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Welcome to Plogue chipsounds

Like some of you I'm sure, my childhood was filled with the images, sounds and excitement of early video 
games and computers. In the early 80's,  each of my friends had a different computer or video game system. 
We visited each other in turns and discovered their differences. They all looked, played and sounded very 
different to  us even then.  We all had our favorite game or favorite sound effect and each of us tried to 
impress the other with a new high score, secret level, or cool program we had made.

The 8bit era was a unique point in time when there were no set rules in what we now call interactive media. 
Everything had yet to be invented.  Musicians, graphic artists and programmers (often the same person) 
had  to  cope  with  a  limited  palette  of  sounds,  voices,  and  memory,  in  order  to  create  the  inspiring 
soundtracks for the games  we played. They came up with original techniques and tricks that – since they 
were stopgaps for them at the time - were abandoned later on as the technology evolved. 

Those sounds were unique in their own way.

Recently, with the advent of emulators, cross assemblers and DIY cartridges, many people have discovered 
(or re-discovered) those sounds and got an interest in making original music with the vintage 8bit hardware 
in ways that combined classic 80s chip techniques, but also brand new  tricks and discoveries of hackers 
and enthusiasts from all over the world. The chip music scene nowadays goes WAY beyond video game or 
80s nostalgia in general, and has become a true art form in its own right. A good indication is that a new 
younger generation of musician that didn't grow up in that period are praising the palette of sounds that can 
be created out of these machines; raw, pure, gritty and bright. Whether you compose uniquely with them or 
use them as an addition, they are a real arsenal to your sonic palette.

For me personally,  it would be pointless to try and separate my passion for the chips and how they sound 
from their associated nostalgia.  Over the years I've been working in the music software field, I've always kept 
a huge interest in them, collecting (hoarding would be a more appropriate term maybe), tons of consoles 
and started modifying them to get cleaner sound and image out of them, and even transforming some of 
them into synthesizers to use with my bands. As I was improving my electronics skills on them as a hobby I  
sadly discovered that many units I had collected over the years had either become flaky, partially working or 
were simply dead.  And it's at that precise moment that I realized, that like everything else, they would not  
live forever. Someone needed to record and analyze all the sounds could generate in the highest possible 
quality before it was too late. It's  then that I started the research that, without any initial plan of the sort, 
eventually transformed itself into chipsounds, which I think is my best attempt at making a musician's tool 
out of bare research.

My father bought a Commodore VIC-20 for me and my brother when I was around nine. After a few days  
with it,  I guess he knew I had found my calling. There is not a year that passes without me reminding him 
how bringing that computer home some cold autumn night changed my life.

Dad, this one's for you,

David Viens
October 2009
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What is chipsounds?
Plogue chipsounds is a state-of-the-art software synthesizer that simulates the behavior and sounds of more than ten 
classic integrated circuits of the 80's, mostly from the second and third generation of video game consoles.

chipsounds integrates our uniquely powerful and high-performance specialized software 
synthesizer/sampler engine, ARIA.

chipsounds can work as a standalone application or as a plug-in for most major sequencing audio programs and sup-
ported tracker programs.

Uses for Plogue chipsounds
 Electronic and chip music composition.
 Remixes of classic video games soundtracks
 A portable chip synthesizer instrument for playing live.

Our goal is to bring the rich sounds of the classic game consoles to as many musicians as we can with the highest de-
gree of realism possible on current home computer hardware. 

Features of Plogue chipsounds

 A full set of classic sound chips at your disposal.
 Nothing Else Required - The entire collection is integrated and works as a virtual instrument. 

No need to purchase a separate synthesizer.
 Easy-to-Use – Start creating chip music now. Just load your instruments and play.  Standardized controls al-

low you to become familiar with the collection quickly and master all the sounds easily.  Play  in real-time and 
get expressive sounding performances.   Express your musical ideas fast and with minimal effort. 

 Universal Format - Supports all popular formats, Mac and PC, as a standalone program or as a plug-in 
(VST, RTAS, and OS X AU), and works with supported sequencers and tracker programs. 

What’s Included
This 1.6 version of chipsounds includes the following:

 Download file containing the complete chipsounds software.
 The unique graphical license key for the product.
 This digital PDF manual.

Before you begin installation, make sure you have read the End User Licensing Agreement in the pages which follow. 
By installing the software you are indicating you agree to the terms of the license.



How to Use This Manual
The goal of this manual is to help you learn how to use chipsounds. Although many of us dislike reading manuals, if  
you wish to get the most out of this new synthesizer it is absolutely essential that you read this manual. Doing so will  
help you understand how to use this software instrument. The operation of many of the essential features is not obvious 
in casual use and we realize many users are not music technologists. We’ll  do our best to make this easy for you in  
this manual and to explain technical concepts. We have attempted to make this manual easy to read and have provided 
information about the various waveforms, playing techniques and modes of control. 

You can refer to this manual whenever you wish. This manual is provided in digital form as an Adobe Acrobat document  
file (also known as a PDF) which can be viewed on a computer monitor or printed. If you do not have the Adobe Acrobat  
Reader, it is available for free from www.adobe.com.

Further Documentation and Resources

For the latest information including updated documentation, visit our support pages at: 
www.plogue.com. There you can find: Updated information provided after the manual was written Corrections or addi-
tions to this  manual  FAQ pages answering common questions  suggestions  from the users of Plogue software and 
news about upcoming Plogue releases. You can also visit the Plogue Forums for up-to-date information. 

The address is: www.plogue.com/phpBB  3  /   . 

Please send any reports of errors in this manual or suggestions for improvement to :
chipsounds.support@plogue.com

http://www.plogue.com/phpBB2/
http://www.plogue.com/phpBB2/
http://www.plogue.com/phpBB2/


End User License Agreement
Please read the terms of the following software licensing agreement before using this software. By installing and load-
ing this product on your computer you acknowledge that you have read this license agreement, understand the agree-
ment, and agree to its terms and conditions. If you do not agree to these terms and conditions, do not install or use the 
sounds contained herein. This is the complete agreement between you and Plogue Art et Technologie, Inc that super-
sedes any other representations or prior agreements, whether oral or in writing.

An important thing to understand is that YOU ARE OBTAINING A LICENSE FOR YOUR USE 
ONLY—THE SAMPLES AND PROGRAMMING DO NOT BELONG TO YOU. The implications 
are described below. The sounds, samples and programming in the Plogue chipsounds program 
remain the sole property of Plogue Art et Technologie, Inc. and are licensed (not sold) to you.

What You Can Do: You can use these sounds in music  productions,  public  performances, and other reasonable 
musical purposes within musical compositions.  You can use these sounds in your own musical compositions as much 
as you like without any need to pay Plogue Art et Technologie Inc or obtain further permission.  If you do use these  
sounds,  we  kindly ask that  in any written materials  or credits  accompanying  your music  that  utilizes material  from 
Plogue chipsounds  (CD booklet, film credits, etc), that you  include the following courtesy credits: "Some Virtual Instru-
ments used in this recording are from Plogue chipsounds, or a similar credit where practicable.  If you can't disclose  
your use of chipsounds for any reason to the general public, we would at least love to be aware of the usage of chip -
sounds in a commercial recording for our own PRIVATE records.

What You Cannot Do: The enclosed sounds cannot be re-used in any other commercial sample library or any com -
petitive product.  You are absolutely forbidden to duplicate, copy, distribute, transfer, upload or download, trade, loan, 
reissue or resell  this product or any of the contents in any way to anyone. You cannot redistribute them through an 
archive, nor a collection, nor through the Internet, nor binaries group, nor newsgroup, nor any type of removable media, 
nor through a network. The sounds and samples contained herein cannot be edited, modified, digitally altered, re-syn-
thesized or manipulated without direct written consent of Plogue Art et Technologie Inc.  
 

Disclaimers and Conditions: A right to use Plogue chipsounds is granted to the original end-user only, and this li -
cense is not transferable unless there is written consent from Plogue Art et Technologie, Inc and payment of an addi -
tional fee. The sounds of Plogue chipsounds will only work with the bundled Plogue ARIA Engine and will not work with  
any other engine. Licensor will  not be responsible if the content does not fit the particular purpose of the Licensee.  
Please make sure before installing this item that it meets your needs. Information contained herein is subject to change  
without notice and does not represent a commitment on the part of Plogue Art et Technologie, Inc. The sounds are li -
censed “as is” without warranties of any kind. Neither Plogue Art et Technologie, Inc, nor any agent or distributor can be  
held responsible for any direct or indirect or consequential loss arising from the use of this product in whatever form.  
The Aria Engine is covered by the installer’s End User License Agreement and is incorporated by reference. Plogue 
chipsounds may not be returned for any reason. The terms of this license shall be construed in accordance with the 
substantive laws of Canada and the province of Quebec.. The user agrees to read the manual before seeking technical  
support and to make sure his or her system meets the recommended requirements.



Specifications & Computer System Requirements 
The following table lists the computer and hardware requirements for using chipsounds. You can use chipsounds on  
most any modern personal computer that meets the specifications listed below. The specifications provide the minim-
um standards. For optimal functioning, it is recommended you have a powerful enough computer with a fast CPU pro-
cessor, and a large amount of RAM. The ARIA audio engine is designed to make use of the processing power of your  
computer’s  CPU. The powerful  and complex algorithms of the ARIA Engine work best on modern CPU's. We think 
that’s a small price to pay for the results you will get. Please also observe the systems requirements of your host applic -
ation, tracker program and/or sequencing program if applicable. Please see the Plogue forum or website if you are look-
ing for recommendations or for more information.

Computer System Requirements
Computer Operating System Hardware
Windows 
PC

Microsoft Windows XP
(SP2 or SP3 recommen-
ded)
Microsoft Windows Vista 
32 or 64 bits
Microsoft Windows 7 32 
or 64 bits

♦2.4  GHz  CPU  Pentium  4  or  better,  2.0  GHz Core   Duo  or  better 
recommended
♦1 GB Minimum, 2 GB RAM recommended if used with other instruments 
at the same time.
♦150 MB of free hard drive space
♦Internet connection for download version, CD ROM drive required for 
boxed version installation
♦Monitor with 1,024x768 resolution or better for usage of the default skin.
♦A sound card compatible with ASIO, DirectSound, or MME
♦Keyboard: A MIDI interface may be required if you are using a MIDI key-
board. Some keyboards use USB.  
♦High quality speakers and amplifier, or high quality headphones
♦Internet connection for download, updates.

Mac Mac OS X 10.6 minimum ♦Mac Intel;  Core  Duo or better recommended
♦1 GB Minimum, 2 GB RAM recommended if used with other instruments 
at the same time.
♦150 MB of free hard drive space
♦Internet  connection  for  download  version,  CD ROM drive required  for 
boxed version installation
♦Monitor with 1,024x768 resolution or better for usage of the default skin.
♦A MIDI interface may be required if you are using a MIDI keyboard. Some 
keyboards use USB. 
♦High quality speakers and amplifier, or high quality headphones
♦Internet connection for download, updates and online registration

The stated requirements represent minimum guidelines for the Standalone Plogue chipsounds Player. If you are using 
chipsounds within a host music  program, then there may be other additional resource requirements. Please also ob-
serve the system requirements of your host application, tracker program and/or sequencing program if applicable. The 
demands of various other processing software (including the sequencer, audio and effects processors, other plug-ins,  
and so on) can affect functionality.



Regarding Sound Cards & Midi Interfaces
The quality of the audio interface will have a significant effect on the quality of the sound you will hear from Plogue chip-
sounds. It will also have a substantial effect on performance (latency). Therefore, a good sound card is one of the most  
important components in optimizing the sound and performance of Plogue chipsounds.

In theory, any audio or sound interface which your OS and computer supports should work. However, you are unlikely to 
get the best sonic results from a sound card designed for computer games or system sounds. Most computers come  
with a consumer-grade sound card, and we recommend that you get a good quality sound interface beyond that which  
is built into your computer. Older SoundBlaster sound cards (which do not support multiple sample rates) and gamer -
-oriented or home system sound cards may be problematic.  It is  not possible  for us to test  all  built-in or third-party  
sound cards, and some interfaces do have problems on some platforms.

