

Intel
®

 UEFI
Development Kit
Debugger Tool
Configuration and Setup Guide

Version 1.10

January 6, 2014

ii

iii

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE,

EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED

BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL

DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO

FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT

OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving,

or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved”

or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts

or incompatibilities arising from future changes to them.

The Intel® UEFI Development Kit Debugger Tool may contain design defects or errors known as errata which may cause the product to deviate from published

specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Intel®, Intel® UEFI Development Kit Debugger Tool, Intel® UDK Debugger Tool, and the Intel® logo are trademarks

or registered trademarks of Intel® Corporation or its subsidiaries in the United States and other countries.

Other names and brands may be claimed as the property of others.

Copyright© 2012 - 2014, Intel Corporation. All rights reserved.

iv

Contents

1 Configuration Overview .. 1

1.1 Document Purpose and Organization .. 1

1.1.1 Configuration and Build ... 1

1.1.2 Windows .. 1

1.1.3 Linux ... 1

1.1.4 Debugging Tips and Appendix .. 1

1.2 Tool Introduction ... 2

1.3 Configuration ... 2

1.3.1 Supported platforms ... 2

1.3.2 Host and target configurations ... 3

1.3.3 Target configuration.. 4

1.3.4 Connection between host and target machines 6

1.4 OVMF platform and the debug process ... 6

2 Build the Firmware Image .. 7

2.1 Introduction ... 7

2.1.1 Linux Platforms ... 7

2.1.2 Windows Platforms .. 7

2.2 Modify the configuration files for the firmware used by the target

machine ... 7

2.2.1 Select the appropriate libraries .. 8

2.2.2 Turn debugging on or off .. 10

2.2.3 Configure a serial port for debug usage 11

2.2.4 Configure the USB debug port .. 13

2.2.5 Additional configuration requirements 15

v

2.2.6 Update the CPU driver on ECP-based platforms 17

2.2.7 Build the image and update flash memory before debugging

source-level code ... 19

3 Setup the Windows Debug Environment .. 21

3.1 Introduction ... 21

3.2 Install the Windows Debugger on HOST .. 22

3.3 Install the Intel Debugger Tool on HOST ... 22

3.4 Connect HOST and TARGET... 22

4 Use the Debug Solution on a Windows Platform .. 25

4.1 Introduction ... 25

4.2 Supported features ... 25

4.3 General debug flow ... 25

4.3.1 Start a WinDbg debug session .. 26

4.3.2 Start a WinDbg session using late attach 28

4.3.3 End the WinDbg session .. 29

4.4 Basic WinDbg debugging operations.. 30

4.4.1 WinDbg extension commands ... 31

5 Known Limitations & Issues for Windows platforms 35

5.1 Known limitations .. 35

6 Setup the Linux Debug Environment.. 37

6.1 Introduction ... 37

6.2 Rebuild GDB on HOST.. 38

6.3 Install the Intel Debugger Tool on HOST ... 38

6.4 Connect HOST and TARGET... 39

7 Use the Debug Solution on a Linux Platform ... 41

7.1 Introduction ... 41

7.2 Supported features for Linux platforms .. 41

7.2.1 Unresolved breakpoint setting in Linux 42

7.3 General debug flow ... 43

7.4 Using the Linux/GDB debug solution ... 44

7.4.1 Start a GDB debug session .. 44

vi

7.4.2 Start a GDB debug session using late attach 45

7.4.3 End the GDB debug session ... 46

7.5 Basic GDB debugging operations .. 47

7.5.1 GDB extension commands ... 47

8 Known Limitations & Issues for Linux platforms .. 53

8.1 Known limitations .. 53

9 Debug Tips & Techniques .. 55

9.1 Introduction ... 55

9.2 Terminal redirection ... 55

9.3 Trace ... 57

9.4 CPU exception information... 57

9.5 Disabling optimization ... 58

9.6 Improving debugger productivity .. 58

9.7 Debugging SEC and PEI code ... 58

9.8 Debugging DXE code .. 59

9.9 Debugging SMM code ... 59

9.10 Debugging Boot Script code on S3 path .. 59

9.11 Debugging a standalone module loaded in a UEFI shell 60

9.12 Intelligent symbol path searching ... 62

9.13 Source code not available .. 63

9.14 Restart the debug session .. 64

9.14.1 Shifting to a different architecture mode (32-bit vs. 64-bit)

 .. 64

 Additional Information.. 65 Appendix A

A.1 TERMS .. 65

A.2 Conventions used in this document ... 68

A.2.1 Nomenclature of CPU architectures .. 68

A.2.2 Pseudo-code conventions ... 69

A.2.3 Typographic conventions .. 69

A.2.4 Other conventions ... 70

A.3 For more information ... 70

vii

viii

Tables

Table 1 Library instances by module type ... 8

Table 2 Library instances by module type ... 9

Table 3 Library instances by module type ... 9

Table 4 Library instances by cable connection .. 9

Table 5 Bit layout for an example PCD .. 13

Figures

Figure 1 Cable connection between the target and host machine 3

Figure 2 Current Tool to outdated TARGET connection advisory 5

Figure 3 Current TARGET to outdated Tool connection advisory 5

Figure 4 Example macro using a null modem cable ... 10

Figure 5 Example macro using a USB 2.0 debug cable ... 11

Figure 6 Remove the IsaSerialDxe module from the FDF ... 12

Figure 7 Don’t produce IsaAcpi protocol for debug port ... 13

Figure 8 Ajays USB 2.0 debug cable .. 15

Figure 9 Include more debug information in the compiler’s output 16

Figure 10 PEIM original .. 17

Figure 11 Revised rule change for PEIM ... 17

Figure 12 Updated CPU Driver example ... 19

Figure 13 Active components of a debug session on a Microsoft Windows XP* platform22

Figure 14 Building a firmware image with the source-level debug package. 26

Figure 15 A WinDbg launch window.. 27

Figure 16 Target stopped at the late SEC phase .. 28

ix

Figure 17 Target stopped due to late attach ... 29

Figure 18 Active components of a debug session on a Linux platform 38

Figure 19 Output when sourcing udk-script if GDB includes Expat XML parsing library 42

Figure 20 Output when sourcing udk-script if GDB doesn’t include Expat XML parsing library

 42

Figure 21 Add the unresolved breakpoint in GDB ... 43

Figure 22 Compiling a firmware image with the source-level debug package................ 44

Figure 23 Detach in GDB .. 46

Figure 24 Add IO watch point in GDB .. 52

Figure 25 List IO watch point in GDB ... 52

Figure 26 Delete IO watch point in GDB .. 52

Figure 27 Using PuTTY to connect to the terminal redirection port 55

Figure 28 Error displayed when the terminal redirection port cannot be opened 56

Figure 29 Sample configuration for using 30000 as the terminal redirection port 56

Figure 30 Data flow between TARGET and HOST .. 57

Figure 31 Output in GDB when a CPU exception happens in firmware 58

 1

1

Configuration

Overview

1.1 Document Purpose and Organization
This guide explains how to configure a host and target system and perform
basic debugging operations from Windows platform and Linux platform
host systems using the Intel® UEFI Development Kit Debugger Tool (Intel®

UDK Debugger Tool). It also includes debugging tips and techniques as
well as known issues, and it is intended for developers with a solid

understanding of the Intel® UEFI Development Kit 2010 (Intel® UDK2010),
and its predecessors and related subjects.

1.1.1 Configuration and Build
Chapters 1 and 2 provide an overview of the configuration and building of
the firmware image.

1.1.2 Windows
Windows users should continue with Chapters 3, 4, 5.These chapters detail

setting up the environment, usage, and known limitations of the Intel®
UDK Debugger Tool for Windows platforms.

1.1.3 Linux
After Chapter 2, Linux users should skip to chapters 6-8. These chapters
detail setting up the environment, usage, and known limitations of the
Intel® UDK Debugger Tool for Linux platforms.

1.1.4 Debugging Tips and Appendix
Chapter 9 provides general debugging tips, and the Appendix provides
additional information, such as a glossary and document conventions.

2

1.2 Tool Introduction

The Intel® UEFI Development Kit Debugger Tool (Intel® UDK Debugger Tool)
helps debug UDK-compliant applications, drivers and firmware (hereafter
called “firmware”) on Intel® IA-32 and x64 Architecture platforms. The

debug solution is a combination of the Intel® UDK Debugger Tool and an
OS-specific debugger on the host machine along with a source-level debug
package (provided by Intel) on the target machine.

The Intel® UDK Debugger Tool adds functionality to the OS-specific

debugger for software debugging firmware. For Microsoft Windows
platforms, the Intel® UDK Debugger Tool adds functionality to the
Microsoft Windows Debug Tool* (WinDbg). On a Linux platform, the tool

adds functionality to the GNU Project Debugger* (GDB).

This overview section includes these main discussions:

 Configuration of host and target systems
 OVMF platform used to demonstrate debug process

1.3 Configuration

The debug environment consists of:

Debug solution:

Intel® UDK Debugger Tool, OS-specific debugger tool, and a source-

level debugger package.

Host machine:

Configured with the Intel® UDK Debugger Tool and the appropriate
OS-specific debugger: WinDbg or GDB. The Intel® UDK Debugger Tool

includes extension commands for OS-specific debuggers.

Target machine:

Includes the UDK firmware to be debugged. The firmware image must
be built with the source-level debug package (SourceLevelDebugPkg)

provided by Intel.

Debug cable:

Null modem cable or USB host-to-host cable (USB 2.0 debug device
cable).

1.3.1 Supported platforms
The Intel® UDK Debugger Tool supports these platforms:

Microsoft Windows platforms:

 Windows XP* IA32

3

 Windows 7* x64

Linux platforms:

 Fedora* 15 (IA32 and x64 client)
 SUSE SLES* 11 SP1 (Enterprise Server) and SP2 Beta (beta 3 or

later) x64

 Ubuntu* 32 Ubuntu* 10.x (or later) IA32 client
 Ubuntu* 64 11.10 x64 client, Ubuntu* 10.x (or later) x64 client; LTS

server x64

The Intel® UDK Debugger Tool may work on additional Linux platforms.

However, the Intel® UDK Debugger Tool has not yet been fully validated
for additional Linux platforms.

1.3.2 Host and target configurations
Requirements for the host machine debug configuration are OS-specific.

The target machine debug configuration is the same for both Windows and
Linux platforms.

The following figure shows the host and target machines.

Figure 1 Cable connection between the target and host machine

The next two sections list the specific configuration requirements for
Windows and Linux platforms.

 Host configuration for Windows platforms 1.3.2.1

This user manual assumes you have a working knowledge of the Intel®

UEFI Development Kit 2010 (Intel® UDK2010) and the Microsoft Windows
Debug Tool* (WinDbg).

4

Using the Intel® UDK Debugger Tool on a Windows platform requires a
host machine configured with:

 Microsoft Windows XP*, 32-bit platform with Service Pack 3 (SP3) or
the Microsoft Win7* 64-bit platform

 Microsoft Windows Debug Tool* (WinDbg) 6.11.0001.404 X86.

WinDbg is available for download at:

http://msdl.microsoft.com/download/symbols/debuggers/dbg_x86_6.11.1.404.msi
 Intel® UDK Debugger Tool, which adds functionality to WinDbg, is

available for download at: www.intel.com/udk.

