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BASE-9 is a Bayesian software suite that recovers star cluster and stellar parameters from 
photometry.  BASE-9 is useful for analyzing single-age, single-metallicity star clusters, binaries, 
or single stars, and for simulating such systems.  BASE-9 uses Markov chain Monte Carlo and 
brute-force numerical integration techniques to estimate the posterior probability distributions for 
the age, metallicity, helium abundance, distance modulus, and line-of-sight absorption for a 
cluster, and the mass, binary mass ratio, and cluster membership probability for every stellar 
object.  BASE-9 is provided as open source code on a version-controlled web server.  The 
executables are also available as Amazon Elastic Compute Cloud images.  This manual provides 
potential users with an overview of BASE-9, including instructions for installation and use. 
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I. Introduction 
 
Bayesian Analysis for Stellar Evolution with Nine Parameters (BASE-9) is a Bayesian software 
suite that recovers star cluster and stellar parameters from photometry.  BASE-9 is useful for 
analyzing single-age, single-metallicity star clusters, binaries, or single stars, and for simulating 
such systems.  This document assumes you are working with base 9.4.3.  We will endeavor to 
update this manual as we update the code or as libraries or operating systems meaningfully 
change.   
 
BASE-9 uses a Markov chain Monte Carlo (MCMC) technique along with brute-force numerical 
integration to estimate the posterior probability distribution for up to six cluster and three stellar 
properties.  The cluster properties are age, metallicity, helium abundance, distance modulus, line-
of-sight absorption, and parameters of the initial-final mass relation (IFMR).  The stellar 
properties are primary mass, secondary mass (if a binary), and cluster membership probability.  
The MCMC technique is used for the cluster quantities and numerical integration is used for the 
stellar quantities.  BASE-9 is freely available source code that you may use as is or modify for 
your own research and educational purposes. 
 
BASE-9 may be the code for you if 

1. you are dissatisfied with deriving cluster-level parameters by over-plotting isochrones on 
your data and iteratively adjusting parameters,  

2. you wish to recover more than just an average and error bar for each parameter, and 
instead wish to characterize the probability distributions for these parameters,  

3. you wish to take fuller advantage of ancillary data, such as proper motion membership 
probabilities, spectroscopic mass estimates, or distances from trigonometric parallaxes. 

 
This manual is designed to help you install and run BASE-9.  If you use BASE-9 in your 
research, please cite 
 

von Hippel, T., Jefferys, W. H., Scott, J., Stein, N., Winget, D. E., DeGennaro, S., Dam, A., 
& Jeffery, E. 2006, Inverting Color-Magnitude Diagrams to Access Precise Star Cluster 
Parameters: A Bayesian Approach, ApJ, 645, 1436 

 
and if you find the following helpful, please also cite 
 

DeGennaro, S., von Hippel, T., Jefferys, W. H., Stein, N., van Dyk, D. A., & Jeffery, E. 
2009, Inverting Color-Magnitude Diagrams to Access Precise Star Cluster Parameters: A 
New White Dwarf Age for the Hyades, ApJ, 696, 12 

 
van Dyk, D. A., DeGennaro, S., Stein, N., Jefferys, W. H., & von Hippel, T. 2009, Statistical 
Analysis of Stellar Evolution, Annals of Applied Statistics, 3, 117 

 
Depending on how you use BASE-9 (this part is under your control), the software also relies on 
the stellar evolution models of  
 

Dotter, A., Chaboyer, B., Jevremovic, D., Kostov, V., Baron, E., & Ferguson, J. W. 2008, 
The Dartmouth Stellar Evolution Database, ApJS, 178, 89 
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Girardi, L., Bressan, A., Bertelli, G., & Chiosi, C. 2000, Evolutionary tracks and isochrones 
for low- and intermediate-mass stars: From 0.15 to 7 Msun, and from Z=0.0004 to 0.03, 
A&AS, 141, 371 

 
Yi, S., Demarque, P., Kim, Y.-C., Lee, Y.-W., Ree, C. H., Lejeune, T., & Barnes, S. 2001, 
Toward Better Age Estimates for Stellar Populations: The Y2 Isochrones for Solar Mixture, 
ApJS, 136, 417 

 
the white dwarf atmosphere models of  
 

Bergeron, P., Wesemael, F., & Beauchamp, A. 1995, Photometric Calibration of Hydrogen- 
and Helium-Rich White Dwarf Models, PASP, 107, 1047 
(as updated and made available at http://www.astro.umontreal.ca/~bergeron/CoolingModels/) 
 

the white dwarf interior models of  
 

Althaus, L. G. & Benvenuto, O. G. 1998, Evolution of DA white dwarfs in the context of a 
new theory of convection, MNRAS, 296, 206 

 
Montgomery, M. H., Klumpe, E. W., Winget, D. E., & Wood, M. A. 1999, Evolutionary 
Calculations of Phase Separation in Crystallizing White Dwarf Stars, ApJ, 525, 482 
(The paper describes the stellar evolution code that M. Montgomery used in 2012 to calculate 
the WD sequences specifically for use with BASE-9.) 

