
* WHAT SAS SOFTWARE DOES AND DOESN'T DO: THINGS YOUH NOTHER NEVER TOLD YOU

Calvin D'. Cray I National Demographics & Lifestyles

It has been said that people learn more from
mistakes and failure than from success, Yet
learning by self discovery can cost time,
composure, and sometimes money. Because of
these costs, most people have probably sometime
in their lives had occasion to reflect "Gosh,
I wish someone had told me. • .". The purpose
of this paper is to help prevent such after­
thoughts concerning SAS code. Listed in this
paper are a few of the SAS softw!re version 82.3
peculiarities I or my colleagues have encoun­
tered while submitting batch jobs within a VS1
operating system. We've all "discovered"
instances where SAS software handles data in
unexpected ways, The few here might take more
than a li tUe digging through the user's manuals
to unearth. They're listed below according to
decreasing likelihood of being encountered.

Surprise #1. Little elementary-level documen­
tation in Basics ~§~. User
familiarity with SAS software insufficient to
select the best Procedure.

Though perhaps analysts above the novice stage
won't consider this a SAS software peculiarity,
many beginning SAS software users do have
problems deciding which Proc to select. For
example, the Basics User's Manual doesn't
directly help identify which Froc a User should
select if all the user wants to do is "compare
two means". The advice of a more advanced
analyst may not be available, and at such an
elementary level reference to the Basics User's
Manual probably won't help much. Should the
neophyte select Froc Means? Froe Summary?
Froe Univariate? Froe Freq? Proc Corr?
Froc T-test? Froc GLM? Froc ANOVA? All these
procedures can be used to perform statistical
analyses useful in -comparing two means. For
now, the only answer is to talk to a more
experienced analyst, get other manuals, read a
statistical textbook, or all three--depending
upon the potential user's background.

Surprise #2. The message printed in the SAS
log as a result of an error may not have
straightforward connection to the error made.
Restated, error messages in the SAS log do not
always help identify an error and can actually
misidentify an error.

Example 1. Consider a title statement imbedded
in a 300 line SAS program. The user
unwittingly places a single apostrophe within
the tiUe rather than the double apostrophe
required by SAS software. The resulting error
message "character literal has more than 200
characters" can be confusing to those
uninitiated into the ways of SAS software.
This message is especially confusing if the
programmer realizes that no character values
have been used in the program.

895

Example 2. The programmer places a semicolon
in the wrong place. Consider a data step opened
with this accidentally split line of code:

Data First(Keep= X)j Second(Keep= Y)j

The resulting error message "Explicit subscript­
ing of array variables is not supported in this
release of SAS" means little. No array has
been referenced though SAS software has mistaken
Second for one.

Surprise #3. The logical comparison SAS soft­
ware makes may not be the one wanted. The
user should take care to understand the
Boolean logic behind SAS software logical
comparisons.

Example: The statement "if X or Y) 5" will
always be true, regardless of the value of X
and Y. The Boolean interpretation of this
statement is "if X = X or Y) 5". Since X = X
is always true, all records will pass this test.
Similarly, the test "if X = 10 or 20" will
always be true because 20 is always equal to 20.
The correct syntax for these tests are "if x>
5 or Y> 5" and "if X = 10 or X = 20". Problems
such as these with Boolean logic frequently
Snare unwary SAS software users new to computer
languages in general.

Surprise #4. Because of the way SAS software
represents numbers internally using floating
point decimal, tests that are actually true can
be taken as false. Consequences can be
disastrous!

Example:

Data Two; Set One;
If Area ** .5 = 5 then go to Code1,
Else go to Code2j

If the variable Area's value is 25,
the flow of execuation be carried?
Code1 or to label Code2?

where will
To label

Answer: Code2. Floating point decimal repre­
sentations can cause minute errors in the right
most bits SAS software uses to store the
results of arithmetic operations. SAS software
unfortunately uses the floating point binary
representations of numbers to make comparisons.
As this example shows, the binary representa­
tion of 25 raised to the power of .5 is not
perfectly equal to the binary representation of
5. If the variable Area's value is printed
however, the value printed will be 5. This
occurs because- SAS software converts the
internal binary code to the nearest base 10
number prior to printing. The printed value is
base 10) but the tested value is binary
floating point. The execution of unintended
code despite the seeming correctness of values
when printed can be almost impossible to debug

in lengthy SAS programs.