Technical Info

A low latency audio interface with ASIO 2.0 (Windows), or Core Audio (Mac), drivers is required for chipsounds to work 
as a stand-alone program. These drivers are normally installed with the audio interface, or the most recent versions can  
be acquired from the manufacturer’s  website.  Contact  the manufacturer of  your interface for more information.  The 
drivers should be set to 24 bit, buffer size 256 samples (optimal) or 512 (more latency, but less CPU load) and 44100Hz 
Sampling Rate.

Please note:                                                                                                                                                                                    
When Plogue chipsounds is running as a plug-in, it uses the audio driver selected by the host’s setup. If the host  
(typically your sequencer or tracker program) is set up properly and works well, then the chipsounds plug-in should 
pass through the same audio and MIDI setup. For this information, please refer to your sequencer, tracker program 
or host’s manual. 

                                                                                                                                                                                                                                       

Similarly, any MIDI interface the manufacturer supports for your system should work with Plogue chipsounds.



INSTALLATION



Installing Plogue chipsounds
Installing Plogue chipsounds is easy. Before you begin, make sure you meet the system requirements The full installa -
tion requires approximately one hundred megabytes of free hard disk space. Installation involves installing the chip -
sounds instruments and also the advanced ARIA engine. A setup program will  guide you through the process step-by-
step.

Mac Setup
♦ First, make sure your audio and MIDI hardware is set up and working with your computer.
♦ Close any programs you are running.
♦ For the Download version of chipsounds, the Archive Utility  will unpack this to your default downloads directory.
♦ Double  click  on  MAC_chipsounds_v1.6.pkg  (Accept  the  defaults  on  the  installer.   For  CD  versions  of 

chipsounds, take the Installation disk out of its case, put it) into your CD drive in the computer and close the 
drive tray. You should see a Welcome Screen.

♦ You will then be asked to accept the End User License Agreement before proceeding with installation.
♦ And choose which partition to install it on:



♦ The setup lets you select which plug-in formats you require. These plug-in formats allow
Plogue chipsounds, in addition to standalone use, to run as a virtual instrument plug-in that seamlessly integ-
rates into your favorite music software program or sequencer (assuming that it accepts such instrument plug-
ins). Please refer to the chapter “Using Plogue chipsounds as an Instrument Plug-In” for further information. 

For Mac, the Choices are Standalone, Audio Units, RTAS and VST at least ONE needs to be chosen

♦ Setup is now ready to begin installing Plogue chipsounds. Click on “Install” to begin installation and the program 
will begin installing. This process should not take more than a minute.

♦ After a few moments a dialog box will notify you that the setup wizard has finished installing Plogue chipsounds  
on your computer.



When  installation is complete, you should see a folder containing the following files in your /Application/Plogue chip-
sounds folder:

You can drag the “chipsounds” chip icon onto your Dock. 
Don't click on anything else, or move ANYTHING away from this folder. All the files in this folder are useful.

When you are finished with installation, remove the disc(s) from your drive and store them in a safe place if you have 
the CD version. If you purchased the download version make sure to make a backup copy. If anything happens to your 
computer, you can reinstall Plogue chipsounds from the discs or the backup.

I  mportant:                                                                                                                                                                                                                   

Please do not cancel setup after installation begins, otherwise a partial, broken installation may 
result.
                                                                                                                                                                                                                                       



Windows Setup:

It is recommended that you just select “Next” for each screen and use the defaults.  

♦ First make sure your audio and MIDI hardware is set up and working with your computer.
♦ Close any programs you are running.
♦ For the Download version of chipsounds, after download, unzip by double-clicking WIN_chipsounds_v1.6.exe. 

 For CD versions of chipsounds, take the Installation disk out of its case, put it) into your CD drive in the com-
puter and close the drive tray. You should see a Welcome Screen. Press Next (If the setup screen does not 
automatically appear: Use the Windows Explorer (PC) to open the installation CD, or for Download users, 
WIN_Plogue_chipsounds_v1.6.exe (PC). )

♦ You will then be asked  to read and accept the End User License Agreement before proceeding with installation.

♦ And the destination folder. Defaults are fine since no samples are streamed while using this virtual instrument. 
(the full size is close to 100MB.)

♦ The setup lets you select which plug-in formats you require. These plug-in formats allow Plogue chipsounds, in  
addition to standalone use, to run as a virtual instrument plug-in that seamlessly integrates into your favorite  
music software program or sequencer (assuming that it accepts such instrument plug-ins). Please refer to the 
chapter “Using Plogue chipsounds as an Instrument Plug-In” for further information .For Windows the choices 
are VST & RTAS



♦ If  you  select  to  install  the  VST32 and VST64 versions  of  chipsounds,  you  will  also  be  prompted  with  your 
preferred VST plugins folder in each case:

♦ Where you want to put chipsounds'' data Directory (samples and other data files) and where the shortcuts and 
icons should be placed.  For most instances, use the default. 



♦ Setup is now ready to begin installing Plogue chipsounds. Click on “Install” to begin installation and the program 
will begin installing.  

                                        You will see a final screen indicated that the full installation is complete.

When  installation is complete, you will need to authorize your current copy of Plogue chipsounds. This procedure is de-
scribed in the next chapter.

When you are finished with installation, remove the disc(s) from your drive and store them in a safe place if you have 
the CD version. If you purchased the download version make sure to make a backup copy. If anything happens to your 
computer, you can reinstall Plogue chipsounds from the discs or the backup.

Important:                                                                                                                                                                                   

Please do not cancel setup after installation begins, otherwise a partial, broken installation 
may result.
                                                                                                                                                                                                      



Authorizing chipsounds

chipsounds needs to be authorized in order to be fully functional, otherwise it will run in DEMO mode.
When you order a license from Share*it, you receive a personal Activation Key card named  aria_key_1009.png as an 
email.

The Activation Key card is an image resembling a typical credit card. 
This image contains your registration and  details encoded within the Key card image. It will look like this:

You should save the aria_key_1009.png image file to your hard drive (keep it in a safe place). 
For convenience, we recommend that you initially save the .png file to your desktop. 
You will also receive a copy of the license card in your email inbox.

1) Locate the “license card” image where you saved it on your hard drive. (aria_key_1009.png)

2) Open the chipsounds software application, or launch your favorite host and make sure you see chipsounds interface.

3)  Simply click  and hold on the file, drag the “license image” or file icon directly onto the application's UI itself, and 
release it.

If you don't get any message (or are not able to drop the key in that host), try to import the png file from the the snap-
shot load menu or the slot load import. (use *.* as file filter)



You should be presented with a message such as this one:

If none of those methods work, please contact chipsounds.support@plogue.com  and attach your key.

Extremely Important!!

The aria_key_1009.png  file contains your sensitive personal information, encrypted inside, including your 
full name and address taken from the online shop. Carefully protect this file. DO NOT GIVE THIS FILE TO 
ANYONE OR DISTRIBUTE IT IN ANY WAY OR YOUR PERSONAL INFORMATION WILL BE COMPROM-
ISED. IF THE FILE BECOMES PUBLIC THE CARD NUMBER WILL BE BLACKLISTED AND THE CARD 
REVOKED.  WE ARE NOT RESPONSIBLE  IF  YOU GIVE  YOUR PERSONAL  DETAILS  TO A  THIRD 
PARTY. IF THE CARD IS STOLEN, CONTACT US IMMEDIATELY. Without a valid card you will also not be 
able to obtain critical updates to the program.

Important Note:

If you have special circumstances or require site licensing, please contact us. 

Updating to the Latest Version

Be sure to check the Plogue Web sites for any possible updates that have occurred since the time your version of the 
software was released. Software is frequently updated and a more recent version may be available.

mailto:chipsounds.support@plogue.com


How to Use Plogue chipsounds
Once installed and authorized, it’s time to get started with Plogue chipsounds. 
There are three ways to use Plogue chipsounds: as a plug-in within a sequencer, with a supported tracker program, or 
you can play it ‘live’ as a standalone application.

Playing chipsounds as a Standalone Application (‘Live’ Play)

Plogue chipsounds can be launched by itself and played live via MIDI keyboard or other MIDI controller. The standalone 
version of Plogue chipsounds effectively makes your computer, audio hardware and MIDI keyboard into a virtual syn-
thesizer that can be played independently of other programs.  Unlike using it as a plug-in within a sequencer, your re -
cording ability is limited and you can not edit your performance (though you can use various audio software programs  
for this).

Launching chipsounds in Standalone Mode

First, make sure that you have followed the instructions in the installation section of this manual. Be certain that your 
audio/sound interface and MIDI hardware interfaces are properly connected to the computer, your speakers or head-
phones are connected and everything is powered up.

To launch Plogue chipsounds as a standalone application, click on the Plogue chipsounds logo on your desktop or go 
to the Program Files or Applications folder and launch “chipsounds”.

Basic Setup Information for Standalone Mode

To use the standalone version you have to configure the Audio and MIDI settings in the Preferences dialog box (found in  
the Tools menu) before you can play. When used as a plug-in, the host sequencer or tracker program has already set 
up its audio and MIDI connections, and the Plogue chipsounds “plugs in” to them. However, with standalone operation 
Plogue chipsounds communicates directly with your audio and MIDI interface. Setup for Mac and Windows computers  
is similar, except where indicated. Note that if you change your audio interface, you will  almost certainly need to read -
just these settings.

Call up the Preferences setup dialog from the Tools menu on the Plogue Aria standalone interface. You’ll see drop-
down menus for MIDI Device, Audio Devices, Stereo Pair, Sample Rate and Buffer Size.

♦ MIDI Device Menu: All supported (and installed) MIDI interfaces are available in this drop-down list. Select the desired 
MIDI device from the list. The Plogue Aria Engine sends and receives MIDI on these selected devices.



♦ Audio Device Menu: All supported (and installed) audio interfaces are available in this drop-down list. Select the desired 
audio device from the list.

♦ Stereo Pair: Here you  can define which of the stereo outputs should be used. Many pro audio devices have a variety of  
outputs, so you may choose which of these are available on your system that you would like chipsounds to output through.

♦ Sample Rate: Depending on the sound card and driver you  are using, various sample rates are available. Set the desired  
sample rate here. 

♦ Buffer Size: The buffer size setting will determine the delay between pressing a key on your MIDI keyboard and hearing the 
sound (a/k/a ‘latency’). The default buffer size of 512 samples typically works well, but smaller buffer sizes will give a faster  
response (lower latency) and higher buffer sizes will give better audio performance (more polyphony and higher fidelity). 
Most modern  computers  and  audio interfaces can handle a buffer size of 512 samples without  a significant reduction in  
polyphony.  If the sound is breaking up or crackling when a note sounds,  then first check that the audio connections and  
wiring are good. Then, try a larger audio buffer size setting. Please note that there is typically a trade-off between higher buffer  
sizes (polyphony and sound fidelity) and lower buffer sizes (faster response or lower latency). Also note that the sound card 
buffer size settings determine latency, rather than Plogue chipsounds Player itself. 

Once you have your Audio and MIDI set up, and have loaded one of the snapshots, you can begin playing chipsounds.  
Press (use your mouse to click on) a key on the on-screen piano keyboard on the chipsounds  Player interface. If you 
can hear the chips play, try playing a key on your MIDI keyboard. If the MIDI and audio configurations are correct, you 
should hear the corresponding synth note. If not, check the MIDI connections and wiring, and the MIDI output channel of 
your MIDI keyboard. Also check that the channel is specified correctly. If you are hearing the notes play, then the basic 
configuration is complete, and you are ready to use Plogue chipsounds.

