a2 United States Patent

US007134081B2

(10) Patent No.: US 7,134,081 B2

Fuller, I1I et al. 45) Date of Patent: Nov. 7, 2006
(54) METHOD AND APPARATUS FOR 5,954,829 A * 9/1999 McLain et al. 714/712
CONTROLLING AN INSTRUMENTATION 6,449,744 B1* 9/2002 Hansen 714/738
SYSTEM
OTHER PUBLICATIONS
(75) Inventors: David W Fuller, III, Austin, TX (US);
Christopher G. Cifra, Austin, TX National Instruments “The Measurement and Automation Catalog
(US); Thomas V. Connell, Jr., Austin, 2000” pp. 678-707, © 1999.
TX (US) Using the VISA Interactive Control (VISAIC), 4 pgs. 1998.
Using the VISA Interactive Control to Communicate with VXI/
(73) Assignee: National Instruments Corporation, VME Devices, 4 pgs. 2001. N
Austin, TX (US) NI-488.2 User Manual for Windows, Jun. 1999 Edition, pp. 6-1
’ through 6-11.
(*) Notice: Subject to any disclaimer, the term of this GPIB Troubleshooting Resources, Introduction to the Interactive
patent is extended or adjusted under 35 Control (IBIC), 2003, pp. 1-6.
U.S.C. 154(b) by 648 days * cited by examiner
(21) Appl. No.: 10/103,391 Primary Examiner—Cao (Kevin) Nguyen
(74) Attorney, Agent, or Firm—Meyertons Hood Kivlin
(22) Filed: Mar. 21, 2002 Kowert & Goetzel, P.C.; Jeffrey C. Hood
(65) Prior Publication Data 57 ABSTRACT
US 2003/0035008 Al Feb. 20, 2003
An instrument I/O assistant and the algorithms that may be
Related U.S. Application Data used to manage instrument responses and that may provide
. L an instrument-centric approach to message-based instrument
(60) Il’ioxggi)olnal application No. 60/312,257, filed on Aug. 1/0. The instrument I/O assistant may assist the user in
’ ’ parsing instrument responses by offering an environment to
(51) Int.Cl interact with an instrument response without forcing the user
G0;$F 1 3/00 (2006.01) to write parsing code. Embodiments may be integrated into
GO6F 15/00 (2006.01) instrumentation control programs to make instrument 1/O as
) . . transparent as possible. The instrument [/O assistant may
(2? g,' Sl'dCl% Cl """ . ﬁ """ o S 715/;35, 7147123 771155//77 6633 provide code generation so that the parsing of an instrument
(58) Field o 7 1251?;16 Sc?;(;n77elar7c3 5 736737 71471 2’ response performed in the instrument /O assistant can be
’ ’ ’ ’ ’ - 1’4 738, 71 8’ reused. The saved code for one query and response may be
See application file for complete search histo ’ referred to as a query block. Two or more query blocks may
PP P 1y be saved into a task. A task is a series of executable query
(56) References Cited blocks. The task may be executed, or alternatively code may

U.S. PATENT DOCUMENTS

be generated to execute the task.

5,724,272 A 3/1998 Mitchell et al. 61 Claims, 14 Drawing Sheets

‘Parse instrument responss
08
Hex’
HEX. or ASCII?
l &

Disptay response i HEX forme
2

-ASCII

Display rosporie 1 ASCH
format
0
62

Solectregion
53

‘Specily token characteristics
o6

Yes-

Is
Tokenizetion
contact?

No

US 7,134,081 B2

Sheet 1 of 14

Nov. 7, 2006

U.S. Patent

oovl\

viL 614

8IBM}OS

12413
=

ylomiaN

Jaindwon
20l

c8l
leleg @\

— 8l

Juswinsu
paseg-obessapy

}IOMloN

US 7,134,081 B2

Sheet 2 of 14

Nov. 7, 2006

U.S. Patent

gl b4

Mol 590014
ainsseld WO

[0AU0D
sninwiS

a8l
leLog @\

— V8l

a1emyos
g_ﬂ_w MM& Wawnas)
"y, ¥ -
<g \\\ peseg-obessep] _,
B) A1l

ylomieN

09 FI\\ MINEN,

US 7,134,081 B2

Sheet 3 of 14

Nov. 7, 2006

U.S. Patent

.@s / /
¢ b4 \ sngaidd
/- 7
061 var —_ — __
(s)pred eoepsiul pIen acl c8l 081
JuawinJjsui peseq 90BLOIU| [BHES pied g1do 9l pIeH 09pIA
-ofessow I8yl .
ya /
\ 07T snhg uoisuedx \
/ 7
891
Igjjonuo) sng
{ /
\ 291 sng 150 \
/ /
or TR
091
I8)|0.4u0D)
Aowsy NdO
[
991
Aowsy urely

US 7,134,081 B2

Sheet 4 of 14

Nov. 7, 2006

U.S. Patent

0ce

U243 payoojas
8IS~ a0 senquy

eoeLBYUI J9sn Jojduos O/

&

bi4

214

006 ——

SpoW 3H puR |[35%

9i¢ - uasman safifio |

. BuEO |[]5
vie 10 EB_E__uM

_ JUanEu
802 Eu:m tmwc_\

Ay o

R EL
uss puewuoy - Qg

.. it
0} spuewiios Bupuss
312 St JUsuInsY) - GOZ

3AqelieAe 10 LaRaG - 07

US 7,134,081 B2

Sheet 5 of 14

Nov. 7, 2006

U.S. Patent

apow xeH - Aeily 914g XoH - 4 B4

0% ~—&

L (o]

add -

yAYS

s1afiaqun aydg- |
000Z 47 feig

J,m“mxam ez

9%z

fene
au Jo sanjeA
80C - paediau

o

e

US 7,134,081 B2

Sheet 6 of 14

Nov. 7, 2006

U.S. Patent

ButiaroH - G *H1

a0 palasoy
¥£g - Buiag eeq

]

120 pa1aaoy Buag |

©jep Jo sanes Enuajod

ogz - SMOLs digs di) :

Z6LFETZ801

91922

+10+396+15
ATT+348988°C

saabaju a3Aq-Z s
rdabagu 23Aq-¢

'6 {1B0|) B1AG-
18|qnop ajAg-g

[MXMXEHN, 1BURS

Gle

paljoadsun

: t] siadfi g - ¢3¢

He

US 7,134,081 B2

Sheet 7 of 14

Nov. 7, 2006

U.S. Patent

cte-

usye]
payas|asuf)

Buiig pue Aeuy olkg xoH - 9 *Bi4

e

e

: uano |
- Buing pavasPs - Opg

US 7,134,081 B2

Sheet 8 of 14

Nov. 7, 2006

U.S. Patent

apow |08V - bus 1108V - £ “Bi

suayo| o
2P - PAREsUn

He

uaa |
PRS- OV

US 7,134,081 B2

Sheet 9 of 14

Nov. 7, 2006

U.S. Patent

opow ||08Y - Aely Joquny 1108y - § *Bl4

fele

ALy Wl SRR JO IBGUNN < ()77

mn_cm.zcm_.u_wﬁ -

i e e . B

. awey jhdno

susso syl - ¥¢

He
N

"

, ‘ . : fagunu
S0 i e Y esejadisil - goc

[sumwaa

2140 3unag)

feue

[FRURWN [[5Y
ue stusvoy sy - S1E

U.S. Patent

Nov.

7, 2006 Sheet 10 of 14

Detect instrument(s)
300

l

User selects instruments OR
types in a VISA resource string
302

l

Enter command to send 1o
instrumant
304

l

Receive response from
instrument
306

l

Parse instrument response
308

l

Create code
310

Fig. @

US 7,134,081 B2

U.S. Patent Nov. 7, 2006 Sheet 11 of 14

Parse instrument response
308

Hex
or ASCII?
340

ASCH—l

US 7,134,081 B2

Fig. 10

Display response in HEX format

342 format

360

Display response in ASCH

y

Select region A

344

Automatically Tokenize
(use default delimiters)

v 362
Specify foken characieristics
346
Is
Tokenization
Yes correct?
364
No
Delimeter
Yes correct? No
l 366
Selact region (optional) P Specify delimiter (optional)
368 X 370
A
Specifiy token characteristics
¥ \ 4 372
Create code
310

U.S. Patent Nov. 7, 2006 Sheet 12 of 14 US 7,134,081 B2

Task 250
Subtask 2562A Subtask 2528
Query Query Query Query Query Query
block block
block block block block oEAE oEAE
254A 254B 254C 254D — —
Fig. 11

Generate a plurality of query blocks
500

A 4

Sequence the plurality of query blocks
502

A 4

Store the sequence of query blocks in a task
504

Fig. 12

U.S. Patent Nov. 7, 2006 Sheet 13 of 14 US 7,134,081 B2

910
Add the task object to an instrument control program
312

l

Invoke a user interface (U1) to edit task object
514

Generate one or more query blocks
518

Add the one or more quety blocks to the task object

using the Ul
218

Generate a task object ‘

Fig. 13

U.S. Patent Nov. 7, 2006 Sheet 14 of 14 US 7,134,081 B2

Scan for instruments
520

Detect one or more instruments
522

Select an instrument
526

Generate one or more query blocks for the selected

instrument
528

Fig. 14

US 7,134,081 B2

1

METHOD AND APPARATUS FOR
CONTROLLING AN INSTRUMENTATION
SYSTEM

PRIORITY CLAIM

This application claims benefit of priority of U.S. provi-
sional application Ser. No. 60/312,257 titled “Method and
Apparatus for Controlling an Instrumentation System” filed
Aug. 14, 2001, whose inventors are David W Fuller III,
Christopher G. Cifra and Thomas V. Connell Jr.

FIELD OF THE INVENTION

The present invention relates to I/O control software for
instrumentation systems, and more particularly to a system
and method for querying message-based instruments, pars-
ing the responses, and generating code that encapsulates the
connection/communication with the instrument and the
parsing of the response.

DESCRIPTION OF THE RELATED ART

An instrument is a device that collects data or information
from an environment or unit under test and displays this
information to a user. An instrument may also perform
various data analysis and data processing on acquired data
prior to displaying the data to the user. Examples of various
types of instruments include oscilloscopes, digital multim-
eters, pressure sensors, temperature sensors, machine vision
systems (e.g. cameras), microphones, etc., and the types of
information which might be collected by respective instru-
ments include voltage, resistance, distance, velocity, pres-
sure, frequency of oscillation, environmental information
such as humidity and temperature, video and image data,
and audio data among others.

In the past, many instrumentation systems comprised
individual instruments physically interconnected with each
other. Each instrument typically included a physical front
panel with its own peculiar combination of indicators,
knobs, or switches. A user generally had to understand and
manipulate individual controls for each instrument and
record readings from an array of indicators. Acquisition and
analysis of data in such instrumentation systems was tedious
and error prone. An incremental improvement in the manner
in which a user interfaced with various instruments was
made with the introduction of centralized control panels. In
these improved systems, individual instruments are wired to
a control panel, and the individual knobs, indicators or
switches of each front panel are either preset or selected for
presentation on a common front panel.

A significant advance occurred with the introduction of
computers to provide more flexible means for interfacing
instruments with a user. In such computerized instrumenta-
tion systems, the user interacts with software executing on
the computer system through the computer’s video monitor
rather than through a manually operated front panel to
control one or more real world instruments. The software
executing on the computer system can be used to simulate
the operation of an instrument in software or to control or
communicate with one or more real world instruments, these
software created/controlled instruments being referred to as
virtual instruments.