Moral: For critical applications, round values
to a user-specified level of precision
before testing for perfect matches.

Surprise #5. SAS software may interpret input
statements differently from the way you think
it does.

Consider the following code:

Data Example;
Length A $ 10;
Input A Y 1.
Cards;
abcdefghij8
j j

A logical interpretation of how the length and
input statements interact would be to assume
that since character variable A has been
declared to have a length of 10, then numeric
variable Y would be sought for beginning in
byte 11. In this example, the anticipated
value for A is 'abcdefghij' and Y is 8.
However, when this code runs, SAS software will
return a missing value for variable Y. A is
read using list input which will search for a
blank to separate the two variables' values.
Since no blank separates A's value from Y's
value, Y's value is not found and is set to
missing.

Note however that it is safe to use
"Input Y 1. Aj" with data of 8abcdefghij.
Since Y is read using an informat, no blank in
the data is searched for, and A's value will be
sought beginning in byte 2.

Surprise #6. SAS software may interpret
arguments to functions differently than you do.

Example: Xl = 1; X2 = 100; X3 = 100;
X4 = 100; X5 = 100;

Total = SUM(of Xl, X2 - X5);

The value of Total above is 1, not 401.

The reason here is that because of the preced­
ing comma, SAS software considers X2 - X5 to
be a subtraction to be performed prior to the
operation of the SUM function. Since the value
of X2 subtract X5 is 0, Xl + ° = 1 + 0 = 1.
The solution here is to remove the comma:
SUM(of Xl X2 - X5) = 401.

Surprise #7. Functions may not generate
missing values, or may return unexpected values,
compared to doing the calculation "by hand".

Example: Given X = 1 Y = 2
T = missing value

Z SUM(of X Y T) = 3 but

Z X + Y + T missing value.

Many SAS software functions will exclude
variables with missing values and operate on

896

the remaining variables. Hence one should try
to avoid using functions to critically screen
data. For example, suppose one would like to
keep records where variables Ml through M5 have
values greater than or equal to 1. Using the
code "if SUM(of Ml - M5"= 5" will merely
insure that at least one of the variables has a
value of 5 or more. Note that if Ml = 5 and
M2 - M5 all have missing values, then
SUM(Ml - M5) will equal 5 and the test is
satisfied even though 4 out of 5 variables had
missing values. Or perhaps one wants to make
sure retained records have no missing values
for variables Ml - M5. The test "if SUM(of
Ml - M5) = • then delete" will delete records
only where all 5 variables have missing values.
If Ml = 1 and M2 - M5 all have missing values,
then SUM(of Mi - M5) will return a value of 1,
not a missing value. Of interest too is that
if A = 10 B = 20 C = 30, and X = 20 Y = .
Z = • , then MEAN(of ABC) = MEAN(of X
Y Z) = 20.

Surprise #8. Using the trim function to remove
trailing blanks from character values doesn't
work unless you include a length statement.
(Unexpected, though well documented in 82.3
Basics User's Manual on p. 194).

The trim function removes trailing blanks from
a character variable's value, and the resulting
trimmed value has the length specified in an
accompanying length statement. If no length
statement is specified, the trim function in
effect does nothing since any trimmed blanks
are reinserted.

Example: A = 'XYZ ';
B = TRIM(A);

Here the value of B will be 'XYZ To get a
value returned of 'XYZ' the user needs to
supply the statement: Length B $ 3;

Surprise #9. Variables created from the
substring function retain the length of the
variable from which they were created, unless
specified otherwise.

Example. Length Y $ 130;
H = SUBSTR(Y,1,2);

As can be revealed with a Froc Contents, the
length of H will be 130, not 2.

In order to have H be of length 2, its length
needs to be explicitly declared: Length H $ 2;

Surprise #10. How you merge determines what
you get. But is it what you want? Merging
can create unexpected holes in your data.

