

User Manual

MNL-0542-01 revA3 ECO-1994 Effective: 14DEC07

Disclaimer

Although the information contained herein has been carefully verified, Parvus Corporation assumes no responsibility for errors that might appear in this document, or for damage to property or persons resulting from improper use of this manual or related software. Parvus reserves the right to change the contents and form of this document, as well as the features and specifications of its products at any time without notice. The information in this publication does not represent a commitment on the part of Parvus. This document contains proprietary information that is protected by copyright. All rights are reserved. No part of this document may be photocopied, reproduced, or translated into another language without the prior written consent of Parvus.

Parvus Corporation 3222 S. Washington St. Salt Lake City, Utah, USA 84115 Phone: +1 (801) 483-1533 Toll-Free: +1 (800) 483-3152 Main: +1 (801) 483-1533 Fax: +1 (801) 483-1523 Email: Sales: sales@parvus.com Support: tsupport@parvus.com Web-site: http://www.parvus.com

Send us your comments and feedback: feedback@parvus.com

Parvus is the U.S. arm of the Eurotech Group (<u>www.eurotech.com</u>), a global family of technology companies focused on innovative embedded and high performance computing solutions.

Trademarks

Trademarks and registered trademarks appearing in this document are the property of their respective owners.

IMPORTANT INFORMATION TO THE USER

Before proceeding further, please carefully read the following paragraphs:

Safety Notices and warnings

FCC information and compliance

This device has been designed to comply with the limits of a Class B digital device pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference. The device generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications or to devices that are not appropriately shielded.

Parvus is not responsible for any radio or device, which may be affected by harmful interference. Appropriate shielding of susceptible devices is not the responsibility of Parvus. Further, Parvus is not responsible for unauthorized modifications of Parvus equipment including the substitution or attachment of cables and/or other unauthorized equipment. If electrical interference is harmfully affecting a device, it is the responsibility of the user to correct this interference.

In order to minimize the affects of electrical interference, use only shielded data cables with the system. In accordance with FCC 15.21, changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Emissions information for Canada

This Class B digital apparatus complies with Canadian ICES-003. Cet appareil numérique de la classe B est conforme à la norme NMB-003 du Canada.

CE Marking

This equipment complies with the requirements for CE marking when used in a residential, commercial, vehicular or light industrial environment.

RAEE

The information below is issued in compliance with the regulations as set out by the 2002/96/CE directive, subsequently superseded by 2003/108/CE, and refers electrical and electronic equipment and the management of their waste (WEEE). When disposing of a device, including all of its components, subassemblies and materials that are an integral part of the product, you should take the WEEE directive into consideration.

This symbol has been attached to the equipment or, in the case that this is not possible, on the packaging, instruction literature and/or the guarantee sheet. By using this symbol it states that the device has been marketed after August 13th 2005, and implies that you must separate all of its components when possible, and dispose of them in accordance with local waste disposal legislations.

- Because of the substances present in the equipment, an improper use or disposal of the refuse can cause damage to human health and to the environment.
- With reference to RAEE, it is compulsory to not dispose of the equipment with normal urban refuse, arrangements should be instigated for separate collection and disposal.
- For more detailed information about recycling of RAEE, please contact your local waste collection body.
- > In case of illicit disposal, sanctions will be levied on transgressors.

RoHS

This device, including all it components, subassemblies and the consumable materials that are an integral part of the product, has been manufactured in compliance with the European directive 2002/95/EC known as the RoHS directive (Restrictions on the use of certain Hazardous Substances), this directive targets the reduction of certain hazardous substances previously used in electrical and electronic equipment (EEE).

Anti-static precautions

Always use appropriate antistatic precautions when handing any board. This is to avoid damage caused by ESD (Electro Static Discharge).

Conventions

The following table lists the conventions that are used throughout this manual.

lcon	Notice Type	Description
i	Information note	Important features or instructions
	Warning	Information to alert you to potential damage to a program, system or device or potential personal injury

- The "Mode" of the register: R/W Read and write register.
 - RO Read only register.
 - Meaning of the register when written. Meaning of the register when read. W
 - R

Hexadecimal numbers:

Hexadecimal numbers are indicated with an "h" suffix (for example: 11Ch).

Other:

NC	Not internally connected
Reserved	Use reserved to Factory

Table of Contents

Disclaime	r	2
Trademar	ks	2
IMPORTA Safety RAEE RoHS	NT INFORMATION TO THE USER Notices and warnings	
Anti-static	precautions	4
Conventio	ns	5
Table of Co	ntents	6
Chapter 1	Product Overview	9
Product D	efinition	10
Chapter 2	Jumpers	
Jumper La	ayout and Configuration	12
Chapter 3	Connectors	
Connector	r Layout	14
J1 and J2	: the ISA Bus	
	SA BUS	
J3: PCI BL	JS	
HOW to co	nnect to the CPU other PC/104 & PC/104Plus devices: the stack assembly	20
J4. Paralle Parall	el/FDD section	
Serial	ports 3 and 4 section in RS232 Mode	23
Serial	ports 3 and 4 section in RS422 Mode	
Serial	2 Seriel 2 Stherest2 2 Sutre Timere and CDVO	
Jo: Senal Timer	T, Senai Z, Ethernetz, Z Extra Timers and GP1/O	
Watch	ndog Status	
Gener	ral Purpose I/O	
Emen		
J6: Ethern	et 1, Keyboard, Speaker, Mouse and Battery	
Mouse	e Input	
Syste	m reset	
Exterr	nal Battery Input	
Speak	ker Output net 1	
ACS-9	9072-00: Multifunction adaptor	
		-

J7: IDE / [DOM	
J10: IDE L	LED	
J8: Auxilia	ary Power Connector	
J11: Slim <i>How t</i>	FDD to connect the FPC floppy cable into the connector	
J12: Ether	rnet 1	
Chapter 4 Main I Sub n	The Setup Program menu	
Navig	nation / Input options	
Navigation	n Keys:	
General: .		
Devices: .		
Communie	cations:	
ATAPI Un	iits:	
PCI & ISA	۸	
Advanced	l:	
Error Han	dling:	
Quit:		
Chapter 5	BTOOL Program and Solid State Disk	
The BTO		44
The Integr	rated Solid State Disk	47
ine integi		
Chapter 6	Virtual Peripheral	
How "Virtu	ual Peripheral" works	
Choosing	the Virtual Peripheral connection type	
Parall	lel Connection:	
The VP20	00.EXE program	
How to pe	erform a Virtual Peripheral session	53
To pe	rform a Virtual Peripheral session you need:	
Follov	<i>w</i> these steps to perform a Virtual Peripheral session:	
Chapter 7	Watchdog Timer	54
Watchdog	g modes	
BIOS	INT 52h - functions 0Ch, 0Dh, 0Eh	
Super		
vvatchdog	J lime-out pin	
Chapter 8	Troubleshooting	
Technical/	/Sales Assistance	

Returning For Service	
Appendix	58
A.1 Electrical and Environmental Specifications	
Operating Characteristics	
Absolute Maximum Ratings	59
MTBF	59
A.2 Mechanical Dimensions	60
CPU Dimensions	60
LIMITED WARRANTY	

Chapter 1 Product Overview

CPU-1421 is a highly integrated PC/104-Plus CPU module, based on the AMD™ Élan™ SC520 133MHz microprocessor.

Related Products Available:

- Development kit for CPU-1421
- TP RJ45 Ethernet adapter
- 2mm to 2.54mm IDE cable
- Parallel-FDD adapter cable
- IDE to ATA adapter kit
- Standard interface cable kit
- Flat panel adapter kit

For a complete list of our products visit our website: www.parvus.com

Product Definition

Architecture:

PC PCI-Architecture with ISA-bus

Dimensions:

Compliant with the PC/104-Plus standard

Processor: AMD™ Élan™ SC520 133MHz

Memory: 64-128 MB SDRAM soldered onboard

Solid State Disk:

Disk-On-Module, Compact Flash or ATA Flash

Operating System Compatibility: WinCE®, VxWorks®, Linux® and QNX®

BIOS Flash: 1MB 8bit +5V Flash EPROM

Interfaces:

- IDE controller
- Floppy Disc controller
- Two 10/100Mbit Ethernet controllers
- Four 16C550 compatible serial ports:
 - 2 RS-232/485/422, software configurable
 2 RS-232 fixed
 - Parallel port (bi-directional EPP-ECP)
- Two 16-bit user Counter/Timers
- AT keyboard
- PS/2 mouse

Bus:

•

PCI/ISA PC/104-Plus compliant (ISA-bus with limitations)

Power Supply:

+5V only

This chapter shows the jumper layout and explains how to setup each individual jumper.