Therefore, modern instrumentation systems are moving
from dedicated stand-alone hardware instruments such as
oscilloscopes, digital multimeters, etc., to a concept referred
to as virtual instrumentation. Virtual instrumentation com-

—

0

20

25

30

35

40

45

50

55

60

65

2

prises general-purpose personal computers and workstations
combined with instrumentation software and hardware to
build a complete instrumentation system. In an exemplary
virtual instrumentation system, a software program execut-
ing on a central computer controls the constituent instru-
ments from which it acquires data which it analyzes, stores,
and presents to a user of the system. Computer control of
instrumentation has become increasingly desirable in view
of the increasing complexity and variety of instruments
available for use, and computerized instrumentation systems
provide significant performance efficiencies over earlier
systems for linking and controlling test instruments.

The various hardware interface options currently avail-
able for instrumentation systems can be categorized into
various types, including, but not limited to, IEEE 488-
controlled instruments (GPIB instruments), VXI bus instru-
ments, PXI bus instruments, plug-in data acquisition (DAQ)
boards, and serial instruments including RS-232, USB and
IEEE-1394 instruments. Background on these various hard-
ware interface options is deemed appropriate.

The GPIB (General-Purpose Interface Bus) began as a bus
designed by Hewlett-Packard in 1965, referred to as the
Hewlett-Packard Interface Bus (HPIB), to connect their line
of programmable instruments to their computers. National
Instruments Corporation expanded the use of this bus to
computers manufactured by companies other than Hewlett-
Packard and hence the name General Purpose Interface Bus
(GPIB) became more widely used than HPIB. The GPIB
interface bus gained popularity due to its high transfer rates
and was later accepted as IEEE standard 488-1975, and the
bus later evolved to ANSI/IEEE standard 488.1-1987. In
order to improve on this standard, two new standards were
drafted, these being ANSI/IEEE 488.2-1987 and the SCPI
(Standard Commands for Programmable Instruments) stan-
dard. The IEEE 488.2 standard strengthened the original
standard by defining precisely how controllers and instru-
ments communicated. The IEEE 488.2 standard removed
ambiguities of the IEEE 488.1 standard by defining data
formats, status reporting, a message exchange protocol,
IEEE 488.2 controller requirements, and common configu-
ration commands to which all IEEE 488.2 instruments must
respond in a precise manner. Thus, the IEEE 488.2 standard
created more compatible, more reliable systems that were
simpler to program. In 1990, a new specification was
developed referred to as the Standard Commands for Pro-
grammable Instruments (SCPI), which used the command
structures defined in the IEEE 488.2 standard and formed a
single, comprehensive programming command set that is
used with any SCPI instrument. The SCPI standard simpli-
fied the programming process for manufacturers and users
alike. Rather than having to learn a different command set
for each instrument, the user could focus on solving the
measurement tests of his or her application, thus decreasing
programming time.

The VXI (VME eXtension for Instrumentation) bus is a
platform for instrumentation systems that was first intro-
duced in 1987 and was originally designed as an extension
of'the VME bus standard. The VXI standard has experienced
tremendous growth and acceptance around the world and is
used in a wide variety of traditional test and measurement
and ATE applications. The VXI standard uses a mainframe
chassis with a plurality of slots to hold modular instruments
on plug-in boards. The VXI architecture is capable of
interfacing with both message-based instruments and regis-
ter-based instruments. A message-based instrument is an
instrument that is controlled by a string of ASCII characters,

US 7,134,081 B2

3

whereas a register-based instrument is controlled by writing
a bit stream directly to registers in the instrument hardware.

The PXI (PCI extension for Instrumentation) bus is a
platform for measurement systems promulgated by National
Instruments Corporation. The PXI bus is based on the
computer PCI bus and includes various additional signal
lines for instrumentation.

An instrumentation system using a data acquisition inter-
face method typically includes transducers that sense physi-
cal phenomena from the process or unit under test and
provide electrical signals to data acquisition hardware inside
the computer system. The electrical signals generated by the
transducers are converted into a form that the data acquisi-
tion board can accept, typically by signal conditioning logic
positioned between the transducers and the data acquisition
card in the computer system. The data acquisition card may
then perform A/D conversion on the received analog signals
to generate corresponding digital signals. These digital sig-
nals may then be analyzed or processed, either by the DAQ
card or by the computer system.

A computer may also control an instrumentation system
through a serial bus such as the computer’s serial or RS-232
port, USB or IEEE 1394.

Due to the wide variety of possible testing situations and
environments, and also the wide array of instruments avail-
able, it is often necessary for a user to develop a program to
control respective instruments in the desired instrumentation
system. Therefore, implementation of such systems fre-
quently requires the involvement of a programmer to
develop software for acquisition, analysis and presentation
of instrumentation data.

The software architecture for a virtual instrumentation
system comprises several components. The top level of the
software architecture typically comprises an applications
program used for high-level control of the virtual instru-
ment. Examples of program development environments for
high-level applications programs for instrumentation control
are LabVIEW and LabWindows/CVI from National Instru-
ments Corp and HP VEE from Agilent, among others. These
applications programs provide a user with the tools to
control instruments, including acquiring data, analyzing
data, and presenting data.

The applications programs mentioned above typically
operate in conjunction with one or more instrument drivers
to interface to actual physical instruments. For example, the
LabVIEW and LabWindows/CVI applications’ software
each include instrument libraries comprising drivers for
hundreds or more of GPIB, VXI, PXI and serial instruments
from numerous manufacturers. The instrument drivers are
designed to reduce a user’s application development time by
providing intuitive high level functions that relieve the user
of complex low level instrument programming.

The software level referred to as driver level software is
lower than the instrument driver level in the software
architecture hierarchy. Driver level software is used to
interface the commands in the instrument driver to the actual
hardware interface being used, such as a GPIB interface
card, a data acquisition card, or a VXI card. In other words,
driver level software handles the details of communication,
i.e., the transfer of commands and data, over a physical
connection between the computer and instruments. There
have been many implementations of /O control software,
some of which were custom-developed by end users, while
others were developed by vendors and sold along with
interface hardware. Examples of driver level software
include NI-488, NI-DAQ, NI-VXI and NI-VISA driver level
software offered by National Instruments, Inc. Another

20

25

30

35

40

45

50

55

60

65

4

example of driver level software is the Standard Instrument
Control Library (SICL) offered by Hewlett-Packard.

There may be some instruments for which drivers are not
provided. Also, there may be users of an instrumentation
system who do not want the complications that are inherent
with learning to use a driver or that do not have access to a
driver. In this case, the user may desire to simply send a
command to the instrument and read a response. The user
may not require performance or special features, but simply
desires to connect to an instrument and perform I/O. Cur-
rently GPIB, Serial, or VISA calls may be used to send a
command, read the response, and the user is required to use
the Application Development Environment (ADE) to create
a program to parse the response. Thus, in many cases the
user may be forced to write mini instrument drivers with the
desired subset instrument functionality. Both instrument
connection/communication and instrument response parsing
are difficult and time-consuming tasks.

Therefore, a system and method is desired which provides
consistent software architecture for control of instrumenta-
tions systems. A method and apparatus is also desired which
provides a more consistent mechanism for developing
instrument drivers and instrumentation control software. A
system and method are also desired which encapsulates the
connection/communication with the instrument and the
parsing of the instrument response.

SUMMARY OF THE INVENTION

The present invention comprises various embodiments of
a system and method for querying message-based instru-
ments, automatically and/or graphically parsing the
responses, and generating code that encapsulates the con-
nection/communication with the instrument and the parsing
of the response. Embodiments of the invention may be
implemented in a measurement system comprising a com-
puter system coupled to one or more message-based instru-
ments.

In an embodiment, the computer system may automati-
cally detect the one or more message-based instruments that
are connected to the computer system. In other words, the
computer system may automatically scan for message-based
instruments coupled to the system. A user interface (UI) may
be provided that allows the user to initiate a scan for
message-based instruments. The user may scroll through
and select an instrument from a list of detected instruments,
or may otherwise specify a particular instrument to be
communicated with.

The user may then enter a command (e.g. query) to send
to the selected instrument. In one embodiment, the user may
enter the command by typing it in to a query field. In one
embodiment, if the instrument type can be determined (e.g.
DMM, scope, arbitrary waveform (arb)/function generator,
counter, etc.), or alternatively if the user specifies the instru-
ment type, then syntax completion and suggestions, for
example according to the SCPI standard, may be provided to
the user. In one embodiment, instrument vendors and/or
third parties may provide a file for a specific instrument that
describes the command syntax of the instrument. This file
may then be used in providing syntax information to the
user. If such a file exists, then the standard SCPI syntax
completion may be replaced with syntax completion based
on the custom file. After entering the command, the user may
select a user interface item to cause the command to be sent
the instrument.

A response may be received from the instrument after the
command is sent. The received response may then be parsed.

US 7,134,081 B2

5

In one embodiment, the response may be automatically
pre-parsed. Using parsing, for example, instead of a string of
ASCII characters and binary numbers, the user will see the
actual number(s) corresponding to a voltage reading. If the
pre-parsing does not interpret the instrument response cor-
rectly, then the user may interactively vary how the response
string is parsed. Characteristics associated with instrument
command strings and response strings that the user may set
or change in order to define the desired command/response
include, but are not limited to, data type, binary/text format,
endianness, tokens/sequences, scaling, output data (wave-
forms, etc.), and headers on/off.

In one embodiment, the user may position and/or size an
icon, e.g. a transparently colored icon, e.g. a lens, that spans
over a portion of the response data and highlights it. The data
underneath the lens icon is set apart as a “token”. In one
embodiment, the appearance (e.g. color and/or texture) of
the transparent lens icon may be used to specify the data type
of the token. As the user scrolls through to parse the rest of
the data in the response, the data may maintain its high-
lighted appearance (e.g. color) to indicate that it is “token-
ized”. For every token in the data response, the user may be
able to specify the data type to interpret the token, a count
to specify a sequence or array of values, a delimiter for an
array of values, the data type that may be used to output the
data, scaling parameters for that token, and a name for the
output parameter, among other characteristics.

The results of the graphical token specification as
described above may be used to automatically create text-
based code (e.g. C, C++, NET) and/or graphical code (e.g.
a LabVIEW graphical code object that can be included in a
virtual instrument) that may be used to programmatically
perform the same functions as were performed interactively
by the user. These functions may include communicating
with an identified instrument, sending command(s) to the
identified instrument, reading back responses from the
instrument, and parsing the received response (for display or
for other uses), among others. Code may also be generated
to call and execute the saved configuration from a graphical
language and/or a text-based language. The saved code for
one query and response may be referred to as a query block.
The user may perform the above functions two or more
times to generate a series of two or more query blocks which
may be combined into a task. The task may then be executed,
or alternatively code may be generated to execute the task.

In one embodiment, a plurality of query blocks may be
generated in response to user input. Each query block may
be executable within an instrumentation system to connect
with a message-based instrument, send a query message to
the message-based instrument, receive a response to the
query message from the message-based instrument, parse
the response, and output results of parsing the response. The
user may graphically sequence the plurality of query blocks
in a desired order of execution, and store the sequenced
plurality of query blocks in a task.

