
www.mellanox.com

Mellanox HPC-X™ Software Toolkit
User Manual

Rev 1.2

Document Number: MLNX-15-3871

Rev 1.2

Mellanox Technologies2

Rev 1.2

Mellanox Technologies 3

Table of Contents

Table of Contents . 3
List of Tables . 6
List of Figures . 7
Document Revision History . 8
About This Manual . 9

Scope .9
Intended Audience .9
Syntax Conventions .9

Chapter 1 HPC-X™ Software Toolkit Overview . 10
1.1 HPC-X Package Contents . 10
1.2 HPC-X™ Requirements . 10

Chapter 2 Installing and Loading HPC-X™. 11
2.1 Installing HPC-X . 11
2.2 Loading HPC-X Environment from bash . 11
2.3 Loading HPC-X Environment from Modules . 11

Chapter 3 Running, Configuring and Rebuilding HPC-X™. 12
3.1 Starting FCA Manager from HPC-X . 12
3.2 Profiling IB verbs API . 12
3.3 Profiling MPI API . 12
3.4 Rebuilding Open MPI from HPC-X™ Sources. 13
3.5 Running MPI with MXM . 13
3.6 Generating MXM Statistics for Open MPI/OpenSHMEM 14
3.7 Generating MXM Environment Parameters . 15
3.8 Loading KNEM Module . 25
3.9 Running MPI with FCA v2.5. 25
3.10 Running OpenSHMEM with FCA v2.5 . 25
3.11 Running MPI with FCA v3.1 (hcoll) . 25

Chapter 4 Mellanox Fabric Collective Accelerator (FCA) . 27
4.1 Overview . 27
4.2 FCA Installation Package Content. 29
4.3 Differences Between FCA v2.5 and FCA v3.X. 30
4.4 Configuring FCA . 30

4.4.1 Compiling Open MPI with FCA 3.X . 30
4.4.2 Enabling FCA in Open MPI . 30
4.4.3 Tuning FCA 3.X Setting . 31
4.4.4 Selecting Ports and Devices . 31

4.5 Runtime Configuration of FCA . 31
4.5.1 Memory Hierarchy . 31

4.5.1.1 Available SBGPs . 31
4.5.1.2 Available BCOLs . 31

Rev 1.2

Mellanox Technologies4

4.5.1.3 Supported Collectives . 32
4.5.1.4 Different Memory Hierarchy Usages . 32

4.5.2 Enabling Mellanox Specific Features and Optimizations 32
4.5.3 Selecting Shared Memory and MXM Point-To-Point Hierarchies

for Collectives in FCA 33
4.6 FCA 3.1 Integration . 33

Chapter 5 MellanoX Messaging Library . 34
5.1 Overview . 34
5.2 Compiling Open MPI with MXM . 34
5.3 Enabling MXM in Open MPI . 35
5.4 Tuning MXM Settings . 36
5.5 Configuring Multi-Rail Support . 36
5.6 Configuring MXM over the Ethernet Fabric . 37
5.7 Configuring MXM over Different Transports . 37
5.8 Configuring Service Level Support . 37
5.9 Running Open MPI with pml “yalla” . 38
5.10 Adaptive Routing for UD Transport . 39
5.11 Support for a Non-Base LID . 39
5.12 MXM Performance Tuning . 39
5.13 MXM Utilities . 40

5.13.1 mxm_dump_config . 40
5.13.2 mxm_perftest. 40

Chapter 6 PGAS Shared Memory Access Overview . 43
6.1 HPC-X OpenSHMEM . 43
6.2 Running HPC-X OpenSHMEM . 44

6.2.1 Running HPC-X OpenSHMEM with MXM. 44
6.2.1.1 Enabling MXM for HPC-X OpenSHMEM Jobs . 44
6.2.1.2 Working with Multiple HCAs . 44

6.2.2 Running HPC-X™ OpenSHMEM with FCA. 45
6.2.3 Developing Application using HPC-X OpenSHMEM together with MPI 45
6.2.4 HPC-X™ OpenSHMEM Tunable Parameters . 46

6.2.4.1 OpenSHMEM MCA Parameters for Symmetric Heap Allocation 47
6.2.4.2 Parameters Used to Force Connection Creation. 47

6.3 Performance Optimization. 48
6.3.1 Configuring Hugepages . 48

6.4 Tuning OpenSHMEM Atomics Performance . 49
6.5 Tuning MTU Size to the Recommended Value. 49

6.5.1 HPC Applications on Intel Sandy Bridge Machines. 50
Chapter 7 Unified Parallel C Overview . 51

7.1 HPC-X HPC-X HPC-X HPC-X Compiling and Running the UPC Application 51
7.1.1 Compiling the UPC Application . 51
7.1.2 Running the UPC Application . 51

7.1.2.1 Basic upcrun Options . 52
7.1.2.2 Environment Variables . 52

7.2 FCA Runtime Parameters . 52

Rev 1.2

Mellanox Technologies 5

7.2.1 Enabling FCA Operations through Environment Variables in HPC-X UPC 53
7.2.2 Controlling FCA Offload in HPC-X UPC using Environment Variables 53

7.3 Various Executable Examples . 53

Rev 1.2

Mellanox Technologies6

List of Tables

Table 1: Syntax Conventions. .9
Table 2: Generating MXM Environment Parameters .15
Table 3: Available SBGPs .31
Table 4: Available BCOLs .31
Table 5: Supported Collectives .32
Table 6: MLNX_OFED and MXM Versions .35
Table 7: Runtime Parameters. .52

Rev 1.2

Mellanox Technologies 7

List of Figures

Figure 1: FCA Architecture .28
Figure 2: FCA Components .29

Rev 1.2

Mellanox Technologies8

Document Revision History
Revision Date Description

1.2 August 2014 Initial release

Rev 1.2

Mellanox Technologies 9

About This Manual

Scope
This document describes Mellanox HPC-X™ Software Toolkit acceleration packages. It includes
information on installation, configuration and rebuilding of HPC-X packages.

Intended Audience
This manual is intended for system administrators responsible for the installation, configuration,
management and maintenance of the software and hardware.
It is also for users who would like to use the latest Mellanox software accelerators to achieve the
best possible application performance.

Syntax Conventions

Table 1 -

Prompt Shell

machine-name% C shell on UNIX, Linux, or AIX
machine-name# C shell superuser on UNIX, Linux, or AIX
$ Bourne shell and Korn shell on UNIX, Linux, or AIX
Bourne shell and Korn shell superuser on UNIX, Linux,

or AIX
C:\> Windows command line

Syntax Conventions

HPC-X™ Software Toolkit OverviewRev 1.2

Mellanox Technologies10

1 HPC-X™ Software Toolkit Overview
Mellanox HPC-X™ is a comprehensive software package that includes MPI, SHMEM and UPC
communications libraries. HPC-X also includes various acceleration packages to improve both
the performance and scalability of applications running on top of these libraries, including MXM
(Mellanox Messaging) which accelerates the underlying send/receive (or put/get) messages, and
FCA (Fabric Collectives Accelerations) which accelerates the underlying collective operations
used by the MPI/PGAS languages. This full-featured, tested and packaged version of HPC soft-
ware enables MPI, SHMEM and PGAS programming languages to scale to extremely large clus-
ters by improving on memory and latency related efficiencies, and to assure that the
communication libraries are fully optimized of the Mellanox interconnect solutions.
Mellanox HPC-X™ allow OEM's and System Integrators to meet the needs of their end-users by
deploying the latest available software that takes advantage of the features and capabilities avail-
able in the most recent hardware and firmware changes.

1.1 HPC-X Package Contents
Mellanox HPC-X package contains the following pre-compiled HPC packages:

1.2 HPC-X™ Requirements
The platform and requirements for HPC-X are detailed in the following table:

 Components Description

MPI • Open MPI and OpenSHMEM v1.8 (MPI-3 complaint, OpenSH-
MEM v1.0 compliant). Open MPI and OpenSHMEM are avail-
able at:
http://www.open-mpi.org/software/ompi/v1.8/

• MPI profiler (IPM - open source tool from http://ipm-hpc.org/)
• MPI tests (OSU, IMB, random ring, etc.)