 Host configuration for Linux platforms 1.3.2.2

This user manual assumes you have a working knowledge of the Intel®

UEFI Development Kit 2010 (Intel® UDK2010) and the GNU Project

Debugger* (GDB) for Linux platforms.

Using the Intel® UDK Debugger Tool on a Linux platform requires a host
machine configured with:

 A supported Linux operating system:

 Fedora* 15 (IA32 and x64 client)

 SUSE SLES* 11 SP1 (Enterprise Server) and SP2 Beta (beta 3 or
later) x64

 Ubuntu* 32 Ubuntu* 10.x (or later) IA32 client
 Ubuntu* 64 11.10 x64 client, Ubuntu* 10.x (or later) x64 client;

LTS server x64

 GNU Project Debugger* (GDB)
 Intel® UDK Debugger Tool, which adds functionality to GDB. It is

available at www.intel.com/udk.

1.3.3 Target configuration
The target machine must have a firmware build that includes the source-
level debug package SourceLevelDebugPkg—a part of the Intel® UEFI

Development Kit 2010 (Intel® UDK2010), located at www.tianocore.org
(http://tianocore.souorceforge.net).

When the Intel® UDK Debugger Tool connects to the TARGET firmware
with an older version of SourceLevelDebugPkg code:

 An error message is displayed advising that the TARGET code must be
upgraded.

 The debug session is terminated.
 You should update TARGET firmware to use the latest

SourceLevelDebugPkg.

http://msdl.microsoft.com/download/symbols/debuggers/dbg_x86_6.11.1.404.msi
http://www.intel.com/udk
http://www.intel.com/udk
http://www.tianocore.org/
http://tianocore.souorceforge.net/

5

Figure 2 Current Tool to outdated TARGET connection advisory

Similarly, when an older version of the Intel® UDK Debugger Tool connects
to firmware with a current version of TARGET, an upgrade advisory is

issued.

Figure 3 Current TARGET to outdated Tool connection advisory

6

The Intel® UDK Debugger Tool for Windows version 1.2 hides the above

debug console window resulting in the above upgrade advisory cannot be
seen when that version of tool connects to a newer TARGET. To show the

debug console, modify the configuration file with the following code
snippet:

[Debug]

Debug=1

1.3.4 Connection between host and target machines
The Intel® UDK Debugger Tool supports the following interconnects for the

debug cable:

 Null modem cable

 USB host-to-host cable (USB 2.0 debug device cable)

1.4 OVMF platform and the debug process
The OVMF (Open-source Virtual Machine Firmware) platform
implementation is used to demonstrate the debug process in some of the

examples. The OVMF platform works on a virtual machine and can also be
chosen as a configuration option in order to use virtual COM-to-COM

connections.

The OVMF platform implementation is available from the EDK II project

directory at www.tianocore.org (http://tianocore.sourceforge.net).

For general instructions on building and booting an OVMF image, including
setting up COM connections, refer to the OVMF wiki page at

http://sourceforge.net/apps/mediawiki/tianocore/index.php?title=OVMF_FAQ.

http://www.tianocore.org/
http://tianocore.sourceforge.net/
http://sourceforge.net/apps/mediawiki/tianocore/index.php?title=OVMF_FAQ

7

2

Build the Firmware Image

2.1 Introduction
The firmware image, including the source-level debug package provided by

Intel, must be built before using the Intel® UDK Debugger Tool. To do this,
complete the appropriate build instructions for your Intel® UDK2010

platform, taking into consideration the modifications described in this
section. The firmware build process and most of the considerations for
building the image are the same for both Windows and Linux platforms.

Differences are noted where appropriate.

2.1.1 Linux Platforms
For Linux platforms, x64 code can only be debugged when using GDB on

x64 Linux platforms. Make sure the firmware image is built on an x64
Linux machine so that the debug symbols are accessible to the GDB.

2.1.2 Windows Platforms
For Windows platforms, there are two special considerations to keep in

mind: aggressive zeroing and using the PE image format instead of TE.
These considerations are discussed in section 2.2.5.

2.2 Modify the configuration files for

the firmware used by the target machine
For best results, configure the firmware in the TARGET machine to support
debugging.

 The firmware in the target machine must include the Intel provided
source-level debug package because it supports debugging with the
Intel® UDK Debugger Tool.

 Update the platform’s DSC/FDF (firmware device file) files to ensure
the appropriate library instances are selected. DSC files contain
information used during the FDF build process.

8

 The serial port or USB debug port may need to be configured for
debugging.

 When making changes to DSC/FDF files, define a macro that allows

for conditional turn-on of the debug feature. An example is shown
later in this section.

2.2.1 Select the appropriate libraries
When building the firmware, the DSC file must include the appropriate
libraries in order to use the Intel® UDK Debugger Tool. Be sure to specify

instances of each of the following:

 Debug Agent library

 Debug Communication library

 Timer library

 PeCoffExtraAction library

 Specify the appropriate Debug Agent library 2.2.1.1

Different Debug Agent library instances provide the functions needed by
the Intel® UDK Debugger Tool for modules executed in different booting
phases. Be sure to specify the correct library instance in the DSC file.

The following table lists the correct library instances to replace the NULL

instances for each module type. Intel® UDK Debugger Tool supports three
scenarios: debugging from SEC, PEI or DXE.

2.2.1.1.1 Debugging from SEC (including PEI, DXE and SMM)

Table 1 Library instances by module type

Module type* Library instance

SEC or PEI modules SourceLevelDebugPkg/Library/DebugAgent/SecPeiDebugAgentLib.inf

DxeCore and DXE

modules

SourceLevelDebugPkg/Library/DebugAgent/DxeDebugAgentLib.inf

SMM modules SourceLevelDebugPkg/Library/DebugAgent/SmmDebugAgentLib.inf

* For definitions of acronyms, refer to Appendix A at the end of this user manual.

2.2.1.1.2 Debugging from PEI (including DXE and SMM)

First, the PEIM SourceLevelDebugPkg/DebugAgentPei/DebugAgentPei.inf
should be added into DSC/FDF files to enable source level debugging

feature in PEI phase.

Only the PEIM dispatched after DebugAgentPei could be debugged.

9

Table 2 Library instances by module type

Module type Library instance

SEC MdeModulePkg/Library/DebugAgentLibNull/DebugAgentLibNull.inf

PEI modules SourceLevelDebugPkg/Library/DebugAgent/SecPeiDebugAgentLib.inf

DxeCore and DXE

modules

SourceLevelDebugPkg/Library/DebugAgent/DxeDebugAgentLib.inf

SMM modules SourceLevelDebugPkg/Library/DebugAgent/SmmDebugAgentLib.inf

2.2.1.1.3 Debugging from DXE(including SMM)

Table 3 Library instances by module type

Module type Library instance

SEC or PEI modules MdeModulePkg/Library/DebugAgentLibNull/DebugAgentLibNull.inf

DxeCore and DXE

modules

SourceLevelDebugPkg/Library/DebugAgent/DxeDebugAgentLib.inf

SMM modules SourceLevelDebugPkg/Library/DebugAgent/SmmDebugAgentLib.inf

 Specify the appropriate Debug Communication library 2.2.1.2

The non-null Debug Agent library instances consume the Debug
Communication library. Because of this, the appropriate library instance
for the type of communication cable (null modem or USB) used to connect

the target and host systems must be specified (see the following table).

Table 4 Library instances by cable connection

Connection type Library instance

Serial connection SourceLevelDebugPkg/Library/DebugCommunicationLibSerialPort/Debug

CommunicationLibSerialPort.inf

This library instance depends on the Serial Port Library so an appropriate

Serial Port Library instance for all modules dependent on it must also be

specified.

USB 2.0 debug cable

connection

SourceLevelDebugPkg/Library/DebugCommunicationLibUsb/DebugComm

unicationLibUsb.inf

 Specify the appropriate Timer library 2.2.1.3

The Debug Communication library consumes the Timer library. Because of
this, a proper Timer library instance for modules in the DSC file, including
the SEC (security) module, must be selected.

There is no single specific timer library appropriate for a platform or for the
modules in the DSC file. The appropriate library instance must be chosen

based on knowledge of the platform.

10

 Specify the appropriate PeCoffExtraAction library 2.2.1.4

The PeCoffExtraAction library instance is invoked each time a module is
loaded or unloaded. This library instance is responsible for informing the
host that the target has loaded or unloaded a module. In the DSC file,

the following PeCoffExtraAction library instance must be specified for
any module that depends on the PeCoffExtraAction library class.

 SourceLevelDebugPkg/Library/PeCoffExtraActionLibDebug/PeCoffExtra
ActionLibDebug.inf

2.2.2 Turn debugging on or off
Use a macro to turn the debug feature on or off. The next two code
samples show fragments in the LibraryClasses section that use a macro to
do so.

[LibraryClasses]

!ifdef $(SOURCE_DEBUG_ENABLE)

PeCoffExtraActionLib|SourceLevelDebugPkg/Library/PeCoffExtraAc

tionLibDebug/PeCoffExtraActionLibDebug.inf

DebugCommunicationLib|SourceLevelDebugPkg/Library/DebugCommuni

cationLibSerialPort/DebugCommunicationLibSerialPort.inf

DebugAgentLib|SourceLevelDebugPkg/Library/DebugAgent/SecPeiDeb

ugAgentLib.inf

!else

PeCoffExtraActionLib|MdePkg/Library/BasePeCoffExtraActionLibNu

ll/BasePeCoffExtraActionLibNull.inf

DebugAgentLib|MdeModulePkg/Library/DebugAgentLibNull/DebugAgen

tLibNull.inf

!endif

Figure 4 Example macro using a null modem cable

 [LibraryClasses]

!ifdef $(SOURCE_DEBUG_ENABLE)

PeCoffExtraActionLib|SourceLevelDebugPkg/Library/PeCoffExtraAc

tionLibDebug/PeCoffExtraActionLibDebug.inf

DebugCommunicationLib|SourceLevelDebugPkg/Library/DebugCommuni

cationLibUsb/DebugCommunicationLibUsb.inf

DebugAgentLib|SourceLevelDebugPkg/Library/DebugAgent/SecPeiDeb

ugAgentLib.inf

!else

PeCoffExtraActionLib|MdePkg/Library/BasePeCoffExtraActionLibNu

ll/BasePeCoffExtraActionLibNull.inf

11

DebugAgentLib|MdeModulePkg/Library/DebugAgentLibNull/DebugAgen

tLibNull.inf

!endif

Figure 5 Example macro using a USB 2.0 debug cable

2.2.3 Configure a serial port for debug usage
The DebugCommunicationLibSerialPort library instance consumes the
Serial Port Library.

In addition to choosing an appropriate Serial Port Library for the target

platform, the serial port parameters on the target machine must be
configured to match the settings on the host.

 Baud rate 2.2.3.1

In most cases, it is preferable to set the baud rate to 115200.The baud
rate should be the same on both the host and target machines.

If flow control is disabled and the serial connection is not stable, specify a
lower baud rate.

 Hardware flow control 2.2.3.2

On both Windows and Linux platforms, flow control is on by default. In
most cases, make sure to not disable flow control.

If the platform-specific Serial Port Library does not support hardware flow

control, flow control on the host machine should be turned off as well.

