer hardware is imperative — designed to execute the native code of the computer —
machine code. At this level, the memory contents defined the state of the computer. Higher-level imperative style programming
languages use variables to contain this state information.

Even though logic programming languages are theoretically superior to imperative programming languages such as C, C++ and
Java, there are two reasons why current logic programming languages such as Prolog are not as widely used for application
development.

1. Logic programming languages can be significantly slower than the equivalent program logic in an imperative language such as C.
Therefore, application designers concerned with performance might not consider logic programming languages. As computer speeds
continue to increase, and logic-programming languages become even more efficient, this reason could someday be eliminated.

2. Current logic programming languages do not detect as many errors in programs as compilers for imperative programming
languages, which can reduce productivity. Programmers must find more errors themselves, usually during debug. Languages, such as
Prolog, do not require type casting, which simplifies programming and increases flexibility. However, it also means the programmer
is now responsible for finding many errors that a compiler with type checks would find.