HPC Acceleration
Package

• MXM 3.1
• MXM 3.2 (default)
• FCA v2.5 (default)
• FCA v3.1 (code name: "hcoll")
• knem (High-Performance Intra-Node MPI Communication mod-

ule from:
http://runtime.bordeaux.inria.fr/knem/)

Extra packages • Berkeley UPC v2.18.0
• libibprof (IB verbs profiler)

Platform Drivers and HCAs

OFED /
MLNX_OFED

• OFED 1.5.3 and later
• MLNX_OFED 1.5.3-x.x.x, 2.0-x.x.x and later

HCAs • Mellanox ConnectX®-2 / ConnectX®-3 / ConnectX®-3 Pro
• Mellanox Connect-IB®

http://runtime.bordeaux.inria.fr/knem/
http://runtime.bordeaux.inria.fr/knem/
http://runtime.bordeaux.inria.fr/knem/
http://www.open-mpi.org/software/ompi/v1.8/

Rev 1.2

Mellanox Technologies 11

2 Installing and Loading HPC-X™

2.1 Installing HPC-X
 To install HPC-X:
 Step 1. Extract hpcx.tar into current working directory.

$ tar zxvf hpcx.tar

 Step 2. Update shell variable of the location of hpc-x installation.

2.2 Loading HPC-X Environment from bash
HPC-X includes Open MPI v1.8. Each Open MPI version has its own module file which can be
used to load desired version.
The symbolic links hpcx-init.sh and modulefiles/hpcx point to the default version (Open
MPI v1.8).
 To load Open MPI/OpenSHMEM v1.8 based package:

$ source $HPCX_HOME/hpcx-init.sh
$ hpcx_load
$ env | grep HPCX
$ mpirun -np 2 $HPCX_HOME_MPI_TESTS_DIR/examples/hello_usempi
$ oshrun -np 2 $HPCX_HOME_MPI_TESTS_DIR/examples/hello_oshmem
$ hpcx_unload

2.3 Loading HPC-X Environment from Modules
 To load Open MPI/OpenSHMEM v1.8 based package:

$ module use $HPCX_HOME_HOME/modulefiles
$ module load hpcx
$ mpirun -np 2 $HPCX_HOME_MPI_TESTS_DIR/examples/hello_c
$ oshrun -np 2 $HPCX_HOME_MPI_TESTS_DIR/examples/hello_oshmem
$ module unload hpcx

$ cd hpcx
$ export HPCX_HOME=$PWD

Running, Configuring and Rebuilding HPC-X™Rev 1.2

Mellanox Technologies12

3 Running, Configuring and Rebuilding HPC-X™
The sources for BUPC, SHMEM and OMPI can be found at $HPCX_HOME/sources/.
Please refer to $HPCX_HOME/sources/ for more information on building details.

3.1 Starting FCA Manager from HPC-X
Prior to using FCA, the following command should be executed as root once on all cluster nodes
in order to mimic post-install procedure.

The FCA manager should be run on only one machine, and not on one of the compute nodes.

FCA 2.5 is the default FCA version embedded in the HPC-X package. To install the FCA Manager please
refer to FCA 2.5 User Manual section Installing the FCA Manager on a Dedicated Node

3.2 Profiling IB verbs API
 To profile IB verbs API:

$ export IBPROF_DUMP_FILE=ibprof_%J_%H_%T.txt
$ export LD_PRELOAD=$HPCX_HOME_IBPROF_DIR/lib/libibprof.so:$HPCX_HOME_MXM_DIR/lib/lib-
mxm.so:$HPCX_HOME_HCOLL_DIR/lib/libhcoll.so
$ mpirun -x LD_PRELOAD <...>

For further details on profiling IB verbs API, please refer to libibprof README file.
README file location is:
$HPCX_HOME/libibprof/README

3.3 Profiling MPI API
 To profile MPI API:

$ export IPM_KEYFILE=$HPCX_HOME_IPM_DIR/etc/ipm_key_mpi
$ export IPM_LOG=FULL
$ export LD_PRELOAD=$HPCX_HOME_IPM_DIR/lib/libipm.so
$ mpirun -x LD_PRELOAD <...>
$ $HPCX_HOME_IPM_DIR/bin/ipm_parse -html outfile.xml

For further details on profiling MPI API, please refer to:
http://ipm-hpc.org/
The Mellanox-supplied version of IMP contains an additional feature (Barrier before Collective),
not found in the standard package, that allows end users to easily determine the extent of applica-
tion imbalance in applications which use collectives. This feature instruments each collective so
that it calls MPI_Barrier() before calling the collective operation itself. Time spent in this
MPI_Barrier() is not counted as communication time, so by running an application with and
without the Barrier before Collective feature, the extent to which application imbalance is a fac-
tor in performance, can be assessed.

$HPCX_HOME/fca/scripts/udev-update.sh

$ $HPCX_HOME/fca/scripts/fca_managerd start

http://ipm-hpc.org/

Rev 1.2

Mellanox Technologies 13

The instrumentation can be applied on a per-collective basis, and is controlled by the following
environment variables:.

By default, all values are set to '0'.

3.4 Rebuilding Open MPI from HPC-X™ Sources
HPC-X package contains Open MPI sources which can be found at $HPCX_HOME/sources/
folder.
 To build Open MPI from sources:

$ HPCX_HOME=/path/to/extracted/hpcx
$./configure --prefix=${HPCX_HOME}/hpcx-ompi --with-knem=${HPCX_HOME}/knem \
 --with-fca=${HPCX_HOME}/fca --with-mxm=${HPCX_HOME}/mxm \
 --with-hcoll=${HPCX_HOME}/hcoll \
 --with-platform=contrib/platform/mellanox/optimized \
 --with-slurm --with-pmi
$ make -j9 all && make -j9 install

3.5 Running MPI with MXM
Open MPI and OpenSHMEM are pre-compiled with MXM v3.2 and use it by default.
 To run with MXM v3.1:

$ LD_PRELOAD=$HPCX_DIR/mxm-v3.1/lib/libmxm.so mpirun -x LD_PRELOAD <...>
$ LD_PRELOAD=$HPCX_DIR/mxm-v3.1/lib/libmxm.so oshrun -x LD_PRELOAD <...>

For further details on running MPI with MXM, please refer to:
$HPCX_HOME/mxm/README.txt

$ export IPM_ADD_BARRIER_TO_REDUCE=1
$ export IPM_ADD_BARRIER_TO_ALLREDUCE=1
$ export IPM_ADD_BARRIER_TO_GATHER=1
$ export IPM_ADD_BARRIER_TO_ALL_GATHER=1
$ export IPM_ADD_BARRIER_TO_ALLTOALL=1
$ export IPM_ADD_BARRIER_TO_ALLTOALLV=1
$ export IPM_ADD_BARRIER_TO_BROADCAST=1
$ export IPM_ADD_BARRIER_TO_SCATTER=1
$ export IPM_ADD_BARRIER_TO_SCATTERV=1
$ export IPM_ADD_BARRIER_TO_GATHERV=1
$ export IPM_ADD_BARRIER_TO_ALLGATHERV=1
$ export IPM_ADD_BARRIER_TO_REDUCE_SCATTER=1

Running, Configuring and Rebuilding HPC-X™Rev 1.2

Mellanox Technologies14

3.6 Generating MXM Statistics for Open MPI/OpenSHMEM
In order to generate statistics, the statistics destination and trigger should be set.
• Destination is set by MXM_STATS_DEST environment variable whose values can be

one of the following:

Value Description

empty string statistics are not reported
stdout Print to standard output
stderr Print to standard error
file:<filename> Write to a file. Following substitutions are made: %h:

host, %p: pid, %c: cpu, %t: time, %e: exe
file:<filename>:bin Same as previous, but a binary format is used when

saving. The file will be smaller, but not human-read-
able. The mxm_stats_parser tool can be used to parse
binary statistics files

Examples:

• Trigger is set by MXM_STATS_TRIGGER environment variables. It can be one of the
following:

Environment Variable Description

exit Dump statistics just before exiting the program
timer:<interval> Dump statistics periodically, interval is given in sec-

onds

Example:

$ export MXM_STATS_DEST="file:mxm_%h_%e_%p.stats"
$ export MXM_STATS_DEST="file:mxm_%h_%c.stats:bin"
$ export MXM_STATS_DEST="stdout"

$ export MXM_STATS_TRIGGER=exit
$ export MXM_STATS_TRIGGER=timer:3.5

The statistics feature is only enabled for the 'debug' version of MXM which is included in
HPC-X. To use the statistics, run the command below from the command line:
$ mpirun -x LD_PRELOAD=$HPCX_DIR/mxm/debug/lib/libmxm.so ...

