
Improve the Power of Your Tests
ith Ri k B d T t D iwith Risk-Based Test Design

Cem Kaner J D Ph DCem Kaner, J.D., Ph.D.
Professor of Software Engineering
Florida Institute of TechnologyFlorida Institute of Technology

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 1

Conference Abstract
Risk-based test management evaluates each area of a product and allocates higher
testing budgets for areas of greater risk. Once you have the budget, how should you
spend it?
Risk based test design on the other hand is based on the idea that every test Risk-based test design, on the other hand, is based on the idea that every test
presents the program with an opportunity to fail. The first core task of risk-based test
design is to imagine ways the program can fail. The second task is to design tests that are
effective triggers for those failures. The most powerful tests are the ones that maximize
 ’ i f il a program’s opportunity to fail.

In this keynote, Cem will survey techniques for stretching your failure-related
imagination, such as using guideword heuristics (as is commonly done in Failure Mode
and Effects Analysis, for example) to quickly gain and apply knowledge about:and Effects Analysis, for example) to quickly gain and apply knowledge about:
• The type of application.
• The environment and programming language.
• The project’s management development and support history• The project s management, development, and support history.

Cem will also examine ways of turning ideas about potential failure into tests, ranging
from quicktests (straightforward applications of a theory of error, such as Whittaker’s
standard attacks) through tests that are more tightly customized to the specific concern.

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner

) g g y p
Join Cem and learn how to plan to “make it fail.

2

Preliminaries on Test design: What is testing?
Software testing is an empirical, technical investigation conducted to
provide stakeholders with information about the quality of the product
or service under test.

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 3

Preliminaries on test design: Test and test case
Think of a test as a question that you ask the program.
• You run the test (the experiment) in order to answer the question.

A test case is a test
• Usually, when we just say “a test”, we mean something we do, y j y g
• Usually, when we say “test case,” we mean something that we have

described / documented.

A test idea is the thought that guides our creation of a test. For
example, “what’s the boundary of this variable? Can we test it?” is a test
idea.

For our purposes today the distinction between test and test case is

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner

For our purposes today, the distinction between test and test case is
irrelevant, and I will switch freely between the two terms.

4

Preliminaries on test design: Testing strategy
Given an information objective

» My client wants me to find the most bugs

M li t t t k if th t th ifi ti» My client wants to know if the program meets the specification
The testing strategy specifies an integrated view of such things as:
• The techniques we’ll rely on to help us generate tests that are best The techniques we ll rely on to help us generate tests that are best

suited to giving us the type of information we need
• The logistical support (resources needed and available, at different

times in the project)times in the project)
• The human support (staff and their skills, other sources of

information, people who will help you get the resources / staff you
d need, etc.

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 5

Preliminaries on test design: Information objectives
Find important bugs, to get them fixed

Assess the quality of the product

Help managers make release decisionsp g

Block premature product releases

Help predict and control costs of product support

Ch k i bili i h h dCheck interoperability with other products

Find safe scenarios for use of the product

Assess conformance to specifications

Certify the product meets a particular standard

Ensure the testing process meets accountability standards

Minimize the risk of safety related lawsuitsMinimize the risk of safety-related lawsuits

Help clients improve product quality & testability

Help clients improve their processes

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 6

Evaluate the product for a third party

Preliminaries on test design: : Test techniques
A h i i i ll i d l h id A test technique is essentially a recipe, or a model, that guides us
in creating specific tests. Examples of common test techniques:

• Function testing
• Specification-based testing

D

• Data flow testing
• Build verification testing

S d l b d • Domain testing
• Risk-based testing
• Scenari testin

• State-model based testing
• High volume automated

testing• Scenario testing
• Regression testing
• Stress testing

testing
• Printer compatibility testing
• Testing to maximize • Stress testing

• User testing
• All-pairs combination testing

g
statement and branch
coverage

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner

All pairs combination testing

7

Test design: Examples of test techniques
• Scenario testing

– Tests are complex stories that capture how the program will be
used in real-life situations.

• Specification-based testing
– Check every claim made in the reference document (such as, a

 ifi i) T h h h d contract specification). Test to the extent that you have proved
the claim true or false.

• Risk-based testing
– A program is a collection of opportunities for things to go wrong.

For each way that you can imagine the program failing, design
tests to determine whether the program actually will fail in that tests to determine whether the program actually will fail in that
way.

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 8

Test design: Techniques differ in how to define a good test
Power. When a problem exists, the test
will reveal it
Valid. When the test reveals a problem,
it is a genuine problem

Performable. Can do the test as designed
Refutability: Designed to challenge basic
or critical assumptions (e.g. your theory of
the user’s goals is all wrong)it is a genuine problem

Value. Reveals things your clients want to
know about the product or project
Credible. Client will believe that people

the user s goals is all wrong)
Coverage. Part of a collection of tests
that together address a class of issues
Easy to evaluate.

will do the things done in this test
Representative of events most likely to
be encountered by the user
Non red ndant Thi t t t

Supports troubleshooting. Provides
useful information for the debugging
programmer
Appropriatel comple A Non-redundant. This test represents a

larger group that address the same risk
Motivating. Your client will want to fix
the problem exposed by this test

