
 Profiling tool

 Prototype architecture

In Figure 1 the communication of profiling tool in physical level is described. During the profiling

phase, both the application on virtual machine and the profiling tool are hosted in the same

physical environment and it should be ensured that does not interfere with monitoring results

(taken form Pidstat and Tshark). This is why, traffic (through artificial workload) is sent from

another Physical Host 2.

Figure 1: The communication of profiling tool in physical level

Prototype Architecture and components description

In this section, all the implemented components of the tool are described (in a conceptual level). Also a

diagram of the architecture of components that build up the prototype is shown in Error! Reference

source not found.. In addition, every component’s class diagram is presented in order to provide a more

detailed analysis over the specific decisions of the implementation.

Figure 2: Implemented components of the Application Tool

User Interface (UI) component provides a user interface for the developer in order to manage the whole

procedure of application and benchmarking profiling. During the profiling tool execution, the user will

be asked to fill specific fields providing the demanded parameters. Some of them will be the number of

the process identifier for the VM to be tested (the VM with the benchmarks or the one with the

application), user credentials (username and password), paths for the start/stop scripts that control the

workload traffic, the total time and iterations of application testing and the workspace (path for

produced data). User interface, facilitates the communication between the user and the tool and makes

their interaction quick and direct.

Profiling process controller component provides the basic mechanism for handling control and
synchronization issues among all the tasks executing concurrently during the profiling process. More
specifically, in order to obtain the desired measurements, it is essential that the executing virtual
machine, the Pidstat process, the Tshark process and the result collector run at the same time in the
best possible way. So, instead of having the user manually trying to control all the involved parties, the
process controller automatically supervises the whole experiment execution.

An important issue is that there are two different usage modes of profiling tool (the application profiling
and the benchmark profiling) and there is a significant difference in the level of automation between
them. The reason is that in case of application profiling, the information given to the tool is very limited.
For example, prior to the execution, there is no information about the application type, the operating

system of the VM, the workload used for the experiment etc. As a result, it is impossible to monitor the
start/stop tasks of the application execution. Thus, these tasks together with their synchronization with
the tool, are controlled by the user. However, the whole process is a lot easier than performed manually
as the monitoring commands are still managed by the tool and beginning or ending their execution is
achieved simply by pressing a button. On the other hand, in case of benchmark profiling, automation
reaches its highest level and user only has to provide the tool with the essential execution information
(credentials, Process IDs, IPs etc.).

Commands executor component: This component provides all the utilities for executing linux and ssh
commands via Java, handling their input, error and output streams, and stopping their execution all of
them adjusted to the specific needs of the tool. In other words, it is serves as a library to be fully
exploited by the controller in order to perform all the essential actions related to ssh and unix processes.

Results processing and storage component: This component is related to the transformation of the
results in the appropriate format. After running the profiling tool, the results of the background
monitoring tools used, are in formats that are rather convenient for human consumption but not at all
for further data processing or storing.
In more detail, the tool reads output results from Tshark and Pidstat commands. The output of Pidstat is
in the form shown in picture

This output provides the results for every t (time interval) seconds as well as their average values for the
whole execution time (which are the actual values that are kept and stored after filtering the output).
As a result, the output that the profiling tool provides is a single line for every experiment, containing
the average values of the measurements.

For the Tshark command the filtering of the initial results demands a more complex procedure. The
results of Tshark are written in a capture file which is temporarily saved in the /tmp directory. This
capture file is then being processed via the capinfos command in order to get statistical results which
are being re-processed in order to be filtered and become of an easily processable format. Final version
of the results contains two result lines for each experiment. A detailed presentation of the results can be
found in the user manual section.

Technical specifications

Technical specifications

 Deployment of Profiling tool

The Profiling tool is written in Java and was developed in the Eclipse IDE. The Swing and AWT toolkits
were used for the graphical user environment and the JSch (Java Secure channel) was used for the SSH
implementation.

For the monitoring task two background tools were used: Pidstat (from the Sysstat suit) and Tshark (a
command line tool for wireshark). A general description is presented:

Sysstat- Pidstat Sysstat is a group of simple Linux command-line tools for performance analysis and
monitoring. The version is used is 10.0.5 and it is responsible to collect system information, store it for a
period of time, and calculate mean values, letting you query individual system parameters at specific
times for more flexible troubleshooting. The tools work well with cron so that you can take readings of
system performance at predefined intervals for a flexible, customizable approach to data collection.

Pidstat is used for monitoring individual tasks via PID (process identifier). These tasks are currently being
managed by the Linux kernel. Its role is to write the standard output activities for every task selected
with option –p. In order to profile the tasks we are interested in, we use the command below:

sudo pidstat –urdw –p <INSERT_PID_OF_VM_PROCESSSES> <TIME_OF_ITERATIONS>
<DURATION> >> <INSERT_OUUTPUT_FILE_NAME>

Table 1 contains a description of the parameters used.

