
GEORGIA INSTITUTE OF TECHNOLOGY 	 OFFICE OF CONTRACT ADMINISTRATION

PROJECT ADMINISTRATION DATA SHEET

)171 ORIGINAL 7 REVISION NO. 	

Project No. E- 24-669 	GTRISCX 	DATE 10 / 21-1 83

Project Director: 	D. R. Young 	Schooi&U 	I SyE

Sponsor: MERADCOM, Procurement & Production Directorate, Ft. Belvoir, VA

Type Agreement: D.O. #0011 under BOA DAAK70-79-D-0087 AIRMICS (OCA File #42)

Award Period: From 	9/29/83 	To 	 (Performance) 	 (Reports)

Sponsor Amount: 	 This Change51/ SAS- 	 Total to Date

Estimated: $ 111,090 	$ 111.090

Funded: $ 111,090 	$ 111.090

Cost Sharing Amount: $ None

Cost Sharing No: N/A

Title: Stand—alone Operation — Automated Protect Management System (Phase TV)

ADMINISTRATIVE DATA
1) Sponsor Technical Contact:

OCA Contact William F. Brown x4820
2) Sponsor Admin/Contractual Matters:

Capt. Richard D. Lee

ADP Officer

AIRMICS 206 4 K -- : Bldror.

O'Keefe Bldg. 	 Geor,5

Georgia Tech, Atlanta, GA 30332 	A-ff-a24a, \GA 30332

(404) 894-3107 	 (404)1881-4213

Defense Priority Rating: DO—SI

Military Security Classification: 	

(or) Company/Industrial Proprietary: N/A

RESTRICTIONS

See Attached 	Gov' t
	

Supplemental Information Sheet for Additional Requirements.

Travel: Foreign travel must have prior approval — Contact OCA in each case. Domestic travel requires sponsor

approval where total will exceed greater of $500 or 125% of approved proposal budget category.

Equipment: Title vests with 	Gov' r

COMMENTS:

r'.

COPIES TO:

Project Director
Research Administrative Network

Research Property Management

Accounting

fi 	„la.,

eports Coordinator (OCA)

Research Communications (2)

Project iir

Other I. Newton

SPONSORED PROJECT TERMINATION/CLOSEOUT SHEET

Date
	12/30/86

None

Grant/Contract Closeout Actions Remaining:

I y I
No further reporting
requirements per telecon

Brown/Sponsor.

GEORGIA INSTITUTE OF TECHNOLOGY 	 OFFICE OF CONTRACT ADMINISTRATION

Project NO-24-669

School/KW 	 ISYE

Includes Subproject No.(s) 	N/A

Project Director(s) 	D. B. Young

GTRC /

Sponsor MERADCOM

Title
	Stand—alone Operation—Automated project Management System (Phase IV)

Effective Completion Date:
5/15/85 (Performance) 	 (Reports)

n Final Invoice or Final Fiscal Report

Closing Documents

Final Report of Inventions

Govt. Property Inventory & Related Certificate

Classified Material Certificate

Other 	

Continues Project No. 	 Continued by Project No. 	

COPIES TO:

Project Director 	 Library

Research Administrative Network 	 GTRC

Research Property Management 	 Research Communications (2)

Accounting 	 Project File

Procurement/GTRI Supply Services 	 Other 	 I. Lashley
Research Securit Services 	 A. Jones

inator 	 R. Embry
Legal Services

SCHOOL OF INDUSTRIAL AND SYSTEMS ENGINEERING

Atlanta, Georgia 30332
	

(404) 894-2300

3 January 1984

MEMORANDUM

TO: 	Cpt. Larry Frank, AIRMICS

FROM: 	Donovan Young

SUBJECT: E-24-658 Retrofit Software Delivery

Enclosed is a tape and diskette constituting the current
version of GITPASE, dated 12/20/84, along with a "Table of
Current GITPASE Features" which summarizes all the features
which have been added since the previous delivery. This
version contains all features specified in the contract, plus
several extra features beyond those — explanatory text, in-
verse text, milestones, and printed reports. Those features
that might cause the code to be too large for the PC version
can be easily removed according to the procedures given in
the Table. The Table also documents all the new variables,
which are also, of course, documented in the code itself.
User documentation will be given in the Users Manual to follow,
and in the separate specifications "WH1 — Printed Reports"
and "WH2 — Milestones," which will be appended to the Users
Manual.

The new version contains corrections to all of the mis-
cellaneous bugs that had been identified in the previous ver-
sion. 	With this delivery, we have fulfilled all require-
ments for contract E-24-658 execept for a new edition of the
Users Manual.

With respect to the current contract E-24-669 (PC ver-
sion), I recommend you use this version as the VAX version
from which to download code for the PC version.

cc: Ron Rardin, Purdue Univ.
Clark Weeks
Pat Heitmuller
M. E. Thomas
E-24-669 File

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

AN EQUAL EDUCATION AND EMPLOYMENT OPPORTUNITY INSTITUTION

TABLE OF CURRENT GITPASE FEATURES 12/20/84

IFEAT() 	FEATURE
1 	 EXPLANATORY TEXT
2 	 INVERSE TEXT
3 	 PRINTED REPORTS
4 	 FILE VERIFICATION
5 	 MILESTONES

HOW TO REMOVE EXPLANATORY TEXT

1) Set IFEAT(1) to 0
2) Dummy all common block arrays ending in FT1 to a size

of 1 (these common blocks exist in CONTRL.F, HIERH.F,
and NETSAV.F).

3) Delete all common block nonsubscripted variables in
common blocks and ending in FT1.

4) Remove all references to these variables in INITLZ.
5) Dummy or delete routines in PH3RUT2 as directed by the

header comment blocks.

HOW TO REMOVE INVERSE TEXT

1) Set IFEAT(3) to 0
2) Modify print routine in PH3NIM to only give 'UNIMPLEMENTED'

error message.
3) Remove PH3*3.FOR from compilation and link.

HOW TO REMOVE MILESTONES

1) Set IFEAT(5) to 0
2) Remove or dummy routines in PH3TRN2,3 as appropriate

(headers will indicate).
3) Delete A11/CFT5/ITEMS from CONTRL.F.
4) Drop the dimension of ISGLE in netsay.F to 1.
5) Drop the dimension of ITGLE in trnwk.F to (1,4).

NEW VARIABLES

Documentation of New Contrl.F Variables

Feature 5

LIMG - maximum number of milestones (Global Events)
NUMGLE - current number of milestones
IGNAM - names of milestones
IGMNET - member network numbers of milestones
IGMNNM - member network names of milestones
IGMPSM - finish time in determinant network
IGMHDR - Leader pointer to IGMNET, IGMNNM
IKGLE - Active global event
KOMGLE - Last touched global event
IGLETX - Explanatory text for milestone

New Working Storage Files

KURRPT - name of file used for report
NETINF - temporary storage of network information
RSTINF - unused
IRPTFL - name of working storage file for reports
LURP1 - unit for original copy of explanatory text
LURP2 - unit for final copy of explanatory text

Feature 1 ends in

L - number of text records of explanatory text
W - number of interger words per record of explanatory

text

First four characters

IACT - Activity explanatory text
IRES - Resource explanatory text
IPLN - Plan explanatory text
IFIL - File explanatory text

IFILTX - Storage place for file explanatory text

Documentation of New HIERH.F Variables

IHRSTX - resource explanatory text workspace for hierar-
chial computations.

New Variables NETSAV.F

IACTTX - activity explanatory text
IRESTX - resource explanatory text
IPLNTX - plan explanatory text
ISGLE - global event flags 0, none + Dependant Network,

- Determinant Network.

Documentation of Variables in PRINT.F

PRINT.F is a new common block used in all printed reports.

IPAGE - storage set aside for one page of a printed
report in memory

IPLOC - current location on the page
IPRTPW - the line printer's page width
IPRTPL - the line printer's page length
ISTCOL - the column in printer pages of this page of output
ISTORD - the order in which the pages are output to the

new report file

Documentation of Variables In New Common SCHPRT.F

SCHPRT.F is a new common block used exclusively for
Schedule Reports.

IALIST - list of activities using a given resource
IALNUM - number of activities using a given resource
ICHECK - list of activities to check for criticality
ICNCOT - cycle number of cycle where resource consumption

rates change
IELYST - earliest start time possible in this network
ILTEFN - latest possible finish time in this network
IPCRT - list of tight predecessors for a given activity
ISCRIT - activity numbers of critical activities
ISCRT - list of tight successors of a given activity
NCHECK - number of activities that need to be checked

for criticality
NCONOT - real value of rates of consumption of a

resource (See ICNCOT)
NCRIT - number of critical activities
NLPRED - number of actual predecessors (by direct data

reference) of a given activity
NLPSUC - number of actual successors (by direct data

reference) of a given activity
NUMENS - unused
NUMCYC - number of cycles of a given resource that appear

in this network's time range
NUMP - number of tight predecessors of a given activity
NUMPD - number of general predecessors of a given activity
NUMS - number of tight successors of a given activity
NUMSC - number of general successors of a given activity
RCONOT - value of resource consumption
RUTL1 - cycle by cycle availability of resource
RUTL2 - cycle by cycle consumption of resource
NAPD - activity numbers of general predecessors of a

given activity
NAPDN - precedence ration between activity and predecessor
NASC - activity numbers of general successors of a

given activity
NASCN - precedence ration between activity and successor

Documentation of Variables in TPRINT.F

TPRINT.F is used for variables exclusively used in the
transition mode report.

JNETNM - network names
JNETNB - network numbers
JDEPT - depth from Root Node: Root node is depth 1
JPAR - network number of parent network
JLIN1 - line number when network name is to be displayed
JISPR - flags denoting whether vertical bars need drawing

in the network diagram 1 yes, 0 no
JNUMNT - number of networks in file
JMXDPT - maximum depth of file
JLINES - number of lines in report

SCHOOL OF INDUSTRIAL AND SYSTEMS ENGINEERING

Atlanta, Georgia 30332-0205 	
(404) 894-2300

May 22, 1984

MEMORANDUM

TO: 	Cpt. Larry Frank, AIRMICS

FROM: 	Donovan Young

SUBJECT: E-24-669 Software Development Plan for Stand-Alone APMS,
and Milestone A and B Specifications

Georgia Tech hereby submits a software development plan for Phase IV
of APMS, subject to your approval. Details of the plan are given in
the attached memo.

Under this plan we are immediately issuing the first two of eight
specifications for programming, level-1 testing, and program
documentation to be performed by the Army. Upon Army completion of
the tasks detailed in these eight specifications, and testing by
Georgia Tech, the software for the IBM PC version will be complete.
(The limited-capability portable version is not covered in these
specifications except to the extent that it will be built from a
subset of the code.)

The first specification, Milestone A, calls for the Army to compile
GITPASE common blocks and service routines on an IBM PC, create and
exercise a dummy calling program for the service routines, and to
create and execute a test program that uses the common blocks.

A very important secondary purpose of the work under Milestone A is
to familiarize new programmers with FORTRAN coding standards to
assure clean code that will be easy to read, debug, document,
enhance, and transport. Our experience with both external and
internal programming personnel has been that it is difficult to
enforce these standards, but that deviations from them have been
costly in both time and money. A large portion of the final effort
in Phase III has been to clean up hasty kludges that caused more
problems than they solved.

Therefore I urge you to be very strict in adherence to the FORTRAN
standards, and to set aside sufficient time for programmers to study
them.

The second specification Milestone B, calls for the Army to
implement new routines for collecting keyed input, to incorporate
BASIC code now running on the Chromatics.

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

AN EGUAL EDUCATION AND EMPLOYMENT OPPORTUNITY INSTITUTION

iH

SCHOOL OF INDUSTRIAL AND SYSTEMS ENGINEERING

Atlanta, Georgia 30332-0205
(404) B94-2300

May 15, 1984

MEMORANDUM

TO: 	Donovan Young, Project Director

FROM: 	Ronald L. Rardin, Consultant

SUBJECT: IBM PC Software Development Plan

In accordance with my contract CI-E-24-669, I am hereby submitting
a plan for software design of the IBM PC version.

Our current project calls for development of FORTRAN software that
provides a version of GITPASE similar to the Phase III deliverable
and operational entirely of IBM PC's (or XT's). As you know, the
Phase III code includes a FORTRAN portion with all model
intelligence and program control, together with a BASIC program
executing terminal input and output (I/O). The IBM PC version will
essentially replace BASIC with new FORTRAN.

The present FORTRAN contains subroutines that are called by
functional routines to call on BASIC for I/O. For example OUTGR4 is
called to produce 4-coordinate graphics primitives, and OUTKEY
called to solicit keyed input. These routines send communications
to BASIC which, in turn, accomplishes the requires outputs and/or
solicits and formats needed inputs.

I propose to accomplish the conversion by replacing such routines as
OUTGR4 and OUTKEY by new ones with the same names and parameters.
However, the new routines will directly call out input and output
(via SCION/HALO) instead of sending communications. This approach
is a "plug compatible" one in that functional routines need not be
modified in any substantial way. Thus linking new code to old
FORTRAN should be a simple matter of erasing the old routines (and
their subordinates) and substituting new ones (with their service
routines).

The "plug compatible" approach also facilitates software development
and testing. Since the routines being replaced are elementary
primitives, they have very little interaction with the remainder of
the code except through their call parameters. Thus, they can be
coded and tested independent of the main code. "Dummy" test main

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

AN EQUAL EDUCATION ANO EMPLOYMENT OPPORTUNITY INSTITUTION

programs can be used to call out and test the routines quickly.
Only at the end of the effort does actual mating with the main
program need to occur.

Our schedule is still tentative because of uncertainties about
hardware. However, I anticipate issuing specifications for a
conversion in the following sequence and schedule:

Milestone A: Download Phase III Service Routines and Commons

Transfer from the VAX Phase III source code all included common
files and the service routines of files and compile on IBM PC
(issued with this memo).

Milestone B: Keyed Input

Prepare and test in stand alone format all routines to accept and
edit keyed input. (Issued with this memo).

Milestone C: Graphic Primitives

Prepare and test in stand alone format all routines to initialize
graphics, to convert coordinates and to execute graphics (not
string) primitives. (Issued one week after hardware is operational).

Milestone D: String Primitives

Prepare and test in stand alone format all routines to display
primitive strings. (Issued 1/2 week after Milestone C).

Milestone E: Complex Displays

Prepare and test in stand alone format all needed routines to create
such complex displays and screens for modes, menus, error messages,
status summaries, help, etc. (Issued 1 1/2 weeks after Milestone
C) .

Milestone F: Locator Input

Prepare and test in stand alone format all routines to collect a
queue of locator (mouse) inputs. (Issued 2 1/2 weeks after
Milestone C).

Milestone G: Download Main Phase III

Transfer all needed code in the delivered Phase III VAX code to the
IBM PC and compile (issued upon delivery of Phase III unless
experimentation with hardware shows significant reformatting of
displays is required).

Milestone H: Mating

Link and test in full functional operation the old code of
Milestones A and G with new code of Milestone C-F (issued late
Summer 1984).

If hardware acquisition and checkout proceeds rapidly, there is no
reason Milestone A-G should not be in your hands by mid-June, 1984.
The only unknown other than hardware is whether reformatting will be
required (see Milestone G).

I hope you find these plans satisfactory.

Milestone A: Download Phase III Service Routines and Commons

By Ronald L. Rardin

The first required step in IBM PC conversion will be famil-
iarization of AIRMICS staff with FORTRAN coding standards, and
service routines and common storage areas of the Phase III FORTRAN
code.