 
Renedo, I., Althaus, L. G., Miller Bertolami, M. M., Romero, A. D., Corsico, A. H., 
Rohrmann, R. D., & Garcia-Berro, E. 2010, New Cooling Sequences for Old White Dwarfs, 
ApJ, 717, 183 

 
Wood, M. A. 1992, Constraints on the age and evolution of the Galaxy from the white dwarf 
luminosity function, ApJ, 386, 539 

 
the Initial Mass Function of 
 

Miller, G. E., & Scalo, J. M. 1979, The initial mass function and stellar birthrate in the solar 
neighborhood, ApJS, 41, 513 

 
and the Initial-Final Mass Relations of 
 

Salaris, Salaris, Maurizio; Serenelli, Aldo; Weiss, Achim; Miller Bertolami, Marcelo. 2009, 
Semi-empirical White Dwarf Initial-Final Mass Relationships: A Thorough Analysis of 
Systematic Uncertainties Due to Stellar Evolution Models, ApJ, 692, 1013 

 
Weidemann, V. 2000, Revision of the initial-to-final mass relation, A&A, 363, 647 
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Williams, K. A., Bolte, M., & Koester, D. 2009, Probing the Lower Mass Limit for 
Supernova Progenitors and the High-Mass End of the Initial-Final Mass Relation from White 
Dwarfs in the Open Cluster M35 (NGC 2168), ApJ, 693, 355 

 
or a fitted IFMR parameterized as lines, broken lines, or low-order polynomials as described by  
 

Stein, N. M., van Dyk, D. A., von Hippel, T., DeGennaro, S., Jeffery, E. J., & Jefferys, W. H. 
2013, Combining Computer Models in a Principled Bayesian Analysis: From Normal Stars 
to White Dwarf Cinders, Statistical Analysis and Data Mining, 6, 34 

For a further discussion of what BASE-9 and its precursor, BASE-8, has been used for to date 
and some indications of how it might be useful in your research, see also the following papers: 
 

Jeffery, E. J., von Hippel, T., Jefferys, W. H., Winget, D. E., Stein, N., & DeGennaro, S., 
2007, New Techniques to Determine Ages of Open Clusters Using White Dwarfs, ApJ, 658, 
391 

 
Jeffery, E. J., von Hippel, T., DeGennaro, S., Stein, N, Jefferys, W.H., & van Dyk, D. 2011, 
The White Dwarf Age of NGC 2477, ApJ, 730, 35 

 
 

II. Skip the install and go to the cloud 
	  
BASE-9 executables are available as Amazon Elastic Compute Cloud (EC2) images.  Up-to-date 
instance IDs are listed in the release descriptions at http://github.com/argiopetech/base/releases. 
An Amazon Web Services (AWS) account is required to use these instances. 
	  
To run your code on EC2,	  

1. Log in to your AWS account	  
2. Navigate to EC2	  
3. Navigate to the “Instances” pane	  
4. Click “Launch Instance”	  
5. Choose “Community AMIs”	  
6. Enter the AMI code for the version of BASE-9 you would like to run	  
7. Select “Review and Launch”, then “Launch”	  
8. Wait for the instance to launch 	  
9. use rsync/scp to copy your data to the public IP of the instance	  
10.  Login to your instance with SSH	  

	  
The default user name is	  ec2-‐user.	  	  There is no root password by default. 	  
	  
BASE-9 executables are in	   /usr/local/bin	   (should	   be	   in	   the	   path).	   	   Current models 
(appropriate for the installed version of BASE-9) are in	  /usr/local/share/base-‐models.	  
	  
The instance operating system is the newest release of FreeBSD 10.  The tcsh, csh, sh, and bash 
shells are available.  VI, VIM, Emacs, and nano are pre-installed.	  
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III. Installation 
 
BASE-9 is written in C++ and designed to run on a variety of UNIX- and Linux-based operating 
systems.  It is currently tested on 
 

• Mac OS X 10.7 through 10.9 
• Ubuntu 10.04 through 12.04 
• RHEL 5 and 6 
• Gentoo 13.0 
• FreeBSD 9 and 10 

 
To compile the code you will need gcc 4.7+ or clang 3.2+ (C/C++ language compilers), gsl (the 
gnu science library), cmake (a cross-platform build system), and Boost (a peer-reviewed, 
portable C++ library).  To install these software packages, you may need help from your system 
administrator, though we provide some guidance here. 
 
The best place to put all of this code is in the /usr/local/bin directory.  If you don’t have that 
directory on your machine already, you can create it as follows: 
 
>	  sudo	  mkdir	  /usr/local	  
>	  sudo	  mkdir	  /usr/local/bin 
 
Note that the sudo command gives you super-user or root permission for that one command 
(after you enter your password at the prompt), assuming that your account has been allowed to 
invoke the command. 
 
 

A. Installing gcc, gsl, and cmake on a Mac running OS X 10.7 – 10.9 
 
Download the compiler.  One way to do that is via downloading Xcode 4.6 or later from 
http://connect.apple.com.  This requires that you have a developer account, but you can register 
for that for free.  Also, it will give you 1+ GB of code and tools, most of which you will only 
need if you intend to develop for iPhones, Mac OS, etc.  If you do follow this route, after 
installing Xcode, you will need to specifically install the command line tools with a window that 
will look similar to the one below.  Click on the install button to the right of “command line 
tools” and it will appear as follows when done. 
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This will install clang and (for Xcode 4.6) GCC 4.2.  
 
