* Stood

Stood 5.2

AADL
Tutorial

STOOD AADL Tutorial © Ellidiss - May 2007 - page 1

* Stood

Pierre Dissaux
Ellidiss Technologies

page 2 - STOOD AADL Tutorial © Ellidiss - May 2007

* Stood

Contents

TINEEOAUCTION. ¢ttt ettt ettt et e st e st e bt e bt et e ebesbesb et e s e b e s ententeneeneeseeneebeebesaesaenan 5
2DETINE @ WOTKSPACE. ... i cveeiieeieieeiie ittt ettt ettt et e et et e et esbeeseesaeesbesseesbesssesbeessesseessasseessesseensesseensesssessenseas 6
B N o To T] 10 (1 LA SRSt 6
2.25t00d INItHAlIZAION TIL......coeiiiiiieieeeee ettt 7
2. 3REQUITEIMENES FI1E......eouiiuiriiiiietiitirtiet ettt ettt et et b et sb bbb e e 8
2. 4LaUNCHING STOOM. ...c..itiiiiiieieieitet ettt ettt ettt st e et ettt et eae et et ebe b 8
2.5C1eate @ STOOM PIOJECT.....eevireieieiretieiesieeiesteettesteestes st esaesseessesseensesseessesseessessaessesssensesssensenssensenssensennes 10
3Create an AADL SYSIEIM.....ccutirieriieriieeieette ettt sttt e sttt e bt e st e e bt e sabesabeeshteebeesbbessbeenseesabeesatesateenbaeeareenaes 11
3.1Create a new design of kind “aadl SYStEM”..........ccecoviiiiriieieirieiece ettt ee 11
3.2Lock the system to enter €dit MOAE.........c..cverririiriieieiiieieete ettt see b see e b e raebeessebeesnenseens 11
3.3D0CUMENE The PIOJECE. ... ittt ettt ettt ettt e bt et e s bt et e eb e et e ebeenteeneeneeens 13
3.4D0CUMENT The SYSTEIML. . .eetieiiitieiietiee ettt ettt et e bt et e s b e et esb e et e eb e et e eaeeneeens 14
3.5CTCAte SUDCOMPOMEIIES.c..eveiititetetenteateteat et ettt et etesae st eb s b sae sttt e st et et et eseebeenteseebeebesbesbeebenbeneens 16
3.6Rename and give a type t0 SUDCOMPONENLS.ceivirieriieieriieieetieteeeete ettt esae e eneeseeeneeeneenes 19
3.7Create DUS aCCESS COMMECTIONS.e.veterteureutetenieiteitettetteteeteste st e sbesbeste b e sbe st e b en s et esteseente bt ebeebesbesbesbesbenaens 20
B BCTRALE POTLS...eeueteeutieriieeite et et e ettt et e st e et e sute e bt e e ab e e bt e eabeenbtesabeenstesateensaesaseenbeeeabeenbeesabeeatesateesaeenneenses 21
3.9ReNAME ANA CUSTOIMIZE POTES.....vieueerieierieereiteeteieeteestesseestesseessesseessesseessesseessesssessesssesseessessessesseessenne 22
3.10 Create POIt CONMMECLIONS.evvieierteererteeterteeteeteesseessesseessesseessesseessesseessesssessesssessesssesseessesseessesseessesses 24
3.11 Generate the AADL code for the SYSteIML........coueiuiriirieiiee e 25
3.12 Show generated AADL COAE.cc.uoiuiiiiiieiiiiee ettt ettt ee e saeeaeas 27
3.13 Create @ deSIZN TEPOTL.....c..eeuirterteteteteteiteet ettt ettt sttt et et ettt et eae e bt ebtebe e bt s bt sae et e besaeseenenee 29
314 SAVE the dESIZN.....eouiiiiriiiiierietete ettt ettt ettt eb e bbb st st 34
4Create an AADL PACKAZE.cccueivieieitieieeitete ettt ettt te st sae e et e staesbessaesseesseseassesseessesseessesseensesseensenseans 35
4.1Create a new design of kind “aadl package™.........c.cccvervirieriieieni ettt 35
4.2Lock the package to enter €dit MOC........c.ccuevuiiiiriieieieeieceete sttt sbe e sreesaesaeesnesaeas 36
4.3Create Data component classifiers inside the Package...........ceevieceirieriirieieieeieceeie e 37
4.4Rename the Data COMPONENL......cc.eioiiiuiiieitieteiteete ettt ettt ettt ettt e te s beeeesbeeneeeseeeeeneeseeneeneeenes 38
4.5Specify component type and implementation.............c.ccererierieierinieniee e e 39
4.6Define subcomponents of @ Data COMPONENL...........coiveriririirieniinieieieteteteeee et neene 40
4.7Define Data COMPONENE EXLENSION.everrerreeeeerieteesieteeeeseeeteseeeaesseeseeseeseeseenseenteseeneesseensesseensesnes 41
4.8Define the public section 0f the PACKAZE........c.coieviiiiiriiiieieeeeeee et 42
4.9Define Data SUDPIOZIAMIS.ccuveieriieieriieieieestestetestestesstessesssesseessesseessesseensesseessesseensesssessesseessensaens 43
4.10 Specify SUbProgram ParameEters...........cuccueieeruiiieriiiiesieeiesieeeeesreesesseesesseessesseesesseessesssessesseessenseens 44
4,11 Add AADL PrOPEITIES.cvecveeiierienrieteetieiesteetesseestesseeaesseessesseessesseessesssessesssessesssessesssessesssesseessessens 46
4.12 Add teXtUAl COMIMEINES.eiitieiiitieiiet ettt ettt ettt ettt e et e e et e e e s e et e eseeteeaeesaeemeesaeeneesaeennennean 47
4.13 Show full AADL diagram of the package.........cccoeueririiiiiiiieee e 48
4.14 Generate the AADL code for the package........c.cccevreririninininenenecccteeecetee e 49
4.15 Show generated AADL COUE.......cccoviririmiriniieeteiet ettt sttt ettt sae b b e 50

STOOD AADL Tutorial © Ellidiss - May 2007 - page 3

4.16 GENETAE CHt COUE. ...ttt ettt a ettt e bttt s b st et e st et e e e et et e st eneeneebeeneeee 52
4.17 SAVE the AESIZMN....cuuiiuiiiiieieiieiesie ettt ettt et et e eteesbeese e beestesseesaesseessesseessasseessesseessenseensens 53
SCTEALE AN AADL PIOCESS. .. uvetieuteetieteetienteeterte e e st eeesteeeteateenteateenteeseanteeseanteeseeseeneesaeemeesaeameesseensesseensenneans 54
5.1 Create a NeW deSIZN DY EXPOTL...c..iiuiiiiieiieiieiieieete ettt ettt ettt et b et e b e et et e bt sseesbeeneenaeas 54
5.2Import a list Of desiZN TEQUITEIMENLS.eveuieuiiiiirtiriericrteetese ettt ettt st s ne 55
5.3Clean uUp the ENVIFONIMENL.cc.euitiieieietererteeteete sttt ettt esteateteeue sttt te st see st e seseeensesneneenesresnesuens 56
S.ATMPOTE @ PACKAZE.....veevieeieiieiiesieeierte ettt ettt e et e b e s te e s e sae e se s st esesstessesssesseessenseessanseessenseessenseenns 58
5.5Change data POILS LYPC....ceruieieruiriertieiereeiesteetesteeteestesesseesseestesesseensesssessesssessesssensesssanseessenseensensennes 59
S5.6AAA POTLS 10 the PIOCESS...cevvieiieeiiieiieeieeitee et etee ettt e ete et esbeebeesebeebeessaessseessseesseesssaenseesssesseensseans 61
5.7Add subcOMPONENLS t0 The PIOCESS....c.viivieiiiiieiiiiietieteete ettt ettt et e sre e s reesaesbeesbesseessesseessesseenns 62
5.8Create and customize ports in SUDCOMPONENLS.c.eeiuirieriieiintieieeeienteeeeerteeeesteeeesbeeeeesreeneeseeeneeeneenes 64
5.9Connect ports between a component and itS SUDCOMPONENLS........coruireeruerieririieniieierieieeecee e 66
5.10 Connect ports between SUDCOMPONENLS.......c..cveteuirirerireriertietertenteretetesteeteieereetesresae st sbesseseeneenee 67
511 SPECIEY TLOWS...cuiiiiiiieiieiieieetet ettt ettt ettt et ettt ebe bt ebeebe bbb e nen 68
5.12 Specify real-time PrOPEILICS......ccverririerieeierieeiereetesteetesteesesstessesseesseessesseessesseessesseessenseensenseensenses 70
5.13 SPECIEY MOUES.....ueeiieeiiiieieei ettt ettt et e b e et e st e ese e sesseesseessesseessesseensesssensenseensenssensennes 72
5.14 Generate the AADL code fOr the PrOCESS.......cveviiiiriiiieiteeiesieet ettt ereesae e saeessesaeas 75
5.15 Show generated AADL COUEC........oiiiiiriieiierieieeeeie ettt e ettt eaesteesseeseesbesreessessnessesseas 77
5.16 Generate Ada COAR...... oottt ettt ettt ettt et b e et b et b et e b et eaee e ens 79
5.17 SAVE The A@SIGN......iiuiiiieiiiet ettt ettt et ae et e et et e saeenbeee e et e eat e beenteeaeenteeae 80
OCONCIUSION. ...ttt ettt ettt e e st e e st e e te e st e st e ese et e es e e seane e st enseeseensesseensesseensesseensesnaansennsansenns 81

page 4 - STOOD AADL Tutorial © Ellidiss - May 2007

* Stood

1 Introduction

The purpose of this document is to describe the standard modelling process to be used to
build a new AADL project with Stood. It is not a complete tutorial or user manual for
Stood and knowledge about the AADL is a prerequisite for using this document. Please
refer to the official AADL web site (www.aadl.info) to learn more about this
standard.

In addition to the various modelling concepts defined by the AADL standard, we need to
introduce the following additional ones that are more development process oriented:

A Stood Design is the main modelling entry point. It represents the root of a hierarchy of
components or packages. A Design may be used to define the overall system, a particular
set of concrete components describing an executable software application, or a library of
abstract components. In the first case, the Design is directly associated to an AADL
system instance. In the second one, it will represent an AADL process instance, whereas
in the last case, it will represent an AADL package. A fourth case, still subject to deeper
investigations, concerns the software to hardware binding activity, for which the current
entry point is an AADL processor.

A Stood Project refers to a set of Designs that collaborate in a common realization. The
Project specifies the scope of the realization, and restricts the access to other non-
referenced Designs.

A Stood Session begins when a user launches the tool and ends when Stood is closed.
Stood is a multi-user environment, so that several Sessions may be opened on a same
Project, or even on a same Design.

A Stood Workspace is a user-defined disk area where Projects and Designs can be
stored.

This tutorial includes the following sections:
1. Define a Workspace, launch Stood and create a Project
2. Create a Design representing an AADL system
3. Create a Design representing an AADL package
4. Create a Design representing an AADL process

STOOD AADL Tutorial © Ellidiss - May 2007 - page 5

http://www.aadl.info/

* Stood

2 Define a workspace

It is possible to launch Stood from the start-up menu or from the desktop icon that are
created by the Windows installer program. However in that case, any customization of
the tool requires altering the original distribution, which may be an issue if several users
or several Projects require different customizations.

This is the reason why it is often recommended to launch Stood from a Workspace that
can be dedicated to each user or Project. Such a Workspace consists in a simple
directory that must contain at least two elements:
- a shortcut to the Stood executable file (under Windows) or a redirecting shell
script (under Unix)
- a local initialization file (stood.ini under Windows or .stoodrc under

Unix)

In addition, this Workspace may contain other Project related data such as lists of
textual requirements or subdirectories with legacy source code to be reused in the
Project.

J C:\Ellidiss\AADL Tutorial =JoEd
Fichier Editon Affichage Favoris Outls 2 o
O Précédente - ()) /.-) Rechercher Dossiers
Adresse | C:\Elidiss\AADL Tutorial v | E oK

[£] Requirement...

i stood
% stood.ini

2.1 Stood shortcut

Stood shortcut must be created by one of the standard Windows procedures. However, it
1S necessary to customize it so that the Workspace can be used as the default storage
area for the new created Projects when Stood is actually launched from there.

Open the properties box of the shortcut, select the shortcut tab, and modify the target
field so that it points to the current Workspace directory instead of the installation one.

page 6 - STOOD AADL Tutorial © Ellidiss - May 2007

* Stood

Propriétés de stood 2Jed

Général | Raccourci | Compatibilité

Js_wi'l stood

Type de cible Application
Emplacement bin.w32

Cible : C:\Program Files\Stood5-2\bin w32\stood exel

Démarrer dans C:\Ellidiss\AADL Tutorial

Touche de Aucun
raccourci :

Exécuter: Fenétre normale w

Commegntaire

Rechercherla cible. l [Changer d'icéne...] [Avancé...