Rev 1.2

Mellanox Technologies 15

3.7 Generating MXM Environment Parameters

Table 2 - Generating MXM Environment Parameters

Variable Valid Values Description

MXM_LOG_LEVEL • FATAL
• ERROR
• INFO
• DEBUG
• TRACE
• REQ
• DATA
• ASYNC
• FUNC
• POLL
• WARN (default)

MXM logging level. Messages with a
level higher or equal to the selected will
be printed.

MXM_LOG_FILE String If not empty, MXM will print log mes-
sages to the specified file instead of std-
out.
The following substitutions are per-
formed on this string:
• %p - Replaced with process ID
• %h - Replaced with host name
Value: String.

MXM_LOG_BUFFER 1024 Buffer size for a single log message.
Value: memory units: <num-
ber>[b|kb|mb|gb]

MXM_LOG_DATA_SIZE 0 How much of the packet payload to print,
at most, in data mode.
Value: unsigned long.

MXM_HANDLE_ERRORS • None: No error han-
dling

• Freeze: Freeze and
wait for a debugger

• Debug: attach
debugger

• bt: print backtrace

Error handling mode.

MXM_ERROR_SIGNALS • ILL
• SEGV
• BUS
• FPE
• PIPE

Signals which are considered an error
indication and trigger error handling.
Value: comma-separated list of: system
signal (number or SIGxxx)

MXM_GDB_COMMAND gdb If non-empty, attaches a gdb to the pro-
cess in case of error, using the provided
command.
Value: string

Running, Configuring and Rebuilding HPC-X™Rev 1.2

Mellanox Technologies16

MXM_DEBUG_SIGNO HUP Signal number which causes MXM to
enter debug mode. Set to 0 to disable.
Value: system signal (number or SIGxxx)

MXM_ASYNC_INTERVAL 50000.00us Interval of asynchronous progress. Lower
values may make the network more
responsive, at the cost of higher CPU
load.
Value: time value: <number>[s|us|ms|ns]

MXM_ASYNC_SIGNO ALRM Signal number used for async signaling.
Value: system signal (number or SIGxxx)

MXM_STATS_DEST • udp:<host>[:<port>]
- send over UDP to
the given host:port.

• stdout: print to stan-
dard output.

• stderr: print to stan-
dard error.

• file:<file-
name>[:bin] - save
to a file (%h: host,
%p: pid, %c: cpu,
%t: time, %e: exe)

Destination to send statistics to. If the
value is empty, statistics are not reported.

MXM_STATS_TRIGGER • timer:<interval>:
dump in specified
intervals.

• exit: dump just
before program
exits (default)

Trigger to dump statistics
Value: string

MXM_MEMTRACK_DEST • file:<filename>:
save to a file (%h:
host, %p: pid, %c:
cpu, %t: time, %e:
exe)

• stdout: print to stan-
dard output

• stderr: print to stan-
dard error

Memory tracking report output destina-
tion. If the value is empty, results are not
reported.

MXM_INSTRUMENT • %h: host
• %p: pid
• %c: cpu
• %t: time
• %e: exe.

File name to dump instrumentation
records to.
Value: string

Variable Valid Values Description

Rev 1.2

Mellanox Technologies 17

MXM_INSTRUMENT_SIZ
E

1048576 Maximal size of instrumentation data.
New records will replace old records.
Value: memory units: <num-
ber>[b|kb|mb|gb]

MXM_PERF_STALL_LOO
PS

0 Number of performance stall loops to be
performed. Can be used to normalize pro-
file measurements to packet rate
Value: unsigned long

MXM_ASYNC_MODE • Signal
• none
• Thread (default)

Asynchronous progress method
Value: [none|signal|thread]

MXM_MEM_ALLOC • cpages: Contiguous
pages, provided by
Mellanox-OFED.

• hugetlb - Use Sys-
tem V shared mem-
ory API for getting
pre-allocated huge
pages.

• mmap: Use private
anonymous mmap()
to get free pages.

• libc: Use libc's
memory allocation
primitives.

• sysv: Use system
V's memory alloca-
tion.

Memory allocators priority.
Value: comma-separated list of:
[libc|hugetlb|cpages|mmap|sysv]

MXM_MEM_ON_DEMAND_
MAP

• n: disable
• y: enable

Enable on-demand memory mapping.
USE WITH CARE! It requires calling
mxm_mem_unmap() when any buffer
used for communication is unmapped,
otherwise data corruption could occur.
Value: <y|n>

MXM_INIT_HOOK_SCRI
PT

- Path to the script to be executed at the
very beginning of MXM initialization
Value: string

MXM_SINGLE_THREAD • y - single thread
• n - not single thread

Mode of the thread usage.
Value: <y|n>

Variable Valid Values Description

Running, Configuring and Rebuilding HPC-X™Rev 1.2

Mellanox Technologies18

MXM_SHM_KCOPY_MODE • off: Don't use any
kernel copy mode.

• knem: Try to use
knem. If it fails,
default to 'off'.

• autodetect: If knem
is available, first try
to use knem. If it
fails, default to 'off'
(default)

Modes for using to kernel copy for large
messages.

MXM_IB_PORTS *:* Specifies which Infiniband ports to use.
Value: comma-separated list of: IB port:
<device>:<port_num>

MXM_EP_NAME %h:%p Endpoint options. Endpoint name used in
log messages.
Value: string

MXM_TLS • self
• shm
• ud

Comma-separated list of transports to
use. The order is not significant.
Value: comma-separated list of:
[self|shm|rc|dc|ud|oob]

MXM_ZCOPY_THRESH 2040 Threshold for using zero copy.
Value: memory units: <num-
ber>[b|kb|mb|gb]

MXM_IB_CQ_MODERATI
ON

64 Number of send WREs for which a CQE
is generated.
Value: unsigned

MXM_IB_CQ_WATERMAR
K

127 Consider ep congested if poll cq returns
more than n wqes.
Value: unsigned

MXM_IB_DRAIN_CQ • n
• y

Poll CQ till it is completely drained of
completed work requests. Enabling this
feature may cause starvation of other end-
points
Value: <y|n>

MXM_IB_RESIZE_CQ • n
• y

Allow using resize_cq().
Value: <y|n>

MXM_IB_TX_BATCH 16 Number of send WREs to batch in one
post-send list. Larger values reduce the
CPU usage, but increase the latency
because we might need to process lots of
send completions at once.
Value: unsigned

MXM_IB_RX_BATCH 64 Number of post-receives to be performed
in a single batch.
Value: unsigned

Variable Valid Values Description

Rev 1.2

Mellanox Technologies 19

MXM_IB_MAP_MODE • first: Map the first
suitable HCA port
to all processes
(default).

• affinity: Distribute
evenly among pro-
cesses based on
CPU affinity.

• nearest: Try finding
nearest HCA port
based on CPU affin-
ity.

• round-robin

HCA ports to processes mapping method.
Ports not supporting process require-
ments (e.g. DC support) will be skipped.
Selecting a specific device will override
this setting.

MXM_IB_NUM_SLS 1: (default) Number of InfiniBand Service Levels to
use. Every InfiniBand endpoint will gen-
erate a random SL within the given range
FIRST_SL..(FIRST_SL+NUM_SLS-1),
and use it for outbound communication.
applicable values are 1 through 16.
Value: unsigned

MXM_IB_WC_MODE • wqe: Use write
combining to post
full WQEs
(default).

• db: Use write com-
bining to post door-
bell.