A.1 Download

Table Al lists common areas used by the Phase III code that
will be transferred to the IBM PC. All are presently '.F' files on
the VAX. Transfer these files to the IBM PC and demonstrate their
compatibility by $INCLUDEing all in a test program, then compiling
and executing it. The only conversion that should be required is

dividing overlong areas into two or more blocks with similar names
(e.g. NETSAV may becomes NETSV1, NETSV2, etc.)

Table A2 lists minor service routines employed throughout the
Phase III code. Download each from the indicated VAX module and
compile and link on the IBM PC. Then create a dummy calling program
to exercise all routines. The calling program should include all
required commons and call first on INITLZ (to define internal
constants). Use compiler options which default INTEGER's and REALs
to '*4.'

Compilation of the service routines should be extremely easy.
However, minor changes may be required for IBM PC FORTRAN. For
example, INCLUDE commands in column 7 must become $INCLUDE's of
column 1. Do not under any circumstances change the number, type,
order or significance of the calling parameters for the routines.

A.2 New Code Conventions

In anticipation of new code for later milestones, create and
$INCLUDE new common block(s) /IBM PC/. All variables and arrays
needed for new code should be located there. Do not modify the
definition of any Phase III common blocks.

Prior to beginning coding, programmers should also study the
attached FORTRAN coding standards. These standards are generally
enforced throughout the Phase III code, and should be maintained in
the conversion. Please note in particular prohibitions on implicit
functions and string operations, the requirement that passed scalars
not be constants or expressions, and the indentation and commenting
concepts. See module PH3RPN.FOR of the Phase III code for
convention examples.

TABLE Al. GITPASE COMMON BLOCKS TO BE TRANSFERRED

Filename

CONTRL.F

HIERH.F

NETSAV.F

NETWRK.F

SCHWRK.F

TRNRWK.F

Purpose

All system control variables

Work areas for hierarchial
processing

Saved data on the current network

Temporary data on the current
network

Work areas for schedule
computation

Work areas for Transition Window
operations

TABLE A2. SERVICE ROUTINES TO DOWN LOAD

Name 	 File Location 	 Function

MATINT 	 PH3RUT.FOR 	 match item in list

MAXINT 	 PH3SED.FOR 	 max of integers

MIWINT 	 PH3SED.FOR 	 min of integers

DECINT 	 PH3RPN.FOR 	 decode string to
integer

DECREL 	 PH3RPN.FOR 	 decode string to real

AlA2 	 PH3RUT.FOR 	 convert Al format to
A2

A2A1 	 PH3RUT.FOR 	 convert A2 format to
Al

COPINT 	 PH3RUT.FOR 	 copy integer array

COPREL 	 PH3RUT.FOR 	 copy real array

INCINT 	 PH3RUT.FOR 	 add to all integer
array elements

INITLZ 	 PH3.FOR 	 initialize program
constants

Variable IOPSYS in /CONTRL/ common is now used to switch code
that is operating system specific. Set IOPSYS=3 in INITLZ, and test
on IOPSYS to bypass or insert statements needed only on the IBM PC
version.

The "stand alone" format of most conversion testing will
require that various dummy routines exist until they are replaced by
true ones from new or downloaded code. For initial work create
two:

ERROR(NUM)

KNCERR(NUM,MARK)

Prints to unit 8 that error number
NUM was detected and sets common
/CONTRL/ variable IERFLG=NUM.

Prints to unit 8 that error number
NUM was detected at (CHARACTER *8)
point MARK and divides by zero to
kill the program.

In testing it is often necessary to 'print' material to a file
for analysis. When terminal input/output FORTRAN units 0 are
employed with main displays and graphics, write to unit 8. This

will avoid conflict with other GITPASE operations.

FORTRAN STANDARDS

May 11, 1984

The following are a series of rules defining severe restrictions on
the range of options usually open to a FORTRAN programmer. However,
adherence to the rules leads to FORTRAN code that is relatively
transparent to a reader, easy to modify and enhance, and readily
converted between different machines and different FORTRAN
compilers. Unless otherwise approved, all FORTRAN code should
conform to these rules.

STATEMENT FORMATTING

--All FORTRAN statements should be entered in standard, fixed
format. Specifically,

--The first line of any statement begins at a specified indentation
level (see indentation below), but not to the left of column 7.

--Continuation lines have the '$' symbol in column 6 and substantive
characters beginning 3 spaces to the right of the first line they
continue.

--Comment lines have the 'C' character in column 1. Substance
begins with '---' at the same column as the succeeding non-comment
line.

--Continuation comment lines have the same format at the lines they
continue.

--All FORTRAN lines end at or before column 72.

--No literal string, i.e. string enclosed in quotes, should extend
beyond one FORTRAN line. If a long string is required, break it
into two consecutive parts.

--If a statement has a number, the number begins in column 1.

--Stored code lines should include no tab or other line control
characters.

--All alpha characters in FORTRAN statements will be upper case.

STATEMENT NUMBERING

--Only 'CONTINUE' and 'FORMAT' statements may carry numbers.

--All statement numbers of a subroutine, function, or main program
will be either 3 or 4 digits. 3 is generally preferred.

--Within a main program, subroutine, or Function, all statement
numbers should be in ascending sequence.

FORBIDDEN STATEMENTS

--With the exceptions specifically noted, the following FORTRAN
statement forms will not be used:

--Any type declaration statement (including 'INTEGER', 'REAL',
'DOUBLE PRECISION', 'LOGICAL', 'CHARACTER', 'BYTE', etc., except
where 'CHARACTER' is explicitly authorized or integers must exceed 2
bytes.

--'IMPLICIT' except when needed for machine compatibility.

--'COMMON LIST', i.e. blank common

--'RETURN'

--'ENTRY'

--'EXTERNAL'

--'BLOCK DATA'

--'IF() N1,N2', i.e. logical if with 2 branches

--'IF () THEN...ELSE'

--'ENCODE' except as required for machine compatibility

--'DECODE' except as required for machine compatibility

--'PRINT n'

--'READ n'

--'ACCEPT'

--'ASSIGN'

--'DO...UNTIL'

--'DO...WHILE'

--'WHILE'

--'END DO'

--'END WHILE'

--'WRITE (array', i.e. core write where required for compatibility

--'READ (array', i.e. core read except where required for
compatibility

DIMENSIONING

--Generally speaking, all dimensioned variables should appear in
labelled (block) common.

--'DIMENSION' statements may be used only for subscripted variables
employed as

A. Passed parameters of functions or subroutines.
B. Objects of 'DATA' statements
C. Objects of 'EQUIVALENCE' statements.
D. Local work areas of less than 20-25 values.

--In all cases except B above, the rightmost dimension shown in a
dimension statement will be 1.

--No variable should have more than 3 subscripts.

VARIABLE NAMING

--Every variable name shall be at least 3 characters long, and no
more than 6 characters long.

---Variance names shall include only digits 0-9 and alphabetic
characters A-Z, with the first character alphabetic.

--Within the above length restrictions and the dictates of FORTRAN
default type conventions, names should meaningfully indicate their
significance. A good rule is to shorten by dropping vowels. If the
variable reflects a quantity in supporting mathematics, triple it.
For example, Use 'XXX' for 'X'.

--Avoid meaningless names such as IDUM and ITEMP, and where such
names are used be sure their meaning is not required,to persist for
more than 5-10 lines.

--All variable names held in common should be defined in the
documentation file associated with your program.

--All variable names held in common should be unique throughout the
program.

--String/character quantities should be processed in integer
variables, i.e. names beginning with I-N, except where character
type is explicitly allowed.

--Each word of an integer variable containing strings should have
either 1 or 2 characters, i.e. be in either format 'Al' or format
'A2'.

SUBROUTINES AND FUNCTIONS

--String/character functions will not be used

--Subroutine and function names should conform to the same naming
rules as variables.

The first statements following the 'SUBROUTINE' or 'FUNCTION' state-
ment should be a series of comments briefly defining the purpose of
the function or subroutine. Such comments should also define the
meaning of any parameters in the subroutine or function.

--Every subroutine or function name should also be defined in the
documentation file that accompanies the program.

--Every subroutine or function should have 1 and only 1 'RETURN'.
That return should be preceded by the statement '9000 CONTINUE'.

--Generally, subroutines and functions should not contain more than
50 statements exclusive of commons and comments.

--CALL's to subroutines and functions will match in default variable
type the parameters declared. Specifically, scalar integers in
calls may not be integer constants or the results of calculations
(both INTEGER *4). Instead assign a value to a variable and call
with that variable. For routine constants 0,1,...,100 variable
NUMBRO, NUMBR(1), NUMBR(2)...,NUMBR(100) are maintained in COMMON.

--Avoid as much as possible use of implicit functions (e.g. MIN,
MAX, ABS that may be type-specific.

--Every subroutine or function should begin with
IMPLICIT $ INTEGER*2 (I-N).

COMMONS

--Blank COMMON will not be used.

--All variables with significance beyond a few adjacent lines of
code should be declared in labelled (block) COMMON except those that
are parameters of subroutines or functions.

--Variable names in common should be unique throughout the entire
program.

--COMMON declarations should not appear explicitly in subroutines.
Instead 'INCLUDE' statements should be provided to copy in a stored
common declaration.

--Any particular COMMON block shall have 1 and only 1 form indicated
by the copyable version mentioned in 'INCLUDE' statements.

--COMMON blocks should group related variable quantities, i.e.
quantities likely to be simultaneously used by a portion of program
logic.

--Main programs, functions and subroutines should declare only
COMMON blocks they actually employ unless otherwise necessary for
overlaying.

MODULARIZATION

--At all times an effort should be made to keep the code modular,
i.e. execute logic in relatively short subroutines and functions,
called as needed.

--Generally, no more than 10 lines should be duplicated at different
points in a program. If lines would be duplicated, create and call
a function or subroutine.

--Within main programs, subroutines, and functions, the possibility
should be anticipated that groups of lines will be extracted later
as a subroutine or function. Thus, for example, variable should be
initialized in the immediate area where they are used rather than at
the beginning of all logic. Similarly, 'FORMAT" statements should
be placed adjacent to the 'READ' or 'WRITE' statements that
reference them.

INDENTATION AND STRUCTURING

--To improve readability and to keep logic simple and transparent,
statements will be indented and control transfers limited as
indicated in the following:

--Statements having the property that if one is executed, the other
must also be executed, and be indented to the same column.

--Statements which are only executed conditionally should begin 3
spaces to the right of 'DO,' IF(logical)G0 TO N',
'IF(Arithmetic)N1,N2,N3', 'GO TO (N1,N2...,NN),IDX I , 'GO TO N' or
'CONTINUE' that precedes it and specifies the conditions under which
it is to be executed.

--In particular, all statements in the range of a 'DO' loop will be
indented 3 spaces (or more if other statements intervene) than the
'DO' which begins the loop and the 'CONTINUE' that ends it. Such a
'DO' and a 'CONTINUE' will be indented at the same level because
they encounter exactly the same logic cases.

--Similarly, loops implemented by 'GO TO' and 'IF' statements will
be indented throughout the range of the loop. Generally, those
intended to effect a 'WHILE' begin with a 'CONTINUE' and an 'IF' at
the normal margin, with loop statements indented 3 columns further.
Loops effecting an 'UNTIL' notion begin with a 'CONTINUE' on the
normal margin, with loop statements following at a 3 space
indentation.

--Likewise, a series of cases will be introduced by a collection of
'IF' and 'GO TO' statements transferring control to the appropriate
case. All such control statements would be at the same level of

indentation because they constitute one logical operation.
Statements for each case would be indented 3 spaces beyond the
control statements.

--Each non-comment statement indented further than its immediate
predecessor non-comment statement should be preceded by a comment
statement detailing the case or conditions it represents. The
comment should be indented to the same level as its successor.

--Statements transferring control such at 'GO TO N', 'IF(logical)GO
TO N', 'IF(Arith)N1,N2,N3', 'GO TO (NS,N2,...,NN),IDX', etc. may
reference only numbered 'CONTINUE' statements. Furthermore, such
references are restricted to the following cases.

A. The referenced statement may be the next statement at the
same level of indentation.

B. The referenced statement may be the next statement at any
higher (more left) level of indentation.

C. The referenced statement may be the last preceding
statement at any higher (more left) level of indentation
(or a 'CONTINUE" immediately preceding that statement).

D. The statement reference may be a 'CONTINUE' at the next
subsidiary (more right) level of indentation that
introduces a case as explained above.

--In general, long loops and transfers of control past more than 10-
20 statements should be avoided. Call a subroutine to perform the
component steps of the loop or execute a case.

--Transfers of control to preceding statements should be employed
only when necessary for looping. Normally the flow of logic should
be top to bottom in a main program, subroutine or function.

--Although they may occasionally be useful, 'flags' or similar
indicators should only rarely be used to control logic. 'GO TO'
statements within the limits outlined above are far preferred to
'flags'.

MISCALLENEOUS EXCLUSIONS

--Generally, no FORTRAN construct not typically considered part of
FORTRAN IV should be employed.

--Subscripts should not be 0, negative, or contain subscripted
variables.

--'DO' loops should not employ a negative step, and all 'DO'
parameters should be simple integer variables (i.e. not subscribed
or expressions).

--Whenever possible, implicit functions should be avoided. In
particular, do not use implicit functions for absolute value, type

conversion, logical operations, modulo arithmetic, max of a set, or
min of a set. Instead, do explicit logic. For example, 'ABS(XXX)'
can be simulated by 'ABX=XXX' followed by 'IF(XXX.LT.0.)ABX=-XXX'.

--Strings should be assigned to variables only through 'DATA'
statements and 'READS,' i.e. constructs such as 'IVBL='String' are
not allowed.

--Formats should always be given in 'FORMAT" statements, not within
Read's and WRITE's.

MACHINE/COMPILER PORTABILITY

--One effect of the rules in these standards is to keep FORTRAN code
as independent as possible of different computers and compilers.
However, some activities are inherently machine specific. When they
are used in a program references to them should be confined to 1 or
2 subroutines or functions. Then, only 1 or 2 places need to be
modified for a conversion.

--Specific activities that should be modularized in this way
include

A. File openings and closings

B. Routines manipulating strings, (e.g. combining character
groups of form 2A1 into A2)

C. Random-access reads and writes

D. Free-field reads and writes

E. References to system clocks and dates

F. Special error handling routines

G. Overlay calls

DOCUMENTATION SECTION

--Rules above provide for comments throughout the program indicating
functions of major logic block, subroutines and functions.

--In addition to such within program documentation, a separate
documentation file should be maintained on each program. If a
program is relatively short, that file may precede the beginning of
the main program. If the program is long, it should be a separate
file.

--All entries in the documentation file will be contained in columns
1-72, with a 'C' in column 1, i.e. they will be formatted as FORTRAN
comments.

--A minimal list of entries in the documentation file is

A. Definitions of all variables held in common

B. Definitions of the functions of all 'SUBROUTINES' and
'FUNCTIONS' employed by the program.

C. Listings of job control language (and overlay language if
appropriate) needed to compile, link and execute the
program.

D. A description of the computer/compiler environment in
which the program is designed to work.

E. An indication of the last date and time that the
documentation file was modified.

--As appropriate, other technical information on program operation
may be included in the documentation file.