Jumper Layout and Configuration

Figure 1 shows the jumper layout of the CPU-1421 module. Jumpers are shown as **JP** followed by the jumper's number, a red square pad indicates pin 1 of the 3-pin jumper.

Table 1. Jumper Functions

PIN	Туре	Function	Settings	Default
JP1	2 pin	External Bios	Open: Module starts with internal BIOS Closed: Module starts with External Bios	Open
JP2	2 pin	Invalid Setup	Open: Module starts with saved parameters Closed: Module starts with default settings	Open
JP3	2 pin	Module Reset	When these two pins are shorted the system will reset	Open
JP4	2 pin	Reserved	-	Open
JP5	3 pin	Ethernet Controller	1-2: Ethernet 1 Disabled 2-3: Ethernet 2 Disabled Open: Ethernet1 and Ethernet2 Enabled	Open

This chapter provides a brief description of each connector found on the CPU-1421, with their position and function.

Connector Layout

Figure 2 shows the connector layout on the CPU-1421 along with their function. Connectors are shown as **J** followed by its designated number: a red square pad indicates pin 1 of each connector.

Connector #	Function	Qty of pins	Format	Pitch (mm)
J1	ISA Bus	64	PC104: 32x2	2.54
J2	ISA Bus	40	PC104: 20x2	2.54
J3	PCI Bus	120	PC104PLUS: 30x4	2.00
J4	Parallel, Serial3 and Serial4	40	Hirose DF13 20x2	1.25
J5	Serial1, Serial2, Timer, Watchdog Status, GPI/O and Ethernet2	40	Hirose DF13 20x2	1.25
J6	Ethernet 1, Keyboard, Mouse, Speaker and Battery	26	Pin strip 13x2	2.00
J7	IDE / DOM	44	Pin strip 22x2	2.00
J8	Auxiliary power supply input	12	Pin strip 6x2	2.54
J9	Reserved	14	Pin strip 7x2	2.00
J10	IDE Led	2	Pin strip 2x1	2.00
J11	Floppy Disk	26	ZIF 26	1.00
J12	Ethernet 1	8	SIL 8	2.00

Table 2.Connector Functions

J1 and J2: the ISA Bus

The ISA BUS

Connectors J1 and J2 carry the signals for the ISA Bus. These signals match definitions of the IEEE P996 standard. Below is shown a picture of the ISA BUS

Figure 3. ISA BUS layout

According to the PC/104 specifications, these connectors include KEY pins; these are filled holes in the upper side and missing pins in the lower side of the bus. This is done to avoid the wrong insertion in/of another module.

Unsupported ISA Bus Functions

The following ISA bus features are not supported.

- Because the CPU itself does not support address pipelining, address pipelining is not supported on the ISA bus.
- External master access is not supported, and the CPU is always the master on the ISA bus (external
 masters can be accommodated by the PCI bus).
- "GPIOCS16" and "GPMEMCS16" do not cause the ISA bus timings to change for the bus cycles during which these signals are asserted.
- "IOCHRDY" is supported only as an input for the slave devices that require wait states. Since there is no
 external master support, "IOCHRDY" is not supported as an output.
- "IOCHK" is not supported.
- The REFRESH pin is not supported.
- "NOWS" is not supported.
- IRQ15 is not supported. By customer request, a special setting can be made to support IRQ15; however, that would make IRQ9 unavailable. The factory can only perform this special setting.
- The ISA bus interface timing is configured to support most ISA bus devices. However, the CPU-1421's ISA bus does not support all legacy ISA timing.

Pin #	Use	Signal	Pin #	Use	Signal
1	ISA Bus	IOCHK#	33	ISA Bus	A14
2	ISA Bus	Ground	34	ISA Bus	DACK1#
3	ISA Bus	D7	35	ISA Bus	A13
4	ISA Bus	RSTDRV	36	ISA Bus	DRQ1
5	ISA Bus	D6	37	ISA Bus	A12
6	ISA Bus	+5 Volts	38	ISA Bus	REFRESH#
7	ISA Bus	D5	39	ISA Bus	A11
8	ISA Bus	IRQ 9	40	ISA Bus	ISACLK
9	ISA Bus	D4	41	ISA Bus	A10
10	ISA Bus	-5 Volts	42	ISA Bus	IRQ 7
11	ISA Bus	D3	43	ISA Bus	A9
12	ISA Bus	DRQ2	44	ISA Bus	IRQ 6
13	ISA Bus	D2	45	ISA Bus	A8
14	ISA Bus	-12 Volts	46	ISA Bus	IRQ 5
15	ISA Bus	D1	47	ISA Bus	A7
16	ISA Bus	ZEROWS#	48	ISA Bus	IRQ 4
17	ISA Bus	D0	49	ISA Bus	A6
18	ISA Bus	+12 Volts	50	ISA Bus	IRQ 3
19	ISA Bus	IOCHRDY	51	ISA Bus	A5
20	Not Connected	Key	52	ISA Bus	DACK2#
21	ISA Bus	AEN	53	ISA Bus	A4
22	ISA Bus	SMEMW#	54	ISA Bus	TC
23	ISA Bus	A19	55	ISA Bus	A3
24	ISA Bus	SMEMR#	56	ISA Bus	BALE
25	ISA Bus	A18	57	ISA Bus	A2
26	ISA Bus	IOW#	58	ISA Bus	+5 Volts –1
27	ISA Bus	A17	59	ISA Bus	A1
28	ISA Bus	IOR#	60	ISA Bus	OSC
29	ISA Bus	A16	61	ISA Bus	A0
30	ISA Bus	DACK3#	62	ISA Bus	Ground 1
31	ISA Bus	A15	63	ISA Bus	Ground 3
32	ISA Bus	DRQ3	64	ISA Bus	Ground 2

Table 3.

J1 pinout

Pin #	Use	Signal	Pin #	Use
1	ISA Bus	Ground 0	21	ISA E
2	ISA Bus	Ground 1	22	ISA E
3	ISA Bus	SBHE#	23	ISA E
4	ISA Bus	ISA_MEMCS16#	24	ISA E
5	ISA Bus	LA23	25	ISA E
6	ISA Bus	IOC16#	26	ISA E
7	ISA Bus	LA22	27	ISA E
8	ISA Bus	IRQ10	28	ISA E
9	ISA Bus	LA21	29	ISA E
10	ISA Bus	IRQ11	30	ISA E
11	ISA Bus	LA20	31	ISA E
12	ISA Bus	IRQ12	32	ISA E
13	ISA Bus	LS19	33	ISA E
14	ISA Bus	IRQ15	34	ISA E
15	ISA Bus	LA18	35	ISA E
16	ISA Bus	IRQ14	36	ISA E
17	ISA Bus	LA17	37	ISA E
18	ISA Bus	DACK0#	38	ISA E
19	ISA Bus	MEMR#	39	ISA E
20	ISA Bus	DRQ0	40	ISA E
		— • •		

Pin #	Use	Signal
21	ISA Bus	MEMW#
22	ISA Bus	DACK5#
23	ISA Bus	SD8
24	ISA Bus	DRQ5
25	ISA Bus	SD9
26	ISA Bus	DACK6#
27	ISA Bus	SD10
28	ISA Bus	DRQ6
29	ISA Bus	SD11
30	ISA Bus	DACK7#
31	ISA Bus	SD12
32	ISA Bus	DRQ7
33	ISA Bus	SD13
34	ISA Bus	+5 Volts
35	ISA Bus	SD14
36	ISA Bus	MASTER#
37	ISA Bus	SD15
38	ISA Bus	Ground 2
39	ISA Bus	Not Connected
40	ISA Bus	Ground 3
12 ninou	t	

Table 4. J2 pinout

J3: PCI Bus

Connector J3 carries signals of the PCI Bus. The PCI Bus mechanical interface is a stackable 30x4 header. This interface carries all of the required PCI signals per *PCI Local Bus Specification Version. 2.1.* Below is shown a picture of the PCI BUS.

Figure 4. PCI BUS layout

Unsupported PCI Bus Functions

The following list summarizes some of the PCI bus functionality that is not supported in the CPU-1421's PCI host bridge. These functions are listed as optional in the PCI bus specification.