Appropriately complex. As a program
gets more stable, use more complex tests
Accountable. You can explain, justify, and
prove you ran it

Maintainable. Easy to revise in the face
of product changes
Repeatable. Easy and inexpensive to

 th t t

Cost. Includes time and effort, as well as
direct costs
Opportunity Cost. Developing and

f i thi t t t f

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner

reuse the test. performing this test prevents you from
doing other work

9

Test design: Techniques convey vision of a well-designed test
• Scenario testing:
• complex stories that capture how the program will be used in real-

life situations
– Good scenarios focus on validity, complexity, credibility,

motivational effect
Th i d i i h l b – The scenario designer might care less about power,
maintainability, coverage, reusability

• Risk-based testing:
• Imagine how the program could fail, and try to get it to fail that way

• Good risk-based tests are powerful, valid, non-redundant, and aim
at high stakes issues (refutability)at high-stakes issues (refutability)

• The risk-based tester might not care as much about credibility,
representativeness, performability—we can work on these after
(f) b

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner

(if) a test exposes a bug

10

Preliminaries on test design: Tying this together
Design: “to create, fashion, execute, or construct according to plan; to
conceive and plan out in the mind” (Websters)

– Designing is not scripting. The representation of a plan is not the g g p g p p
plan.

U ll (l f bl) i hi h f t ti Usually (or at least, preferably) within the context of a testing
strategy,
• the test designer:

– uses the test ideas / guidance contained in a test technique
– to craft a specific test
– that helps her collect a specific type of information (answer a

reasonably specific question)

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 11

Risk-Based Design
• We often go from technique to test

– Find all variables, domain test each
Find all spec paragraphs make a relevant test for each– Find all spec paragraphs, make a relevant test for each

– Find all lines of code, make a set of tests that collectively includes
each

• It is much harder to go from a failure mode to a test
– The program will crash?

Th ill h ild i t ? How do we– The program will have a wild pointer?
– The program will have a memory leak?
– The program will be hard to use?

How do we
map from
a failurep g

– The program will corrupt its database?
a failure
mode to a
test?

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 12

test?

Design: Mapping from the failure mode to the test
• Imagine that someone called your company’s help desk and

complained that the program had failed.
– They were working in this part of the programy g p p g
– And the program displayed some junk on the screen and then

crashed
Th d ’ k h h b b h ’ i – They don’t know how to recreate the bug but that’s no surprise
because they have no testing experience.

How would you troubleshoot this report?

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 13

Design: Mapping from the test idea to the test
• Let’s create a slightly more concrete version of this example

– Joe bought a smart refrigerator that tracks items stored in the
fridge and prints out grocery shopping lists. g p g y pp g

– One day, Joe asked for a shopping list for his usual meals in their
usual quantities.
Th f id h d i h i lli ibl – The fridge crashed with an unintelligible error message.

• So, how to troubleshoot this problem?
• First question: What about this error message?First question: What about this error message?

– System-level (probably part of the crash, the programmers won’t
have useful info for us)

– Application-level (what messages are possible at this point?)
– This leads us to our first series of tests: Try to recreate

every error message that can come from requesting a shopping

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner

y g q g pp g
list. Does this testing suggest anything?

14

Design: Evolving the test case from the story
• Second question: What makes a system crash?

– Data overflow (too much stuff in the fridge?)
Wild pointer (“grunge” accumulates because we’ve used the fridge – Wild pointer (grunge accumulates because we ve used the fridge
too long without rebooting?)

– Stack overflow (what could cause a stack overflow? Ask the
)programmers.)

– Unusual timing condition? (Can we create a script that lets us
adjust timing of our input to the fridge?)

– Unusual collection of things in the fridge?
• If you had a real customer who reported this problem, you MIGHT

be able to get some of this information from them But in risk based be able to get some of this information from them. But in risk-based
testing, you don’t have that customer. You just have to work
backwards from a hypothetical failure to the conditions that might
have produced it Each set of conditions defines a new test

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner

have produced it. Each set of conditions defines a new test.

15

How to map from a test idea to a test?
• When it is not clear how to work backwards to the relevant test,

four tactics sometimes help:
– Ask someone for helpp
– Ask Google for help. (Look for discussions of the type of failure;

look for discussions of different faults and see what types of
failures they yield)failures they yield)

– Review your toolkit of techniques, searching for a test type with
relevant characteristics. (For example, if you think it might be a
ti i bl h t t h i h l f ti i i ?)timing problem, what techniques help you focus on timing issues?)

– Turn the failure into a story and gradually evolve the story into
something you can test from. (This is what we did with Joe and
the Fridge. A story is easier for some people to work with than a
technologically equivalent, but inhuman, description of a failure.

• There are no guarantees in this, but you get better at it as you

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner

g , y g y
practice, and as you build a broader inventory of techniques.

16

SO HOW DO WE DESIGN RISK BASED TESTS?SO, HOW DO WE DESIGN RISK-BASED TESTS?

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 17

Risk-based testing

QuickTests:
SimpleSimple,

Risk-Derived,
Test Techniques

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 18

QuickTests?

A quicktest is a cheap test that has some value but requires little
preparation, knowledge, or time to perform.