Milestone B: Keyed Input

By Ronald L. Rardin

The Phase III version of the GITPASE project management
system employs a hybrid of a VAX computer running FORTRAN and a
Chromatics color graphics microprocessor running BASIC. Primary
functions of the BASIC program are to produce various graphics and
strings on command from FORTRAN, and to collect and edit user input.
This Milestone 3 addresses keyed inputs processing.

B.1 Background and Interface

All GITPASE input is solicited from BASIC via subroutine
COMIO. The type of input sought is indicated by a response code
stored in /CONTRL/ common variable KOMRSP.

Table Bl shows the presently active response codes. Numbers
1 and 10 obtain light pen screen locations (x,y). Numbers 2-9 and
11-15 seek keyed strings of various formats.

Within FORTRAN touch inputs are processed through subroutine
OUTPEN and string inputs through OUTKEY and OUTQA, all of which call
COMIO. The basic strategy of IBM PC conversion will be to substi-
tute new FORTRAN for these three 'OUT' routines. The new routines
will be demonstrated in stand alone operation and linked to GITPASE
in Milestone H.

B.1.1 Touch Queue

Touch input (OUTPEN) will be the subject of Milestone F.
However, it is important to understand now that it consists of a
queue of coordinate pairs entered without interspersed screen
update. Common /CONTRL/ variable KUEON*0 when this queue acceptance
is underway and KUENUM shows how many pairs remain in the queue.
When the queue is empty subroutine CACHUP(NUMBR(2)) is called to
restore the screen before further processing. A dummy routine
CACHUP(IDIR) is required for this Milestone B that merely sets
KUEON=O.

B.1.2 Windows

The GITPASE code describes screen locations in terms of
windows. Table B2 shows numbers used. Window 0 is a special 'no
conversion' one corresponding to the physical screen. All others
have internal logical dimensions that are mapped to external ones by
routines to be developed in Milestone C. Routines of the present
Milestone that employ coordinates must always also indicate a
window.

TABLE Bl. PRESENT GITPASE RESPONSE CODES

CODE

MEANING

1
	

Obtain the next light pen touch from the
touch queue, or if touch queue is empty,
obtain a new queue of touches.

2
	

Obtain a (CHARACTER*20) file name from the
user (appending .DAT if the returned name
has no '.')

3 Obtain a 13 character
string (inserting '15'
character to total 14
7A2)

resource code-name
after the 3rd
characters). (Format

4
	

Obtain a 12 character activity name string
(Format 6A2)

5
	

Obtain an alphanumeric string of arbitrary
length (Format A2)

6
	

Obtain up to 10 resource availability
segment inputs, each one integer followed
by one real (setting KOMBTN = how many
pairs)

7
	

Obtain up to 3 consumption values, all
real

8
	

Obtain a single integer input

9
	

Obtain up to 4 integer inputs

10
	

Obtain a confirming light pen touch (and
cancel the touch queue)

11
	

Obtain a single real input

12
	

Obtain a time period code in Format A2, Al,
A2

13
	

Obtain up to 10 resource code-weight pair
inputs, each an alphanumeric code of up to
3 characters (Format A2, Al) and a real
(setting KOMBTN = how many pairs)

14
	

Obtain a precdence offset code of two
characters (Format 2A1), both 0-9 or ':'.

15
	

Obtain any message ended by carriage
return

0 =

TABLE B2. 	GITPASE LOGICAL WINDOWS

The Physical Screen

69 = Lower Window

79 = Title Window

89 = Message Window

91 = Transition Mode Window 1 (top)
92 = Transition Mode Window 2 (middle)
93 = Transition Mode Window 3 (bottom)

98 = Above Main Window
99 = Main Window

B.1.3 Highlighting

Most GITPASE input protocols use blinking to cue the user
about the portion of data to which his or her next action will
apply. For example, if a changed activity name is anticipated, the
program will blink the present name and position the cursor to echo
typed modifications over the existing value.

IBM PC's HALO does not directly implement blink. Thus, an
effective substitute will be required.

Present GITPASE logic implements highlighting via
rectangles,i.e., rectangles for which the blink plane is activated
and all included data will blink. Conversion will be easiest if the
selected highlighting scheme retains this rectangle notion.

Until suitable coordinate systems have been established,
create dummy routines.

HLIT(IWIN,NXI,NYI,NXZ,NYZ) that will highlight a rectangle
and DEHLIT(IWIN,NXI,NYI,NX2,NY2) to dehighlight one.

B.1.4 Help

All GITPASE input allows users to call on dynamic help
routines for guidance. For the present Milestone a dummy routine
HELP is required to substitute for the collection of help routines.
Also /CONTRL/ common variables }MRSP and KOMQUS are set for HELP
reference.

B.2 	OUTKEY Processing

Subroutine OUTKEY(KEYRSP,KOLOR,KORDX1,KORDY,KORDX2,NWIN) is
the main GITPASE mechanism for soliciting keyboard input. It seeks
a response of response code KEYRSP. The use is signaled as to the
information sought by highlighting rectangle (KORDX1,KORDY) through
(KORDX2,KORDY-KARY+1) of wi ndow NWIN where KARY = the number of
dots high in a string character. Input echo should be in color
KOLOR, at coordinates (KORDX1,KORDY).

Normally OUTKEY merely solicits an input, decodes it, stores
results in relevant variables and exits. However, certain
conditions require special processing.

(i) If KUEON * 0, i.e., touch queue processing has been
underway. OUTKEY sets KUENUM = 0 and calls CACHUP
(NUMBR(2)) to bring the screen to correct state (NOTE:
Dummy that routine for testing).

(ii) If the keyed response is an empty carriage return, set
KOMBTN to 49 and return.

(iii) If the keyed response is ', I , set KOMBTN = 48 and
return.

(iv) 	If the keyed response is 'HELP', subroutine HELP is
called to write help messages, and processing loops
back to solicit another keyed input (NOTE: Dummy HELP
for testing).

B.2.1 Keyed Input Variables

To support such processing add to /IBMPC/new variables

characters returned from READ (one per word
format Al)

length of KEYIN returned from READ

characters of parcels 1 through 21

length of parcels 1 through 21

B.2.2 Parcing Subroutine PARC

Input from keyboard READ's will be stored with format Al in
vector KEYIN. The first required processing is to subdivide the
message into string parcels separated by at least one blank.

New subroutine PARC(MAXPCL,NUMPCL) will perform this role.
It creates up to (input variable) MAXPCL parcels and stores results
in array KEYPCL. The number created is output variable NUMPCL.
Processing begins by striping leading and trailing blanks of KEYIN
length LENKEY. Then parcels 1 through (MAXPCL-1) or end of KEYIN
are created as "characters up to the next blank separator." LENPCL
records each parcel length. If characters remain after parcel
(MAXPCL-1), all remaining go to the parcel MAXPCL.

3.2.3 Edit Subroutines

Two special edit routines will convert single parcels into
suitable nonstring forms.

Subroutine EDREAL(NPCL,VALU,IERROR) creates a real number
VALU from characters in parcel NPCL using DECREL. DECREL error sets
IERROR to 10. If VALU < EPS set IERROR = 9. If no error is
detected, set IERROR to O.

3.2.4 Replacement Subroutine OUTKEY

Write a replacement subroutine OUTKEY to process keyed input
as outlined above, using these new service routines. The logic flow
is as follows:

(a) If KUEON * catchup from a touch queue by setting
KUENUM to 0 and calling CACHUP(NUMBR(2)).

(b) Set KOMRSP and KMRSP to KEYRSP and KOMBTN to O.
(c) Unless KORDX1=KORDX2, call KLIT to highlight rectangle

(KORX1,KORY) through (KORX2,KORY-KARY+).

KEYIN(80) =

LENKEY =

KEYPCL(21,80) =

LENPCL(21) =

(d) Read from the terminal (unit 0) as KEYIN a format Al
character string. The string should be echoed as it
is typed. In later Milestones echo will be graphi-
cally controlled, but now simply do next alpha screen
line.

(e) If LENKEY = 0, set KOMBTN to 49, and go to (k).
(f) If LENKEY = 1 and KEYIN(1 = 1 ,' set KOMBTN to 48 and

go to (i).
(g) If LENKEY = 4 and KEYIN(1 to 4) = 'HELP' call HELP and

return to (d).
(h) According to KOMRSP, process KEYIN as indicated in

Table B3 to load /CONTRL/ values for GITPASE
processing.

(i) If any error was detected at (h), call ERROR(the
number), clear IERFLG to 0, and return to (d).

(j) Return.

B.3 	OUTQA Processing

Subroutine OUTQA(IQUES,IANSW,KOLOR,KORX,KORY,NWIN) has a
similar function to OUTKEY. It solicits a keyed response of type
IANSW. However, it first poses a question to the user and then
calls OUTKEY to obtain an answer.

Create a substitute OUTQA with processing as follows:

(a) If KUEON 0 0, catchup form a touch queue by setting
KUENUM to 0 and calling CACHUP (NUMBR(2)).

(b) Set KOMQUS = IQUES

(c) Activate the same display area where typed input is
echoed and write question number IQUES (see Table B4)
from IQUESN, length IQUELN (for now as in OUTKEY step
(d)).

(d) Call OUTKEY(IANSW,KOLOR,KORX,KORY,KORX,NWIN).

(e) Return.

parcel has no '.'

A1A2 parcel (1) to KOMIN, two characters
per word, inserting)5 as character 3.

#16 if LENPCL(1) > 13

A1A2 parcel(1) to KOMIN, two characters
per word.

#16 if LENPCL(1) > 12

A1A2 parcel(1) to KOMIN, two characters
per word

None

Use EDINT and EDREAL on alternate parcels,
storing values in KOMIN(pair) and

#16 if NUMPCL >
odd number

20 or an

COMIN(pair). Set KOMBTN to the number
of pairs found, i.e., (NUMPCL/2).

TABLE B3. Keyed Input Processing by Response Code

Response Code 	MAXPCL to PARC Parcel Processing 	 Errors Other Than in
Edit Routines

2 	 1 	 Core WRITE parcel to KOMFIL, appending 	 None
(CHARACTER*20) variable .DAT if the

3 	 1

4 	 1

5 	 1

6 	 21

	

7 	 4

	

8 	 2

	

9 	 5

	

11 	 2

	

12 	 2

#16 if NUMPCL > 3

#16 if NUMPCL > 1

#16 if NUMPCL > 4

#16 if NUMPCL > 1

#16 if NUMPCL > 1

Use EDREAL to place up to 3 parcels as
real values in COMIN(1 to 3)

Use EDINT to convert parcel(1) to
KOMIN(1).

Use EDINT to convert up to 4 parcels
into KOMIN(1 to 4).

Use EDREAL to convert parcel(1) into
COMIN(1).

A1A2 parcel(1) to KOMIN(1 to 3) in
Format A2,A1,A2.

Response Code MAXPCL to PARC

TABLE B3. 	Continued

Parcel Processing Errors Other Than in
Edit Routines

13 21 Check odd numbered parcels for length
< 3 and A2A1 2 bytes per word in KOMIN.

#16 if NUMPCL > 20 or
an odd number

Use EDREAL to convert even parcels to
COMIN(pair) values. 	Set KOMBTN to number
of pairs (NUMPCL/2).

#16 if any odd parcel
not < 3 characters

14 2 Check that LENPCL(1) = 2, and both
characters 	are 	'0', 	'1', 	'2',..., 	'9'
or 	':'. 	Copy to KOMIN(1 to 2),
1 character per word.

#16 if NUMPCL > 1 or
LENPCL(1) * 2
#15 if illegal characters
included

15 Not Needed No Conversion None

MAXPCL is typically set one greater than the expected max number of inputs.
Then, if NUMPCL equals MAXPCL, "too much data" is detected.

TABLE B4. QUESTIONS OF OUTQA

Number 	 String *

1 	 'Save as which plan (1=min,2=nom,3=max,4,5<cr>=nosave?'

2 	 'Load which plan (1=min,2=nom,3=max,4,5<cr>=noload?'

3
	

'Save current files before next $ (0=no,1=yes)?'

4
	

'Convert data to new period units (0=no,1=yes)?'

5
	

'How many new per old (1=no conversion,2,...)?'

6
	

'Next file name?'

7 	 'Reposition $ how $ many $ (+-n) $ or $ to $
which)6 (#n 	or)6 *)?'

These string should be initialized by OUTQA DATA statements into array
IQUESN(40,7), two characters per word. Set string lengths in IQUELN(7).

SCHOOL OF INDUSTRIAL AND SYSTEMS ENGINEERING

Atlanta, Georgia 30332-0205
	

(404) 894-2300

May 22, 1984

MEMORANDUM

TO: 	Cpt. Larry Frank, AIRMICS

FROM: 	Donovan Young

SUBJECT: Hardware and Purchased Software for E-26-669
Stand-Alone APMS

Georgia Tech respectfully requests permission to procure necessary
hardware and purchased software as detailed in the attached
memorandum.

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

AN EQUAL EDUCATION AND EMPLOYMENT OPPORTUNITY INSTITUTION

SCHOOL OF INDUSTRIAL AND SYSTEMS ENGINEERING

Atlanta, Georgia 30332-0205
(404) 894-2300

May 15, 1984

MEMORANDUM

TO: 	Donovan Young, Project Director

FROM: 	Ronald L. Rardin, Consultant

SUBJECT: Firmware for GITPASE IBM PC Version

In accordance with my contract CI-E-24-669, I have studied alter-
natives for IBM PC firmware capable of supporting GITPASE. On
February 4, 1984 the results of that study were presented to you and
to AIRMICS. This memo documents the analysis presented and con-
clusions reached at that meeting and since.

1. Requirements

The IBM PC version is to be implemented on four different
machines. AIRMICS owns a PC that is to be upgraded. DSCM owns
another. I have a Purdue-owned XT that is also to be upgraded.
Finally, a new XT is to be purchased by Georgia Tech.

In all four cases several distinct issues must be considered.
The following reviews each in turn.

1.1 FORTRAN

It is essential that a powerful FORTRAN compiler be available on
all four machines. The 'standard' FORTRAN for PC's is from
Microsoft. Purdue has available Microsoft FORTRAN 3.13 running
under DOS 2.0 with and without the 8087 coprocessor chip. My tests
of that compiler on a heavy operations research algorithm showed the
compiler to have adequate flexibility. A program which ran in 5
time units on a busy VAX took 42 on the XT without the coprocessor,
and 9 units with the coprocessor.

On the basis of this test, I conclude that all four units should
be upgraded to have DOS 2.0 (or later) and FORTRAN 3.13 (or later)
and 8087 coprocessors. This will require three copies of the
FORTRAN compiler, three 8087 coprocessors and three copies of DOS
2.0 (none for Purdue).

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

AN EGUAL EDUCATION AND EMPLOYMENT OPPORTUNITY INSTITUTION

1.2 Main Memory

IBM PC's come with 64K memory and XT's with 256K. At present
the AIRMICS and DSMC PC's have a QUAD board to expand to 312K and
256K respectively. The current FORTRAN part of GITPASE requires
200-300K bytes. Since new code must be added to replace BASIC, I
recommend all machines be upgraded to 512K. This will require
purchasing AST 6 PAK or equivalent boards for the memory chips.
Four boards and 11 64K chips are required.

1.3 Locator

GITPASE is locator driven, only the AIRMICS machine presently
has a locator--in that case a light pen. Inquiries indicate light
pens are generally inaccurate on PC's; most only map to character
boundaries. Also, light pens are physically tiring and require
sophisticated software to implement touch queues.