• flush: Force flush-
ing CPU write com-
bining buffers.wqe

• flush (default)

Write combining mode flags for Infini-
Band devices. Using write combining for
'wqe' improves latency performance due
to one less
wqe fetch. Avoiding 'flush' relaxes CPU
store ordering, and reduces overhead.
Write combining for 'db' is meaningful
only when used without 'flush'.
Value: comma-separated list of:
[wqe|db|flush]

MXM_IB_LID_PATH_BI
TS

0: (default)
0 <= value< 2^(LMC) -
1

InfiniBand path in bits which will be the
low portion of the LID, according to the
LMC in the fabric.
Value: unsigned

MXM_IB_FIRST_SL 0-15 The first Infiniband Service Level num-
ber to use.
Value: unsigned

MXM_IB_CQ_STALL 100 CQ stall loops for SandyBridge far
socket.
Value: unsigned

MXM_UD_ACK_TIMEOUT 300000.00us Timeout for getting an acknowledgment
for sent packet.
Value: time value: <number>[s|us|ms|ns]

Variable Valid Values Description

Running, Configuring and Rebuilding HPC-X™Rev 1.2

Mellanox Technologies20

MXM_UD_FAST_ACK_TI
MEOUT

1024.00us Timeout for getting an acknowledgment
for sent packet.
Value: time value: <number>[s|us|ms|ns]

MXM_FAST_TIMER_RES
OLUTION

64.00us Resolution of ud fast timer.The value is
treated as a recommendation only. Real
resolution may differ as mxm rounds up
to power of two.
Value: time value: <number>[s|us|ms|ns]

MXM_UD_INT_MODE rx Traffic types to enable interrupt for.
Value: comma-separated list of: [rx|tx]

MXM_UD_INT_THRESH 20000.00us The maximum amount of time that may
pass following an mxm call, after which
interrupts will be enabled.
Value: time value: <number>[s|us|ms|ns]

MXM_UD_WINDOW_SIZE 1024 The maximum number of unacknowl-
edged packets that may be in transit.
Value: unsigned

MXM_UD_MTU 65536 Maximal UD packet size. The actual
MTU is the minimum of this value and
the fabric MTU.
Value: memory units: <num-
ber>[b|kb|mb|gb]

MXM_UD_CA_ALGO • none: no conges-
tion avoidance

• bic: binary increase
(default)

Use congestion avoidance algorithm to
dynamically adjust send window size.
Value: [none|bic]

MXM_UD_CA_LOW_WIN 0 Use additive increase multiplicative
decrease congestion avoidance when cur-
rent window is below this threshold.
Value: unsigned

MXM_UD_RX_QUEUE_LE
N

4096 Length of receive queue for UD QPs.
Value: unsigned

MXM_UD_RX_MAX_BUFS -1 Maximal number of receive buffers for
one endpoint. -1 is infinite.
Value: integer

MXM_UD_RX_MAX_INLI
NE

0 Maximal size of data to receive as inline.
Value: memory units: <num-
ber>[b|kb|mb|gb]

MXM_UD_RX_DROP_RAT
E

0 If nonzero, network packet loss will be
simulated by randomly ignoring one of
every X received UD packets.
Value: unsigned

Variable Valid Values Description

Rev 1.2

Mellanox Technologies 21

MXM_UD_RX_OOO • n
• y

If enabled, keep packets received out of
order instead of discarding them.
Must be enabled if network allows out of
order packet delivery, for example, if
Adaptive Routing is enabled
Value: <y|n>

MXM_UD_TX_QUEUE_LE
N

128 Length of send queue for UD QPs.
Value: unsigned

MXM_UD_TX_MAX_BUFS 32768 Maximal number of send buffers for one
endpoint. -1 is infinite.
Value: integer

MXM_UD_TX_MAX_INLI
NE

128 Bytes to reserve in TX WQE for inline
data. Messages which are small enough
will be sent inline.
Value: memory units: <num-
ber>[b|kb|mb|gb]

MXM_CIB_PATH_MTU default Path MTU for CIB QPs. Possible values
are: default, 512, 1024, 2048, 4096.
Setting “default” will select the best
MTU for the device.
Value: [default|512|1024|2048|4096]

MXM_CIB_HARD_ZCOPY
_THRESH

16384 Threshold for using zero copy.
Value: memory units: <num-
ber>[b|kb|mb|gb]

MXM_CIB_MIN_RNR_TI
MER

25 InfiniBand minimum receiver not ready
timer, in seconds (must be >= 0 and <=
31)

MXM_CIB_TIMEOUT 20 InfiniBand transmit timeout, plugged into
formula: 4.096 microseconds * (2 ^ time-
out) (must be >= 0 and <= 31)
Value: unsigned

MXM_CIB_MAX_RDMA_D
ST_OPS

4 InfiniBand maximum pending RDMA
destination operations (must be >= 0)
Value: unsigned

MXM_CIB_RNR_RETRY 7 InfiniBand “receiver not ready” retry
count, applies ONLY for SRQ/XRC
queues. (must be >= 0 and <= 7: 7 =
“infinite”)
Value: unsigned

MXM_UD_RNDV_THRESH 262144 UD threshold for using rendezvous proto-
col. Smaller value may harm perfor-
mance but excessively large value can
cause a deadlock in the application.
Value: memory units: <num-
ber>[b|kb|mb|gb]

Variable Valid Values Description

Running, Configuring and Rebuilding HPC-X™Rev 1.2

Mellanox Technologies22

MXM_UD_TX_NUM_SGE 3 Number of SG entries in the UD send QP.
Value: unsigned

MXM_UD_HARD_ZCOPY_
THRESH

65536 Threshold for using zero copy.
Value: memory units: <num-
ber>[b|kb|mb|gb]

MXM_CIB_RETRY_COUN
T

7 InfiniBand transmit retry count (must be
>= 0 and <= 7)
Value: unsigned

MXM_CIB_MSS 4224 Size of the send buffer.
Value: memory units: <num-
ber>[b|kb|mb|gb]

MXM_CIB_TX_QUEUE_L
EN

256 Length of send queue for RC QPs.
Value: unsigned

MXM_CIB_TX_MAX_BUF
S

-1 Maximal number of send buffers for one
endpoint. -1 is infinite.
Warning: Setting this param with value
!= -1 is a dangerous thing in RC and
could cause deadlock or performance
degradation
Value: integer

MXM_CIB_TX_CQ_SIZE 16384 Send CQ length.
Value: unsigned

MXM_CIB_TX_MAX_INL
INE

128 Bytes to reserver in TX WQE for inline
data. Messages which are small
enough will be sent inline.
Value: memory units: <num-
ber>[b|kb|mb|gb]

MXM_CIB_TX_NUM_SGE 3 Number of SG entries in the RC QP.
Value: unsigned

MXM_CIB_USE_EAGER_
RDMA

y Use RDMA WRITE for small messages.
Value: <y|n>

MXM_CIB_EAGER_RDMA
_THRESHOLD

16 Use RDMA for short messages after this
number of messages are received from a
given peer, must be >= 1
Value: unsigned long

MXM_CIB_MAX_RDMA_C
HANNELS

8 Maximum number of peers allowed to
use RDMA for short messages, must be
>= 0
Value: unsigned

MXM_CIB_EAGER_RDMA
_BUFFS_NUM

32 Number of RDMA buffers to allocate per
rdma channel, must be >= 1
Value: unsigned

Variable Valid Values Description

Rev 1.2

Mellanox Technologies 23

MXM_CIB_EAGER_RDMA
_BUFF_LEN

4224 Maximum size (in bytes) of eager RDMA
messages, must be >= 1
Value: memory units: <num-
ber>[b|kb|mb|gb]

MXM_SHM_RX_MAX_BUF
FERS

-1 Maximal number of receive buffers for
endpoint. -1 is infinite.
Value: integer

MXM_SHM_RX_MAX_MED
IUM_BUFFERS

-1 Maximal number of medium sized
receive buffers for one endpoint. -1 is
infinite.
Value: integer

MXM_SHM_FIFO_SIZE 64 Size of the shmem tl's fifo.
Value: unsigned

MXM_SHM_WRITE_RETR
Y_COUNT

64 Number of retries in case where cannot
write to the remote process.
Value: unsigned

MXM_SHM_READ_RETRY
_COUNT

64 Number of retries in case where cannot
read from the shmem FIFO (for multi-
thread support).
Value: unsigned

MXM_SHM_HUGETLB_MO
DE

• y: Allocate mem-
ory using huge
pages only.

• n: Allocate mem-
ory using regular
pages only.