• Participants at the 7th Los Altos Workshop on Software Testing • Participants at the 7th Los Altos Workshop on Software Testing
(Exploratory Testing, 1999) pulled together a collection of these.

• James Whittaker published another collection in How to Break
S fSoftware.

• Elisabeth Hendrickson teaches courses on bug hunting techniques and
tools, many of which are quicktests or tools that support them.

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 19

A Classic QuickTest: The Shoe Test
Find an input field, move the cursor to it, put your shoe on the
keyboard, and go to lunch.
Basically, you’re using the auto-repeat on the keyboard for a cheap y, y g p y p
stress test.
• Tests like this often overflow input buffers.

I B h’ f i i h fi d di l b d h In Bach’s favorite variant, he finds a dialog box so constructed that
pressing a key leads to, say, another dialog box (perhaps an error
message) that also has a button connected to the same key that returns
t th fi t di l bto the first dialog box.
• This will expose some types of long-sequence errors (stack

overflows, memory leaks, etc.)

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 20

Another Classic Example of a QuickTest
Traditional boundary testing
• All you need is the variable, and its possible values.
• You need very little information about the meaning of the variable • You need very little information about the meaning of the variable

(why people assign values to it, what it interacts with).
• You test at boundaries because miscoding of boundaries is a common

error.
Note the foundation-level assumption of this test:

Assumption
This is a programming error so common that it’s p g g
worth building a test technique optimized to find
errors of that type.

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 21

Why do we care about quicktests?
P i t A Y i i h ld f ilPoint A: You imagine a way the program could fail.
Point B: You have to figure out how to design a test that could
generate that failure.
Getting from Point A to Point B is a creative process. It depends on
your ability to imagine a testing approach that could yield the test that
yields the failure.y
The more test techniques you know, and the better you understand
them, the easier this creative task becomes.

Thi i i ’ i i i• This is not some mysterious tester’s intuition
• “Luck favors the mind that is prepared.” (Louis Pasteur)

Quicktests give us straightforward, useful examples of tests that are
focused on easy application of an underlying theory of error. They are
just what we need to learn about to start stretching our imagination

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner

just what we need to learn about, to start stretching our imagination.

22

“Attacks” to expose common coding errors
Jorgensen & Whittaker pulled together a collection of common coding
errors, many of them involving insufficiently or incorrectly constrained
variables.
They created (or identified common) attacks to test for these.
An attack is a stereotyped class of tests, optimized around a
specific type of errorspecific type of error.
Think back to boundary testing:
• Boundary testing for numeric input fields is an example of an attack.

The error is mis-specification (or mis-typing) of the upper or lower
bound of the numeric input field.

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 23

“Attacks” to expose common coding errors
In his book, How to Break Software, Professor
Whittaker expanded the list and, for each
attack, discussed
• When to apply it
• What software errors make the attack

successfulsuccessful
• How to determine if the attack exposed a

failure
• How to conduct the attack, and
• An example of the attack.

We'll list How to Break Software's attacks We ll list How to Break Software s attacks
here, but recommend the book's full discussion.

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 24

“Attacks” to expose common coding errors
User interface attacks: Exploring the input domain
• Attack 1: Apply inputs that force all the error messages to occur
• Attack 2: Apply inputs that force the software to establish default • Attack 2: Apply inputs that force the software to establish default

values
• Attack 3: Explore allowable character sets and data types
• Attack 4: Overflow input buffers
• Attack 5: Find inputs that may interact and test combinations of their

valuesvalues
• Attack 6: Repeat the same input or series of inputs numerous times

» From Whittaker, How to Break Software

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 25

“Attacks” to expose common coding errors
User interface attacks: Exploring outputs
• Attack 7: Force different outputs to be generated for each input
• Attack 8: Force invalid outputs to be generated• Attack 8: Force invalid outputs to be generated
• Attack 9: Force properties of an output to change
• Attack 10: Force the screen to refresh.

» From Whittaker, How to Break Software

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 26

“Attacks” to expose common coding errors
Testing from the user interface: Data and computation
Exploring stored data
• Attack 11: Apply inputs using a variety of initial conditions• Attack 11: Apply inputs using a variety of initial conditions
• Attack 12: Force a data structure to store too many or too few

values
• Attack 13: Investigate alternate ways to modify internal data

constraints

» From Whittaker, How to Break Software

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 27

“Attacks” to expose common coding errors
Testing from the user interface: Data and computation
Exploring computation and feature interaction
• Attack 14: Experiment with invalid operand and operator • Attack 14: Experiment with invalid operand and operator

combinations
• Attack 15: Force a function to call itself recursively
• Attack 16: Force computation results to be too large or too small
• Attack 17: Find features that share data or interact poorly

» From Whittaker, How to Break Software

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 28

“Attacks” to expose common coding errors
System interface attacks
Testing from the file system interface: Media-based attacks
• Attack 1: Fill the file system to its capacity• Attack 1: Fill the file system to its capacity
• Attack 2: Force the media to be busy or unavailable
• Attack 3: Damage the mediag

Testing from the file system interface: File-based attacks
• Attack 4: Assign an invalid file name
• Attack 5: Vary file access permissions
• Attack 6: Vary or corrupt file contents

» From Whittaker How to Break Software» From Whittaker, How to Break Software

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 29

Additional QuickTests from LAWST
Several of the tests we listed at LAWST (7th Los Altos Workshop on
Software Testing, 1999) are equivalent to the attacks later published by
Whittaker.
He develops the attacks well, and we recommend his descriptions.
In addition, LAWST generated several other quicktests, including some
that aren’t directly tied to a simple fault modelthat aren t directly tied to a simple fault model.