In one embodiment, a task object may be generated in
response to user input. The user may then graphically add
the task object to an instrument control application program.
The user may invoke a user interface for graphically editing
the task object. The user may then graphically generate one
or more query blocks using the user interface. Each query
block may be executable within an instrumentation system
to connect with a message-based instrument, send a query
message to the message-based instrument, receive a
response to the query message from the message-based
instrument, parse the response, and output results of said

20

30

35

40

45

50

55

60

65

6

parsing the response. The user may then graphically add the
one or more query blocks to the task object.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present invention can be
obtained when the following detailed description of the
preferred embodiment is considered in conjunction with the
following drawings, in which:

FIGS. 1A, 1B and 2 illustrate representative instrumen-
tation control systems of the present invention including
various 1/O interface options;

FIG. 3 illustrates an exemplary instrument I/O assistant
User Interface (UI) according to one embodiment in ASCII
mode;

FIG. 4 illustrates an exemplary instrument I/O assistant
User Interface (UI) according to one embodiment in HEX
mode and shows a series of regions tokenized into a hex byte
array;

FIG. 5 illustrates an exemplary instrument I/O assistant
User Interface (UI) according to one embodiment in HEX
mode and shows a user “hovering” the cursor over a region
and a corresponding tip-strip;

FIG. 6 illustrates an exemplary instrument I/O assistant
User Interface (UI) according to one embodiment in HEX
mode and shows a selected region specified as a string token;

FIG. 7 illustrates an exemplary instrument I/O assistant
User Interface (UI) according to one embodiment in ASCII
mode and shows a selected region specified as a string token;

FIG. 8 illustrates an exemplary instrument I/O assistant
User Interface (UI) according to one embodiment in ASCII
mode and shows a selected region specified as an ASCII
numerical array token;

FIG. 9 is a flowchart of a method of querying message-
based instruments, parsing the responses, and generating
code that encapsulates the connection/communication with
the instrument and the parsing of the response according to
one embodiment;

FIG. 10 is a flowchart expanding on the parsing of the
response and showing the different aspects of the parsing
depending upon response type (e.g. HEX or ASCII) accord-
ing to one embodiment;

FIG. 11 illustrates a task 250 with nested subtasks and
query blocks according to one embodiment;

FIG. 12 is a flowchart illustrating a method of sequencing
query blocks in tasks according to one embodiment;

FIG. 13 is a flowchart illustrating a method of generating
a task object and graphically editing the generated task
object according to one embodiment; and

FIG. 14 is a flowchart illustrating a method of scanning
for instruments according to one embodiment.

While the invention is susceptible to various modifica-
tions and alternative forms, specific embodiments thereof
are shown by way of example in the drawings and will
herein be described in detail. It should be understood,
however, that the drawings and detailed description thereto
are not intended to limit the invention to the particular form
disclosed, but on the contrary, the intention is to cover all
modifications, equivalents, and alternatives falling within
the spirit and scope of the present invention as defined by the
appended claims. The headings used herein are for organi-
zational purposes only and are not meant to be used to limit
the scope of the description or the claims. As used through-
out this application, the word “may” is used in a permissive
sense (i.e., meaning having the potential to), rather than the

US 7,134,081 B2

7

mandatory sense (i.e., meaning must). Similarly, the words
“include”, “including”, and “includes” mean including, but

not limited to.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

The preferred embodiment of the invention is adapted for
instrumentation control systems. However, it is noted that
the method and apparatus of the present invention discloses
a software architecture model that has numerous other
applications in any of a number of fields. The following
disclosure describes the preferred embodiment of the inven-
tion in an instrumentation control system application.

FIGS. 1A and 1B—Instrumentation and Industrial Automa-
tion Systems

The following describes embodiments of the present
invention involved with performing test and/or measure-
ment functions and/or controlling and/or modeling instru-
mentation or industrial automation hardware. The system
and method of the present invention may assist the user in
parsing data such as instrument responses without forcing
the user to write parsing code. The data may be of any of a
variety of types of data including, but not limited to, ASCII
data and binary data.

It is noted that the present invention may be used for a
plethora of applications and data and is not limited to
instrumentation or industrial automation applications and
data. In other words, the following description is exemplary
only, and the present invention may be used in any of various
types of systems to parse any of various types of data. Thus,
the system and method of the present invention is operable
to be used in any of various types of applications, including
the control of other types of devices such as multimedia
devices, video devices, audio devices, telephony devices,
Internet devices, etc.

FIG. 1A illustrates an exemplary instrumentation control
system 100 which may implement embodiments of the
invention. The system 100 comprises a host computer 102
which connects to one or more instruments. The host com-
puter 102 may comprise a CPU, a display screen, memory,
and one or more input devices such as a mouse or keyboard
as shown. The computer 102 may operate with the one or
more instruments to analyze, measure or control a unit under
test (UUT) or process 150.

The one or more instruments may include message-based
instruments such as a GPIB instrument 112 and associated
GPIB interface card 122, a serial instrument 182 and asso-
ciated serial interface card 184, and/or one or more other
message-based instruments 118 and associated instrument
cards (not shown). The host computer 102 may optionally
also connect to other types of devices such as a data
acquisition board and associated signal conditioning cir-
cuitry (not shown), a VXI instrument (not shown), a PXI
instrument (not shown), a video device or camera and
associated image acquisition (or machine vision) card (not
shown), a motion control device and associated motion
control interface card (not shown), and/or one or more
computer based instrument cards (not shown), a fieldbus
device and associated fieldbus interface card (not shown), a
PLC (Programmable Logic Controller) (not shown), or a
distributed data acquisition system, such as the Fieldpoint
system available from National Instruments, among other
types of devices.

The GPIB instrument 112 may be coupled to the computer
102 via the GPIB interface card 122 provided by the

20

25

30

35

40

45

55

60

65

8

computer 102. The GPIB card 122, serial interface card 184,
and/or other interface cards (if any) are typically plugged in
to an I/O slot in the computer 102, such as a PCI bus slot,
a PC Card slot, or an ISA, EISA or MicroChannel bus slot
provided by the computer 102. However, the cards 122 and
184 are shown external to computer 102 for illustrative
purposes. These devices may also be connected to the
computer 102 through a serial bus or through other means.

A VXI chassis or instrument may be coupled to the
computer 102 via a VXI bus, MXI bus, or other serial or
parallel bus provided by the computer 102. The computer
102 may include VXI interface logic, such as a VXI, MXI
(not shown) or GPIB interface card 122, which interfaces to
the VXI chassis. A PXI chassis or instrument may be
coupled to the computer 102 through the computer’s PCI
bus.

A serial instrument 182, and associated serial interface
card 184, may also be coupled to the computer 102 through
a serial port, such as an RS-232 port, USB (Universal Serial
bus) or IEEE 1394 or 1394.2 buses, provided by the com-
puter 102.

In typical instrumentation control systems an instrument
of each interface type may not be present, and in fact many
systems may only have one or more instruments of a single
interface type, such as only GPIB instruments.

The instruments may be coupled to a unit under test
(UUT) or process 150, or may be coupled to receive field
signals, typically generated by transducers or sensors. The
system 100 may be used in a data acquisition and control
application, in a test and measurement application, an image
processing or machine vision application, a process control
application, a man-machine interface application, a simula-
tion application, or a hardware-in-the-loop validation appli-
cation.

FIG. 1B illustrates an exemplary industrial automation
system 160 that may implement embodiments of the inven-
tion. The industrial automation system 160 is similar to the
instrumentation or test and measurement system 100 shown
in FIG. 1A. Elements which are similar or identical to
elements in FIG. 1A have the same reference numerals for
convenience. The system 160 may comprise a computer 102
that connects to one or more devices or instruments. The
computer 102 may comprise a CPU, a display screen,
memory, and one or more input devices such as a mouse or
keyboard as shown. The computer 102 may operate with the
one or more devices to a process or device 150 to perform
an automation function, such as MMI (Man Machine Inter-
face), SCADA (Supervisory Control and Data Acquisition),
portable or distributed data acquisition, process control,
advanced analysis, or other control.

The one or more instruments may include message-based
instruments such as a GPIB instrument 112 and associated
GPIB interface card 122, a serial instrument 182 and asso-
ciated serial interface card 184, and/or one or more message-
based instruments 118 and associated instrument cards (not
shown). The host computer 102 may optionally also connect
to other types of devices such as a data acquisition board and
associated signal conditioning circuitry (not shown), a VXI
instrument (not shown), a PXI instrument (not shown), a
video device or camera and associated image acquisition (or
machine vision) card (not shown), a motion control device
and associated motion control interface card (not shown),
and/or one or more computer based instrument cards (not
shown), a fieldbus device and associated fieldbus interface
card (not shown), a PLC (Programmable Logic Controller)
(not shown), or a distributed data acquisition system, such as

US 7,134,081 B2

9

the Fieldpoint system available from National Instruments,
among other types of devices.

The GPIB instrument 112 may be coupled to the computer
102 via the GPIB interface card 122 provided by the
computer 102. The serial instrument 182 may be coupled to
the computer 102 through a serial interface card 184, or
through a serial port, such as an RS-232 port, provided by
the computer 102. A PL.C may couple to the computer 102
through a serial port, Ethernet port, or a proprietary inter-
face. A fieldbus interface card may be comprised in the
computer 102 and may interface through a fieldbus network
to one or more fieldbus devices. The GPIB card 122, serial
interface card 184, and/or other interface cards (if any) are
typically plugged in to an I/O slot in the computer 102, such
as a PCI bus slot or a PC Card slot provided by the computer
102. In typical industrial automation systems a device will
not be present of each interface type, and in fact many
systems may only have one or more devices of a single
interface type, such as only serial devices. The devices may
be coupled to the device or process 150.

As used herein, the term “instrument” is intended to
include any of the devices that are adapted to be connected
to a computer system as shown in FIGS. 1A and 1B,
traditional “stand-alone” instruments, as well as other types
of measurement and control devices. As used herein, the
term “message-based instrument” includes instruments or
measurement and/or automation devices that are controlled
by messages, e.g. by strings of ASCII and/or hexadecimal
characters. Exemplary message-based instruments are
shown in FIGS. 1A and 1B. The term “measurement func-
tion” may include any type of data acquisition, measurement
or control function, such as that implemented by the instru-
ments shown in FIGS. 1A and 1B. For example, the term
“measurement function” includes acquisition and/or pro-
cessing of an image. As described below, a graphical pro-
gram may be created that implements a measurement func-
tion. For example, the graphical program may be used to
acquire a signal and perform the measurement function on
the acquired signal.

In the embodiments of FIGS. 1A and 1B above, one or
more of the various instruments may couple to the computer
102 over a network, such as the Internet. In one embodi-
ment, the user operates to select a target instrument or device
from a plurality of possible target devices for programming
or configuration. Thus the user may create a program on a
computer and use the program in conjunction with a target
device or instrument that is remotely located from the
computer and coupled to the computer through a network.

Software programs which perform data acquisition,
analysis and/or presentation, e.g., for measurement, instru-
mentation control, industrial automation, or simulation, such
as in the applications shown in FIGS. 1A and 1B, may be
referred to as virtual instruments.