OK l [Annuler] [Appliquer

2.2 Stood initialization file

The second customization that may be required consists in modifying one or several of
the properties that are specified in the Stood initialization file (stood.ini under
Windows or .stoodrc under Unix). A complete specification of these properties is
provided in the Stood Administrator Manual.

Only the properties that differ from the default initialization file located in the installation
directory must be specified locally. All the other properties will be automatically
inherited. Typical properties that may be customized locally are the various environment
variables that are used by Stood to interact with external tools, such as compilers or
verification tools.

[Environment]

ADA PATH=C:\cygwin\bin

C_PATH=C:\cygwin\bin

CPP_PATH=C:\cygwin\bin

REQTIFY PATH=C:\reqtify\bin.w32

OSATE PATH=/cygdrive/C/topcased/eclipse/eclipse.exe
CHEDDAR_PATH=/Cygdrive/C/CHEDDAR—2 .0/cheddar.exe

STOOD AADL Tutorial © Ellidiss - May 2007 - page 7

* Stood

2.3 Requirements file

The Workspace directory may also contain one or several Project specific textual
requirements files that may be imported into Stood. Once imported, it will be possible to
specify requirements coverage for each modelling entity.

The internal format for Stood compliant requirements files is quite simple as it consists
in plain ASCII text declaring one requirement per line. Each requirement is expressed by
a unique identifier and a free comment, separated by a tab character.

CALC101 interact with the Keyboard
CALC102 interact with the Screen
CALC111 define integer type
CALC112 define real type

CALC121 add integers

CALC122 add reals

CALC123 sub integers

CALC124 sub reals

CALC131 scan the Keyboard
CALC132 perform the operation
CALC133 display on Screen

Such a requirements file may be easily generated by a requirements management tool
such as Doors™. Note that thanks to a specific connection feature, it is also possible to
directly import requirements and export coverage information from and to a traceability
graph defined in the Reqtify™ tool.

2.4 Launching Stood

If not launched from the Workspace shortcut, it is also possible to launch Stood either
from the desktop shortcut or from the standard Windows start up menu.

Note that these two options will not be available if the corresponding set up has been
deactivated during the installation process.

page 8 - STOOD AADL Tutorial © Ellidiss - May 2007

@,
<90
Programmes v) Accessoires
[£5 Documents v [ClarisWorks 5.0

@ Paramétres
4~ Rechercher
@) Aide et support
3 Exécuter...

-

M Hachette Oxford

[Z] Fermer la session Pierre...
[@ Arréter lordinateur...

* @ Infogrames
Stood ™ Documentation *
& windows Media Player &) Tutorial ’
¥ £l Readme
il stood

's demarrer

“*Stood

for the AADL

When launched, Stood shows a start up screen during its initialization phase, and then
opens its main windows, which looks as the picture below:

Fie Edit Design Component Fegture Tools Help

ads |ada| | cpp | aad | test | checks |

Save text

Designs Feguirements Graphic Design |Detai\ed Design | Checkers | Code | Documentation | Deployment |
(Hood | g1 =) % % |kl @QQ&| @
 UML
= AADL

STOOD AADL Tutorial © Ellidiss - May 2007 - page 9

* Stood

2.5 Create a Stood project

First step of the modelling process consists in either opening an existing Project or
creating a new one. Projects can be managed from the File menu.

For the purpose of this tutorial, we create a new Project and specify its name in the
dialog box.

{1 Stood for AADL {1 New project
Fle Edit Design Component ?/ Type in new project name :
New project... | . |AADL_caIcuIaIm
Open project...
OK ‘ Cancel ‘

We can now import existing Designs within the scope of our Project thanks to the
File/Add to project menu, create new Designs from existing source code thanks to the
Design/New design from... menus or create new local Designs with the Design/New
design menu.

This last choice offer several options. The new created Design may be profiled as a
HOOD Design, in which case one of the options design, generic or virtual node must be
chosen, or as an AADL Design, in which case one of the options aad! package, aadl
system, aadl process or aadl processor must be selected.

This tutorial explains how to create in a context of a consistent Project:

- AADL Systems to define concrete system wide architectures composed of
hardware and software components.

- AADL Packages to specify libraries of abstract components, and especially
abstract Data components to be used as classifiers for ports and parameters.

- AADL Processes to perform complete software design activities including
architectural design, detailed design and coding, model analysis, source code and
design documentation generation.

These three modelling processes are described in the next three sections. The last section
explains how to quit Stood.

page 10 - STOOD AADL Tutorial © Ellidiss - May 2007

* Stood

3 Create an AADL system

Specifying a System with Stood consists in effect in building a System Instance. Instead
of creating abstract component types, component implementations and then instantiating
them as subcomponents, the designer can directly define subcomponents in a hierarchical
way, and then specify whether they correspond to instances of already defined abstract
components or of anonymous abstract components that will have to be automatically
created while producing the textual AADL specification.

3.1 Create a new design of kind “aadl system”

To create a new System inside the current Project (cf.§2.5), use the menu Design/New
design/aadl system... and then specify its name in the dialog box.

£1) Stood for AADL - AADL_calculator
Fie Edit Design Component Feature Tools h.
New design » design...
Designs New design from v generic...
virtual node...

£i) AADL system name

aadl package...
aadl system...
aadl process...
aadl processor...

calc_system

OK ‘ Cancel|

Note that a Design name in Stood must be alphanumeric (i.e. only contain characters ‘a’

3 Y

to ‘z’, ‘A’ to ‘Z’°, ‘0’ to ‘9 or the underscore character ©).

3.2 Lock the system to enter edit mode

When it has just been created, the new System design is automatically loaded and it is
shown in the AADL graphical editor as an empty box at the middle of a larger one
representing the Project.

STOOD AADL Tutorial © Ellidiss - May 2007 - page 11

* Stood
£1) Stood for AADL - AADL_calculator g@

Fle Edt Design Component Feature Tools Help

(design) calc_system Requirements Graphic Design | Detailed Design | Checkers | Code | Documentation | Deplayment |
design) calc_system s 4
(gn) _SY: " Hood =3 % ®E R
" UML
" AADL

ADL_calculator

calc_system

ods]ada]c] cpp] aad Itest] checks]
= PROJECT
enProject Description
e Project Sketch
List of Requirements)
Design Tree <
Inheritance Tree

However, this System design is set to read-only mode by default. To enable performing
modifications on this System, it is necessary to “lock™ it so that no other user will be
allowed to get a concurrent write access to the model.

£i) stood for AADL - AADL_calculator (] Stood for AADL - AADL_ce

Fie Edit Design Component Feature To Fle Edit Design Component Fe.
New design 4
(design) call New design from ' {design) calc_system
(desig Lock design & (design) calc_system

When a System design is locked (may be modified in the current Session), a green
padlock is shown at the left of its name.

page 12 - STOOD AADL Tutorial © Ellidiss - May 2007

* Stood

3.3 Document the project

When the System design is selected in the upper left list of Stood window, the lower left
list shows description sections for the local view of the Project. Default sections are a
textual descriptions and a graphical sketch that will be included inside the design
documentation.

ods] ada | c| cpp | aadl | test]| checks | Savetext | Project Description
= PROJECT This design specifies an AADL system that describes the architecture and the implementation of the caleulator
= Project Description

mProject Sketch
List of Requirements Save text Cirl+s

Design Tree
Inheritance Tree

Undo Ctri+2

Note that each time some text is entered in the text input area, it must be saved by
pressing the Save text button, or using the corresponding contextual menu or the Ctr/-S
keyboard shortcut.

{design} calc_system Requirementg] Graphic Degign Detailed Design l

- @ (design) calc_system == S T HOVEOET >

o

ods]ada] c] cpp] aadl] test] checks]
= PROJECT
= Project Description
== Project Sketch
List of Requirements

Design Tree
Inhertance Tree F/

CRER
apen

LG
onoe:

Note that the sketches are provided for documentation purpose only and that they do not
carry any semantic information.

Note also that the other sections List of Requirements, Design Tree and Inheritance Tree
are automatically filled in by Stood.

STOOD AADL Tutorial © Ellidiss - May 2007 - page 13

* Stood

3.4 Document the system

When the System design tree is deployed in the upper left list, it shows another line with
the same name. This corresponds to the System component instance to be edited.

£i) stood for AADL - AADL_calculator
Fle Edit Design Component Feature Tools

(design) calc_system

- & (design) calc_system e
calc_system s

Note that when a component is selected in the upper left list, current selection of the
graphical editor and contents of the lower left list are automatically updated. It is thus
possible to fill in the textual sections and sketches that are available to describe each
component individually.

ods]ada] c|cpp | aadl | test | checks | m Statement of the Problem (text)
= PACKAGE or COMPONENT The caleulator system must contain a CPU unit and input/output devices |
DESCRIPTION
5 PROBLEM Save text Ctrl+s
m Statement of the Problem (text)
m Sketch of the Problem Undo Ctrl+2Z
mmReferenced Documents Restore
SOLUTION

The Statement of the Problem section (see the figure above) must be used to provide
textual details about how the currently selected component contributes in solving a
particular modelling problem.

The Sketch of the Problem section (see figure below) can be used to complete this
information by an informal drawing that will be included into the design documentation.

page 14 - STOOD AADL Tutorial © Ellidiss - May 2007

* Stood

(design) calc_system

=+ & (design) calc_system
calc_system

Reguirements | Graphic Design Detailed Desian | Checkers | Code | Do

sl &~ rHevVedxT+o oo -l

0

ods]ada |clepp | aadl | test] checks |

(28] () (1)

- PACKAGE or COMPOMEMNT
DESCRIPTION
- PROBLEM
m Statement of the Problem (text)
m Sketch ofthe Problem
a1 Referenced Documents
SOLUTION

() (E) ()
(D2 =)
@E))

Next figures show other examples of documentation sections that can be filled in for each

component individually.

ods]ada] c| cpp | aadl |tast | checks |

Save text | Referenced Documents

= PACKAGE or COMPONENT
DESCRIPTION
= PROBLEM
mm Statement of the Problem (text)
m Sketch of the Problem
mmReferenced Documents
SOLUTION

ods]ada |c]cpp | aad | test | checks |

Architecture Analysis and Design Language:
SAE AS-3506 standard
www.aadlinfo

Save text Ctrl+5
Undo Ctrl+Z
Restore

Save text | General Strate gy (text)

e Statement of the Problem (text)
em Sketch ofthe Problem
mReferenced Documents
SOLUTION

ez General Strategy (text)

- PACKAGE or COMPONENT || | The global system iz desipned first to show the interactions between the various HW and SW units.
DESCRIPTION Then, the SW unit will be refined in separate designs in order to focus on software design and coding issues.|
PROBLEM

Save text Ctri+5S
Undo Ctri+Z
Restore

STOOD AADL Tutorial © Ellidiss - May 2007 - page 15

* Stood

ods]ada] | cpp | aadl | test | checks | Save text | Identification of Subcomponents
E- PACKAGE or COMPOMNENT # || | The caleulator system consists of
2 DESCRIPTION || || - the calculator SW, represented by the cale_process process unit.
- the caleulater HW
PROBLEM This HW is composed of:
—em Statement of the Problem (text) - 2 CPU processor urit
—ea Sketch of the Problem - 3 ROM memory unit
—mReferenced Documents - 2 RAM memory unit Save text Ctrl+s
SOLUTION -an DATA BUS bus

= General Strategy (text) I?;iﬁg?ﬁc:\w device units: Undo Ctri+7Z

—mzSketch of the Solution - a screen devicel Restore
—exldentification of Subcomponents
ez Justification of Design Decisions

Stood promotes the concept of “incremental documentation” that consists in asking the
designer to document each modelling element independently at the time he or she is
performing the modelling actions. The final design documentation will compile all these
elementary sections to build a complete report.

This modelling process also recommends documenting each component before going
deeper in the architecture hierarchy. For instance, the Identification of Subcomponents
documentation section can be used as a guideline for actually creating the
subcomponents (see next chapter).

3.5 Create subcomponents

In the graphical editor, a component can be represented either by its “black box” view
that shows the contents of the corresponding component type, or by its “white box” view
that shows the contents of the corresponding component implementation.

In the picture below, the “black box” view of the System component is shown. To show
its “white box” view, it is necessary to go one step down the hierarchy. This action can
be performed by double-clicking inside the component box or using the enter contextual
menu.

page 16 - STOOD AADL Tutorial © Ellidiss - May 2007

* Stood

(® AADL

IADL_calculator

calc_system

Enter

Rename...

After using the enter menu, the “white box” view of the System is shown. It is thus
possible to add subcomponents to its implementation. To add a new subcomponent, use
the new AADL component button, or the New component contextual menu. The button
will create a component of a pre-defined category, which can be modified later thanks to
the Change into contextual menu. On the contrary, the New component contextual menu
offers the full choice of valid categories for creating subcomponents within the current
component implementation.