An alternative is a mouse. Two are available. Microsoft has
one with resolution 640 x 200; Mouse Systems another. However, the
Mouse Systems unit has long delivery time and operates on a
simulated hit pad. For these reasons, I recommend four Microsoft
mouses be purchased.

1.4 Printers

The two PC's presently have printers, but ones will be needed
for the XT's. Major suppliers are Epson and Ohidata. Since
Ohidata's are twice as fast for a comparable cost, I recommend them.
Two model 93A (130 column) units should be acquired for the XT's.

1.5 Color Graphics

A number of "color boards" are available that produce "high"
resolution graphics on IBM PC's. Most interact with IBM's digital
color monitor and are thus restricted to 640 by 400 resolution in 8
colors (at two intensities). Suitable implementation of GITPASE
requires at least twelve colors and more resolution. The lowest
cost well-known alternative is provided by SCION (the PC 640). The
board is driven by HALO subroutine calls, and requires an analog
color monitor, and supports 16 colors and 640 X 480 resolution.
Monitors may be purchased from several suppliers at $1500 for 13"
and $3-5000 for 19". I recommend all four units be equipped with
the SCION board, FORTRAN - callable HALO, and Electrohome 1301 (13")
monitors.

1.6 Disks and Chassis

All units must have at least on floppy disk for transfer and
random access features of GITPASE absolutely require all units be
equipped with hard disks. (XT's automatically have hard disks). In
addition chassis must have enough stats to support boards for other
features reviewed above. PC's have five expansion slots and XT's
have 6 long and 2 short expansion slots. Total required is as
follows:

Floppy
Disk

Hard
Disk

SCION
Board

Mouse

Extra Memory

IBM Monitor
Board

PC's XT's Long XT's Short

1

1

1

1

2

1

1

1

1

-

1

1

1

Total 	 7 	 5 	 1

From this tabulation it is clear expansion chassis will be
required for the two PC's. I recommend acquiring IBM expansion
chassis's with 10MB hard disks.

2. Estimates

Summarizing the above, Table I provides estimated cost of the
required firmware. The project budget includes $8,600 for overhead-
bearing procurement and $23,600 of non-overhead-bearing. Values in
Table I total to $8,320 overhead-bearing and $28,600 nonoverhead-
bearing. Thus, both values are within budget.

3. Procurement

On the basis of our February meeting and the urgent need to
obtain experience with graphics features, procurement was started in
February on the underlined items in Table I (2-SCION boards, 2-
mouses, 2-13" monitors, 1-FORTRAN compiler). At this date this
equipment has not yet been successfully mated and tested. For this
reason, I recommend proceeding with all procurement except remaining
SCION boards, monitors and mouses. The latter should be held until
ones already received are operating suitably.

Base unit

TABLE I. 	SUMMARY OF ESTIMATED COSTS

AIRMICS PC 	DSMC PC 	PURDUE XT NEW XT

-

*

- - 6000

DOS; FORTRAN 3.13 420 420* - 420

8087 160* 160 160* 160
*

160
*

Printer - - 750 750

512K RAM 500* 550*

550 550
*

550
& Board

SCION Board 1600
*

1600
*

1600
*

1600
& HALO

Mouse 200* 200* 200* 200

Hard disk
(in expansion
chassis)

3400 3400

13" Analog 1500 1500 1500 1500
Monitor

With overhead 2880 2930 2510 0

Without overhead 4900 4900 2250 11,180

*Indicates overhead bearing
Underline indicates February procurement

SCHOOL OF INDUSTRIAL AND SYSTEMS ENGINEERING

Atlanta, Georgia 30332-0205 	
(404) 894-2300

May 30, 1984

MEMORANDUM

TO: 	Cpt. Larry Frank

FROM: 	Donovan Young 	 41140-0-1

SUBJECT: Stand-Alone APMS, E-24-669

1. Ron Rardin has tested the mouse, and it works. Therefore, we
request permission to procure the mouses now, in addition to the
procurements listed in our memo of May31, 1984 (E-24-669
Software Development Plan). We understand that AIRMICS has a
mouse, so the number of mouses will be reduced by one.

2. Material is on hand for upgrading the AIRMICS IBM-PC: the Scion
board (with HALO diskette), the monitor (with interface box and
cable), Fortran 3.2, and the mouse. If you would like to
experiment now with these materials, they are available in my
office. Alternatively, you can await Ron's configuration
instructions.

3. Ron is sending a GITPASE tape today, which we hope will be the
delivered VAX version for the previous contract (APMS Phase III,
E-24-658). It will be suitable for demos and for downloading of
code (see Milestone B).

4. Clarification of Milestone B. Milestone B specifications issued
last week are not explicit as to how you should test the results
of your work. The intent is that you should write a dummy
interactive program that will ask which response is wanted,
accept a response code from the terminal, then make a call to
OUTKEY or OUTQA, accept typed input from the terminal, and
display either the appropriate error message or what was
received internally. Then this program should be exercised to
verify proper interpretation (including error detection) of all
the strings that are supposed to give outputs.

Paragraphs 3.2.3 and 3.2.4 should be numbered B.2.3 and B.2.4.

In paragraph B.2.3 the error condition should read VALU < 0 (not
EPS).

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

AN EQUAL EDUCATION AND EMPLOYMENT OPPORTUNITY INSTITUTION

•

Cpt. Larry Frank
May 30, 1984
Page 2

Add the following text to paragraph B.2.4:

Subroutine EDINT(NPCL,IVALU,IERROR) creates an integer
IVALU from characters in parcel NPCL using DECINT. DECINT
errors sets IERROR to 10. If IVALU < 0 set IERROR = 9. If no
error is detected, set IERROR to O.

5. Ron Rardin reports that there is a PC HALO manual that gives
much more detail about HALO functions than does the Scion
manual. He is using the PC HALO manual in the design work and
suggests you might find it useful also. If you cannot readily
obtain one for reference, please contact me.

INTERIM REPORT

Stand-Alone-Operation APMS

D.O. #0017 under DAAK70-79-D-0087

E-24-669

Project Director: Donovan Young

Date: 	29 November 1983

)

2) Capt. Larry Frank, AIRMICS
e(2) Pat Heitmuller, PPC
(1) Michael E. Thomas, ISYE
(1) Ronald L'Rbrdin, Purdue Univ.
(3) File

1. As required by paragraph 5.1 of the Statement of Work, the enclosed Task
Schedule is submitted. Highlights: PC hardware specifications by 13 Jan 84;
stand-alone software specifications to be issued in four "milestones" 1 Mar,
1 Apr, 1 May and 1 June; system to be tested (by ISyE) upon completion of pro-
gramming (by Government) of each "milestone," with a final system test to cover
both the stand-alone and portable software; portable hardware specifications
to be issued by 1 Sep. Project completion 30 Sep 84.

2. Ronald L. Rardin has accepted the offered Consulting Agreement No. Cl-E-
24-669. The Statement of Work for this agreement is enclosed herewith.

3. By copy of this Interim Report, Georgia Tech OCA is requested to draft and
send two documents to Ronald L. Rardin:

A. Whereas it is the established custom of the Government to pass title
for certain Government-furnished equipment and supplies used in research
to Georgia Tech at the end of research projects; and whereas part of
the Government-furnished equipment and supplies for this project is to
upgrade a non-Government-owned IBM PC system available to the consultant
in West Lafayette, Indiana; Georgia Tech agrees to relinquish ownership
of this part only of equipment and supplies, if released by the Govern-
ment, to the consultant or his assignee.

B. Whereas Article XIV of the consulting agreement appears to require
Georgia Tech's written consent for the consultant to hire a sub-
consultant at his own expense, and whereas the consultant expects to
hire a sub-consultant for several days to help him develop hardware
specifications, such consent (if indeed required) is hereby granted.

4. The Government-furnished Chromatics system with the following serial numbers
has been transferred to Ronald L. Rardin for use in West Lafayette, Indiana,
during the contract:

Diskette drives: 013072 and 012072
Terminal: 	018072
Keyboard: 	016072

The other Government-furnished Chromatics system, which is temporarily in
the Washington, D.C. area to support installation of the IBM version of APMS
under contract E-24-658, will remain at Georgia Tech ISyE upon its return.

5. To facilitate long-distance communication between Georgia Tech and its
consultant Ronald L. Rardin, a long-distance telephone credit card has been
applied for.

DY:sr
Attachment

STATEMENT OF WORK

Fixed-Price Consulting Agreement - Ronald L. Rardin, Consultant to Georgia
Tech for E-24-669.

Please refer to the Statement of Work for contract E-24-669. In the

parent contract, Georgia Tech is to analyze and procure hardware and software

necessary for stand-alone operation of an Automated Project Management System

(APMS) on personal and portable computer systems, to produce specifications

from which the Government will perform the necessary programming, to perform

validation testing on the Government-prepared programs, and to provide user

documentation. The Consultant will:

1. Perform an analysis of the hardware and software necessary for stand-

alone operation of APMS on IBM PC equipment and on portable equipment, and

submit the results in draft form to Georgia Tech to aid in performance of

para. 3.2.a and 3.4.a of the parent contract's Statement of Work (SOW).

2. Study the available alternatives to light-pen input for APMS and make

recommendations to aid Georgia Tech in performance of para. 3.2.b of the

parent SOW.

3. Make specific recommendations on procurement of equipment and materials

to upgrade existing IBM PC systems to be used in design and test work, to aid

Georgia Tech in planning for its procurement task, para. 3.3 of the parent SOW.

4. Prepare a functional specification in draft form for a limited-

capability version of APMS for portable equipment, to aid Georgia Tech in

performance of para. 3.4.b.

5. Prepare formal design specifications in draft form for IBM PC and

portable APMS versions, to aid Georgia Tech in performance of para. 3.5 of

the parent SOW.

STATEMENT OF WORK (continued)

6. Prepare a functional specification for desirable enhancements to APMS,

in draft form, to aid Georgia Tech in performance of para. 3.9 of the parent

SOW.

The work is to be performed mainly in West Lafayette, Indiana. Several

trips to the Washington D.C. area and the Georgia Tech campus are anticipated;

travel expenses will be reimbursed out of the parent contract. Long distance

telephone expenses will be reimbursed out of the parent contract. The consultant

will loCally obtain access to an IBM PC system, and will utilize Government-

furnished equipment and materials that will upgrade the system for use in doing

the work.

TASK SCHEDULE

E-24-669

Stand-Alone-Operation APMS

Project Director: 	Donovan Young

Georgia Tech (and Consultant) Tasks Start Date Finish Date

1. Draft PC hardware recommendations 1 Dec 83 13 Jan 84

2. Study input devices 1 Jan 84 13 Jan 84

3. Revise PC hardware recommendations 23 Jan 84 25 Jan 84

4. Procure PC hardware 30 Jan 84 24 Feb 84

5. Prepare MS1 specifications 1 Jan 84 1 Mar 84

6. Prepare MS2 specifications 1 Feb 84 1 Apr 84

7. Test MS1 code 15 Apr 84 27 Apr 84

8. Prepare MS3 specifications 1 Mar 84 1 May 84

9. Prepare MS4 specifications 1 Apr 84 1 Jun 84

10. Prepare portable hardware recommendations 15 Feb 84 1 Jun 84

11. Test MS2 code 1 Jun 84 15 Jun 84

12. Test MS3 code 20 Jul 84 27 Jul 84

13. Procure portable hardware 8 Jun 84 3 Aug 84

14. Prepare portable software specifications 1 Jul 84 17 Aug 84

15. Test MS4 code 17 Aug 84 24 Aug 84

16. Test portable software code 14 Sep 84 21 Sep 84

17. Test systems 21 Sep 84 28 Sep 84

18. Prepare user manual 1 Jun 84 28 Sep 84

19. Prepare functional specifications of
desirable enhancements

1 Jan 84 28 Sep 84

Task Schedule (continued)

Possible Assumed
Government Tasks Start Date Finish Date

1. Review draft of PC hardware recommendations 13 Jan 84 20 Jan 84

2. Approve PC hardware recommendations 25 Jan 84 27 Jan 84

3. Write and verify MS1 code 1 Mar 84 15 Apr 84

4. Write and verify MS2 code 1 Apr 84 1 Jun 84

5. Approve portable hardware recommendations 1 Jun 84 8 Jun 84

6. Write and verify MS3 code 1 May 84 20 Jul 84

7. Write and verify MS4 code 1 Jun 84 17 Aug 84

8. Write and verify portable software code 17 Aug 84 14 Sep 84

INTERIM REPORT

Stand-Alone-Operation APPS

D.O. #0017 under DAAK70-79-D-0087

E-24-669

Project Director: Donovan Young

Date: 	March 28, 1984

(2) Capt. Larry Frank, AIRMICS
(2) Pat Heitmuller, PPC
(1) Michael E. Thomas, ISYE
(1) Ronald L.'Rbrdin, Purdue Univ.
(3) File

Equipment Procurement

Two copies of the Fortran—compatible Microsoft Mouse and two Scion graphics
boards have been received; one of each is at Purdue and the other in Donovan
Young's office. The Scion boards were delivered with a HALO diskette of the
wrong type (BASIC, whereas FORTRAN was ordered); Scion will replace the
diskettes (but see below). A copy of the Microsoft FORTRAN Compiler was
recieved; it is version 3.20, which is later (and superior to) the 3.13
version ordered; a copy of the 4.0 version is on order, since that version is
expected to be released within weeks. The two color monitors ordered have
arrived, and one will be sent to Ron Rardin this week.

Ron Rardin expects to complete recommendations, for all equipment not affected
by graphics—board selection, by the end of the week, and Don Young will
initiate procurement next week. This equipment includes hard disks and
expansion chassis for existing IBM PC's, as well as the new XT system.

Memory Difficulty and Graphics—Board Selection

Because of unclear capabilities and limitations of prospective high—resolution
graphics systems, it was decided in February to order only two sets of
monitors, mice and graphic boards, so that we could experiment to make sure
the choices were suitable before making all the quipment purchases. Although
it was not possible to tell before actually receiving it, the Scion board may
be unsuitable.

The manual says that only 320K of user memory can be available after inserting
the 256K Scion board. This user memory must hold several things:

1. The equivalent of the VAX executable code (now about 200K);

2. The HALO graphics software (probably small);

3. The net addition from converting the present Chromatic BASIC to
FORTRAN and removing the communications code from the FORTRAN.

To make an estimate of suitability, Ron Rardin will research several
questions:

1. Can we get 384K rather than 320K on the XT (contrary to the
Scion manual but said to be likely)?

2. How big will be the equivalent of the present VAX FORTRAN code?
If the Microsoft FORTRAN compiler and linker are less or more
size-conserving than the VAX equivalents, this can be more or
less than the 200K now being used. An estimate can be made on
the basis of small test programs.

3. How much space will HALO occupy? This can be answered quickly
once the correct HALO diskettes are received.

4. How much additional space will be required for converting the
graphics logic now written in BASIC? The Pritskers version of
GITPASE may give an accurate estimate of this.

If it turns out that the Scion board plus the program are simply too big for
the IBM-XT, an alternative is to return the Scion boards and purchase a more
expensive type of board that has its own logic chip and hence does not take up
addresiable memory. Another alternative is to go to a smaller resolution.
Neither alternative is attractive, and delay in issuing specifications would
result if either of them are necessary. This question will be cleared up
within two weeks.