File Menu for Loading and Saving Snapshots in the Standalone

Configuration presets (.aria files - binary) for chipsounds can be saved and loaded. 
This gives the user the ability to customize instruments setups to suit personal pref-
erences and save configurations for convenient future use. The File menu choices 
are:

♦ Load—any saved configuration preset files in Aria format can be loaded by clicking on 
this choice and selecting the desired file.

♦ Save—any configuration can be saved by clicking on this choice, typing a name for the custom preset and saving 
to a desired location.

♦ Save as default—any settings can be saved as part of the default,  to be loaded automatically at the time the 
chipsounds player is booted in standalone mode.

Tools Menu in Standalone ONLY 

The Tools menu includes:
♦ Preferences—as described in the basic setup information above.
♦ Render offline—MIDI files can be rendered to audio offline using this feature.



To use the Render Offline feature:

1. Click on the Load MIDI file button.
2. Select the desired MIDI file

3. Click on the Name audio file button.
4. Name the audio file and specify its loc-

ation.

Once the files are in place, there is just one 
more step:

Click on the Render button. The audio file will 
be rendered to the specified location.

MIDI File Player and Audio Recorder (Standalone Version Only)

The standalone version of the player includes a MIDI file player and Audio Recorder. It is located at the bottom of the  
standalone window. This feature enables the user to load and play a standard MIDI file and render an audio file from it.  
The MIDI controls are located on the left hand side and the audio controls on the right.

To load and play a MIDI file:
1. Click on the “Load” button.
2. Choose the file you wish to load.
3. Click on the “Play” button.

The MIDI file will  play back using the presently loaded chip setup and any other features (e.g. Ambience reverb) activ -
ated in the player. The progress bar will move to the right as the file is played. To start the file from the beginning, click 
on the “Go to beginning” button. The file can be stopped at any time by clicking on the “Stop” button.

To record your playback to an audio file:

1. Click on the “Name file” button.
2. Name the file and specify its desired location.
3. Click on the “Record” button.
4. Start playback by clicking on the MIDI “Play” button.
5. When playback finishes, click on the MIDI “Stop” button.
6. Click on the Audio “Stop” button.

The audio file will be located on your drive in the location you specified.

Note:                                                                                                                                                                                              
There is also an offline rendering feature (explained previously) that is located in the “Tools” menu of the standalone ver-
sion.



Using Plogue chipsounds as an Instrument Plug-In
When used as a plug-in, Plogue chipsounds is not a standalone program but rather a virtual instrument module that is  
seamlessly integrated into your favorite music software program or sequencer (assuming that it accepts such instru -
ment plug-ins). They are called “plug-ins” because these are modular software applications that run inside a “host” mu -
sic application, (e.g. a sequencer or tracker program, typically).

There are various uses as a plug-in:

♦ MIDI recording and sequencing of Plogue chipsounds. 
♦ Audio mixing of Plogue chipsounds with other instrument tracks within a single program
♦ Easy automation of Plogue chipsounds parameters in the music software program through the use of MIDI CC's, 

which gives you the possibility of automating all 8 slots. Or using your host's “parameter automation”, which al-
lows you to automate the first slot only.

♦ Effect processing of Plogue chipsounds using effect plug-ins in a music software program Saving and recalling 
of all plug-in settings when the music software program or sequencer file is reloaded

♦ Integration with other instruments into a “virtual studio”

A great thing about plug-ins is that they work with a large variety of compatible music programs. For example, Plogue  
chipsounds can be used as a VST plug-in in many VST music programs, sequencers, supported tracker programs and 
hosts. chipsounds can also be used as an Audio Units plug-in or as an RTAS plug-in.

Plug-in
Standard

Description Windows Mac

VST The VST plug-in stands for Virtual Studio Technology and was 
developed by Steinberg, the makers of the Cubase family of au-
dio programs. It is also used by Cakewalk Sonar, Ableton Live, 
Renoise, Bidule, FL Studio and other sequencers.

X X

Audio Units The Audio Units (AU) plug-in standard was developed by Apple 
Inc. for Core Audio under Mac OS X. Audio Units is the pre-
ferred plug-in format on Mac OS X and is used by Apple Gar-
ageBand & Logic and MOTU Digital Performer.

X

RTAS RTAS plug-ins (Real Time Audio Suite) are designed to work in 
the Digidesign Pro Tools environment. Pro Tools hardware and 
software are used extensively in the pro audio and post produc-
tion communities.

X X

Basic Setup Information for Using Plogue chipsounds as a Plug-In Instrument

To use Plogue chipsounds as a plug-in instrument, you simply launch your host music application/sequencer first and  
then launch Plogue chipsounds from within it. Make sure that your sequencing host program is properly installed and 
configured, and that it is producing sound properly. Used as a plug-in, chipsounds’s audio and MIDI data is managed by 
the host music software application.

Using Plogue chipsounds in a Specific Music Program or Sequencer

Plogue chipsounds works as a plug-in instrument within many popular music software programs. Each music software  
application has its own approach to handling plug-in instruments. They each have a different method of installation as  
well as differing means of loading and accessing plug-ins. It is important to make sure that you refer to the instructions 
in your music software application’s manual regarding the loading and operation of plug-in instruments.

Although it is not within the scope of this manual to delve into how plug-ins work for the various music applications,  
there will  be tutorials on how to use Plogue chipsounds with the various music software programs. Please refer to the 
support  pages on the Plogue website at www.plogue.com



Saving chipsounds Parameters in a Music Program or Sequencer

While using Plogue chipsounds with a host music application, when you save a sequence or project with the host pro-
gram, you will save all of Plogue chipsounds’ parameters as well (As long as chipsounds is properly registered with the 
current user). The parameter saving will  occur automatically when you save the file in your music application and you  
don't need to do anything in the chipsounds Player interface for this to happen. When you re-load your host music pro -
ject, Plogue chipsounds settings will revert to the state in which they were when you saved your project file.

Important Technical Notes:                                                                                                                                             
Windows VST applications only: To use Plogue chipsounds with more than one VST application, you need to manu-
ally copy the “chipsounds VST_x86.dll” file, installed into the chosen folder during installation of the software, to 
the appropriate VST-compatible host application’s  VST folder. Please refer to your particular application’s  user’s 
guide and the Plogue support site for more information.

Regarding 64-bit hosts: Some hosts have one common VST folder for both x64 and 32-bit plug-ins, please only 
use  the  version  of  the  plug-in  that  is  native to  your  host,  e.g.:  x64 bit  version  of  Sonar,  use  the  chipsounds 
VST_x64.dll. Mac OS X has standard folders for both VST and AU plug-ins and do not require this extra step.

                                                                                                                                                                                                      

An additional copy of the VST plug-in is available in the main Plogue chipsounds applications folder, in the VST sub-
folder. Please don’t use this folder as your main “vstplugins” folder. Please note that a saved sequence in one music  
application may not be usable in other music applications, as each application generally has its own proprietary format.  
However if you can export and import standard MIDI files between two programs, then combined with .aria(x) files it can  
serve as a means to exchange tracks between them.

How chipsounds Works

The Basic Interface and the View Screens

The Aria Engine is a custom-made Virtual Instrument Engine developed specifically for Plogue and Garritan sound lib-
raries and synthesizers, such as chipsounds. It constitutes the best sounding and most powerful sample/synthesis en-
gine available, built from the ground up for high performance and exceptional quality. The Aria Player enables you to 
load chipsounds instrument sounds, control various parameters for playback, and do a number of other things. The soft -
ware engine was custom designed and programmed by Plogue Art et Technologie Inc.  The Aria Player has various  
view screens or “windows” that are accessed by the five view tabs across the bottom right. Those screens consist of the 
“Mixer” window, the “Controls” window, the “modulation”, “Effects”  and the “Settings” window.

Chip Music Dogma:

A good part of the dogma of composing chip music is about being creative with limited resources, something that is  
natural when using the original 8bit hardware. While we can't claim chipsounds  replaces the original hardware, we 
can at least offer the possibility to emulate its inherent limitations. 

Musicians willing to accept the challenge of composing music using the same limitations as they would have using  
8bit console trackers  need to follow certain guidelines and be mindful of certain key aspects of the graphical user in -
terface parameters. We will note these in a special blue section like this one.

Similar cues exists in other types of sound libraries, for example with a drum sample library. 

You would never hear a real drummer strike a cymbal, a snare and a tom at the exact same time unless he had a third 
arm.



The Mixer tab:

A. Slot Number (1 – 8): You can have up to 8 chips or instruments loaded in each instance of the player.  
An instrument can be the monophonic voice of a classic sound chip, a full sampled drum kit, etc. Click on a 
slot number to edit it's parameters in the controls and modulation tabs.

While the interface lets you load and configure 8 such voices, you should try and make sure you never have 
your sequencer play more than 4 or 5 voices play at once (chip dependent). Why do we provide 8 of them  
then? Simple!  You might require a specific instruments only at certain spot in your piece.  For example a 
bridge would use another waveform and arpeggio on voice “1” than the rest of the song. And by setting another  
slot with this configuration you are relieved of reconfiguring the current one while it plays, which is not always  
realistic in real-time

B. MIDI Channel Assignment:  

Click the number to select the MIDI channel that you require this slot to respond to. If you specify “OMNI” this  
instrument slot will receive all events, regardless of the source MIDI channel. In other words the program in the 
slot it will play all incoming notes.

C. Load Program:  Click here to load a program in the corresponding slot. 

Clicking the chip slots brings up a dialog box from which you can load the program of your choosing. The instruments  
will be grouped in a simple hierarchical menu for each ARIA-based Library you have installed. 
The instruments are also placed in sub groups: “01 - Pure Chip” , “02 – Custom Waveforms” etc.

Choosing “Empty” will remove an assigned instrument from a channel and wipe all previous controller data received on 
this slot. 
Choosing “Import” will allow you to load any standard SFZ 1.0 and SFZ 2.0 file, to use as an instrument sound. 



Choosing “Reload” will restore the default parameter settings for that instrument.

NOTE: The chip/instrument slot is also mirrored in the controls tab for ease of access .

D. Key Switch
Current active switch on that slot (see Controls section)

E. Mute/Solo
A muted slot will be silent in the mix, a Soloed slot will mute all other non soloed slot.

F. Transpose / Tuning Settings
Click/drag the numbers to change the current slot from -64 to +64 semi tones, and -100 to +100 cents. This is  
very useful to thicken an instrument used as a layer in a more complex sound. NOTE, depending on the target 
chip/program  and the specific  note played,  even a 100 cent  change might  not  be enough of  a change to 
generate a new frequency from that slot. (example: TIA (NTSC) has can only play 32 different  notes spanning 
the full keyboard)

G. (top) Pitch bend range
Allows  to change the default +-48 semi  tone bend range to something more standard like +-2 semitone, or  
another setting you prefer.

G. (bottom) Polyphony Setting
Click  the  number  to  change  the  polyphony for  this  slot.  If  your  goal  is  to  use  the  arpeggiator,  the  wave 
sequencer or any other monophonic trick, leave it at the default “1”. 
If you want to play full chords on one slot, then you can decide to raise this. 

The original sound chips had very limited polyphony. If you decide to have one channel play sustained chords,  
then limit the number of extra slots playing at the same time elsewhere.

H. Volume Control Knobs (CC7)
This knob controls the relative volume level of the corresponding slot. 
The volume  of  each  possible  waveform  in  a  console  has  been  tweaked  to  be  right  relative to  the  other  
waveforms that chip can produce. If you want to play multiple slots of the same chip, don't change the volume 
of the slot.

I. Pan Knobs (CC10)

This knob controls the effect sends of the corresponding channel. 
Only the DMG-CPU instrument had panning, and even then it was either center, full left or full right, AND you  
couldn't automate panning without sonic artifacts



J.  Send Control (CC91)

This knob sends a portion of this slot generate signal into the effect bus.

Leave it to zero all  the time as there were no DSP effects on those early consoles,  at least  until  the fourth  
console generation.

K. Output Selection

When using the multiple output VST or the AU version of chipsounds you redirect the output of each slot to any 
external bus or plugin of your host for extra processing.