Although the preferred embodiment of the invention is
described with respect to measurement applications, includ-
ing data acquisition/generation, analysis, and/or display, and
for controlling or modeling instrumentation or industrial
automation hardware, as noted above the present invention
can be used for a plethora of applications and is not limited
to measurement, instrumentation or industrial automation
applications. In other words, FIGS. 1A and 1B are exem-
plary only, and the present invention may be used in any of
various types of systems. Thus, the system and method is
operable for querying message-based devices, parsing the
responses, and generating code that encapsulates the con-
nection/communication with the instrument and the parsing
of the response for any of various types of applications.

20

25

30

35

40

45

50

55

60

65

10
FIG. 2—Computer System Block Diagram

FIG. 2 is a block diagram representing one embodiment
of' a computer system 102 shown in FIGS. 1A or 1B. It is
noted that any type of computer system configuration or
architecture can be used as desired, and FIG. 2 illustrates a
representative PC embodiment. It is also noted that the
computer system may be a general purpose computer sys-
tem, a computer implemented on a VXI card installed in a
VXI chassis, a computer implemented on a PXI card
installed in a PXI chassis, or other types of embodiments.
Elements of a computer not necessary to understand the
present description have been omitted for simplicity.

The computer may include at least one central processing
unit or CPU 160 that is coupled to a processor or host bus
162. The CPU 160 may be any of various types, including
an x86 processor, e.g., a Pentium class, a PowerPC proces-
sor, a CPU from the SPARC family of RISC processors, as
well as others. Main memory 166 is coupled to the host bus
162 by means of memory controller 164. The main memory
166 may store the graphical program operable to receive and
respond to programmatic events. The main memory may
also store operating system software, as well as other
software for operation of the computer system.

The host bus 162 may be coupled to an expansion or
input/output bus 170 by means of a bus controller 168 or bus
bridge logic. The expansion bus 170 may be the PCI
(Peripheral Component Interconnect) expansion bus,
although other bus types can be used. The expansion bus 170
includes slots for various devices such as a serial interface
card 184 which provides a serial interface to a serial instru-
ment, a GPIB interface card 122 which provides a GPIB bus
interface to a GPIB instrument, and/or one or more other
message-based instrument interface cards 190. The com-
puter may further comprise a video display subsystem 180
and/or hard drive 182 coupled to the expansion bus 170.

As described above, one or more instruments may also be
connected to the computer through instrument interface
cards. In various embodiments, one or more instruments or
devices may be connected to the computer through means
other than an expansion slot, e.g., the instrument or device
may be connected via an IEEE 1394 bus, USB, or other type
of port.

Instrument I/O Assistant

Embodiments of an instrument I/O assistant and the
algorithms that may be used to manage instrument responses
are described. An instrument /O assistant may provide an
instrument-centric approach to message-based instrument
1/0. The instrument I/O assistant may assist the user in
parsing one or more instrument responses by offering an
environment that enables a user to interact with an instru-
ment response without forcing the user to write parsing
code. A method may also be provided to make tasks created
using the instrument [/O assistant persistent so that they may
be reused and distributed, if desired.

Embodiments of the instrument 1/O assistant may be
integrated into one or more high-level application programs
for instrumentation control (such as LabVIEW and LabWin-
dows CVI from National Instruments Corp., among others)
to make instrument I/O as transparent as possible. The
instrument 1/O assistant may also provide code generation so
that the task created in instrument I/O assistant can be reused
in one or more instrument control application programs.

Embodiments of the instrument I/O assistant may provide
mechanisms to perform several functions, including, but not
limited to:

US 7,134,081 B2

11

a mechanism for identifying one or more instruments for
communication;

a mechanism for entering and sending command(s) to an
identified instrument;

a mechanism for reading back responses from the instru-
ment, parsing a received response and displaying the
parsed response; and

a mechanism for creating and saving program code (e.g.
text-based or graphical (e.g. LabVIEW) code) that may
later be used to communicate with the identified instru-
ment, send command(s) to the identified instrument,
read back responses from the instrument, and parse the
received response (for display or for other uses).

The instrument I/O assistant may provide a user interface
(UD) to perform each of these functions. In one embodiment,
the user interface may be a Graphical User Interface (GUI).
In one embodiment, the instrument /O assistant may pro-
vide a graphical user interface window through which each
of these functions may be performed under user control.
Several examples of such a user interface (U/1) 200 are
illustrated in FIGS. 3 through 8, described below.

The saved code for one query and response may be
referred to as a query block. A user may use the instrument
1/O assistant to perform the above functions two or more
times to generate a series of two or more query blocks which
may be saved into a task. A task is a series of sequentially
executable query blocks. The task may later be executed, or
alternatively code may be generated to execute the task.

As an example of generating and using a task, in a
graphical instrument control application program, a task
object may be added to a program (e.g. a virtual instrument
program) being created or edited. From the task object, an
instrument [/O assistant user interface (UI) may be invoked.
The instrument /O assistant Ul may be used to create and
add one or more query blocks to the task. Input(s) and
output(s) of the task object may also be linked with one or
more other objects in the program. When the program is later
executed, the task may execute to send the series of one or
more commands (queries) to the identified instrument, read
the instrument response(s), and parse the instrument
responses in accordance with the parsing information saved
in the query blocks. The parsed instrument responses may
then be displayed and/or input to other objects in the
program.

As mentioned above, the instrument I/O assistant may
provide a graphical user interface window through which the
various functions of the instrument I/O assistant may be
performed under user control. In one embodiment, there
may be one main view or user interface (UI). One embodi-
ment of such a Ul is illustrated in FIG. 3. From this Ul the
user may select the instrument with which to communicate.
The collection of controls of the instrument 1/O assistant UI
200 that allow the user to manipulate how an instrument
response is parsed may be referred to as the instrument
response parser control (IRPC). In one embodiment, the
IRPC varies depending on whether the response is ASCII or
HEX format. The user may toggle this feature. This UL may
include special highlighting and hover features so that the
user can interact and modify the manner in which the control
parses the data. The IRPC may have one or more user
interface items that may be manipulated by the user to parse
the response. The user interacts with the IRPC to manually
define the interpretation of the data. In one embodiment,
upon receiving a response, the instrument [/O assistant may
perform parsing functions on the response automatically and
display the results of the parsing to the user via the IRPC.

20

25

30

35

40

45

50

55

60

65

12

The user may then accept the automatic parsing or may
choose to override one or more functions of the parsing.

The instrument [/O assistant GUI may include several
sections that allow the user to select an instrument, enter a
command to query the instrument, and script the result or
response from the instrument. The data in the response string
may be shown as binary (e.g. hexadecimal format) or ASCII
format; this option may be toggled by the user by selecting
a user interface item. In one embodiment, the user may not
modify the response string. The user may scroll through the
response string to highlight the data the user is interested in.
The highlighted token may then read as a particular data
type, for example a 2-byte integer. If the user selected a
1-byte integer as the data type, then the highlighted region
may shrink and only highlight one byte of data. The byte
order may be toggled; for example, a 2-byte integer repre-
sented by the HEX values “d0 00” may be toggled to
interpret the value as the “d0” byte being most significant or
the “00” byte being most significant. The user may also
specify a sequence of values to be interpreted the same way
(for example, an array). For example, the user may query
4000 data points, so the user may tokenize the first 2-byte
value and cause the parser to read the next consecutive 3999
2-byte values in the same manner as the first 2-byte value is
read. If the response is in ASCII format and there is a
sequence of strings, then the user may specify the delimiter
for the sequence. The value format controls may be used to
determine how the value is output in the instrument control
application programs (e.g. LabVIEW). For example, the
user may wish to output the above-mentioned array of 4000
2-byte values as 4000 double values. The user may also
optionally name the output variable. The user may also use
the instrument 1/O assistant GUI to specify a scaling func-
tion if the values need to be scaled.

On occasion, the user may desire a certain value output
and be less concerned with the formatting of the response
string. In one embodiment, the instrument [/O assistant
allows the user to choose to work from the value format area
before dealing with the response format area. Thus, the
instrument I/O assistant does not constrain the user to
following a set series of steps.

In one embodiment, the instrument /O assistant GUI may
also include an error return control that may be used to
indicate an error or warning (if any) returned from the
instrument due to the executed block. This error window
may automatically appear in the case of an error, or option-
ally the user may bring it up by selecting it from a menu or
through another user interface item. In one embodiment, the
instrument I/O assistant may include bus and API call
monitoring tools that operate similarly to the error return
control.

FIG. 3—Exemplary 1/O Scriptor User Interface

FIG. 3 illustrates an exemplary instrument I/O assistant
User Interface (UI) 200 according to one embodiment. The
instrument I/O assistant Ul 200 may include one or more
tabs or windows for performing the various functions of the
instrument /O assistant. Using the Ul 200, one or more
query blocks may be created and saved into a task or task list
(for example, by using an Apply Ul item to add a query
block and a Redo Ul item to repeat a query block). The user
may execute the task list by selecting the “Run” user
interface item 202 to view the results of executing the one
or more query blocks in the current task.

Identifying One or More Instruments
As illustrated in FIG. 3, the instrument I/O assistant Ul
200 may provide user interface elements for discovering,

US 7,134,081 B2

13

identifying, specifying and entering message-based instru-
ments. The instrument I/O assistant may automatically scan
for message-based instruments coupled to the system 102
within which the instrument /O assistant is executing. The
instrument I/O assistant Ul 200 may provide a control 204
that allows the user to initiate a scan for message-based
instruments. In one embodiment, the instrument I/O assis-
tant Ul 200 may provide a control 208 to insert a new
instrument. The user may select an instrument to which
communication is desired using instrument display list con-
trol 206. In one embodiment, the user may scroll through
and select an instrument from a list of detected instruments,
or may otherwise specify a particular instrument to be
communicated with, for example by entering a VISA
resource string.

In one embodiment, the instrument I/O assistant may
utilize GPIB and/or VISA MAX (Measurement and Auto-
mation eXplorer) providers in order to locate GPIB instru-
ments and find serial ports. In one embodiment, the instru-
ment [/O assistant may configure the serial ports for the user
by trying different permutations of serial settings such as
bandwidth, baud rate, parity, etc., and sending out *IDN?
queries until something valid is returned. After scanning for
GPIB instruments, the instrument I/P assistant may run a
VISA resource expert and scan for all VISA message-based
instruments.

The instrument 1/O assistant UI 200 may display the list
of detected instruments in instrument display list 206. The
user may specify the target instrument for the command
through the instrument display list 206. In one embodiment,
the instrument information may be gathered by enumerating
a database (e.g. an MXS database). The user may be
provided with the option to re-search for available instru-
ments, for example by running an expert such as the GPIB
and VISA resource experts. When the instrument I/O assis-
tant is invoked, the list of instruments located in the database
may be displayed in instrument display list 206. If the
instrument desired is not in the list, then the user may invoke
the Scan for Instruments item 204. The experts (e.g. GPIB
and VISA resource experts) may then populate the list with
the newly found instruments. In one embodiment, the user
may manually add an instrument using an optional “Insert
Instrument” interface item 208. In one embodiment, as an
alternative to selecting a detected instrument from a list, the
user may be given the option of typing in a VISA resource
string to specify an instrument.

FIG. 14 is a flowchart illustrating a method of scanning
for instruments according to one embodiment. As indicated
at 520, the method may first scan for message-based instru-
ments coupled to the instrumentation system. Scanning may
detect at least a subset of the message-based instruments
coupled to the instrumentation system as indicated at 522.
The user may select one of the detected message-based
instruments as indicated at 526. One or more query blocks
for the selected instrument may then be generated in
response to user input as indicated at 528. Each query block
may be executable within the instrumentation system to
connect with the selected message-based instrument, send a
query message to the message-based instrument, receive a
response to the query message from the message-based
instrument, parse the response, and output results of parsing
the response.