Milestone C (and D): Graphics and Text Primitives

By Ronald L. Rardin

The Phase III version of the GITPASE project management
system employs a hybrid of a VAX computer running FORTRAN and a
Chromatics color graphics microprocessor running BASIC. This
specification details new and substitute routines to replace
graphics and string output primitive operations of BASIC with new
FORTRAN for an IBMPC. It combines material originally planned as
Milestone C and D. All routines should be kept alphabetically in 1-
3 files: 	'PC.FOR I

C.1 Environment

The environment assumed is an IBMPC-XT (or equivalent)
running Microsoft FORTRAN, using the HALO software package to create
high resolution graphics with the SCION PC640 board, and the

Microsoft mouse software and board for locator input. An example
program of this environment, with common declarations and
compile/link commands is Attachment Cl. A floppy disk of that
program is also provided.

The indicated link command and the floppy disk also reference
software called 'sheep.' That package contains proprietary assembly
routines loaned from Purdue Univesity that will be replaced in
Milestone H. Calls to it have INTEGER*2 operands.

C.2 Screen Scaling and Initialization

C.2.1 Background

GITPASE screen scaling employs a variety of "windows". The
Main Window contains most important information (see Figure C1). It
is subdivided into three Transition Mode Windows during Transition
Mode processing. The Title Window presents activity and resource
names to label Main Window information. Thus, its vertical scaling
corresponds to the Main Window. A Lower Window is used for a
variety of supplemental information. The Message Window summarizes
system state and reports errors.

Internally all windows are scaled over a 0-511 (x) by 0-8191
(y) dot logical rectangle. However, at any moment only a portion of
that rectangle is visible on the physical screen.

The conversion from this visible rectangle to the physical
screen is handled by a series of variables stored in COMMON/CONTRL/.

TITLE

horizontal
space for

15 characters

inside vertical spacing for 1 character plus 1 line

(LSTIL,LSMNT) Superior Network

vertical spacing 	 (TRANSITION)
defaulted as 1/3 	 MODE
of Main Window 	 NO. 1

Wil••■•••• 111.m. 	 •■■■• .0•1•1.■ ■•■•■■ 	••■■• •■•■■ ■IN.Nmia 	 .111■1.

Intermediate Network

••■1111.

Subordinate Network

horizontal space
(LSMNL,LSMNB) 	for 62 characters

Ly=-LSTNT(2)

(

TRANSITION
MODE

NO. 2

•■•■• ■■■•• ■••■•■=

Ly=LSINT(3)

(TRANSITION)
MODE
NO. 3

MAIN

inside vertical space for 9 characters
plus 1 line

LOWER (LSLOR,LSLOB)

GITPASE

MESSAGE
	OP

inside
vertical space
for 6 lines;

•
horizontal space
for 15 characters

Figure Cl. Coordinates for GITPASE Windows

Generally, the variable names are in the form LSwws or LNwws, where
ww=MN, TI, LO, MS, or TN, depending on whether the window is Main,
Title, Lower, Message, or Transition, and s=L, R, T, or B, depending
on whether the variable refers to the line at left, right, top, or
bottom. LSwws variables are permanent physical screen limits set in
subroutine INITLZ. LNwws variables show temporary points in
511x8191 logical space which are to be mapped to corresponding LS
coordinates.

Vertically, all screens except Message are "wrapped". That
is, item 1 is logically treated as if it falls immediately after the
last item. As screens roll, we see, for example, Activity 1, then
Activity 2, then.., until the the last Activity n, then Activity 1
recurs.

Wrapping is controlled by variables of the form LNwwW, where
ww designates window. LNwwW is the line in 8191 space below which
information repeats from the top (e.g., Activity 1). In other words
LNwwW is logically equivalent to 8191.

GITPASE windows are known by identifying numbers:

Main = 99

Lower = 69

Title = 79

Message = 89

1st Transition = 91

2nd Transition = 92

3rd Transition = 93

GITPASE modes are selected by /CONTRL/ common variable
KURMOD.

=0 for Transition

=1 for Activity

=2 for Resource

=3 for Schedule

=4 for Status

=5 for Select

=6 for Calendar

C.2.2 Initialization

Subroutine INITLZ now initializes GITPASE (a version was
downloaded in Milestone A). Repeat the download of INITLZ and
/CONTRL/ common to obtain the latest version. (Comment out lines to
read the HELP directory). Then at the indicated spot call PCINIT to
initialize for the PC version.

New subroutine PCINIT will perform all special PC-version
initialization. It will closely parallel subroutine INITL of the
demonstration program attached. Specifically it will initialize
HALO for the SCION board, set character sizes, initialize the mouse,
establish a color palette, and reset LS screen boundaries. Load the
color palette as in the first part of demonstration routine COLORS.
Set LS coordinates exactly as in INITL.

(Note: The effect of these settings is that characters 'bleed' into
right window boundaries but scaling leaves no alternative.
Boundaries will be refreshed in Milestone H.)

C.2.3 Coordinate Conversion Subroutine PCVTXY

New subroutine

PCVTXY(NWIN,INXY,NUMXY,I4XOUT,I4YOUT) will convert the NUMXY
entries in I*2 vector INXY of internal x,y,x,... coordinates for
window NWIN to rk4 output vectors I4XOUT and I4YOUT (HALO requires
INTEGER*4). Values of INXY are transformed alternately as x-values
of I4XOUT and y-values of I4YOUT. The first is x.

If NWIN=0, coordinates are already in external, LS coordinate
form. Go directly to the second step. Otherwise, the first step in
processing is to set local variables LSB, LST, LSL, LNB, LNT, LNL,
and LNW to suitable choices for window NWIN. Generally, these are
the corresponding LSwwB, LSwwT, etc. However, there are
exceptions:

(i) There are no LSTIT, LSTIB, LNTIT or LNTIB values. Use
corresponding variables for the Main Window.

(ii) If NWIN=79 (title) or 99 (main) and KURMOD=2
(resource), LSB=LSMNB+KARY+1.

The second step of processing is to separate INXY values into
the output vectors I4XOUT and I4YOUT, converting as required.
Conversion for an X-value is as follows:

11 I4XOUT(j) = 	INXY (i) 	if NWIN=O

INXY (i) + (LSL-LNL) 	otherwise

For y-values it is

I4YOUT(j) = MXTMLY -

INXY(i) 	 if NWIN=O

if NWINO and
INXY(i)+(LSB-LNB) INXYWANTP

INXY(i)+(LSTP-LSTP) otherwise

where

LNTP =

LSTP =

C.2.4 Termination

1Z 8191 if NWIN=69, LOHAS=2 and INXY(i)

?..8191 - KARY

LNT otherwise

[LST-(KARY+1) if NWIN=69 LOHAS=2

and INXY(i)<8191-KARY

LST 	 otherwise

New subroutine PCTERM will end HALO processing at program
end. It should merely call CLOSEG and SMODE as at the end of the
demonstration program and RETURN. Call PCTERM at the end of all
test programs.

C.3 Primitives Overview

C.3.1 Background

GITPASE output operations are called out by FORTRAN and
executed by BASIC routines. All or nearly all messages invoking
BASIC routines are sent by a series of "OUTGR" subroutines. OUTGR1,
OUTGR2, OUTGR3, OUTGR4, and OUTGR send 1, 2, 3, 4, and multiple
coordinate graphics respectively. OUTGRS, OUTGRC and OUTGRD send
strings and parameters for BASIC routines.

The functions desired of any OUTGR call are controlled by an
"op code" which is the first parameter of the call to each such
routine. Table C-1 gives a composite list. A window parameter
tells how coordinates should be transformed for external format (see
C.2), and a color parameter determines the color number of the
output.

Op Code 	 Function 	 Called Through 	PC Implementation

1 & 2 	 Filled rectangle 	 OUTGR4 	direct

3 & 4 	 Filled continuation rectangle 	OUTGR2 	setup OUTGR4 call with (LASXX,LASYY) as first
coordinate

5 	 Unfilled rectangle 	 OUTGR4 	direct

6 	 Unfilled continuation rectangle 	OUTGR2 	setup OUTGR4 call with (LASXX,LASYY) as first
coordinate

7 	 Dashed x-bar 	 OUTGR3 	direct (three coordinates are x
1
,y,x

2
). Setup

OUTGR4 from (x 1 ,y) to (x
2 ,y))

8 	 Deblink rectangle 	 OUTGR4 	log to file 8 and return

9 	 Blink rectangle 	 OUTGR4 	log to file 8 and return

10 	 Change to red rectangle 	 OUTGR4 	log to file 8 and return

11, 12 	 Solid, concatenated vectors 	 OUTGR 	direct (comes in (x,y) pairs)
13, 14

15, 16 	 Dashed, concatenated vectors 	 OUTGR 	direct (comes in (x,y) pairs)
17, 18

19 	 Correct composite color rectangle 	OUTGR4 	log to file 8 and return

20 	 Write asterisk 	 OUTGR2 	call SYMBOL(-1,KOLOR,IWIN,KOORD1,KOORD2)
(see Section C.4)

21 	 Write hierarchical tag 	 OUTGR2 	call SYMBOL(0,KOLOR,IWIN,KOORD1,KOORD2)
(see Section C.4)

22 	 String with last 7 characters 	OUTGRS 	direct
reverse lettered

Op Code 	 Function 	 Called Through 	PC Implementation

24 	 String requiring skip of 	 OUTGRS 	direct
character 4

23, 25, 26 	String 	 OUTGRS 	direct
or OUTGRC

27 	 Blinking string 	 OUTGRS 	log to file 8 and return
or OUTGRC

28 	 "Write on top" string 	 OUTGRS 	direct
or OUTGRC'

29 	 Label menu button 	 OUTGRS 	log to file 8 and return

30 	 Write error message 	 OUTGR1 	N/A

31 	 Reverse lettered string 	 OUTGRS 	direct
or OUTGRC

32 	 String 	 OUTGRS 	direct
or OUTGRC

33 	 Blink rectangle and position cursor OUTGR4 	log to file 8 and return

34 	 Activate menu button n 	 OUTGR1 	N/A

35 	 Deactivate menu button n 	 OUTGR1 	N/A

36 	 Write special symbol n 	 OUTGR3 	call SYMBOL(KOORD3,KOLOR,IWIN,KOORD1,KOORD2)
(see C.4)

37 	 Configure screen for mode m 	 OUTGR1 	N/A

38 	 Write question n and position 	OUTGRS 	log to file 8 and return
for answer

39 	 Purge light pen queue 	 OUTGR1 	log to file 8 and return

40 	 Draw auxiliary menu 	 OUTGR1 	N/A

Op Code 	 Function 	 Called Through PC Implementation

41 	 Filled rectangle for composite 	OUTGR4 	direct as 1 & 2
colors

42 	 not used 	 OUTGR1 	N/A

43 	 not used 	 OUTGR1 	N/A

44 	 Transmit Select Mode options 	 OUTGRS 	log to file 8 and return
to BASIC

45 	 Correct composite colors in 	 OUTGR1 	N/A
Lower Window

46 	 String with right 14 characters 	OUTGRS or 	direct
reverse lettered 	 OUTGRC

47 	 String 	 OUTGRS 	direct

48 	 Send HELP line 	 OUTGRS 	log to file 9 and return

49 	 Send continued HELP line 	 OUTGRS 	log to file 9 and return

51 	 Send parameters for Message Window 	OUTGRD 	N/A
status report

52, 50 	 Not used

53 	 Send parameters to write tick 	OUTGRD 	N/A
marks for a time scale

54 	 Send parameters to write file, 	OUTGRD 	N/A
network, save times in Lower Window

55 	 Not Used

56 	 Send parameters to write header for OUTGRD 	N/A
Lower Window consumption table

57 	 Send parameters to write start/ 	OUTGRD 	N/A
finish time line for Status Mode

Op Code Function Called Through PC Implementation

58 Send parameters to write Status OUTGRD N/A
Mode Message Window

59 Send parameters to write cost
resource parameters

OUTGRD N/A

60, 	61, Not used
62, 	63, 	64

65 Dashed unfilled rectangle OUTGR4 direct

66 Solid vector OUTGR4 direct

67 Dashed vector OUTGR4 direct

Milestone C replaces all these routines by new IPMPC ones.
Also, several new subroutines will be created to replace BASIC-
executed subroutines. In some cases these new routines are called
from within OUTGR's, and in others the calling FORTRAN routine is
completely substituted.

C.3.2 Output Inhibition

GITPASE has a 'touch queue' feature which inhibits screen
updates while several locator inputs are given. When /CONTRL/
variable KUEON#O, such an output block is in effect. All PC output
routines that make any HALO calls should include a check of KUEON
before sending any output. If KUEONO, merely return.

C.4 Primitives Replacements

Routines OUTGR2, OUTGR3, OUTGRC, OUTGRS and OUTGR of the present
system will be replaced by new HALO-oriented code. Others will be un-
needed because routines that call them are replaced.

Table C2 details the call parameters of the needed new routines.
Table Cl gave specific option processing.

C.4.1 OUTGR4

Subroutine OUTGR4 is to be a HALO rectangle generating routine
similar to RECT in the demonstration program. First setup one call to
PCVTXY with the 4 coordinates. Then write the required rectangles
according to IOPT and KOLOR. Save the last input (x,y) pair as new
comon /IBMPC/ variable (LASXX,LASYY).

C.4.2 OUTGR2

Subroutine OUTGR2 has 2 purposes. Option 3, 4 and 6 are
'continuation', i.e., the draw rectangles using the present cursor
position (LASXX,LASYY) as one corner. Setup a call to OUTGR4 with those
two and the passed two coordinates.

Options 20 and 21 write symbols at a location (see C.5). Merely
generate the indicated call to SYMBOL.

C.4.3 OUTGR3

Subroutine OUTGR3 also has multiple purposes. When option 7 is
used an OUTGR4 call is generated. The final 'coordinate' of option 36
is not a location, but a symbol number. Call SYMBOL.

C.4.4 OUTGR

Subroutine OUTGR is to be a HALO vector sequence calling routine.
It should call PCVTXY once, then pass results to HALO's POLYLA after
setting color and line style.

Table C2. OUTGR Subroutines

Name and Parameters*

OUTGR2(IOPT,KOLOR,IWIN,KOORD1,KOORD2)

OUTGR3(IOPT,KOLOR,IWIN,KOORD1,KOORD2, KOORD3)

OUTGR4(IOPT,KOLOR,IWIN,KOORD1,KOORD2, KOORD3, KOORD4)

OUTGRC(IOPT,KOLOR,IWIN,KOORD1,KOORD2,STR801)
-STR80=a CHARACTER*80 input with delimiters

OUTGRS(IOPT,KOLOR,IWIN,KOORD1,KOORD2,LENSTR,ISTRNG)
-LENSTR is the string length in characters
-ISTRNG is the vector containing the string
2 characters per word
(i.e., format A2 except Al last on odd lengths)

OUTGR(IOPT,KOLOR,IWIN,NUMKRD,KOORDS)
-NUMKRD is the number of coordinates (x,y,x...) sent
-KOORDS is the vector containing the coordinates

*In all the above
- IOPT is the option code
- KOLOR is the color to be used
-IWIN is the window member in which coordinates apply
-KOORD is a coordinate (first x, second y, third x, etc.)

C.4.5 OUTGRS

Subroutine OUTGRS writes strings to the screen similarly to
demonstration program routine WRISTR. First setup one call to PCVTX
to convert x & y addresses. Then add INFONTY to I4YOUT to adjust for
HALO/GITPASE cursor definition differences. The INTEGER*2 input is
reduced to a string with delimiters and HALO called. In option 24, the 4th
character is deleted. In several options the string is split in two parts,
one normal letters and one reverse lettered. All writing except reverse
letter portions should be with overstrike latched (SETTXT (1,1,0,0) to
minimize difficulties with very tight screen spacing.