L. Keyboard

The bottom of the window features a virtual on screen keyboard that indicates the range of notes that can be 
played on that instrument setting. When a channel with an instrument assigned to it is selected, a section of  
the keyboard will be highlighted. Keys that are being played will be shown in real time.

M. Key Switches (KS)

Keyswitches  are certain reserved keys (usually the lowest  octave on the keyboard) that are used to rapidly 
change from one type of waveform to the other without requiring loading a new sound. You can also change  
the current waveform (or KS) in the controls tab chip section, or using MIDI Program Changes.

N. Snapshots

Snapshots are “Master Programs”, or complete multi-slot setups with a “snapshot” of the current sate of the 
system at the moment of saving, including parameter values (CC/pitchbend), arpeggiator and wave sequencer 
settings.  You can save any number of snapshots into your user folders which mimic the structure of the the  
default programs.

The Snapshot selection box is always available regardless of your currently selected tab.

You can reload snapshots starting at ANY slot, that way you can use more than one “preset” at once.

Snapshots have the .aria or .ariax extension.

KEYSWITCH TIPS
♦ Always put the keyswitching note for the particular instrument *before* the first note of the articulation you 

want to play, not on the same time!
♦ Remember that when you hit "play" on the sequencer, ARIA  will remember the last keyswitch used.
♦ If you transpose your score, you must be sure NOT to transpose the KS notes!! Any transposition to these 

notes will change (or eliminate) their function.



Controls Tab : The main sound Editing guts of a chip

Channel Strip:
All  the parameters  from the mixer view have been transposed here for the selected  slot.  Some were  in the Chips  
Settings section of chipsounds version 1.0: The Load Program (see the Mixer section) and the Key switch drop downs.

Key switching (or “KS”) is used to manually change waveforms by only using the keys. (It's a technique used by old 
organs, and more recently by many large sample libraries – including the whole Garritan offering, and it's not the typical  
thing you find on software synthesizers. KS's act as a kind-of program change to rapidly change the waveshape of that 
chip without reloading the whole chip/slot.

Basically, if you have big MIDI controller (61 notes and higher), you can hit the lowest octave – which in everyday use is  
pretty useless-to act as a fast live toggle for sound variations.
Hit a low “E” (MIDI Note 004) and change the playback sound from pulse to the triangle waveform on the (2A03) setting.

Key switching provides some  great advantage for MIDI automation in your sequencer, and for automation through the  
built in wave sequencer module. As it doesn't reload anything, it”s instantaneous and causes no CPU hit.



Arpeggiator:
When  “on” this  Component  acts  as  a MIDI pre-processor  transforming  notes  and chords  struck  on the  your MIDI 
keyboard (or prerecorded sequence) into a stream of fast monophonic MIDI patterns.
This is a great live inspirational tool, but it has some important “gotcha's”.
Since each note generated from the arp is in fact a full “new” note, this will RESTART the envelopes and LFO's on each  
voice that plays in succession.. (So this is not what you would typically use for typical chip music fast arps)  

On/Off: (CC20 OFF:0. ON: >=1)

Arp Modes:   This,  along  with  “Octave Range”,  and the set  of  MIDI notes  that  are received will  generate a new  
sequence of MIDI events at the outputs.

• [U[ : Upward exclusive.
• [D[ : Downward exclusive.
• [U ; D[ : Up and down exclusive.
• [U ; D] : Up and down inclusive.
• [D ; U[ : Down and up exclusive
• [D ; U] : Down and up inclusive.
• Key : Notes are arpeggiated in the order they are 

played.
• [rdm[ : Random exclusive.
• [rdm] : Random inclusive.

Trigger Type:

• loop:  will loop through the entire sequence until notes are released.
• single: will play through the sequence once.
• sust. last: will play through the sequence one and keep the last note playing until you release keys.

Vel (velocity): Affects the velocity of the output notes from the sequence. 

• key: will play back the velocity of each input note in the output sequence.
• 1st: will apply the velocity of the first received note to all the output notes.
• norm: normalizes all output notes to the same value.

Dur (Duration): length of each output note in musical time. (¼ being a quarter note).

(Octave) Range:  1, 2 or 3 octaves copies of each note are going to be added to the sequence.

BPM: Manual tempo selection. (independent of host tempo).

Gate (length): proportion of silence between successive notes.

(One Note) Repeat: when receiving only one input note output note once or repeat it.

(Host) Sync: Will follow the host's tempo.

Prop Div (Proportional Division): Sequences will take the same time to play, however manynotes they contain.

Swing: Adds groove to the timing of the events.



MIDI Delay:
When “on” this Component acts as a MIDI pre-processor that inserts copies of notes at lower velocities when no other 
notes are playing (keeping polyphony to 1). This allows to reproduce another a classic chipmusic trick to make more  
with less voices. Of course you can also bump up the polyphony and turn it into a polyphonic MIDI Delay as well.

On/Off: (CC22: OFF:0. ON: >=1)

(Dur) Duration: length of each repeated note in musical time (¼ being a quarter note).

BPM: Manual tempo selection (independent of host tempo).

Swing: Adds groove to the timing of the repeats.

Dec. (Decay): Sets the number of repeats. A lower value will yield more repeats.

Mono:  Monophonic delay. Each new note played will stop repeats from the previous note.

(Host) Sync: Will follow the host's tempo.



Wave sequencer: (WS)
This is the second MIDI pre-processor in the chain, and it's the real power horse of the system.
It's in many ways similar to the “instrument” tool on typical 8bit trackers.

It's  a  spreadsheet-like  grid  with  musical  and  parameter 
events that are sequenced from top to bottom.
What it does is that it waits for an incoming note and then 
start sending elements form a pre-programmed list one at 
a time.  This is what you would use in order to reproduce 
many typical  chip  music  tricks  like  fast  looping  arps,  or 
other  custom  frequency  or  amplitude  modulating  tricks. 
This  module  sends  timed  parameter  changes  to  the 
current  voice  that  is  playing.  It  doesn't  force  reset  the 
LFO's nor the pitch or amplitude envelopes like the basic 
arpeggio does. However you can use it to create a list of 
notes too.

A good selection of presets are already available in preset 
drop down menu.

Make sure a chip is loaded in slot 1, then click  the wave 
sequencer's  preset  menu  and  load  the  one  named 
“Classic Arpeggios/major7th”, then click on the upper left 
corner  “off”  button  to  turn  it  “on”,  press  a  key  on  the 
keyboard, you should hear a major7th chord playing.

A wave sequencer can hold up 12 different sequences which can be mapped to any key (or continuous range of keys)  
on the keyboard. But you can only play and edit one at a time.

On/Off: (CC21 OFF:0. ON: >=1)

BPM:  Manual tempo selection (independent of host tempo). [10; 500] default:120 (can be synced to host)

Seq Id: [0; 11]  manually chose the EDIT sequence.

Key map: [0; 127] set note trigger range for this sequence. Note, the wave sequencer will  play the first sequence  
whose range fits the incoming note. EG, if sequence #0 and #1 both span then entire keyboard, then only the sequence  
#0 will ever be playing.

SEQ+:  increments the current EDIT sequence.
SEQ- :  decrements the current EDIT sequence. 

A sequence can contain 3 separate sections:

1) the black section:(Start) events in this section will only play at the start of the incoming note.
2) the blue section: (Loop) will cycle until the incoming note is released.
3) the orange section:(Release) will play after the note has been released.

A sequence can have any combination of such sections, but they will always be in that order.



To Specify a blue section (Loop) : Set Loop start to something else than “--”.
The Loop end is  implicitly interpreted as either the last  element  in the list,  or the Release Start marker, whichever 
comes first. 

To Specify a orange section:(Release) : Set Release start to something else than “--”. The Release section is a 
handy tool   to reset/undo some of the changes that have been made to the system in the previous sections(amplitude,  
frequency, ADSR, etc), or to play a few notes at the end...  warning,  notes will  hang until  next note starts or wave 
sequence is turned off if the slot's ADSR's sustain is not 0.

Vel On/Off:
when OFF: the WS disregards any input MIDI velocity and overrides it with the velocity defined by the notes in the  
sequence.
When ON:  the WS multiplies the input MIDI Note Velocity with the values specified in the table.

WS GRID EDITING 

Column “-” :  (Event ID)
To add an event, left click on an existing element from the leftmost column. This will prompt you a choice of 
action:

Insert: inserts a NULL element BEFORE at the selected index, with a duration that matches the one on the selected 
index.
Insert  after: inserts  a  NULL element  AFTER at  the  selected  index, with  a duration  that  matches  the  one on the  
selected index.
Duplicate: inserts a copy of the selected element.
Delete: deletes the selected element.

Column 'T' :  (Musical Duration)
Changes the duration of  the current event, in other words,  or how long it  will  take for the next element  to play,  in  
standard musical durations: ¼  being a quarter note.



Column 'Type' :  (MIDI Event Type – AKA MIDI Status)
Click on this column to bring forth the following menu:

● CC is to modify any CC seen in this interface including everything on the modulation tab and in that chip's  
custom parameters.

● Note On and Off are used to start and close notes:If you leave the slot's polyphony to “1”, you don't have 
to close the notes that you left opened, since the previous note will automatically be “stolen” by the next one. If  
you do use extra polyphony mode, then you can create sequences of polyphonic patterns as you wish, but it is  
not a common usage scenario.

● Pitch send a private CC (12) that will tell the voice to pitch shift up to 2 octaves up or down in semitone steps.
● KS Changes the current Key Switch. Handy for SID-style wavetables like snare drums.

Column 'Evt1' :  (MIDI Evt1)
Depending on the MIDI Event type, different values will be possible.

Column 'Evt2' :  (MIDI Evt2)
Again like with Evt1, different values will be possible depending on the Event type. You can here SHIFT-CLICK 
to enter direct values using your keyboard. ->  Only used for Notes and CC's.

Column 'R/A' :  (Relative/Absolute)
Absolute: Makes sequenced notes fixed whatever note you pressed.
Relative: Makes sequenced note relative to the input note (delta mode).

You can combine the two MIDI processors in unique ways for totally new sound patterns, especially considering 
the possibility to have each of them follow the host tempo or to follow their individual independent BPM values.  
(abusing  the gate setting on the arpeggiator is cool, too.)



Chip-Specific Settings:
Some chips like the SID, have up to 6 specific controls. Some have none.

Each chip/program will be described in detail in the next chapter.

 Oscilloscope:  

Just a fun graphical representation of what you are hearing. 
You can tweak the settings to change the time/amplitude scale and change the way it refreshes, just like a real one.



Modulation tab

User LFO's:

You can edit custom LFO waveshapes graphically with the mouse. Assignable to either pitch or amplitude.

Pitch Mod(ulation):

Pitch LFO with fixed waveshapes and  two user drawable LFO's.  You can control the LFO by automating CC's 1, 76 
and 78.

Amplitude Mod(ulation):

Amplitude LFO with fixed waveshapes and two user drawable LFO's.  You can control the LFO by automating CC's 92 
and 90.

You have also access to a portamento time setting to glide from the past note to the next
(sorry no monophonic synth legato action yet)

Note on porta: the glide will  be from the last TWO FINAL NOTES, so if you are using the arpeggiator/wave sequencer  
you may not get what you intuitively thought you would)

Pitch EG (Envelope Generator):
Standard pitch envelope. Each control can be automated with CC's 14,15,16,17,18 and 19.

Amplitude EG (Envelope Generator):

The displayed times are valid for all chips except the SID's, which have different time calculations that currently don't  
show on the UI. Also Most chips can only be driven by 16 volume steps.  while the SID supports more fluid decays. 
CC's are 13,73,75,70 and 72

Expression  (CC11)  is  reserved  for  Wave  Sequence  for  quick  volume  edits  and  is  only  available  here  for 
troubleshooting purposes.



Effects tab:
The default master send effect is the Ambience reverb:

New in 1.6, two new effects Delay and Mod Delay... More to come!