The flow control setting should be the same on both the host and target

machines.

 Configure the hardware buffer for FIFO 2.2.3.3

In order for the debug solution to work properly, the hardware buffer must

be configured for first-in–first-out (FIFO). However, some platform-specific
Serial Port Library instances may not enable receive and transmit for the

FIFO hardware buffer.

The specific process for configuring the hardware buffer is hardware-

dependent. Refer to your hardware’s data sheet for information about the
hardware buffer. The SerialPortLib instance provided by Intel in

MdeModulePkg/Library/BaseSerialPortLib16550 library is also an example
of implementing a FIFO hardware buffer.

 Deactivate the terminal support 2.2.3.4

Because the IsaSerialDxe driver tries to manage the serial port, a conflict
with the debug agent is created. One way to prevent the conflict is to

12

remove the IsaSerialDxe module from the platform firmware device file
(FDF). For example:

[FV.DXEFV]

...

!ifndef $(SOURCE_DEBUG_ENABLE)

INF

IntelFrameworkModulePkg/Bus/Isa/IsaSerialDxe/IsaSerialDxe.inf

!endif

...

Figure 6 Remove the IsaSerialDxe module from the FDF

The console device created by debug agent isn’t added to the console
input/output device list by default. There are two ways to add it to the list:

 change the setting through the Intel® UEFI Development Kit 2010
(Intel® UDK2010) front page UI

 change the platform boot manager library implementation.

The first method doesn’t require rewriting code, but the setting needs to
be manually changed every time the firmware is burned.

The console device path begins with a vendor defined device path node
followed by a UART device path node and a vendor defined messaging

device path node. An example follows:

 VenHw(865A5A9B-B85D-474C-8455-
65D1BE844BE2)/Uart(115200,8,N,1)/VenPcAnsi()

Refer to the global variable, mSerialIoDevicePath, in the

SourceLevelDebugPkg/Library/DebugAgent/DxeDebugAgent/SerialIo.c file
for console device path details.

If the platform has multiple serial ports and those ports, other than the
debug port, are needed as console devices as well, do not remove the

IsaSerialDxe module from the FDF because the IsaSerialDxe module
manages those other serial ports.

Instead, modify the module that produces the IsaAcpi protocol to not
produce the IsaAcpi protocol for the debug port.

For the OVMF platform, modify the PCD in the DSC file instead of the
IsaAcpiDxe module.

13

!if $(SOURCE_DEBUG_ENABLE) == TRUE

 gPcAtChipsetPkgTokenSpaceGuid.PcdIsaAcpiCom1Enable|FALSE

!else

 gPcAtChipsetPkgTokenSpaceGuid.PcdIsaAcpiCom1Enable|TRUE

!endif

Figure 7 Don’t produce IsaAcpi protocol for debug port

2.2.4 Configure the USB debug port

 Configure PCDs 2.2.4.1

The DebugCommunicationLibUsb library instance requires that several

PCDs (platform configuration database) be configured correctly. The
default value provided by the SourceLevelDebugPkg works for most cases,

but the values may need to be adjusted.

For example, two PCDs for a WinDbg-based debug solution follow:

 gEfiSourceLevelDebugPkgTokenSpaceGuid.PcdUsbDebugPortMemoryS
paceBase

 gEfiSourceLevelDebugPkgTokenSpaceGuid.PcdUsbEhciMemorySpaceB
ase

The example PCDs specify the base address for the memory-mapped IO
(base address register) for the extensible host controller interface (EHCI)

controller and the USB debug port since the debug agent may run early in
SEC.

CAUTION: Make sure these memory ranges do not conflict with memory ranges
(including physical memory) assigned to other devices. Memory conflicts

can cause the debugger to fail.

The following example PCD specifies the PCI (Peripheral Component
Interconnect) address of the EHCI controller.

 gEfiSourceLevelDebugPkgTokenSpaceGuid.PcdUsbEhciPciAddress

The EHCI includes the debug port to be used for debug. The PCI address is

specified by bus, device, and function number. The bit layout for the PCD
is shown in Table 5.

Table 5 Bit layout for an example PCD

Bits 28~31 Bits 20~27 Bits 15~19 Bits 12~14 Bits 00~11

0 Bus number Device number Function number 0

For example, for a PCI address at bus 0x0, device 0x1D, function 0x07,
the PCD value is 0x000EF000.

14

 Identify the correct USB port for the debug cable 2.2.4.2

There is only one USB port in one EHCI controller that supports debugging
and some motherboards may not wire this port to a physical USB port. It

may be difficult to discover the correct USB port for the USB debug cable.

If a valid USB debug port can’t be located, a USB debug cable cannot be
used to establish a debug communication channel.

A few ways to identify the correct port follow.

 Read the EHCI controller datasheet and identify the port number
supporting USB de-bug. The port number should be listed at bits
20~23 of the EHCI HCSPARAMS register.

 Plug the USB debug cable into one of the USB ports on the target
system and boot to the UEFI shell.

 Identify the device path of the USB debug cable and make sure the
cable is plugged into the USB port supporting debug.

 If not seen, plug the USB debug cable into another USB port and
view the device path again.

 Plug the USB debug cable into one of the USB ports on the target
system.

 Boot to Windows and launch the Microsoft UsbView* tool
(usbview.exe) included with the Microsoft Windows Debugging
Tools*.

 Look at the USB device tree structure then identify the port number
for the parent node of the USB debug cable device. Count the ports

from top to bottom in the list.

 If the port number listed is not the one that supports USB

debugging, plug the USB debug cable into another USB port until a
match is found.

 Identify the correct USB connection orientation 2.2.4.3

The Ajays USB 2.0 debug cable is a device used to connect HOST and
TARGET machines for source-level debugging. From the device’s

appearance, it’s hard to distinguish which end to connect to the Host and
which to the Target. This is important, however, because the connection
orientation determines which end provides the power to the debug cable

and, therefore, impacts the debug cable’s behavior.

The debug cable must be powered by the TARGET.

 To confirm proper orientation, connect one end of the device to the
HOST.

 If oriented and connected properly, the Windows Device Manager
should NOT detect it.

15

 If it is detected by the device manager, connect the opposite end of
the debug cable to the HOST.

 Connect the open end to the Target.

 When powered-on, the Windows Device Manager at the Host side

should find the USB debug cable attached.
 Note that if the connection is not made in this recommended

fashion, it may be not stable.

Figure 8 Ajays USB 2.0 debug cable

2.2.5 Additional configuration requirements
This discussion includes three special considerations:

 Windows and Linux: Disabling compiler optimization in order to
include more debug information in the compiler’s output file

 Windows: Turning off aggressive zeroing

 Windows: Using the PE (PE/COFF execution) image format instead of
TE

 Include more debug information in the compiler’s output 2.2.5.1

Compiler optimization can reduce the amount of debug information
included in the output file. However, compiler options for particular

modules can be added in the Components section of the DSC file to force
the compiler to include more debug information in the output file.

For example, with Windows, the default /O2 (level 2 optimization) switch
turns on some optimization, reduces the size of the output file and omits

some source level debugging information.

To disable level 2 optimization on a Windows system, use the /Od switch.
To disable optimization on a Linux system, use the /O0 switch. In the

following example, the /Od and /O0 switches prevent each OS-specific
compiler from performing optimization functions.

16

[Components.IA32]

 ...

 MdeModulePkg/Core/Dxe/DxeMain.inf {

 ...

 <BuildOptions>

 MSFT:*_*_*_CC_FLAGS = /Od

 GCC:*_*_*_CC_FLAGS = /O0

 ...

 }

Figure 9 Include more debug information in the compiler’s output

 WinDbg: Turning off aggressive zeroing 2.2.5.2

By default, the GenFw tool turns on “aggressive zeroing” for some sections
in the PE/COFF (Portable ExeCutable and Object File Format) image.

However, these sections in the PE/COFF image may contain information
needed for the debugger, e.g., the stack frame information. In order for

the stack frame analysis to work effectively with the debugger, add the
following lines to the platform DSC Build Options section:

!ifdef $(SOURCE_DEBUG_ENABLE)

 *_*_*_GENFW_FLAGS = --keepexceptiontable

!endif

 WinDbg: Use the PE image format instead of TE 2.2.5.3

If frequent debug function calls between modules are needed when using
WinDbg, use the PE image format instead of the terse execution (TE)
image format.

When specifying the PE image format during build, note that the rule

section of the code should also be changed as needed.

On Linux systems, GDB can handle both PE and TE image formats.

When using WinDbg, the rule section for PEIM (pre-EFI initialization

module) must change as shown in the following examples.

Change from:

[Rule.Common.PEIM]

 FILE PEIM = $(NAMED_GUID) {

 PEI_DEPEX PEI_DEPEX Optional

$(INF_OUTPUT)/$(MODULE_NAME).depex

 TE TE $(INF_OUTPUT)/$(MODULE_NAME).efi

17

 UI STRING="$(MODULE_NAME)" Optional

 VERSION STRING="$(INF_VERSION)" Optional

BUILD_NUM=$(BUILD_NUMBER)

 }

Figure 10 PEIM original

To:

[Rule.Common.PEIM]

 FILE PEIM = $(NAMED_GUID) {

 PEI_DEPEX PEI_DEPEX Optional |.depex

 PE32 PE32 Align = 32 |.efi

 UI STRING="$(MODULE_NAME)" Optional

 VERSION STRING="$(INF_VERSION)" Optional

BUILD_NUM=$(BUILD_NUMBER)

 }

Figure 11 Revised rule change for PEIM

Apply similar changes to the rule sections for SEC and PEI_CORE. The
corresponding rule section names may vary on different platforms but

could look like Rule.Common.SEC or Rule.Common.PEI_CORE.

2.2.6 Update the CPU driver on ECP-based platforms
Most Intel® UEFI Development Kit 2010 (Intel® UDK2010) compatibility
platforms (ECP) use their own central processing unit (CPU) driver. This

driver must be updated during the build process so that the target
platform’s debugging feature can be enabled.

This step is not needed for native platforms using a CPU driver compliant
with the Intel® UDK Debugger Tool solution.

The main task performed by the update is to reserve the original

configuration of the interrupt description table (IDT) entries and prevent
those entries from being modified.

The update performs these steps:

1. Loads the original IDT table.

18

2. Calculates the IDT table’s entries count.

3. Copies the original IDT table entries to the new IDT table.

4. Updates the code segment (CS) field for the IDT table entries, as the

DXE (driver execution) phase is using a different segment descriptor.

5. Fills the rest of IDT entries needed by CPU driver.

If the CPU module is not linked with BaseLib, refer to
MdePkg/Library/BaseLib for the implementation of AsmReadIdtr(),

AsmWriteIdtr(), and AsmReadCs().

The updated code should follow the same pattern as the following:

19

STATIC

VOID

InitInterruptDescriptorTable (

 VOID

)

{

 //

 // Get original IDT address and size.

 //

 AsmReadIdtr ((IA32_DESCRIPTOR *) &Idtr);

 //

 // Copy original IDT entry.