Consider the merge of Data B with Data A in
order to have the variable TOTAL appended to
each observation in the resulting Data C.

SEX
~
M

Data B
OES GROUP SEX

1 1
TOTAL

20

Data C; Merge A B; By GROUPj

Data C will appear as:

SEX TOTAL

§~
Why does observation #1 have a blank for the

value of the character variable SEX when obser­

vations 2 and 3 h~ve the anticipated value of

'M'? Answer: The blank value arises because

Data A's value for SEX was replaced by Data B's

value, a blank. Also "when multiple observa­

tions occur within a by group [such as in Data

AJ, the value in the new dataset is the value

from the dataset mentioned latest in the merge

statement that is still contributing informa­

tion to the by group" (p. 105, 82.3 Basics

User's Manual). Thus for observation #1, the

contributing dataset mentioned latest in the

merge statement is Data B, and the blank value

for SEX is taken from B. But for observations

2 and 3, ~he contributing dataset mentioned

latest in the merge statement is the only

contributing dataset--Data A. For observations

2 and 3, the value of M is taken from Data A,

the only contributing dataset. Why the valu'e

20 for TOTAL is kept for all records is

succinctly stated as well on p. 105 of the 82.3

Basics User's Manual: "When a dataset runs out

of observations for a by value, values from the

last observation contributed by the dataset are

retained for the remaining observations in the

by groupl!.

Surprise #11. The sign of the t-value gener­

ated by Froc T-test depends upon the spellings

of the class variable's values.

Let's say you always want to compare another

company's data to your company's data. If the

other company's mean is significantly larger

than your company's mean, the t statistic

should have a positive value. If the other

company's mean is significantly less than yours,

you expect the t value to be negative. But in

practice it doesn't work this way with Proc T­
test.

Froc T-test orders the values of the class

variable alphabetically on the printout, and
the mean of the data represented lowest is

subtracted from the mean printed above.
Depending on the name you furnish to designate

the other company's data, their mean will

appear either above or beneath yours, regard­

less of the direction of difference in means.

Hence comparing the same sets of data ordered

the same way can lead to different signs for

the t value depending upon the spelling
selected.

Example: Other company's variable TIME has
mean of 5. Class variable GROUP
given value of 'other'.

Your company's variable TIME has
mean of 2. Class variable GROUP

given value of 'ours'.

Proc T-test; Class GROUP; Var TIME;

897

The listing from this program will show a

positive t value since 'other' will physically

appear above 'ours'. Alphabetically, 'at'
comes before' au' .

If the same data are run again, but the class

value for your company's data is changed fr6m

'ours' to 'mine', the same program will
generate a negative t value of the same magni­

tude. This is because 'mine' will physically

appear above 'other' since alphabetically 'm'

precedes '0'.

Surprise #12. To use Proc Score with coef­

ficients from Proc Reg, a label must have been

present on the Model statement of Froc Reg.

This is true even though "the label is
optional" •

Proc Score uses the value of the MODEL
variable in the scoring coefficient dataset

from Proc Reg. When used with regression
coefficients, Froc Score takes the value of the

MODEL variable to name the scores it creates.

The value of the MODEL variable is the label

the user supplied-with the original Model

statement of Froc Reg. If the user supplies no

label, then the value of MODEL in the coef­
ficient dataset is blank,-and ?roc Score will

create scores for a variable without a useable

name since its name will consist entirely of

blanks. A variable name made of nothing but

blanks makes such scores very hard to later

reference!

Example 1: Without use of "optional" label.

Proc Reg data= Readin Outest= Coefs;
Model SALES = PRICE,

Output out= Regout Predicted= YHAT;
Froc Score data= New score= Coefs
out= Scored type= 013;
Var PRICE;
Froc Print data= Scored;

Da t.a Sc ored
PRICE

10
50
30

2000
500

1000

Example 2: With lise of "optional" label.