Settings Tab 
The Settings tab brings up additional information about the current ARIA Engine instance.

This is mostly there as an ARIA engine troubleshooting display.  It displays the version of the software and its copyright 
information as well as  information about how the ARIA engine is performing. The information in the left-hand column 
indicates the software’s current RAM usage. The middle column contains the software’s current resource pool status. 

You can adjust some of the settings in this window by clicking on certain boxes to reveal a drop-down menu,
but for chipsounds, you shouldn't have to mess with this at all.  Well you could import standard SCALA files and re-
tune your “unlimited” TIA back into a gamelan though!

● Dyn Max: Determines the threshold for RAM usage by the software. The default is “256 MB.”
● Pre-Caching: Determines how many samples of an instrument the software will  process before playing them.  

A higher setting will result in longer initial load times, though you should increase this setting if you are using a 
slower computer. The default is “32 Kb.” (this only applies to other third party instruments, not to chipsounds)

● Quality: Determines audio quality of the sample interpolation. The default is “Normal (Hermite).”
● Tuning System: Determines the tuning system of the instrument in the software. There are different tunings for  

regions throughout the world, but to start, we recommend the default, “International 440.”
● Inst. Poly: Determines  the maximum  amount  of  polyphony (multiple  notes sounding  simultaneously)  each 

instrument can play. A higher setting will allow for greater polyphony but also increase CPU usage. The default  
is “32.” This setting applies for ALL slot... It's a Master cap.

● Scala: Selects a specific tuning file.
● Scala center: Select root note for the scale
● MIDI Out: (VSTi only): Specify what to output back to the plugin Mute: don't output anything. Processing: This 

will output ALL MIDI processed by each slot and output them on MIDI channel tagged by each slot (not linked 
to Omni/channel settings). Including notes hit on the GUI and arpeggiator/wave sequencer etc.  Through: Just 
forwards inputs to outputs.



Generic Notes on all ARIA-based UIs:

*All virtual knobs on the graphical user interface can be adjusted by holding down the left button of your  mouse and 
moving it up or down (rather than circular, in the direction of the knob). Release the button to set the level. A box next to 
it will give a measurement reading.

Most of the knobs have been replaced with numeric boxes. There are two ways to modify the values:

Click on the pencil to manually enter the 
desired numerical value.

Click and drag up or down on the number, like you would with a regular knob.

*All virtual Knobs can be reset to their default value by using  Ctrl+Click [Command+Click (Mac OS)]. 

Skinning:
No UI will ever please everyone. You can create your own skin by modifying the GUI directory.
If you can edit HTML layouts, and mess with Adobe PhotoShop, you will surely have no problems figuring out the ARIA 
xml GUI tags.  In case of severe doubt, please post on the chipsounds forums for details.

chipsounds includes a separate skin “GUI_smaller” that can be substituted to “GUI” in the AriaSetup.xml file.
This is suggested for netbook users.



Important Notes regarding Pitch Resolution
With the exception of Bob Yannes' SID,  most of these chips were not made by musicians, and some of them have a  
hard time reproducing western musical scales .(The 2600's TIA cannot do any useful scale for that matter).

There many  parameters in chipsounds that can influence the target note frequency:

A)Actual Note that's been hit,
B)Pitch bend value (2 octaves in both direction), 
C)Portamento/Glide time,
D)Pitch LFO,
E)Pitch EG,
F)Value of the detune setting for that slot in the mixer pane,
G)Value of the hidden CC12 parameter (wave sequencer's pitch modulator),

But ultimately the emulated chip will  only play the CLOSEST FREQUENCY it can with regards to the final calculated 
pitch value generated by those parameters. 

But ... This is where the fun resides, and a good part of the sonic authenticity factor.

Doing a pitch bend or some other heavy pitch modulations on a severely limited pitch precision chip like the TIA is part  
of what makes the 2600 sound effect so awesome... Try slowly pitch-bending a POKEY... you will  be surprised of the  
amount of spectral content that change with only a few “musician's cents”. In this context, pitch LFO's can be used as 
great beat generators.

Of course you  don't have to suffer this if  you are just looking for the classic  waveforms and not  the off key notes,  
beating and stepping.

That's why we've added an “unlimited” version to most Chips in the list. 

Chips, Program, and instrument details.

Most of these chips come as different slot “programs”  and usually differ in subtle ways.
The most common difference is the master clock that drives the chip which is responsible for its exact tuning and pitch 
limits. NTSC stands for National Television System(s) Committee, and is the North American and Japanese analog 
television standard. PAL stands for Phase Alternating Line and is the European system. 

 An “unlimited” chip is a fantasy invention. It allows perfect tuning all the time. So it doesn't give an accurate 
representation of the normal pitch that these chips can produce.



RP2A03 (NTSC) and RP2A07 (PAL) and RP2A0X (unlimited)

This 6502 cpu clone was custom made by Ricoh to be included in the Big N's breakthrough 8bit console.
On top of being the main cpu for the console, it also served as the sound generating unit of the system. 
While is it is not a dedicated audio IC, it is still quite remarkably versatile and unique sounding.
Two audio outputs pins were provided on the IC:

The first audio pin generated two independent pulse channels, with 4 width settings: 
1/8, ¼, ½ and ¾  (¾ and ¼ being inverted in phase).

The second pin generated
1 - a triangle wave (4bit resolution) which was often used for baselines.
2 - noise (LFSR-based, short  and long).
3 - DMC (Delta Modulation Channel), a crude sample playback mechanism.

chipsounds maps those sound sources into 5 distinct KS slots:

Pulse MIDI Note 0 (C0): 
Extra parameter: CC2 : Dynamically change Pulse Width from 1/8, ¼, ½ and ¾.

Triangle MIDI Note 4(E0): 
NOTE: amplitude EG has NO effect on this waveform since technically the waveform is the result of volume changes to  
the 4 bit DAC already.

Short Noise MIDI Note 5(F0): 
Metallic sounding tone.

Long Noise MIDI Note 7(A0): 
This generates a more evenly distributed frequency content than the short noise. A good sound source for snares and 
hi-hats.

DMC Channel MIDI Note 9(B0): 
Due to obvious copyright reasons, no classic samples are provided, only a snare and bass drum sounds from Plogue's 
sample collection. You can add more samples to this switch by modifying the “Programs\09. User\Uuser1.sfz” file, and  
by adding your own 8bit unsigned RAW samples references inside.

*NOTE1: DMC's, due to their nature of having preset pitches depending on the master clock, do NOT work correctly in  
“unlimited” mode. (they will just sound like chipmunks.)

*NOTE 2: While all 2A03 tones are synthesized in this program, an additional program has been constructed as “extra” 
and is available in the “03 Multisamples” category:

2A0X Loops:   Some fun Noise  sweep  samples  recorded from our 1U NES rack  and custom  EPROM made  with  
NESASM . Trying tho replicate this with  the Wave Sequencer would be a interesting task, as each of the 16 noise  
frequencies is a table in the 2A03. 

TECH: These are a 60Hz increment/decrement sweeps on $400E. (short and long.)  
Sweeps sound different depending on the timing of 1/60's second changes which is why we've provided a few different  
ones here.



AY-3-8910 (various clocks sources), YM2149 (2Mhz)

The “AY”  is  a dedicated sound generator by General Instruments (now Microchip). It's  an OEM part that has been 
included in hundreds of arcade games, consoles and computers. It has also been manufactured with a few changes by 
Yamaha  as  the  YM2149  chip  (envelope  has  32  amplitude  steps  instead  of  16),  to  be  included  in  the  ST line  of 
computers.

It can generate 3 channels of 50% duty pulse at once, on three separate pins. 
A separate LFSR-based noise generator can be mixed into each of these 3 separate outputs. 

On top of that, a single incorporated AR (attack/release) envelope generator can modulate the levels of the 3 channels  
independently (NOTE: since there is only ONE AR envelope generator, you could use  ONE envelope setting for all  
channels).

Recently on the ST platform, some new tricks have been implemented by Demo/Tracker programmers which uses the 
envelope generator as a new waveform type. This is known as the “Hardwave”. A variant on the Hardwave is the “Sync 
Buzzer” technique which  consists  in  carefully timed  resetting  of  the Hardwave, which  produces  on top of  a better 
frequency response than the bare Hardwave, a truly unique hard-sync effect using only the Envelope's waveshape. 

chipsounds maps those sound sources into 6 distinct KS slots:

Square MIDI Note 0(C0)

Long Noise MIDI Note 2(D0) 

Hard Wave 1 MIDI Note 4(E0):    Rising envelope loop.

Hard Wave 2 MIDI Note 5(F0):    Falling envelope loop.

Hard Wave 3 MIDI Note 7(G0):   Rising/Falling envelope loop.

Sync Buzzer MIDI Note 9(A0): Rising/Falling envelope loop with resynch.
Extra parameter: CC71 : Dynamically alter the resetting timing of the envelope. (hard sync)
This uses CC71 since it's is often used as a filter cutoff/resonance frequency emulating trick.

NOTE Veteran AY programmers know that you can create a vast amount of cool sounds using combinations
of the envelope and the pulse+noise mixed together.  We are working on an update which will allow you to do some of  
those tricks See progress here: http://ploguechipsounds.blogspot.com/2009/10/full-ay-emu-prototype.html

http://ploguechipsounds.blogspot.com/2009/10/full-ay-emu-prototype.html


D1771C Sound Generator of the Super Cassette Vision

Nearly nothing is known about this 'soundchip',  apart from the suspicion that it is in fact a NEC 4bit MCU, or if  you  
prefer, a microprocessor with embedded code on it. Since it runs a custom program that we don't have access to (until  
this chip gets de-capped), we can only approximate what it generates using empirical tests. 
My research led me to create a small application that runs directly on the console:
 (http://ploguechipsounds.blogspot.com/2009/08/upd1771c-tester-app.html  )  

This allowed me to capture and analyze the 8 basic 'pitched' waveforms it can generate with relatively good accuracy.  
I then added those sounds into chipsounds and contributed them into MESS as well.

The main tone sources are:
D1771C_T0 MIDI Note 0(C0)
D1771C_T1 MIDI Note 1(C#0) 
D1771C_T2 MIDI Note 2(D0) 
D1771C_T3 MIDI Note 3(D#)  
D1771C_T4 MIDI Note 4(E0)  
D1771C_T5 MIDI Note 5(F0)  
D1771C_T6 MIDI Note 6(F#0)
D1771C_T7 MIDI Note 7(F#0)

(you can use CC2 on these to change the offset into these 32 stepped waves)

The main noise sources are:
D1771C_N0 MIDI Note 8(G#0)
D1771C_N4 MIDI Note 9(A0)
D1771C_N5 MIDI Note 9(A#0)
D1771C_N7 MIDI Note 9(B0)

Other bits of research:
 (http://ploguechipsounds.blogspot.com/2009/07/rom-trojaning-super-cassette-vision .html  )  
 (  http://ploguechipsounds.blogspot.com/2010/05/upd1771c-puzzle .html  )  

http://ploguechipsounds.blogspot.com/2009/08/upd1771c-tester-app.html
http://ploguechipsounds.blogspot.com/2009/08/upd1771c-tester-app.html
http://ploguechipsounds.blogspot.com/2009/08/upd1771c-tester-app.html
http://ploguechipsounds.blogspot.com/2009/08/upd1771c-tester-app.html
http://ploguechipsounds.blogspot.com/2009/08/upd1771c-tester-app.html
http://ploguechipsounds.blogspot.com/2009/08/upd1771c-tester-app.html
http://ploguechipsounds.blogspot.com/2009/08/upd1771c-tester-app.html


D1867G  multipulse sound generator from the VL1 Mini keyboard

While  not from a vintage video game console  or computer  per se,  this  chip  produces  very similar  results  and has 
gained good notoriety in the chip music scene with its totally unique waveforms.