 //

 CopyMem (&gIdtTable[0], (VOID *) Idtr.Base, Idtr.Limit + 1);

 //

 // Update all IDT entries to use current CS value

 //

 for (Index = 0; Index < INTERRUPT_VECTOR_NUMBER; Index ++,
CurrentHandler += 0x08) {

 gIdtTable[Index].Bits.Selector = AsmReadCs();

 }

 AsmWriteIdtr (IdtPtr);

}

Figure 12 Updated CPU Driver example

2.2.7 Build the image and update flash
memory before debugging source-level code
The image must be built and the flash memory updated before source-
level debugging is started. If the macro SOURCE_DEBUG_ENABLE is used
to turn on the debug feature conditionally, use the following command to

20

build the image. The following assumes the Conf/target.txt file is
configured to identify the build target.

build -D SOURCE_DEBUG_ENABLE

 For Linux platforms 2.2.7.1

For Linux platforms, debug x64 code only when using GDB on x64 Linux

platforms. When debugging x64 Linux platforms, make sure the firmware
image is built on an x64 Linux machine so that the debug symbols are
accessible to the GDB.

21

3

Setup

the Windows

Debug Environment

3.1 Introduction

Setting up the Windows debug environment consists of four general steps:

1. Build the firmware image and burn it to TARGET (described earlier in
Chapter 2).

2. Install the Windows Debugger (WinDbg) on HOST.

3. Install the Intel® UDK Debugger Tool on HOST.

4. Connect HOST and TARGET.

Figure 13 shows how the debug components interact on a Windows host
during a debug session.

22

Figure 13 Active components of a debug session

on a Microsoft Windows XP* platform

3.2 Install the Windows Debugger on HOST
Make sure the host machine is configured with Windows XP* (32-bit), SP3,

or Windows 7* (64-bit), and the Windows Debugger (WinDbg) to be
installed is an X86 version.

3.3 Install the Intel Debugger Tool on HOST
The debug port can be configured during installation.

If the TARGET has more than 16 logical processors, open the
SoftDebugger.ini through Start-> All Programs -> Intel(R) UEFI

Development Kit Debugger Tool->Change Configurations. Change
[Target System]/ProcessorCount to specify the number of logical
processors in TARGET.

3.4 Connect HOST and TARGET
 HOST and TARGET must be connected through a debug channel. The
Intel(R) UDK Debugger Tool supports four types of debug channels:

23

 * Serial by a null modem cable

 [Debug Port]

 Channel = Serial

 Port = COM1

 BaudRate = 115200

 FlowControl = 1

 * USB by a USB debug cable

 [Debug Port]

 Channel = USB

 NOTE: The correct USB port on the target machine must be used. Always
connect the USB debug cable to HOST before connecting to TARGET.

 * TCP

 [Debug Port]

 Channel = TCP

 Server = 192.168.1.4

 Port = 1234

 * Pipe

 [Debug Port]

 Channel = PIPE

 Port = PipeName

 NOTE: UDK Debugger will open \\.\pipe\PipeName for input and output.

 Once both HOST and TARGET have been configured and connected, a
debug session can be started.

24

25

4

Use the Debug Solution

on a Windows Platform

4.1 Introduction
This section introduces the Intel® UDK Debugger Tool for the Windows
platform, and includes these main discussions:

 General debug flow
 Using the WinDbg debug solution: Start and stop a debug session
 Basic debugging operations, including WinDbg extension commands

4.2 Supported features
The Intel® UDK Debugger Tool for Windows platforms helps in the use of
WinDbg to debug Intel® UEFI Development Kit 2010 (Intel® UDK2010)

based firmware running on an IA-32 processor. The Intel® UDK Debugger
Tool provides the host side software in binary form to support WinDbg
remote debugging across a null modem cable or USB debug cable.

With the Intel® UDK Debugger Tool, it is possible to:

 Debug source-level code using WinDbg with a host running a Windows
OS.

 Debug could begin as early as late SEC, after temporary RAM set up,

for the normal boot path.
 Start debugging SMM (system management mode) code by stopping

the target at the next SMI (system management interrupt).

 Setting unresolved breakpoints (also known as pending breakpoints)
 Debugging code running on AP (application processors)

 Late attach
 Using a null modem cable or a USB 2.0 debug cable (also known as a

USB host-to-host cable or USB 2.0 debug device)

4.3 General debug flow
There are three general steps in a typical debug process:

26

1. Build—Build the firmware image, including the source-level debug
package (provided by Intel). See Figure 14.

CAUTION: Each time the firmware image is rebuilt, the SourceLevelDebug package

must be included. If the SourceLevelDebug package is not included, the

Intel® UDK Debugger Tool cannot debug the target firmware.

2. Program—Program the firmware image into flash memory on the
target system.

3. Launch and debug—On the host system, launch a debugger that
includes the functionality added by the Intel® UDK Debugger Tool.

Figure 14 Building a firmware image with the source-level debug package.

The source-level debug package in the firmware build must be included

each time the firmware image is built.

4.3.1 Start a WinDbg debug session
Follow these steps to start a WinDbg session:

1. Launch “Start WinDbg using UDK Debugger Tool” from

Windows Start -> All Programs -> Intel® UDK Debugger Tool.

27

Figure 15 A WinDbg launch window

2. Start up the target system using the Intel® UEFI Development Kit 2010
(Intel® UDK2010) -based firmware image with the debug feature

enabled.

If the WinDbg is closed by pressing ‘X’ before the HOST and TARGET are

connected, “windbg.exe” may still be running in the background. Open the
Task Manager to terminate the process or the Intel® UDK Debugger Tool

may fail to launch.

3. If OVMF is used, refer to the README file under OvmfPkg for details on
how to launch an OVFM platform. Be sure to specify the appropriate
serial or USB port used to connect with the host.

4. Wait until WinDbg is connected and is ready to accept commands. This
will take a few seconds.

If source debugging enabled from SEC, WinDbg should then stop the
target in the late SEC phase and load the symbols for SecCore. It will then

display the source code. The output should look similar to the following
figure although the layout may vary depending on OS, preferences, etc.

28

Figure 16 Target stopped at the late SEC phase

Run third-party terminal software to connect the terminal redirection port

to get the debug output and terminal output from the firmware.

WinDbg settings can now be configured to set breakpoints. To resume
execution on the target, click go in the WinDbg tool bar.

When the target execution encounters a breakpoint, WinDbg automatically
enters interactive mode. In this mode, it is ready to accept commands. In

addition, the corresponding source code is loaded to the source window.
To break the execution, click break on the WinDbg tool bar.

The target image can still run without a host-side debugger. In this
situation, the target image will pause for a few seconds at a time to

continue trying to detect the existence of a debug host and will perform a
normal boot if a timeout occurs.

4.3.2 Start a WinDbg session using late attach

Follow these steps to start a WinDbg session:

1. Start up the target system using the Intel® UEFI Development Kit 2010

(Intel® UDK2010)-based firmware image
with the debug feature enabled.

29

2. Launch “Start WinDbg using UDK Debugger Tool” from
Windows Start -> All Programs -> Intel® UDK Debugger Tool.

3. Wait a few seconds until WinDbg is connected and ready to accept

commands.

WinDbg should stop the target and load the symbols for the current

module. It will then display source code looking similar to the following
figure, allowing for different machines and user preferences.

Figure 17 Target stopped due to late attach

4.3.3 End the WinDbg session
To end a WinDbg debug session, use the following steps:

1. Halt the TARGET if the TARGET is running

2. Run ‘q’ command in WinDbg

Closing WinDbg without using the above steps leaves the TARGET platform

in an intermediate state and it cannot be reattached until rebooted.

30

4.4 Basic WinDbg debugging operations
When the target reaches a breakpoint or stops after a break command is
issued, the debugger loads the source of the current module as well as all
other modules that have executed (if possible or applicable).

This list briefly describes basic debugging operations available through

WinDbg:

 Open source code and set/clear breakpoints.
 Open a disassembly window to see instructions around the current

instruction pointer (IP).
 Open a memory window to read or write memory.

In order to prevent a system hang on some platforms, accessing 0-
128M memory before physical memory is ready will not cause a similar

memory access on the target system. Instead, dummy data is
displayed. The filtering capability is disabled during the transition from

pre-memory to post-memory PEI. For example, the memory in OVMF
is functional from reset and displays actual memory contents.

4.4.1 Basic procedures
1. Open a local variable window to read (or to write) local variables and

function parameters.

— The /Od compiler option disables some optimization and makes sure all local variables

are displayed in the output code. At optimization levels above /Od, local variables

optimized into registers are not visible.

— Local variables stored on the stack may still been seen. The same conditions apply to

parameters passed into a function.

2. Open a register window to read/write general purpose registers.

3. Open a call stack window to see the call stack and/or parameter names

and/or values.

4. Issue step into, step over, or go commands to tell the target to

execute.

— When using WinDbg on systems with multiple processors, step into and step over

will cause only one processor to execute and leave other processors at the stopped

state. The go command causes all processors to start execution.

— Only one processor at a time can be debugged when using DBG.

5. Issue the break command while the target is running to break in.

On multiple processor systems (WinDbg only), all active processors will be stopped.

31

6. Open a Processes and Threads window to view and specify the current
processor to emulate.

— On multiple processor systems (WinDbg only), each logical processor is emulated as a

separate thread.

7. Use the Watch window to look at global variables (i.e. gBS, gST, gRT,
gDS).

4.4.2 WinDbg extension commands
The following extension commands add additional functionalities to
WinDbg to assist debugging target firmware. They are provided by the

UdkExtension.dll.

smmentrybreak

smmentrybreak [on|off]

Controls whether the target should stop the next time SMM mode is

entered.

 Set the command to on to make the target stop on the next SMM
entry.

 Set the command to off to prevent the target from stopping on the
next SMM entry.

bootscriptentrybreak

bootscriptentrybreak [on|off]

Controls whether the target should stop before executing boot script.

 Set the command to on to make the target stop before executing boot
script.

 Set the command to off to prevent the target from stopping before

executing boot script.

resetdelay

resetdelay <time in second>

Specifies the time to delay between the debugger’s reset on the target
system and the start of the WinDbg session’s setup on the host.

For example, use this command to set the delay value to a non-0 value

when a platform is setting up a timer and not clearing it in early SEC.

32

Without a delay, the hardware reset could interfere with the debug
session. Setting the delay to a value larger than the timer timeout value
may resolve this problem.

Typically, a delay of 10 seconds is enough. This can help avoid the need to

delay each reboot by clearing the timer early in the SEC phase.

cpuid

cpuid [Index] [SubIndex]

Retrieves CPUID information.

Options:

Index

Value of EAX priori to executing CPUID instruction (defaults to 1,

32-bit max, base 16)

SubIndex

Value of ECX priori to executing CPUID instruction (defaults to 0,
32-bit max, base 16)

The commands below are executed with !py prefix, for example, !py pci.

!py mmio

!py mmio Address Width [Value]

Access the memory mapped IO space.

Options:

Address

MMIO address to access.

Width

Access width 1, 2, 4 or 8.

Value

Content to write to the MMIO address when specified.

33

!py pci

!py pci [Bus [Dev [Func]]]

Display PCI device list or PCI function configuration space.

Options:

Bus

When only Bus is specified, it is the starting bus number

for enumeration; 0 by default if not specified. Otherwise the
bus number of the PCI device whose configuration space is

to be dumped.

Dev

Device number of the PCI device whose configuration space is
to be dumped.

Func

Function number of the PCI device whose configuration space

is to be dumped; 0 by default if not specified.