Many of the ideas in these notes were reviewed and extendedMany of the ideas in these notes were reviewed and extended
by the other LAWST 7 participants: Brian Lawrence, III, Jack
Falk, Drew Pritsker, Jim Bampos, Bob Johnson, Doug Hoffman,
Chris Agruss, Dave Gelperin, Melora Svoboda, Jeff Payne, g , p , , y ,
James Tierney, Hung Nguyen, Harry Robinson, Elisabeth
Hendrickson, Noel Nyman, Bret Pettichord, & Rodney Wilson.
We appreciate their contributions.

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 30

Additional QuickTests: Interference testing
We look at asynchronous events here. One task is underway, and we
do something to interfere with it.
In many cases, the critical event is extremely time sensitive. For y , y
example:
• An event reaches a process just as, just before, or just after it is

timing out or just as (before / during / after) another process that timing out or just as (before / during / after) another process that
communicates with it will time out listening to this process for a
response. (“Just as?”—if special code is executed in order to
accomplish the handling of the timeout “just as” means during accomplish the handling of the timeout, just as means during
execution of that code)

• An event reaches a process just as, just before, or just after it is
servicing some other eventservicing some other event.

• An event reaches a process just as, just before, or just after a
resource needed to accomplish servicing the event becomes available

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner

or unavailable.

31

Additional QuickTests: Interference testing
Generate interrupts
• From a device related to the task

e g pull out a paper tray perhaps one that isn’t in use while the – e.g. pull out a paper tray, perhaps one that isn t in use while the
printer is printing

• From a device unrelated to the task
– e.g. move the mouse and click while the printer is printing

• From a software event
 t th ' (thi ') ti i d t – e.g. set another program s (or this program s) time-reminder to

go off during the task under test

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 32

Additional QuickTests Interference testing
Change something this task depends on
• swap out a floppy
• change the contents of a file that this program is reading• change the contents of a file that this program is reading
• change the printer that the program will print to (without signaling a

new driver)
• change the video resolution

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 33

Additional QuickTests: Interference testing
Cancel
• Cancel the task

at different points during its completion– at different points during its completion
• Cancel some other task while this task is running

– a task that is in communication with this task (the core task being (g
studied)

– a task that will eventually have to complete as a prerequisite to
completion of this taskcompletion of this task

– a task that is totally unrelated to this task

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 34

Additional QuickTests: Interference testing
Pause: Find some way to create a temporary interruption in the task.
Pause the task
• for a short time• for a short time
• for a long time (long enough for a timeout, if one will arise)

For example, p
• Put the printer on local
• Put a database under use by a competing program, lock a record so

th t it ’t b d tthat it can’t be accessed — yet.

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 35

Additional QuickTests: Interference testing
Swap (out of memory)
• Swap the process out of memory while it's running

(e g change focus to another application; keep loading or adding – (e.g. change focus to another application; keep loading or adding
applications until the application under test is paged to disk.)

– Leave it swapped out for 10 minutes or whatever the timeout
i d i D i b k? Wh i i ? Wh i h period is. Does it come back? What is its state? What is the state

of processes that are supposed to interact with it?
– Leave it swapped out much longer than the timeout period. Can

you get it to the point where it is supposed to time out, then send
a message that is supposed to be received by the swapped-out
process, then time out on the time allocated for the message?
What are the resulting state of this process and the one(s) that
tried to communicate with it?

• Swap a related process out of memory while the process under test

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner

p p y p
is running.

36

Additional QuickTests: Interference testing
Compete
• Compete for a device (such as a printer)

put device in use then try to use it from software under test– put device in use, then try to use it from software under test
– start using device, then use it from other software
– If there is a priority system for device access, use software that p y y

has higher, same and lower priority access to the device before
and during attempted use by software under test

• Compete for processor attentionCompete for processor attention
– some other process generates an interrupt (e.g. ring into the

modem, or a time-alarm in your contact manager)
– try to do something during heavy disk access by another process

• Send this process another job while one is underway

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 37

Additional QuickTests: Follow up recent changes

Code changes cause side effects
• Test the modified feature / change itself• Test the modified feature / change itself.
• Test features that interact with this one.
• Test data that are related to this feature or data set.
• Test scenarios that use this feature in complex ways.

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 38

Even More QuickTests
Quick tours of the program
• Variability Tour: Tour a product looking for anything that is

variable and vary it. Vary it as far as possible, in every dimension y y p , y
possible.

Exploring variations is part of the basic structure of Bach’s
testing when he first encounters a producttesting when he first encounters a product.

• Complexity Tour: Tour a product looking for the most complex
features and data. Create complex files.

• Sample Data Tour: Employ any sample data you can, and all that
you can. The more complex the better.

• (from Bach & Bolton’s Rapid Testing Course)

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 39

Even More QuickTests (from Bach / Bolton)
• Continuous Use: While testing, do not reset the system. Leave

windows and files open. Let disk and memory usage mount. You're
hoping the system ties itself in knots over time.