• try: Try to allocate
memory using huge
pages and if it fails,
allocate regular
pages (default).

Enable using huge pages for internal
shared memory buffers
Values: <yes|no|try>

MXM_SHM_RX_BUFF_LE
N

8192 Maximum size (in bytes) of medium
sized messages, must be >= 1
Value: memory units: <num-
ber>[b|kb|mb|gb]

MXM_SHM_HARD_ZCOPY
_THRESH

2048 Threshold for using zero copy.
Value: memory units: <num-
ber>[b|kb|mb|gb]

MXM_SHM_RNDV_THRES
H

65536 SHM threshold for using rendezvous pro-
tocol. Smaller value may harm perfor-
mance but too large value can cause a
deadlock in the application.
Value: memory units: <num-
ber>[b|kb|mb|gb]

Variable Valid Values Description

Running, Configuring and Rebuilding HPC-X™Rev 1.2

Mellanox Technologies24

MXM_SHM_KNEM_MAX_S
IMULTANEOUS

0 Maximum number of simultaneous ongo-
ing knem operations to support in shmem
tl.
Value: unsigned

MXM_SHM_KNEM_DMA_C
HUNK_SIZE

67108864 Size of a single chunk to be transferred in
one dma operation.
Larger values may not work since they
are not supported by the dma engine
Value: memory units: <num-
ber>[b|kb|mb|gb]

MXM_SHM_RELEASE_FI
FO_FACTOR

0.500 Frequency of resource releasing on the
receiver's side in shmem tl.
This value refers to the percentage of the
fifo size. (must be >= 0 and < 1)
Value: floating point number

MXM_TM_UPDATE_THRE
SHOLD_MASK

8 Update bit-mask length for connections
traffic counters.(must be >= 0 and <= 32:
0 - always update, 32 - never update.)#
Value: bit count

MXM_TM_PROMOTE_THR
ESHOLD

5 Relative threshold (percentage) of traffic
for promoting connections, Must be >= 0.
Value: unsigned

MXM_TM_PROMOTE_BAC
KOFF

1 Exponential backoff degree (bits) for all
counters upon a promotion, Must be >= 0
and <=32.
Value: unsigned

MXM_RC_QP_LIMIT 64 Maximal amount of RC QPs allowed
(Negative for unlimited).
Value: integer

MXM_DC_QP_LIMIT 64 Maximal amount of DC QPs allowed
(Negative for unlimited).
Value: integer

MXM_DC_RECV_INLINE • 128
• 512
• 1024
• 2048
• 4096

Bytes to reserve in CQE for inline data.
In order to allow for inline data, -x
MLX5_CQE_SIZE=128 must also be
specified.
Value: memory units: <num-
ber>[b|kb|mb|gb]

MXM_CIB_RNDV_THRES
H

16384 CIB threshold for using rendezvous pro-
tocol. Smaller value may harm perfor-
mance but excessively large value can
cause a deadlock in the application.
Value: memory units: <num-
ber>[b|kb|mb|gb]

Variable Valid Values Description

Rev 1.2

Mellanox Technologies 25

3.8 Loading KNEM Module
MXM's intra-node communication uses the KNEM module which improves the performance sig-
nificantly.
 To use the KNEM module:
• Load the KNEM module.

Please run the following commands on all cluster nodes to enable KNEM intra-node device.

Making /dev/knem public accessible posses no security threat, as only the memory buffer that
was explicitly made readable and/or writable can be accessed read and/or write through the
64bit cookie. Morover, recent KNEM releases enforce by default that the attacker and the target
process have the same UID which prevent any security issues.

3.9 Running MPI with FCA v2.5
Make sure FCA manager is running in the fabric.

For further details on starting FCA manager, please refer to 3.1 “Starting FCA Manager from
HPC-X,” on page 12

3.10 Running OpenSHMEM with FCA v2.5
Make sure FCA manager is running in the fabric.

For further details on starting FCA manager, please refer to 3.1 “Starting FCA Manager from
HPC-X,” on page 12

3.11 Running MPI with FCA v3.1 (hcoll)
• Running with default FCA configuration parameters:

$ mpirun -mca coll_hcoll_enable 1 -x HCOLL_MAIN_IB=mlx4_0:1 <...>

MXM_SHM_USE_KNEM_D
MA

• n
• y

Whether or not to offload to the DMA
engine when using KNEM
Value: <y|n>

insmod $HPCX_HOME/knem/lib/modules/$(uname -r)/knem.ko
chmod 666 /dev/knem

On RHEL systems, to enable the KNEM module on machine boot, add these commands
into the /etc/rc.modules script.

$ mpirun -mca coll_fca_enable 1 <...>

$ oshrun -mca scoll_fca_enable 1 <...>

Variable Valid Values Description

Running, Configuring and Rebuilding HPC-X™Rev 1.2

Mellanox Technologies26

• Running with NUMA aware CORE-Direct offloaded collectives:
$ mpirun -mca coll_hcoll_enable 1 -x HCOLL_BCOL=basesmuma,iboffload,mlnx_p2p -x
HCOLL_SBGP=basesmuma,ibnet,p2p <...>

• Running with NUMA aware, Multicast accelerated collectives:
$ mpirun -mca coll_hcoll_enable 1 -x HCOLL_BCOL=basesmuma,mlnx_p2p -x HCOLL_SBGP=bases-
muma,p2p -x HCOLL_MCAST_ENABLE_ALL=1 HCOLL_MCAST_LOG_LEVEL=0<...>

• Running with NUMA aware, network agnostic, logical layer (in the context of using
FCA v3.x in Open MPI, the logical layer employs the 'PML' layer for transport ser-
vices.):

$ mpirun -mca coll_hcoll_enable 1 -x HCOLL_BCOL=basesmuma,ptpcoll -x HCOLL_SBGP=bases-
muma,p2p <...>

Rev 1.2

Mellanox Technologies 27

4 Mellanox Fabric Collective Accelerator (FCA)

4.1 Overview
To meet the needs of scientific research and engineering simulations, supercomputers are grow-
ing at an unrelenting rate. As supercomputers increase in size from mere thousands to hundreds-
of-thousands of processor cores, new performance and scalability challenges have emerged. In
the past, performance tuning of parallel applications could be accomplished fairly easily by sepa-
rately optimizing their algorithms, communication, and computational aspects. However, as sys-
tems continue to scale to larger machines, these issues become co-mingled and must be
addressed comprehensively.
Collective communications execute global communication operations to couple all processes/
nodes in the system and therefore must be executed as quickly and as efficiently as possible.
Indeed, the scalability of most scientific and engineering applications is bound by the scalability
and performance of the collective routines employed. Most current implementations of collective
operations will suffer from the effects of systems noise at extreme-scale (system noise increases
the latency of collective operations by amplifying the effect of small, randomly occurring OS
interrupts during collective progression.) Furthermore, collective operations will consume a sig-
nificant fraction of CPU cycles, cycles that could be better spent doing meaningful computation.
Mellanox Technologies has addressed these two issues, lost CPU cycles and performance lost to
the effects of system noise, by offloading the communications to the host channel adapters
(HCAs) and switches. The technology, named CORE-Direct® (Collectives Offload Resource
Engine), provides the most advanced solution available for handling collective operations
thereby ensuring maximal scalability, minimal CPU overhead, and providing the capability to
overlap communication operations with computation allowing applications to maximize asyn-
chronous communication.
Users may benefit immediately from CORE-Direct® out-of-the-box by simply specifying the
necessary BCOL/SBGP combinations. In order to take maximum advantage of CORE-Direct®,
users may modify their applications to use MPI 3.1 non-blocking routines while using CORE-
Direct® to offload the collective "under-the-covers", thereby allowing maximum opportunity to
overlap communication with computation.
Additionally, FCA 3.1 also contains support to build runtime configurable hierarchical collec-
tives. We currently support socket and UMA level discovery with network topology slated for
future versions. As with FCA 2.X we also provide the ability to accelerate collectives with hard-
ware multicast. In FCA 3.1 we also expose the performance and scalability of Mellanox's
advanced point-to-point library, MXM 2.x, in the form of the "mlnx_p2p" BCOL. This allows
users to take full advantage of new features with minimal effort.
FCA 3.1 and above is a standalone library that can be integrated into any MPI or PGAS runtime.
Support for FCA 3.1 is currently integrated into Open MPI versions 1.7.4 and higher. The 3.1
release currently supports blocking and non-blocking variants of "Allgather", "Allreduce", "Bar-
rier", and "Bcast".