!py mtrr

!py mtrr

Dump the MTRR setting of current processor.

!py DumpHobs

!py DumpHobs [HobStartAddress]

Dump content of HOB list.

Options:

HobStartAddress

The start address of HOB list. The first HOB in the HOB list must
be the Phase Handoff Information Table (PHIT) HOB. When

HobStartAddress is not specified, HOB list will be got from EFI
Configuration Table and dumped.

34

!py DumpVariable

!py DumpVariable [VariableName]

Dump content of UEFI variable on flash.

Options:

VariableName

The name of variable. If a variable name is specified, the

contents of this variable will be dumped. If a variable name is
not specified, the contents of all UEFI variables on flash will be
dumped.

!py DumpS3Script S3ScriptTableAddress

!py DumpS3Script S3ScriptTableAddress

Dump content of S3 boot script.

Options:

S3ScriptTableAddress

The base address of S3 boot script table.

!py ShowEfiDevicePath DevicePathAddress

!py ShowEfiDevicePath DevicePathAddress

Convert a UEFI device path to text.

Options:

DevicePathAddress

 The start address of a UEFI device path.

35

5

Known Limitations &

Issues for Windows platforms

5.1 Known limitations
The debug solution has the following known limitations on a Windows

platform:

 Firmware output (through the debug channel) should not contain non-

ASCII characters.
 Do not use more than three user-specified breakpoints in the SEC/PEI

phase since hardware breakpoints are used for code executing from

read-only memory.
 Code occurring before the source-level debug package is initialized

cannot be debugged.

— This includes early SEC code, early SMM code, and other code.

 The TE image header is emulated as a PE header for WinDbg. As a
result, the contents of the TE header are not visible to WinDbg.

 During the SEC, PEI phases, only one processor (the BSP, or boot
strap processor) can be debugged.

— This also applies to the DXE phase before the Multiple Processor (MP) Services Protocol

is installed., Switching to other active processors (AP, or Additional Processors) is

possible while in the DXE phase but after the MP Services Protocol has been installed.

 Debugging is not supported if the CPU is executing in 16-bit real
mode.

 If the CPU is executing with interrupts disabled, breaks from the host
to the target are not supported.

 When using the USB debug cable as the debug communication

channel, USB devices cannot be detected on any other USB ports
associated with the same EHCI controller.

— USB ports associated with other EHCI controllers are not impacted.

 Only AP code invoked by the Platform Initialization Multiprocessor

Services Protocol can be debugged.

36

— For example, on EdkCompatibilityPkg-based platforms, AP code invoked through the

Framework Multiprocessor Services Protocol cannot be debugged.

37

6

Setup the Linux Debug Environment

6.1 Introduction

Setting up the Linux debug environment consists of four general steps:

1. Build the firmware image and burn it to TARGET (described earlier in

Section 3).

2. Rebuild GDB on HOST.

3. Install the Intel® UDK Debugger Tool on HOST.

4. Connect the HOST and TARGET.

The following figure shows how the debug components interact on a Linux

host during a debug session.

38

Figure 18 Active components of a debug session on a Linux platform

6.2 Rebuild GDB on HOST

For Linux platforms, x64 code can only be debugged when using GDB on

x64 Linux platforms. When debugging x64 platforms, make sure to build
the firmware image on an x64 Linux machine so that the debug symbols

are accessible to the GDB.

GDB supports the unresolved breakpoint setting by design, but it needs to
be rebuilt to support this feature because the GDB pre-installed doesn’t

include the Expat XML parsing library. Using the GDB pre-installed doesn’t
block the other features.

Use “--target=x86_64-w64-mingw32 --with-expat” as the parameter to

configure the GDB before make so GDB can use the Expat XML parsing
library. This library may be included in the end user’s Linux distribution. If
not, it can be downloaded from http://expat.sourceforge.net.

6.3 Install the Intel Debugger Tool on HOST
The debug port can be configured during installation.

If the TARGET has more than 16 logical processors, open the
SoftDebugger.ini through Start-> All Programs -> Intel(R) UEFI

http://expat.sourceforge.net/

39

Development Kit Debugger Tool->Change Configurations. Change
[Target System]/ProcessorCount to specify the number of logical
processors in TARGET.

6.4 Connect HOST and TARGET
HOST and TARGET must be connected through a debug channel. The
Intel(R) UDK Debugger Tool supports four types of debug channels:

 * Serial by a null modem cable

 [Debug Port]

 Channel = Serial

 Port = COM1

 BaudRate = 115200

 FlowControl = 1

 * USB by a USB debug cable

 [Debug Port]

 Channel = USB

 NOTE: USB debug cable support is provided by Linux kernel starting from

2.6.20. The correct USB port on the target machine must be used. Always
connect the USB debug cable to HOST before connecting to TARGET.

 * TCP

 [Debug Port]

 Channel = TCP

 Server = 192.168.1.4

 Port = 1234

 * Pipe

 [Debug Port]

 Channel = PIPE

 Port = PipePath

 NOTE: UDK Debugger will open PipePath.in for output and PipePath.out
for input.

40

 Once both HOST and TARGET have been configured and connected, a
debug session can be started.

41

7

Use the Debug Solution

on a Linux Platform

7.1 Introduction
This section explains how to perform basic debug operations. It includes
these key discussions:

 Supported features for Linux platforms as well as features not yet
implemented

 Using the Linux/GDB debug solution to Start, reset, and stop a debug

session
 Basic debugging operations including GDB extension commands

7.2 Supported features for Linux platforms
The Intel® UDK Debugger Tool for Linux platforms helps in the use of GDB
to debug Intel® UEFI Development Kit 2010 (Intel® UDK2010) based

firmware running on an IA-32 processor. The Intel® UDK Debugger Tool
provides the host side software in binary form to support GDB remote
debugging across a null modem cable.

With the Intel® UDK Debugger Tool, it is possible to:

 Debug source-level code using GDB with a host running a Linux OS.
 Debug could begin as early as late SEC, after temporary RAM set up,

for the normal boot path.

 Start debugging SMM (system management mode) code by stopping
the target at the next SMI (system management interrupt).

 Use a null modem cable as a debug cable.
 Set unresolved breakpoints (also known as pending breakpoints)
 Debug code running on AP (additional processors)

 Late attach

The following features are not yet supported for Linux platforms:

 Use of a USB 2.0 debug cable (also known as a USB host-to-host
cable or USB 2.0 debug device)

42

7.2.1 Unresolved breakpoint setting in Linux
By design, GDB supports the unresolved breakpoint setting. However, the
end-user needs to recompile the GDB to include the Expat XML parsing
library since a pre-installed GDB does not include it. Using the GDB as pre-

installed doesn’t block the other features.

Use “--target=x86_64-w64-mingw32 --with-expat” as the parameter to

configure the GDB before Make so it can use the Expat XML parsing
library. The library may be included in the end user’s Linux distribution or
downloaded from http://expat.sourceforge.net/

(gdb) source work/Debugger/Src/NewHost/GdbScript/edk2_gdb_script

This gdb configuration file contains settings and scripts

for debugging UDK firmware.

Setting pending breakpoints is supported.

Figure 19 Output when sourcing udk-script

if GDB includes Expat XML parsing library

(gdb) source /opt/intel/udkdebugger/script/udk-gdb-script

This gdb configuration file contains settings and scripts

for debugging UDK firmware.

WARNING: Setting pending breakpoints is NOT supported!

Load additional command!

Figure 20 Output when sourcing udk-script if GDB doesn’t include Expat XML

parsing library

http://expat.sourceforge.net/

43

(gdb) b PeiDispatcher

Function "PeiDispatcher" not defined.

Make breakpoint pending on future shared library load? (y or [n]) y

Breakpoint 1 (PeiDispatcher) pending.

(gdb) c

Continuing.

Breakpoint 1, PeiDispatcher (SecCoreData=0x7ffac, Private=0x7f548)

 at

/home/ray/work/AllPackagesDev/MdeModulePkg/Core/Pei/Dispatcher/Dispatcher.c:623

623 {

Figure 21 Add the unresolved breakpoint in GDB

7.3 General debug flow

There are three general steps in the typical debug process:

1. Build the firmware image, including the source-level debug package
(provided by Intel). See Figure 22

CAUTION: Each time the firmware image is rebuilt, the source-level debug package
must be included. If the debug package is not included, the Intel® UDK

Debugger Tool cannot be used to debug the target firmware. The files to
edit for the source-level debug package are included in the build image.

Those files ensure that the firmware build has debug capability until
debug-related changes are explicitly removed from the files.

2. Program the firmware image into flash memory on the target system.

3. Launch and debug on the host system with a debugger that includes
the functionality added by the Intel® UDK Debugger Tool.

44

Figure 22 Compiling a firmware image with the source-level debug package

The source-level debug package (provided by Intel) must be included in

the firmware build each time you compile the image.

7.4 Using the Linux/GDB debug solution
This discussion explains how to start, restart, and end a debug session.

7.4.1 Start a GDB debug session
Follow these steps to start a GDB debug session:

1. At the shell prompt, start the GDB server by entering the appropriate

command similar to the following:

foo@foo:~$ [/usr/bin/]udk-gdb-server

— The command line is a symbolic link to /opt/intel/udkdebugger/bin/udk-gdb-server.

— A message similar to the following should appear:

UDK GDB Server - Version 1.2

Waiting for the connection from the Target...

Debugging through serial port (/dev/ttyS0:115200:Hardware)

Redirect TARGET output to TCP port (20715).

2. Power up the target system. The system must include the Intel® UEFI
Development Kit 2010 (Intel® UDK2010)-based firmware image built

with the source-level debug package and it must have the debug
feature enabled.

3. Wait one or two seconds until the GDB server successfully connects to
the target debugger. A message similar to the following should appear.

45

The message indicates that the GDB server has successfully connected
and, in this example, is listening on TCP port 1234.

GdbServer on <HOST> is waiting for connection on port 1234

Connect with 'target remote <HOST>:1234'

4. GDB communicates with the target system via the GDB server. When

prompted by the GDB server, connect the GDB to the GDB server by
entering the following command in GDB:

— In the command line, replace <HOST> with the name of the target machine.

target remote <HOST>:1234

5. Run third-party terminal software to connect the terminal redirection
port to get the debug output and terminal output from the firmware.

6. Enter the following command in GDB to load the GDB extension for the
Intel® UDK Debugger Tool:

source /opt/intel/udkdebugger/bin/udk-gdb-script

— The GDB extension commands can now be used to begin debugging the target

firmware at the source level. Extension commands are described at the end of this

section.

7.4.2 Start a GDB debug session using late attach
1. Power up the target system. The system must include the Intel® UEFI

Development Kit 2010 (Intel® UDK2010)-based firmware image built
with the source-level debug package and it must have the debug

feature enabled.

— At the shell prompt, start the GDB server by entering the appropriate command similar

to the following:

foo@foo:~$ [/usr/bin/]udk-gdb-server

— This command line is a symbolic link to /opt/intel/udkdebugger/bin/udk-gdb-server.

— A message similar to the following should appear:

46

UDK GDB Server - Version 1.2

Waiting for the connection from the Target...

Debugging through serial port (/dev/ttyS0:115200:Hardware)

Redirect TARGET output to TCP port (20715).