Entering Instrument Commands

As illustrated in FIG. 3, in an exemplary instrument I/O
assistant UI 200, a user may enter commands by typing them
in to a query field 210. After entering the command, the user

—

0

20

25

30

35

40

45

50

55

60

65

14

may select a user interface item to cause the command to be
sent the instrument. In one embodiment, if the instrument
1/O assistant may determine the instrument type (e.g. DMM,
scope, arbitrary waveform (arb)/function generator, counter,
etc.), or alternatively if the user specifies the instrument
type, then syntax completion and suggestions, for example
according to the SCPI standard, may be provided to the user
through the UI 200. In one embodiment, instrument vendors
and/or third parties may provide a file for a specific instru-
ment that describes the command syntax of the instrument.
This file may then be used by the instrument I/O assistant in
providing syntax information to the user. If such a file exists,
then the standard SCPI syntax completion may be replaced
with syntax completion based on the custom file.

In one embodiment, a history of entered commands may
be retained. The command history may be used in any of
several ways to assist the user. For example, when the user
begins entering a command, the command history may be
searched and one or more commands matching the com-
mand string so far entered may be displayed. The user may
then select from the list of one or more commands. Alter-
natively, an interface to the command history may be
provided through which the user may specify or copy a
previously entered command.

The command entry mechanism may assist the user with
entering data in a format common to traditional instrumen-
tation. The command entry mechanism may provide a
method for the user to choose from standard data types and
to specify “endianness” of data. Big-endian and little-endian
are terms that describe the order in which a sequence of
bytes are stored in computer memory. Big-endian is an order
in which the “big end” (most significant value in the
sequence) is stored first (at the lowest storage address).
Little-endian is an order in which the “little end” (least
significant value in the sequence) is stored first. “Endian-
ness” may apply only to data in hexadecimal (HEX) format.
In one embodiment as illustrated in FIG. 4, an exemplary
instrument [/O assistant UI 200 may provide a user interface
item 217 to toggle between big-endian and little-endian
when in HEX mode. The command entry mechanism may
also provide a method or methods to import data from CSV
files or through an interactive Waveform Editor.

In one embodiment, the instrument 1/O assistant may use
the VISA C-API (or alternatively NI1-488.2 for GPIB only)
to communicate with GPIB and Serial instruments, and the
generated code (e.g. LabVIEW code) will use a VISA API
(e.g. the VISA LabVIEW (LV) API). The instrument 1/O
assistant UI 200 may expose certain functionality specific to
the bus the instrument selected is on (such as Wait for SRQ
in GPIB). In one embodiment, these options may be only be
exposed if necessary, for example, through an “Advanced
Features™ tab.

When the user types a command to send to a particular
instrument, the instrument I/O assistant may save that com-
mand and its syntax so that, in another block or task when
that instrument is selected again, the user can view a history
of commands used for that particular instrument. In one
embodiment, these command histories may be saved away
and exported so that they are available for distribution
(similar to instrument I/O assistant tasks). This may provide
valid command options for the user without having to flip
through an instrument manual, among other benefits.

Parsing Instrument Responses

Embodiments of the instrument I/O assistant may provide
the user with several capabilities for parsing instrument
responses, including, but not limited to, the ability to:

US 7,134,081 B2

15

automatically determine if the instrument response is in
HEX or ASCII format;

switch between ASCII and HEX format while retaining
token specifications;

automatically “tokenize” ASCII responses for the user;

automatically parse responses and/or allow the user to
graphically parse the responses

save and reuse the user’s instrument I/O assistant con-
figuration; and

programmatically execute the saved configuration.

The term “token” as used herein refers to a portion or
region of the instrument response whose attributes (e.g., data
type, position, size, byte ordering, arrayness, name, scaling,
etc.) have been configured. FIG. 3 illustrates one example of
a token 212 in response field 211 of the instrument 1/O
assistant UI 200. The configuration of the token may have
been done either automatically or under user control, for
example, by the user selecting or specifying attributes of the
selected token in the attributes fields 218 as illustrated in
FIG. 3. The term “tokenize” as used herein refers to the act
of specifying tokens for an instrument response.

In one embodiment, instrument /O assistant may “pre-
parse” instrument responses. In one embodiment, instrument
1/O assistant may use a library of data import functions to
pre-parse instrument responses. Using parsing, for example,
instead of a string of ASCII characters and binary numbers,
the user will see the actual number(s) corresponding to a
voltage reading. If the pre-parsing does not interpret the
instrument response correctly, then the user may interac-
tively vary how the response string is parsed. The parser may
be able to automatically make intelligent assumptions about
the data it is trying to interpret. If the parser makes incorrect
or false assumptions, the user may be provided with a
mechanism to correct those faulty assumptions. Character-
istics associated with instrument command strings and
response strings that the user may set or change in order to
define the desired command/response include, but are not
limited to:

Data type—What is the size and format of the data the
user desires? For example, a 2-byte or 4-byte integer, a
float or double?

Binary/text format—For example, does a response of “A”
mean the letter A or is it a hex value?

Endianness—Byte ordering may be different for different
instruments

Tokens/Sequences—If a series of values are in the
response (i.e. an array), how are the values delimited
and how is the end of the data sequence determined?

Scaling—Many instruments will return a value within a
range, such as 0 and 4096, but in reality the value is
scaled between two other values such as =5 and 5; The
value 4096 is not very meaningful to a user that is
measuring voltage readings between -5 and 5 volts.
The user may be able to specify how the data is scaled
so that scaled value is displayed and not the raw value.

Output data (waveforms, etc.)—how does the user desire
to write complex data to an output instrument?

Headers On/Off—Some instruments may support headers
(e.g. an instrument returning a voltage reading would
return “VOLT 10.0” when headers are toggled on, and
“10.0” when headers are toggled off.) If the parser
assumes headers are off, but they are really on, then the
parser may have problems parsing the data correctly.
The user may be able to toggle this option if the parser
is making a false assumption.

In one embodiment, the instrument I/O assistant may

automatically determine some of these characteristics. For

20

25

30

35

40

45

50

55

60

65

16

example, the instrument 1/O assistant may query the instru-
ment to determine if headers are turned on or off. However,
since errors may occur during automatic detection of one or
more of the characteristics, or the user may desire to
override an automatically determined characteristic, the
instrument I/O assistant may provide a mechanism for the
user to manually set the characteristics.

The collection of controls of the instrument I/O assistant
UT 200 that allows the user to manipulate how an instrument
response is parsed may be referred to as the instrument
response parser control (IRPC).

In one embodiment, the system may provide the user with
the capabilities to graphically parse the instrument response.
In one embodiment, the user may position an icon over a
portion of the response data to select the portion of the
response data. For example, the user may size a transpar-
ently colored “lens” icon that spans over a portion of the
response data and highlights it. The data underneath the lens
icon is set apart as a token. In one embodiment, the appear-
ance (e.g. color and/or pattern) of the transparent lens icon
may be used to specify the data type of the token as it is
interpreted by the IRPC. As the user scrolls through to parse
the rest of the data in the response, the data may maintain its
highlighted color to indicate that it is tokenized. In addition
to the token lens icon, the IRPC may include user interface
items to toggle between binary (e.g. Hexadecimal) and
ASCII data format, big-endian and little-endian byte order-
ing, and turning headers on/off, among others. In one
embodiment, these toggles may apply to the entire instru-
ment response, not individual values within the response; a
response may include multiple values. For every token in the
data response, the user may be able to specity the data type
to interpret the token, a count to specify a sequence or array
of'values, a delimiter for an array of values, the data type that
the instrument I/O assistant may use to output the data,
scaling parameters for that token, and a name for the output
parameter. The user may specify a sequence of values by
“connecting” two values and specifying the terms of the
sequence (i.e. how many values are in the sequence, how is
it delimited, etc.). Thus, the instrument /O assistant may
assume the same data type and scaling settings for all values
in that sequence. The IRPC may include a results box 215
that displays the output data that has been parsed. The results
box 215 may show the interpreted value of the selected
token. As the user scrolls through the instrument response,
the results box may also scroll to align the response data
with its corresponding parsed output data.

In one embodiment, the data may be displayed graphi-
cally. For example, the data may be displayed as an X-Y
graph of the data over time, as a chart (e.g. bar chart), or by
any graphical method suitable for displaying the data. In one
embodiment, the user may toggle between two or more
different graphical displays of the data. In this embodiment,
if the data includes multiple elements (e.g. array data), the
array data may be graphed, and if the data is a single
element, a textual (ASCII character) representation of the
value of that single element may be displayed. In another
embodiment, the data may be displayed textually. This data
may be highlighted to distinguish its output data type. In yet
another embodiment, the data may be displayed both graphi-
cally and textually. In one embodiment, the user may toggle
between graphical and textual display of the data.

The IRPC may be used as described for an instrument
response from an instrument read or query. In one embodi-
ment, a similar IRPC interface may be used to specify the
data format of data that will be written to an instrument. This
may be done, for example, by allowing the user to type a

US 7,134,081 B2

17

command into the control and to specify the type via the
tokenization icon (e.g. a lens icon). The command string
may then be edited using this information so that the value
is written correctly. In one embodiment, a similar IRPC
interface may be used to specify a waveform, for example to
write the waveform to an ARB.

Embodiments of the instrument I/O assistant parser
mechanism may have functionality including, but not lim-
ited to:

Data to be parsed may be either an ASCII string or binary

data

Parser may auto-parse an input string if the input follows
a known format

The parser may accept a list of “known format™ templates

Parser may include a pre-parse method which returns the
“best fit” parse string

Parser may parse an input sequence given a parse tem-
plate

Parser may output a parsed sequence along with the data
indices of the input stream, which match the tokens in
the output sequence, and indices of the input template,
which generated each output token.

The parse templates may be modifiable by an interactive
parser. This means that the parse template may not have
very many things in it that effect how the input sting is
interpreted as a whole. For example, the user may be
able to specify the endianness for each token in the
input stream, and there may not be many global speci-
fiers in the template.

Parser may be able to parse all or nearly all responses of
known instruments.

Parser may be in a shared library

Parser may work on a variety of platforms, including, but
not limited to: Win32, Linux, Mac OS X

HEX and ASCII Modes

Some aspects of the behavior of the instrument 1/O
assistant may be dependent upon whether the instrument
response is a hexadecimal (HEX) data format representation
of binary data or ASCII data format. If the instrument
response is in HEX, then the operation of the instrument I/O
assistant may be described as being in HEX mode. Likewise,
if the instrument response is in ASCII, then the operation of
the instrument I/O assistant may be described as being in
ASCII mode. The instrument I/O assistant may automati-
cally detect whether the instrument response is in HEX or
ASCII, or alternatively the user may be able to specify
whether the instrument response is in HEX or ASCIL. In one
embodiment, a user interface item 216 as illustrated in FIG.
3 may allow the user to toggle between HEX and ASCII
mode.

