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ABSTRACT 

In this paper, a review of the Spatial Twist Contiuum and the basic whisker weaving algorithm are given. Progress 
in the detection and resolution of several types of degeneracies formed by whisker weaving are discussed. These 
examples include so-called kniie doublets, triple doublets, through-cells and through-chords. Knife doublets and 
triple doublets are resolved by preventing their formation a-priori, which forces whisker weaving to remove the 
eleemnt(s) causing the degeneracy. Through-chords and through-cells are left in the weave and resolved after the 
weave has been closed. The paper concludes with three examples of geometries “closed” by whisker weaving. 

INTRODUCTION 

Automated meshing algorithms for general three-dimensional volumes can yield tetrahedral- or hexahedrd-shaped elements, 
or a combination of the two types. A fundamental difficulty of automated meshing is that a mesh is constrained in terms of how 
elements can share subfacets with each other. This problem is much less constrained for tetrahedral or mixed element meshes, 
hence tetrahedral and mixed element meshing algorithms have received the most attention in the past. However, for applications 
in non- linear structural mechanics and other areas, there is a growing demand for all- hexahedral meshing algorithms. 

Previous all-hexahedraJ meshing algorithms have suffered shortcomings in the principal areas of lack of automation, boundary 
insensitivity (i.e. placing poorly shaped elements close to geometric boundaries), orientation sensitivity, and mesh size (i.e. 
number of elements). For example, issoparametric mapping can be difficult to apply to very general geometries in an automated 
fashion [ 13. The refinement of a mapped mesh is also difficult, since it often means propagating the refinement in the three 
parametric directions. Methods based on the finite octree approach can suffer from orientation sensitivity; these methods also 
place the poorest-shaped elements near the boundary 123. The plastering algorithm, a three-dimensional analogue of the paving 
algorithm [31, has difficulty combining the meshing fronts under the constraint of an all-hexahedral mesh [4]. 

whisker weaving is based on mesh dual information encapsulated in the Spatial Twist Continuum [5][6]. It builds the STC 
representation of an all-hexahedral mesh using an advancing front method, starting with a geometry and an all-quadrilateral 
surface mesh. whisker weaving simplifies the all- hexahedral meshing problem by fitst determining the connectivity of an all- 
hex mesh without regard to its geometric embedding; thus, the most constrained part of the problem is solved first. An actual 
hexahedral mesh is constructed from the STC by dualizing the STC into the connectivity of the hexahedral mesh, and then 
iteratively smoothing to generate the geometric position of the mesh nodes 171. 

This paper will summarize the recent progress on the whisker weaving algorithm. It will begin with a description of the STC 
and the basic whisker weaving algorithm. Further details about the generation and removal of mesh degeneracies will be 
discussed. Some of the degenerate elements recently encountered in whisker weaving will be described, along with resolution 
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strategies.This presentation will conclude with examples of geometries closed to date with the whisker weaving algorithm, and 
will discuss the future work planned to increase the robustness of the algorithm. 

THE SPATIAL TWIST CONTINUUM 

The whisker weaving algorithm works in the geometric dual of an all-hexahedral mesh. It is easiest to visualize the dual for an 
alreadyconsmcted mesh. Figure 1 shows a mesh consisting of three hexadedra. Also shown are dual entities for the 
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Figure 1. Geometric dual entities for an all-hexadedral mesh. 

hexadedra, faces, edges, and nodes. The dual entities and their corresponding entities in mesh space are shown in Table 1. There 

Table 1 .Correspondence between mesh and STC entities. 

is a direct comspondence between entities in the dual and entities in the primal (mesh). Therefore, mesh connectivity can be 
constructed in the dual, and afterwards can be converted directly to the primal [7] 

It can be seen from Figure 1 that if adjacent STC %-cells are combined, they form a general 3D surface which bisects hex 
elements in a given direction. These surfaces,referred to as whisker sheets, define a “sheet” of hexes, and their intersection with 
the geometric boundary of the solid forms a loop of mesh faces. Also, adjacent STC edges can be joined end to end to form 3D 
arcs; these are referred to as whisker chords. Whisker chords are formed by the intersection of two whisker sheets, and 
correspond to columns of hex elements. Ha chord intersects the solid boundary, it does so in the middle of a face on the surface 
mesh (some chords do not intersect the solid boundary, but form a closed loop inside the solid). 