Table 1: Parameters used in Pidstat

Options Description

-u Report CPU utilization

-r Reports pages faults and memory utilization

-d Report I/O statistics

-w Total number of voluntary context switches

Pidstat runs in root environment, thus user credentials must be available. As with every other
demanded parameter, credentials will be obtained through the user interface.

Table 2 presents a description of the output results.

Table 2 Results from Pidstat

%user
Percentage of CPU utilization that occurred while executing at the user level
(application). Includes time spent running virtual processors.

%system Percentage of CPU utilization that occurred while executing at the system level
(kernel). Includes time spent servicing hardware and software interrupts

%guest Percentage of time spent by the CPU or CPUs to run a virtual processor.

%CPU average CPU for the time defined by the interval parameter

CPU Processor number to which the task is attached

kB_rd/s Number of kilobytes the task has caused to be read from disk per second

kB_wr/s Number of kilobytes the task has caused, or shall cause to be written to disk per
second.

kB_ccwr/s Number of kilobytes whose writing to disk has been cancelled by the task.

minflt/s Total number of minor faults the task has made per second, those which have
not required loading a memory page from disk

majflt/s Total number of major faults the task has made per second, those which have
required loading a memory page from disk

VSZ Virtual
Size

The virtual memory usage of entire task in kilobytes

RSS Resident Set Size: The non-swapped physical memory used by the task in
kilobytes

%MEM The tasks's currently used share of available physical memory

cswch/s Total number of voluntary context switches per second

nvcswch/s Total number of non-voluntary context switches the task made per second

Tshark: is a terminal oriented version of Wireshark designed for capturing and displaying packets when
an interactive user interface isn't necessary or available. It supports the same options as wireshark and
lets you capture packet data from a live network, or read packets from a previously saved capture file. In
order to profile the tasks we are interested in, we use the commands below:

 sudo -S tshark -f “ip and (dst net <INSERT THE IP>)” -i <ETHERNET CARD> -w
/tmp/tsharkDst.cap

 sudo -S tshark -f “ip and (src net <INSERT THE IP>)” -i <ETHERNET CARD> -
w /tmp/tsharkSrc.cap

 By sudo capinfos /tmp/<filename.cap> Tshark captures information with regard to the
number of packets and the average packet size and rate.

Different options of Tshark command in Table 3:

Table 3 Tshark command options

-S separator

-f capture filter

-i capture interface

-w outfile

dst destination

src source

Delivery and usage of Profiling Tool

Package information

The file structure of the delivery package is shown in Figure 3:

Figure 3: File structure of the package

Profiling Tool

Prerequisites:
 The Profiling Tool is designed for linux operating systems (with graphical environment for

supporting the GUI of the tool).
 Java and SSH should be pre-installed.
 The Sysstat Suit and the tshark and wireshark packages should be pre-installed.

The .jar file containing all executable classes, as well as the essential libraries, is an executable jar file
and as a result, no further steps for installing the tool are to be made. However, as far as the
preparation for the execution is concerned, the user must implement the following steps:

 Ensure that the profiling tool, as well as the VM to be monitored running on the same physical
host.

 Ensure that the OS user running the profiling tool is in the sudoers list, and as a result, has the
privileges of running commands as sudoer.

 Ensure that the sudoers flag requiretty is not set for the OS of the physical host. If this flag is set,
sudo commands will not be executed unless a real tty is used for logging in. Normally this flag is
set by default and can be unset by modifying the corresponding line in the /etc/sudoers file.

 Create a directory in the file-system to be used as workspace. Inside this directory create a
subdirectory called tmp which will be used to store temporarily the output of the tshark
command.

If the tool is going to be used for benchmark profiling some additional steps should be made as far as
the preparation of the Virtual Machine is concerned:

 Install SSH and make sure that connection from the IP of the physical host will be allowed.
 Ensure that the OS user account which will be used during the ssh connection, is in the sudoers

list of the OS of the VM.
 Ensure that the sudoers flag is not set for the OS of the VM.

Benchmarks Profiling

Prerequisites: Using the profiling tool for benchmarks profiling requires the existence of a file (located
anywhere in the file-system of the physical host) containing the commands used for executing the
workloads of a benchmark. This file will be referred to as input file. Each command must be stored in a
different row inside this file.

Execution:

1. Open a terminal
2. Navigate to the directory where the executable ProfilingTool.jar is located.

3. Type the command: java -jar ProfilingTool.jar benchmarks

After typing the command (step 3) a graphical interface appears which introduces a form with empty
text fields.

Figure 4: User Interface of Profiling Tool for Benchmarking

Specification of the fields:
 Workspace path: The path to the directory to be used as the workspace of the tool. Note that a

subdirectory called tmp should exist inside workspace.

Pidstat Info Group:
 Process ID: Process ID of the VM to be monitored. It is an identifier assigned to each process by

the Operating System and can be retrieved by filtering the command ps aux (e.g ps aux | grep
<name of the VM>). Be sure that the correct process ID is entered. Otherwise, in case of
misreading the pidstat command will not be executed and in case of confusion between two
different PIDs, the wrong process will be monitored.

 password: Password for executing pidstat with sudo privileges.