Download gsl from http://www.gnu.org/software/gsl/.  Use the ftp site to obtain the source code, 
then  
 
mac>	  cd	  ~/Downloads	  
mac>	  tar	  xzf	  gsl-‐1.15.tar.gz	  
mac>	  cd	  gsl-‐1.15/	  
mac>./configure	  
mac>	  make	  
mac>	  sudo	  make	  install 
 
Download cmake from http://www.cmake.org/cmake/resources/software.html.  Choose the .dmg 
version of the code (for the correct operating system) if you want to let Mac installation guide 
you through the process.  We suggest placing the cmake build into /usr/local/bin by 
choosing that directory when prompted.   
 



	   8	  

B. Installing gcc, gsl, and cmake on a Linux machine 
 
The simplest way to install on Ubuntu is via the apt-get tool. 
 
linux>	  sudo	  apt-‐get	  install	  gcc	  
linux>	  sudo	  apt-‐get	  install	  cmake	  cmake-‐curses-‐gui	  
linux>	  sudo	  apt-‐get	  install	  libgsl0-‐dev	  libgsl0ldbl 
 
A similar process will work with the yum tool on Fedora / RHEL* : 
 
linux>	  sudo	  yum	  install	  gcc	  gcc-‐c++	  cmake	  git	  
linux>	  sudo	  yum	  install	  gsl	  gsl-‐devel	  boost	  boost-‐devel	  
 
*RHEL  5 & 6 repositories have an old gcc version. The devtoolset package will install an 
alternate, up to date build environment at /opt/<distro>/devtoolset-2/ 
 
linux>	  sudo	  yum	  install	  devtoolset-‐2-‐toolchain	  
 
The scl utility can create a shell referencing these alternate build tools where BASE-9 can be 
built: 
 
linux>	  scl	  enable	  	  devtoolset-‐2	  'bash'	  
 
 

C. Unpacking BASE-9 
 

Create a directory where you wish to install and run the software, then download the newest code 
release from https://github.com/argiopetech/base/tags and the newest stellar evolution files from 
https://github.com/argiopetech/base-models/tags, and extract them to the appropriate directory, 
e.g. 
 
>	  tar	  xzf	  base-‐9.4.2.tar.gz	  
>	  cd	  base-‐9.4.2/ 
 
Note that your computer may uncompress the .gz file for you on download, in which case the 
above command would instead be 
 
>	  tar	  xvf	  base-‐9.4.2.tar	  
>	  cd	  base-‐9.4.2/ 
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D.	  Installing	  Boost 
 
BASE-9 has an included script to install Boost. The install location can be changed by modifying 
the CMAKE_INSTALL_PREFIX variable. 
 
linux>	  cd	  contrib	  
linux>	  cmake	  –DCMAKE_INSTALL_PREFIX=”/usr/local”	  .	  
linux>	  sudo	  make 
 
Ubuntu users can save some time on this step by running 
 
linux>	  sudo	  apt-‐get	  install	  libboost-‐dev	  
 
 

E. Installing BASE-9 
 
Once you have all of the above software in place, you are ready to install BASE-9.  The 
following instructions should work identically for all platforms. 
 
Change directories into the BASE-9 source directory and simply run build.sh 
 
>	  sudo	  ./build.sh	  
 
This will (if you have properly installed all libraries) build and install the BASE-9 executables 
and install them in the default location (generally /usr/local/bin) 
 
Alternatively, if you do not have the ability to run `sudo` on your machine, you may use 
 
>	  ./build_local.sh	  
 
to build and install the executables locally. The executables will be installed in the BUILD/bin 
directory. 
 
 

IV. Running BASE-9 
 
In the following subsections, we describe how to run stand-alone portions of the BASE-9 
modules from the command line.  There are various reasons why you might want to run one or 
another of these, or some, but not all, so we detail how to run each one.  As of BASE-9.2.0, all 
settings have been moved into a YAML-format configuration file.  A sample configuration file 
with reasonable initial settings can be found in the base-‐9.4.2/conf directory under the name 
base9.yaml. A sample cshell script can be found at scripts/hyades.csh. Individual 
settings can be changed on a run-by-run basis via the command line options.  Run any of the 
BASE-9 applications with the command line flag “--help” to view a description of available 
settings. 
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The following examples assume you have installed the BASE-9 executables in a directory that is 
in your PATH (e.g., /usr/local/bin).  If this is not the case, you may need to use absolute 
pathnames (e.g., /home/me/base-‐9.4.2/BUILD/bin/singlePopMcmc).  
 
 

A. simCluster 
 

The first tool that you are likely to use within BASE-9 is simCluster.  This module simulates a 
stellar cluster for a particular set of models (see references in the Introduction) and user-specified 
values of various cluster parameters that have been set in the base9.yaml file: the base-10 log of 
the cluster age, metallicity, the helium mass fraction (only for some Dotter et al. models), the 
distance modulus, absorption in the V-band, the percent of cluster stars that are binaries, the 
upper mass limit for creating a white dwarf (WD), and the fraction of WDs that have helium 
atmospheres (DBs).  We recommend leaving these last two parameters at 8 solar masses and 0%, 
as we have not yet fully implemented and tested them.  An additional parameter, the seed to the 
random number generator, is necessary as the mass of each star is determined by randomly 
drawing from the IMF.  This allows you to specify multiple clusters with the same parameters 
but different random seeds if you wish to test the effects of, for instance, cluster size on the 
number of WDs or the clarity of the main sequence turn-off (MSTO).  This seed can be set via 
the -‐-‐seed option in the command line.  To run simCluster, simply type its name: 
 
linux>	  ./simCluster	  	  
Seed:	  1559729633	  
Reading	  models...	  Done.	  
	  