- 66MHz is not supported.
- 64-bit data is not supported.
- 64-bit addressing (dual address cycles) is not supported due to the maximum 32-bit address space of the Am5x86 CPU.
- Cacheable PCI bus memory (SBDONE, SBO) is not supported.
- The optional "CLKRUN" pin is not supported.
- The "LOCK" pin is an optional pin not required in most systems, because other mechanisms are typically employed for coherency.
- Address/data stepping is not supported as a master due to the performance implications.
- The CPU does not support a downstream "Southbridge" device, because most peripherals normally included in a Southbridge are integrated into the CPU.
- The optional message-signaled interrupt feature described in the PCI Local Bus Specification, Revision 2.2, is not supported in the CPU-1421.

Unsupported PCI Bus Configuration Registers

Some standard PCI bus configuration registers are not implemented, because the CPU is a host-to-PCI bridge and does not support some optional PCI functionality.

- Base Address registers are not implemented, because the CPU is the host PCI device. Target address
 space configuration is done through CPU-specific configuration.
- "Latency timer" and "MAX_LAT", "MIN_GNT" are not implemented, because the CPU's PCI host bridge does not support multiple data phase transactions as a master.
- Cache line size is not implemented, because the CPU PCI host bridge does not support cacheable PCI memory.

For further info about ISA bus and PCI bus please refer to www.pc104.org

Pin	Α	В	С	D
1	GND	Reserved	+5	AD00
2	VI/O	AD02	AD01	+5V
3	AD05	GND	AD04	AD03
4	C/BE0#	AD07	GND	AD06
5	GND	AD09	AD08	GND
6	AD11	VI/O	AD10	M66EN
7	AD14	AD13	GND	AD12
8	+3.3V	C/BE1#	AD15	+3.3V
9	SERR#	GND	Reserved	PAR
10	GND	PERR#	+3.3V	Reserved
11	STOP#	+3.3V	LOCK#	GND
12	+3.3V	TRDY#	GND	DEVSEL#
13	FRAME#	GND	IRDY#	+3.3V
14	GND	AD16	+3.3V	C/BE2#
15	AD18	+3.3V	AD17	GND
16	AD21	AD20	GND	AD19
17	+3.3V	AD23	AD22	+3.3V
18	IDSEL0	GND	IDSEL1	IDSEL2
19	AD24	C/BE3#	VI/O	IDSEL3
20	GND	AD26	AD25	GND
21	AD29	+5V	AD28	AD27
22	+5V	AD30	GND	AD31
23	REQ0#	GND	REQ1#	VI/O
24	GND	REQ2#	+5V	GNT0#
25	GNT1#	VI/O	GNT2#	GND
26	+5V	CLK0	GND	CLK1
27	CLK2	+5V	CLK3	GND
28	GND	INTD#	+5V	RST#
29	+12V	INTA#	INTB#	INTC#
30	-12V	REQ3#	GNT3#	GND

Table 5. J3 pinout

CPU-1421

How to connect to the CPU other PC/104 & PC/104Plus devices: the stack assembly

The ISA Bus connectors of the module are designed to allow the connection onto a stack of other PC/104 and/or PC/104Plus devices.

We recommend you to follow the procedure below ensuring that stacking of the modules does not damage connectors or electronics parts.

- 1. Turn off power to the PC/104Plus system or stack.
- 2. Select and install standoffs to properly position the module on the PC/104Plus stack.
- 3. Touch a grounded metal part of the rack to discharge any build up of static electricity.
- 4. Remove the module from its anti-static bag.
- 5. Check that keying pins in the bus connector are properly positioned.
- 6. Check the stacking order; make sure an XT bus card will not be placed between two AT bus cards or it will interrupt the bus's signals.
- 7. Hold the module by its edges and orient it so that the bus connector pins line up with the matching connector on the stack.
- 8. Press evenly the module onto the PC/104Plus stack.

The picture below shows a typical module stack with two PC/104Plus modules, one PC/104 16-BIT module, and one PC/104 8-BIT module.

The maximum configuration for the PCI bus of PC/104Plus modules is four plus the Host Board. If standard PC/104 modules are used in the stack, they must be the top module(s) because they will normally not include the PCI bus.

Figure 5. The Module Stack

Do not force the module onto the stack! Wiggling the module or applying too much pressure may damage it. If the module does not readily press into place, remove it, check for bent pins or out-of-place keying pins, and try again.

J4: Parallel (or FDD), Serial3 and Serial4

J4 implements the following functions:

- > Parallel/FDD port
- > Serial ports 3 and 4; these ports are RS232, RS422 or RS485 selectable

Parallel/FDD section

The user can choose the Parallel port or the FDD setting using the Setup Program.

Pin #	Signal	Pin #	Signal	
1	STROBE#	2	PE	
3	PD0	4	SLCT	
5	PD1	6	GND1_LPT	
7	PD2	8	AUTOFD#	
9	PD3	10	GND2_LPT	
11	PD4	12	ERROR#	
13	PD5	14	GND3_LPT	
15	PD6	16	INIT#	
17	PD7	18	GND4_LPT	
19	ACK#	20	SLCTIN#	
21	BUSY	22	Not Connected	
The symbol "#" stands for active low				

In order to simplify the connection between the parallel port and a floppy disk drive Parvus makes available a Floppy disc drive adaptor: the ACS-6000.

HOW TO USE THE PARVUS/EUROTECH ACS-6000 FDD ADAPTOR

There are two configurations available in the Parvus FDD Adaptor:

- Female configuration
- Male configuration

Connector	Use	Notes
J1A	Male configuration	For connecting to a Floppy Disk Flat Cable
J1	Female configuration	For direct connection to a Floppy Disk Drive
J2	Power supply (5V) used by the adaptor	This is NOT for powering the Floppy Disc Drive
J3	Parallel Port Flat Cable Connector	

Figure 7. The ACS-6000 Adaptor layout

WARNING! TO AVOID MALFUNCTIONS, BE CAREFUL TO CONNECT THE FLOPPY DRIVE CABLE IN THE FOLLOWING WAY:

Commonly found Floppy Drive cables are structured as shown in the following picture. With this type of cable, only the second connector can be connected to the Parvus Floppy Disk Drive Adaptor. The "FDD connector" end of the cable is connected to the rear connector of the Floppy Drive.

Figure 8. Floppy Drive Cable.

Pin #	Port	Signal	Function
23	COM3	DCD	Data Carrier Detect
24	COM3	DSR	Data Set Ready
25	COM3	RX	Receive Data
26	COM3	RTS	Request To Send
27	COM3	ТХ	Transmit data
28	COM3	CTS	Clear To Send
29	COM3	DTR	Data Terminal Ready
30	COM3	RI	Ring Indicator
31	COM3	GND	Signal Ground
32	COM4	GND	Signal Ground
33	COM4	DCD	Data Carrier Detect
34	COM4	DSR	Data Set Ready
35	COM4	RX	Receive Data
36	COM4	RTS	Request To Send
37	COM4	ТХ	Transmit data
38	COM4	CTS	Clear To Send
39	COM4	DTR	Data Terminal Ready
40	COM4	RI	Ring Indicator

Serial ports 3 and 4 section in RS232 Mode

Serial ports 3 and 4 section in RS422 Mode

Pin #	Port	Signal	Function	In/out
23	COM3	-TX	Transmit data	Out
25	COM3	+TX	Transmit Data	Out
27	COM3	-RX	Receive Data	In
29	COM3	+RX	Receive Data	In
31	COM3	GND	Signal ground	
32	COM4	GND	Signal ground	
33	COM4	-TX	Transmit data	Out
35	COM4	+TX	Transmit Data	Out
37	COM4	-RX	Receive Data	In
39	COM4	+RX	Receive Data	In

Pins not shown in the table are not connected

Serial ports 3 and 4 section in RS485 Mode

Pin #	Port	Signal	Function	In / Out
23	COM3	-TX/-RX	Transmit/Receive data	In / Out
25	COM3	+TX/+RX	Transmit/Receive data	In / Out
31	COM3	GND	Signal ground	
32	COM4	GND	Signal ground	
33	COM4	-TX/-RX	Transmit/Receive data	In / Out
35	COM4	+TX/+RX	Transmit/Receive data	In / Out
	Ding not	abourn in th	o tablo aro not connecto	d

Pins not shown in the table are not connected

Note. When the Serial ports are used in RS485 mode, the bi-directional line must be controlled via software using the Data Terminal Ready (DTR) signal of the serial controller. This signal is defined by bit 0 of the UART Modem Control Register (MCR) and the bi-directional line is controlled as follows:

- Bit 0 of the MCR register = 0 means RS485 line receiving
- Bit 0 of the MCR register = 1 means RS485 line transmitting

The I/O address of the MCR is "Serial port Base address"+4H.