We can for instance create seven subcomponents inside the System implementation:
- One component which category is Processor
- Two components which category is Memory
- One component which category is Bus
- Two components which category is Device
- One component which category is Process

STOOD AADL Tutorial © Ellidiss - May 2007 - page 17

calc_system
Exit
New component Process
Rename...
Subprogram
System
Processor
Open state diagram Memory
Bus
Device
Data
calc_system
Ty stenl 7] calc_systemz2 calc_system3
calc_system4 r_//f\)
calc_systemS calc_syctemT calc_systemf

* Stood

Note that a default name is given to new created components, and that this name is the
name of the concrete subcomponent within the enclosing System, that may differ from
the corresponding component type classifier and component implementation names.

page 18 - STOOD AADL Tutorial © Ellidiss - May 2007

* Stood

3.6 Rename and give a type to subcomponents

When a component is selected in the graphical editor, the rename contextual menu can be
used to perform the following actions:
- Change the name of the selected concrete subcomponent.
- Change the corresponding abstract component type (by default, it will be assumed
that subcomponent and component type name are identical)
- Change the corresponding abstract component implementation name (by default,
it will be assumed that this name is others)

calc_system @ Rename
Name |CPU
@I calc_system? Type |CPU
Enter Implementation |others
Rename,
Ok Cancel
ol avated 4 4

It is thus possible to give the following names to the seven subcomponents of the System

calc_system

RAM

] = =

DATA_BUS

i

S{REEN

KEYBOARD .:,df %mm

STOOD AADL Tutorial © Ellidiss - May 2007 - page 19

* Stood

3.7 Create bus access connections

To create bus access connections, use the new connection button of the graphical editor.

N

calc_system

ATA_BUS

Then click on the accessed bus component before clicking on the accessing component.

ROM

LATA_BUS

=

This results in a graphical bus access connection between the Bus and the Memory
components.

ATA_BUS

Additional connections may now be added inside our System implementation.

page 20 - STOOD AADL Tutorial © Ellidiss - May 2007

* Stood

calc_system

mT— ROM RAM
DATA_BUS >
KEYBOARD cale_process SCREEN

[] L]

3.8 Create ports
To express for instance that the Process can exchange data with the Device components
it is necessary to add ports. To create a port in a component type, use the new port button

of the graphical editor. Click on the button (a), drag the mouse on the target component
(b) and then click to create the port (c).

>

calc_process calc_process
2 pertd
calc_system

(a) (b) (c)

STOOD AADL Tutorial © Ellidiss - May 2007 - page 21

* Stood

We can thus create four ports as shown in the figure below:

calc_system

mT— ROM RAM
DATA_BUS >
KEYBOARD cale_process SCREEN

* > porto A e

Note that these ports have been created with a default name and as In Event Ports by
default. Next section explains how to modify the name, the direction and the kind of the
ports.

3.9 Rename and customize ports

To rename a port, first select it and then use the Rename contextual menu.

LATA_BUS |

DATA_BUS

(] stood for AADL - ...

KEYBOARD calc_proce ? , Typeinnewname:
- -
5 Tir‘—| l—n “-.r/ KEYBOARD:
Rename... loutput s H\E
0K | Cancel

page 22 - STOOD AADL Tutorial © Ellidiss - May 2007

* Stood

To change the direction of a port, first select it and use the Change into contextual menu.

KEYBOARD .
—

¥ [EfpAT——
|_ Rename... |
I DATA_BUS
— | Right alignment I
-) KEYBOARD
Change into * In < g
out

In Out

To change the kind of a port, first select it and use again the Change into contextual
menu.

KEYBOARD

X [qifpEE—— -

Rename...
Connect...
JATA b.
Right alignment
Change into » In
e Out KEYBOARD

In Out i
Data port

Curmmd ot

By default, ports are attached to the left border of the component. It is however possible
to move them to the right border, using the Right alignment contextual menu. In a similar
way, a port attached to the right border can be moved back to the left border thanks to the
Left alignment contextual menu.

STOOD AADL Tutorial © Ellidiss - May 2007 - page 23

* Stood

DAlA_o
L

KEYBOARD caic
‘ I.d:rrn_-a—| . ey
E Rename...
KEYBOARD
Right alignment

We can now customize the four ports as follow:

7 P5

LATA_BUS [>

KEYBOARD calc_process S{REEN
ouTpdt | b ® [input ki
’

calc_system

3.10 Create port connections

To create connections between ports, use the new connection button of the graphical
editor. First click on the button (a), then click on one of the connected ports (b) and then
on the other port (c).

Note that port compatibility is verified before accepting to create the connection. These
verifications concern, port kind, port direction and port type for Data Ports and Event
Data Ports.

page 24 - STOOD AADL Tutorial © Ellidiss - May 2007

* Stood

KEYBOARD calc_process
SEd P P
I T cpafs
calc_system

(2) b (©

We can thus create port connections between the Process and each of the two Devices.

calc_system

ROM RAM

e

ATA_BUS

KEYBOARD calc_process SCREEM
CUTpdt | e p |input i
[o

3.11 Generate the AADL code for the system

Our model has been created with just a few mouse clicks in the graphical editor. It is
however possible to generate a full AADL specification from it.

To generate textual AADL code from a graphical model in Stood, the Code tab must be
selected instead of the Graphic Design one.

The new button bar shows two buttons. The first button on the left is called add pragma
and may be used to customize the code generation. Pressing this button opens a dialog
box showing the list of the possible options that can be selected.

STOOD AADL Tutorial © Ellidiss - May 2007 - page 25

* Stood

(1) Stood for AADL - ...

‘:‘?"() Selecta pragma

- generation control | A

Code compact_ (Tl
\ no_graphics
! o behavior
i W
: E C & reverse -
¢ pragmas — component custon ¥ |
4
L H 0K | Cancel‘

Select pragma compact in order to generate all the AADL code in only one file (default
rule is one file per component) and then pragma no graphics to disable the generation of
Stood specific properties that are used to propagate the positions of the graphical items in
the diagram.

The AADL code generation can then be activated by pressing the full extraction button.
This opens a dialog box that can be used to specify which part of the Design has to be
generated. Most of the times, we need the whole Design to be generated, which is the
choice that is proposed by default.

£1) aadl full extraction
CPU ~
ROM |
RAM
. Code DATA_BUS
KEYBOARD LA
FULL SCREEN - 4
E E’.’.‘J @ cale nrocess)
pragmas [v" hierarchy
FEAGME compact [v exported modules
FEAGMA no_graphics
—grap Cancel Help

After having pressed the Ok button and waited a little, the extraction messages file is
shown.

page 26 - STOOD AADL Tutorial © Ellidiss - May 2007

* Stood

(design) calc_system Requirerments | Graphic Design | Detailed Design | Checkers Code]
E- @ (design) calc_system = it ARDL Apa | AEvERT
e Hse| [S Ll

CPU =B extraction messages

ROM Hk === begin code extraction : Tue Oct 3 17:26:19% 2006

RAM B | |crearing: svstem Tvee ALDL calculator

DATA_BUS EHse creating: SYSTEM IMPLEMENTATION AADL calculator.others

KEYBOARD Ex‘ creating: SYSTEM TYPE calc_svstem

SCREEN nx creating: SYSTEM IMPLEMENTATION calc system.others

nx creating: PROCESSCOR TYPE CEU
creating: MEMORY TYFE ROM

creating: MEMORY TYFE RAM

-|creating: BU3S TYFE DATA BU3S

calc_process

ods | ada | c| cpp aadl |test | checks | creating: DEVICE TYPE KEYBOARD
E- PACKAGE or COMPONENT creating: DEVICE TYFE SCREEN
PROVIDED INTERFACE creating: FROCESS TYPE calc_process
IMPLEMENTATION
Epragmas Halt. Program terminated normally
macode file header === end code extraction : Tue Qct 3 17:26:20 2006

= AADLCODE
|—E::J extraction messages

The messages file lists the abstract component types and implementations that had to be
created to fully describe our System instance.

3.12 Show generated AADL code

The AADL generated code can be shown by changing the selection in the lower left list
of the Stood window from extraction messages to aadl.

Note that, due to the fact that we put a pragma compact, AADL code has been associated
to the root component in the hierarchy only.

STOOD AADL Tutorial © Ellidiss - May 2007 - page 27

£

* Stood

£1)Stood for AADL - AADL_calculator

M[=]x]

Hle Edt Design Component Feature Tools

(design) calc_system

E- & (design) cale_system |=E3
calc_system [=E=2

CcPU =

ROM H=

RAM H=
DATA_BUS H=
KEYBOARD H=

SCREEN H=
calc_process Hx

Help

Reguirements | Graphic Design | Detailed Design | Checkers

sar kEvchT
il ks
| aadl

Code |Documentation | Deployment |

ods |ada] c|cop ==dl |est] chacks |

E- PACKAGE or COMPONENT
PROVIDED INTERFACE
IMPLEMENTATION

o= pragmas

eacode file header

= AADL CODE

o exfraction messages
EIreverse messages
= gad|
e makefile
mmprolog description

SYSTEM IMPLEMENTATICN calc system.others
SUBCOMPONENTS

CPU : PROCESSCR CPU;

ROM : MEMORY ROM;

BRM : MEMORY RRM;

DATR _BUS : BUS DATA BUS;

EEYBORRD : DEVICE EEYBORRD;

SCREEN : DEVICE SCREEN;

calc_process : PROCESS calc procesas;
CONNECTIONS

DATRE PORT KEYBORRD.output -> calc_process.input;

DATE PORT calc process.output -> SCREEN.input;

BUS ACCESS DATA BUS -» CPU.DATA BUS;

BUS ACCESS DATR BUS -> ROM.DATR BUS;

BUS ACCESS DATR BUS -> RAM.DATR BUS;

BUS ACCESS DATA BUS -» HEYBORRD.DATA BUS;

BUS RCCESS DATR BUS -> SCREEN.DRTA BUS;
END calc system.others;

PROCESSOR CFU
FERTURES

DATR BUS : REQUIRES BUS ACCESS DRTR BUS:
END CEU;

MEMORY ROM
FEATURES

DATRE BUS : REQUIRES BUS RCCESS DATR BUS;
END ROM:

MEMORY RAEM
FEATURES

DATA BUS : REQUIRES BUS ACCESS DATR BUS:
END RREM;

BUS DATA BUS
END DRTR BUS;

DEVICE EKEYBOARD
FEATURES

cutput : OUT DARTA PORT T_Flow:

DATA BUS : REQUIRES BUS ACCESS DRTA BUS;
END EEYBORRD;

DEVICE SCREEN
FEATURES

input : IN DATR PORT T_Flow;

DATA BUS : REQUIRES BUS ACCESS DRTA BUS;
END SCREEN;

PROCESS calc_process
FEATURES
input : IN DATR PORT T_Flow;
output : OUT DATA FORT T_Flow;
END calc processa;

|

This AADL code can be edited with Stood, but the corresponding file in the repository
may be easily located for a remote access. To locate a particular file, select the

corresponding entry in the lower left list and use the Location contextual menu.

page 28 - STOOD AADL Tutorial © Ellidiss - May 2007

AADL CODE
maexiraction messages
EIreverse messages
= aadl

i) Where

Hel
eamaks 4 -
emprolc Location

Definition

y C\Ellidiss\AADL Tutorial\calc_system_aadl\calc_system.aad|

3.13 Create a design report

* Stood

Stood also offers a seamless way to create design documentation reports. Such a report
compiles all the appropriate information that has been entered while building the model.
This includes textual and graphical entries. To switch on the report settings tool, select

the documentation tab.

£1) Stood for AADL - AADL_calculator

ME] X

Fie

(design) calc_system

Edt Design Component Feature Tools Help

Requirements]Graphi:Design]Deta\led Design]Che:kers]Code Documentation Deployment]

= & (design) calc_system =]
calc_system ==

CPU s

ROM [SE

RAM s
DATA_BUS EH
KEYBOARD e

SCREEN e
calc_process e

ods]ada] c] cpp] aad Itest] checks]

» default
= full ods

aBdamn
Sections Format Tool
PROJECT || [hmi | e ~|
— Project Description [l
— Project Sketch Configuration
— Listof Requirements 'RemovelowLevelTitles' : 'N'
- i 'RemoveNONESections': "Y'
L P:SI%H Tre? 'RemoveApplets' - "Y'
nheritance Tree Wraplines' "Y'
AADL Diagram

B

PACKAGE or COMPONENT

instance parameters
DESCRIPTION
PROBLEM
Statement of the Problem (texd)
Sketch ofthe Problem
Referenced Documents
SOLUTION
General Strategy (text)
Sketch of the Solution
|dentification of Subcomponents
AADL Diagram
Justification of Design Decisions
PROVIDED INTERFACE
EXTENDS
PUBLIC DATA TYPES
type name
type description
type properties
class inheritance
type atributes
type enumeration
type pre-declaration (ada)

v

| Sortcomponents alphabetically
@ Depth traversal

(" Breadth traversal

(" Alphabetic fraversal

STOOD AADL Tutorial © Ellidiss - May 2007 - page 29

* Stood

First step consists in defining the components that must be included in the report. To
select all the components, use the select all button.

|{deS|gn) calc_system Reguirements | Graphic Design | Detailed Design | Checkers | Code Documentation
- @ (design) calc_system [~ ES P
H | calc_system s QEBRETAE @)

—a

The effect of this action is to display a small printer icon at the left of the component
name to mean that it has to be included to the report (the small floppy disk icon means
that the component has not been saved yet).