Properties	  for	  cluster:	  
	  logClusAge	  	  	  	  	  =	  	  8.796	  
	  [Fe/H]	  	  	  	  	  	  	  	  	  =	  	  0.07	  
	  Y	  	  	  	  	  	  	  	  	  	  	  	  	  	  =	  	  0.29	  
	  modulus	  	  	  	  	  	  	  	  =	  	  0.00	  
	  Av	  	  	  	  	  	  	  	  	  	  	  	  	  =	  	  0.01	  
	  WDMassUp	  	  	  	  	  	  	  =	  	  8.0	  
	  fractionBinary	  =	  	  0.00	  
Totals:	  
	  nSystems	  	  	  	  	  	  	  =	  100	  
	  nStars	  	  	  	  	  	  	  	  	  =	  100	  
	  nMSRG	  	  	  	  	  	  	  	  	  	  =	  98	  
	  nWD	  	  	  	  	  	  	  	  	  	  	  	  =	  2	  
	  nNSBH	  	  	  	  	  	  	  	  	  	  =	  0	  
	  massTotal	  	  	  	  	  	  =	  62.72	  
	  MSRGMassTotal	  	  =	  55.10	  
	  wdMassTotal	  	  	  	  =	  1.66	  
 
The above output is diagnostic and reiterates the settings in the base9.yaml file.  The stored 
output of simCluster is placed in a filename specified by the user with the outputFileBase 
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option in the base9.yaml file.  The file contents from the output of simCluster should look 
like the following: 
 
linux>head	  -‐2	  hyades.sim.out	  
	  	  id	  	  	  	  	  	  U	  	  	  	  	  	  B	  	  	  	  	  	  V	  	  	  	  	  	  R	  	  	  	  	  	  I	  	  	  	  	  	  J	  	  	  	  	  	  H	  	  	  	  	  	  K	  	  	  sigU	  	  	  
sigB	  	  	  sigV	  	  	  sigR	  	  	  sigI	  	  	  sigJ	  	  	  sigH	  	  	  sigK	  	  	  mass1	  massRatio	  stage	  
Cmprior	  useDBI	  
	  	  	  1	  	  3.061	  	  3.031	  	  2.694	  	  2.501	  	  2.320	  	  2.127	  	  1.983	  	  1.965	  	  0.000	  	  
0.000	  	  0.000	  	  0.000	  	  0.000	  	  0.000	  	  0.000	  	  0.000	  	  	  1.555	  	  	  	  	  0.000	  	  	  	  	  
1	  	  	  0.999	  	  	  	  	  	  1	  
	  
There are more columns than can be presented cleanly on a page, but hopefully this is clear 
enough.  The first column lists identification numbers for each star system (single star or binary).  
This is meant to be useful in tracking down particular stars.  The next eight columns list the U- 
through K-band magnitudes (or ugriz through K) of the primary star. Columns 10 through 17 
give the photometric uncertainties for each filter entry (for a simulated cluster, these are zero).  
 
The 18th and 19th columns give the mass of the primary star and the mass of its companion (if 
applicable).  The 20th  column lists the stage of stellar evolution for that particular star (1 = MS 
or RG, 3 = WD, >3 for evolved stars above the WD mass limit).  The final two columns are the 
cluster membership prior (which is essentially ~1 for simulated stars) and the flag (0 or 1) 
whether to use the star during the burn-in stage.  With these final columns, the output file is 
formatted for input into scatterCluster.  You should be able to plot reasonable looking 
CMDs/isochrones from this file for a wide range of cluster parameters, stellar models, and filters. 
 
 

B. scatterCluster 
 
The scatterCluster module adds Gaussian random errors to the photometry output created 
by simCluster.  To specify the appropriate amount of error to add for your particular 
simulation, adjust the virtual exposure time in the base9.yaml file. 
 
We use exposure times of 1 hour in each filter to generate a scattered cluster with the above file. 
The algorithm for adding noise to the cluster photometry is rudimentary and only meant for 
simple purposes such as preparing for an observing proposal or for creating test files for the 
Markov chain Monte Carlos (singlePopMcmc) routine.  The algorithm is an approximation to 
the results one would obtain in one hour with the KPNO 4m + Mosaic (UBVRI) or Flamingos 
(JHK), assuming dark time, seeing=1.1 arcsec, airmass=1.2.  Signal-to-noise for the Spitzer 
bands, if included, are naively set to be the same as for the K-band.  For departures from a one-
hour exposure the S/N is scaled by sqrt(exptime).  These exposure times can be set in the 
base9.yaml file under exposures for each individual filter. 
 