Since whisker sheets are topologically 2-dimensional, they can be represented using a 2D “whisker sheet” diagram; a collection 
of whisker ShWE diagrams is shown in Figure 2, along with the geometry and surface grid they represent. For each sheet, the 
outer loop of the polygon represents the intersection of the sheet with the geometric boundary. Each chord, indicated by a line 
segment intersecting the outer loop, is labelled outside the loop by the face id where the loop enters the solid, and on the inside 
of the loop with the ‘‘other‘’ sheet number of the two sheets which form the chord. Since each chord is formed by the intersection 
of two sheets, it is represented (in most cases) on two sheet diagrams. Vertices formed by the crossing of two chords represent 
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the STC vertices, which are the dual of hexahedra. Since hexes are formed by the intersection of three sheets, they are 
represented on three sheet diagrams. 

THE BASIC WHISKER WEAVING ALGORITHM 

The initial conditions for whisker weaving are a geometric solid with an all-quadrilateral surface mesh. This information is used 
to find the initial face loops, which defme intersections of sheets with the boundary. It is assumed that each loop corresponds 
to a unique sheet. For example, a cube geometry and surface mesh, and its initial collection of whisker sheets, are shown in 
Figure 2. 

1 

Figure 2. Brick geometry with 2x2 surface mesh (left), and initial sheets (right). 

In its simplest form, the whisker weaving algorithm consists of three steps: 

1. Form a hex by crossing three chords on three sheets 

Tbree chords are found by first selecting two chords that are adjacent on a given sheet, then looking for a third chord that is 
adjacent to the first two on the other two sheets. The three chords are pairwise crossed, forming three STC vertices, which 
represent the same hexahedral element. The first crossing for the example is shown in Figure 3 

3 5 

Figure 3. First crossing on three sheets, representing the first hex formed. 

2. Resolve invalid connectivity 

Step 1 is repeated until a case of invalid connectivity is detected. A natural part of the whisker weaving algorithm is the 
formation and subsequent resolution of invalid connectivity. An example of the resolution of invalid connectivity is shown in 
Figure 4. Here, a pair of faces shares two edges; this is represented in STC space by two chords being adjacent on two sheets 
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Figure 4. Resolution of two faces sharing two edges by joining two chords. 

(only the fmt sheet is shown in Figure 4). The resolution of this invalidity is simply to seam the two faces together; this is 
equivalent to joining two chords into one. Since joining chords together removes two dangling STC edges from each of the two 
sheets, this operation moves the algorithm towards completing the weave. 

Steps 1 and 2 are repeated until there are no dangling STC edges remaining on the sheets; the completed weave for the example 
problem is shown in Figure 5. Note that this information fully specifies the connectivity of the mesh; nodal positions must still 
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Figure 5. Completed weave for the example problem. 

be determined. The final step in whisker weaving is to determine nodal positions using the primal construction algorithm [7]. 

The algorithm described in this section is sufficient for weaving relatively simple solids. For more complicated geometries and 
surface meshes, complications arise in the form of blind chords, self-intersecting sheets, and merged sheets. For a description 
of these complications, see [51. 

DEGENERACIES PRODUCED BY WHISKER WEAVING 

whisker weaving produces degeneracies as a natural part of the meshing process. For example, the case of two faces sharing 
two edges, described in the last section, is a degeneracy. Mesh degeneracies can be resolved either immediately, or can be left 
in the mesh to be resolved at a later time. In this section, examples of both types are given, along with the resolution technique 
for each type. 

Knife Doublet 
Knife elements are formed when one face of a hexahedron is collapsed by joining two opposite nodes; their appearance and 
resolution are described in [5]. Knives are degenerate elements because they contain two pairs of faces which share two edges 
(see Figure 6). Knife elements contain a base chord, which enters the knife at the base and terminates inside the element, and 
side chords, which cross each other and the base chord and pass through the side faces of the element. 
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After the formation of each hex element, whisker weaving checks for any invalid connectivity, and either resolves it or leaves 
it in the form of a degenerate element. During this process, side chords are not checked for invalidities until all other 
degeneracies have been resolved. If, at this point, either side chord has not been joined to some other chord, a degeneracy will 
be detected which represents the two side faces of the knife, which share two edges. If these were two ordinary chords, they 
would be joined together in a seam operation. However, the joining of these two chords would turn the kniie element inside out, 
as depicted in Figure 6. Note that this would form a doublet on the base sheet (indicated by a 2-cell with only two edges); this 

base sheet side sheet base sheet side sheet 

Figure 6. 
sheets (bottom). 

Turning a knife element inside out by joining two side faces (top); representation on base and side 

element then is called a “kniie doublet”. 