• Adjustments: Set some parameter to a certain value, then, at any
later time, reset that value to something else without resetting or
recreating the containing document or data structure.g g

• Dog Piling: Get more processes going at once; more states existing
concurrently. Nested dialog boxes and non-modal dialogs provide
opportunities to do thisopportunities to do this.

• Undermining: Start using a function when the system is in an
appropriate state, then change the state part way through (for
instance delete a file while it is being edited eject a disk pull net instance, delete a file while it is being edited, eject a disk, pull net
cables or power cords) to an inappropriate state. This is similar to
interruption, except you are expecting the function to interrupt itself
by detecting that it no longer can proceed safely

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner

by detecting that it no longer can proceed safely.

40

Even More QuickTests (from Bach / Bolton)
• Error Message Hangover: Make error messages happen. Test

hard after they are dismissed. Developers often handle errors poorly.
Bach once broke into a public kiosk by right clicking rapidly after an
error occurred. It turned out the security code left a 1/5 second
window of opportunity for me to access a special menu and take
over the system.

• Click Frenzy: Testing is more than "banging on the keyboard", but
that phrase wasn't coined for nothing. Try banging on the keyboard.
Try clicking everywhere. Bach broke into a touchscreen system once y g y y
by poking every square centimeter of every screen until he found a
secret button.

• Multiple Instances: Run a lot of instances of the application at the Multiple Instances: Run a lot of instances of the application at the
same time. Open the same files.

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 41

Even More QuickTests (from Bach / Bolton)
• Feature Interactions: Discover where individual functions interact

or share data. Look for any interdependencies. Tour them. Stress
them. Bach once crashed an app by loading up all the fields in a form
to their maximums and then traversing to the report generator.

• Cheap Tools! Learn how to use InCtrl5, Filemon, Regmon,
AppVerifier, Perfmon, Task Manager (all of which are free). Have pp , , g ()
these tools on a thumb drive and carry it around. Also, carry a digital
camera. Bach carries a tiny 3 megapixel camera and a tiny video
camera in his coat pockets. He uses them to record screen shots and p
product behaviors.
– Elisabeth Hendrickson suggests several additional tools at

http://www.bughunting.com/bugtools.htmlhttp://www.bughunting.com/bugtools.html
• Resource Starvation: Progressively lower memory and other

resources until the product gracefully degrades or ungracefully
collapses

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner

collapses.

42

Even More QuickTests (from Bach / Bolton)
• Play "Writer Sez": Look in the online help or user manual and find

instructions about how to perform some interesting activity. Do
those actions. Then improvise from them. Often writers are hurried
as they write down steps, or the software changes after they write
the manual.

• Crazy Configs: Modify O/S configuration in non-standard or non-y g y g
default ways either before or after installing the product. Turn on
“high contrast” accessibility mode, or change the localization defaults.
Change the letter of the system hard drive.g y

• Grokking: Find some aspect of the product that produces huge
amounts of data or does some operation very quickly. For instance,
look a long log file or browse database records very quickly. Let the look a long log file or browse database records very quickly. Let the
data go by too quickly to see in detail, but notice trends in length or
look or shape of the patterns as you see them.

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 43

Parlour tricks are not risk-free
These tricks can generate lots of flash in a hurry
• The DOS disk I/O example
• The Amiga clicky click click click example• The Amiga clicky-click-click-click example

As political weapons, they are double-edged
• If people realize what you’re doing, you lose credibilityp p y g y y
• Anyone you humiliate becomes a potential enemy

Some people (incorrectly) characterize exploratory testing as if it were
 ll ti f i kt ta collection of quicktests.

As test design tools, they are like good candy
• Yummyy
• Everyone likes them
• Not very nutritious. (You never get to the deeper issues of the

)

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner

program.)

44

SO HOW DO WE DESIGN RISK BASED TESTS?SO, HOW DO WE DESIGN RISK-BASED TESTS?

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 45

Risk: The possibility of suffering harm or loss
In software testing, we think of risk on three dimensions:
• A way the program could fail (technically, this is the hazard, or the

failure mode, but I’ll often refer to this as the risk because that is ,
so common among testers)

• How likely it is that the program could fail in that way
Wh h f h f il ld b• What the consequences of that failure could be

For testing
purposes, the most
important is:

For project
management

• A way the program
could fail

purposes,
• How likely
• What consequences

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 46

could fail • What consequences

For testing: A way the program could fail

The essence of risk based testing is this:The essence of risk-based testing is this:

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 47

Just one little problem

“Imagine how the product
could fail”?

How do you do that?

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 48

Just one problem
“Imagine how the product could fail” ?

How do you do that?

We’ll consider three classes of heuristics:
• Apply common techniques (quicktests or attacks) to take advantage

of common errors (we did that already)of common errors (we did that already)
• Recognize common project warning signs (and test things associated

with the risky aspects of the project).
• Apply failure mode and effects analysis to (many or all) elements of

the product and to the product’s key quality criteria.

We call these heuristics because they are fallible
but useful guides. You have to exercise your own
j d m nt b t hi h t h n

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 49

judgment about which to use when.