(design) calc_system

= @ (design) cale_system (default) H=
calc_system (defaulf) (==

CPU (defaulf) (==

ROM (default) (==

RAM (defaulf) (==
DATA_BUS (defaulf) (==
KEYBOARD (defaulf) (==

SCREEN (default) (==
calc_process (default) (==

ods]ada |] cpp | aadl | test] checks |

» default
= full ods -

Second step consists in selecting the output format for the report. This can be done by
selecting the appropriate button among Atml (default), mif, pdf, ps, rtf and tps. Select rtf.

|(design) calc_system Requirements | Graphic Design | Detailed Design | Checkers | Code Documentation |
- @ (design) calc_system (default) EES| . . & o= o e e

= H |
H Icalc_system(defaull) (== @ @B B E| &)

Last step is the activation of the document generation that will start after the print button
has been pressed.

page 30 - STOOD AADL Tutorial © Ellidiss - May 2007

* Stood

|[design) calc_system Requirements | Graphic Design | Detailed Design | Checkers | Code Docurnentation]
E- & (design) calc_system (default) [==] i
H = ~ calc_system (default) HE @ @B ol S

A standard Windows file navigator is then shown to select the output file. A default
filename and directory is proposed.

Generate file:

& _doc ~| eF Ev

Enregistrer dans

Mes documents.
récents

H

4

%\\ Eﬂ
H E

§ 2 Wy
g

&

&

Poste de fravail

‘;] Nom dufichier: |calc_system.f ~| [Emegistrer
(>
Favoris iéseau Type [t (=) -~ Annuler

As soon as the document generator has finished to work, it is possible to view the report
by opening its containing directory. If the default output file location was not changed, it
can be found by using the menu Tools/Open directory/design directory.

£1) stood for AADL - AADL_calculator

Fle Edit Design Component Feature Tools Help
View 4
(design) calc_system Requirements R Design | Detailed Design | Chet
s e B ET 3|80
CPU (default) Checkers r F
ROM (default) =11
RAM (defaulf) Documentation P tion '
DATA_BUS (default) (
KEYBOARD (default) ot [
SCREEN (default) Open directory v working directory
calc_process (defaulf Show full pathnames configuration directory
v Hide full pathnames _)
project directory
Display properties * design directory

STOOD AADL Tutorial © Ellidiss - May 2007 - page 31

®

*Stood

The design directory contains all the information related to the Design. Generated
documentation may be found inside the _doc subdirectory.

J C:\Ellidiss\AADL Tutorial\calc_system |- [OJE3

Fichier Edition Affichage Favoris Outils 2 e

@ Précédente ~ ()
Adresse | C:\ENdiss\WADL Tutoriahcalc_system | v | EJ oK

»

5 /:‘J Rechercher

Fichier Affichage Favoris Qutls 2 [

e Précédente - ()
Adresse |[F—;'| Elidiss\AADL Tutoria[\calc_system_docM OK

Edition
»

lﬁ? /:) Rechercher

= C:\Ellidiss\AADL Tutorial\calc_system\... - [O/Ed

= _aadl

0 _doc

(=3 _trash

[calc_process
(icalc_system
CICPU
[C)DATA_BUS
[KEYBOARD
CIRAM

CJROM
[C)SCREEN
(C)SYSTEM_CONFIGURATION
.aadlsettings
.project

[Req.sto
Stood.lok

& Stood.pro
[l stood.sto

] calc_system. rtf

Note that the AADL code that was generated previously can be found in the aadl

subdirectory.

page 32 - STOOD AADL Tutorial © Ellidiss - May 2007

L * Stood

The figure next page shows the result of the documentation generation with the RTF
format.

W] calc_system.rtf - Microsoft Word |[=1%]
: Fchier Editon Affichage Inserton Format OQutis Tableau Fepétre 2 Tapez une question - X
HRREA" EETE ARy N B9~ 8AOH T 00% o 80 -6 1 5
"'1"'5"'1' 2034 50 Gl -S-I‘Q-‘-10-‘-11-“12-‘-13‘l-14-l‘15-‘-/_\“l-17-l-1\7_1

—

- *Ellidiss

: AADL design documentation

o Generated by Stood

. Table of contents

= 1. PROCESS CAIC PIOCESS IS .erveeenoeooeeeeeeoseoseeoessessessessessesssssesemesessssessessemsssessesseessessesseeeenns

; 1.1. DESCRIPTION............. &
4 1.1.1. PROBLEM........... X
- 1.1.2. SOLUTION.......... .
; 1.2 INTERFACE w.ooovvvoctoeeerceoamanseseeesssssessseessssen s sessssssees e ssssssesssessssssssssssssssssssssssssssseses .
;a:z— Eﬁl[(] ‘ {1} | [)]
Page 1 Sec 1 1/13 A92cm Li15 Col2 Anglais (Roy

STOOD AADL Tutorial © Ellidiss - May 2007 - page 33

* Stood

3.14 Save the design

It is recommended to save the design to the design directory from time to time. To do so,
use the menu Design/Save design.

£1) Stood for AADL - AADL_calculator
Fie Edit Design Component Feature Tools
New design 4
(design)cal wew design from ’
- @ (desit EE
5 ca HE
Unlock design H&E
HE
Rename design... =
Change design into v H&E
Update design from ==
Change design language * HS
Compare design... HS
Show design location
Save design

Note that the save icons that are shown at the right of the component names will
disappear once they are saved.

page 34 - STOOD AADL Tutorial © Ellidiss - May 2007

* Stood

4 Create an AADL package

In the previous section, we did not explain (in purpose) how existing component
classifiers could be referenced in other AADL models. This is however mandatory to
enable proper component reuse.

In order to be properly referenced with a Project wide scope, it is a good practice to
group component classifier definitions within AADL Packages. In theory, this should be
done for any category of component, however the particular case of Data component
classifiers is especially important as they are not only instantiated to create
subcomponents, but also to specify the actual data type of Data Ports, Event Data Ports
or Subprogram Parameters.

This section explains how to create an AADL Package that provides a set of Data
component classifiers.

4.1 Create a new design of kind “aadl package”

To create a new Package inside the current Project (cf.§2.5), use the menu Design/New
design/aadl package... and then specify its name in the dialog box.

-

£i) stood for AADL - AADL_calculator

Fie Edit Design Component Feature Tools Help
New design » design...

Designs New design from *| generic...

virtual node...

aadl package...
aadl system...

aadl process...
aadl processor...

£i] AADL package name

|nurnbels|

OK | Cancel‘

Note that a Design name in Stood must be alphanumeric (i.e. only contain characters ‘a’

3 b 3

to ‘z’, ‘A’ to ‘Z’°, ‘0’ to ‘9’ or the underscore character ©).

STOOD AADL Tutorial © Ellidiss - May 2007 - page 35

* Stood

4.2 Lock the package to enter edit mode

When it has just been created, the new Package design is automatically loaded and it is
shown in the AADL graphical editor as an empty box at the middle of a larger one
representing the Project.

£1) Stood for AADL - AADL_calculator g@

Fle Edt Design Component Feature Tools Help

(design) numbers Requirements Graphic Design | Detailed Design | Checkers | Code | Documentation | Deployment |
design) numbers e 4
(gn) " Hood =3 % ® G &
" UML
" AADL
~
ADL_calcukator 7]
rimbers

ods |ada | ¢ cpp | sadi | test | chacks |
= PROJECT
enProject Description
e Project Sketch
List of Requirements
Design Tree <
Inheritance Tree

However, this Package design is set to read-only mode by default. To enable performing
modifications on this Package, it is necessary to “lock” it so that no other user will be
allowed to get a concurrent write access to the model.

page 36 - STOOD AADL Tutorial © Ellidiss - May 2007

* Stood

£1) Stood for AADL - AADL_calculator G Stood for AADL - AADL _calcu.

File Edit Design Component Feature
Fie Edit Design Component Feature To — Lesgn - ~ompo —
New design d (design) numbers
(design) nur New design from r
& (design) numbers
1 Lock design

When a Package design is locked (may be modified in the current Session), a green
padlock is shown at the left of its name.

4.3 Create Data component classifiers inside the package

To create components in the Package, it must be opened first. To open a Package, it
must be selected and the contextual menu enter must be used. An alternate solution is to
perform a mouse double click inside the boundaries of the Package.

IRADL_calculotor rimbers
riumbers Exit
New component * Process
e Thread Group
Rename... Thread
Rename...
Subprogram
System
Processor
Delete
Memory
Bus
Device
Data
Package

When the Package has been opened and is selected, it is possible to create components,
either with the new 44ADL component button (in which case a Data component classifier
will be created by default), or with the new component contextual menu. After the button
or the menu has been used, a new box is shown on the diagram and a new component is
added to the top left list. Default name given to new components is the name of the
container box followed by an integer value.

STOOD AADL Tutorial © Ellidiss - May 2007 - page 37

* Stood

4.4 Rename the Data component

To rename the new component, it must be selected first (on the diagram or in the list),
and the contextual menu rename must be used. This opens a dialog box where the actual
name of the component can be given.

£1) Stood for AADL - AADL_calculator

(design) numbers

File Edit Design Component Feature Tools Help

Feguirements Grap.

- & (design) numbers
numbers
L humbersi

rismbers

rusmbers |
Enter

Change into 4

EH>| Hood

| ~ um

H*| & aanL

&| -

rismbers

&) Rename

Name

Type

Implementation

_ % |

|integel

|o]‘hers

Cancel

Note that within a Package, only component classifiers are described, thus Stood
component name generally matches the AADL component type name. However, in case
of several components of the same type, but of different implementation, the box name

will be used to distinguish them, as explained in next chapter.

page 38 - STOOD AADL Tutorial © Ellidiss - May 2007

4.5 Specify component type and implementation

* Stood

Within a Package, a unique Stood component is used to represent both AADL
component type and implementation. If two components have the same type and different
implementations, two Stood components must be created. The three fields of the rename
dialog box can then be used to specify the unique Stood component name, the AADL
type name and the AADL implementation name.

| i) Stood for AADL - AADL_calculator

B[=1[x

Fie Edt Design Component Feature Tools Help

(design) numbers

(design) calc_system
Iga(design] numbers Hse
B humbers (= E=
integer (=
keyboard_digit [l ¢
screen_digit Hae

Fiequirements Graphic Design IDeta\Ied Design | Checkers | Code | Documentation | Deployment |

" Hood
" UML
& AADL

& 5% 0% eaaq @

ods]ada] | cpp | aadl | test] checks |

= PACKAGE or COMPONENT
- DESCRIPTION
= PROBLEM
e Statement of the Problem (text)
e Sketch of the Problem
mReferenced Documents
SOLUTION
INTERFACE
IMPLEMENTATION
EIpragmas

rumbers

integer

I(z.vbc(_lﬂ_diii‘t

sclu,rLdlin

| Statement of the Problem (text)

In the example below,

different implementation name keyboard and screen.

two

Stood components

keyboard digit and
screen_digit have been created. They have the same AADL type name digit and

STOOD AADL Tutorial © Ellidiss - May 2007 - page 39

* Stood

£ Rename il Rename
Name keyboard_digit Name screen_digit
Type digit Type digit
Implementation keyboard Implementation screen
Ok Cancel Ok Cancel

4.6 Define subcomponents of a Data component

According to the AADL standard, a Data component classifier can accept
subcomponents that must also be instances of Data components. As a special case,
subcomponents of Data component classifiers are managed by Stood as a list of typed
Attributes. This is in fact compliant with the way software structured data types (Ada
record, C struct, C++ class) are handled by the tool.

When a Data component classifier is selected on the diagram or in the top-left list, a
dedicated SUBCOMPONENTS section is available inside the component descriptor in the
bottom-left list. This section contains a formal declaration of the list of the Data
subcomponent names associated with their corresponding classifier reference (name of a
Data component classifier). Note that keyword ATTRIBUTES must not be removed and
that the list separator is a comma.