HEX Mode

FIGS. 4-6 illustrate an embodiment of the instrument 1/O
assistant Ul 200 in HEX mode. In HEX mode, numeric
tokens are interpreted in terms of their binary representation.
The following describes an embodiment of a mechanism
that may be used by the instrument I/O assistant in HEX
mode to find and select strings and multi-byte sized data in
an instrument response. Note that while FIGS. 4-6 and the
following description show the response as displayed in a
hexadecimal format, other numerical formats (e.g. binary,
octal, decimal, etc.) may also be used to display the
response. In one embodiment, the user may be able to
choose between two or more numerical formats to display
numerical data.

As illustrated in embodiments illustrated in FIGS. 4-6, a
HEX instrument response may be displayed in a response

20

25

30

35

40

45

50

55

60

65

18

field 211 of an exemplary instrument I/O assistant UI 200 as
a series of HEX bytes separated by spaces. As illustrated by
the exemplary instrument I/O assistant UI 200 in FIG. 5, the
user may “hover” over the instrument response, and the
mechanism may visually select the largest of a region 236 of
the response (e.g. a 1, 2, 4, or 8 byte region). The region 236
may be calculated starting at the current mouse position (in
FIG. 5, the cursor over the first 0-58 of the response) and
terminating either at the end of the instrument response or at
the beginning of the next token. A bounding rectangle, color
fill, and/or other indicator may be used to visually indicate
the region 234 selected from the current hover position.

When a region is selected by hovering, a tip-strip 236 may
be displayed above the selected region 234 showing the set
of possible data types, and the value of the selected region
for the possible data types. The data type may include data
types that occupy the region and/or smaller portions thereof.
The user may then select the data type for the region 234
from the tip-strip 236.

When the user specifies a token’s data type, the instru-
ment response may be graphically annotated to show the
selected token 230 as illustrated by the exemplary instru-
ment I/O assistant UI 200 in FIG. 6. In one embodiment, this
may be done with a bounding rectangle and/or color fill that
represents the data type. Other methods may be used to
graphically annotate the selected token 230. Note that one or
more attributes 218 of the selected token may be displayed.

The user may specify the count of a selected token using
the count control field 220 as illustrated by the exemplary
instrument [/O assistant UI 200 in FIG. 4. In one embodi-
ment, the count for tokens of the string type may not be
specified. If the count is greater than one, then the token is
interpreted as a contiguous set of values of a particular size
and type starting at the selected token (e.g. an array). Once
the user has specified a token as an array (that is, a count
greater than 1), then the user may have the option to collapse
the token so that all of the elements of the array appear as
one token/element.

In one embodiment, the count control field 220 defaults to
1. In one embodiment, the control 220 may present other
options such as the amount of available space divided by the
size of the currently selected token. In one embodiment, the
count may be set to the value of a named token that was
previously specified by the user and that precedes the
selected token. When the count is set to a named token, the
mechanism uses the value of the named token as the count
value. When the user specifies a count that evaluates to a
number greater than one, the instrument response string is
graphically annotated to show the individual elements of the
set connected together.

The user may remove the specification for a token. To
accomplish this, for example, the user may select the token
and press the delete or backspace key. Other methods may
be used to remove the specification for a token.

One embodiment may provide the user with the ability to
slide the token specification a byte at a time over the
instrument response 211 within the available space. When
sliding the token, a tip-strip 236 may slide along with it. The
tip strip 236 may display the set of possible data types and
the value of the current region for the possible data types.

One embodiment may provide the user with the ability to
resize a string token. This may be accomplished, for
example, by allowing the user to grab the edge of a string
token’s bounding rectangle and enlarge or shrink the rect-
angle a byte at a time bounded by the available space. The
minimum size of a string token is one character.

US 7,134,081 B2

19
ASCII Mode

FIGS. 3, 7 and 8 illustrate embodiments of an exemplary
instrument I/O assistant UI 200 in ASCII mode. ASCII mode
may be used to find and select alphanumeric strings and
numbers in an instrument response. In ASCII mode, the user
may select an area of the instrument response 211 and it is
automatically interpreted as either a number such as token
212 of FIG. 3 or as a string such as token 240 of FIG. 7. The
user may use a hovering technique such as that described for
HEX mode to select an area or region of the response 211 to
be tokenized. To assist in parsing the instrument response,
the user may specify one or more separators or delimiters.
For example, the comma is selected as a separator in field
214 of FIGS. 3, 7 and 8. When a separator is supplied, the
instrument response 211 is automatically tokenized based on
the separator(s). The separators are not included in the
tokens.

If the selected region contains a base ten integer or real
number, it is automatically interpreted as a number, but the
user can choose to represent it as a string, for example, by
changing the type 222 attribute as illustrated in FIG. 3. As
illustrated in FIG. 8, if the token is a number, then the user
may provide a count 220. When specifying a count greater
than one, the user may also specify a separator 214, and the
specified separator may follow each of the ASCII number
representations in the response string 211. The token may
then be represented as an ASCII enumerated array 213. Once
the user has specified a token as an array (that is a count
greater than 1), then the user has the option to “collapse” the
token so that all of the elements of the array appear as only
one token/element.

Code Creation

The instrument /O assistant may provide the ability to
create code for later use in interfacing with message-based
instruments. The results of the ASCII and/or HEX token
specification as described above may be used to automati-
cally create a text-based (e.g. C, C++, .NET) and/or graphi-
cal code (e.g. a LabVIEW graphical code object that can be
included in a virtual instrument) that may be used to
programmatically perform the same functions as the instru-
ment /O assistant mechanism allowed the user to achieve
interactively. These functions may include communicating
with an identified instrument, sending command(s) to the
identified instrument, and reading back responses from the
instrument, and parsing the received response (for display or
for other uses), among others. The instrument 1/O assistant
may provide the ability to create code to call and execute the
saved configuration from a graphical language and/or a
text-based language.

The saved code for one query and response may be
referred to as a query block. A user may use the instrument
1/O assistant to perform the above functions one or more
times to generate a series of one or more query blocks which
may be combined into a task. The task may then be executed,
or alternatively code may be generated to execute the task.

In instrument control application programs such as Lab-
VIEW, the instrument I/O assistant mechanism may be
accessed as graphical primitive that executes a saved con-
figuration. The primitive takes the name of a saved configu-
ration that can change its set of outputs based on the outputs
that the saved configuration generates. In instrument control
application programs such as LabVIEW, the instrument /O
assistant mechanism may be accessed as a “block” that
brings up an instrument [/O assistant wizard and automati-
cally generates the code (e.g. LabVIEW code) from instru-
ment I/O assistant into the block.

20

25

30

35

40

45

50

55

60

65

20
FIG. 9—Flowchart

FIG. 9 is a flowchart of a method of querying message-
based instruments, parsing the responses, and generating
code that encapsulates the connection/communication with
the instrument and the parsing of the response according to
one embodiment. As indicated at 300, one or more message-
based instruments connected to a system may be detected.
The instrument I/O assistant may automatically scan for
message-based instruments coupled to the system within
which the instrument 1/O assistant is executing. The instru-
ment /O assistant Ul may provide a control that allows the
user to initiate a scan for message-based instruments. As
indicated at 302, the user may scroll through and select an
instrument from a list of detected instruments, or may
otherwise specify a particular instrument to be communi-
cated with, for example by entering a VISA resource string.

As indicated at 304, the user may then enter a command
(e.g. query) to send to the selected instrument. In one
embodiment, the user may enter the command by typing it
in to a query field. In one embodiment, if the instrument /O
assistant can determine the instrument type (e.g. DMM,
scope, arbitrary waveform (arb)/function generator, counter,
etc.), or alternatively if the user specifies the instrument
type, then syntax completion and suggestions, for example
according to the SCPI standard, may be provided to the user.
In other words, syntax completion and suggestions may
appear as the user types in a command to the instrument. In
one embodiment, instrument vendors and/or third parties
may provide a file for a specific instrument that describes the
command syntax of the instrument. This file may then be
used by the instrument 1/O assistant in providing syntax
information to the user. If such a file exists, then the standard
SCPI syntax completion may be replaced with syntax
completion based on the custom file. After entering the
command, the user may select a user interface item to cause
the command to be sent the instrument.

As indicated at 306, the instrument I/O assistant may
receive a response from the instrument after the command is
sent. The response from the instrument may comprise instru-
ment data represented as a binary or ASCII string. In one
embodiment, the user may have the option of toggling the
representation of the response data between binary and
ASCII representations. Data in ASCII representation may
comprise a sequence of strings, and the user may specify a
delimiter for the sequence.

As indicated at 308, the received response may then be
parsed. In one embodiment, the instrument I/O assistant may
“pre-parse” instrument responses. Using parsing, for
example, instead of a string of ASCII characters and binary
numbers, the user will see the actual number(s) correspond-
ing to a voltage reading. If the pre-parsing does not interpret
the instrument response correctly, then the user may inter-
actively and graphically vary how the response string is
parsed. Characteristics associated with instrument command
strings and response strings that may be set or changed by
the user in order to define the desired command/response
include, but are not limited to, data type, binary/text format,
endianness, tokens/sequences, scaling, output data (wave-
forms, etc.), and headers on/off.

In one embodiment, the user may operate to graphically
parse the response. Stated another way, the user may graphi-
cally configure the way in which the response is parsed. For
example, the user may graphically position an icon over
respective portions of the data to delineate different portions
of the data as tokens. In one embodiment, the user may
position or size an icon, such as a transparently colored lens
icon that spans over a portion of the response data, and then

US 7,134,081 B2

21

the user may highlight the icon, thus selecting the data for
tokenization. The data underneath the icon (e.g. a lens icon)
is set apart as a token. In one embodiment, the appearance
(e.g. color and/or texture) of the icon (e.g. a transparent lens
icon) may be used to specify the data type of the token. As
the user scrolls through to parse the rest of the data in the
response, the data may maintain its highlighted color to
indicate that it is tokenized. For every token in the data
response, the user may be able to specify the data type to
interpret the token, a count to specify a sequence or array of
values, a delimiter for an array of values, the data type that
the instrument I/O assistant may use to output the data,
scaling parameters for that token, and a name for the output
parameter, among other characteristics.

As indicated at 310, the instrument /O assistant may
provide the ability to create code for later use in interfacing
with message-based instruments. The results of the token
specification as described above may be used to automati-
cally create a text-based (e.g. C, C++, .NET) and/or graphi-
cal code (e.g. a LabVIEW graphical code object that can be
included in a virtual instrument) that may be used to
programmatically perform the same functions as the instru-
ment /O assistant mechanism allowed the user to achieve
interactively. These functions may include communicating
with an identified instrument, sending command(s) to the
identified instrument, reading back responses from the
instrument, and parsing the received response (for display or
for other uses), among others. The instrument 1/O assistant
may also provide the ability to create code to call and
execute the saved configuration from a graphical language
and/or a text-based language. The saved code for one query
and response may be referred to as a query block. A user may
use the instrument [/O assistant to perform the above func-
tions one or more times to generate a series of one or more
query blocks which may be combined into a task. The task
may then be executed, or alternatively code may be gener-
ated to execute the task.

FIG. 10—Flowchart

FIG. 10 is a flowchart expanding on the parsing of the
response as indicated at 308 of FIG. 9. Some aspects of the
behavior of the instrument I/O assistant during parsing may
be dependent upon whether the instrument response is in
hexadecimal (HEX) or ASCII. As indicated at 340, the
instrument [/O assistant may determine if the response is
HEX or ASCII. The instrument 1/O assistant may automati-
cally detect whether the instrument response is in HEX or
ASCII, or alternatively the user may be able to specify
whether the instrument response is in HEX or ASCII.