GdbServer on <HOST> is waiting for connection on port 1234

Connect with 'target remote <HOST>:1234'

2. GDB communicates with the target system via the GDB server. When
prompted by the GDB server, connect the GDB to the GDB server by

entering the following command in GDB.

— In the command line, replace <HOST> with the name of the target machine.

target remote <HOST>:1234

3. Run third-party terminal software to connect the terminal redirection

port and get the debug and terminal output from the firmware.

4. Enter the following command in GDB to load the GDB extension for the
Intel® UDK Debugger Tool:

source /opt/intel/udkdebugger/bin/udk-gdb-script

The GDB extension commands can now be used to begin debugging the
target firmware at the source level. Extension commands are described at

the end of this section.

7.4.3 End the GDB debug session
To end a GDB debug session, follow these steps:

1. Halt the TARGET if the TARGET is running

2. In GDB, enter the quit command to end the debugging session.

(gdb) quit

A debugging session is active.

 Inferior 1 [Remote target] will be detached.

Quit anyway? (y or n) y

qTStatus: Remote connection closed

user@user-Ubuntu11-64:~$

Figure 23 Detach in GDB

Closing GDB without running the “quit” command leaves the TARGET
firmware in an intermediate state and it cannot be reattached until

restarted.

47

7.5 Basic GDB debugging operations
The Intel® UDK Debugger Tool supports GDB operations for Linux
platforms, including these critical operations:

 Embed a breakpoint in the source code.

 Adding the CpuBreakpoint() statement to the source code allows the

GDB to enter interactive mode when the target executes the line.

 Add a function breakpoint in a debug session.

 As long as a module’s symbol file is loaded, use of the break
command to set a breakpoint for a function within the module is

permissible. Command syntax for the break command is:

break <function_name>

 In the following example, a breakpoint is added to the
IoBitFieldRead16 function:

foo@foo:~$ break IoBitFieldRead16

7.5.1 GDB extension commands
The following extension commands add additional functionality to GDB to
assist debugging the target firmware. They are provided by the udk-gdb-

script.

set smmentrybreak

set smmentrybreak on|off

Specify whether or not the debugger stops the target machine when

entering SMM.

set bootscriptentrybreak

set bootscriptentrybreak on|off

Specify whether or not the debugger stops the target machine before

executing boot script.

set resetdelay

set resetdelay <1~20>

Specify the delay the host system will wait to begin running again after the

target system resets.

48

cpuid

cpuid [Index] [SubIndex]

Retrieves CPUID information.

Options:

Index

Value of EAX priori to executing CPUID instruction (defaults to 1,

32-bit max, base 16)

SubIndex

Value of ECX priori to executing CPUID instruction (defaults to 0,
32-bit max, base 16)

resettarget

resettarget

Resets the target system.

refresharch

refresharch

Queries the target processor for the processor mode: i386 (IA32) or

i386x86-64 (x64).

The following four commands are only provided when GDB doesn’t support
setting an unresolved breakpoint.

info modules

info modules [ModuleName [ModuleName [...]]]

Lists information about the loaded modules or the specified module(s).

loadthis

loadthis

Loads the symbol file for the current IP (Internet protocol) address.

49

loadimageat

loadimageat <hex-address>

Loads the symbol file for the specified address.

loadall

loadall

Loads symbols for all loaded modules.

The commands below are executed with py prefix, for example, py pci.

py mmio

py mmio Adress Width [Value]

Access the memory mapped IO space.

Options:

Address

MMIO address to access.

Width

Access width 1, 2, 4 or 8.

Value

Content to write to the MMIO address when specified.

py pci

py pci [Bus [Dev [Func]]]

Display PCI device list or PCI function configuration space.

Usage: py pci [Bus [Dev [Func]]]

Options:

Bus

When only Bus is specified, it is the starting bus number for
enumeration; 0 by default if not specified. Otherwise the bus

number of the PCI device whose configuration space is to be
dumped.

50

Dev

Device number of the PCI device whose configuration space is to

be dumped.

Func

Function number of the PCI device whose configuration space is
to be dumped; 0 by default if not specified.

py mtrr

py mtrr

Dump the MTRR setting of current processor.

Usage: py mtrr

py DumpHobs

py DumpHobs [HobStartAddress]

Dump content of HOB list.

Usage: py DumpHobs [HobStartAddress]

Options:

HobStartAddress

The start address of HOB list. The first HOB in the HOB list must
be the Phase Handoff Information Table (PHIT) HOB. When

HobStartAddress is not specified, HOB list will be got from EFI
Configuration Table and dumped.

py DumpVariable

py DumpVariable [VariableName]

Dump content of UEFI variable on flash.

Usage: py DumpVariable [VariableName]

51

Options:

VariableName

The name of variable. If a variable name is specified, the
contents of this variable will be dumped. If a variable name is

not specified, the contents of all UEFI variables on flash will be
dumped.

py DumpS3Script S3ScriptTableAddress

py DumpS3Script S3ScriptTableAddress

Dump content of S3 boot script.

Usage: py DumpS3Script [S3ScriptTableAddress]

Options:

S3ScriptTableAddress

The base address of S3 boot script table.

py ShowEfiDevicePath DevicePathAddress

py ShowEfiDevicePath DevicePathAddress

Convert UEFI device path to text.

Usage: py ShowEfiDevicePath DevicePathAddress

Options:

DevicePathAddress

The start address of UEFI device path.

 Data Breakpoint 7.5.1.1

For Linux developers, three extension commands—iowatch, info
iowatchpoints, and delete iowatchpoints are available to add, show and
delete IO breakpoints. Note that they are not available in Windows

because, by design, GDB doesn’t use the IO concept.

52

(gdb) help iowatch

Set a watchpoint for an IO address.

Usage: iowatch/SIZE PORT

A watchpoint stops execution of your program whenever the

IO address is either read or written.

PORT is an expression for the IO address to Access.

SIZE letters are b(byte), h(halfword), w(word).

VALUE is an expression to write to the PORT.

(gdb) iowatch/b 0x80

IO Watchpoint 1: 80(1)

Figure 24 Add IO watch point in GDB

(gdb) help info iowatchpoints

Status of specified IO watchpoint (all watchpoints if no

argument).

(gdb) info iowatchpoints

Num Port Size

1 0x80 1

Figure 25 List IO watch point in GDB

(gdb) help delete iowatchpoints

Delete some IO watchpoints.

Argument is IO watchpoints number.

To delete all IO watchpoints, give no argument.

(gdb) delete iowatchpoints 1

Succeeded to delete IO watchpoint 1

Figure 26 Delete IO watch point in GDB

53

8

Known Limitations &

Issues for Linux platforms

8.1 Known limitations
The debug solution has these known limitations on a Linux platform:

 Firmware output (through the debug channel) should not contain non-
ASCII characters.

 Do not use more than three user-specified breakpoints in the SEC/PEI

phase since hardware breakpoints are used for code executing from
read-only memory.

 Code occurring before the source-level debug package is initialized

cannot be debugged.

— This includes early SEC code, early SMM code, and other code.

 During the SEC, PEI phases, only one processor (the BSP, or boot

strap processor) can be debugged.

— This also applies to the DXE phase before the Multiple Processor (MP) Services Protocol

is installed. While in the DXE phase, after the MP Services Protocol has been installed,

switching to other active processors (AP, or Additional Processors) is possible.

 Debugging is not supported if the CPU is executing in 16-bit real

mode.
 If the CPU is executing with interrupts disabled, breaks from the host

to the target are not supported.

 When using the USB debug cable as the debug communication
channel, USB devices cannot be detected on any other USB ports

associated with the same EHCI controller.

— USB ports associated with other EHCI controllers are not impacted.

 Only AP code invoked by the Platform Initialization Multiprocessor
Services Protocol can be debugged.

— For example, on EdkCompatibilityPkg-based platforms, AP code invoked through the

Framework Multiprocessor Services Protocol cannot be debugged.

54

55

9

Debug Tips

& Techniques

9.1 Introduction

The debugging tips and techniques described in this section generally apply
to both Windows and Linux systems. Any platform specific differences are

explained in the topic.

9.2 Terminal redirection
Terminal I/O can be redirected to a local TCP port (default port is 20715),
which can be connected to using a third-party terminal software such as

PuTTY, as shown below. The output from the TARGET firmware can be
redirected to the terminal software and the end-user input from the

terminal software can be redirected to the TARGET firmware.

Figure 27 Using PuTTY to connect to the terminal redirection port

56

When source level debug is enabled, the debugger uses the serial port for
command/packet communication, and PuTTY cannot connect to the serial
port because it’s already in use by the debugger. To enable the ability to

type in shell commands from PuTTY, the debugger redirects the firmware
output to the TCP port and redirects the input from the TCP port to

firmware. This enables a user to connect PuTTY to the TCP port for typing
in shell commands and viewing firmware output.

If the tool is unable to use the selected TCP Port, it displays an error

message as shown in Figure 28. To correct this issue, modify the
configuration file to use a different TCP port as shown in the following
example.

Figure 28 Error displayed when the

terminal redirection port cannot be opened

[Features]

TerminalRedirectionPort = 30000

Figure 29 Sample configuration for using 30000

as the terminal redirection port

The following figure illustrates the data flow between TARGET and HOST
from the end-user’s perspective. The TCP Port is actually created by the

Intel® UDK Debugger Tool.

57

Figure 30 Data flow between TARGET and HOST

9.3 Trace
With Trace, the Intel® UDK Debugger Tool logs the debug output during
execution. When a tool issue occurs, the log can be sent back to the

developer for root causing.

Tracing is turned off by default. Enable it in your configuration file with the

following code snippet:

[Debug]

Trace=0x1f

The log file is located in the root of the current user’s home directory. For
example, with Windows XP*, the log file is in C:\Document and
Settings\<userid>\udk-debugger-trace.log.

 For Windows 7*, the log file is in C:\Users\<userid>\udk-debugger-
trace.log.

 For Linux, the log file is in /home/<userid>/udk-debugger-trace.log.

Note that the log file is truncated to empty every time the Intel® UDK

Debugger Tool starts up and tracing is turned on.

9.4 CPU exception information

The Intel® UDK Debugger Tool automatically shows the vector number and
the error code whenever a CPU exception occurs in firmware.

If a CPU exception happens in firmware before the Intel® UDK Debugger Tool
attaches, the Intel® UDK Debugger Tool automatically shows the exception
information as soon as it attaches to the firmware. For the Linux version, the

Text Output

(Setup, Shell, etc.)

Debug Output

DebugAgent

Communication

Packet

TCP Port

 UDK Debugger Tool

3rd party

terminal

software e.g.

PuTTY

TARGET HOST

58

exception information is shown after sourcing the GDB script.

(gdb) c

Continuing.

Program received signal SIGTRAP, Trace/breakpoint trap.

0x0000000037f36fa1 in ?? ()

=> 0x0000000037f36fa1: 48 8b 04 25 00 00 ff ff mov

rax,QWORD PTR ds:0xffffffffffff0000

Target encounters an exception: Vector = 14, Error Code =

00000000

Figure 31 Output in GDB when a CPU exception happens in firmware

9.5 Disabling optimization
Compiler optimization switches are often used to reduce the size of the

output file including the reduction of the debug information included in the
output file.

To include more debug information in the output file, add compiler tags in
the Components section of the DSC file.