Risk-based testing

Project-Level Risk Factors

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 50

Classic, project-level risk analysis

Project-level risk analyses usually consider risk factors that can

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 51

j y y
make the project as a whole fail, and how to manage those risks.

Project-level risk analysis
Project risk management involves
• Identification of the different risks to the project (issues that might

cause the project to fail or to fall behind schedule or to cost too p j
much or to dissatisfy customers or other stakeholders)

• Analysis of the potential costs associated with each risk
D l f l d i d h lik lih d f h i k • Development of plans and actions to reduce the likelihood of the risk
or the magnitude of the harm

• Continuous assessment or monitoring of the risks (or the actions
taken to manage them)

Useful material available free at http://seir.sei.cmu.edu
http://www coyotevalley com (Brian Lawrence)http://www.coyotevalley.com (Brian Lawrence)

The problem for our purposes is that this level of analysis
doesn't give us much guidance as to how to test

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 52

doesn t give us much guidance as to how to test.

Project-level risk analysis
• Might not give us much guidance about how to test
• But it might give us a lot of hints about where to test

• If you can imagine a potential failure
• In many cases, that failure might be possible at many different places y g p y p

in the program
• Which should you try first?

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 53

Project risk heuristics: Where to look for errors
New things: less likely to have revealed its bugs yet.
New technology: same as new code, plus the risks of unanticipated
problems.p
Learning curve: people make more mistakes while learning.
Changed things: same as new things, but changes can also break old

dcode.
Poor control: without SCM, files can be overridden or lost.
Late change: rushed decisions, rushed or demoralized staff lead to Late change: rushed decisions, rushed or demoralized staff lead to
mistakes.
Rushed work: some tasks or projects are chronically underfunded and
all aspects of work quality sufferall aspects of work quality suffer.
Fatigue: tired people make mistakes.

Distributed team: a far flung team communicates less

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner

Distributed team: a far flung team communicates less

54

Project risk heuristics: Where to look for errors
Other staff issues: alcoholic, mother died, two programmers who
won’t talk to each other (neither will their code)…

S i f t f t t f ll l d hSurprise features: features not carefully planned may have
unanticipated effects on other features.

Third-party code: external components may be much less well p y p y
understood than local code, and much harder to get fixed.

Unbudgeted: unbudgeted tasks may be done shoddily.

Ambiguous: ambiguous descriptions (in specs or other docs) lead
to incorrect or conflicting implementations.

Conflicting requirements: ambiguity often hides conflict result is Conflicting requirements: ambiguity often hides conflict, result is
loss of value for some person.

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 55

Project risk heuristics: Where to look for errors
M t i il h thi i t ti i t t i t Mysterious silence: when something interesting or important is not
described or documented, it may have not been thought through, or the
designer may be hiding its problems.

Unknown requirements: requirements surface throughout
development. Failure to meet a legitimate requirement is a failure of
quality for that stakeholder.

Evolving requirements: people realize what they want as the product
develops. Adhering to a start-of-the-project requirements list may meet
the contract but yield a failed product. y p

Buggy: anything known to have lots of problems has more.

Recent failure: anything with a recent history of problems.

Upstream dependency: may cause problems in the rest of the system

Downstream dependency: sensitive to problems in the rest of the

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 56

system.

Project risk heuristics: Where to look for errors
Distributed: anything spread out in time or space, that must work
as a unit.

Open ended: any function or data that appears unlimitedOpen-ended: any function or data that appears unlimited.

Complex: what’s hard to understand is hard to get right.

Language-typical errors: such as wild pointers in C Language typical errors: such as wild pointers in C.

Little system testing: untested software will fail.

Little unit testing: programmers normally find and fix most of Little unit testing: programmers normally find and fix most of
their own bugs.

Previous reliance on narrow testing strategies: can yield a
 b kl f d b h hmany-version backlog of errors not exposed by those techniques.

Weak test tools: if tools don’t exist to help identify / isolate a class
of error (e.g. wild pointers), the error is more likely to survive to

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 57

of error (e.g. wild pointers), the error is more likely to survive to
testing and beyond.

Project risk heuristics: Where to look for errorsj
Unfixable: bugs that survived because, when they were first
reported, no one knew how to fix them in the time available.

Untestable: anything that requires slow, difficult or inefficient
testing is probably undertested.

Publicity: anywhere failure will lead to bad publicityPublicity: anywhere failure will lead to bad publicity.

Liability: anywhere that failure would justify a lawsuit.

Critical: anything whose failure could cause substantial damageCritical: anything whose failure could cause substantial damage.

Precise: anything that must meet its requirements exactly.

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 58

Project risk heuristics: Where to look for errorsj
Easy to misuse: anything that requires special care or training to use
properly.

Popular: anything that will be used a lot, or by a lot of people.

Strategic: anything that has special importance to your business.

VIP: anything used by particularly important people.

Visible: anywhere failure will be obvious and upset users.

Invisible: anywhere failure will be hidden and remain undetected
until a serious failure results.