C.4.6 OUTGRC

OUTGRC is similar to OUTGRS except that input is a CHARCTER*80
string with delimiters already included instead of an INTEGER*2 vector.
The string can be passed directly to HALO's TEXT unless reverse letters
are used. As with OUTGRS overstrike is latched except on reverse letters.

C.5 Special Primitives

In addition (or through calls from) the above main routines certain
special routines are required) in GITPASE.

C.5.1 Symbols

Certain special symbols are to be written by new subroutine

SYMBOL(NSYMB,KOLOR,IWIN,KOORDX,KOORDY)

The pair (KOORDX,KOORDY) defines the upper left corner of a KARX=8 by
KARY=10 pixel box in which the symbol should appear in the left 7 x pixels
and (top down) y-pixels 2 through 8. Begin by converting (KOORDX,KOORDY)
via PCVTXY. For the following merely write the needed character in the
usual overstrike-latched manner.

NSYMB 	 Character

	

-1 	 * (asterisk)

	

6 	 (tilde)

For other cases (NSYMB=0 to 5) draw the shape indicated in Table C4 with
graphics. Fill the 7 by 7 block.

C.5.2 Highlight/Dehighlight

Elaborate the dummy routines HLIT and DEHLIT of Milestone B into
callers of OUTGR4. HLIT should make an I0PT=65 call in KOLOR=14 to mark a
rectangular area in dashed light yellow. DEHLIT should reverse the process
by making the same call in KOLOR=0=black.

C.6 Test Program

Demonstrate the above routines by a dummy calling program. The
program should call INITLE (which calls PCINIT), then it should solicit
test requests from the tester, clear screen with OUTGR 4(NUMBR(1), NUMBRO,

Table C3. Special Symbols

Symbols are 10 dots high, numbered from the top, with the font in the
center 8 of the 10 dots, and are 8 dots wide, numbered from the left.

a. 	Fixed Start (op=36,
n=1) 	SYMBOL(1,...)

b. 	Fixed Finish (op=36,
n=2) SYMBOL(2,)

c. 	Fixed Duration (op=36,
n=3) 	SYMBOL(3,...)

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
1 1 1
2 1 2 I 2
3 I 3 I 3
4 1 4 I 4
5 N 5 I .5
6 I 6 I 6 1 I
7 I 7 I 7 1 I
8 I 1 1 I 1 1 8 1 1 1 1 I 1 8 I I 1 1 1 1 I 1
9 9 9

10 10 10

d. Fixed Start and
Duration (op=36,

e. Fixed Finish and
Duration (op=36,

f. Hierarchical Tag
(op=21) SYMBOL(0,...)

n=4) SYMBOL(4,... n=5) 	SYMBOL(5,...)

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
1 1 1
2 1 2 	 I 2 I I
3 1 3 	 I 3 I 1
4 I 4 	 I 4 I I
51 5 	 I 51 1
6 I I 6 1 	 1 6 I I
7 1 I 7 I 	 1 7 I I
8 I 1 1 1 1 1 1 1 8 1 1 I 1 1 1 I 1 8 I I
9 9 9

10 10 10

g. 	Member Tag (tilde)
(op=36,n=6)
SYMBOL(6,...)

h. 	Asterisk (op=20)
SYMBOL(-1,)

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
1 1
2 2
3 3 1 	I 	1
4 1 4 I I I
5 I I 5 1
6 I 6 I I I
7 7 1 	1 	1
8 8 1
9 9

10 10

NUMBRO, MNTMLX, MNTMLY, MXTMLY, MXTMLY, and do indicated graphics. Check
that each indicated routine works in colors 0-15, all appropriate windows,
and with and without wrapped (split) screens.

To generate wrapped screens set

LNwwT = 8000
LNwwB = 8000 - (LSTP-LSB)
LNwwW = 6000

where LSTP and LSB are as in PCVTXY. To generate unwrapped screens set

LNwwB = 8000
LNwwW = 6000
LNwwT = 6000 + (LSTP-LSB) - 191

ls
em Fortran 3.2 compile and link of 741.for
orl
asp
ink 7.1 \fortran\sbeep„,\fortran\fortran \fortran\math \fortran\halocf \mouse\m
use
em Link complete as 7.1.exe

---commons for program gittst.for

integer*4 i4col,i4colr,i4row,i4x1,i4x2,i4y1,i4y2

common /gitl/i4col,i4colr,i4row,i4x1,i4x2,i4y1,i4y2

common /git2/ifontx,ifonty,
• iopsy,karx,kary,1slob,1s1o1,1slor,1slot,
• lsmnb,lsmn1,1smnr,lsmnt,lsmsb,lsms1,1smsr,lsmst,
• lstil,lstir,lstnb(3),lstnt(3),
• mmtmlx,mntmly,mxco1,mxtm1x,mxtmly,numbrO,numbr(100)

character*80 str8O

common /oit3/str80

program gittst
implicit intecer*2 (i-n)
---test and demonstrate various features of halo and mouse

- --processing in connection with the pc640 board, micorsoft

---mouse and gitpase.

include: 'gitcom.for'

dimension inline(80),mousxx(20),mousyy(20)

---notes
1. halo calls require i*4 integers

2. mouse calls require i*2 integers

3. beep and smode require i*2 integers
4. beep/smode halo conflict by duplication of 'scroll'

(repaired in sbeep by renaming the fortpak 'scrole')

5. halo text routines expect an 80 length character input

with delimiters to specify its true length

6. before running the mouse control must be installed by the
command 'mouse'

7. halo text character is min 8x by ey, including an empty

pixel on right and bottom.
8. microsoft fortran does not permit data statements to

assign strings to integer variables.
9. halo has 0,0 in upper left while gitpase assumes lower left

10.halo has cursor coordinates in lower left while gitpase

assumes upper left

---literal x space as integer

data litx/8312/

---initialize

call initl

---draw screen boundaries
call setcol (0)

call clr
call rect(numbr0,numbr(7),1stil,lsmnt,lslor,lslob)
call rect(numbr0,numbr(7),1stil,lsmnt,lstirOslob)

call rect(numbr0,numbr(7),1stil,lslot,lslor,lslob)

call rect(numbr0,numbr(7),1sms1,1smst,lsmsr,lsmsb)

---draw menu

call mnubtn(numbr(1),numbr(25),numbrO)

call mnubtn(numbr(4),numbr(4),numbr(1))

call mnubtn(numbr(14),numbr(14),numbr(1))

---try character spacing
call spcchr

---mouse controlled loop

kolor=0
)0 	continue

---get a queue of mouse input
call mousin(mousxx,mousyy,numous)

kolor=kolor+1

---only 1 was received so solicit and write string

call keyin(inline,inlen)

---check abort

if(inlen.lt.1)goto 600
if(inline(1).eg.litx.and.inlen.eg.1)goto 900

---send characters to the screen

numrev=inlen-1
numrev=max(numbr(1),numrev)

numrev=min(numrev,numbr(5))

numdir=inlen-numrev
call wristr(kolor,mousxx(1),mousyy(1),numdir,

numrev,inline)

goto 600
no 	 continue

----more than 1 so make rectangle of first two

call rect(numbr(1),kolor,mousxx(1),mousyy(1),

mousxx(2),mousyy(2))
CIO
	

continue
goto 200

---exit

CO 	continue
---end halo

call closet'

---restore ibm-board mode

mode=3
call smode(mode,ierr)
stop

end

subroutine brkstr(str,istr,len)

implicit integer*2(i-n)

---break character string into single integer al formats until

---delimiter repeat sets length len

---str must be char*80 and istr dimensioned 80 in calling program

include: 'gitcom.for'

character*80 str
dimension istr(1)

---break into al
read(str,200)(istr(iii),iii=1,80)

00 	format(80a1)

---scan to delimiter

idelim=istr(1)

do •00 llen=1,79
if(istr(llen+1).eq.idelim)goto 900

istr(llen)=istr(llen+1)
:)0 	continue

llen=80

iti continue

len=llen-1

return
end

subroutine colors

implicit integer*2(i-n)
rii+nr*--rnmnfihicn rmlnr n,--411mf

'gitcom.for'

integer*4 ired,igrn,iblue,i4plet(16,3)

character*15 str15
dimension istr(15)

data i4plet/
15,10,13,15, 	0, 	0, 0, 0, 6, 0, 5, 0, 3,11, 0, 2,

15,10, 	0, 0,11,14, 0, 0, 6, 5, 7, 7, 6, 	0, 0, 2,

15, 	0,13, 0,11, 	0,13, 0, 6, 5, 9,15, 1, 	5, 5, 2/

---revise color pallet to gitpase-compatible starting point

do 70 idx=1,mxcol+1
i4colr=idx-1
call setpal(i4colr,i4plet(idx,1)04plet(idx,2),

i4plet(idx,3))
0 	continue

---loop to correct if desired

	

00 	continue

call setcol (0)

call clr
iy1=mxtmly-4*kary
maxi=mxcol+1

do 200 idx=1,maxi
kolor=idx-1
iy2=iy1-20
ix1=0

ix2=60
call rect(numbr(1),kolor,ix10y10x20y2)

	

50 	 format(i2,'=',3i4)

i4colr=kolor

if(iopsy.ne.3)goto 160

call incipal(i4colrOred,igrn,iblue)

write(str15,150)kolor,iredOgrnOblue

goto 165

	

60 	 continue

str15="
format('color no.= ',i4)

write(str15,162)kolor
continue

	

0 	 format(80a1)

read(str15,170)(istr(iii),iii=1,15)
ix1=70

call wristr(kolor,ix10y1,numbr(15),numbr0,istr)

ix1=195
kolbk=kolor

if(kolbk.eq.0)kolbk=mxcol
call wristr(kolbk0x10y1,numbr0,numbr(15),istr)
iy1=iy1-25

continue

---see if any are to change
write(0,*)'enter revise color,r,g,b else -1,0,0,0'

call beep
read(0,*) i4colr,ired,igrn,iblue

if(i4colr.lt.O.or.iopsy.ne.3)goto 900

call setpal(i4colr,ired,igrn,iblue)

goto 100

---exit

	

)0 	return

end

implicit integer*2(i -n)

---initialize various inputs and i/o systems

include: 'gitcom.for'

---set operating system flag 3=scion, 4=ibm board

---at med resolution, 5=ibm board at hi resolution

iopsy=3
if(iopsy.ne.3)write(0,*)' op system?'

if(iopsy.ne.3)read(0,*)iopsy

---set number*2 constants

numbr0=0
do 200 num=1,100

numbr(num)=num

	

00 	continue

---terminal screen min limits

mntmlx=0

mntmly=0

---initialize halo

if(iopsy.ne.3)goto 150
---scion board at default address region 320K-576K

call setseg(5)

call initgr
mxcol=15

mxtmly=479
mxtmlx=639

goto 190

	

50 	continue

---ibm board
call initgr(iopsy-4)

mxcol=3
mxtmly=199

mxtmlx=319
if(iopsy.eg.4)goto 190

---hi res

mxcol=1
mxtmlx=639

	

0 	continue

---set string character sizes

ifontx=8

ifonty=8

karx=ifontx

kary=ifonty+2

---initialize the mouse

nn1=0
call mouses(nn1,nn2,nn3,nn4)
---halo crosshair cursor will mark mouse position

i4x1=3*ifontx
i4y1=3*ifonty

if(iopsy.eg.3)i4colr=14

if(iopsy.eg.4)i4colr=3
if(iopsy.eg.5)i4colr=1
call inithc(i4x1,i4y1,i4colr)
---set ibm board to hi-res graphics so that mouse will scale ok
mode=6

call smode(mode,ierr)

---demonstrate that read and write possible in graphics mode

write(0,730)
format(' enter any 2-digit integer'/' ?'\)

'4 ,0
	

format (i2)
write(0,750)intq

50 	format(' integer',i3,' was received')

- --initialize color pallet

call colors

---initialize screen boundaries

1smnt=mxtmly- kary- 1

lstnb(1)=1smnb+(2*(1smnt -lsmnb)/3

lstnb(2)=1smnb+(lsmnt -lsmnb)/3

lstnb(3)=1smnb

1stnt(1)=1smnt-2*kary
1stnt(2)=1stnb(1)-2*kary

1stnt(3)=1stnb(2)-s*kary

wmm=f1smnt-lsmnb+6)/25.0
wma=(1slor-lslo1-100)/17.0

lslob=0
1slot=lslob+9*kary+2

lsmnb=lslot

1sti1=3*karx-1

lstir=18*karx-1
lsmnl=lstir
lsmnr=mxtmlx

lslol=lsmn1

lslor=lsmnr

lsms1=lstil
lsmsr=lstir

lsmsb=lslob

lsmst=lsmsb+6*kary+1

---exit

00 	continue

return
end

subroutine keyin(inline,inlen)

implicit integer*2(i-n)
---read in a single character string line

include: 'gitcom.fOr'

dimension inline(80)

inblnk=32*257

	

0 	continue

	

)0 	format(80a1)

call prompt(' TYPE ')

	

:10 	format(/' ?"0

write (0,210)
read(0,200,err=500,end=600)inline

do 300 idx=1,80

kar=81-idx
if(inline(kar).ne.inblnk)goto 400

	

70 	continue
kar=0

	

)0 	continue

inlen=kar

call prompt(' WAIT ')

goto 900

50171 	continue

write(0,*) . error on read'

stop 2

---end of file
00 	continue

write(0,*)' end of file detected'

stop 1

---successful read

00 	continue

---exit

00 	continue

return

end

inteoer*2 function konvy(iny)

implicit integer*2 (i-n)

---convert iny to halo out form.

include: 'gitcom.for'

---reverse origin to upper left

konvy=mxtmly-iny
return

end

subroutine mnubtn(nbtnl,nbtn2,isfill)

implicit integer*2 (i-n)

- -fake menu buttons nbtnl,nbtn2--filled if isfill=1

include: 'gitcom.for'

character*80 strmnu

dimension mnu(8U)

strmnu='\mnu\'

call brkstr(strmnu,mnu,idum)

iyper=(mxtmly+6) /25

---first black behind

ny1=iyper*nbtn2-6
ny2=iyper*(nbtn1-1)-5

if(ny2.1t.0)ny2=0

nx2=1sti1-1
call rect(numbr(1),numbrO,numbrO,ny1,nx2,ny2)

---then write each in turn

nx1=0

nx2=lstil-2
do 500 nbtn=nbtn1,nbtn2

---the colored box

ny1=iyper*nbtn -6

ny2=iyper*(nbtn - 1)

kolor=7
if(1.1e.nbtn.and.nbtn.le.6)kolor=nbtn

if(7.1e.nbtn.and.nbtn.le.12)kolor=nbtn+1

if(nbtn.eq.25)kolor=4
call rect(isfill,kolor,nx1,nyl,nx2,ny2)
--+

if(isfill.eq.1)kolor=0
call wristr(kolor,nxl,nyl,numbr(3),numbr0,mnu)

500 	continue

---exit
00 	continue

return

end

subroutine mousin(mousxx,mousyy,numous)

implicit integer*2(i-n)
---collect a queue of up to 20 locations from the

---Microsoft mouse. Number collected in numous.