For more information and an example of adding compiler tags, refer to
section 2.2.5. Additional configuration requirements.

9.6 Improving debugger productivity
The debug tool can be more effective if these features are used:

 Set unresolved breakpoint
 Adjust the PcdDebugPropertyMask to enable CpuBreakpoint()

on ASSERT() conditions.

9.7 Debugging SEC and PEI code
Most code for the SEC and PEI (pre-EFI initialization) phases executes

from read-only memory.

The Intel® UDK Debugger Tool automatically uses a hardware breakpoint if
it detects the address is within the read-only memory flash range.

59

Currently, the Intel® UDK Debugger Tool assumes the range from 4GB-
1MB to 4GB to be read-only.

9.8 Debugging DXE code
Some platform initialization firmware implementations execute SEC/PEI in

32-bit mode and execute DXE/SMM in 64-bit mode. When the Intel® UDK
Debugger Tool detects a mode switch from 32-bit mode to 64-bit mode (or

vice versa), WinDbg is automatically re-launched.

9.9 Debugging SMM code
The Intel® UDK Debugger Tool does not enable a timer interrupt in SMM to

look for a break in the request from the host. Instead, an
smmentrybreak command must be used to set a flag so that the next
entry into SMM will force the target to break into the debugger.

Breakpoints can be set after the target enters SMM mode and debugging
can continue. Refer to the discussion on WinDbg extension commands

later in this section for a brief description of the smmentrybreak
command.

When the target system stops at the SMM entry, the source code for SMM
handlers and set software breakpoints may be opened. Basic debug

operations may also be performed when the target system is stopped at
the SMM.

SMM context is not visible after exiting SMM.

9.10 Debugging Boot Script code on S3 path
The Intel® UDK Debugger Tool does not enable a timer interrupt during

executing Boot Script code on S3 path to look for a break in the request
from the host. Instead, a bootccriptentrybreak command must be used

to set a flag so that target will break into debugger tools before executing
Boot script code.

Breakpoints can be set when target breaks before executing Boot Script
code and debugging can continue. Refer to the discussion on WinDbg

extension commands later in this section for a brief description of the
bootccriptentrybreak command.

When the target system stops before executing boot script code, the
source code of
MdeModulePkg\Library\PiDxeS3BootScriptLib\BootScriptExecute.c could be

opened and set software breakpoints for specific OpCode in

60

S3BootScriptExecute(). Basic debug operations may also be performed from

then on.

9.11 Debugging a standalone module

loaded in a UEFI shell
The Intel® UDK Debugging Tool allows debugging of UEFI applications or
UEFI drivers that are loaded and executed in the UEFI shell environment

on the target, even if the target firmware does not include the source-level
debug feature. The source code and debug symbol files of the firmware
are not needed in order to use the Intel® UDK Debugging Tool.

For information about building a UEFI driver or UEFI application, refer to

“Compiling a UEFI Driver using the Intel® UEFI Development Kit 2010”,
available at http://www.intel.com/content/www/us/en/architecture-and-

technology/unified-extensible-firmware-interface/uefi-driver-and-application-tool-

resources.html.

This procedure also assumes that the source code of the UEFI driver
or application resides on the host machine.

To debug in the shell environment, follow these general steps:

1. Make sure the target machine has available debug port (Serial Port or
USB Debug Port)

2. Build DebugAgentDxe driver in SourceLevelDebugPkg. The build

command will vary depending on the debug port type:

 Debug Agent for Serial Port (x64):

build -p SourceLevelDebugPkg\SourceLevelDebugPkg.dsc -m
SourceLevelDebugPkg/DebugAgentDxe/DebugAgentDxe.inf -a X64

 Debug Agent for USB Debug Port (x64):

build -p SourceLevelDebugPkg\SourceLevelDebugPkg.dsc -m
SourceLevelDebugPkg/DebugAgentDxe/DebugAgentDxe.inf -a X64 -

D SOURCE_DEBUG_USE_USB

3.

3. Copy the Debug Agent (DebugAgentDxe.efi) to a USB drive. For x64, the

file is in the Build\SourceLevelDebugPkg\DEBUG_VS2008\X64\ directory

4. On the host system, build the UEFI application or UEFI driver to be

debugged and copy the executable output file (such as example.efi)

to the USB memory stick.

5. Remove the USB memory stick from the host and plug it into the target

system.

http://www.intel.com/content/www/us/en/architecture-and-technology/unified-extensible-firmware-interface/uefi-driver-and-application-tool-resources.html
http://www.intel.com/content/www/us/en/architecture-and-technology/unified-extensible-firmware-interface/uefi-driver-and-application-tool-resources.html
http://www.intel.com/content/www/us/en/architecture-and-technology/unified-extensible-firmware-interface/uefi-driver-and-application-tool-resources.html

61

6. Power up the target machine and wait for the target to boot to the UEFI
shell.

7. Connect the debug cable between the target and host machines.

8. Start Debugging feature on target machine by following steps:

a) If debug port is Serial Port,

1. Get handle number of IsaSerialDxe:

Shell> Drivers

2. Find the handle number of serial port managed by IsaSerialDxe by IsaSerialDxe ’s

handle number:

Shell> dh –d AC

3. Disconnect the controller managed by IsaSerialDxe by serial port’s handle

number:

Shell> disconnect EF

4. Load DebugAgentDxe.efi from the USB memory stick

Shell> map –r

62

 Shell> fs0:

 fs0:\> Load –nc DebugAgentDxe.efi

b) If debug port is USB Debug Port, copy DebugAgentDxe.efi and the debugged driver’s

.efi file into the hard disk

Shell> map –r

Shell> copy fs1:\DebugAgentDxe.efi fs1:\example.efi fs0:

Shell> fs0:

fs0:\> Load DebugAgentDxe.efi

9. On the host machine, launch the Intel® UDK Debugger Tool to connect
the TARGET.

10.On the host, set an unresolved breakpoint at the entry point for the
driver or application and let the TARGET go:

 WinDbg: Issue the go command

 Linux/GDB: Enter the c command

11.On the target machine, load and execute the driver’s .efi file from the

USB memory stick or the hard disk.

On the host, the debugger tool will stop at the unresolved breakpoint set

in Step 6 (above). After that, performing basic debug operations can begin
with the debug session for the application or driver loaded on the target

machine.

9.12 Intelligent symbol path searching

Sometimes the location of the symbol files is moved. Change

[Features]/SymbolPath setting to identify multiple directory paths
(semicolon ‘;’ as the separator), where the symbol files can be searched.

Intel® UDK Debugger Tool gets the symbol file path stored in the PE file.
When it cannot locate the symbol file, an intelligent symbol path searching
method is used to find the correct symbol file path. That is, it attempts to

locate a file by prefixing each directory path specified by the
[Features]/SymbolPath setting to the original symbol file path read from

63

the PE file. Alternatively, if it cannot locate the file, it iteratively strips
parts from the head of the original symbol file path until it locates the
symbol file.

If it cannot locate the symbol file, the symbol file won’t be loaded. For
example:

The symbol file path stored in the PE file is:
J:\BuildRoot\MdeModulePkg\Application\HelloWorld\HelloWorld.pdb and it
is moved to C:\Users\foo\HelloWorld\HelloWorld.pdb. With the following

configuration setting:
[Features]

SymbolPath = C:\Users\foo

The following paths are tried until the symbol file is successfully located:
1) Original symbol file path:

J:\BuildRoot\MdeModulePkg\Application\HelloWorld\HelloWorld.pdb

2) Combination of [Features]/SymbolPath and the original symbol file
path:

C:\Users\fooJ:\BuildRoot\MdeModulePkg\Application\HelloWorld\HelloWorl
d.pdb

3) With “J:” stripped:
C:\Users\foo\BuildRoot\MdeModulePkg\Application\HelloWorld\HelloWorld.

pdb

4) With “\BuildRoot” stripped:
C:\Users\foo\MdeModulePkg\Application\HelloWorld\HelloWorld.pdb

5) With “\MdeModulePkg” stripped:
C:\Users\foo\Application\HelloWorld\HelloWorld.pdb

6) With “\Application” stripped: C:\Users\foo\HelloWorld\HelloWorld.pdb

9.13 Source code not available
In some cases, the source code and debug symbol files of the firmware
may not be available. If so, only the driver or application compiled from

the source code can be debugged.

When the source code and symbol files are not available, debug BIOS

firmware only at the assembly code level.

64

9.14 Restart the debug session

CAUTION: Powering down the target machine while the Intel® UDK Debugger Tool is
running on the host machine is not supported and may produce

unpredictable results. Make sure to close the debugging session on the
host machine before powering down the target system.

 Windows/WinDbg

 Use the .reboot command to reset the target machine and restart
the debug session.

 Linux/GDB

 Use the resettarget GDB extension command to reboot the target
machine and restart a debug session.

9.14.1 Shifting to a different
architecture mode (32-bit vs. 64-bit)

 Windows/WinDbg:

 Automatic relaunch with a change in architecture.

In some cases, the .reboot command is issued in 64-bit mode but
the SEC/PEI is in 32-bit mode. If so, WinDbg will automatically
relaunch in order to continue debugging the 32-bit SEC/PEI code.

 Linux/GDB:

 Already supports changes in architecture. GDB supports changes in

architecture and does not need to be relaunched when a mode
changes between 32-bit and 64-bit.

NOTE: Do not set unresolved breakpoints in code that runs in a different
architecture mode, e.g., setting an unresolved breakpoint in a DXE module

when the TARGET is stopped in PEI phase. It may cause unpredicted
results.

65

 Appendix A

Additional Information

A.1 TERMS
This user manual uses the following acronyms and terms.

AP

Additional processors

BAR

Base address register

BSP

Boot strap processor

COM

Communication

CS

Code segment

CSM

Compatibility support module

CPU

Central processing unit

DSC

The file extension for files containing information
used during the FDF build process.

Debugger package

A source-level debug package provided by Intel and required

during the BIOS build process. When building the target
firmware image, the source-level debugger package must be

included in each build in order to use the Intel® UDK Debugger
Tool to debug the target system. When included in the firmware
build, the target system has debug functionality (“target

debugger”).

66

Debug solution

The combination of tools and packages that provide debug

capability on both the host and target systems. This includes the
Intel® UDK Debugger Tool, the operating system (OS)-specific

debug tool (on the host system), and the source-level debug
package (on the target system).

DXE

Driver execution. The DXE phase initializes the rest

of the system hardware.

ECP

Intel® UEFI Development Kit 2010 (Intel® UDK2010)
compatibility platforms

EFI

Extensible Firmware Interface

EHCI

Extended (extensible) host controller interface

eXdi

A process that extends functionality to Microsoft WinDbg or other
Microsoft applications.

FDF

Firmware device file

FIFO

First in first out

GDB

GNU Project Debugger*

Host debugger:

The debug functionality on the host system. The host debugger
is a combination of the Intel® UDK Debugger Tool and the OS-
specific debug tool.

IDT

Interrupt description table

Intel® UDK2010

Intel’s UEFI development kit.

67

Intel® UDK Debugger Tool

A debugger tool that adds functionality to an OS-specific debug

tool. For example, the Intel® UDK Debugger Tool adds
functionality to Microsoft Windows Debug Tool* (WinDbg) as well

as to the GNU Project debugger* (GDB) for Linux platforms.