Additional options for scatterCluster are available in the yaml file. The bright and faint end 
cut-off mags allow you to narrow the portion of the CMD that you wish to retain.  The 
relevantFilt option specifies which band is the reference filter (in this case, 0=U, 1=B, etc.). 
The base9.yaml options brightLimit and faintLimit refer to the bright and faint end cut-
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off magnitudes for the reference filter indicated.  You can also clip on S/N with limitS2N and 
decide to cut out field stars, if they were simulated by simCluster.  Additionally, 
scatterCluster will determine which filters you are using based on the header in the 
simCluster output file.  Again, the integer seed may be set at the command line to allow you 
to start from the same input file, but create multiple simulated observations of that file with 
different initial seed values. 
 
linux>	  scatterCluster	  
Seed:	  1564704505	  
 
The output file of scatterCluster looks like 
 
linux>	  head	  -‐2	  hyades/hyades.scatter.out	  	  
	  	  id	  	  	  	  	  	  U	  	  	  	  	  	  B	  	  	  	  	  	  V	  	  	  	  	  	  R	  	  	  	  	  	  I	  	  	  	  	  	  J	  	  	  	  	  	  H	  	  	  	  	  	  K	  	  	  sigU	  	  	  
sigB	  	  	  sigV	  	  	  sigR	  	  	  sigI	  	  	  sigJ	  	  	  sigH	  	  	  sigK	  	  	  mass1	  massRatio	  stage	  
Cmprior	  useDBI	  	  
	  	  	  1	  	  3.065	  	  3.016	  	  2.691	  	  2.509	  	  2.328	  	  2.128	  	  1.985	  	  1.977	  	  0.010	  	  
0.010	  	  0.010	  	  0.010	  	  0.010	  	  0.010	  	  0.010	  	  0.010	  	  	  1.555	  	  	  	  	  0.000	  	  	  	  	  
1	  	  	  0.999	  	  	  	  	  	  1	  
 
Notice now that the output includes the estimated errors for each band (sig-‐). The format of the 
output file is otherwise the same as the input file for scatterCluster.  
 
In this case, only the id, mass1, and stage1 values are kept from the output of simCluster.  
The photometry values (here UBVRIJHK) are derived from the photometry values in the 
simCluster output file, but are different in that they are scattered by adding a Gaussian random 
deviate with sigma = sigU, sigB, etc.  This section of the output file is all one needs to plot 
realistic CMDs for proposals and possibly to prepare for observing projects.  The 
scatterCluster output file contains additional information, however, and is formatted to be 
ingested by singlePopMcmc, so that it can be used to test singlePopMcmc and so that you can 
test the precision and accuracy that you would expect to recover from real data based on a given 
set of cluster parameters, observational errors, and the number of stars available.  The 
massRatio column lists the ratio by mass of the secondary to primary stars, which in these 
examples are both 0 since there were no secondaries.  The CMprior column is set by default in 
scatterCluster to 0.99, but the file can easily be edited to set a different prior probability 
that any particular star is a cluster member.  The final column is just a 0 or 1 switch (off or on) of 
whether to use a particular star during the burnin process.  (See DeGennaro et al. 2009 and van 
Dyk et al. 2009 for a discussion of what the burnin entails and why it is used.)  To make it easiest 
for singlePopMcmc to converge, it is helpful to have this parameter set to 1 for stars that are 
likely to be cluster members and if there are many field stars, it is helpful if the bulk of them can 
be set to 0 at this point. 
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C. singlePopMcmc 
 
The singlePopMcmc module is the workhorse of our software suite.  This routine, along with 
its many subroutines, runs a Markov chain Monte Carlo sampler using a variety of standard 
Bayesian techniques as well as a few techniques newly developed by us.  The approach and 
mathematics are presented by DeGennaro et al. (2009), van Dyk et al. (2009), and Stein et al. 
(2013).  This code was designed to run on photometry formatted in the same manner as the 
output of scatterCluster.  It can also be run just as easily on the simulated photometry from 
simCluster + scatterCluster. 
 
The singlePopMcmc module has a variety of values and options set in the base9.yaml file.  
Under the singlePopMcmc group, the stage2IterMax and stage3Iter set the length of the 
burnin for singlePopMcmc.  The runIter option lets you choose the number of iterations of 
the Markov chain Monte Carlo.  The rule-of-thumb is that one typically wants 10,000 well-
sampled points from a Markov chain Monte Carlo in order to draw robust inferences on the 
posterior distribution.  At the other extreme, the Central Limit Theorem dictates that 
approximately 30 uncorrelated samples are sufficient for a normal distribution.  Before running a 
particular dataset against a specific set of models, you do not know if the posterior distributions 
will be Gaussian shaped or more complex, so we suggest you take the conservative approach and 
initially assume complex posterior distributions and run BASE-9 for 10,000 uncorrelated 
iterations.  The parameter thin sets the increment between saved iterations.  We recommend 
that this parameter be left equal to 1 to keep the adaptive sampling routine efficient.  If the output 
of singlePopMcmc is correlated (see below), then each new iteration or step is not independent 
and you need substantially more than 10,000 iterations to draw robust inferences.  In situations 
like this, we recommend that the output file be thinned afterwards, i.e. that the user uses every nth 
record where n is large enough to keep the output uncorrelated.  
 