To illustrate this, we can create a new Data component classifier called real and
specify that it has two subcomponents int part and dec part that are both
instances of integer.

L L emReferenced Documents

SOLUTION Save text | SUBCOMPOMNENTS

#- PROVIDED INTERFACE ATTRIEUTES int part : integer, dec part: integer

REQUIRED INTERFACE

DATAFLOWS

IMPLEMENTATION

emreal

L = SUBCOMPONENTS
PROPERTIES

Save text Ctr+S |

oy

Note: do not forget to use the save fest button after any change in the text input area.

page 40 - STOOD AADL Tutorial © Ellidiss - May 2007

* Stood

4.7 Define Data component extension

According to the AADL standard, a Data component classifier may be specified as an
extension of another Data component classifier. Such an extension mechanism can be
compared to software class inheritance in object-oriented languages. The fact that a Data
component classifier extends another Data component classifier can be expressed on the
diagram thanks to a graphical connection. To create such a connection, for instance to
specify that integers and floats are kind of numbers, please operate as follow:

(a) create a new Data component classifier called number

(b) click on the new connection button of the AADL graphical editor

“,

reql

(c) then, select the descendent Data component classifier

rismbers ﬁu’nb&r‘s

irteger

integer

rismber

rismber

real real

(d) and finally select the ancestor Data component classifier.

STOOD AADL Tutorial © Ellidiss - May 2007 - page 41

* Stood

Note: the graphical representation of the extend connection does not comply with the
recommendation of the annex A of the standard.

This component extension information can also be edited textually. It can be accessed by
selecting the EXTENDS section of the component descriptor while the component is
selected on the diagram or in the top-left list.

ods Iada] | cpp | aadl | test]| checks | EXTENDS
- PACKAGE or COMPONENT A || |[INHERITANCE pumber.number
DESCRIPTION =
= PROVIDED INTERFACE
mminteger
L =mEXTENDS
PROPERTIES

4.8 Define the public section of the package

When adding Data component classifiers in a Package with Stood, they are put in its
private section by default. To let a Data component classifier become public, it must be
selected and the contextual menu Sef public must be used.

rismbers
integer
rismber
L
real - rismbers
peal
irteger
L | Enter
Rename... rmber
Change into 4 L
real -
Delete
Open state diagram —

Set public

page 42 - STOOD AADL Tutorial © Ellidiss - May 2007

* Stood

In order to be able to distinguish between public and private Data component classifiers,
the former are listed in the left border of the Package box in the diagram. Note that this
graphical notation is specific to Stood. For the purpose of our example, we can for
instance specify that Data component classifiers integer, float,
keyboard digit and screen digit are public, whereas number remains
private.

rismbers

rteger

real .

keyboard_digit

creen_digit
integer
riusmber
[
real S
keyboard_digit screen_digit

4.9 Define Data Subprograms

Like with other object oriented languages, it is possible to define the methods or member
functions that are associated to a Data component classifier. In AADL they are called
data Subprogram features.

To create Subprograms, click on the new subprogram button of the AADL graphical
editor, then select a Data component classifier.

STOOD AADL Tutorial © Ellidiss - May 2007 - page 43

* Stood

e
<

rismbers

rieger

peal o

keybeord_digit

creern_digit
irteger
riusmber

real S

The new Subprogram is given a default name. The rename contextual menu can be used
to change it.

rismber

dg;g*'"") Stood for AADL - A... ": “md- .
Rename... ééﬁ@@s
? Type in new name :
|from_digits
Right alignment ok | Cancel |

4.10 Specify Subprogram Parameters

Whereas Ports can carry a single event or data message, Subprograms can express more
complex dataflows that are defined by a list of directional typed Parameters. In Stood,
this parameters list must be entered in the port or subpg declaration section as shown in
the sequence of screenshots below.

The syntax that is used by Stood to specify a list of Parameters for a Subprogram is the
one recommended by HOOD which is very similar to what is defined by the Ada

standard. The syntax for a single Parameter is (list separator is a semicolon):

<parameter name> : <direction> <parameter type>

page 44 - STOOD AADL Tutorial © Ellidiss - May 2007

* Stood

(a) Select the Subprogram in the diagram or in the list. The default list of Parameters is
shown in the text input area. In case of a data Subprogram defined in a Data component
classifier, default Parameter is the receiver which default name is me and default type is
the Data component classifier.

rusmber

Lo from_digits
to_digits

real

ada | c| cpp | aadl | test | checks |
PACKAGE or COMPOMNENT ~
DESCRIPTION il
PROVIDED INTERFACE
mnumber
PROPERTIES
PORT GROUPS
= PORTS and SUBPROGRAMS £ |
cfrom_digits
export or subpg description
cmport or subpg declaration
moperation properties (hood)

heyboard_digit screen_digit

| port or subpg declaration

(ty) number
<pa> me

from digits{me : in out number):

(b) Modify the Parameters in the text input area. Do not forget to save the changes with
the button, contextual menu or keyboard shortcut.

cafrom_digits

o Save text | port or subpg declaration
maport or subpg description

=aport or subpg declaration from digits({me : in out number; imnput : in keybaard_dlglth: Etg]arlur;n:er
maoperation properies (hood)

mmworst case execution time Save text Ctri+s

(c) Note that specified Parameter type is checked against Stood cross reference table
and the result of this analysis is shown in the right hand side of the text input area.

mfrom_digits | port or subpg declaration

enport or subpg description — Tiai -~ - n Fevboard diad b
=mport or subpg declaration from digits{me : in out number; input : in keyboard digit); Etg]ar;urrr:\e er

m3operation properies (hood) (ty) keyboard_digit keybc
mworst case execution time <pa>input B

By specifying proper Parameters, we can express that the two data Subprogram
features of Data component classifier number are from digits with an input
Parameter of type keyboard digit, and to digits with an output Parameter of
type screen digit.

STOOD AADL Tutorial © Ellidiss - May 2007 - page 45

L mmworst case execution time

cato_digits

maport or subpg description

* Stood

| port or subpg declaration

to_digits(me :

mport or subpg declaration
moperation properties (hood)
mworst case execution time

4.11 Add AADL Properties

in out number; ocutput : out screen_digit);

(ty) number

<pa> me

(ty) screen_digitscreen_t
<pa> output

AADL entities specification can be refined by a set of predefined or project-specific
Properties. The way to enter predefined Properties with Stood 5.2 differs from what
was proposed with Stood 5.1. In Stood 5.2, all the predefined Properties have been
included into the default configuration, which simplifies their use. Note that it is possible
to customize this list in the tool configuration files, to hide those Properties that are not
relevant for the current Project.

When a component or a feature is selected, the list of possible valid Properties can be
shown in the INTERFACE section. A contextual help is available for each individual

Property.

IJ:'I—ﬁ(design] numbers
numbers

integer
real
number

keyboard_digit s

screen_digit

Hae
Hae

ods lada] | cpp | aadl | test] checks |

=

INTERFACE
mkeyboard_digit

PROPERTIES

standard AADL properties
—enBase_Address
—maConcurrency_Control_Protocol
—eaMNot_Collocated
—eaProvided_Access
—eaRequired_Access
—eaSource_Code_Size
—eaSource_Data_Size
—eaSource_Language
—EaSource_MName Help
—EaSource_Text Location

N R I

page 46 - STOOD AADL Tutorial © Ellidiss - May 2007

* Stood

To add a Property association, first select the appropriate AADL entity (here,
keyboard digit Data component classifier), and the chosen Property in the list
(here, Source Data Size). Then enter the Property value in the text input area and
save with the button, the contextual menu or the keyboard shortcut.

enRequired_Access Save text | Source_Data_Size

e Source_Code_Size | g bits

exSource_Data_Size Save text Ctrl+5
e Source_Language

e Source_Name Undo Ctrl+Z7

Note that a default value is proposed for each Property. To display this default value,
use paste from template contextual menu of the text input area.

(=)

mSource_Code_Size Paste from file...
mmSource_Data_Size
i Source_lLanguage
1 Source_MName

Paste from template
Insert link to fie...

B ELUITEW_RALLEoD

4.12 Add textual comments

It is recommended to insert comments and other textual information inside the design
data structure while creating new entities. These comments may be used to provide
explanations about the “why”, “what” and “how” of each component or feature. The
standard configuration of the tool proposes a structured list of comment sections that can
however be customized to better fit any other documentation strategy. To fill in one of
the proposed documentation section, first select the appropriate entity and one of the
proposed (text) sections.

ods |ada | c] cpp | aad | test] checks |
- PACKAGE or COMPONENT keyboard_digit screen_digit
&~ DESCRIPTION
= PROBLEM
o Statement of the Problem (text)
e Sketch of the Problem
mReferenced Documents
SOLUTION | Statement ofthe Problem (text)
#- PROVIDED INTERFACE
— REQUIRED INTERFACE
— DATAFLOWS
#- IMPLEMENTATION
mmpragmas

STOOD AADL Tutorial © Ellidiss - May 2007 - page 47

* Stood

Text can be entered inside the text input area and must be saved with the button,
contextual menu or keyboard shortcut.

ods]ada] c|cpp | asdl | test| checks |

- PACKAGE or COMPONENT keyboard_digit screen_digit
- DESCRIPTION

- PROBLEM
o Statement of the Problem (text)
enSketch of the Problem
Referenced Documents -

SOLUTION Savetext | Statement ofthe Problem (text)

PROVIDED INTERFACE This data component defines a representation for numbers as a list of digits.
REQUIRED INTERFACE Save text Ctrl+S

=

4.13 Show full AADL diagram of the package
The complete AADL diagram for our Package is now as shown below:

" Hood

i UML
& AADL
rismbers
rteger
el
keyboord_digit
creen_digif
integer
rumber
from_digits
to_digifs
real

keyboard_digit screern_digit

Note that the corresponding graphical representation of the same model in UML and
HOOD is also available, simply by switching the notation selector.

page 48 - STOOD AADL Tutorial © Ellidiss - May 2007

* Stood

4.14 Generate the AADL code for the package

To generate textual AADL code from a graphical model in Stood, the Code tab must be
selected instead of the Graphic Design one. The new button bar shows two buttons. The
first button on the left is called add pragma and may be used to customize the code
generation. Pressing this button opens a dialog box showing the list of the possible
options that can be selected. Note that some options may have already been automatically
inserted by Stood, as it is the case here.

Coce | (1] stood for AADL - ...
FULL
ﬂ s @ ?/ Selecta pragma
pragmas - -
— generation control|
PRAGML exported type compact 1|
(name =»> --|keyboard digit|--, no_graphics
type =» --|digit|--, behavior
implementation => —-|keyboard|--) reverse
PRAGMA exported_type - component custon ™ |
(name => --|screen digit|--,
type =» -—|digitc|--, 0K ‘ Cancel ‘
implementation =»> ——|screen|——)

Select pragma compact in order to generate all the AADL code in only one file (default
rule is one file per component) and then pragma no_graphics to disable the generation of
Stood specific properties that are used to propagate the positions of the graphical items in
the diagram.

The AADL code generation can then be activated by pressing the full extraction button.
This opens a dialog box that can be used to specify which part of the Design has to be
generated. Most of the times, we need the whole Design to be generated, which is the
choice that is proposed by default.

STOOD AADL Tutorial © Ellidiss - May 2007 - page 49

* Stood

pragmas

FRAGMA exported type
(name =» --|keyboard digit|--,
type => --|digit|--,

implementation =» --|keyboard|--)
FRAGMA exported type

(name => --|screen_digitl--,

type => ——|digit|--,

implementation => --|3screen|--)

FRAGML compact
FEAGMA no_graphics

&1 aadl full extraction

numbers -~
integer -
real
number
keyboard_digit
screen_digit

[hierarchy
|+ exported modules

Cancel

Help

After having pressed the Ok button and waited a little, the extraction messages file is
shown. The messages file lists the abstract component types and implementations that
had to be created to fully describe our Package.

Requirerments | Graphic Design | Detailed Design | Checkers Code]

2 AADL ADA | REVERT
(16 5

| extraction messages

(design) numbers
- @ (design) numbers | = =]
numbers =
integer =
real =B~
number s
keyboard_digit ==
screen_digit s
ods | ada]c]epp aadl ltest] checks |
= PACKAGE or COMPONEMNT
PROVIDED INTERFACE
IMPLEMENTATION
mmpragmas
eacode file header
= AADL CODE
I—EZ:I extraction messages

code extraction : Tue Oct 3 14:07:45 20048
PRCERGE numbers

DATR TYPE integer

DATZ TYPE real

DATZ IMPLEMENTATICN resl.others

DATZ TYPE digit

DATZ IMPLEMENTATICN digit.keyboard

DATZ IMPLEMENTATICN digit.screen
SUBFROGEAM TYPE from digits

SUBFROGEEM TYPE to_digits

DRETE TYPE number

=== begin
creating:
creating:
creating:
creating:
creating:
creating:
creating:
creating:
creating:
creating:

Halt.
=== end code extraction :

Program terminated normally

Tue Oct 3 14:07:45 2008

4.15 Show generated AADL code

The AADL generated code can be shown by changing the selection in the lower left list
of the Stood window from extraction messages to aadl.