If the response is in HEX, the response may be displayed
in a HEX format as indicated at 342. In HEX mode, numeric
tokens are interpreted in terms of their binary representation.
Note that other numerical formats may be used to display the
numerical data. In one embodiment, the HEX instrument
response may be displayed in a response field of an instru-
ment /O assistant Ul as a series of HEX bytes separated by
spaces. As indicated at 344, the user may then select a region
to be tokenized. The user preferably selects a region to be
tokenized by manipulating an icon in the display, such as by
using a pointer device, e.g. a mouse, trackball, joystick,
touchpad, etc. In one embodiment, the user may “hover” a
mouse cursor or other icon over the instrument response, and
the mechanism may visually select the largest of a region of
the response (e.g. a 1, 2, 4, or 8 byte region). The region may
be calculated starting at the current mouse position and
terminating either at the end of the instrument response or at
the beginning of the next region. A bounding rectangle, color

20

25

30

35

40

45

50

55

60

65

22

fill, and/or other indicator may be used to visually indicate
the region selected from the current hover position.

As indicated at 346, after selecting the region to be
tokenized, various characteristics of the token may be speci-
fied. Characteristics of the token may be automatically
determined by the instrument I/O assistant or alternatively
may be specified by the user through the instrument I/O
assistant user interface. In one embodiment, when a region
is selected by hovering as described above, a tip-strip may
be displayed above the selected region showing the set of
possible data types, and the value of the selected region for
the possible data types. The data types may include data
types that occupy the region and/or smaller portions thereof.
The user may then select a data type for the region from the
tip-strip.

One embodiment may provide the user with the ability to
slide the token specification a byte at a time over the
instrument response within the available space. When slid-
ing the token specification, the tip-strip may slide along with
it. The tip strip may display the set of possible data types and
the value of the current region for the possible data types.

One embodiment may provide the user with the ability to
resize a string token. This may be accomplished, for
example, by allowing the user to grab the edge of a string
token’s bounding rectangle and enlarge or shrink the rect-
angle a byte at a time bounded by the available space. The
minimum size of a string token is one character.

When the user specifies a token’s data type, the instru-
ment response may be graphically annotated to show the
selected token. In one embodiment, this may be done with
a bounding rectangle and/or color fill that represents the data
type. Other methods may be used to graphically annotate the
selected token. One or more attributes of the selected token
may be displayed in fields of the instrument /O assistant
user interface.

The user may specify the count of a selected token. In one
embodiment, the count for tokens of a string type may not
be specified. If the count is greater than one, then the token
may be interpreted as a contiguous set of values of a
particular size and type starting at the selected token (e.g. an
array). Once the user has specified a token as an array (that
is, the token has a count greater than 1), then the user may
have the option to collapse the token so that all of the
elements of the array appear as one token/element. In one
embodiment, the count defaults to 1. In one embodiment, the
count may be set to the value of a named token that was
previously specified by the user and that precedes the
selected token. When the count is set to a named token, the
value of the named token may be used as the count value for
the currently selected token. When the user specifies a count
that evaluates to a number greater than one, the instrument
response string may be graphically annotated to show the
individual elements of the set connected together.

Note that the tokenization of values in a HEX response as
described above may be repeated one or more times for each
value that the user wished to tokenize in the HEX response.

Ifthe response is in ASCII, the response may be displayed
in an ASCII format as indicated at 360. In ASCII mode, the
instrument I/O assistant user interface may be used to find
and select alphanumeric strings and numbers in the instru-
ment response. As indicated at 362, the response may be
automatically tokenized using default delimiters. The user
may examine the tokenized response to determine if the
automatic tokenization is correct as indicated at 364. If the
automatic tokenization is correct, then the user may accept
the tokenization and proceed to creating the code at 310.

US 7,134,081 B2

23

If the user determines that the automatic tokenization is
not correct, then the user may first determine if the delimiter
(i.e. separator) used in automatic tokenization is correct as
indicated at 366. If the user determines that the delimiter is
not correct, then the user may optionally specify a delimiter
as indicated at 370 to assist in parsing the instrument
response. For example, a comma may be entered as a
delimiter. If the user supplies a delimiter, the instrument
response may be automatically re-tokenized based on the
delimiter. In one embodiment, the delimiters are not
included in the tokens.

As mentioned, if the user determines that the delimiter is
correct, or if the user enters a corrected delimiter, then the
instrument response may be automatically tokenized using
the delimiter (and, if applicable, one or more other attributes
of the token, which may be automatically set or optionally
may be specified by the user). Automatic tokenization may
include the instrument [/O assistant automatically selecting
regions in the response message to be tokenized based upon
the delimiters in the response message. Optionally, the user
may manually select a region or regions of the instrument
response as indicated at 368 to override the region selection
of the automatic tokenization. In ASCII mode, the user may
select an area or region of the instrument response, and the
region may be automatically interpreted as either an ASCII
number or as a string. The user may use a hovering tech-
nique such as that described for HEX responses at 344 to
select an area or region of the response to be tokenized.

As indicated at 372, after a region is selected as a token,
various characteristics of the token may be specified. If the
selected region contains a base ten integer or real number, it
may be automatically interpreted as a number, but the user
may choose to represent it as a string, for example, by
changing the type attribute. If the token is a number, then the
user may provide a count. When specitying a count greater
than one, the user may also specify a separator, and the
specified separator may follow each of the ASCII number
representations in the response string. The token may then
be represented as an ASCII enumerated array. Once the user
has specified a token as an array (that is, the token has a
count greater than 1), then the user may optionally “col-
lapse” the token so that all of the elements of the array
appear as one token/element.

Note that the tokenization of values in an ASCII response
as described above may be repeated one or more times for
each value that the user wished to tokenize in the ASCII
response.

The methods as described in FIGS. 9-10 may be imple-
mented in software, hardware, or a combination thereof. The
order of method may be changed, and various steps may be
added, reordered, combined, omitted, modified, etc.

Workshop Framework

In one embodiment, a “Workshop Framework™ may be
used to save tasks made up of query blocks as the user
creates them, and the created tasks may then be reused
within instrument I/O assistant. The term “Workshop Frame-
work™ refers to a graphical user interface wherein tasks or
query blocks can be graphically assembled into a script or
program. For example, the user can use the Workshop
Framework to graphically select a plurality of query blocks
(e.g. represented by icons) and configure the icons in a
desired order of execution, thereby creating a task. For
example, the user may create a trigger task for an HP 54645
scope, and save it. The task will then show up in a block
palette menu from where the user may select query blocks
and/or tasks. The user may then reuse the trigger task within

20

25

30

35

40

45

50

55

60

65

24

another task. By persisting tasks, users may be able to reuse
their own tasks, and also may share their tasks with other
users. Tasks may be collected and organized for distribution,
for example through a website.

As previously described, a single task may include any
number of query blocks, and may include one or more other
tasks as “subtasks”. FIG. 11 illustrates a task 250 with nested
subtasks and query blocks according to one embodiment.
Each subtask 252 includes one or more query blocks 254.
Task 250 may also include one or more query blocks 254.
Note that subtasks 252 may also include nested subtasks
252. A task may also query certain data from the instrument
“silently”, without the user’s knowledge, to determine the
state of the instrument. For example, a task may query the
instrument to determine if headers are turned on or off so
that the parser is aware of how to handle headers in the
response. Some instruments may support similar queries to
determine other characteristics such as byte ordering. In one
embodiment, these queries to determine the state of the
instrument may be done automatically in a task so that user
does not have to explicitly add these queries as part of their
task.

FIG. 12 is a flowchart illustrating a method of sequencing
query blocks in tasks according to one embodiment. As
indicated at 500, a plurality of query blocks may be gener-
ated in response to user input. Each query block may be
executable within an instrumentation system to connect with
a message-based instrument, send a query message to the
message-based instrument, receive a response to the query
message from the message-based instrument, parse the
response, and output results of parsing the response. As
indicated at 502, the user may graphically sequence the
plurality of query blocks in a desired order of execution, and
store the sequenced plurality of query blocks in a task as
indicated at 504.

FIG. 13 is a flowchart illustrating a method of generating
a task object and graphically editing the generated task
object according to one embodiment. As indicated at 510, a
task object may be generated in response to user input. The
user may then graphically add the task object to an instru-
ment control application program as indicated at 512. As
indicated at 514, the user may invoke a user interface for
graphically editing the task object. The user may then
graphically generate one or more query blocks using the user
interface as indicated at 516. Each query block may be
executable within an instrumentation system to connect with
a message-based instrument, send a query message to the
message-based instrument, receive a response to the query
message from the message-based instrument, parse the
response, and output results of said parsing the response. As
indicated at 518, the user may then graphically add the one
or more query blocks to the task object.

NI-GPIB and NI-VISA, for example, both offer tools for
reporting errors descriptively and monitoring the bus and
API calls. These tools include, but are not limited to, NI Spy,
GPIB Analyzer, and the error reporting in VISAIC. In one
embodiment, the instrument I/O assistant may include tools
that utilize these technologies and incorporate them into a
single application. In one embodiment, the technologies may
be provided as separate tabs in the instrument [/O assistant.

The instrument /O assistant workshop may maintain a
repository of common error responses so that if an instru-
ment returns an error number, then the instrument 1/O
assistant may interpret and display the error. For example,
error number “113” may resolve to an “Undefined header”
error. It is a common error to which users often fall victim.
The instrument I/O assistant may display only descriptive

US 7,134,081 B2

25

human readable errors in lieu of numerics and non-descrip-
tive strings like “Undefined Header.”

In one embodiment, when the user saves a task that has
been created, the task may be accessible in a query block
palette menu in the instrument [/O assistant. Tasks may be
organized hierarchically under the device that task belongs
to in the query block palette menu. In one embodiment,
when an already defined task is inserted into a new task, that
task may not appear as one sequence block in the new task,
but instead may be expanded into the one or more query
blocks that compose the predefined task. The sequence
corresponding to the inserted task may be annotated in the
new task to illustrate that the inserted task has been
expanded into its query blocks. If the user edits any of the
query blocks that make up the inserted task, then the
annotation may disappear and may lose the coupling with
the inserted task. If the user edits a Task A, then a Task B that
includes Task A may be automatically updated to include the
changes to Task A. If the user changes one of the blocks
annotated as part of Task A within Task B, then the tie
between Task A and Task B may be lost.

Task Execution

Typically in the Workshop environment, a task may be run
repetitively as the user interacts with the task. In the case of
the instrument /O assistant, task execution may need to be
run in sequence only when a change has been made to a
block that requires a run of the task. For example, a query
block should not be executed while the user is typing in the
command to be sent. The task may be executed only when
the user “applies” the block. The task will not be run
repetitively; it may only be run once when the user modifies
the block.

Various embodiments may further include receiving,
sending or storing instructions and/or data implemented in
accordance with the foregoing description upon a carrier
medium. Generally speaking, a carrier medium may include
storage media or memory media such as magnetic or optical
media, e.g., tape, disk or CD-ROM, volatile or non-volatile
media such as RAM (e.g. SDRAM, DDR SDRAM,
RDRAM, SRAM, etc.), ROM, etc. as well as transmission
media or signals such as electrical, electromagnetic, or
digital signals, conveyed via a communication medium such
as network and/or a wireless link.