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 59

Project risk heuristics: Where to look for errors
If you have access to the source code, and have programming skills, take
a look at work on prediction of failure-prone files and modules by:

• Dolores and Wayne Zage (Ball State University, SERC)

• Emmet James Whitehead (UC Santa Cruz), for example

S. Kim, E. J. Whitehead, Jr., and Y. Zhang, "Classifying Software
Changes: Clean or Buggy? " IEEE Transactions on Software Changes: Clean or Buggy?, IEEE Transactions on Software
Engineering, to appear, 2008, manuscript available at
http://www.cs.ucsc.edu/~ejw/papers/cc.pdf.

This is very recent, and I think very promising, empirical research.

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 60

Risk-based testing

Failure Modes

Failure Mode & Effects Analysis (FMEA)ff y ()

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 61

Failure mode: A way that the program could fail
Example: Portion of analysis for an installer product
• Wrong files installed

temporary files not cleaned up– temporary files not cleaned up
– old files not cleaned up after upgrade
– unneeded file installed
– needed file not installed
– correct file installed in the wrong place

• Files clobbered
– older file replaces newer file

user data file clobbered during upgrade– user data file clobbered during upgrade
• Other apps clobbered

– file shared with another product is modified

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner

p
– file belonging to another product is deleted

62

Failure mode & effects analysis
Widely used for safety analysis of goods.
Consider the product in terms of its components. For each component
• Imagine the ways it could fail For each potential failure (each failure • Imagine the ways it could fail. For each potential failure (each failure

mode), ask questions:
– What would that failure look like?
– How would you detect that failure?
– How expensive would it be to search for that failure?

Wh ld b i t d b th t f il ?– Who would be impacted by that failure?
– How much variation would there be in the effect of the failure?
– How serious (on average) would that failure be?(g)
– How expensive would it be to fix the underlying cause?

• On the basis of the analysis, decide whether it is cost effective to
h f hi i l f il

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner

search for this potential failure

63

Failure mode & effects analysis (FMEA)
Several excellent web pages introduce FMEA and SFMEA (software
FMEA)
• http://www.fmeainfocentre.com/p
• http://www.fmeainfocentre.com/presentations/SFMEA-IIE.pdf
• http://www.fmeainfocentre.com/papers/mackel1.pdf
• http://www.quality-one.com/services/fmea.php
• http://www.visitask.com/fmea.asp
• htt //h lth i i i /lib / t t/ 040317• http://healthcare.isixsigma.com/library/content/c040317a.asp
• http://www.qualitytrainingportal.com/resources/fmea/
• http://citeseer.ist.psu.edu/69117.htmlp p

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 64

FMEA
As some of the papers / presentations on the preceding slide note, one
of the key weaknesses of FMEA in practice is:
• It is hard to identify all the ways the product can faily y p
• So we get a long, but not necessarily thorough list of failure modes
• This can be misleading

• In traditional industries (e.g. automotive), this type of analysis is
guided by long experience with failures in the field and failures guided by long experience with failures in the field and failures
discovered in manufacturing

• In the absence of strong records for a particular product, how do we
generate a strong failure mode list for software?generate a strong failure mode list for software?

• The next several subsections of this presentation, leading up to
Bach’s heuristic test strategy model, provide a series of ideas

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 65

Bug catalogs
Testing Computer Software included an appendix that listed almost 500
common bugs (actually, failure modes).
The list evolved across several products and companies. It was intended p p
to be a generic list, more of a starting point for failure mode planning
than a complete list.
To be included in the list:To be included in the list:
• A particular failure mode had to be possible in at least two

significantly different programs
• A particular failure mode had to be possible in applications running

under different operating systems (we occasionally relaxed this rule)
You can find the TCS 2nd edition list (appendix) on Hung Nguyen’s site: You can find the TCS 2 edition list (appendix) on Hung Nguyen s site:
http://www.logigear.com/resources/articles_lg/Common_Software_Erro
rs.pdf?fileid=2458

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 66

Bug catalogs
Testing Computer Software included an appendix that listed almost 500
common bugs (actually, failure modes).
Some people found this appendix very useful for training staff, generating p p pp y g , g g
test ideas and supporting auditing of test plans,
However, it was

i d idi i ll • organized idiosyncratically,
• its coverage was uneven, and
• some people inappropriately treated it as a comprehensive list some people inappropriately treated it as a comprehensive list

(because they didn’t understand it, or were unable to do the
independent critical analysis needed to tailor this to their application)

Eventually I stopped recommending this list (even though I developed Eventually, I stopped recommending this list (even though I developed
the first edition of it and had found it very useful for several years) in
favor of an early version of James Bach’s Heuristic test strategy model
(latest version at http://www satisfice com/tools/satisfice tsm 4p pdf)

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner

(latest version at http://www.satisfice.com/tools/satisfice-tsm-4p.pdf)

67

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 68

http://www.satisfice.com/tools/satisfice-tsm-4p.pdf

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 69

Structure / Functions / Data / Platform / Operations / Time

Customers / Information / Developer relations / Test team / Equipment &

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 70

Customers / Information / Developer relations / Test team / Equipment &
tools / Schedule / Test items / Deliverables

Operational criteria: Capability / Reliability / Usability / Security /
Scalability / Performance / Installability / CompatibilityScalability / Performance / Installability / Compatibility
Development criteria: Supportability / Testability / Maintainability /
Portability / Localizability

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 71

Notes on the Heuristic Test Strategy Model
• The individual elements (“Customers”, “Capability”, etc.) are Guide

Words.
• A lot of work has been done applying different types of guide words pp y g yp g

in safety critical applications (HAZOPS depends fundamentally on
guidewords.