J5: Serial 1, Serial 2, Ethernet2, 2 Extra Timers and GPI/O

J5 implements the following functions:

- Serial1 and Serial 2 (RS232 only)
- ➢ 2 Extra Timers
- Watchdog Status
- General Purpose I/O \geq
- \triangleright Ethernet 2

Figure 9. J5 Connector Layout

Pin #	Function	Signal	Pin #	Function	Signal
1	Timer 0	TMRIN0 IRQ8#	21	Not Connected	GND
2	Timer 0	TMROUT0	22	Not Connected	GND
3	Timer 1	TMRIN1	23	Serial 1	DCD1
4	Timer 1	TMROUT1	24	Serial 1	DSR1
5	Watchdog Status	WDTL	25	Serial 1	RX1
6	Watchdog Status	GND1	26	Serial 1	RTS1
7	GPI/O	GPI/O14	27	Serial 1	TX1
8	GPI/O	GPI/O15	28	Serial 1	CTS1
9	GPI/O	GPI/O13	29	Serial 1	DTR1
10	GPI/O	GND	30	Serial 1	RI1
11	Ethernet 2	LINK_B	31	Serial 1	GND
12	Ethernet 2	ACTIVITY_B	32	Serial 2	GND
13	Ethernet 2	TXOUT2+	33	Serial 2	DCD2
14	Ethernet 2	TXOUT2-	34	Serial 2	DSR2
15	Ethernet 2	RXIN2+	35	Serial 2	RX2
16	Ethernet 2	RXIN2-	36	Serial 2	RTS2
17	Ethernet 2	VCC3	37	Serial 2	TX2
18	Ethernet 2	GND	38	Serial 2	CTS2
19		Not Connected	39	Serial 2	DTR2
20		Not Connected	40	Serial 2	RI2
		The symbol "#" sta	nds for act	ive low	

The symbol "#" stands for active low

Table 6. J5 connector pin-out

Timers

Two 16-bit Extra Timers are provided with this CPU. These extra timers are intended for most generic timing or counting applications, such as generating periodic interrupts and measuring or counting external events.

Other features included are:

- > Clock source from the system clock. The maximum clock is 33MHz/4
- > One interrupt output for each timer
- Several modes of operation:
- Interrupt on terminal count
- Hardware re-trigger mode
- Rate and square wave generation
- Continuous mode

Watchdog Status

It is possible to connect a device to view the watchdog status using these two pins. For further information, refer to Chapter 7

General Purpose I/O

The CPU 1421 supports three independently programmable Input/Output signals (GPIO), these can be used to monitor signals or control external devices.

The GPIO signals can be programmed for the following functions:

- Read as inputs (default configuration, after the reset)
- Driven High or Low as outputs

Ethernet 2

To establish an Ethernet connection you must use the Parvus/Eurotech ACS-9095 Ethernet Adapter, it must be connected between the CPU-1421 J5 connector and the RJ45 network cable.

Network drivers

The Ethernet is based on the Realtek RTL8139C chipset and is supported by most operating systems.

J6: Ethernet 1, Keyboard, Speaker, Mouse and Battery

J6 implements the following functions:

- > AT Keyboard
- PS/2 Mouse
- > System reset
- External battery
- > Speaker
- > Power button
- Ethernet 1

Figure 10. J6 Connector layout

Pin #	Function	Signal	Pi	in #	Function	Signal
1	Generic	GND	14	4	Not Connected	
2	Generic	VDD	15	5	Not Connected	
3	Keyboard	KBDATA	16	6	Not Connected	
4	Keyboard	KBCLK	17	7	Not Connected	
5	Mouse	MSDAT	18	8	Not Connected	
6	Mouse	MSCLK	19	9		LINK_A
7	Battery	BAT_IN	20	0		ACTIVITY_A
8	Speaker	SPKR	21	1		TXOUT1+
9	Reset (push-button)	RES_PB_IN	22	2		TXOUT1-
10	Not Connected		23	3		RXIN+
11	Not Connected		24	4		RXIN-
12	Not Connected		25	5		VCC3
13	Not Connected		26	6		GND
		Table 7. J6	6 Conne	ector p	oinout	

Keyboard Input

An AT compatible keyboard can be connected to the module through connector J6.

Mouse Input

A PS/2 compatible mouse can be connected to the J6 connector

System reset

By connecting pin 9 and ground will perform a hardware reset of the module. We advise using an external pushbutton, normally open.

External Battery Input

Pin 7 of the multifunction connector allows for the connection of an external backup battery. This battery is used when the module is powered down to preserve the date & time in the Real Time Clock.

Speaker Output

A transistor supplying 0.1W of power to an external speaker controls these outputs. A transistor amplifier buffers the speaker signal. Use a small general-purpose 2" or 3" inch permanent magnet speaker with an 8-Ohm voice coil.

The audio output is based on two signals: the output of Timer 2, and the programming of two bits, 0 and 1, at I/O port 61h. Bit 1 of I/O port 61h is one term of a 2-input AND gate. The other term is the output from Timer 2. Thus, setting bit 1 to logic 1 enables the output of Timer 2 to the speaker, and logic 0 disables it. Disabling Timer 2 by setting bit 0 of port 61h to a 0 causes its output to go high. Then you can use bit 1 of port 61h to control the speaker directly.

Ethernet 1

To establish an Ethernet connection you must use the Parvus ACS-9071 Ethernet Adapter, it must be connected between the CPU-1421 J6 connector and the RJ45 network cable.

NOTE: The Ethernet 1 port is also made available on connector J12. The user must choose either J6 or J12 (not both) in order to use this peripheral

Network drivers

The Ethernet is based on the Realtek RTL8139C chipset and is supported by most operating systems.

ACS-9072-00: Multifunction adaptor

Figure 11. ACS-9072-00 Top / Bottom View

Component Label	Location	Description	Pins	Format	Pitch (mm)
BT1	Bottom	Battery, 3.6V, 60mAh	-	-	-
LS1	Bottom	Speaker,	-	-	-
D1	Тор	LED (Green), Power	-	-	-
D3	Тор	LED (Yellow), Speaker	-	-	-
S1	Тор	Reset Button	-	-	-
J1	Bottom	Extension Keyboard	4	4x1	2.54
J2	Тор	Keyboard Input	6	Mini DIN	-
J3	Тор	Mouse Input	6	Mini DIN	-
J4	Bottom	Multifunction Output	10	5x2	2.54
J5	Bottom	Not Used with this CPU	2	2x1	2.54
J6	Bottom	Mouse Output	4	4x1	2.54

Connector	Description	Pin #	Signal	Connector	Description	Pin #	Signal
J1	Ext. Keyboard Input	1	VCC	J4	Multifunction Output	1	SPKR
		2	KB Clock		To CPU J6	2	NC
		3	Ground			3	RES_PB_IN
		4	KB Data			4	NC
J2	Keyboard Input	1	KB Data			5	KBDAT
		2	NC			6	KBCLK
		3	Ground			7	GND
		4	VCC			8	+5V
		5	KB Clock			9	BATT_IN
		6	NC			10	NC
J3	Mouse Input	1	Mouse Data	J6	Mouse output	1	VCC
		2	NC			2	Mouse Clock
		3	Ground			3	Ground
		4	VCC			4	Mouse Data
		5	Mouse Clock				
		6	NC				

J7: IDE / DOM

J7 provides an interface for one or two Integrated Device Electronics (IDE) hard disk drives.

Figure 12. J7and J10 Connector layout

To install the hard disk, perform the following operations:

Hardware installation.

Connect the hard disk to the module using a data cable, and then connect the hard disk to the power supply according to the device's specifications. Make sure that pin 1 of the IDE connector and pin 1 of the drive or drives are correctly connected. Pin 1 of the interface cable is usually indicated by a stripe along the edge of the cable. If two hard disks need to be connected, they must be configured for common operation (i.e. master/slave or cable select connection).

> IDE BIOS Setup.

The hard disk parameters can be configured using the Setup program. If the hard disk is connected to the module without set-up configuration or with a wrong set-up configuration, a time-out for a few minutes occurs, then the boot is performed from the floppy disk.

> Software initialization for specific operating systems.

Refer to the OS documentation.

J10: IDE LED

It is possible to connect an LED to the J10 connector that displays the IDE activity.

Pin	Signal	Function
1	IDE Led anode	IDE Led anode
2	IDE Led cathode	IDE Led cathode
	Table 8. J1	0 pinout

J8: Auxiliary Power Connector

One auxiliary power connector is available on the CPU-1421 module; this can be used to power the module as an alternative to the PC/104Plus bus.