Although the method and apparatus of the present inven-
tion has been described in connection with the preferred
embodiment, it is not intended to be limited to the specific
form set forth herein, but on the contrary, it is intended to
cover such alternatives, modifications, and equivalents, as
can be reasonably included within the spirit and scope of the
invention as defined by the appended claims.

What is claimed is:
1. A method executable within an instrumentation system,
comprising:
sending a query message to a message-based instrument;
receiving a response from the message-based instrument;
and
parsing the response, wherein said parsing comprises:
displaying the response;
graphically selecting a region of the displayed response
in response to user input; and
specifying one or more attributes of the selected region;
wherein the selected region is configured in accordance
with the specified attributes.
2. The method of claim 1, wherein said specifying one or
more attributes of the selected region configures the selected
region as a token in accordance with the specified attributes.

20

25

30

35

40

50

55

60

65

26

3. The method of claim 1, wherein the specified one or
more attributes of the selected region include one or more of
data type, byte ordering, position, size, count, name, and
scaling.

4. The method of claim 1, further comprising, prior to said
sending the query message, specifying the message-based
instrument to receive the query message in response to user
input.

5. The method of claim 4, wherein specifying the mes-
sage-based instrument comprises selecting the message-
based instrument from a list of two or more instruments
coupled to the instrumentation system in response to user
input.

6. The method of claim 1, further comprising:

generating a query block in response to said parsing,

wherein the query block comprises program instruc-
tions that are executable to perform said sending, said
receiving, and said parsing; and

storing the generated query block to memory.

7. The method of claim 6, wherein the query block is
executable within the instrumentation system to interact
with the selected message-based instrument to perform said
sending, said receiving, and said parsing.

8. The method of claim 6, wherein the query block is a
graphical object configured for use in a graphical program-
ming environment.

9. The method of claim 6, wherein the query block is a
text-based module configured for use in a textual program-
ming environment.

10. The method of claim 6, further comprising:

adding the query block to an instrument control applica-

tion program;

executing the instrument control application program; and

executing the query block within the instrument control

application program to interact with the selected mes-
sage-based instrument to perform said sending, said
receiving, and said parsing.

11. The method of claim 6, wherein said parsing generates
one or more parsed instrument responses.

12. The method of claim 11, further comprising display-
ing at least a subset of the parsed instrument responses.

13. The method of claim 11, further comprising providing
at least a subset of the parsed instrument responses to one or
more other objects in the instrument control application
program.

14. The method of claim 1, further comprising:

repeating said sending, said receiving and said parsing for

a plurality of query messages to the message-based
instrument;

generating a query block for each of the repetitions,

wherein the query block comprises program instruc-
tions that are executable to perform said sending, said
receiving, and said parsing as specified for the particu-
lar repetition; and

adding the plurality of generated query blocks for each of

the repetitions to a task in memory.

15. The method of claim 14, wherein the task comprises
the plurality of query blocks in a sequence, and wherein the
task is executable to execute the plurality of query blocks in
the sequence.

16. The method of claim 14, wherein the task is a
graphical object configured for use in a graphical program-
ming environment.

17. The method of claim 14, wherein the task is a
text-based module configured for use in a textual program-
ming environment.

US 7,134,081 B2

27

18. The method of claim 1, wherein the response is
displayed in hexadecimal format.

19. The method of claim 1, wherein the response is
displayed in ASCII format.

20. The method of claim 19, wherein the data format is
one of hexadecimal and ASCII.

21. The method of claim 1, further comprising determin-
ing a data format of the response, wherein said displaying
the response displays the response in accordance with the
determined data format.

22. The method of claim 1, wherein said displaying the
response displays the response in accordance with a data
format, the method further comprising:

after said specifying one or more attributes of the selected

region, changing the displayed response to another data
format in response to user input; and

wherein the selected region is configured in accordance

with the specified attributes after said changing.

23. The method of claim 1, further comprising tokenizing
the response prior to said graphically selecting the region.

24. The method of claim 1, wherein the response is an
ASCII response, wherein said displaying the response dis-
plays the response as one or more ASCII tokens generated
by said tokenizing.

25. The method of claim 1, wherein said specifying the
one or more attributes of the selected region is performed in
response to user input.

26. An instrumentation system comprising:

a computing device comprising:

a processor; and
a memory;

a message-based instrument coupled to the computing

device;

aunit under test coupled to the message-based instrument;

wherein the memory comprised in the computing device

comprises program instructions executable within the

computing device to:

send a query message to the message-based instrument;

receive a response from the message-based instrument;
and

parse the response;

wherein, to parse the response, the program instructions

are further executable to:

display the response;

graphically select one or more regions of the displayed
response in response to user input;

specify one or more attributes for each selected region;
and

configure each selected region as a token in accordance
with the specified one or more attributes of the
particular selected region.

27. The instrumentation system of claim 26, wherein the
specified one or more attributes of each selected region
include one or more of data type, byte ordering, position,
size, count, name, and scaling.

28. The instrumentation system of claim 26, wherein the
program instructions are further executable to specify the
message-based instrument to receive the query message in
response to user input.

29. The instrumentation system of claim 28, wherein, to
specify the message-based instrument, the program instruc-
tions are further executable to select the message-based
instrument from a list of two or more instruments coupled to
the instrumentation system in response to user input.

30. The instrumentation system of claim 26, wherein the
message-based instrument is one of one or more message-
based instruments coupled to the computing device,

20

25

30

35

40

45

50

55

60

65

28

wherein, prior to said sending the query message, the
program instructions are further executable to detect the
message-based instrument coupled to the device.

31. The instrumentation system of claim 26, wherein the
program instructions are further executable to:

generate a query block in response to said parsing,

wherein the query block comprises program instruc-
tions that are executable to perform said sending, said
receiving, and said parsing; and

store the generated query block to the memory.

32. The instrumentation system of claim 31, wherein the
query block is executable within the instrumentation system
to:

send the query message of the query block to the message-

based instrument;

receive the response from the message-based instrument;

select one or more regions of the response; and

configure each of the selected one or more regions as a

token in accordance with the specified one or more
attributes of the particular region.

33. The instrumentation system of claim 31, wherein the
query block is a text-based module configured for use in a
textual programming environment.

34. The instrumentation system of claim 31, wherein the
query block is a graphical object configured for use in a
graphical programming environment.

35. The instrumentation system of claim 31, wherein the
program instructions are further executable to:

add the query block to an instrument control application

program stored in the memory;

execute the instrument control application program; and

execute the query block within the instrument control

application program to interact with the selected mes-
sage-based instrument to perform said sending, said
receiving, and said parsing.

36. The instrumentation system of claim 35, wherein said
parsing during execution of the query block generates a
parsed instrument response.

37. The instrumentation system of claim 36, further
comprising displaying the parsed instrument response.

38. The instrumentation system of claim 36, further
comprising providing the parsed instrument response to one
or more other objects in the instrument control application
program.

39. The instrumentation system of claim 31, wherein the
query block is configured to be exported to other instrumen-
tation systems.

40. The instrumentation system of claim 26, wherein the
program instructions are further executable to:

repeat said sending, said receiving and said parsing for a

plurality of query messages to the message-based
instrument;

generate a query block for each of the repetitions, wherein

the query block comprises program instructions that are
executable to perform said sending, said receiving, and
said parsing as specified for the particular repetition;
and

add the plurality of generated query blocks for each of the

repetitions to a task in the memory.

41. The instrumentation system of claim 40, wherein the
task comprises the plurality of query blocks in a sequence,
wherein the task is executable within the instrumentation
system, and wherein, in said executing within the computer
system, the task is configured to execute the plurality of
query blocks in the sequence.

US 7,134,081 B2

29

42. The instrumentation system of claim 40, wherein the
task is configured to be exportable to other instrumentation
systems.

43. The instrumentation system of claim 40, wherein the
task is a text-based module configured for use in a textual
programming environment.

44. The instrumentation system of claim 40, wherein the
task is a graphical object configured for use in a graphical
programming environment.

45. The instrumentation system of claim 26, wherein the
response is displayed in a hexadecimal format.

46. The instrumentation system of claim 26, wherein the
response is displayed in an ASCII format.

47. The instrumentation system of claim 26, wherein the
message-based instrument is a GPIB instrument.

48. The instrumentation system of claim 26, wherein the
message-based instrument is a serial instrument.

49. A computer-readable memory medium comprising
program instructions executable within an instrumentation
system, wherein the program instructions are executable to
implement:

sending a query message to a message-based instrument;

receiving a response from the message-based instrument;

and

parsing the response, wherein said parsing comprises:

displaying the response;

graphically selecting a region of the displayed response
in response to user input; and

specifying one or more attributes of the selected region;

wherein the selected region is configured in accordance
with the specified attributes.

50. The computer-readable memory medium of claim 49,
wherein said specifying one or more attributes of the
selected region configures the selected region as a token in
accordance with the specified attributes.

51. The computer-readable memory medium of claim 49,
wherein the specified one or more attributes of the selected
region include one or more of data type, byte ordering,
position, size, count, name, and scaling.

52. The computer-readable memory medium of claim 49,
wherein the program instructions are further executable to
implement, prior to said sending the query message, speci-
fying the message-based instrument to receive the query
message in response to user input.

53. The computer-readable memory medium of claim 52,
wherein, in said specifying the message-based instrument,
the program instructions are further executable to implement
selecting the message-based instrument from a list of two or
more instruments coupled to the instrumentation system in
response to user input.

54. The computer-readable memory medium of claim 49,
wherein the program instructions are further executable to
implement:

w

25

30

35

40

45

50

30

generating a query block in response to said parsing,
wherein the query block comprises program instruc-
tions that are executable to perform said sending, said
receiving, and said parsing; and

storing the generated query block to memory;

wherein the query block is executable within the instru-

mentation system to interact with the selected message-
based instrument to perform said sending, said receiv-
ing, and said parsing.

55. The computer-readable memory medium of claim 54,
wherein the query block is a graphical object configured for
use in a graphical programming environment.

56. The computer-readable memory medium of claim 54,
wherein the query block is a text-based module configured
for use in a textual programming environment.

57. The computer-readable memory medium of claim 54,
wherein the program instructions are further executable to
implement:

adding the query block to an instrument control applica-

tion program;

executing the instrument control application program; and

executing the query block within the instrument control

application program to interact with the selected mes-
sage-based instrument to perform said sending, said
receiving, and said parsing.

58. The computer-readable memory medium of claim 49,
wherein the program instructions are further executable to
implement:

repeating said sending, said receiving and said parsing for

a plurality of query messages to the message-based
instrument;

generating a query block for each of the repetitions,

wherein the query block comprises program instruc-
tions that are executable to perform said sending, said
receiving, and said parsing as specified for the particu-
lar repetition; and

adding the plurality of generated query blocks for each of

the repetitions to a task in memory;

wherein the task comprises the plurality of query blocks

in a sequence, and wherein the task is executable to
execute the plurality of query blocks in the sequence.

59. The computer-readable memory medium of claim 58,
wherein the task is a graphical object configured for use in
a graphical programming environment.

60. The computer-readable memory medium of claim 58,
wherein the task is a text-based module configured for use
in a textual programming environment.

61. The computer-readable memory medium of claim 49,
wherein the response is displayed in one of a hexadecimal
format and an ASCII format.