The IC has multiple outputs, some of which are heavily post filtered. 
Other outputs (used for beats) are unfiltered.

chipsounds maps those sound sources into 6 distinct KS slots:

Piano MIDI Note 0(C0)
Fantasy MIDI Note 1(C#0) 
Violin MIDI Note 2(D0):  
Flute MIDI Note 3(D#):  
Guitar 1 MIDI Note 4(E0):  
Guitar 2 MIDI Note 5(F0):  
English Horn MIDI Note 6(F#0):
For these switches, you can remove the RC filter with CC79

Drum Snare MIDI Note 7(G0): 
Drum Noise  MIDI Note 8()G#0

NOTE1: these are the names of the waveforms, not their equivalent “preset” on the mini keyboard, which ofte contain 
tremolo/vibrato as well. In order to reproduce those presets you have to program them using the modulation tab and the  
Wave Sequencer.

NOTE2: the frequency range of the chip is currently unknown, so we only provided an “unlimited” version.

NOTE3: The envelope on the drum channel is not stepped but a smooth exponential decay.

NEC D65010G031 3-Micron CMOS Gate Array used in the PV-1000

 Nothing much to say, really only 3 square wav channels made by cutting the main clock by 1024,
 then by the value of the 6bit period registers. But this creates a surprisingly accurate pitch range.



DMG-CPU, SGB and DMG(unlimited)

This CPU is another custom built CPU/Sound generator, this time manufactured by the “Big N” themselves for use in  
their very famous portable 8bit console. While this time it's a Z80 clone running much faster than the previous 2A03, its 
sound capacities really show a direct conceptual heritage.

The pulse channels have equivalent 1/8, ¼, ½ and ¾ widths
The noise channel has a different short noise (127 bits long instead of 93), but the same Long noise.
However it  does not have a DMC channel,  instead it  has a Wave channel  that  can be configured to play any 4bit 
waveform of 32 samples. By rapidly changing the content of that register, longer samples could be played.

chipsounds maps those sound sources into 5 distinct KS slots:

Pulse MIDI Note 0 (C0): 
Extra parameter: CC2 : Dynamically change Pulse Width from 1/8, ¼, ½ and ¾.

Wave   MIDI Note 4(E0): 
You can edit the waveform graphically with the mouse or choose from a drop down of presets
NOTE: amplitude EG has NO effect on this waveform since technically the waveform is the result of volume changes to  
the 4 bit DAC already.
New in chipsounds 1.5 Although the native hardware doesn't offer these features directly, three other MIDI CCs  can  
now  be  used  to  further  tweak  the  sound  of  the  Wave  Channel  of  the  DMG,  not  unlike  what  can  be  done  with  
contemporary DMG tracker cartridges.

CC2: Change the pulse width of the waveform, the effect of which depends on the Pmode
CC28:VPOS: changes the vertical offset of the waveform. (with wrap around )
CC29: Pmode. (phase mode)

• off :no phase effect
• PWM :waveform is 'squeezed' into the left hand side.
• PWM+copy :same as PWM, but copies of the waveform are inserted after. (nasty)
• modulo :modulus of width is applied to the playback position
• seek :playback position speed is changed (NOTE pitch will not be preserved!)
• trunc :the waveform is truncated towards the width mark.

Other modes may be added in future versions, so the upper range of CC29 is not used.

Short Noise MIDI Note 5(F0): 
Metallic sounding tone, but used in many games as a gritty springy effect.

Long Noise MIDI Note 7(A0): 
This generates a more evenly distributed frequency content than the short noise. 
Good sound source for snares and hi-hats.



M5232 (unlimited)

A very interesting chip specimen which appeared in a few obscure arcade games (Splendor Blast)  but also in a few  
K_rg synthesizers. It generates tones by means of additive squarewave synthesis. Just like an organ, but using square 
pulses instead of tone wheels.  (think 60's Combo Organs). The chip also permanently outputs a constant frequency 
LFSR-based noise waveform.

Just  like the SID, this chip requires a fair amount of external components in order to be properly utilized. This of course 
has a great influence on its overall sound. For instance, external capacitors are required to allow the chip to  generate  
amplitude envelopes. So depending on which arcade board or synth you have an M5232 on, the ADSR would have to 
be programmed differently. We based our emulator on its use in the K_rg Poly 800, including its external filter. 
With a bit of work, it would be possible to recreate some of the Poly 800 presets using it, and we have added a few  
example presets to show it.

One thing that we removed is the limitation on the relative volume of each harmonic. The original chip allowed you to 
turn each of the 4 harmonics on and off, and to put them in either Square (equal volume), or Sawtooth (relative volume) 
mode. Here we allow the possibly to set the 4 harmonics to any level. 

Original Harmonic Levels:

Square Sawtooth
CC024:  16' volume 0dB  0 dB
CC025:  8' volume 0dB -6 dB
CC026:  4' volume 0dB      -12 dB
CC027:  2' volume 0dB      -18 dB
For CC minded-people, sawtooth harmonic levels correspond to: 127, 61, 31 and 15.

To access the Poly-800 filter settings:

Base values:
CC071:  Filter Resonance
CC074:  Filter Cutoff Frequency

EG Modulation:
CC082:  Filter EG  Attack Time 
CC083:  Filter EG  Decay Time 
CC084:  Filter EG  Sustain Level 
CC085:  Filter EG  Release Time 

Differences with a real Poly800:

Octave should be emulated using chipsounds'' transpose.
Each of the two DCO's should be placed its own slot for layering.
Currently Filter LFO, and Chorus are unavailable.



P8244 (NTSC), P8245 (PAL) 

This is a custom made Video Display Controller by Intel which on top of generating the the graphics for the O2, also  
generates its sound. The lone audio pin that can generate either a tone or a noise at once.
The pulse channel can only generate frequencies in the “key” of E5, meaning only E's and B's.

Pulse MIDI Note 0 (C0): 
Extra parameter: CC2 : Dynamically change 24 bit pattern variations with some precomputed ones.
See the research blog for details on this.

Long Noise MIDI Note 7(A0): 
This generates an evenly distributed frequency content. 
Good sound source for snares and hi-hats.

NOTE: Due to the nature of the way this chip generates audio, an unlimited version would not make much sense.

More info:
http://ploguechipsounds.blogspot.com/2009/10/last-minute-addition-odyssey-2-p824x.html

P8253 Intel 8253/8254 Programmable Interval Timers (PIT)

This is the chip that generated the infamous BEEPs of PC Speakers of old DOS PCs. While by itself it is nothing really 
interesting, this program in chipsounds embeds one of the PC Speaker impulses that will  be found in the upcoming  
'chipcrusher' product.

http://ploguechipsounds.blogspot.com/2009/10/last-minute-addition-odyssey-2-p824x.html


POKEY (various clock configuration)

The POKEY chip (aka C012294) is a multipurpose integrated circuit  used in many arcades and in the 400 and 800  
series 8bit computers. It can generate either 2 or 4 voices at once depending on software configuration. 
In the 2 voices configuration, each channel has a 16bit frequency resolution, which gives it a very good frequency range.
In the 4 voices configuration, each channel has a 8bit frequency resolution, which gives it a poor frequency range.
(you can also use one 16bit channel combined with two 8bit channels)

However the most common usage in games was in 4 voice configuration, unless the music was a crucial part of the  
required experience.

The POKEY is a very unique chip which generates multipulse patterns in a very dynamic and unpredictable fashion.
This  is  due  to  the  fact  that  the  chip  internally  continuously  generates  various  lengths  high  frequency  polynomial  
counters which  are “resampled” by a slower  clock  which  is  defined by the required music  pitch.  Depending on the  
alignment and configuration of the various clocks and required playback frequency at a given moment, you can get  
anything from a pure tone,  to noise, raw grinding pattens  to silence.  

This one is particularly interesting to experiment with, as changes in pitch, and even re-triggering the same key can  
generate different results.

chipsounds configures the internal polynomials using these KS:

000 (5bit->17bit) MIDI Note 0 
000 (5bit->9bit) MIDI Note 1
0X1 (5bit) MIDI Note 2
010 (5bit->4bit) MIDI Note 3
100 (17bit) MIDI Note 4
100 (9bit) MIDI Note 5
1X1 (pure) MIDI Note 6
110 (4bit) MIDI Note 7

The three digits represents bits 7,6 and 5 of the POKEY AUDx register.
The information in parenthesis explain the polynomial  bit  “resampling” signal path that takes place in the chip.Don't  
worry if you don't understand what it means, just use your ears and experiment.

More info:
http://ploguechipsounds.blogspot.com/2009/10/how-i-recorded-and-decoded-pokeys.html

http://ploguechipsounds.blogspot.com/2009/10/how-i-recorded-and-decoded-pokeys.html


SID (6581) and (8580)

This chip really requires no introduction. It's by far the most famous of all music chips in the world.
It is  also by far the most complex analog/hybrid chip of the lot,  and accordingly, the toughest to emulate. Originally  
designed as a OEM chip that could be used in commercial synthesizers, it became instead irrevocably associated with  
the C64 due to the incredible success of the later. Many versions of the chip exists, spanning the 10 year production of  
the C64, and each has their own subtle differences. However, most specialists agree to separate them into two main  
classes: The 6581 (R2,R3,R4, etc) and the 8580 (8580, 6582). 

If you don't consider the on board filter which varies a lot even between weeks of manufacturing, the major difference 
between the 6580 and the 8580 classes is the sound of their combined waveforms.

Various approaches have been attempted over the years to capture this chip in its virtual form, some good, some bad, 
some  truly  worth  a  whole  chapter  in  itself  (the  resid/fp  projects).   However  our  goal  here,  contrarily  to  the  
aforementioned project is not to play back existing .SID files so they sound exactly like the originals, but instead to allow  
a musician to tap in its powerful sound capabilities and to enjoy the exact tone of its combined waveforms, which have 
been carefully sampled at 96Khz for this project. 

chipsounds maps the SID sound sources using the following switches:

Pulse MIDI Note 0(C0) (synthesized) 
CC2 changes the PWM value, while CC3 and CC4 allow to apply an LFO to this value.

Noise MIDI Note 1(C#0) (synthesized)

Triangle MIDI Note 2(D0) (synthesized, samples are provided but are not currently mapped)

Saw MIDI Note 4(E0) (synthesized, samples are provided but are not currently mapped)

_ST MIDI Note 5(E0) (sampled combined saw/triangle)

P_T MIDI Note 6 (sampled combined pulse/triangle)

PS_ MIDI Note 7 (sampled combined pulse/saw)

PST MIDI Note 8 (sampled combined pulse/saw/triangle)

RM_T_T       MIDI Note 9 (sampled ring mod between two triangle waveforms - unison)

RM_TS_TS       MIDI Note 10 (sampled ring mod between two triangle/saw waveforms - unison)

RM_TS_TS_MAJ   MIDI Note 11 (sampled ring mod between two triangle/saw waveforms – major third)

NOTE1: Since the combined waveforms are sampled, some choices had to be made on the exact settings of the pulse  
width  used, and frequency ratio used in the ring modulated cases. We chose the most musically useful configurations.  
Future versions  might  include  a full  emulation  allowing  a bigger  variety of  sounds.  Also  important  is  that  the  SID 
generates highly aliased spectra in the highest note registers. This is “normal” for the SID and is an artifact of the digital  
way in which it generates waveforms.

NOTE2: The chipsounds SID filter currently only emulates a severely distorting/non-linear specimen. 
More filter specimens are planned in future updates.



SN76489(AN) (various clocks)

The “SN” is a relatively simple and efficient sound chip providing 3 channels of pure tones, and 1 channel of noise, short 
and small. No doubt due to its price and simplicity, it has been used in countless systems and arcades and represent  
the “standard” 8bit  audio chip.  Its frequency range is  acceptable,  although it's  been often driven by high frequency 
clocks  like  3.5Mhz in  the  CV console  which  limited  its  bass  response.  (the  lower  the  clock,  the  better  the  bass 
response). 