Figure 13. J8 Connector layout

Pin	Signal	Pin	Signal
1	GND	7	GND
2	VDD (+5VDC)	8	VDD (+5VDC)
3	Not Connected	9	GND
4	+12VDC	10	Not Connected
5	-5VSB	11	Not Connected
6	-12VDC	12	Not Connected
	Table §	9. J11	pinout

The number and position of the pins that have to be connected depends on the Power Supply model. Refer to the following to ensure the correct connections.

AT Power Supply

- > Connect pin 1 and 7 to the ground signal of the AT Power Supply Unit.
- > Connect pin 2 and 8 to the +5VDC source on the AT Power Supply Unit.
- Connect pin 4 to the +12VDC and pin 6 to the –12VDC sources on the AT Power Supply Unit only if requested by other boards connected to the PC/104Plus ISA bus (see the following note).

ATX Power Supply

- > Connect pin 1 and pin 7 to the ground signal of the ATX Power Supply Unit.
- > Connect pin 2 and pin 8 to the +5VDC source on the ATX Power Supply Unit.
- Connect pin 4 to the +12VDC and pin 6 to the -12VDC sources on the ATX Power Supply Unit only if requested by other boards connected to the PC/104Plus ISA bus (see the following note).

Power button

If the soft power management is enabled, a low signal in this pin turns the system on or off.

Note. The +12VDC and -12VDC voltages are neither used nor generated by the CPU-1421 module: > they are only conveyed on the PC/104Plus bus (connector J1) and can be used by other devices or modules that are stacked onto the CPU module.

WARNING! IMPROPER CONNECTION OF THE POWER SUPPLY, WILL RESULT IN SERIOUS DAMAGE TO THE MODULE.

J11: Slim FDD

This connector can only be used to connect a Slim FDD, and it is composed of two parts, The upper part (the Actuator) and the lower part (the Receptacle).

The connection between the FDD and the module is established by using a Flat Printed Circuit (FPC) cable, the floppy controller must be enabled in the set-up program before the FDD can be used, and also only one FDD can be used.

How to connect the FPC floppy cable into the connector

Insert the Flat Printed Circuit cable so that the copper tracks face the PC/104 connector. The FPC connector has contact pins on one side only. The same is true for the connector on the FDD (please refer to the FDD manual for further info). If incorrectly connected, the FDD will not function.

Step 3:

Push down the actuator locking the cable firmly.

Note: Reverse the procedure above to remove the FDD

J12: Ethernet 1

J12 implements a second connection for the Ethernet 1 port.

NOTE: The Ethernet 1 port is also made available on connector J6. The user must choose either J6 or J12 (not both) in order to use this peripheral

To establish an Ethernet connection you must use the Parvus Ethernet Adapter; it must be connected between the CPU-1421 J12 connector and the RJ45 network cable.

Figure 15. J12 Connector layout

Network drivers

The Ethernet is based on the Realtek RTL8139C chipset and is supported by most operating systems.

Pin #	Function	Signal
1	Transmission Data -	TXOUT1-
2	Transmission Data +	TXOUT1+
3	Ground	GND
4	Link LED	LED1_1
5	Receive Data -	RXIN1-
6	Receive Data +	RXIN1+
7	Activity LED	LED0_1
8	+3.3V	VCC3
	Table 10.	J12 pinout

Chapter 4 The Setup Program

Main		General	1	
General Devices Communications ATAPI Units PCI & ISA Advanced Error Handling Quit	Time Date Floppy Disk 1 Floppy Disk 2 Floppy Disk 3 Floppy Disk 4 Keyboard Quick Boot Boot Try Sequence	<pre>: 12 Ø2 : Sep 27 : 1.44 MB None None None None Present Disabled FD1 / HD1</pre>	06 2006 ≁ NET	
Main Menu	Sub Menu		Move	Select
			Navigation / Input Options	

Note: This Section refers to BIOS version 4_36_05, Other version may differ.

As you can see from the diagram above the display is separated into 3 zones:

Main menu

To the left is the Main menu; this shows a list of possible Sub menus that can be selected.

Sub menu

The right hand panel will change depending on the selected Tab in the Main menu.

Navigation / Input options

In the Lower right hand corner icons are displayed that show all the possible actions that you can perform with the selected Parameter or Tab.

Navigation Keys:

In the lower right hand corner of the BIOS Setup screen, you will notice a selection of icons, these show what keys can be used with the currently selected item, and they are as follows:

lcon	_ Keys	Use
	Up Arrow	Go to the next field above
¥	Down Arrow	Go to the next field below
•	Left Arrow	Go to the next field to the right
*	Right Arrow	Go to the next field to the Left
Ţ	EnterReturn	 Select field to modify Select an option i.e. "Detect Now" Accept a value you have entered
Esc	• Escape	Cancel a value you are enteringGo back to the Main menu
PgDn∕+	Page Down+	Select next option in a list
₽ցՍ ք∕−	 Page Up - 	Select previous option from a list
09	• Numbers 0 to 9	• Enter a numerical number using 0 to 9
BackSpace	Backspace	Erase last character entered

General:

Main		Geneval
True and		Incucrati
General Devices Communications ATAPI Units PCI & ISO	Time Date Flormy Dick 1	: 12 02 06 : Sep 27 2006
Oduppood	Floppy Disk 1	
Further Handlide H	Plann Dial 2	
Error Handling	Floppy Disk 3	None
Quit	Floppy Disk 4	= None
	Keyboard Quick Boot Boot Try Sequence	: Present : Disabled : FD1 / HD1 / NET

Option	Sub Option	Possible selections	
Time	Hours	• 00 ~ 23	
	Minutes	• 00 ~ 59	
	Seconds	• 00 ~ 59	
Date	Month	• Jan ~ Dec	
	Day	• 01 ~ 31	
	Year	• 2006 ~ 2999	
Floppy Disc 1		None	
Floppy Disc 2		• 360 KB	
Floppy Disc 3		• 1.2 MB	
Floppy Disc 4		• 720 KB	
		• 1.44 MB	
		Integrated SSD	
Keyboard		Not Present	
		Present	
Quick Boot		Disabled	
		Enabled	
Boot Try Sequence		FD1 / HD1 / NET	
		• NET / FD1 / HD1	
		HD1 / FD1 / NET	
		 CD-ROM / FD1 / HD1 	

Notes:

Floppy Disc X:

- Drive letters are assigned consecutively starting from A:
- We suggest that it is good practice to use Floppy Disc 1 before using Floppy Disc 2 etc.
- The Integrated SSD is a read only device.

Quick Boot: • Quic

- Quick Boot will take less than 5 Seconds, this is done by skipping the following tests:
 - System memory pattern test
 - Keyboard detection
 - Floppy disk presence (seek test)
 - RTC time test.

Devices:

Option		Possible selections	
Floppy Controller		Disabled	
		 Enabled on J4 (Parallel port) 	
		Enabled on J11	
EIDE Port		Disabled	
		Enabled	
Video Controller		 Replace with Add-On if any 	
		 Always use Integrated 	
Network Adapter 1		Disabled	
Network Adapter 2		Enabled	
		 Enabled + Boot Firmware 	
PS/2 Mouse	Enable	Disabled	
		Enabled	
	• IRQ	List of available IRQ numbers	

Communications:

Main	Communications	
General Devices Communications	Serial Port 1 (J5): 3F8hIRQ: 4Mode: RS232UP2000/UT100: Yes	
ATAPI Units PCI & ISA Aduanced	Serial Port 2 (J5) : 2F8h IRQ : 3 Mode : RS232 VP2000/VT100 : Yes	
Error Handling	Serial Port 3 (J4) : 3E8h IRQ (Share 1) : 11 Mode : RS232 VP2000/VT100 : Yes	
AUTO	Serial Port 4 (J4) : 2E8h IRQ (Share 1) : 10 Mode : RS232 UP2000/UT100 : Yes	
	Parallel Port (J4): 0378hIRQ : 7DMA : NoneMode: PrinterVP2000: Yes	

Option	Sub Option	Possible selections	
Serial Port 1 (J5)	Address	Disabled (All Ports)	
Serial Port 2 (J5)		• 3F8h (Ports 1, 3 & 4)	
Serial Port 3 (J4)		 2F8h (Ports 2, 3 & 4) 	
Serial Port 4 (J4)		• 3E8h (Ports 3 & 4)	
		• 2E8h (Ports 3 & 4)	
	Mode	 RS232 (Ports 1, 2, 3 & 4) 	
		 RS422 (Ports 3 & 4) 	
		• RS485 (Ports 3 & 4)	
	VP2000 / VT100	Yes	
		• No	
	IRQ	None	
		List of available IRQ numbers	
Parallel Port (J4)	Address	Disabled	
		• 0378h	
		• 0278h	
	Mode	Printer	
		Bidirectional	
		EPP-1.9 and SPP	
		 EPP-1.7 and SPP 	
		ECP	
		 ECP and EPP-1.9 	
		ECP and EPP-1.7	
	VP2000	Yes	
		• No	
	IRQ	None	
		List of available IRQ numbers	
	DMA	None	
		• 0	