Mellanox Fabric Collective Accelerator (FCA)Rev 1.2

Mellanox Technologies28

The following diagram summarizes the FCA architecture:

Figure 1: FCA Architecture

Rev 1.2

Mellanox Technologies 29

The following diagram shows the FCA components and the role that each plays in the accelera-
tion process:

Figure 2: FCA Components

4.2 FCA Installation Package Content

The FCA installation package includes the following items:
• FCA- Mellanox Fabric Collector Accelerator Installation files

• hcoll-<version>.x86_64.<OS>.rpm
• hcoll-<version>.x86_64.<OS>.tar.gz

where:
<version>: The version of this release
<OS>: One of the supported Linux distributions listed in Prerequisites (on page 11).

• Mellanox Fabric Collective Accelerator (FCA) Software: End-User License Agreement
• FCA MPI runtime libraries
• Mellanox Fabric Collective Accelerator (FCA) Release Notes

hcoll is part of the HPC-X software toolkit and does not requires special installation.

Mellanox Fabric Collective Accelerator (FCA)Rev 1.2

Mellanox Technologies30

4.3 Differences Between FCA v2.5 and FCA v3.X
FCA v3.X is new software which continus to expose the power of CORE-Direct® to
offload collective operations to the HCA. It adds additional scalable algorithms for collectives
and supports both blocking and non-blocking APIs (MPI-3 SPEC compliant). Additionally,
FCA v3.x (hcoll) does not require FCA manager daemon.

4.4 Configuring FCA

4.4.1 Compiling Open MPI with FCA 3.X
 To compile Open MPI with FCA 3.1
 Step 1. Install FCA 3.X from:

• an RPM.
rpm -ihv hcoll-x.y.z-1.x86_64.rpm

• a tarball.
% tar jxf hcoll-x.y.z.tbz

FCA 3.X will be installed automatically in the /opt/mellanox/hcoll folder.
 Step 2. Enter the Open MPI source directory and run the following command:

 To check the version of FCA installed on your host:
% rpm -qi hcoll

 To upgrade to a newer version of FCA 3.X:
 Step 1. Remove the existing FCA 3.X.

% rpm -e hcoll

 Step 2. Remove the precompiled Open MPI.

 Step 3. Install the new FCA 3.X and compile the Open MPI with it.

4.4.2 Enabling FCA in Open MPI
To enable FCA 3.X HCOLL collectives in Open MPI, explicitly ask for them by setting the fol-
lowing MCA parameter:

% cd $OMPI_HOME
% ./configure --with-hcoll=/opt/mellanox/hcoll --with-mxm=/opt/mellanox/mxm < ... other
configure parameters>
% make -j 9 && make install -j 9

libhcoll required MXM v2.1 or higher.

% rpm -e mlnx-openmpi_gcc

% mpirun -np 32 --display-map --bind-to-core -mca coll hcoll,tuned,libnbc,basic -mca
btl_openib_if_include mlx4_0:1 -mca coll_hcoll_np 0 -x HCOLL_MAIN_IB=mlx4_0:1 -x
HCOLL_BCOL=basesmuma,mlnx_p2p -x HCOLL_SBGP=basesmuma,p2p ./a.out

Rev 1.2

Mellanox Technologies 31

4.4.3 Tuning FCA 3.X Setting
The default FCA 3.X settings should be optimal for most systems. To check the available FCA
3.X parameters and their default values, run the following command:

FCA 3.X parameters are simply environment variables and can be modified in one of the follow-
ing ways:
• Modify the default FCA 3.X parameters as part of the mpirun command:

% mpirun ... -x HCOLL_ML_BUFFER_SIZE=65536

• Modify the default FCA 3.X parameter values from SHELL:
% export -x HCOLL_ML_BUFFER_SIZE=65536
% mpirun ...

4.4.4 Selecting Ports and Devices
 To select the HCA device and port you would like FCA 3.X to run over:

-x HCOLL_MAIN_IB=<device_name>:<port_num>

4.5 Runtime Configuration of FCA

4.5.1 Memory Hierarchy
FCA 3.X is flexible and modular, providing the user a wide degree of latitude to customize col-
lective algorithms to take full advantage of their Mellanox hardware at application runtime.
The FCA 3.X software model abstracts the notion of a memory hierarchy into sub-grouping or
SBGP components. An SBGP group is a subset of endpoints that satisfy a reachability criterion,
for example, all processes on the same socket. To each SBGP is associated a set of optimized col-
lective primitives, basic collectives or BCOL components.

4.5.1.1 Available SBGPs

Table 3 - Available SBGPs

SBGPs Description

basesmuma A subset of ranks that share the same host.
basesmsocket A subset of ranks that share the same socket.
ibnet A subset of ranks that can communicate with CORE-Direct®.
p2p A subset of ranks that can reach each other over point-to-point.

4.5.1.2 Available BCOLs

% /opt/mellanox/hcoll/bin/hcoll_info --all

Table 4 - Available BCOLs

BCOLs Description

basesmuma Shared memory collective primitives.

Mellanox Fabric Collective Accelerator (FCA)Rev 1.2

Mellanox Technologies32

4.5.1.3 Supported Collectives

Table 5 - Supported Collectives

Collectives Description

Allgather/Iallgather Blocking and non-blocking allgather for all possible
bcol/sbgp combinations

Allreduce/Iallreduce Blocking and non-blocking allreduce.
Note: Currently not supported with iboffload BCOL

Barrier/Ibarrier Blocking and non-blocking barrier for all possible
BCOL/SBGP combinations.

Bcast/Ibcast Blocking and non-blocking bcast for all possible BCOL/
SBGP combinations.

4.5.1.4 Different Memory Hierarchy Usages
• Two-level hierarchy with CORE-Direct® used at the "top" level:

% mpirun -x HCOLL_BCOL=basesmuma,iboffload,mlnx_p2p -x HCOLL_SBGP=basesmuma,ibnet,p2p

• Three-level hierarchy with CORE-Direct® used at the "top" level:
% mpirun -x HCOLL_BCOL=basesmuma,basesmuma,iboffload,mlnx_p2p -x HCOLL_SBGP=bas-
esmsocket,basesmuma,ibnet,p2p

• Two-level hierarchy with MXM p2p used at the "top" level:
% mpirun -x HCOLL_BCOL=basesmuma,mlnx_p2p -x HCOLL_SBGP=basesmuma,p2p

• Three-level hierarchy with MXM used at the "top" level:
% mpirun -x HCOLL_BCOL=basesmuma,basesmuma,mlnx_p2p -x HCOLL_SBGP=basesmsocket,bases-
muma,p2p

4.5.2 Enabling Mellanox Specific Features and Optimizations
• Multicast acceleration:

FCA 3.1 uses hardware multicast to accelerate collective primitives in both the "mlnx_p2p"
and "iboffload" BCOLs when possible.
To enable multicast based collectives, set:

-x HCOLL_MCAST_ENABLE_ALL=1

• Context caching:
When using one of the two Mellanox specific BCOLs (mlnx_p2p, or iboffload), you may
enable context caching. This optimization can benefit applications that create and destroy many
MPI communicators.

mlnx_p2p MXM based point-to-point collective primitives.
iboffload CORE-Direct® based collective primitives.
ptpcoll Point-to-point logical layer.

Table 4 - Available BCOLs

BCOLs Description

Rev 1.2

Mellanox Technologies 33

To enable context caching in conjunction with a valid BCOL/SBGP pair, set:
-x HCOLL_CONTEXT_CACHE_ENABLE=1

4.5.3 Selecting Shared Memory and MXM Point-To-Point Hierarchies
for Collectives in FCA

Running IMB benchmark on 1,024 MPI processes with two levels of hierarchy:
• shared memory
• MXM point-to-point
Enable both context caching and multicast acceleration.