While  the noise  channel  doesn't  have great  frequency precision,  a special  mode  is  accessible  on the chip  which  
consists in sacrificing one of the square channels and use its frequency register to drive the noise frequency.
This design has been copied, and licensed to be included in other system including the SMS and the 16bit system that  
followed it.

chipsounds maps the SN sound sources using the following switches:

Square MIDI Note 0(C0)

Short Noise MIDI Note 2(D0)   (really just a 1/15 PWM tone)

Long Noise MIDI Note 4(E0)

Short Noise (ch3) MIDI Note 5(F0) (third pulse channel sacrificed to serve as noise freq source)

Long Noise (ch3) MIDI Note 6(F#0) (third pulse channel sacrificed to serve as noise freq source)



TED (8360 - various clocks)

Well, this one was a disappointment to everyone. Commodore was selling truckloads of C64s, and decided to release  
crippled machines to follow its steps: the plus/4 and the C16. The sound was generated by the MOS 7360/8360 “Text 
Editing Device” chip, a VDC that did both the audio and the video on that system. This IC can only generate two tones 
at once, the second can be used as a very basic short noise generator (255 bits long). SID this is not.

Working TED chips are very hard to come by, and we've luckily recently acquired a plus4. 
It's included in chipsounds for completeness' sake, and to allow comparison with the VIC and SID.

chipsounds maps the TED sound sources using the following switches:

Square MIDI Note 0(C0)

Noise MIDI Note 2(D0)  (aliased on Note 1 as well) 

More info:
http://ploguechipsounds.blogspot.com/2009/11/ted-100-noise-pattern.html

http://ploguechipsounds.blogspot.com/2009/11/ted-100-noise-pattern.html


TIA (NTSC), TIA (PAL) and TIA (unlimited and full ranges)

The TIA (Television Interface Adapter) is a very curious integrated circuit that provides both the audio and the graphics to 
the 2600 console. This chip is responsible for many instantly recognizable tones like the engine sounds of many games  
of the era, and laser blasts of many space shooters.

Not unlike the POKEY, this chip generates its tones by combining various “polynomial counters” in various ways called 
“Distortions”. However, two major differences exists. Firstly, it can only play 32 different pitches per distortion (5bit pitch 
resolution), and secondly, all pitches have the same spectra.

Before rushing to use the unlimited pitch variant, please consider giving the NTSC/PAL variants a spin, especially if  
musical tones is not your intended goal. You will  find that those 32 steps, once modulated, create all sorts of amazing 
sounds. Programmers of the time abused this a lot.

chipsounds configures the internal polynomials using these KS:

Dist 1  (SAW)  MIDI Note 0
Dist 2 (Idle Tank) MIDI Note 1
Dist 3 (Engine) MIDI Note 2
Dist 4/5 (Square) MIDI Note 3
Dist 6/10 (Near Square) MIDI Note 4
Dist 7/9 (Pitfall) MIDI Note 5
Dist 8 (Noise) MIDI Note 6
Dist 12/13 (Square) MIDI Note 7
Dist 14 (Near Square) MIDI Note 8
Dist 15 (Buzz) MIDI Note 9

NOTE While the TIA program is purely synthesized, two sample-based programs are available as “extras” 
for the TIA in the “03. Multisamples” category

TIA Loops: Each distortion's 32 tones are played in succession to emulate a very common programming trick of the 
2600 era. Two octaves are mapped, for the two lopping directions. This could be in theory programmed solely using the 
wave sequencer, but it since the TIA pitches are not equal temperament, it would make for one ugly sequence.

TIA Deaths: before blowing air into the cartridge connector became worldwide fad, there was a time when reinserting a 
2600 cartridge many times in different angles was the only way to have a working game. Sometimes the screen went  
dark, sometimes it filled with all colors of the rainbow (or looked like a grunge plaid shirt), but sometimes, something 
magical  happened, and you could definitely hear it. There is NO trick here, all  the sounds in this multisample patch  
were  recorded  from  the  console  in  around  4  hours  of  inserting  various  carts  from  our  collection,  and  recording 
everything. 

If you let certain samples play a while they may even flat-line!

More info
http://ploguechipsounds.blogspot.com/2009/05/total-stereo-separation-atari-2600-jr.html

http://ploguechipsounds.blogspot.com/2009/05/total-stereo-separation-atari-2600-jr.html


UVI 2637(NTSC) and 2637(PAL)

Another chip  that  was  used for both audio  and video was  the UVI. It was  part  of  a licensed  architecture sold  by 
Signetics and implemented in many different consoles which  share many titles, but are physically incompatible with  
each other. 

Interton, Arcadia, Leisure Vision, MPT-03, it seems each region of the world had its variants of that system. While not  
as pitch limited as the P824X, it is similar in terms of waveform generation.

Only one channel that can either play a tone, a noise, or a mixed (bit-wise AND) version of the two, which produces a 
very unique sound.

chipsounds maps the UVI sound sources using the following switches:

Square  MIDI Note 0
9Bit Noise MIDI Note 2
Combined MIDI Note 4



VIC-I  :  6560 (NTSC)  6561(PAL) in various configuration.

The VIC-I was an attempt by MOS to create an all in one “video game/video display” chip for the OEM market. 
But it only ever made it into the VIC-20 and, possibly an obscure Japanese arcade game. (from MAME lore)

Each of the three voices (named Bass, Alto and Soprano) has a limited pitch range of 7bit which makes playing tuned  
scales quite a challenge. Bass Alto and Soprano each had their own pitch ranges and only partially overlapped each 
other in terms of discreet pitch values.  Safe to say that some scales sound better than others. 

The chip also provides a separate Noise channel which generates a waveform that is unlike any other chips in this  
product.

The original  programmers of the time knew that once in a while  some square waveforms they played didn't  sound  
“right” under certain condition, but disregarded this as a Fluke.  In 2003 a brilliant demo writer by the name of Viznut  
reversed engineered this side effect, mapping all possible “weird” waveforms that the chip was able to reproduce in a 
deterministic  manner, and put the to good use in his now famous “Robotic Liberation” demo. (they are referred later  
with the reset patterns required to reproduce them.

chipsounds configures the possible waveforms in the KS:

Square MIDI Note 0
10 MIDI Note 1   (Viznut waveform)
100 MIDI Note 2                “
110 MIDI Note 3
1000 MIDI Note 4
1010 MIDI Note 5
1011 MIDI Note 6
1110 MIDI Note 7
10010 MIDI Note 8
10100 MIDI Note 9
10110 MIDI Note 10
11000 MIDI Note 11
11010 MIDI Note 12
100100 MIDI Note 13
101010 MIDI Note 14
101100 MIDI Note 15 
Noise MIDI Note 16

NOTE: The noise KS, appears in all Bass, Alto and Soprano sub patches even if it's a distinct channel, this is to be able  
to do wave sequences containing both tones and noises.



02. Custom Waveforms
This category contains programs which will generate various waveforms that are not tied to any particular chip. 
All of these are really just fun exercises in synthesis and are subject to change in revisions of chipsounds

Two Taps LFSR's is an exercise in trying many different configurations of Linear Feedback Shift Registers in order to 
generate other tones than “white noise”.  Some configuration create very nice metallic and gritty sounds

Hard Sync: Using the “Sync Buzzer” logic to make hard sync, and other sounds.

Misc Multipulse: Multipulses without a purpose.

Music Formula's: Live calculations of some of the formulas from this video: 
http://www.youtube.com/watch?v=GtQdIYUtAHg

03. Mutisamples:

2A0X Loops, TIA Loops and TIA Deaths are described in the appropriate parent chip sections
 
Melstrings(4-bit and DMC) Mellotron Samples by Bernie Kornowicz at Leisureland, used by permission.
Rendered and mapped as RAW 4 bit for extra crunch.

ST-01: Origninal Soundtracker's first bonus sample disk, whose copyrights are in a unknown state (public domain) 
The source  sounds  do  come  from  various  commercial  synthesizer  of  the  day.  Please  see  the  ongoing  project  to  
document each sound http://eab.abime.net/showthread.php?p=435531.
When  playing  ST-01  sounds  or  importing  amiga  format  files  (see  later)  chisounds  models  the  dynamic  sample  
playback  rates  of  the  Amiga  Paula  chip  and  its  volume  limitations.  The Amiga  LED  Filters  will  be  included  in  
chipcrusher.

04. Drums:

Various drum kits running either 4Bit “digi” players (DMG/C64) or 2a03 (DMC) players. 
The selection of drums in this category is subject to change in revisions of chipsounds.

05. Arcade:
Various  recordings  made  from  our  private  collection  of  arcade  PCBs.  Most  of  these  sounds  are  analog  are  not 
generated from dedicated 'chips'  but by a series of electronic  components in complex networks.  As such, they are  
unique, and very complex to model (the latest versions of the MAME emulator includes most of these as actual discreet  
circuit emulation, but does require heavy real time computations. Since chipsounds is 'just a synth' and these sounds 
are 'just for fun' we have added these as samples (round robins of multiple takes):

• DK:        Jump, walk and stomp sounds
• DKJR: Analog effects
• Galax: Analog effects and weird digital oscillator (the later is rendered using chipsounds oscs)
• Phoenix: Analog and 555 timer driven effects
• S.Invaders: Analog Effects and ... bass line!
• Zxxn: Analog Effects

IMPORTANT COPYRIGHT NOTES! While Plogue grants you rights to these actual 'sound recordings', 
The sources themselves, depending on your local laws may WELL STILL be protected by their copyright holders! 
See Sound Trademark. Use these sounds wisely! 

Note: DK and DKJR boards also generate other sounds through the means of sample playback. 

http://en.wikipedia.org/wiki/Sound_trademark
http://ploguechipsounds.blogspot.ca/2012/09/galaxians-digital-oscillator-explained.html
http://eab.abime.net/showthread.php?p=435531
http://www.youtube.com/watch?v=GtQdIYUtAHg


These sounds are obviously copyrighted and can't be legally be redistributed.          



Importing Sounds

New in chipsounds 1.6 is the ability to import the samples from your own MOD, MED and IFF(8SVX) files (or from files  
in the public domain, or that you otherwise have the right to use).  The files must have a known extension for it to be  
recognized. Since Amiga file extensions were sometimes before the file name, both myTrack.mod and mod.myTrack 
are perfectly accepted (its not case sensitive)

Just click on a slot's file selection socket and use the 'import' menu, or (under some platforms/plugin APIs) just drag a  
file on the interface:

First time you will  be asked for a destination repository for the conversion/extraction. We suggest using a folder/drive 
where  you typically  store your samples  on.  The Aria  Engine  will  then  create  a “ARIAConverted” sub  folder  in  the  
specified location and will store the results of any conversions in there.

Once a file is  successfully converted, not only will  it  automatically load, but  it  will  also be available in the Converted 
menu  next  time  you  start  chipsounds  (Or any  other  ARIA-based  product,  like  the  ARIA  Player)  as  long  as  the 
ARIAConverted  folder  is  kept intact. This  folder  is  scanned  upon  start  and  the  Converted menu  is  dynamically 
reconstructed.

MOD, MED and IFF(8SVX) files are the main supported files but you can also try out DBM, DW, and OKT files. (*)
In any case  both  a  “file(Paula)”  and  “file(Interp)”  will  be  created.  The Paula  version,  as  its  name  suggests,  uses  
chipsounds generators to play the samples as they should sound on an Amiga OCS machine, while the (interp) is really 
a bare SFZ 1.0 mapping with wav files, in this case it will use the ARIA Engine's native interpolations. 

Each converted file will  contain a maximum of 36 samples (depending on the original format), to leave room on the  
keyboard for the key switches to activate each of them. (you can also use MIDI Program Change messages instead)

Tuning woes: Mod trackers usually didn't enforce a match between a sample and its root key. In the day, when you 
imported a  sample, trackers assumed that its sample rate was 8363Hz and that its root key was C4, regardless of its 
real internal pitch. For instance a mod track could have been started with a sample containing an F, even though the 
tracker would assume it was a C. When importing any mod/med/iff  file, be aware that you might have to tweak the  
tuning of each slot manually (using 'Trans' and 'Tune') to match the tuning of other slots.