TShark Info Group:
 IP to monitor: IP of the VM to be monitored.
 Ethernet card to monitor: The ethernet card on which tshark will capture traffic. Note that the

name of the card provided will refer to the physical host.
 password: Password for executing tshark with sudo privileges.

Benchmark Info Group:
 VM IP: The IP of the Benchmark VM (used for the ssh command)
 VM user: The user for the SSH command

 password: Password for the user used for the SSH command
 Input File: The input file containing the commands for the workload execution.

Note: For files and directories full paths are accepted.

When the OK button is pressed, both the execution of the benchmark workloads as well as the
monitoring commands begin. When the whole process (execution of all the benchmark workloads
contained in the input file) ends, the tool exits automatically and the results are stored in the directory
defined as workspace.

Results:

Pidstat results: Pidstat results are stored in a tab separated values file named pidstat.txt which contains
the average values calculated for the whole execution period. The 15 values displayed are for the
corresponding pidstat output metrics which are (in the same order as provided in the results):
%user, %system, %guest, %CPU, CPU, kB_rd/s, kB_wr/s, kB_ccwr/s, minflt/s, majflt/s, VSZ Virtual Size,
RSS, %MEM, cswch/s, nvcswch/s

TShark results: TShark results are stored in a tab separated values file named TShark.txt which contains
values for: number of packets, data byte rate (bytes/s), average packet size (bytes), average packet rate
(packets/s). Should be noted that TShark.txt contains two rows of results for each workload. The first
one provides the TShark results captured for the monitored IP acting as source and the second one as
destination.

In order to separate results between different workloads, each row of results (both for pidstat and
TShark) is written under a number (workload identifier). The number can have values from 0 to number
of workloads - 1.

Note: The names of the output files are specified by the tool, so it would be recommended for the user
to remove output files from previous executions before the current execution. Otherwise, the tool will
append the new results to the existing ones, which could be confusing if the user does not keep track of
the order in which the profiling of each benchmark was executed.

Application Profiling
Execution:

1. Open a terminal
2. Navigate to the directory where the executable ProfilingTool.jar is located.
3. Type the command: java -jar ProfilingTool.jar application

After typing the command (step 3) a graphical interface appears which introduces a form with empty
text fields.

Figure 5: User Interface of Profiling Tool for Application

The workspace text field as well as the text fields contained in the Pidstat Info and the Tshark Info are
described in the 3.3.2 section. When pressing the OK button, a graphical interface with two buttons
appears.

Figure 6: Buttons for controlling start/stop process

When the “Start!” button is pressed, both Pidstat and TShark start to monitor the VM where the
application is running. The execution of these commands will not end until the “Stop!” button is
pressed. The results are stored in the directory defined as workspace.

The profiling tool is not responsible for synchronizing the execution of the application and the
monitoring process. The synchronization is achieved by the start and stop button. As a result, the user is
encouraged to be as accurate and careful as possible so as not to interfere with the results.

Results:
The results are stored in the same files as the results of the benchmarks profiling. However, this time,
only one workload is executing, so there is no workload identifier.

Note: It would be recommended for the user to remove output files from previous executions before
the current execution (Or rename them in a convenient way for later use).

 Monitor Execution and Cases of Misuse 1.1.1

This section describes possible reasons for failure of the profiling process, together with some
monitoring advice for solving them.

1. Wrong password: The passwords inserted are sudo and user passwords for the operating
system, so the Profiling Tool is not authorized to make the corresponding validation. As a result,
the passwords inserted can only be validated during the actual execution of the sudo and ssh
commands. Caution to the Caps Lock button pressed, as the tool does not provide this type of
warning.

2. Exit value of the commands: During the profiling process, the exit values of the system
commands executed are written in the standard output. If one of these exit values is not equal
to zero, the corresponding command did not execute properly and the whole process should be
reinitiated. This could be due to non-installed packages (pidstat or tshark and wireshark), ssh
problems (connection or authorization), wrong directory paths, misspelling in the workload
commands, or requiretty flag problems (see Installation Instructions section).

3. Existing output files: If output files from previous execution are still in the workspace directory,
the new results will append to the older. If user keeps track of the execution order, results will
still be parseable.

4. /path/to/workspace/tmp not created: If the tmp subdirectory is not created before the tool’s
execution, the intermediate output files from TShark will not be created and the output file
tshark.txt will be empty (Exit value of the capinfos commands will be not equal to zero).

1.2 User Manual

The user manual of Profiling Tool is available online at:

1.3 Licensing information

This component is offered under Apache V2.0 license.

https://github.com/artist-project/ARTIST/tree/master/source/Tooling/migration/target-
environment-specification/ProfilingTool

1.4 Download

The ARTIST Profiling Tool first release is available in the GitHub in:

https://github.com/artist-project/ARTIST-Tooling/tree/master/migration/target-environment-
specification. Download Profiling tool file which includes the executable jar and instructions.

_