4.6 FCA 3.1 Integration
In principle, FCA 3.1 can be integrated into any communication library. In order to do so, one
must first implement the so-called "RTE interface", which is a collection of callbacks and han-
dles that must be supplied to FCA 3.x from the calling library. For an example of full integration
into an MPI library, please refer to the Open MPI source code under ompi_src/ompi/mca/coll/
hcoll.
The "hcoll" component contained in the OMPI "coll" framework is the runtime integration layer
of FCA into OMPI. A complete implementation of the RTE can be found at ompi_src/ompi/mca/
coll/hcoll. A standalone example can be found at /opt/mellanox/hcoll/sdk.
For instructions on compiling and running, please refer to the SDK's README. The RTE imple-
mentation can be found in the "hcoll_sdk.c" file.

% mpirun -np 1024 --bind-to-core -bynode -mca btl_openib_if_include mlx4_0:1 -mca coll
hcoll,tuned,libnbc -mca btl sm,openib,self HCOLL_MCAST_ENABLE_ALL=1 -x
HCOLL_ENABLE_CONTEXT_CACHE=1
-x HCOLL_IB_IF_INCLUDE=mlx4_0:1 -x HCOLL_BCOL=basesmuma,mlnx_p2p
-x HCOLL_SBGP=basesmuma,p2p ~/IMB/src/IMB-MPI1 -exclude PingPong PingPing Sendrecv

MellanoX Messaging LibraryRev 1.2

Mellanox Technologies34

5 MellanoX Messaging Library

5.1 Overview
MellanoX Messaging (MXM) library provides enhancements to parallel communication libraries
by fully utilizing the underlying networking infrastructure provided by Mellanox HCA/switch
hardware. This includes a variety of enhancements that take advantage of Mellanox networking
hardware including:
• Multiple transport support including RC, DC and UD
• Proper management of HCA resources and memory structures
• Efficient memory registration
• One-sided communication semantics
• Connection management
• Receive side tag matching
• Intra-node shared memory communication
These enhancements significantly increase the scalability and performance of message commu-
nications in the network, alleviating bottlenecks within the parallel communication libraries.

The latest MXM software can be downloaded from the Mellanox website.

5.2 Compiling Open MPI with MXM

 Step 1. Install MXM from:
• an RPM

% rpm -ihv mxm-x.y.z-1.x86_64.rpm

• a tarball
% tar jxf mxm-x.y.z.tar.bz

MXM will be installed automatically in the /opt/mellanox/mxm folder.

 Step 2. Enter Open MPI source directory and run:

MXM has been integrated into the HPC-X Toolkit package. The steps described below
are only required if you have downloaded the mxm.rpm from the Mellanox site

% cd $OMPI_HOME
% ./configure --with-mxm=/opt/mellanox/mxm <... other configure parameters...>
% make all && make install

http://www.mellanox.com/content/pages.php?pg=products_dyn&product_family=135&menu_section=73

Rev 1.2

Mellanox Technologies 35

Older versions of MLNX_OFED come with pre-installed older MXM and Open MPI versions.
Uninstall any old MXM version prior to installing the latest MXM version in order to use it with
older MLNX_OFED versions.

To check the version of MXM installed on your host, run:

 To upgrade MLNX_OFED v1.5.3-3.1.0 or later with a newer MXM:
 Step 1. Remove MXM.

rpm -e mxm

 Step 2. Remove the pre-compiled Open MPI.

 Step 3. Install the new MXM and compile the Open MPI with it.

5.3 Enabling MXM in Open MPI
MXM is selected automatically starting from any Number of Processes (NP) when using Open
MPI v1.8.x and above.
For older Open MPI versions, use the command below.
 To activate MXM for any NP, run:

% mpirun -mca mtl_mxm_np 0 <...other mpirun parameters ...>

From Open MPI v1.8, MXM is selected when the number of processes is higher or equal to 0. i.e.
by default.

Table 6 - MLNX_OFED and MXM Versions

MLNX_OFED Version MXM Version

v1.5.3-3.1.0 and v2.0-3.0.0 MXM v1.x and Open MPI compiled with MXM v1.x

v2.0-3.0.0 and higher MXM v2.x/3.x and Open MPI compiled with MXM v2.x/
3.x

% rpm -qi mxm

rpm -e mlnx-openmpi_gcc

To run Open MPI without MXM, run:
% mpirun -mca mtl ^mxm <...>

When upgrading to MXM v3.2, Open MPI compiled with the previous versions of the
MXM should be recompiled with MXM v3.2.

MellanoX Messaging LibraryRev 1.2

Mellanox Technologies36

5.4 Tuning MXM Settings
The default MXM settings are already optimized. To check the available MXM parameters and
their default values, run the /opt/mellanox/mxm/bin/mxm_dump_config -f utility which is part
of the MXM RPM.
MXM parameters can be modified in one of the following methods:
• Modifying the default MXM parameters value as part of the mpirun:

% mpirun -x MXM_UD_RX_MAX_BUFFS=128000 <...>

• Modifying the default MXM parameters value from SHELL:
% export MXM_UD_RX_MAX_BUFFS=128000
% mpirun <...>

5.5 Configuring Multi-Rail Support
Multi-Rail support enables the user to use more than one of the active ports on the card, making
better use of system resources, allowing increased throughput.
Multi-Rail support in MXM v3.2 allows different processes on the same host to use different
active ports. Every process can only use one port (as opposed to MXM v1.5).
 To configure dual rail support:
• Specify the list of ports you would like to use to enable multi rail support.

-x MXM_RDMA_PORTS=cardName:portNum

or

For example:

It is also possible to use several HCAs and ports during the run (separated by a comma):

MXM will bind a process to one of the HCA ports from the given ports list according to the
MXM_IB_MAP_MODE parameter (for load balancing).
Possible values for MXM_IB_MAP_MODE are:
• first - [Default] Maps the first suitable HCA port to all processes
• affinity - Distributes the HCA ports evenly among processes based on CPU affinity
• nearest - Tries to find the nearest HCA port based on CPU affinity
You may also use an asterisk (*) and a question mark (?) to choose the HCA and the port you
would like to use.
• * - use all active cards/ports that are available
• ? - use the first active card/port that is available

For example:

will take all the active HCAs and the first active port on each of them.

-x MXM_IB_PORTS=cardName:portNum

-x MXM_IB_PORTS=mlx5_0:1

-x MXM_IB_PORTS=mlx5_0:1,mlx5_1:1

-x MXM_IB_PORTS=*:?

Rev 1.2

Mellanox Technologies 37

5.6 Configuring MXM over the Ethernet Fabric
 To configure MXM over the Ethernet fabric:
 Step 1. Make sure the Ethernet port is active.

% ibv_devinfo

-x MXM_IB_PORTS=mlx4_0:1

 Step 2. Specify the ports you would like to use, if there is a non Ethernet active port in the card.

 or

5.7 Configuring MXM over Different Transports
MXM v3.2 supports the following transports.
• Intra node communication via Shared Memory with KNEM support
• Unreliable Datagram (UD)
• Reliable Connected (RC)
• SELF transport - a single process communicates with itself
• Dynamically Connected Transport (DC)

Note: DC is supported on Connect-IB® HCAs with MLNX_OFED v2.1-1.0.0 and higher.
To use DC set the following:
• in the command line:

• from the SHELL:

By default the transports (TLS) used are: MXM_TLS=self,shm,ud

5.8 Configuring Service Level Support

Service Level enables Quality of Service (QoS). If set, every InfiniBand endpoint in MXM will
generate a random Service Level (SL) within the given range, and use it for outbound communi-
cation.

ibv_devinfo displays the list of cards and ports in the system. Make sure (in the
ibv_devinfo output) that the desired port has Ethernet at the link_layer field and
that its state is PORT_ACTIVE.

-x MXM_RDMA_PORTS=mlx4_0:1

% mpirun -x MXM_TLS=self,shm,dc

% export MXM_TLS=self,shm,dc

Service Level Support is currently at alpha level.

MellanoX Messaging LibraryRev 1.2

Mellanox Technologies38

Setting the value is done via the following environment parameter:

Available Service Level values are 1-16 where the default is 1.
You can also set a specific service level to use. To do so, use the MXM_IB_FIRST_SL parameter
together with MXM_IB_NUM_SLS=1 (which is the default).
For example:

where a single SL is being used and the first SL is 3.