The IFF(8SVX) file format was the first (to my knowledge) to optionally include a multisample mapping: one sub sample  
per octave, with each octave exactly half the length (in samples) of the previous one. 
You can try this by downloading and decompressing http://aminet.net/package/mods/smpl/Instruments and adding a .iff 
extension to each file.

(*)While  other  formats  can  be  converted  (IT,  STK,  S3M),  these  extensions  were  not  registered  in  the 
registry/preferences  upon  installation  because  they  are  not  'AMIGA  native',  and  potentially  contain  16PCM  files.  
However, If you know your way there, you can add them, but we offer no support for this.

Future chipsounds releases will have even more formats to import.

http://aminet.net/package/mods/smpl/Instruments
http://en.wikipedia.org/wiki/Original_Chip_Set


chipsounds Sound Sources explained

Q) So is it Samples or Synthesis?  

A) It's whatever made more sense to be true(er) to the original on a case by case basis. 
As the application reaches 2.0 and up, I expect chipsounds to be nearly 100% synthesis. (however, the samples would  
still be available if needed for compatibility/curiosity)

Roughly 95% of it all - everything that is made of discreet steps - is generated using oversampled bandlimited impulse  
trains. All Squares, SID PWM, 2A03's triangle, YM2149 Buzzer, TIA/POKEY/VL1 multipulses, etc. 

Those generators are configured to emulate the pitch limitations of each chips following EXACT maths 
that can be found in the chip's datasheets (if available), development manuals, and were verified and sometimes even 
discredited/revised with comparison to the real chips in our possession.

The rest falls into two categories: 

Purely sampled:

1. SID's combined and ring modulated waveforms are sampled across the whole range (2 notes by octave) @ 
16bit/96kHz.  These waveforms are unique, detailed and variable across the frequency range and they are 
different across 6581 and 8580 revisions of the SID chip. 

2. TIA's Pitch sweeps Loops (16bit/96kHz). NOTE This could be done all in synthesis using the wave sequencer.  
They are just so fun to trigger and loop.

3. TIA's 'Bugs/Death' sounds are (16/44.1kHz) samples of me spending nearly a day recording and classifying 
the sounds of badly inserted cartridges into my “total stereo separated” 2600 Jr.  ... some of them are pretty 
awesome I must say. Most looped sounds are due to random memory writes and cycling by fast rebooting of  
the chip (I assume). Safe to say, i don't think THAT can be emulated ever!

4. NES's NOISE registers loops (16bit/96kHz): This would be more difficult to emulate with synthesis, and would  
require some pretty otherwise useless code (due to internal frequency tables on the chip). So here they are in  
samples.

Notes on 2/3/4) Since these are variable pitched loops, you shouldn't use any pitch modulation, at ALL when playing  
these.

Generators that are half way between samples and Synths:

 1) 4Bit Digis (old technique to generate samples by rapidly changing 4bit volume register of certain chips using an fast  
interrupt routine. - or by using the wave channel in the GB) are represented on disk as 8 bit  unsigned RAW  PCM, 
mostly originally recorded at around 32Khz.
When read into the 4bit oscillator, they get accurately resampled and reconstructed as bandlimited/oversampled square 
waves  ..  this  is  NOT a  simple  sample  playback+aliasing  bit  reduction  algorithm  trick.!!  This  generates  the  same 
bandlimited pulses as all the other oscillators, but the source of the amplitudes is using a pre-calculated table, in that  
case a 8bit RAW file.

(NOTE currently included c64 DIGI rips – eg: funky drummer - are 4bit PCM padded into 8PCM with zeros, So they don't  
actually contain more information than the originally did)

2)6Bit DPCM (NES DMC Channel) are either read from disk as 8Bit RAW PCM and reinterpreted, or read from “ripped” 
DMC files. Due to copyright reasons, no DMC Rips have been included into chipsounds. Also even if you DID own the  
ROM and backup device you would STILL not be allowed to use those samples  in a commercial  recording without  
written consent from the original author. You have been warned.



Example DMC usage in an SFZ file:

(...)
sample_const_param03=54
<region> key=36 sample=*com.Plogue.DAC.6Bit.Linear.DPCM|drums/game_x_bd.dmc
<region> key=38 sample=*com.Plogue.DAC.6Bit.Linear.DPCM|drums/game_x_sn.dmc
(...)

Currently there is NO MEANS to inject your own samples using the UI (DMC/4Bit).
You can however hack the SFZ files/ bank to add your own, once they are converted to 8Bit Unsigned/32Khz (
lower if you like more grunge)

This is an advanced topic however. Which i wont get into here. Same as any advanced SFZ file editing
If you want to get your hands dirty, either modify Joe or Jules kits (our samples) and add your own, or add entries in the  
bank yourself. 
If you notice, the same SFZ file/Samples are used for both DMC/4Bit variants of those kits.      -> flexibility.

You can find more about SFZ on Plogue's  forums, including how to make your own sample libraries and mix them 
though chipsounds.

3) Not all noise patterns use a Linear Feedback Shift Register. Some of them use pre-calculated  tables (bin files, or 
ASCII binary strings in SFZ files). Both representation would ultimately sound the same, so it's a bit of a non debate.



IMPORTANT NOTE ON PRESETS:

.aria files : full content of the UI is saved, including values of CC's at the time of saving.
(VST hosts fxb/fxp files are similar in that they contain the same data)

You can currently only save .aria files from the STANDALONE application. 
If you use a VST host that support them, you can however save a FXB file.

You can load aria files in the standalone using the file/open menu, or by dragging them on the UI 
(including fxb/fxp files) of any incarnation of chipsounds (standalone/VST/AU/RTAS)

.ariax files are just plain text XML versions of the contents of .aria files (easier to manually hack). You can load 
and save those through the “snapshots” menu.

.ariap files : presets to sub portions of the UI, - presets for the MIDI Arpeggiator, the Wave Sequencer, and the 
4Bit waveform display of the DMG-CPU. 

Notes on SFZ/Bank ( For the VERY technically curious.)

Nearly Everything in chipsounds is plain text and can be edited by advanced users: 
With the current SFZ “chip definitions” you could derive them to add chips that don't exist
or that are not currently covered by my version.

The SFZ files describe the inner workings of chips, while the chipsounds.bank.xml bank is a “master catalog” 
which lists and defines some variables that will influence each chip's sound and limitations, depending on  
the revision, or its regional setting (PAL, NTSC) etc.   

EG: There is only one VIC-I.sfz file, but 8 entries in the bank in order to reproduce the various pitch settings.



Getting Help 

The first place to look for a solution to any problem you may be experiencing is in this manual. Please read the manual  
before contacting support. Next, check the readme files (if any) which contain important information and all last-minute  
changes that haven’t been available when creating this guide. 

The Plogue chipsounds Player and sounds are dynamic — evolving and growing.  Please check the support area of our  
website  at www.Plogue.com  for the latest  up-to-date information products,  troubleshooting,  FAQs, helpful  hints  and 
tutorials. Another resource is the support forums.

Whenever you encounter problems, you should also check if you have installed the latest updates. The version number 
of your software is displayed in the About dialog. Updates are released regularly to fix known problems and to improve 
the software. 

If you can’t find a solution to your problem please email us at chipsounds.support@plogue.com. The best way to get the 
help you need is by giving us plenty of detailed information about the problem you are having. We do ask you to read 
this guide thoroughly and exhaust the other avenues of support before contacting us.

The Plogue forum can be accessed at:  http://www.plogue.com/phpBB  3  /  

You don't have to register to browse posts, but before you can post, you will have to sign up. 
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Appendix A: Quick MIDI CC Reference Guide for chipsounds
chipsounds doesn't rely solely on “Plugin Parameters” for reasons that are not obvious to someone who has never used a multitimbral plugin 
before.  Since this plugin has 8 different slots, the flat parameter list paradigm just does not make sense. Combine this with the fact that each 
slot has different parameters – so it  requires a full list refresh in your DAW each time you change a slot, possibly breaking all your 
mappings.

But the most important reason why chipsounds only provide parameters for slot1 is that they are simply not sample accurate. Some hosts 
might cut audio timeslices to insert parameters , but this is not a method that we find efficient, nor is it the standard out there. Why do we 
care about sample accuracy? It is CRITICAL that perfect event timing gets interpreted in between NOTES received by chipsounds. 
Otherwise you can forget about automating envelope changes, pattern changes and all sorts of wavetable tricks on your end.

If you still need another reason, it would be that we actually want people to be able to exchange chipsounds tracks  even if they are using 
different DAW's and platforms.  By using a simple MIDI file and a .ariax file, You can do that.

Plogue chipsounds CC Mapping:
(black are GM2 mapping, blue are chipsounds custom)

These are fixed because:
-Aria  / SFZ 2.0  has no concept of CC remapping
-The Wave sequencer (MIDI processor) assumes a fixed map.
-We actually want people to exchange projects across DAW's: using MIDI files and .ariax files.

CC001:  Pitch LFO Modulation depth from 0 to 1200 Cents (one full octave)
CC002:  PWM (Pulse Width Modulation) 
CC003:  PWM LFO Freq for (SID ONLY)
CC004:  PWM LFO Modulation depth  (SID ONLY)
CC005:  Portamento Time (0 to 4 seconds)
CC007:  Master volume (don't change if you want to be accurate to the CHIP!)
CC010:  Pan (at your discretion, none of those early chips are stereo)
CC011:  Expression (secondary volume – don't abuse either) 
CC012:  Private pitch shift for Wave Sequencer (does 2 octaves up and down)
CC013:  Amp EG  Hold Time
CC014:  Pitch EG Hold Time
CC015:  Pitch EG  Depth (-1200 to +1200 cents)
CC016:  Pitch EG  Attack Time
CC017:  Pitch EG  Decay Time
CC018:  Pitch EG Sustain Level
CC019:  Pitch EG  Release Time
CC020:  Arpeggiator On/Off toggle
CC021:  Wave Sequence On/Off toggle
CC022:  MIDI Delay On/Off toggle
CC024:  16' volume (MSM5232 only)
CC025:  8' volume (MSM5232 only)
CC026:  4' volume (MSM5232 only)
CC027:  2' volume (MSM5232 only)
CC028:  VPOS (DMG Wave channel only)
CC029:  PMode (DMG Wave channel only)
CC070:  Amp EG Sustain Level  (NOTE ... NOT in GM2??)
CC071:  Filter Resonance  (SID, M5232, and YM2149 Buzz ratio)
CC072:  Amp EG Release Time (different for some chips)
CC073:  Amp EG Attack Time(different for some chips)
CC074:  Filter Cutoff Frequency (SID , M5232, ONLY) 
CC075:  Amp EG Decay Time (different for some chips)
CC076:  Pitch LFO Rate 
CC078:  Pitch LFO Delay
CC079:  Lowpass Filter On/OFF switch (SID,VIC, VL-1 )
CC080:  Bandpass Filter On/OFF switch (SID only)
CC081:  Highpass Filter On/OFF switch (SID only)
CC082:  Filter EG  Attack Time (M5232 only for now)
CC083:  Filter EG  Decay Time (M5232 only for now)
CC084:  Filter EG Sustain Level (M5232 only for now)
CC085:  Filter EG  Release Time (M5232 only for now)
CC086:  Pitch LFO Type 
CC090:  Amplitude LFO Freq
CC091:  Reverb Send Level
CC092:  Amplitude LFO Depth



Appendix B: Host Specific Issues 

Renoise versions 2.1 and prior:
You HAVE to untick "Auto Suspend" in the bottom right of the chipsounds instrument box for the UI to be usable. This  
WON'T be changed, if you use Renoise get used to that. :)

Sonar versions prior to 8.5: 
You may get audio dropouts when the chipsounds UI is shown, please visit our support pages for a registry based fix.