Under the cluster options, there are five parameters for which means and standard deviations 
can be set: the metallicity prior (Fe_H), the distance modulus prior (distMod), the absorption 
prior (Av), the helium prior (Y), and the carbon fraction prior for a C+O WD (carbonicity).  
Note that carbonicity only works with the Montgomery models and is not yet supported 
because we are currently testing it.  If you only have weak priors, that is fine.  If you do not want 
to sample on one or more of these parameters, you can set the sigma for that parameter to 0.0 
and this will turn of sampling for that parameter. Under starting, the parameter logClusAge 
is a starting value for the log of the age in years (e.g. 9.0 for a 1 billion year old cluster).  This is 
not a prior, but just tells singlePopMcmc where to start searching for a fit.  We have found that 
although convergence may depend on starting with a roughly reasonable age, the actual posterior 
age distribution does not depend on what that value is, assuming it does converge. 
 
The msRgbModel lets you choose which set of models to use with your data (the filters available 
in the models must match the filters of your observed or simulated/scattered cluster).  This 
allows you to derive cluster parameters for a range of models as well as to create simulated 
clusters under one set of models and use singlePopMcmc to derive the cluster and stellar 
parameters under another set of models.  The latter experiments might be useful, for instance, if 
you wanted to test the sensitivity of basic cluster or stellar parameters to a given model 
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ingredient.  With ancillary data for cluster or stellar parameters this might allow you to constrain 
model ingredients. 
 
Again we mention that the seed can be set inline with -‐-‐seed when singlePopMcmc is called.  
If singlePopMcmc appears to be unable to converge on reasonable cluster values, rerun it with 
a different initial seed.  Changing the seed also allows you to start a new MCMC chain if you ran 
a prior calculation with too few iterations. 
 
To run singlePopMcmc, using a properly prepared input base9.yaml file, type the following: 
 
linux>	  singlePopMcmc	  -‐-‐verbose	  
Bayesian	  Analysis	  of	  Stellar	  Evolution	  
Seed:	  1570065938	  
Reading	  models...	  Done.	  
	  
Model	  boundaries	  are	  (7.800,	  10.250)	  log	  years.	  
Binaries	  are	  OFF	  
	  
Running	  Stage	  1	  burnin...	  Complete	  (acceptanceRatio	  =	  0.090)	  
	  
Running	  Stage	  2	  (adaptive)	  burnin...	  
	  	  	  	  Acceptance	  ratio:	  0.350.	  Trying	  for	  trend.	  
	  	  	  	  Acceptance	  ratio:	  0.600.	  Retrying.	  
	  	  	  	  Acceptance	  ratio:	  0.380.	  Trying	  for	  trend.	  
	  	  	  	  Acceptance	  ratio:	  0.520.	  Retrying.	  
	  	  	  	  Acceptance	  ratio:	  0.280.	  Trying	  for	  trend.	  
	  	  	  	  Acceptance	  ratio:	  0.180.	  Retrying.	  
	  	  	  	  Acceptance	  ratio:	  0.400.	  Trying	  for	  trend.	  
	  	  	  	  Acceptance	  ratio:	  0.440.	  Retrying.	  
	  	  	  	  Acceptance	  ratio:	  0.320.	  Trying	  for	  trend.	  
	  	  	  	  Acceptance	  ratio:	  0.500.	  Retrying.	  
	  	  	  	  Acceptance	  ratio:	  0.240.	  Trying	  for	  trend.	  
	  	  Leaving	  adaptive	  burnin	  early	  with	  an	  acceptance	  ratio	  of	  0.220	  
(iteration	  1300)	  
	  
Starting	  adaptive	  run...	  	  Preliminary	  acceptanceRatio	  =	  0.300	  
 
The singlePopMcmc routine creates multiple output files.  In this case, it created: 
 
-‐rw-‐r-‐-‐r-‐-‐	  	  1	  comp	  	  staff	  	  57955	  Nov	  	  3	  17:27	  hyades/hyades.res	  
-‐rw-‐r-‐-‐r-‐-‐	  	  1	  comp	  	  staff	  	  50317	  Nov	  	  3	  17:25	  hyades/hyades.res.burnin	  
 
The .burnin files provide the sampling patterns during the burnin process and may be useful 
for diagnostic purposes, especially if singlePopMcmc is not sampling well (see below).  The 
.res.burnin files look like: 
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linux>	  head	  -‐2	  hyades/hyades.res.burnin	  	  
	  	  	  	  logAge	  	  	  	  	  	  	  	  	  	  Y	  	  	  	  	  	  	  	  FeH	  	  	  	  modulus	  absorption	  	  	  	  	  logPost	  
	  	  8.821886	  	  	  0.280626	  	  	  0.086646	  	  -‐0.010790	  	  	  0.011206	  -‐174.520334	  
 
And the .res files have the same format:	  
	  
linux>	  head	  -‐2	  hyades/hyades.res	  
	  	  	  	  logAge	  	  	  	  	  	  	  	  	  	  Y	  	  	  	  	  	  	  	  FeH	  	  	  	  modulus	  absorption	  	  	  	  	  logPost	  
	  	  8.843553	  	  	  0.288468	  	  	  0.016795	  	  -‐0.180626	  	  	  0.013647	  -‐198.263339	  
 
After the column headers, there is one record for each iteration of each of the cluster parameters 
of interest.   
 
If everything goes well, all you really need to do is plot histograms for any column of interest.  
These are the posterior parameter distributions.  You can also calculate moments of these 
columns if you’d like, and look at correlations among the columns, e.g. by plotting logAge vs. 
modulus. 
 