Note that, due to the fact that we put a pragma compact, AADL code has been associated
to the root component in the hierarchy only.

page 50 - STOOD AADL Tutorial © Ellidiss - May 2007

% *Stood

w
[{—3 Stood for AADL - AADL_calculator g@.ﬁ
Hle Edt Design Component Feature Tools Help
(design) numbers Requirements | Graphic Design | Detailed Design | Checkers Code |Documentation | Deployment |
E- & (design) numbers =S [ﬂs?vj ﬁ mp e | e @)
numbers e | Lot 8
integer s | aadl
real = SUBLIC -
number = p—-
keyboard_digit [=E= DATZ integer EXTENDS number
screen_digit (= E= END integer;
DATA real EXTENDS number
END real;
aadl DATE TMPLEMENTATICN rezl.others
ods } ada] c] cpp]test] checks] STBCOMPONENTS
= PACKAGE or COMPONENT int_part : DATA integer:
PROVIDED INTERFACE dec_part : DATR integer:
IMPLEMENTATION END real.others;
mmpragmas .))) -
-- This data component defines a representation for numbers as a list of digitcs.
eacode file header DATA digit
= AADL CODE END digit;
maextraction messages
mreverse messages DATA IMPLEMENTATION digit.keyboard
= aadl FROPERTIES
. Source_Data_Size => 8 bits:
=nmakefile o END digit.keyboard;
maprolog description L
DATA IMPLEMENTATION digit.screen i
END digit.screen:
SUBFROGRAM from digita
FERTURES
me : IN OUI PARRMETER number;
input : IN PRRAMETER digit.keyboard;
END from digits;
SUBPROGRAM to_digits
FERTURES
me : IN OUT PARRMETER number;
output : OUT PARAMETER digit.sacreen;
END to_digits:
FRIVEIE
DATA number
FERTURES
from digits : SUBPROGREM from digits;
to_digits : SUBPROGRAM to_digits:;
END number;
END numbers; o
w

This AADL code can be edited with Stood, but the corresponding file in the repository
may be easily located for a remote access. To locate a particular file, select the
corresponding entry in the lower left list and use the Location contextual menu.

STOOD AADL Tutorial © Ellidiss - May 2007 - page 51

* Stood

= AADLCODE
mm extraction messages
EIreverse messages

. aadl
Hel
Emaky L p -
mmprolg Lotlin
Definition

&) Where

\-_!:) C:\Elidiss\Stood5-1\tutonali\numbers_aadli\numbers.aadl

4.16 Generate C++ code

Without changing anything in the design model, it is possible to also generate Ada, C or
C++ source code. The process for generating C++ code (for instance) is very similar to
the one applied to generate the AADL code, i.e.:

(a) Select the Code tab again:

Feguirements | Graphic Design | Detailed Design | Checkers Code]Ducumentatinn | Deployment |

(b) Change the source language tab from aad! to cpp:

ods |ada] c|cpp aad]tegt] checks | ods | ada]c cpp laadl |test] checks |

INTERFACE
IMPLEMEMNTATION
mpragmas

excode file header
AADL CODE

= PACKAGE or COMPONENT

E- PACKAGE or COMPONENT
INTERFACE
IMPLEMEMNTATION
mpragmas

excode file header

C+ CODE

(c) Press the full extraction button, then the OK button in the dialog box. Generated files
can be shown by selecting the appropriate items in the selection lists:

page 52 - STOOD AADL Tutorial © Ellidiss - May 2007

* Stood

(design) numbers

(design) calc_system

Il_';ﬁ (design) numbers s
numbers e

integer Hae

real (=

number (=
keyboard_digit Hae
screen_digit e

ods |adalc cpp laadl |test] checks |

E- PACKAGE or COMPONENT
INTERFACE
IMPLEMENTATION

mEpragmas

excode file header
C+ CODE

h

cC

.asb

.cat

4.17 Save the design

It is recommended to save the design to the design directory from time to time.

use the menu Design/Save design.

£i) stood for AADL - AADL_calculator

Fle Edit Design Component Feature Tools
New design L
(design)nun New design from r
[desu
I£ a2 {desu (=B
nu/ Unlock design e
[~
Rename design... (e
Change design into (==
Update design from v | e
Change design language * =E
Compare design...
Show design location
Save design

Reguirements | Graphic Design | Detailed Design | Checl

AADL ADA | REVERT

AT hE
G B & T

h
// SPEC OF MODULE : real

#ifndef INCLUDE_spec_real
#define INCLULE spec_real
’r vizibility on required modules :
#include "number.h™
#include "integer.h"
public:
i
class real :
{
private:
integer int part;
integer dec part;

provided types and constants :
public number

IH

// END OF MODULE :
#endif

real

To do so,

STOOD AADL Tutorial © Ellidiss - May 2007 - page 53

* Stood

5 Create an AADL process

The third kind of Design that can be managed with Stood is associated to an AADL
Process. Such a Design represents a software program for which it is possible to generate
a complete set of target language source files that can be compiled and linked to produce
an executable file. It is possible to create a Design of kind AADL Process thanks to the
Design/New design menu. Another option consists in creating a new Design by exporting
a Process subcomponent defined in an AADL System.

5.1 Create a new design by export

In the Design calc system, we defined a Process subcomponent called
calc process. It would be possible to refine the contents of this Process within this
Design. However, it may be interesting to isolate the pure software part of the System in
a separate Design to complete software design and coding activities until the end.

To do so, after having loaded the calc system Design again, calc process
component must be selected and the export contextual menu must be used, as shown
below:

calc_system

‘ £1) stood for AADL - AADL_calculator T ROM RAN

File Edit Design Component Feature Tools :
Enter

(design) calc_system Rename...

£ & (design) calc_system DATA_BUS
calc_system
CPU
ROM
RAM
DATA_BUS
KEYBOARD
SCREEN
calc_process
— (design) numbers

Change into 4

Delete

KEYBOARD calc_process Open state diagram

X 3¢ 3¢ X ¢ X 6 ¢ K

Export

A new Design is added to the list of the Project AADL. calculator. This new Design
now needs to be selected (loaded) and locked (opened in read-write mode) as shown
below.

page 54 - STOOD AADL Tutorial © Ellidiss - May 2007

* Stood

Design Component

New design
|{design} calc_process l New design from |{design} calc_process
{d95|gn) calc_process it - & (design) calc_process
i¢ Lock design =~ & (design) calc_system

5.2 Import a list of design requirements

It is possible to import the list of software requirements that must be covered by the
current design and coding activities. The simplest way to import such a list of
requirements consists in reading a tabulated ASCII text file that can be easily produced
by any requirements management tool. Such a file must be formatted as follow to be
properly imported by Stood:

- one requirement per line

- two fields separated by a tab character per requirement: the unique requirement

ID and a comment.

As soon as such a file is available, first switch Stood lifecycle tab to Requirements:

|(design) calc_process Requirements]Graphic Design | Detailed C
& (design) calc_process == sy 5 =
‘HT_ calc_process == o b = @

Then click on the button load requirements from text:

|(design] calc_process Regquirements]Graphiu: Design | Detailed C
& (design) calc_process == 2 [o =
‘“LI:J_ calc_process - o | Bl = &

A file navigator dialog is shown in which the appropriate file must be selected. Our
Workspace contains a file called Requirements. txt which contents was described
in chapter 2.3.

STOOD AADL Tutorial © Ellidiss - May 2007 - page 55

* Stood

Choose a catalog file:
Regarder dans : ‘_H““?”E‘ ﬂ = =g
L |23 calc_process
d) I cale_system
(Dinumbers
Mes documents. Requirements.txt
récents R
Bureau
Y
Mes documents
9
Poste de travail
‘;] Nom dufichier Requirements.z =l Quvrie
.
Favoris réseau Fichiers de lype |catalog (*bd) =l AT

Once the file is loaded, the corresponding list of requirements appears in Stood. Note
that a small red gauge is shown at the left of each individual item, which means that the
requirement is not covered yet by any design entity.

(design) calc_process

5.3 Clean up the environment

Feguirements]Graphic Design | Detailed Desi

= & (design) calc_process EH| .
: ca?ciprocggs o o B | B @
CPU *len CALC101 : interactwith the Keyboard
ROM G CALCT02 : interactwith the Screen
gi'lw"ﬁx BUS : 1 CALC111: define integer type
KEYB&ARD sl = CALC112: define real type
SCREEM s¢ || = CALCI21:addintegers
B- (design) calc_system =1 CALC122: add reals
— (design) numbers 1 CALC123: sub integers
1 CALC124: subreals
1 CALC131: scan the Keyboard
1 CALC132: perform the operation
1 CALC133: display on Screen

Current Design has been created by exporting a Process subcomponent of an AADL
System in another Design. This export function also propagates information about the
environment of the exported component, and in particular, all the sibling subcomponents.
However, they are not all relevant anymore in the context of our new Design.

page 56 - STOOD AADL Tutorial © Ellidiss - May 2007

* Stood

To clean up this environment, switch the lifecycle tab to Graphic Design to show the
AADL diagram, select individually each component to be removed and use the Delete
contextual menu as shown below:

Reguirements Graphic Design | Detailed Design | Checkers | Code | Documentat

" Hood i B % e
Lt @ dn o B eaa [

(® AADL

WADL_caloulator

Rename...

0 Delete

After having deleted all the components that are note directly in interaction with
calc process, the cleaned model now looks like the following:

MADL_calculator

KEYBOARD

I

S{REEN

STOOD AADL Tutorial © Ellidiss - May 2007 - page 57

* Stood

5.4 Import a package

In the model we have imported from calc system, we did not specify precisely the
data types associated to the Data Ports. We now want to reference the Data component
classifiers we defined in the numbers Package to give a type to the Data Ports. The
most consistent way to do that in Stood requires the Package to be imported first within
the Design scope.

In the AADL diagram, the outer box being selected (aadl calculator), use the
New package contextual menu to create a local representation of a remote Package:

MADL_calculator

KEYBOARD

MNew package

A new box has been added to the diagram, with the default name Extern. To change
this name, use the Rename contextual menu (the Extern Package must be selected).

ADL_calculotor

Ext
e ey

Let us now give to this local Package the name of the actual Package we created in the
Project, i.e. numbers.

£il Rename

Name |numbers

Type |

Implementation ||

Ok Cancel

page 58 - STOOD AADL Tutorial © Ellidiss - May 2007

* Stood

IADL_calculator

KEYBOARD

L

SREEN

rismbers

Stood has now made the association between our local Package and the actual remote
Design of the same name. This will allow us to use the various Data component
classifiers defined in the Package numbers in the current Design. To check the available
Data component classifiers, double-click on the local Package numbers:

rismbers

malgzr
yhoard_digit

creen_digif

Note that if changes are made to the remote Package, they will be propagated to the local
copy only during a Design load.

5.5 Change data ports type

When we added Data Ports to subcomponents in section 3.8, we did not care about the
associated data type. A default data type T Flow was used. It is now possible to
reference the Data component classifiers provided by the imported Package to specify
the actual type of the Data Ports. To illustrate how a port definition can be modified,
select section port or subpg declaration section for port input in component
calc process.

STOOD AADL Tutorial © Ellidiss - May 2007 - page 59

* Stood

PORT GROUPS ;
PORTS and SUBPROGRAMS | portor subpg declaration
cainput input (Flow : in T_Flow);

<pa> Flow

moport or subpg description
mmport or subpg declaration

? ?2.T_Flow ‘

The right hand list, called symbol table, shows that type T Flow is unknown. Let us
modify the port declaration to use type keyboard digit instead. Please, do not
forget to save the changes with the button, the contextual menu or the keyboard shortcut.
The new port declaration must look like the following:

PORT GROUPS
PORTS and SUBPROGRAMS | portor subpg declaration

minput input({Flow : in keyboard digit):
enport or subpg description

maport or subpg declaration

(ty) numbers keyboard_digit
<pa> Flow

Note that the data type is now well recognized in the symbol table. However, the Data
Port connection between Device KEYBOARD and Process calc process has
suddently disappeared from the diagram.

ADL_calculator

KEYBOARD

|

The reason is that the two ends of the connection are no more type compatible. The
declaration of port output in component KEYBOARD must also be changed in a
consistent way:

PORT GROUPS -

PORTS and SUBPROGRAMS | portor subpg declaration

o output cutput(Flow : out keyboard digit); (ty) numbers keyboard_digit
|>B::purt or subpg declaration <pa> Flow

Note that the Data Port connection becomes visible again in the diagram as soon as its
two ends become type compatible again.

page 60 - STOOD AADL Tutorial © Ellidiss - May 2007

* Stood

We can now do similar changes to port output of component calc process and
port input of component SCREEN. The data type these two ports must reference is
screen_digit.