- --Coordinate pairs are (mousxx(i),mousyy(i)).

include: 'gitcom.for'

dimension mousxx(1),mousyy(1)

---clear the mouse buttons

nn1=5

nn2=1
call mouses(nnl,nn2,nn3,nn4)

nn1=5
nn2=0
call mouses(nn1,nn2,nn3,nn4)

i4x1=-1
i4y1=-1

---set the y-scaling factor

scaly=mxtmly+1
scaly=scaly/200

---signal ready

call prompt(' TOUCH ')

- --pickup up to two x,y pairs

do 400 numous=1,20

---loop until button interrupt

continue
---mark the present position with the crosshair cursor
nn1=3

call mouses(nnl,nn2,nxx,nyy)

nyy=nyy*scaly+.5
if(i4xl.eq.nxx.and.i4y1.eq.nyy)goto 250

i4x1=nxx
i4y1=nyy

call movhca(i4x1,i4y1)
50 	 continue

---check left button for hit and exit

nn1=5
nn2=0
call mouses(nn1,nn2,mousxx(numous),mousyy(numous))

if(nn2.gt.0)goto 500

---check right button for new hit

nn1=5

nn2=1
call mouses(nn1,nn2,mousxx(numous),mousyy(numous))

if(nn2.gt.0)goto 400

goto 200

00 	continue

numous=20

---end touch solicit

00 	continue
call prompt(' WAIT ')

call delhcu

---reverse and scale the x and y values

do 600 iii=1,numous

mousyy(iii)=(199-mousyy(iii))*scaly+.5

00 	continue

00 	continue

return
end

subroutine prompt(msg)

implicit integer*2 (i-n)

---simulate giving prompt message msg

include: "gitcom.for'
character*7 msg
dimension istr(7)

read(msg,200)(istr(iii),iii=1,7)

00 	format(80a1)
nxx=lsms1+4*karx
nyy=lsmsb+kary
call wristr(numbr(2),nxx,nyy,numbrO,numbr(7),istr)

call beep

return

end

subroutine rect(isfill,kolor,nxl,nyl,nx2,ny2)

implicit integer*2(i-n)

---draw a rectangle in color kolor between (nxl,nyl) and

---(nx2,ny2). 	Fill if isfill=1.

include: 'gitcom.for'

integer*4 i4hold

---set the color
i4colr=kolor

if(i4colr.gt.mxcol)i4colr=mxcol

call setcol(i4colr)

---convert the x-addresses

i4x1=nx1

i4x?=nx?
---convert the y-addresses

i4y1=konvy(nyl)

i4y2=k:onvy(ny2)
---sort the x-addresses (1 to r)
if(i4x1.1e.i4x2)goto 300

i4hold=i4x1

i4x1=i4x2
i4x2=i4hold

00 	continue
thin frnnycnr+c=r1) s.,--rini-Fmses ft to h)

i4hold=i4y1
i4y1=i4y2

i4y2=i4hold
00
	

continue

---call the appropriate routine

if(isfill.eq.1)call bar(i4x1,i4y1,i4x2,i4y2)
if(isfill.ne.1)call box(i4x1,i4y1,i4x2,i4y2)

---exit
00 	continue

return
end

subroutine spcchr
implicit integer*2 (i-n)

---test character spacing of gitpase screen
Include: 'gitcom.for'

dimension istr(80)

- --title window
nyy=lsmnt-3*kary

nxx=l stir-14*karx+1

str80='\activity nam: O\

call brkstr(str80,istr, lenstr)
call wristr(numbr(1),nx x,nyy,numbrO,lenstr,istr)
nyy=nyy-kary

call wristr(numbr(2),nx x,nyy,numbrO,lenstr,istr)

- --time scale
nyy=lsmnt+kary+1

str80='\01:01 	01:02\'
call brkstr(str80,istr,lenstr)

call wristr(numbr(1),1smnl,nyy,numbrO,lenstr,istr)

---main window

nyy=lsmnt-4*kary

nxx=lsmn1+1
str80=

$'\123456789+123456789+1 23456789+123456789+ 123456789+123456789+12\'

call brkstr(str80,istr, lenstr)

call wristr(numbr(1),nx x,nyy,numbrO,lenstr ,istr)
nyy=nyy-kary

call wristr(numbr(2),nx x,nyy,numbrO,lenstr ,istr)

---message window

nxx=lsmsl+1

nyy=lsmst-2*kary-1

str80='\message of --15\'

call brkstr(str80,istr,lenstr)

call wristr(numbr(1),nxx,nyy,numbrO,lenstr,istr)

---triple size char acter

call movtca(mxtmlx/ 2,mxtmly/2)
call settex(3,3,0,1
call settc1(0,1)
str80='\X\'

call text(str80)

call settcl (1,0)
call text(str80)

call settcl (0,1)

call text (str80)

(-JO. 4 continue

return

end

subroutine wristr(kolor,nxx,nyy,numdir,numrev,istr)

implicit integer* 2 (i-n)

---write a string from integer storage at location nxx,nyy

---in color kolor with numdir characters normal and numrev

---reverse lettered

include: 'gitcom.for'

character*1 delim

dimension istr(1)
data delim,idelim/ -•',8317/

---convert color and y-coordinate

i4colr=kolor

if(i4colr.gt.mxcol)i4colr=mxcol

i4y1=konvy(nyy)

---adjust to halo cursor point in lower left

i4y1=i4y1+ifonty

i4x1=nxx

---first the normal lettered part

if(numdir.lt.1)goto 400
---convert to character with delimiters

strE30="

write(stre0,200)idelimOistr(iii),iii=1,numdir),

idelim

00 	format(80a1)

---set color

call settcl(i4colr,O)

call settex(1,1,0,0)

---set location

call movtca(i4x1,i4y1)

---write
call text(str80)

00 	continue

---next send the reverse lettered part

if(numrev.lt.1)goto 900
---convert to character with delimiters

mini=numdir+1
maxi=numdir+numrev

sfr80="
write(str80,200)idelim,(istr(iii),iii=mini,maxi),

idelim

---set color
call settcl (0,i4colr)

call settex(1,1,0,1)

---set location
i4x1=i4x1+numdir*karx

call movtca(i4x1,i4y1)

---write
call text(str80)

---exit

continue
call deltcu

12 July 19 84
E-24-669- Item A003
Milestone E Specifications
Project Director: Donovan B. Young

Milestone E: Complex Displays

By Ronald L. Rardin

The Phase III version of the GITPASE project management
system employs a hybrid of a VAX computer running FORTRAN and a
Chromatics color graphics microprocessor running BASIC. The
Milestone C/D specification developed graphics and string primitives
interfacing to HALO. This milestone specifies more complex routines
calling those primitives (or HALO directly). It presumes the
environment of Milestone C.1 and refers to the demonstration program
attached to that Milestone.

E.1 Menus and Mode Screens

One fundamental element of GITPASE screens is menus. Twenty-
five menu blocks are always present at the extreme left of the
screen. An additional 14 appear sometimes in the Lower Window as
the "auxiliary menu". Menu blocks or buttons are identified by
"relative number" where 1-25 are the permanent ones (bottom to top),
26-32 are the first line of the auxiliary menu (left to right), and
33-39 are the second (left to right). Blocks 1-12 are a "color
menu" with one button for each of the colors 1-13 except white.

E.1.1 Subroutine MNUBTN

Create replacement subroutine MNUBTN (NBTN1, NBTN2, ISFILL)
to draw and label menu buttons NBTN1 through NBTN2. If ISFILL=0 the
buttons are not filled and have labels in the color of their
boundaries. If ISFILL=1, the buttons are filled and labels are in
black. Since blink is unavailable on the PC, menu blocks will
normally be unfilled. They will be redrawn filled when active.

All menu blocks for the PC are /CONTRL/ common variable WMM-6
pixels high by 3*KARY-2 pixels wide. Labels are vertically centered
and over the left boundary. (This causes one pixel to "stick out"
on the right, but is unavoidable with tight PC scaling). Lower left
menu block corners are as follows (HALO coordinates):

Relative No. (n) 	 x 	 Z

1-25 	 0 	 MXTMLY-IJMM*(n-1)

26-32 	 LSLOL+58+WMA*(n•26) 	MXTMLY-LSLOT-17

33-39 	 LSLOL+58+WMA*(n•33) 	MXTMLY-LSLOT-36

It is essential that menu writing proceed as rapidly as
possible. Thus, MNUBTN should call HALO directly, using no GITPASE
primitives.

The first processing step if ISFILL=0 is to 'black behind',
i.e. draw one black filled rectangle for any parts of the NBTN1 to
NBTN2 range in the interval 1 to 25, and/or one such rectangle for
the interval 26-32 and/or one rectangle for the interval 33-39.
Then, taking buttons NBTN1 to NBTN2 in order, draw and label.

Blocks 1 to 12 are the color blocks (in colors 1 to 6 and 8
to 13). If KURMOD=0 (Transition) or /NETWRK/ variable ICOLR(n)=0,
button n is unlabeled. Otherwise the label of n is /NETSAV/ (FORMAT
A2,A1) integer*2 values

IRNAM(1,ICOLR(n)), IRNAM(2,ICOLR(n)).

Blocks 13 to 39 have mode-dependent labels. Table El shows
button colors and labels for all modes. Items in Table El should be
loaded by MNUBTN DATA statements into CHARACTER*5 array MNULAB(n-
12,mode). Each entry will be the 3 characters with delimiters so
that HALO routine TEXT can be called without processing.

INTEGER*4 array MNUCLR (1 to 39) will be similarly loaded with menu
block colors.

A few menu blocks, e.g. number 19 of activity mode, have
'cross out' lines through their labels. Graphically add these lines
as the last MNUBTN step (in color if ISFILL=0 and in black
otherwise).

E.1.3 Subroutine MODSCN

Replacement subroutine MODSCN (NEWMOD) creates initial
screens for GITPASE modes. It first sets KURMOD=NEWMOD, then erases
the whole screen with BLACK(NUMBR(1)), then draws the window
boundaries of Milestone C figure Cl in white using OUTGR4 window 0.
It then uses MNUBTN to draw unfilled menu blocks 1 to 25 (1 to 39 in
Transition Mode). The 'GITPASE' logo is added in double high
letters in the space above the Message Window.

Mode 2 = Resource has the title

'CD/BGWT/AM' repeated 5 times above the Main Window.

Mode 4 = Status has the heading

'1616SSFIRMIOSTEMMSMSCHEDULES

twice, with the last 10 characters reverse-lettered. Write these
titles using subroutine OUTGRC.

E.2 Miscellaneous Displays

E.2.1 Error Messages

When GITPASE detects a user error, it displays a 15-character
message in text line 5 of the Message Window. Table E2 shows a

el
No.

Table El. 	Menu Labels by Mode

Button 	Transition 	Activity
Color 	Mode (0) 	Mode (1)

Resource
Mode (2)

Schedule
Mode (3)

Status
Mode (4)

Calendar
Mode (6)
and
Select
Mode (5)

13 7 HLP HLP HLP HLP HLP HLP
14 7 1'4 +4 is ,116 is+11I ++16
15 7 NEU NEU NEU NEU NEU NEU
16 7 BAK BAK BAK BAK BAK BAK
17 7 PRT PRT PRT PRT PRT PRT
18 7 1dq6 RFM
19 7 —E— ACC
20 7 <?? SER ADV
21 7 <:0 SK+ DUR
22 7 16416 STD SK=
23 7 16116 SEO DUR WI+
24 7 SIM DEL DEL S/F WI=
25 4 MNU MNU MNU MNU
26 2 ACT ACT ACT ACT ACT ACT
27 2 RES RES RES RES RES RES
28 2 SCH SCH SCH SCH SCH SCH
29 2 STA STA STA STA STA STA
30 2 SEL SEL SEL SEL SEL SEL
31 2 CAL CAL CAL CAL CAL CAL
32 2
33 6 OLD LOD LOD LOD LOD LOD
34 6 NEW SAV SAV SAV SAV SAV

35 6 REN
36 6 PUR
37 6 DIR
38 6 RST
39 4 END TRN TRN TRN TRN TRN

list. The message is colored in white (7). In the Chromatics
version of GITPASE, it blinks.

Create replacement subroutine ERRMSG(NUM) to write error
message NUM. It should call BLACK(10), then setup and call OUTGRC
to write the message in white (7). Use DATA statements in ERRMSG to
load CHARACTER*17 array IERMSG(26) with the message literals (and
delimiters).

E.2.2 Message Window Schedule Report

Replacement subroutine NETMSG writes a 4-line schedule status
report in the first 4 lines of schedule status report in the first 4
lines of the Message Window. It uses subroutine PAKPER(INPERD,
IPACK) to convert interval period numbers INPERD to external period
codes IPACK (3) in (A2, Al, A2) format (INTEGER*2).

First call BLACK(NUMBR(9)) to erase the area. Then display
via internal writes and OUTGRC.

(i) Line 1 is green (2) and displays PAKPER of IDESST and 'TRUST
in format

Cds',A2,A1,A2, I iSss',A2,A1,A2)

(ii) Line 2 is red (4) and displays PAKPER of IDESFN and ITRUFN in
the format

('df',A2,A1,A2,'Ssf',A2,A1,A2)

(iii) Line 3 is yellow (6) and displays

IFIX(TIMINF+.5) and RESINF in format

I3, 1 ,ri= 1 ,F5.1)

(iv) Line 4 is magenta (5) and displays COST in format

('$$$=',F11.2)

E.2.3 Time Scale Ticks

Replacement subroutine TIMTIC draws time ticks for
timescales. TIMTIC will begin by calling OUTGR4, window 0, to black
an 11-dot-high area from x=LSMNL+1 to x=LSMNR-1 at y=LSMNB+11 in
Resource Mode (KURMOD=2) and y-LSMNT+11 otherwise. Then draw white,
3-dot-high "ticks" across the bottom of this time scale region.
Ticks are spaced to provide for periods (/CONTRL/ variables) MNTIM
through MXTIM, with the tick for the left end of MNTIM at x=LSMNL
and the one for the right end of MXTIM at x=LSMNR. Call HALO
routines directly to improve speed.

Table E2. GITPASE Error Messages

Error Number 	 Message

1 	 Programl6Error14

2 	 FilallotOoundS

3 	 DatalgIslkyclici

4 	 No16Activel6Fila

5 	 TimelgOutliRangeli

6. 	 Can'aScalliMode

7 	 IncompletaData

8 	 Invald16Hitnocn

9 	 ValueliOuaRange

10 	 InvalidVFormaa

11 	 Can't16AddliMoreV

12 	 Duplicatelkodeli

13 	 Duplicatenima

14 	 ResourcaUnused

15 	 InvalidliCharacs

16 	 InvaliaLengthli

17 	 CommucaFailure

18 	 Unimplementedliii

19 	 InvalidliForIODA

20 	 Beforelkonsumpn

21 	 AlreadyliStarted

22 	 Statuslkonflict

23 	 InvalidIODAVIM

24 	 TimeigPerdliConfl

25

26 	 Tool6Muchl6Inputl6

E.2.4 File/Network/Save Time Message

Subroutine OUTINF sets up three-line messages about file,
network, and save times the Lower Window. Replace this routine with
a new routine OUTINF that directly writes the information.

The messages required form two columns at x=LSLOL+6 and
x=LSLOL+294 by y=LSLOB+40, y-LSLOB+30, and y=LSLOB+20 of the Lower
Window. Begin with a call to OUTGR4 to black LSLOL+1 to LSLOR-1 and
LSLDB+1 to LSLOB+40. Only line 1 appears in Transition Mode
(KURMOD=0).