ATAPI Units:

Main		ATAPI Units	
General Devices Communications	Master 1 : Auto	Mode : PIO-4 Trans : LBA	Size(MB): 0 Cyls : 0 Heads : 0 Sec(Th - 0
PCI & ISA Advanced Error Handling	Slave 1 : None	Mode : PIO-4 Trans : LBA	Size(MB): 0 Cyls : 0 Heads : 0
y uit		Detect Now	Sec/IF : 0

Option	Sub Option	Possible selections	Notes
Master 1		None	
Slave 1		Auto	
		• LBA	
		CHS	
		CD-ROM	
		Other	
	Mode	• PIO-0	 3.3 MBps Transfer Rate
		• PIO-1	 5.2 MBps Transfer Rate
		• PIO-2	 8.3 MBps Transfer Rate
		• PIO-3	 11.1 MBps Transfer Rate
		• PIO-4	 16.6 MBps Transfer Rate
	Trans.	• LBA	 LBA Translation
		ECHS	 Extended CHS translation
	Size (MB)	 Automatically calculated using 	
		Cyls, Heads & Sec/Tr	
	Cyls	 0 ~ 65536 	Cylinders
	Heads	• 0 ~ 64	Heads
	Sec/Tr	• 0 ~ 255	Sectors per track
	Detect Now	 Selection will attempt to Auto-detect any devices connected. 	

PCI & ISA

Main	PCI & ISA
General Devices Communications ATAPI Units PCI & ISA Advanced Error Handling Quit	Memory at 0C8000h0CFFFFh : Reserved for PCI Memory at 0D0000h0D7FFFh : Reserved for PCI Memory at 0D8000h0DFFFFh : Reserved for PCI ISA Irg for PCI INT_A (Share 2) : 9 ISA Irg for PCI INT_B (Share 2) : 9 ISA Irg for PCI INT_C (Share 2) : 9 ISA Irg for PCI INT_D (Share 2) : 9 Bus Master (Devices) : Disabled Latency Time (Devices) : 32

Option	Possible selections
Memory at 0C8000h. 0CFFFFh	Reserved for PCI
Memory at 0D0000h. 0D7FFFh	Available on ISA
Memory at 0D8000h. 0DFFFFh	
ISA Irg for PCI INT A (Share 2)	List of available IRQ numbers
ISA Irq for PCI INT_B (Share 2)	
ISA Irq for PCI INT_C (Share 2)	
ISA Irq for PCI INT_D (Share 2)	
Bus Mater (Devices)	Disabled
	Enabled
Latency Time (Devices)	• 0 ~ 255

Advanced:

Option	Possible selections
Legacy PnP Support	Disabled
	Enabled
CPU Clock Speed	• 100 MHz
	• 133 MHz
L1 Cache Mode	Write Back
	Write Through
Watch Dog start at boot	Disabled
	Seconds
	Minutes
Watch Dog Timeout (>=2)	• 2~255

Note:

Watch Dog Timeout can be set to between 2 & 255 seconds or 2 & 255 minutes, as defined by **Watch Dog start at boot** parameter.

Error Handling:

Error on Fixed Disc Error on Real Time Clock

Quit:

Pressing the Enter or Return keys when Quit is selected the following will be displayed:

Exiting from Setup
Save data to EEPROM
Discaru changes

Option	Notes
Save data to EEPROM	The configuration data will be saved to the EEPROM
	The Module will then reboot
Discard Changes Changes made will be discarded	
_	The Module will reboot with the original settings

Note: When quit has been selected, it is not possible to return to the configuration pages, you must reboot the system and re-enter the BIOS using F2 during the initial boot sequence

Chapter 5 BTOOL Program and Solid State Disk

This chapter explains how to use the BTOOL Program and gives information about the Integrated Solid State Disk.

Warning: The BTOOL Program can be different for each CPU and each BIOS version. For the latest version visit the site: <u>www.parvus.com</u>

When you download a new BIOS revision you should also find the latest copy of BTOOL enclosed in the package, this will be the correct version to use with the BIOS, it should not be used with other revisions (older or newer).

The **BTOOL** program

BTOOL is a utility used to update the BIOS Flash EPROM; it can be used for the following tasks:

- Upgrading the BIOS
- > Installation of a MiniDOS compatible program into the Flash (Integrated SSD)
- Installing a BIOS Extension onto the flash device

PLEASE NOTE:

The BTOOL program should only be run in the MS-DOS environment, **not a DOS WINDOW**, we advise the creation of a bootable MS-DOS floppy disc.

The following precautions should be taken into consideration:

- Power assured during all the program executions.
- AUTOEXEC.BAT and CONFIG.SYS should not have any parameters
- No memory manager should be loaded.
- HIMEM or EMM386 will cause errors with BTOOL

The program is run at the command line by typing **BTOOL** (or **BTOOL.EXE**) followed by an appropriate argument, as described in the following pages.

If no arguments are used the following on-line help page will be displayed:

Use	: :	BTOOL option	IS
		/S /L /U /G FILENAME /P FILENAME /B FILENAME /DA /DB /IP /IA /IB	 > Run Setup Program > Lock Integrated Setup > Unlock Integrated Setup > Get Setup Data from system and save to file > Read Setup Data from file and put to system > Update BIOS Firmware > Update Emergency BIOS Firmware > Build Integrated SSD from Disk "A:" > Build Integrated SSD from Image > Build Image from Disk "A:"

Argument	Definition	Notos
Argument		10163
/S	Run the Setup program without needing to reboot the system.	
/L	Lock the Setup Program.	
/U	Unlock the Setup Program.	
/G [Filename]	Gets the Setup Data from the system and save it in a file with the name [FILENAME.BIN].	
/P [Filename]	This option takes Setup data from the file [FILENAME.BIN] and stores it to the Flash EPROM.	
/B [Filename]	This option updates the entire BIOS firmware with the version stored in the file named [FILENAME.BIN]	
/V [Filename]	This option updates only the video BIOS firmware with the new version stored in the file named [FILENAME.BIN]	
/E [Filename]	This option updates the Emergency BIOS Firmware with the new version stored in the file [FILENAME.BIN] (this option is)	Not available with the CPU- 1212
/DA	This option creates the image of the Floppy "A:" on the Integrated SSD	
/DB	This option creates the image of the Floppy "B:" on the Integrated SSD	

Notes:

- 1. All files are stored in a binary format (.BIN)
- The BTOOL program should always be followed by a hardware reset Pressing CTRL+ALT+DEL is not sufficient It is necessary to cycle the power on the module to complete the operations.

EXAMPLE 1: Updating the BIOS

Following is an example of how to update the BIOS on your CPU module:

- 1. Visit the Parvus website and download the latest BIOS revision:
- 2. Unzip and store the BIOS and BTOOL files to your bootable DOS floppy disc
- 3. Insert the floppy disc into the floppy disc drive attached to your CPU module
- 4. Boot the system to the DOS prompt
- 5. Type the following command at the DOS prompt (BIOS.BIN is only an example filename, check the name of the file that came with the download).
 - BTOOL /B BIOS.BIN ,J
- 6. The program will store the new BIOS version to the CPU EPROM
- 7. Follow all the instructions the BTOOL may give you: the program will proceed by erasing the Flash device blocks and then writing and verifying them with the data present in the Binary file.
- 8. BTOOL will inform you about the result of the operation
- 9. Once completed cycle the power to finalize the operation.

Note:

You may need to enter the Setup program using F2 during the boot sequence to configure the system as required.

The Integrated Solid State Disk

A portion of the Flash EPROM can be used as an Integrated Solid State Disc (SSD). This Integrated SSD is like a write-protected floppy disk.

Depending on the CPU module used the size of this disc may vary (refer to Table 11), before use data needs to be written to it using the **BTOOL** program.