• See United States Coast Guard Risk-based Decision-making Guidelines • See United States Coast Guard. Risk-based Decision-making Guidelines.
[accessed 2008 March 3]; Available from: http://www.uscg.mil/hq/g-
m/risk/e-guidelines/hazop.htm for discussion of HAZOPS and other
safety-critical test/analysis techniquessafety critical test/analysis techniques

• The model is extensive but not exhaustive. Giri and Ajay (see next
slide) both had to customize for their applications. We (including
Bach) all expected thisBach) all expected this.

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 72

Building a failure mode catalog
Giri Vijayaraghavan and Ajay Jha followed similar approaches in
developing failure mode catalogs for their M.Sc. theses (available in the
lab publications set at www.testingeducation.org):
• Identify components

– They used the Heuristic Test Strategy Model as a starting point.
I i h ld f il (i hi)– Imagine ways the program could fail (in this component).
° They used magazines, web discussions, some corporations’ bug

databases, interviews with people who had tested their class of
products, and so on, to guide their imagination.

– Imagine failures involving interactions among components
• They did the same thing for quality attributes (see next section)• They did the same thing for quality attributes (see next section).

These catalogs are not orthogonal. They help generate test ideas, but
are not suited for classifying test ideas.

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 73

Building failure mode lists from product elements: Shopping cart example
Think in terms of the components of your product Think in terms of the components of your product
• Structures: Everything that comprises the logical or physical product

– Database server
C h – Cache server

• Functions: Everything the product does
– Calculation

N i ti H– Navigation
– Memory management
– Error handling

D t E thi th d t

How
could

• Data: Everything the product processes
– Human error (retailer)
– Human error (customer)

O ti H th d t ill b d

they
fail?• Operations: How the product will be used

– Upgrade
– Order processing

Pl f E hi hi h h d d d

fail?

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 74

• Platforms: Everything on which the product depends
» Adapted from Giri Vijayaraghavan's Master's thesis.

FMEA & quality attributes
In FMEA, we list a bunch of things (components of the product under
test) we could test, and then figure out how they might fail.
Quality attributes cut across the components:Q y p
• Usability

– Easy to learn
– Reasonable number of steps
– Accessible to someone with a disability

° A dit ° Auditory
° Visual

» Imagine evaluating every product element in terms of accessibility to someone g g y p y
with a visual impairment.

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 75

Using a failure mode list
Test idea generation
• Find a potential bug (failure mode) in the list
• Ask whether the software under test could have this bug• Ask whether the software under test could have this bug
• If it is theoretically possible that the program could have the bug, ask

how you could find the bug if it was there.
• Ask how plausible it is that this bug could be in the program and how

serious the failure would be if it was there.
• If appropriate, design a test or series of tests for bugs of this type.If appropriate, design a test or series of tests for bugs of this type.

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 76

Using a failure mode list
Test plan auditing
• Pick categories to sample from
• From each category find a few potential defects in the list• From each category, find a few potential defects in the list
• For each potential defect, ask whether the software under test could

have this defect
• If it is theoretically possible that the program could have the defect,

ask whether the test plan could find the bug if it was there.
Getting unstuckGetting unstuck
• Look for classes of problem outside of your usual box

Training new staff
• Expose them to what can go wrong, challenge them to design tests

that could trigger those failures

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 77

Risk-based testing: Some papers of interest
• Stale Amland, Risk Based Testing,

http://www.amland.no/WordDocuments/EuroSTAR99Paper.doc
• James Bach, Reframing Requirements AnalysisJ g q y
• James Bach, Risk and Requirements- Based Testing
• James Bach, James Bach on Risk-Based Testing

S l A l d & H S h f Ri k b d i (• Stale Amland & Hans Schaefer, Risk based testing, a response (at
http://www.satisfice.com)

• Stale Amland’s course notes on Risk-Based Agile Testing (December
2002) at
http://www.testingeducation.org/coursenotes/amland_stale/cm_200212_
exploratorytesting

• Carl Popper, Conjectures & Refutations
• James Whittaker, How to Break Software
• Giri Vijayaraghavan’s papers and thesis on bug taxonomies at

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner

Giri Vijayaraghavan s papers and thesis on bug taxonomies, at
http://www.testingeducation.org/articles

78

About Cem Kaner
• Professor of Software Engineering, Florida Tech
• Research Fellow at Satisfice, Inc.

I’ve worked in all areas of product development (programmer, tester, p p (p g , ,
writer, teacher, user interface designer, software salesperson,
organization development consultant, as a manager of user
documentation, software testing, and software development, and as an

 f i h l f f li) attorney focusing on the law of software quality.)
Senior author of three books:
• Lessons Learned in Software Testing (with James Bach & Bret g (J

Pettichord)
• Bad Software (with David Pels)
• Testing Computer Software (with Jack Falk & Hung Quoc Nguyen).Testing Computer Software (with Jack Falk & Hung Quoc Nguyen).

My doctoral research on psychophysics (perceptual measurement)
nurtured my interests in human factors (usable computer systems) and
measurement theory.

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 79

y