Degenerate elements are left in place by whisker weaving only if they cannot be resolved immediately using a simple resolution 
technique. In the case of knife doublets, such a technique exists; the knie forming the knife doublet can simply be pulled one 
element back. In STC space, this has the appearance of “pulling out’’ the doublet and the “singlet” (degree-1 2-cell) on the base 
and side sheets, mpectively.Since kniie doublets can always be resolved in this way, the formation of these types of elements 
is prevented. Subsequently, the kniie element is removed, then the base chord can be joined to itself again (forming another 
knife), and the former side chords can also be joined. This is the same arrangement that would result from pulling the kniie 
doublet back by one hex. 

Triple Doublet 
Another type of invalid element that arises in whisker weaving is named the triple doublet. A normal doublet is formed when 
two hexes share two faces. This arrangement is shown in Figure 6. If the chords extending through the pair of faces on the end 
of the doublet are uncompleted after all other degeneracies have been resolved, the pair of faces represents a degeneracy on the 
meshing boundary, since the faces share two edges. This situation could be resolved by seaming the two faces; in STC space, 
this would form a total of three doublets, representing the three faces s h e d  by the two hexes. Although this type of degeneracy 
could be resolved using doublet pillowing 0, it is preferable to prevent triple doublets from being formed. When this is done, 
whisker weaving goes on to delete both of the doublet hexes (in order to remvove the degeneracies), after which the front faces 
can be seamed directly. 

Knife doublets and triple doublets are examples of degenerate elements encountered in whuker weaving which are handled by 
preventing theb formation a-priori (whisker weaving goes on to remove one or more elements to remove the degeneracies). 
Both knife doublets and triple doublets can be reduced directly to a simple arrangement, which sometimes contains aremaining 
degeneracy (ktufe doublets) and sometimes does not (triple doublets). 

Examples of degeneracies which cannot be reduced directly to a simpler arrangement are discussed next. These degeneracies 
include through-cells and through-chords. 
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Figure 7. 
STC space (bottom). 

Formation of a triple doublet by joining two end faces (top); formation of three doublets in 

Through-Cells 
This section considers STC degeneracies called through-cells- These are cells that one may travel through from one side of the 
surface mesh to the other without encountering any other cells: the cell passes all the way through the volume. These 
degeneracies have to do with how the STC represents the surface mesh. In particular, through-cells do not represent an invalid 
STC in themselves. That is, the dual of an STC with a through-cell is still a mesh. However, the mesh will not represent the 
surface mesh well, and will not respect the surface geometry. This is because different surface mesh entities will be identified 
as being the same, or merged together! E.g. The dual of an STC with 8 through-chord will be a mesh that respects the surface 
mesh, except that two faces will be merged into one. Figure 8 illustrates this principle for a two-dimensional STC. A through- 
2-cell represents merging two mesh edges together, and a through-3-cell represents merging two mesh nodes together. The 
definition of through-cells, and the rudiments of how to deal with them, were introduced in [8]. 

surface mesh - 
STC with through-cells Resultant mesh 

Figure 8. Left shows an STC that respects the surface mesh, but contains through-cells. Right shows the result- 
ant primal mesh that is dual to the given STC. Note that the disparate facets of the surface mesh contained in a 
through-cell are merged into one. 

Throughchords 
This section describes how through-chords are detected, and the general scheme for removing them. Some implementation 
details are omitted. Every through-chord actually has four through-Zcells and four through-3-cells containing it. This makes 
sense considering that merging two faces together also merges the four pairs of edges together and the four pairs of nodes 



7 

together. Similarly, every through-2-cell is contained in two through-3-cells: merging two edges also merges the nodes they 
contain. 

Detection 

Detecting a through-chord is simple. Each sheet contains lists of chords that start on its loops. The algorithm steps through these 
chords. If any of these chords has no whisker hexes (internal STC vertices), then it is a through-chord. Chords that start and end 
on the same face represent aknife, so through-chords that are also knife chords represent two simultaneous types of degeneracy, 
a through-knife. A through-knife represents collapsing the surface mesh face, and will be considered in hture work. Figure 9 
shows the sheet diagrams for a typical through-chord. 

Figure 9. 

Yough-chorc 

A through-chord is always surrounded by four through-2-cells and four through-3-cells. 