CPU Modul	е	SSD Size
CPU-1421		768 KB
	Table 11.	SSD Size

EXAMPLE 2: Creating an image of a floppy disk into the Integrated SSD

- 1. Create the "image disk", copy any files and directories that you require.
- 2. During this copying process take care not to delete any files or data from the floppy disc, doing so will create empty sectors and these will be mirrored onto the SSD, wasting space.
- 3. Take care not to exceed the SSD Size (refer to Table 11)
- 4. Type the following command at the DOS prompt (BIOS.BIN is only an example filename, check the name of the file that came with the download).
 - BTOOL /DA BIOS.BIN ,J
- 5. The program will ask you to insert the "image disk" into drive A.
- 6. Follow all the instructions the BTOOL gives you: the program will proceed by erasing the Flash device blocks and then writing and verifying them with the data present on the "image disk".
- 7. BTOOL will inform you about the result of the operation.
- 8. Once completed cycle the power to finalize the operation.

Note:

You may need to enter the Setup program using F2 during the boot sequence to configure the system as required (for example setting up the SSD as a boot device).

Chapter 6 Virtual Peripheral

Parvus/Eurotech CPU Modules are designed for use in stand-alone mode i.e. without keyboard, mouse, video or other I/O peripherals connected.

Therefore to simplify maintenance operations, users can easily make I/O peripherals available by using "Virtual Peripheral" mode, by doing this the CPU Module inherits the I/O peripherals from another compatible computer (called the *Host computer*) connected through a serial or parallel cable. To make this possible, the *VP2000* DOS program must be running on the *Host computer*.

How "Virtual Peripheral" works

The "*Virtual Peripheral*" is a software solution implemented at BIOS level. BIOS service functions called to handle the keyboard, video and floppy disk devices, are converted into messages forwarded to the *Host computer* through the communication channel using a proprietary packet protocol.

When the Operating System or the user's program deals with the keyboard, video or floppy disk drive, it actually deals with *host computer's* devices. There are no hardware traps to intercept accesses to these devices, so *Virtual Peripheral* works only if operating system and application programs use BIOS calls to work on them without directly accessing the relative I/O ports and memory areas.

Choosing the Virtual Peripheral connection type

There are two ways to perform a Virtual Peripheral connection:

- 1. Serial connection
- 2. Parallel connection

Serial Connection:

- Requires a RS232 RX/TX cable (with special wiring on CPU end of the cable)
- Connection is made at 112000 bits/sec.
- Connection works on any CPU serial port that is configured for RS232 mode.
- In case of bad configuration data, or if the invalid set-up is running, VP connection works only on the port that only supports RS232 (this avoids troubles if RS422/RS485 devices are connected).

The following illustration shows how to make a Serial VP cable connection:

(*) This VP cable must be made observing the connections explained in the following table

The following table shows the connections required for the cable, we assume that the user is using DB9 cables:

Table 1.	Serial	Virtual	Periphera	cable signals

Connector	Pin #	Signal	Description	DB9 Host Computer	Note
J4	35	RX	Receive Data	2	
J4	27	TX	Transmit Data	3	
J4	26	RTS 1	Request to Send	Not Connected	To J4 Pin #28
J4	28	CTS J	Clear To Send	Not Connected	To J4 Pin #26
J4	29	DTR 1	Data Terminal Ready	Not Connected	To J4 Pin #30
J4	30	RI J	Ring Indicator	Not Connected	To J4 Pin #29
J4	31	GND	Ground	5	

Parallel Connection:

- Requires a complete DCC Parallel Port cable
- Requires a compatible computer with Parallel Port configured either as Bi-directional or ECP
- The theoretical transfer rate is: ISA Bus transfer rate / 6 (because 6 ISA Bus cycles are required for each transferred data byte).
- In case of bad configuration data, or if the invalid set-up is running, VP connection will not work.

The following table explains how the Parallel VP cable connections have to be made:

(*) This VP cable must be made observing the connections explained in the following table

Connector	Pin #	Pin #	Signal	Host Computer pin #
J4	1	1	-Strobe	10
J4	8	14	-Auto Feed	11
J4	3,5,7,9,11,13,15,17	2~9	+Data Bit 0 ~ 7	2~9
J4	16	16	-Printer Init	12
J4	4	17	-Select	13
J4	19	10	-Acknowledge	1
J4	21	11	+Busy	14
J4	2	12	+Paper End	16
J4	4	13	+Select	17
J4	6, 10, 14, 18	18 ~ 25	Ground	18 ~ 25

Table 2.	Parallel Port	Virtual Periphe	eral (DB25-DB25) cable signals
		vintual i oripri		, ouble olghulo

Pins not included in the table above are not connected

The VP2000.EXE program

The VP2000 can be downloaded from the Parvus website (www.parvus.com).

The program only works in the DOS operating environment (it functions better without any keyboard or memory management device drivers loaded).

Select the following options based on which Host computer devices you want to redirect and which port, serial or parallel you will be using.

Execute the command:

Option	Function	
/TYPE	/COM: Use serial port cable /LPT: Use Parallel port cable	
Ν	When using /COM1: Use Serial port at 3F8h (no IRQ)2: Use Serial port at 2F8h (no IRQ)3: Use Serial port at 3E8h (no IRQ)4: Use Serial port at 2E8h (no IRQ)When using /LPT1: Use Parallel port at 378h (no IRQ)2: Use Parallel port at 278h (no IRQ)3: Use Parallel port at 3BCh (no IRQ)	
/ v	Re-direct Video	
/k	Re-direct Keyboard	
/d	Re-direct Floppy disc A	
/c	Re-direct Console (Video & Keyboard)	
/a	/a Re-direct All (Video + Keyboard + Floppy Disk A.)	

VP2000 /TYPE=N [/v] [/k] [/d] [/c] [/a]

How to perform a Virtual Peripheral session

To perform a Virtual Peripheral session you need:

- A free Serial Port configured as RS232 on the CPU module.
- If invalid configuration or the invalid set-up jumper is installed, you must use only one of the Serial Ports that are RS232 fixed (not RS232/422/485 selectable).
- If you choose the Parallel Connection, you must not configure the CPU's Parallel Port as Floppy Disk.
- The appropriate Serial or Parallel VP cable
- A PC compatible computer to be used as host, this computer must have a free RS232 Serial Port or a free Parallel Port configured as "Bi-directional" or "ECP" (use host computer BIOS Setup program to check or change the Parallel Port configuration).
- The Host Computer must be running DOS Operating System. If not available on its hard disk, you must create a DOS floppy disk and then boot from it. Do not put any memory manager or keyboard driver on that floppy.
- The Parvus VP2000 program, Save it on the hard disk or on the just created floppy disk.

Follow these steps to perform a Virtual Peripheral session:

- Make sure the CPU Module and the host computer are switched off.
- Connect the CPU Module and the host computer together using the VP cable.
- Turn the host computer on and boot DOS.
- At the DOS prompt start the VP2000.exe program using the command line options as listed above in order to choose the Serial or Parallel Port you want to use and the peripherals you want to connect to the CPU.
- Turn on the CPU Module. Note that when you turn on the CPU Module, the VP2000 program must be already running on the host computer. If you start running the VP2000 program later, the Virtual Peripheral connection will not work.
- If you have chosen to redirect the Video, then CPU Module's video output will be redirected to host computer screen where you will see the CPU BIOS Banner and POST information.
- If you have chosen to redirect the Keyboard, then you must use the host computer's keyboard to enter setup pressing 'F2' or to continue boot pressing 'F1'.
- If you have chosen to redirect the Floppy Disk, then CPU Module will see host computer Floppy Disk as its own Floppy Disk 'A:' If you have a diskette inserted into host computer drive, the CPU Module will try to boot from it!
- To exit VP2000 program press the 'Print-screen' key.
- You can hardware reset the CPU Module or recycle its power without exiting and restarting VP2000.

During a Virtual Peripheral session:

- Do not press the 'Ctrl + Alt + Del' key combination on the host computer keyboard: the result will be a reboot of the host computer, not of CPU!
- Do not use the DOS "format" command under Virtual Peripheral mode: it will not work.
- Do not disconnect (and then reconnect) the communication cable: the hardware might be seriously damaged!
- Remember that Virtual Peripheral is only intended for maintenance and upgrade operations: if you need a remote operative console, Virtual Peripheral is not a good solution.

Chapter 7 Watchdog Timer

This chapter describes the configuration of the Watchdog Timer with examples. The watchdog is a part of the onboard *PC87364* SUPER I/O device The Super I/O watchdog allows users to manage timeouts in measured in seconds or minutes (depending on the Super I/O programming).