—emworst case execution time K
mmoutput | port or subpg declaration
enport or subpg description cutput (Flow @ out screen digit): (ty) numbers.screen_digit
o= port or subpg declaration <pa> Flow
PORT GROUPS -
PORTS and SUBPROGRAMS | portor subpg declaration
ainput input (Flow : in screen digit); (ty) numbers.screen_digit
’—t::lporl or subpg declaration <pa> Flow

5.6 Add ports to the process

The Process currently only shows Data Ports in its interface. Data Ports can be used to
describe data flows between components. We are now going to add Event Ports to
specify control flow entry points for the Process.

|[design} calc_process Fequirements Graphic Design | Detailed Design | Checkers | Cade
& (design) calc_process == ¢ Hood . . BB . _
calc_process == ~ UML & | 0 *> D L E(]:J @ G
KEYBOARD = & AADL
[alala ol NI A s

To create a new Event Port, use the new port button of the button bar in the AADL
diagram editor then click inside the calc process box. Default name port0 can be
changed using the Rename contextual menu, as shown below:

ARD
output | p- L
J‘l‘pu‘l‘ih
calc_process
B |input calc_process
cutput | p—0 B jinput
0 gutput b—|

s Rename... €il Stood for AADL - ...
~RE ‘{/ Type in new name :
5 — [inpui -t Ion—
Right alignment _ ok | cancal |

STOOD AADL Tutorial © Ellidiss - May 2007 - page 61

* Stood

After having done the same for a second Event Port called o f f, the diagram must now
be as follow:

ADL_calculator

KEYBOARD
’

calc_process

input
r P output | b—0
= jon
= Joff
SOREEMN
- _P

5.7 Add subcomponents to the process

It is now time to provide some details about the internals of our Process. The current
graphical representation of calc process only shows its interfaces. It is its black box
view. In order to be able to edit its internal details, we must enter the component first to
show its white box view. The Enter contextual menu, or a double-click, must be used for

that purpose:

Rename... |

page 62 - STOOD AADL Tutorial © Ellidiss - May 2007

* Stood

According to the AADL rules, a Process component implementation can contain Thread
Group, Thread or Data subcomponents. To create a subcomponent, it is possible to use
the new AADL component button of the button bar in the AADL diagram editor, or the
New component contextual menu. The newly created component can be renamed using
the Rename contextual menu as shown below:

cale_process

Bt L TR
New component 4

Thread Group
Thread

Rename...

Change into 4
Undelete
Delete
Open state diagram
— Open state diagram

Data

As already explained in section 3.6, the Rename dialog box is also used to specify the
AADL component type and component implementation of the subcomponents.

@Rename calc_process
- input :
ame i i uTpUT
|processmg_un|t g 3
off | >
Type [PR_UNIT processingunit ___
Implementation |Ada ; ;
Ok Cancel _'I _______________ '

Our model can now be enriched by two other Thread subcomponents representing local
Device interface software.

STOOD AADL Tutorial © Ellidiss - May 2007 - page 63

* Stood

& Rename £ Rename

Name keyboard_driver Name screen_driver
Type KB_UNIT Type SC_UNIT
Implementation Ada Implementation Ada

Ok Cancel | ok | Cancel

The graphical representation of the internals of our Process now looks like the diagram
below:

5.8 Create and customize ports in subcomponents

Following a top-down modelling process, we must now specify the interface of each
subcomponent. Let us add ports as shown below:

page 64 - STOOD AADL Tutorial © Ellidiss - May 2007

* Stood

colc_process

(ty) numbers.keyboard_digit
<pa> Flow

\ port or subpg declaration

in keyboard digit):

PORT GROUPS
raw_data(Flow

PORTS and SUBPROGRAMS

maraw_data

(ty) numbers.integer
<pa> Flow

enport or subpg description
caport or subpg declaration

\ port or subpg declaration

out integer);:

—mworst case execution ime
digits(Flow :

codigits
enport or subpg description
caport or subpg declaration

(ty) numbers.screen_digit
<pa> Flow

| port or subpg declaration

out screen digit):

PORT GROUFRS
raw_data (Flow :

PORTS and SUBPROGRAMS

caraw_data
export of subpg description
emport or subpg declaration

(ty) numbers.integer
<pa> Flow

| port or subpg declaration

in integer);

—mworst case execution time
digits (Flow :

H cadigits
I:m port or subpg descripti_on
= port or subpg declaration
STOOD AADL Tutorial © Ellidiss - May 2007 - page 65

* Stood

processing_unit ____|
!

& digits W
kb_digi-rsr- b

PORT GROUPS £

PORTS znd SUBPROGRAMS | pottor subpg declaration

msc_digits sc_digits(Flow : out integer); (ty) numbers.integer
mport or subpg description <pa> Flow
maport or subpg declaration

L mmworst case execution time
emkb_digits | port or subpg declaration
l:_port or subpg description kb_digits(Flow : in integer); (ty) numbers.integer
o= port or subpg declaration <pa> Flow

5.9 Connect ports between a component and its subcomponents

Connections can now be established between the interface of outer component and the
interface of its inner subcomponents. To create such connections, it is possible to use the
new connection button in the button bar of the AADL diagram editor and click in
sequence on the two ports to be connected. Another solution consists in selecting a port
in the outer component interface and calling the Connect contextual menu.

calc_process (i stood for AADL - ..
i :.IT]II-
WTI%-': ; Rename... | :.:/ Select the feature
off = Connmect... 7 I'I keyboard_driverraw_d:
digits 1 p
Right alignment
- L, v i
Change into C : ¥ Immediate
igits .'I 4
| OK Cancel

Note that only the direction and type compatible ports are proposed in the dialog box.
The new diagram that is obtained after having connected the four ports of Process
interface is:

page 66 - STOOD AADL Tutorial © Ellidiss - May 2007

* Stood

Ci Ir_pmre.s:

.................

b | row_daota o
i digits ! '3
|

................

4 [row_data !
, digits 1 4

processing_unit

! sc_digits | »

b digi :' 4
;

5.10 Connect ports between subcomponents

To connect ports between subcomponents of a same component, it is possible to use the
new connection button in the button bar of the AADL diagram editor and click in
sequence on the two ports to be connected. Another solution consists in selecting a port
in one of the subcomponent interface and calling the Connect contextual menu.

calc_process trzlj Stood for AADL - A...
input | e
iy Selectthe featu
a..rr%.f.nr']r ;}I heyboord driwr_____ »-?/ electthe feature
@ b raw_data sinite screen_driver.digits
: g processing_unitkb_digi
; Rename...
Fommeees Connect...
screen_dri t 2l
dran_cere | Leftalignment ¥ Immediste
r'l - OK Cancel
--------- Change into

Note that only the direction and type compatible ports are proposed in the dialog box.
The new diagram that is obtained after having connected all the remaining is as follow:

STOOD AADL Tutorial © Ellidiss - May 2007 - page 67

* Stood

calc_process

—————————————————

A row_data !
i digits 1 4

Pm-nzssi _unit
'

N ;'I;,n i E-::g iigii'}rss : —
53 ' of f !
5.11 Specify flows

AADL connections represent point to point interaction between two ports of the same
type and having compatible directions. Event if they do not refer to the same data type,
several connections may participate to a same more global data flow. Stood has a
particular way to express such flow specifications.

COlC_process

For each port involved in a given flow, the flow name must be inserted into the port or
subpg declaration section in replacement to the default name F1ow.

page 68 - STOOD AADL Tutorial © Ellidiss - May 2007

* Stood

calc_process
ripit) e
output | 4
any
off | =

FUKR | GRUUFS
PORTS and SUBPROGRAMS
cinput
eaport or subpg description
wmport or subpg declaration

emworst case execution time
cooutput
mport or subpg description
maport or subpg declaration

—emworst case execution time
cadigits

mport or subpg description

cmport of subpg declaration

Note that port raw_data
connection.

processing_unit
! sc_digits | p—
N ;' g :' —
on
s Toff 1
| |

PORT GROUPS
PORTS and SUBPROGRAMS
cakb_digits
w3 port or subpg description
o port or subpg declaration

L mmworst case execution time

cosc_digits
enport or subpg description
maportor subpg declaration

\ port or subpg declaration

input (my_flow : in keyboard digit):

(ty) numbers.keyboard_digit
<pa>my_flow

\ port or subpg declaration

(ty) numbers.screen_digit

ocutput (my flow : out screen digit);

<pa> my_flow

| port or subpg declaration

digita{my flow : out integer);

has been automatically updated

(ty) numbers.integer
<pa>my_flow

thanks to the existing

| portor subpg declaration

kb digits(my_£flow : in integer);

(ty) numbers.integer
<pa=my_flow

| port or subpg declaration

(ty) numbers.integer

sc_digits(my_flow : out integer):

<pa> my_flow

STOOD AADL Tutorial © Ellidiss - May 2007 - page 69

* Stood

—mmworst case execution time | . I
= digits port or subpg declaration “

export or subpg description digits(my flow : in integer): (ty) numbers.integer
o port of subpg declaration <pa> my_flow

Note that port raw data has been automatically updated thanks to the existing
connection.

5.12 Specify real-time properties

Threads that have been created are aperiodic. When Threads are periodic or sporadic,
more details about their real time behaviour can be managed by the tool. This
subcomponent sub-category can be modified thanks to the contextual menu Change into.
To illustrate this feature, let us change the two driver aperiodic Threads into periodic
Threads:

—————————————————

Enter

Rename...

Change into 4

Delete

Open state diagram Periodic Thread

Note that the graphical notation has changed to comply with the AADL rules. Real time
properties may be entered into the model as standard AADL Properties. However, basic
schedulability analysis information may also be entered through Stood real time
properties section. We can specify for instance that keyboard driver has a period
of 100 ms and a deadline of 50 ms:

& & INTF‘EF?C’):PAESTIES M real ime properties
mareal ime properies FERIOD
standard AADL properties OFFSET 100
eaother component type properties (.. Save text Ctr+5
PORT GROUPS DEADLINE
PORTS and SUBPROGRAMS 50 Undo Ctri+Z
F IMPLEMENTATION FRIORITY Restore

page 70 - STOOD AADL Tutorial © Ellidiss - May 2007

* Stood

In a similar way, Worst Case Execution Time can be specified for each Subprogram or
Thread. Note that a default internal subprogram called thread has been automatically
created by Stood in the model. Its worst case execution time section can be used to
specify the Thread Compute Execution_Time Property (default unit is ms):

= PORTS and SUBPROGRAMS |
z;&;;t_sdata _Savetext | worstcase execution time
cathread WCET 1
mxport or subpg description
mmport or subpg declaration Save text Ctrl+S
mmport or subpg properties (hood)
standard AADL properties Undo Ctri+Z
zxother port or subpg properties (. Restore

mmworst case execution ime

b

Similar modifications can now be done for the Thread screen driver to change it
into a periodic Thread, with a period of 10 ms. The graphical model is now as shown

below:

calc_process

sc_digits | b
it J—

STOOD AADL Tutorial © Ellidiss - May 2007 - page 71

* Stood

5.13 Specify modes

AADL Modes can be defined to represent operational states of a component. That is why
a state diagram editor is used to specify them. We are going to illustrate this on the
Thread processing unit. The state diagram editor can be launched from the Open
state diagram contextual menu:

Sl 1L IHL— LLRLEW
rocessing_unit
PRI Delete

sc_di
kb_dig

* off Open state diagram

A new graphical editing area is then selected, where it is possible to create states
representing AADL Modes and transitions representing AADL Mode Transitions.

To create a new Mode, use the New state button or contextual menu:

page 72 - STOOD AADL Tutorial © Ellidiss - May 2007

* Stood

(design) calc_process

Feguirements | Graphic Design Detailed Design]

- @ (design) cale_process e % -
calc_process e ® [100% “
processing_unit e
keyboard_driver e
screen_driver (= E=,
KEYBOARD o
SCREEN o
numbers i New initial state
— (design) calc_system New state
— (design) numbers
ods]ada | 2] cpp | aadl] test] checks |
w-eothread A
— REQUIRED INTERFACE B |
— DATAFLOWS
= IMPLEMENTATION
PROPERTIES
BEHAVIOR
mabehavior description
o state transition diagram

States are given a default name that can be modified thanks to the Rename contextual
menu. Let us create two Modes: idle and running:

stated
| ‘ Change state into
Rename...
Delete
statel

Tdle
Ci] Rename state ﬁ
%, Typeinnewname:
|
lidle]
Running
OK | Cancel

STOOD AADL Tutorial © Ellidiss - May 2007 - page 73

* Stood

Transitions can be created with the new transition button or contextual menu. First click
on the origin Mode and then on the destination Mode:

=i BB

New initial state
New state

New transition
Running Running

Transitions are also given a default name that can be changed with the Rename
contextual menu:

transition

frl

Tdle
| transitiond
J_ Transition event &) Rename transition
Rename... ‘{/ Type innewname :
Running n | tad
Delete =
0K | Cancel |

Transitions must also be attached to a triggering Event. Selection of the Event can be
done thanks to the select transition event button or the Transition event contextual menu.
This action opens a dialog box showing all the Ports and Subprograms defined in the
interface of the current component. Note that only In and In Out Event Ports can be
used to trigger Mode Transitions.

page 74 - STOOD AADL Tutorial © Ellidiss - May 2007

* Stood

Tdle 1) Stood for AADL - AADL_calcula...