 

D. sampleMass and sampleWDMass 
 

These modules are useful for anyone interested in the masses of some or all of the stars in their 
database.  Running them is unnecessary if you are only interested in the cluster parameters.  The 
module sampleMass reports the primary mass and secondary mass ratio at all iterations for 
every star in the database, and sampleWDMass reports the primary mass for the subset of 
database stars that are being fit as WDs. 
 
Running these programs is quite simple: 
 
linux>	  sampleWDMass	  
Seed:	  1690745648	  
Warming	  up	  generator…	  Done.	  
Generated	  10000	  values.	  
Reading	  models…	  Done.	  
	  
sampledPars.at(0).age	  	  	  	  =	  8.78411	  
sampledPars.at(last).age	  =	  8.74765	  
Part	  2	  completed	  successfully	  
 
Running sampleMass is effectively identical. 
 
These output files names end with .wdMassSamples, .wdMassSamples.membership, 
.massSamples, and .massSamples.membership.  These correspond to the WD mass 
outputs from sampleWDMass, the membership likelihood of those masses, the mass and 
secondary mass ratio outputs from sampleMass, and the membership likelihood of those pairs. 
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sampleWDMass output files consist of the same number of columns as there are WDs, and the 
same number of rows as there are in the results (.res) file.  Each item in a  row corresponds to 
the mass of a WD (ordered as in the database) given the sampled parameters in the results file. 
The membership file shares this format, though the values correspond to the likelihood that the 
given star is a member of a cluster with the given parameters. 
 
sampleMass output files are similar to sampleWDMass output files but have two columns per 
star in the database.  For every 0-indexed star 𝑘 in the database, column 2𝑘 corresponds to that 
star’s primary mass, and 2𝑘 + 1 to that star’s secondary mass ratio. The membership file is 
identical to that of sampleWDMass, though the values correspond to the likelihood that the given 
unresolved binary is a cluster member. 
 
sampleWDMass has no configurable parameters. 
 
sampleMass takes two parameters in the YAML file: deltaMass and deltaMassRatio. 
These values are used as starting step sizes for the adaptive MCMC process used to obtain mass 
and mass ratio.  We recommended that you change these parameters only if you are manipulating 
the code for diagnostic purposes. 
 
 

E. makeCMD 
 
The final module of our software suite, makeCMD, is a small module that calculates a mean fit 
isochrone.  This is helpful for runs that do not converge as well as for situations where the 
posterior distribution of some key parameter may be multimodal.  To run makeCMD 
 
linux>	  makeCMD	  
Seed:	  1574116425	  
Reading	  models...	  Done.	  
	  
***Warning:	  "F435W"	  is	  not	  available	  in	  the	  selected	  WD	  Atmosphere	  
model	  
	  	  	  	  	  	  	  	  	  	  	  	  This	  is	  non-‐fatal	  if	  you	  aren't	  using	  the	  WD	  models	  
 
The output of makeCMD looks like 
	  
linux>	  head	  -‐2	  hyades/hyades.cmd	  	  
	  	  	  	  	  	  Mass	  	  	  	  	  	  	  	  	  	  U	  	  	  	  	  	  	  	  	  	  B	  	  	  	  	  	  	  	  	  	  V	  	  	  	  	  	  	  	  	  	  R	  	  	  	  	  	  	  	  	  	  I	  	  	  	  	  	  	  	  	  	  
J	  	  	  	  	  	  	  	  	  	  H	  	  	  	  	  	  	  	  	  	  K	  	  	  	  	  	  F435W	  	  	  	  	  	  F475W	  	  	  	  	  	  F550M	  	  	  	  	  	  F555W	  	  	  	  	  	  
F606W	  	  	  	  	  	  F625W	  	  	  	  	  	  F775W	  	  	  	  	  	  F814W	  
	  	  0.150000	  	  16.170454	  	  14.623905	  	  13.035403	  	  11.950929	  	  10.490719	  	  	  
9.196773	  	  	  8.640356	  	  	  8.386555	  	  14.666132	  	  13.907510	  	  12.768529	  	  
13.128038	  	  12.587469	  	  12.243942	  	  10.744691	  	  10.477001	  
 
Because makeCMD uses the values of means under cluster in the base9.yaml, one can enter 
the mean or median values from the singlePopMcmc posterior distributions into the yaml file 
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prior to running makeCMD.  The output file from makeCMD can then be used to overplot what 
essentially amounts to the average fit isochrone from among the posterior parameter 
distributions.  Note that this is not a best-fit isochrone, but rather a representative example drawn 
from that distribution.  In fact, isochrones created from summary statistics such as mean or 
median parameters may not be truly representative if the distributions are substantially non-
Gaussian because that simultaneous combination of parameters may fit the data with low 
probability. 
 
 

F. Hyades Test 
 
We have created a script, hyades.csh, which is set up to run on a Hyades data set 
(Hyades.UBV.testphot).  It is a cshell script.  If you have problems with this script, you may 
be using a shell other than the cshell or tshell, e.g. the Bourne shell.  You can invoke the cshell as 
follows: 
 
Bourne	  shell>	  csh	  
New	  prompt	  indicating	  you	  are	  now	  running	  csh>	  hyades.csh	  
 
This will allow you to test your code installation and plot results, then compare to the 
DeGennaro et al. results.  Note that you will not obtain an exact correspondence to the results of 
DeGennaro et al. because we have updated the Hyades data set since that publication.  Because 
of the relative depth of the Hyades, which is significant compared to its distance, we have now 
corrected the cluster stars to lie at the mean cluster distance using individual proper motions 
from Hipparcos and the cluster converging point method.  Because of the way we have corrected 
distances, this data set is converted to absolute magnitude space (we otherwise always use 
apparent magnitudes) and for this one test case, you will find a distance modulus of 
approximately 0.0.  
 