Resolution 
Resolving a through-chord involves locally refining the STC. The goal is to place a new sheet, called apillow-sheet, that 
separates the two disparate pieces of the surface mesh that are being identified by the through-chord. A pillow-sheet is a sheet 
that is topologically a ball, and does not intersect the surface mesh in any way. It both resembles a pillow, and buffers between 
various STC features. Figure 10 center shows the smallest pillow sheet that would remove the through-chord. However, this 
would still leave the through-2-cells and through-3-cells in place. The pillow sheet in Figure 10 right surrounds all of the STC 
vertices in the through-2-cells, removing the through-2-cells by subdividing them. However, analogous to the previous 
“solution”, this still leaves the through-3-cells. The correct solution is to add a pillow sheet large enough to surround all of the 
STC vertices contained by the four through-3-cells. 
Thus the resolution step is as follows: First, the through-chords containing through-3-cells are visited to gather all of the STC 
vertices (whisker hexes) they contain. These whisker hexes are put on a list and marked as being on the list. 

Second, the STC edges of each of the entities on the list are visited. If such an edge goes between an entity on the list and one 
not on the list, then we insert a small piece of a pillow sheet perpendicular to the edge. Le. we weave a hex between the two 
entities. A piece of the pillow sheet is also introduced next to each of the surface mesh faces of the through-chord. 
Third, adjacent pieces of pillow sheets are stitched together t~ form a closed surface. 1.e. the blind chords through the just 
introduced hexes are joined with adjacent chords. 
Lastly, the stitched patches are visited and flipped upside down if necessary so that the neighbor orientations in the sheet 
diagrams are consistent. This is required because, in whisker weaving, sheets are only represented topologically: their positions 

in % are not known. Thus, initially the patches may have orientations that twist the sheet in ways that are impossible to realize 

in % . After this last step, the sheet is finished and may be treated as any other sheet by the primal construction algorithm [7], 
except for the fact that it has no loops. 

3 

3 

Examples 

Whisker weaving has successfully “woven” several non-trivial geometries and surface meshes; several of these will be 
described here. 
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Figure 10. 
the through-chord (center); pillow resolving the through-chord and other degeneracies (right). 

Resolving a through-chord using a pillow sheet. Initial arrangement (left); smallest pillow removing 

The first example is a brick with cylindrical and block-shaped protrusions. The geometry and surface mesh are shown in 
Figure PI. Note that since whisker weaving can at this time only generate relatively coarse meshes, the surface mesh for this 

Figure 11. Brick with cylindrical and block protrusions; geometry with surface mesh (left) and weave (right). 

example is very coarse. 

The second example is taken from a geometry posted on the World Wide Web by FEGS, Ltd. The geometry and surface mesh, 
along with a completed weave, are shown in Figure 12. Note that this is the full geometry posted by FEGS, with no 
modifications to the bounding surfaces and curves. 

The third example b an air duct geometry obtained from General Motors. The geometry and surface mesh, along with the 
completed weave, are shown in Figure 12. 
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Figure 12. FEGS Ltd ‘hook’; geometry with surface mesh (left) and weave (right). 

Figure 13. GM duct; geometry with surface mesh (left) and weave (right). 

CONCLUSIONS 

The whisker weaving algorithm creates cases of invalid connectivity as a natural part of its operation. These cases are resolved 
either immediately, for example by seaming faces which share two edges, or are left in the weave, for example in the form of 
kniie elements. Two examples of degeneracies which can be resolved immediately have been described; typically, these are 
degeneracies which can be reduced to a simpler form of connectivity using a simple set of operations. Knife doublets, consisting 
of a kniie with a pair of side faces seamed together, can be reduced by pulling the kniife back one element. Triple doublets, 
consisting of a doublet with two end faces seamed, can be reduced by seaming the other two end faces together, which also 
seams the four side faces. Both knife doublets and triple doublets are prevented from forming a-priori, which has the same affect 
as forming them and reducing them directly. Two examples of degeneracies which are left in and resolved after weaving is 
complete are through-cells and through-chords. Through-cells are formed by the identification of two surface nodes with one 
another, while through-chords are the identification of two surface edges with one another. These arrangements produce 
degeneracies because the joined entities are usually not part of the same mesh face on the surface. Both these degeneracies are 
resolved using pillow sheets, or sheets which are completely enclosed in the solid. 



c 

10 

The handling of knife doublets and triple doublets has been implemented in the CUBIT mesh generation toolkit [9], and 
implementation of pillowing to resolve through-cells and through-chords is proceeding. There are additional cases of invalid 
connectivity that are being observed in whisker weaving; some of these are being resolved by the code, and others are being 
investigated. These degeneracies will be described in a future paper. 
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