‘{/ Selectthe triggering event of the transition

‘ start from the provided operation set:
J. — sc_digits
_ | Transition event kb_digits

on
. Rename... off
sunn I"lg
Delete

We can then complete our Modes definitions as shown below:

start stop
an off

0K | Cancel|

Running

5.14 Generate the AADL code for the process

To generate textual AADL code from a graphical model in Stood, the Code tab must be
selected instead of the Graphic Design one. The new button bar shows two buttons. The
first button on the left is called add pragma and may be used to customize the code
generation. Pressing this button opens a dialog box showing the list of the possible
options that can be selected. Note that some options may have already been automatically
inserted by Stood, as it is the case here.

(design) calc_process Regquirements] Graphic Design] Detailed Design] Checkers Code l
& (design) calc_process = = FuLL

calc_process s E I i
processing_unit [B pragmas
keyboard_driver = E PRAGMA type name
screen_driver (= B {name =»> --|calc process|--)

KEYBOARD ¢ | |PRAGME implementaticn name

SCREEN - {name =» --|others|--)

STOOD AADL Tutorial © Ellidiss - May 2007 - page 75

* Stood

Select pragma compact in order to generate all the AADL code in only one file (default
rule is one file per component) and then pragma no_graphics to disable the generation of

Stood specific properties that are used to propagate the positions of the graphical items in
the diagram.

(1] Stood for AADL - ... (1) Stood for AADL - ...

9 |, Selectapragma 9) Selectapragma
2 X2

- generation control| a - generation control| a
compact (Tl » compact Tl
no_graphics B | no_graphics
behavior behavior
reverse 1 reverse 1

— component custon ™ | — component custon ¥ |

OK Cancel 0K Cancel

The AADL code generation can then be activated by pressing the full extraction button.
This opens a dialog box that can be used to specify which part of the Design has to be
generated. Most of the times, we need the whole Design to be generated, which is the
choice that is proposed by default.

£1) aadl full extraction
SYSTEM_CONFIGURATION ~
FULL calc_process o
lﬂ [@ processing_unit
keyboard_driver
pragmas screen_driver
KEYBOARD 1
PRLGMA type_name SCREEN B4l
{name => --|calc process|--) .
FRAGME implementaticon name v hierarchy
{neme => --lothers|-—-) [+ exported modules
FRAGML compact
FRAGMA no_graphics Cancel Help

After having pressed the Ok button and waited a little, the extraction messages file is
shown. The messages file lists the abstract component types and implementations that
had to be created to fully describe our Process. Note that the context of the Process is

also generated as a System having the same name as the current Project and which also
contains the two Device components.

page 76 - STOOD AADL Tutorial © Ellidiss - May 2007

* Stood

(design) calc_process Requiraments | Graphic Design | Detailed Design | Checkers Code]
£ & (design) calc_process | pon AgDL mpa | heveRT
e H| ol Gl & B 0 @
calc_process o | bued i
processing_unit (= exiraction messages
keyboard_driver s = begin code extraction : Thu Oct 5 13:37:46 2006
screen_driver Hi creating: SY¥STEM TYPE RADL calculator
KEYBOARD # | |creating: SYSTEM IMPLEMENTATION AADL calculator.others
SCREEN 2 | [creating: DEVICE TYFE EEYBOARD
numbers L creating: DEVICE TYPE SCREEN

creating: PROCESS TYPE calc process

— (design) calc_system creating: PROCESS IMPLEMENTATION calc process.others

— (design) numbers creating: THREAD TYFE FR_UNIT
creating: THREAD IMPLEMENTATION PR_UNIT.RAda

ods |ada | c|cpp @adl test| checks | creating: THREAD TYEE KB UNIT
= PACKAGE or COMPONENT creating: THREAD IMPLEMENTATION KB UNIT.RAda

PROV'DED |NTERFACE creating: THEELD TYPE SC_UNIT

IMPLEMENTATION creating: THREAD IMFLEMENTATION SC_UNIT.Ada

=mpragmas
eacode file header Halt. Program terminated normelly
- AADL CODE === end code extraction : Thu Qct 5 13:37:46 2006

|—|::::| extraction messages

5.15 Show generated AADL code

The AADL generated code can be shown by changing the selection in the lower left list
of the Stood window from extraction messages to aadl.

Note that, due to the fact that we put a pragma compact, AADL code has been associated
to the root component in the hierarchy only.

This AADL code can be edited with Stood, but the corresponding file in the repository
may be easily located for a remote access. To locate a particular file, select the
corresponding entry in the lower left list and use the Location contextual menu.

-

= AADLCODE ’@ Where

== extraction messages
EIreverse messages
o aadl Help ‘

\l) CAEllidiss\Stood5-T\tutorial\cale_process_aadl\calc_process.aadl

mmakefile Location

e ite LT A

The screenshot below shows the result of an AADL code generation that only uses the
information that has been inserted during the previous modelling steps:

STOOD AADL Tutorial © Ellidiss - May 2007 - page 77

* Stood

(design) calc_process

= @ (design) calc_process = =3
calc_process =
processing_unit =
keyboard_driver x
screen_driver o
KEYBOARD o
SCREEN 4
numbers 2

— (design) calc_system

— (design) numbers

ods | ada]c]cpp =adl |test] checks |

= PACKAGE or COMPONENT
INTERFACE
IMPLEMENTATION
Empragmas
eacode file header
= AADLCODE
mmextraction messages
EIrevVerse messages
o aadl
e makefile
mmprolog description

Reguirements] Graphic Design] Detailed Design] Checkers Code]Docurr
AADL ADA | KEVERT

[CI6E 5 O
.aadl

PROCESS IMFLEMENTATION calc process.others
SUBCOMEONENTS
processing_unit : THRERD FR_UNIT.RAda:
kevboard driver : THREAD EB_UNIT.Ada:
screen_driver : THRERD 5C UNIT.Ada;
CONNECTICNS
EVENT FORT on -> processing unit.on;
EVENT PORT off -> processing unit.off;
DATZ PORT input -> kevboard driver.raw data:
DATA PORT screen_driver.raw_data -> output;
DATA FORT processing unit.sc_digits -» screen_driwver.digitcs;
DATA PORT keyboard driwver.digits -> processing unit.kb digits;
END calc_process.others;

THREAD FR_TUNIT

FEATURES
sc_digits : OUT DATZ PCRT numbers::integer;
kb _digits : IN DATA PCRT numbers::integer;
on : IN EVENT PORT:

off : IN EVENI FCORI;
FLOWS

my flow 0 : FLOW FATH kb digits -» sc_digits:
END FR_UNIT;

THREAD IMFLEMENTATION FR UNIT.Ada

MOLDES
Idle : MODE;
Running : MODE;

Idle -[on]-> Bunning;

Punning -[off]-» Idle:
EROPERTIES

Dispatch_Frotocol => Rpericdic:
END FFR._UNIT.Adm;

THRERD EB_UNIT

FEATURES

raw_data : IN DATA PORT digit.keyboard;

digits : OUT DATA PCORT numbers::integer;
FLOWS

my_flow 0 : FLOW PATH raw data -»> digits:
END KB UNIT:

THEEAD IMPLEMENTATION KB_UNIT.Ada
FROFERTIES
Dispatch_Frotocol => Periodic:
Period => 100 ms;
Deadline => 50 ms;

Compute_Execution Time => 1 ms .. 1 ms;

END KB UNIT.Ad=m;

Note that this view has new buttons that can be used to activate AADL compliant tools

such as Osate or Cheddar.

page 78 - STOOD AADL Tutorial © Ellidiss - May 2007

* Stood

5.16 Generate Ada code
Without changing anything in the design model, it is possible to also generate Ada, C or
C++ source code. The process for generating Ada code (for instance) is very similar to
the one applied to generate the AADL code, i.e.:
(a) Select the Code tab again:

Requirements | Graphic Design | Detailed Design | Checkers Code lDDcumentatiDn | Deployment |

(b) Change the source language tab from aad! to cpp:

ods |ada|c|cpp sad]tESt] checks | ods ada |c] cpp | andl] test | checks |
= PACKAGE or COMPONENT =~ PACKAGE or COMPONENT
INTERFACE INTERFACE
IMPLEMENTATION IMPLEMENTATION
= mpragmas
eacode file header zxcode file header
AADL CODE Ada CODE

(c) Press the full extraction button, then the OK button in the dialog box. Generated files
can be shown by selecting the appropriate items in the selection lists (see next page).

Note that the generated Ada source files are stored in a default location in the
Workspace. Location of each file can be found easily thanks to the Location contextual

menu:
B AdaCODE
realtime attributes (] Where
spec
def' \y C:\Ellidiss\Stood5-1\tutorial\cale_process_ada\keyboard_driver.adb
sep. Help
raw_ Location

STOOD AADL Tutorial © Ellidiss - May 2007 - page 79

* Stood

(design) calc_process

I~ (design) calc_system
— (design) numbers

- @ (design) calc_process ==
calc_process e
processing_unit s
keyboard_driver Eise
screen_driver e
KEYBOARD - 4
SCREEN e
numbers 4

Requirements | Graphic Design | Detailed Design | Checkers Code]Documen

REVERT

ey

[’Sfﬂj — AADL ADA
L) M

|body

ods ada lc] cpp | aadl | test | checks |

= PACKAGE or COMPOMNENT
INTERFACE
IMPLEMENTATION
mpragmas
code file header
- AdaCODE

— realtime attributes

I~ spec

— body

I~ sep. provided

raw_data

digits

thread

sep. obcs

e

5.17 Save the design

It is recommended to save the design to the design directory from time to time. To do

use the menu Design/Save design.

il Stood for AADL - AADL_calculator

E Unlock design

Rename design...

KE Change design into
50 Update design from
nu Change design language
B Ej:g:: Compare design...
1 Show design location
ocs ada Save dmn

[

4

Fle Edit Design Component Feature
New design
(design) call New design from
£ & (desig
ca

»

Tools

-—— wizikility on required modules :
with Ada.Real Time; use Ada.Real Time;
with RTA; use RIA;
package body keyboard driver is
task THRERD is
pragma PFRIORITY (keyboard driver RTATT.INITIAL THREAD FRICEITY):
end THRELD;
procedure raw_data (my_flow : IN kevboard digit) is separater
procedure digits (my flow : OUI integer) is separate;
procedure OPCS_thread is
begin
null;
end OPC5_thread;
task body THRERD is
T : Ada.Real Time.TIME
begin
if T < RTA.5YSTEM START UP_TIME then
T := RTA.5SYSTEM START_UP_TIME;
end if;
T :=T + keyboard driver RTIATT.OFFSET (RTL.STRRT MOLDE):
loop
delay until T;
OPC5_thread;
T := T + keyboard driver RTATT.FERICD(RTA.CURRENT MOIDE) ;
end loop;
end THREAD;
end keyboard driver;

:= BAda.Real Time.CLOCK;

SO,

page 80 - STOOD AADL Tutorial © Ellidiss - May 2007

* Stood

6 Conclusion

This tutorial does not provide information about all the possible modelling and model
processing features of Stood. In particular, this first version of the document does not
give explanations about the following important topics that are nevertheless already
supported by Stood 5.2:

- Create a new Design from a remote AADL textual specification.

- Update an existing Design from a remote AADL textual specification.
- Create an AADL model from legacy Ada or C source files.

- Use the integrated Design verification tools.

- Perform software to hardware binding.

STOOD AADL Tutorial © Ellidiss - May 2007 - page 81

* Stood

page 82 - STOOD AADL Tutorial © Ellidiss - May 2007

* Stood

STOOD AADL Tutorial © Ellidiss - May 2007 - page 83

» . Ellidiss

www.ellidiss.com
stood@ellidiss.com

TNI Europe Limited Ellidiss Technologies
Triad House Technopole Brest-Iroise
Mountbatten Court 115 rue Claude Chappe
Worall Street 29280 Plouzané
Congleton Brittany
Cheshire France
CWI12 1AG
UK
+44 1260 291 449 +33 298 451 870

www.aadLinfo

http://www.aadl.info/
http://www.ellidiss.com/