 

G. How long does all of this take? 
 
In our tests, it took 147 minutes to run hyades.csh, which in turn ran singlePopMcmc for 152 
Hyades stars in three photometric bands for 10,000 iterations on a early 2011 Macbook Pro (2.3 
GHz Intel with 8 GB RAM) laptop computer.  Increasing the number of filters or number of stars 
will increase the computation time linearly.  Increasing the number of MCMC iterations will 
increase the run time, but somewhat less than linearly because some of the time is spent during 
the burnin.  You will see substantial increases in runtime if you have much larger data sets and/or 
if you have to increase the total number of calculated iterations. 
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V. Diagnostics of run quality 
 
The following two plots show examples of poor and good sampling.  In the first (extreme) case, 
the age sampling is highly correlated and one would need to use post-run thinning, probably by a 
factor of ~100.  This means that one would need to run the code for 100x as many interations.  
The metallicity sampling displays only minor correlation, and if all other parameters looked this 
uncorrelated then this run would be sufficient.  In this particular case, both plots were generated 
from the same singlePopMcmc run and because no single parameter is reliable until all 
parameters are essentially uncorrelated, this run did not reliably determine the metallicity (or any 
other) posterior distribution. 
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VI. Example uses of BASE-9 
 
In Section IV we outlined how to use the outputs of BASE-9.  Here we provide additional 
examples from our papers and on-going work. 
 
The first figure of this section, taken from DeGennaro et al. (2009), shows Hyades CMDs with 
three sets of stellar evolution models placed at their average fit values as determined by a 
previous version of the code, BASE-8.  Because these stellar models do not provide good fits to 
the lower main sequence, the following figure shows the derived age from BASE-8 for each of 
the three input models and for a range of lower main sequence cut-offs.  In this way DeGennaro 
et al. were able to argue that their derived parameters were stable over an appropriate range of 
data and were able to quantitatively point to where problems emerged in the models. 
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This next figure, taken from Jeffery, E. J. (2009, Ph.D. Dissertation, University of Texas at 
Austin) compare the age information resident in just the main sequence turn-off stars (black 
dashed line) compared to that resident in the white dwarfs.  Data from the main sequence was 
included in both BASE-8 runs, and this provides the primary constraints on metallicity, distance, 
and reddening.  This is useful for studying the information content in the MSTO vs. WD regions. 
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The next figure, also from Jeffery (2009), indicates how one can study the sensitivity of a given 
result to the observations of an individual star.  For the open cluster NGC 2360, the posterior age 
distribution is given by the black line.  During some iterations, however, a particular WD is fit as 
a field star and the remaining WDs yield the posterior age distribution indicated in red.  During 
the iterations when this particular WD is included in the fit, the posterior age distribution is as 
indicated in blue.  The final age posterior distribution is a linear combination of these two 
distributions based on the fraction of time this particular WD was included in the fit. 
 

 
 
The next figure shows unpublished work based on applying BASE-8 to an individual WD.  In 
this particular case, we know that the WD has a hydrogen atmosphere (type DA), yet for 
demonstration purposes we analyze it both as a DA and as a DB (helium atmosphere).  We also 
try two different initial-final mass relations (from Salaris et al. 2009 and Williams, Bolte, & 
Koester 2009).  The clouds of points show acceptable fits and the error bars indicate the mean 
and standard deviation for each of the four cases.  Clearly these distributions are non-Gaussian 
and publishing just the means and standard deviations could lead readers to misunderstand the 
results.  This kind of analysis can also point the way toward future observational work.  For this 
star a trigonometric parallax could potentially rule out much of the age range, yielding a precise 
age.  If this star were a DB a much more accurate trig parallax would be required to 
meaningfully constrain the age.  This is not a general statement about WDs, but a result for this 
star with the available photometry (grizJHK). 
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VII. Modifying the code to extend its capabilities 
 
We continue to upgrade BASE-9 for our on-going projects.  If you wish to add capability to 
BASE-9, we will be happy to suggest to you how best to go about this and try to estimate the 
work involved.  Here is an example list of how involved a variety of tasks are likely to be. 
 
Less than 2 hours: Modifying the IFMR.  You can do this by editing or adding a few lines of 
code in ifmr.cpp. 
 
Less than 8 hours: Change the IMF.  You will need to create a subroutine where a random mass 
value can be drawn from your IMF distribution.  This currently takes place in 
drawFromIMF.cpp.  Note that you will also have to normalize the IMF for the Bayesian routine 
to work properly and that this takes place in densities.cpp and is stored in logMassNorm. 
 
Less than 16 hours: Incorporating another set of stellar evolution models – see instructions at the 
top of msRgbEvol.cpp and possibly wdCooling.cpp and/or gBergMag.cpp. 
 
Less than a week: Sampling a new variable (e.g. stellar rotation, alpha-element enhancement).  
This takes place primarily in singlePopMcmc/MpiMcmcApplication.cpp and 
base9/densities.cpp. 