IP

Instruction pointer

MP

Multiple processors

OS

Operating system

PCD

Platform configuration database

PCI

Peripheral component interconnect

PDB

Platform database—the file extension of the file containing

source-level debug information from Microsoft compilers.
(Linux compilers use a different extension.)

PE

PE/COFF execution

PE/COFF

Portable executable and object file format

PEI

Pre-EFI initialization. The PEI phase finishes initializing
the CPU, makes permanent RAM (such as normal DRAM)

 available. It then determines the boot mode (such as normal
boot, ACPI S3 resume from sleep, or ACPI S4 resume
from hibernation).

PEIM

Pre-EFI initialization module

RAM

Random access memory

68

SEC

Security. The security (SEC) phase brings the system out

of CPU reset and makes temporary RAM available for the
stack and for data storage.

SecCore

During the SEC (security) phase of execution, the SecCore

are the common functions across all platform implementations
of the Intel® UDK 2010 based firmware.

SMI

System management interrupt

SMM

System management mode

Target debugger

The debugger functionality on the target system. This
functionality is part of a BIOS image that has been built with the
Intel-provided source-level debugger package.

TE

Terse execution. This image format is a reduction in size
of PE (PE/COFF execution). Note that the PE image format has
a large header portion that the TE image format trims

significantly.

UDK

UEFI Development Kit

UEFI

Unified Extensible Firmware Interface

A.2 Conventions used in this document
This document uses the following conventions for code samples and
typographic differentiation.

A.2.1 Nomenclature of CPU architectures
This user manual refers to the following architectures:

 Intel IA32 refers to Intel’s 32-bit processor architecture.
 Intel x64 refers to Intel’s 64-bit superset of IA32.
 Intel IA-64 refers to the Intel® Itanium® Platform Architecture (Intel

IPF).

69

A.2.2 Pseudo-code conventions

Pseudo code is presented to describe algorithms in a more concise form.
None of the algorithms in this document are intended to be compiled
directly. The code is presented

at a level corresponding to the surrounding text.

In describing variables, a list is an unordered collection of homogeneous
objects. A queue is an ordered list of homogeneous objects. Unless
otherwise noted, the ordering is assumed to be first-in-first-out (FIFO).

Pseudo code is presented in a C-like format, using C conventions where

appropriate.
The coding style, particularly the indentation style, is used for readability
and does not necessarily comply with an implementation of the UEFI

specification.

A.2.3 Typographic conventions
This document uses the typographic and illustrative conventions described below:

 Plain text The normal text typeface is used for the vast majority of

the descriptive text in a specification.

 Plain text (blue) In the electronic version of this specification, any plain
text, under-lined and in blue, indicates an active link to

the cross-reference.

 Bold In text, a Bold typeface identifies a processor register
name. In
other instances, a Bold typeface is used as a running
head within

a paragraph or to emphasize a critical term.

 Italic In text, an Italic typeface can be used as emphasis to
introduce a new term or to indicate the title of
documentation such as a user’s manual or name of a
specification.

 Monospace Computer code, example code segments, pseudo code,

and all prototype code segments use a BOLD

Monospace typeface with a dark red color. These code
listings normally appear in one or more separate
paragraphs, though words or segments can also be

embedded in a normal text paragraph.

Italic Monospace In code or in text, words in Italic Monospace indicate

placeholder names for variable information (i.e.,

arguments) that must be supplied.

70

A.2.4 Other conventions

This user manual also uses the following convention for Linux examples:

 foo@foo:~$ A user-defined command prompt for Linux-based command lines

used in the examples in this manual.

A.3 For more information

UEFI Specification:

Information about UEFI device types and status codes can be found in
the Unified Extensible Firmware Interface, version 2.3.1 or later, and

at the UEFI Forum , www.uefi.org. A summary of UEFI services and
GUIDs can be found in the Doxygen-generated help documents for the

MdePkg in the Intel® UDK 2010 releases.

tianocore.org:

The Intel® UDK 2010 source files and specifications are available at
www.tianocore.org (http://tianocore.sourceforge.net).

UEFI Driver Writers Guide:

Refer to the UEFI Driver Writer’s Guide for key descriptions of how to

implement UEFI requirements as well as recommendations for writing
drivers. This guide is now available at www.tianocore.org

(http://tianocore.sourceforge.net).

UEFI Development Kit 2010 (UDK2010):

This open-source kit provides the modern, feature-rich, cross-platform
firmware development environment for the UEFI and PI specifications.

The Intel® UDK2010 is a stable release of this open-source kit and
has been validated on a variety of Intel platforms, operating systems,
and application software. It is available for download at

www.tianocore.org (http://tianocore.sourceforge.net).

http://www.uefi.org/home/
http://www.tianocore.org/
http://tianocore.org/
http://tianocore.sourceforge.net/
http://tianocore.org/
http://tianocore.sourceforge.net/
http://tianocore.org/
http://tianocore.sourceforge.net/

	1 Configuration Overview
	1.1 Document Purpose and Organization
	1.1.1 Configuration and Build
	1.1.2 Windows
	1.1.3 Linux
	1.1.4 Debugging Tips and Appendix

	1.2 Tool Introduction
	1.3 Configuration
	1.3.1 Supported platforms
	1.3.2 Host and target configurations
	1.3.2.1 Host configuration for Windows platforms
	1.3.2.2 Host configuration for Linux platforms

	1.3.3 Target configuration
	1.3.4 Connection between host and target machines

	1.4 OVMF platform and the debug process

	2 Build the Firmware Image
	2.1 Introduction
	2.1.1 Linux Platforms
	2.1.2 Windows Platforms

	2.2 Modify the configuration files for the firmware used by the target machine
	2.2.1 Select the appropriate libraries
	2.2.1.1 Specify the appropriate Debug Agent library
	2.2.1.1.1 Debugging from SEC (including PEI, DXE and SMM)
	2.2.1.1.2 Debugging from PEI (including DXE and SMM)
	2.2.1.1.3 Debugging from DXE(including SMM)

	2.2.1.2 Specify the appropriate Debug Communication library
	2.2.1.3 Specify the appropriate Timer library
	2.2.1.4 Specify the appropriate PeCoffExtraAction library

	2.2.2 Turn debugging on or off
	2.2.3 Configure a serial port for debug usage
	2.2.3.1 Baud rate
	2.2.3.2 Hardware flow control
	2.2.3.3 Configure the hardware buffer for FIFO
	2.2.3.4 Deactivate the terminal support

	2.2.4 Configure the USB debug port
	2.2.4.1 Configure PCDs
	2.2.4.2 Identify the correct USB port for the debug cable
	2.2.4.3 Identify the correct USB connection orientation

	2.2.5 Additional configuration requirements
	2.2.5.1 Include more debug information in the compiler’s output
	2.2.5.2 WinDbg: Turning off aggressive zeroing
	2.2.5.3 WinDbg: Use the PE image format instead of TE

	2.2.6 Update the CPU driver on ECP-based platforms
	2.2.7 Build the image and update flash memory before debugging source-level code
	2.2.7.1 For Linux platforms

	3 Setup the Windows Debug Environment
	3.1 Introduction
	3.2 Install the Windows Debugger on HOST
	3.3 Install the Intel Debugger Tool on HOST
	3.4 Connect HOST and TARGET

	4 Use the Debug Solution on a Windows Platform
	4.1 Introduction
	4.2 Supported features
	4.3 General debug flow
	4.3.1 Start a WinDbg debug session
	4.3.2 Start a WinDbg session using late attach
	4.3.3 End the WinDbg session

	4.4 Basic WinDbg debugging operations
	4.4.1 Basic procedures
	4.4.2 WinDbg extension commands
	smmentrybreak
	smmentrybreak [on|off]

	bootscriptentrybreak
	bootscriptentrybreak [on|off]

	resetdelay
	resetdelay <time in second>

	cpuid
	cpuid [Index] [SubIndex]
	Options:

	!py mmio
	!py mmio Address Width [Value]
	Options:

	!py pci
	!py pci [Bus [Dev [Func]]]
	Options:

	!py mtrr
	!py mtrr

	!py DumpHobs
	!py DumpHobs [HobStartAddress]
	Options:

	!py DumpVariable
	!py DumpVariable [VariableName]
	Options:

	!py DumpS3Script S3ScriptTableAddress
	!py DumpS3Script S3ScriptTableAddress
	Options:

	!py ShowEfiDevicePath DevicePathAddress
	!py ShowEfiDevicePath DevicePathAddress
	Options:

	5 Known Limitations & Issues for Windows platforms
	5.1 Known limitations

	6 Setup the Linux Debug Environment
	6.1 Introduction
	6.2 Rebuild GDB on HOST
	6.3 Install the Intel Debugger Tool on HOST
	6.4 Connect HOST and TARGET

	7 Use the Debug Solution on a Linux Platform
	7.1 Introduction
	7.2 Supported features for Linux platforms
	7.2.1 Unresolved breakpoint setting in Linux

	7.3 General debug flow
	7.4 Using the Linux/GDB debug solution
	7.4.1 Start a GDB debug session
	7.4.2 Start a GDB debug session using late attach
	7.4.3 End the GDB debug session

	7.5 Basic GDB debugging operations
	7.5.1 GDB extension commands
	set smmentrybreak
	set smmentrybreak on|off

	set bootscriptentrybreak
	set bootscriptentrybreak on|off

	set resetdelay
	set resetdelay <1~20>

	cpuid
	cpuid [Index] [SubIndex]
	Options:

	resettarget
	resettarget

	refresharch
	refresharch

	info modules
	info modules [ModuleName [ModuleName [...]]]

	loadthis
	loadthis

	loadimageat
	loadimageat <hex-address>

	loadall
	loadall

	py mmio
	py mmio Adress Width [Value]
	Options:

	py pci
	py pci [Bus [Dev [Func]]]
	Options:

	py mtrr
	py mtrr

	py DumpHobs
	py DumpHobs [HobStartAddress]
	Options:

	py DumpVariable
	py DumpVariable [VariableName]
	Options:

	py DumpS3Script S3ScriptTableAddress
	py DumpS3Script S3ScriptTableAddress
	Options:

	py ShowEfiDevicePath DevicePathAddress
	py ShowEfiDevicePath DevicePathAddress
	Options:
	7.5.1.1 Data Breakpoint

	8 Known Limitations & Issues for Linux platforms
	8.1 Known limitations

	9 Debug Tips & Techniques
	9.1 Introduction
	9.2 Terminal redirection
	9.3 Trace
	9.4 CPU exception information
	9.5 Disabling optimization
	9.6 Improving debugger productivity
	9.7 Debugging SEC and PEI code
	9.8 Debugging DXE code
	9.9 Debugging SMM code
	9.10 Debugging Boot Script code on S3 path
	9.11 Debugging a standalone module loaded in a UEFI shell
	9.12 Intelligent symbol path searching
	9.13 Source code not available
	9.14 Restart the debug session
	9.14.1 Shifting to a different architecture mode (32-bit vs. 64-bit)

	Appendix A Additional Information
	A.1 TERMS
	A.2 Conventions used in this document
	A.2.1 Nomenclature of CPU architectures
	A.2.2 Pseudo-code conventions
	A.2.3 Typographic conventions
	A.2.4 Other conventions
	A.3 For more information