(i) 	Line 1 is in magenta (5)

(a) Column 1 displays RURFIL in format

('File=',A20)

(b) Column 2 displays IFILTM in format

(SavedAT 1 ,4A2)

(ii) 	Line 2 is in green (2)

(a) Column 1 displays KURNAM in format

('Netw=',6A2)

(b) Column 2 displays INETTM in format

('Saved$ATS,4A2)

(iii) Line 3 is in cyan (3) and depends on /NETSAV/ variable
ISPLAN and /CONTRL/ variable IKPLN

(a) Column 1 writes 'AvailableSPlans= 1 followed by

'min16' if ISPLAN(1)A0

'nom16' if ISPLAN(2)A0

'max$' if ISPLAN(3)#O

'4161616' if ISPLAN(4)A0

'5$1616 1 if ISPLAN(5) #0

If some ISPLAN(i)=0, later strings are shifted left
to avoid gaps.

(b) Column 2 writes

'Active$Plan& followed by 'none',

'min$', 	'max$', '4' or '5',

depending on whether IKPLN is 0, 1, 2, 3, 4 or
5.

Display via internal writes and OUTGRC.

E.2.6 Lower Window Duration Header

Replacement subroutine LOTBHD(NODT) writes the heading for
the Lower Window consumption table.

LOTBHD begins by blacking. If NOPT=0, call OUTGR4 window 0
to black the top 11 dots of the Lower Window. If NOPTA0 black the
whole window (do not use subroutine BLACK). Call OUTGR4 again to
draw a white line across that window at 11 dots below LSLOT.
Compute duration KDUR as NAFN(IKACT)-NAST(IKACT)+1 unless that is
zero in which case IANMD(2,NACT) is used. The four durations
IANMD(1 to 3, IKACT), and KDUR are then written in white (7) under
format CDUR=',I5,317, I SACTIVITY=9. Use OUTGRC with the last
duration reverse lettered. Finally IANAM (1 to 6, IKACT) is written
in red. Use OUTGRS.

E.2.5 Status Mode Time Line

Subroutine STATIM (NACT1, NACT2) writes Status Mode time
lines in the Main Window for activities NACT1 through NACT2.

Replacement routine STATIM should take each activity NACT in
turn. It first blacks window 99 x=LNMNL+1 to LNMNR-1 by
y=ISYY(1,NACT) to ISYY(1,NACT)-KARY+1. It then writes six columns
of information, three in green (2), three in red (4), and the last
of each color reverse lettered. All columns are 10 characters wide,
except that the third and sixth are 11 characters wide.

(a) Column 1 relates to /NETSAV/ variable ISST(NACT,1). It
contains (3X'(null)'1X) if ISST(NACT,1)=0,
the PAKPER of ISST(NACT,1) in format
(t acs=',A2,A1,A2,1X) if 0<ISST(NACT,1)
ISTATM(1), and the PAKPER of ISST(NACT,1)
in format ('pjs=',A2,A1,A2,1X) otherwise.

(b) Column 2 is identical except it refers to ISST(NACT,2)
and ISTATM(2).

(c) Column 3 shows the PAKPER of /NETWRK/ variable
ICURST(NACT) in format ('cs=',A2,A1,A2,2X).

(d) Column 4 relates to /NETSAV/ variable ISFN(NACT,1). It
contains (4X l (null) 1 ,1X) if ISFN(NACT,1)=0, the PAKPER
of ISFN(NACT,1) in format (t acf=',A2,A1,A2,1X) if
0<ISFN(NACT,1) 5 ISTATM(1), and the PAKPER of
ISFN(NACT,1) in format (I pjf=',A2,A1,A2,1X) otherwise.

(e) Column 5 is identical to 4 except it refers to
ISFN(NACT,2) and ISTATM(2).

(f) Column 6 shows the PAKPER of /NETWRK/ variable
ICURFN(NACT) in format ('scf=',A2,A1,A2,2X).

Use internal writes and OUTGRC to write this display after
blacking. The y-address in Window 99 is ISYY(1,NACT).

E.2.6 Status Mode Message Window

Subroutine STAMSG presently writes the Message Window of
Status Mode. Substitute a new STAMSG to perform this function.

The routine should begin with a BLACK(NUMBR(9)) call to black
the first four text lines of the Message Window. Then write on the
first two lines.

(i) Line 1 is in yellow (6) and displays the PAKPER of
ISTATM(1), in format

CfirmSthruP,A2,A1,A2)

(ii) Line 2 is in magenta (5) and displays the PAKPER of
ISTATM(2) in format

('tempSthruP,A2,A1,A2)

E.2.7 Cost Parameters

Subroutine RESPAR presently writes a four line set of cost
calculation parameters in the Title Window. Create new subroutine
CSTPAR to perform this write.

The new subroutine writes four lines (KARY apart) in white
(7) with upper left corner at x=LNTIL, y=IRYY(KOSRES)-30 of the
Title Window (79) (KOSRES and IRYY are in /NETWRK/). It begins with
an OUTGR4 call to black the write area. Then use internal writes
and OUTGRC to display the 4 lines.

(i) Line 1 displays the PAKPER of IPENTM (/CONTRL/) in
format ('pnitylbaftr,A2,A1,A2)

(ii) Line 2 displays PENAMT in format ('penity',F9.0)

(iii)Line 3 displays VALFIN in format (I value',F10.0)

(iv) Line 4 displays DSCRAT in format ('dscount%',F7.3)

E.2.8 HELP Messages

Subroutine

HLPLIN(NXXX,NYYY,ISTRA1,LEN1)

presently writes a line of help message to the graphics screen at
window 0 coordinates (NXXX,NYYY). The message is of length LEN1
characters stored in INTEGER*2 array ISTRA1, one character per word
(i.e. format Al).

Internal to the string ISTRA1 are certain instructions for
special typing. Each is I f' followed by a two digit number. Table
E3 details the meaning of the codes.

Since two monitors are available in the IBM version, HELP
messages will be diverted to the text screen (IBM monitor). Write a

new subroutine HLPLIN that prepares a line for that screen and
writes it with an ordinary formatted FORTRAN write to unit O.
Before sending the line remove any '{nn' instructions and insert or
correct as shown at Table E3 right.

Note: GITPASE sometimes has very short help lines because of
the window to which they were bound. Such lines will automatically
be packed together before the HLPLIN call and need not be considered
here.

E.3 Test Program

As with earlier Milestone a test calling program should be
generated that allows testers to call for any of the above routines
at any appropriate parameter setting. The program should call
INITLZ as in Milestone C/D, set dummy network data as shown below,
then cycle through modes and displays.

E.3.1 Download Routines

To test the routines of this Milestone subroutine BLACK will
need to be downloaded from module 'PH3IO1.FOR' and subroutine PAKPER
from module 'PH3CAL.FOR'.

E.3.2 Dummy Data

Dummy network data values will be needed by various routines.
Use the following to test.

MNTIM = 10
MXTIM = 43
ISST(1,1) = 14

(2,1) = 0
(3,1) = 19
(1,2) = 22
(2,2) = 14
(3,2) = 0

ISFN(1,1) = 15
(2,1) = 0
(3,1) = 20
(1,2) = 22
(2,2) = 14
(3,2) = 0

Table E3. Internal HELP '{nn' Instructions

number n 	 meaning 	 PC Version implementation

00 to 07 	 switch to normal 	 none
printing in color n

08 to 15 	 switch to reverse 	 none
printing in color (n-8)

16 	 print compound tag 	 insert 1 <>16'

17 	 print fixed start tag 	 insert 1 1 16 1 _

18 	 print fixed finish tag 	 insert '_116'

19 	 print fixed duration tag 	insert 1 „16 1

20 	 print fixed start/duration tag 	insert 1 1 ,14 1

21 	 print fixed finish/duration tag insert ',_116'

22 	 print member tag 	 insert 1 -16 1

23 	 cross through previous 3 	insert 1 (crossed)14'
characters

24 	 down arrow 	 insert '(upliarrow)IP

25 	 up arrow 	 insert 1(downlarrow)16'

ICURST(1) = 12
(2) = 14
(3) 	= 16

ICURFN(1) = 18
(2) = 20
(3) = 22

ITRUST = 12
ITRUFN = 40
IDESST = 11
IDESFN = 35
ISTATM(1) = 15

(2) 	= 20
ISYY(1,1) = 8180

(1,2) = 8150
(1,3) = 8120

IRYY(1) = 8191
(2) = 8105
(3) = 8000

KOSRES = 2
RESINF = 123.8
TIMINF = 12.6
COST = 111.111
KURFIL 'TESTO'
KURNAM(1) = 'AB'

(2) = 'CD'
(3) = 'EF'
(4) = 'GH'
(5) = 'IJ'
(6) = 'KL'

ISPLAN(1) = 0
(2) = 1
(3) = 0
(4) = 1
(5) = 0

IKPLAN = 2
IPENTM = 18
PENAMT = 320.65
VALFIN = 100.329
DSCRAT = 11.29
INETTM(1) = 'DA'
INETTM(2) = 'TE'
INETTM(3) =
INETTM(4) = '161'
IFILTM(1) = 'DA'
IFILTM(2) = 'TE'
IFILTM(3) = '16#'
IFILTM(4) = '162'

11 July 1984

Milestone F Specifications
Project Director: Donovan B. Young

Milestone F: Input Completion

By Ronald L. Rardin

The Phase III version of the GITPASE project management
system employs a hybrid of a VAX computer running FORTRAN and a
Chromatics color graphics microprocessor running BASIC. Milestone B
took first steps toward replacing input phases of the BASIC code
with new FORTRAN and Milestone C/D and E replaced outputs. This
Milestone completes inputs. It preserves the environment of
Milestone C.1 and references the demonstration program attached to
Milestone C.

F.1 Prompt Messages

One function now performed by the BASIC code is to write
prompt strings in double-wide letters centered on the last line of
the Message Window. Create new subroutine PRMPT(NUM) to display
such prompts. (See the similar routine in the demonstration
program.)

Table Fl shows the messages that should be supported and the
colors in which to write them. Store values of that table in
CHARACTER*9 array MSGPRM and KLRPRM set by DATA statements in PRMPT.
(MSGPRM includes the delimiters).

Subroutine PRMPT should write the appropriate message by
direct HALO call, then call BEEP to ring the terminal bell. (BEEP
is part of object module SBEEP.0B5 supplied with the demonstration
program).

F.2 Enhanced Keyed Input

Milestone B specified processing for input response codes 2
to 9 and 11 to 15 (see Table Bl) through OUTKEY and OUTQA. Complete
these two routines by adding prompts and arranging questions and
echos of answers to pass to the text (IBM) monitor. Specifically,

(i) Write the 'question' of OUTQA to the IBM screen
without a t ?'

(ii) Read input in OUTKEY via ordinary FORTRAN read (see
demonstration program routine KEYIN).

(iii) Prompt for input in OUTKEY by calling PRMPT (4) for
response codes except 15 or PRMPT (5) for code 15.
Also write a '?' to the IBM screen.

(iv) 	Just before exit of OUTQA revise the prompt by a call

to PRMPT (1)

Table Fl. Prompt Messages

Color Number Message

1 '16WAIT116' 4

2 I STOUCHIS' 2

3 'CONFIRM' 2

4 '16TYPEI616' 2

5 '15<CR>S16' 2

F.3 Touch Input

In the present GITPASE, screen touch input is obtained via
light pen. The revised IBMPC version will obtain touch input via
the Microsoft Mouse.

Two important features of the present design must be
retained. First, the system should provide for a queue of several
touch locations to be entered at once, i.e., before the screen
responds. Many touch inputs in GITPASE are logically paired in
user's minds. If both hits cannot be entered at once, the user's
thought process is interrupted.

The second important concept is confirming touches. Normal
(KOMRSP = 1) touches merely call out new operations. Confirming
(KOMRSP = 10) touches force users to think carefully about
potentially disastrous operations. If, for example, the user calls
for deleting an activity, GITPASE will highlight screen data
relating to that activity and seek a confirming light pen touch.
Only if the next touch is also on the "delete" menu item will delete
processing continue. Otherwise, highlighting is removed and the
delete aborted.

Confirming touches cannot be queued. Thus, a call for
confirmation deletes any remaining touch queue hits.

F.3.1 Touch Queue Variables

To provide for a touch queue, add to common /IBMPC/ new
variables

KUEXXX(25) = the x-coordinate of the queued touch

KUEYYY(25) = the y-coordinate of the queued touch

LIMKUE 	= the dimension of KUEXXX and KUEYYY (set to 25
in INITDI).

Existing /CONTRL/ common variable KUENUM already records the number
of active items in the touch queue.

F.3.2 Replacement Subroutine OUTPEN

Subroutine OUTPEN(IOPN) returns single touches. If IOPN = 0,
the touch is a normal (KOMRSP=1) one. If IOPN > 0, the touch is a
confirming (KOMRSP=10) type.

Processing of the IBMPC replacement OUTPEN should begin by
setting KOMRSP according to IOPN. If KOMRSP = 10, cancel the touch
queue by KUENUM = O.

Main OUTPEN processing consists of either extracting the next
touch from the queue if KUENUM > 0, or collecting a new queue and
extracting the first entry when KUENUM = O. To extract an entry
from a queue set /CONTRL/ variables KOMXXX to KUEXXX(1), KOMYYY to

KUEYYY(1), move all remaining KUEXXX and KUEYYY values up one
position and set KUENUM to KUENUM - 1.

To solicit a new pen queue follow very closely demonstration
routine MOUSIN. Begin by calling PRMPT (2 or 3). Then loop to mark
the present position with HALO'S crosshair cursor. Process
responses acording to mouse buttons. If the left button is touched,
save the touch as the next (KUEXXX, KUEYYY), and exit queue
processing. If the right button is touched, store as the next
KUEXXX, KUEYYY the scaled coordinates of the touch, and (if KUENUM <
LIMKUE) loop back for another touch.

Once queue processing is complete and (KOMXXX, KOMYYY) set,
call PRMPT(1) and then call subroutine NALHIT to classify the hit.
(Note: That routine should be dummied for testing to merely set
KOMBTN = 12 and return). If NALHIT returns with /CONTRL/ variable
KOMBTN = 4096 an error has been detected. Call ERROR(8), clear
IERFLG to 0, and loop back for a new (KOMXXX, KOMYYY) from the
queue. If no error is detected OUTPEN returns.

F.3.3 Replacement Subroutine CONFRM

Subroutine CONFRM(NBTN, NUMHLT, KOORDS, NWIN) processes

confirming touches. A replacement routine should first call HLIT a
total of NUMHLT times to highlight NUMHLT rectangles in window NWIN.
Coordinates of the rectangles are contained in vector KOORDS (4 per
rectangle).

The subroutine then calls OUTPEN(10) to solicit a confirming
touch. If, upon return, KOMBTN = NBTN, confirmation has been
received; merely return. Otherwise, confirmation was denied; cancel
highlighting by calling DEHLIT on the same rectangles as above and
return.

F.3.4 Program-Directed Purges

At a few points in the GITPASE code the program detects the
need for a special touch queue cancel. This is accomplished by a
call to OUTGR1, option 39. Modify Milestone B code to set KUENUM =
0 on this OUTGR1 call.

F.4 Test Program

To test this Milestone enhance the test program of Milestone
B. The revised version should solicit on tester demand all forms of
keyed input. It should also be capable of calling OUTPEN asnd
CONFRM. In the case of OUTPEN, print to the IBM screen the
coordinates (KOMXXX, KOMYYY) so that mouse processing can be
verified.

•

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87