Watchdog modes

The watchdog function resets the board at the end of the countdown sequence. There are two ways to program the watchdog:

- Using BIOS INT 52h
- Using direct Super I/O registers programming

BIOS INT 52h - functions 0Ch, 0Dh, 0Eh

This method can be used under DOS or an Operating Systems using the boards BIOS (i.e. not under Linux which erases the BIOS after the boot and autonomously manage the module hardware). The functions implemented from the BIOS are:

INT 52h, function 0Ch: watchdog enabling with a fixed time of 2 seconds. This function programs and immediately starts the watchdog counter.

INT 52h, function 0Dh: watchdog erasing. Counting is interrupted and the watchdog is disabled.

INT 52h, function 0Eh: watchdog refresh. Every call to this function restarts the counting from the initial value.

When the watchdog is activated, the countdown starts immediately. If no refresh occurs, when the default timeout expires, the board reset will be executed. Therefore, the watchdog must be enabled and continuously refreshed to avoid a board reset.

EXAMPLE:

MOV AH, 0Ch INT 52h Enable the watchdog (fixed timeout = 2 seconds)

Super I/O registers programming

This method must be used when the OS does not manage the BIOS (i.e. Linux) or when a personalized watchdog programming is required.

EXAMPLE: How to change the Super I/O (SPIO) FDC 37B782 watchdog registers:			
	MOV MOV OUT	DX, 03F0h AL, 55h DX, AL	; SPIO: enter in configuration mode ; SPIO Index Port ; SPIO Configuration Mode Enable Key ; Enter in configuration mode
	MOV MOV OUT INC MOV OUT	DX, 3F0h AL, 07h DX, AL DX AL, 08h DX, AL	 ; Select Logical Device 8 (watch dog) ; SPIO Index Port ; Logical Device selector is the register 7 ; Point to Logical Device selector ; SPIO Data Port ; Logical Device number 8 ; Select the Logical Device 8
	MOV MOV OUT INC IN OR AND MOV MOV MOV OUT INC MOV OUT	DX, 3F0h AL, F1h DX, AL DX AL, DX AL, O1h AL, FEh BL, AL DX, 3F0h AL, F1h DX, AL DX AL, BL DX, AL	<pre>; Select the time base (seconds or minutes) ; SPIO Index Port ; Watchdog timer units register (WDT_UNITS) ; Point to register WDT_UNITS ; SPIO Data Port ; Read WDT_UNITS ; Mask reserved bits and set time in seconds ; Mask reserved bits and set time in minutes ; Save new WDT_UNITS value ; SPIO Index Port ; Watchdog timer units register (WDT_UNITS) ; Point to register WDT_UNITS ; SPIO Data Port ; WDT_UNITS value ; Write the new WDT_UNITS value</pre>
	MOV MOV OUT INC MOV OUT	DX, 3F0h AL, F2h DX, AL DX AX, 37 DX, AL	<pre>; Select the watchdog timer timeout value ; SPIO Index Port ; Watchdog timeout value (WDT_VAL) ; Point to register WDT_ VAL ; SPIO Data Port ; New WDT_ VAL value (from 0 to 255 - seconds in this case) ; Write the new WDT_ VAL value</pre>
	MOV MOV OUT	DX, 3F0h AL, 0AAh DX, AL	; SPIO: exit from configuration mode ; SPIO Index Port ; SPIO Configuration Mode Disable Key ; Exit from configuration mode

Note: For further information about the watchdog programming, refer to *"FDC 37B78x Advance Information"* manual from *SMSC*.

Watchdog time-out pin

For external control purposes, the status of the Watchdog timeout event is provided on connector J11 pin 9. This signal goes high when the watchdog resets the system. The software can reset this signal by setting and resetting bit 2 of the I/O port 110h. This signal is also initialized by hardware at power-on.

EXAMPLE: How to reset the watchdog time-out pin:			
MOV IN	DX, 110h AL, DX	; Control Port ; Read actual value	The signal is
OR OUT	AL, 04h DX, AL	; Mask reserved bits and set bit 2 ; Write new value	directl y conne
AND OUT	AL, FBh DX, AL	; Mask reserved bits and reset bit 2 ; Write new value	cted to an output pin of

a Xilinx XC9572XL with the following characteristics:

Characteristic	Value
Recommended operation condition	Vomax = 3.3 V dc
DC characteristics:	Voh min= 2.4 V dc (test condition loh=-4 mA) Vol max= 0.4 V dc (test condition lol=8 mA)

Technical/Sales Assistance

If you have a technical question or if you cannot isolate a problem with your PC/104 system, please call or e-mail the Parvus Technical Support:

- Email: tsupport@parvus.com
- Phone: +1 (801) 483-1533
- Fax: +1 (801) 493-1523

If you have a sales-related question, please contact your local Sales Representative.

Returning For Service

Before returning any Parvus product, you must contact Parvus to obtain a Returned Material Authorization (**RMA**) number.

Pack the module in an anti-static material and ship it in a sturdy cardboard box with enough packing material to adequately cushion it.

Warning! Any product returned to Parvus improperly packed will immediately void the warranty for Δ_{1} that particular product!

Appendix

A.1 Electrical and Environmental Specifications

Table 3

Operating Characteristics

Electrical Operating Characteristics

Vcc=+5V+/-5% (4.75V to 5.25V).	
0.92 A at 133 MHz 128 MB SDRAM (typical)	
7 uA (3V)	
VBAT= 3.3V (range = 3V to 3.6V)	

DC Operating Characteristics

> Note. This CPU module is not warranted against damage caused by overheating due to improper or insufficient cooling or airflow.

Operating Temperature Range

ì

i

For proper operation of the CPU module, the ambient air temperature must remain inside this range: 0°C to +60°C (+32°F to +140°F).

Battery Backup Characteristics

There is no configuration data saved by the BIOS into the CMOS Real Time Clock. Therefore, the module does not need a battery except in the case where applications need to hold the date and time at power-off.

Note. Setup data is stored into the BIOS Flash EPROM; it is therefore impossible to lose the set-up data due to a lack of backup-battery supply.

Table 4. Absolute Maximum Ratings

Supply Voltage:	Vcc: 0.00 to 7.00V
11 2 0	
Storage Temperature Range:	-40°C to +85°C (-40°F to +185°F)
Non-Condensing Relative Humidity:	<95% at 40°C (+104°F)
Operating Temperature Range:	0°C to +60°C (+32°F to +140°F)

The CPU module with extended Operating Temperature Range version is also available.

Warning! Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended. Extended exposure beyond the "Operating Conditions" may affect device reliability.

MTBF

Hours: 231,000 Standard: MIL-STD-217 ground benign

Temperature: 25.0 °C

A.2 Mechanical Dimensions

CPU Dimensions

The CPU-1421 module's mechanical dimensions are shown in the following picture:

> Dimensions: 90 X 96 mm (3.6"X3.8"), height:15 mm (0.6")

Dimensions are in millimeters

Note: For further information about the mechanical dimensions of ISA and PCI buses please refer to the pc104 consortium site (<u>www.pc104.org</u>)

For more information about this or other products in the Parvus line of embedded systems solutions, call (801) 483-1533 from 8:00AM to 5:00PM Mountain Time, E-mail us at sales@parvus.com or visit our web-site at: http://www.parvus.com

i

LIMITED WARRANTY

Parvus Corporation warrants this product to be free of defects in materials and workmanship, and that the product meets or exceeds the current specifications published by Parvus. This Warranty is valid for a period of one (1) year from the date of purchase. Parvus reserves the right to repair or replace any Warranted products at its sole discretion. Any product returned to Parvus for repair or replacement under the provisions of this warranty must be accompanied by a valid Return Material Authorization (RMA) number issued by the Parvus Customer Service Department.

Parvus Corporation makes no warranty not expressly set forth in this document. Parvus disclaims and excludes all implied warranties of merchantability and fitness for a particular purpose. The aggregate liability of Parvus arising from or relating to (regardless of the form of action or claim) is limited to the total of all payments made to purchase the product. Parvus shall not in any case be liable for any special, incidental, consequential, indirect or punitive damages, even if Parvus has been advised of the possibility of such damages. Parvus is not responsible for lost profits or revenue, loss of the use of software, loss of data, costs of recreating lost data, or the cost of any substitute equipment or program.

This Warranty shall be governed by the laws of the United States of America and the State of Utah, and any claim brought under this Warranty may only be brought in state or federal court located in Salt Lake County, State of Utah, and purchaser hereby consents to personal jurisdiction in such courts.

For further information contact:

Parvus[®] Corporation 3222 S. Washington St. Salt Lake City, Utah, USA 84115 (801) 483-1533, FAX (801) 483-1523 Web-site: <u>http://www.parvus.com</u>