Eroc Reg data= Readin Outest= Coefs;
Score: Model SALES = PRICE;
Output out= Regout Predicted= YHATj
Proc Score data= New score= Coefs
out= Scored type= OLSj
Vax PRICE;
Proc Print dat.a= Scored;

Data Scored
PRICE SCORE

10 2000
50 500
30 1000

Moral: If the regression coefficients created

by Froc Reg axe to be used later with Proc

Score, always use ala bel in the Proc Reg's

Model statement.

".
}:
{. ,

::

!
i ,

Surprise #13. Using a permanent file for work
space by giving ita dd name of Work in the JCL
can cause headaches.

When one creates or uses a permanent external
file by having a dd name of Work in the JCL,
the last line number of source code is stored
in the external file regardless of the number
or position of the other internal pointers.
This facilitates using statements such as
%include. When the physical external space is
reused for work space, SAS software begins
counting lines of source code beginning with the
line stored in the external fUe, With each
run the stored end line number is added to.
However, a SAS program can contain only 32,000
lines of SAS code. Thus when large SAS
programs run frequently and reuse the external
file, the 32,000 line limit will eventually be
reached and an error generated.

We have had no success in resetting the line
number stored in the permanent external file.
Neither have we been able to destroy it using
the kill option to Froc Datasets. The only way
we at NDL have been able to remove the
offending line pointer has been to run a small
PLl program to open and close the external file,
thus purging all pointers set in the file.

Moral; DonI t use ~ as a dd name in JCL!

Surprise #14. Under CMS the device type must
be supplied by the user either in the o,Ption~
statement of the program executing SAS/GRAPH
or in a SAS profile.

When using SAS/GRAPH under OS, SAS software
can get the device type from the operating
system so the user needn't explicitly declare
it. But to run SAS/GRAPH under CMS, the user
does need to supply the device type since it
can't be obtained from the operating system.
The real surprise here is that such require­
ments are listed in the 82.3 SAS Basics User's
Manual rather than in the 82.3 S~pan--ron­
for the VM/CMS Operating System.

Surprise #15. Using Froc Freq with the Weight
statement on very large datasets can produce
incorrect and inconsistent counts.

Example: 206,395 records having GROUP values
A through E and an integer weight value for
variable X were run twice through the
following code.

Proc Freq; Tables GROUP; Weight X;

Run #1
Run #2

Group
E
E

Results

Frequency
1,430,393
1,430,393

Cumula ti ve Freg uency
64,284,606
64,161,260

In the above example, the final total
frequency calculated was first 64,284,606 and
when rerun, 64,161 ,260--a difference of
123,346 or 0.5976 for each record processed.
Neither of these totals was correct.

898

The true count total was 64,517,076 as calcu­
lated. using counters in a data step and also by
using Proc Summary with a Freq statement. The
inaccuracy of Froc Freq in this use remains a
mystery.

Moral: Use Froc Summary with a Freq statement
to process very large sets of data.

Surprise #16. SAS software writes a miSSing
value {.) using packed decimal format as -0.
However, when such -0 values are read using the
same packed decimal format with which they were
written, the value input is O. The negative
sign is lost. In datasets written using packed
decimal format, ,the distinction between a
missing value and 0 is lost when the data are
read using a packed decimal informat.

Surpr).se #17. The column binary informats
Row 0.6 and Row 10.6 are not,equal, despite
what the 82.3 Basics Us~r's Manual shows.

Consider a puch occurs in row 10. The informat
Row 0.6 will return a value of 0 whereas

Row 10.6 wilt'return the value of 1. In
general, using Row 0.6 returns a value of 1
less than the true value!

Suggestion: User Row 10.d instead of Row D.d.

* SAS and SAS/GRAPH are registered trademarks
of SAS Institute Inc.,
Cary, NC, USA.

1 Doyle Bishop, Chris Hamlin, Don Hinman,
'Bern1e Schneider, Bill Schneider,
Duane Schulte, and Frank Scoviak

For further information contact;

Dr. Calvin D. Croy
Senior Statistical Analyst
National Demographics & Lifestyles
1621 Eighteenth Street
Denver, Colorado 80202
USA
(303) 292-5000