5.9 Running Open MPI with pml “yalla”

A new pml layer (pml “yalla”) was added to Mellanox's Open MPI v1.8. It is used to reduce
overhead by cutting through layers and using MXM directly. Consequently, for messages < 4K in
size, it yields a latency improvement of up to 5%, message rate of up to 50% and bandwidth of up
to 45%.
Open MPI’s default behavior is to run without pml 'yalla'. Therefore, to directly use MXM with
it, perform the steps below.
 To run MXM with the new pml “yalla”:
 Step 1. Download the HPC-X package from the Mellanox site (Mellanox's Open MPI v1.8 has been

integrated into HPC-X package).
http://www.mellanox.com/page/products_dyn?product_family=189&mtag=hpc-x

 Step 2. Use the new yalla pml.

export MXM_IB_NUM_SLS=1

% mpirun –x MXM_IB_NUM_SLS=1 –x MXM_IB_FIRST_SL=3 …

Open MPI pml 'yalla' is currently at beta level.

% mpirun -mca pml yalla

pml “yalla” uses MXM directly by default. If the pml “yalla” is not used, Open
MPI will use MXM through “pml cm” and “mtl mxm” (see figure below).

Rev 1.2

Mellanox Technologies 39

5.10 Adaptive Routing for UD Transport
Adaptive Routing (AR) enables the switch to select the output port based on the port's load.
Adaptive Routing for the UD transport layer enable out of order packet arrival.
• When the MXM_UD_RX_OOO=n, parameter is set to “n”, the out of order packet indicates a

packet loss and triggers MXM UD flow control/congestion avoidance.
• When the parameter MXM_UD_RX_OOO=y, is set to “y” MXM will queue out of order

packets until it is possible to process them in order instead of assuming a packet loss.
To configure adaptive routing one must use OpenSM with adaptive route manager plugin and a
switch with Mellanox OS. This feature is set to ON by default.
 To disable Adaptive Routing for UD transport:

% mpirun -x MXM_UD_RX_OOO=y ...

5.11 Support for a Non-Base LID
MXM enables the user to set the LID of the port according to the LMC that is set in the fabric by
the SM. If the LMC>0 then use the MXM_IB_LID_PATH_BITS parameter to specify an offset
which will be added to the port's base LID in the range that is allowed by the LMC. The default
offset is set to 0.
For example:

5.12 MXM Performance Tuning
MXM uses the following features to improve performance:
• Bulk Connections

The mxm_ep_wireup and mxm_ep_powerdown functions were added to the MXM API to allow
pre-connection establishment for MXM. This will enable MXM to create and connect all the
required connections for the future communication during the initialization stage rather than
creating the connections between the peers in an on-demand manner.
Bulk connection is the default for establishing connection for MXM in the Open MPI,'mtl
mxm' layer.
When using an application which has sparse communication, it is recommended to disable
Bulk Connections.
To enable Bulk Connections:

% mpirun -mca mtl_mxm_bulk_connect 1 -mca mtl_mxm_bulk_disconnect 1 ...

To disable Bulk Connections:
% mpirun -mca mtl_mxm_bulk_connect 0 -mca mtl_mxm_bulk_disconnect 0 ...

% mpirun -x MXM_IB_LID_PATH_BITS=1 ...

MellanoX Messaging LibraryRev 1.2

Mellanox Technologies40

• Solicited event interrupt for the rendezvous protocol
The solicited event interrupt for the rendezvous protocol improves performance for applica-
tions which have large messages communication overlapping with computation. This feature is
disabled by default.
To enable Solicited event interrupt for the rendezvous protocol:

% mpirun -x MXM_RNDV_WAKEUP_THRESH=512k ...

*<thresh>: Minimal message size which will trigger an interrupt on the remote side, to switch
the remote process from computation phase and force it to handle MXM communication.

5.13 MXM Utilities

5.13.1 mxm_dump_config
Enables viewing of all the environment parameters that MXM uses.
To see all the parameters, run: $HPCX_HOME/mxm/bin/mxm_dump_config -f.
For further information, run: $HPCX_HOME/mxm/bin/mxm_dump_config -help

5.13.2 mxm_perftest
A client-server based application which is designed to test MXM's performance and sanity
checks on MXM.
To run it, two terminals are required to be opened, one on the server side and one on the client
side.
The working flow is as follow:
1. The server listens to the request coming from the client.
2. Once a connection is established, MXM sends and receives messages between the two sides

according to what the client requested.
3. The results of the communications are displayed.
For further information, run: $HPCX_HOME/mxm/bin/mxm_perftest -help.

When MXM is used as part of HPC-X sotfware toolkit, the MXM utilities can be found
at the $HPCX_HOME/mxm/bin directory.
When MXM is used as part of MLNX_OFED driver, the MXM utilities can be found at
the /opt/mellanox/mxm/bin directory.

Environment parameters can be set by using the “export” command.
For example, to set the MXM_TLS environment parameter, run:
% export MXM_TLS=<...>

Rev 1.2

Mellanox Technologies 41

Example:
• From the server side run: $HPCX_HOME/mxm/bin/mxm_perftest
• From the client side run:

$HPCX_HOME/mxm/bin/mxm_perftest <server_host_name> -t send_lat

Among other parameters, you can specify the test you would like to run, the message size and the
number of iterations.

MellanoX Messaging LibraryRev 1.2

Mellanox Technologies42

Rev 1.2

Mellanox Technologies 43

6 PGAS Shared Memory Access Overview
The Shared Memory Access (SHMEM) routines provide low-latency, high-bandwidth communi-
cation for use in highly parallel scalable programs. The routines in the SHMEM Application Pro-
gramming Interface (API) provide a programming model for exchanging data between
cooperating parallel processes. The SHMEM API can be used either alone or in combination
with MPI routines in the same parallel program.
The SHMEM parallel programming library is an easy-to-use programming model which uses
highly efficient one-sided communication APIs to provide an intuitive global-view interface to
shared or distributed memory systems. SHMEM's capabilities provide an excellent low level
interface for PGAS applications.
A SHMEM program is of a single program, multiple data (SPMD) style. All the SHMEM pro-
cesses, referred as processing elements (PEs), start simultaneously and run the same program.
Commonly, the PEs perform computation on their own sub-domains of the larger problem, and
periodically communicate with other PEs to exchange information on which the next communi-
cation phase depends.
The SHMEM routines minimize the overhead associated with data transfer requests, maximize
bandwidth, and minimize data latency (the period of time that starts when a PE initiates a transfer
of data and ends when a PE can use the data).
SHMEM routines support remote data transfer through:
• “put” operations - data transfer to a different PE
• “get” operations - data transfer from a different PE, and remote pointers, allowing

direct references to data objects owned by another PE
Additional supported operations are collective broadcast and reduction, barrier synchronization,
and atomic memory operations. An atomic memory operation is an atomic read-and-update oper-
ation, such as a fetch-and-increment, on a remote or local data object.
SHMEM libraries implement active messaging. The sending of data involves only one CPU
where the source processor puts the data into the memory of the destination processor. Likewise,
a processor can read data from another processor's memory without interrupting the remote CPU.
The remote processor is unaware that its memory has been read or written unless the programmer
implements a mechanism to accomplish this.

6.1 HPC-X OpenSHMEM
HPC-X OpenSHMEM programming library is a one-side communications library that supports a
unique set of parallel programming features including point-to-point and collective routines, syn-
chronizations, atomic operations, and a shared memory paradigm used between the processes of
a parallel programming application.
HPC-X OpenSHMEM is based on the API defined by the OpenSHMEM.org consortium. The
library works with the OpenFabrics RDMA for Linux stack (OFED), and also has the ability to
utilize MellanoX Messaging libraries (MXM) as well as Mellanox Fabric Collective Accelera-
tions (FCA), providing an unprecedented level of scalability for SHMEM programs running over
InfiniBand.

PGAS Shared Memory Access OverviewRev 1.2

Mellanox Technologies44

6.2 Running HPC-X OpenSHMEM

6.2.1 Running HPC-X OpenSHMEM with MXM
MellanoX Messaging (MXM) library provides enhancements to parallel communication libraries
by fully utilizing the underlying networking infrastructure provided by Mellanox HCA/switch
hardware. This includes a variety of enhancements that take advantage of Mellanox networking
hardware including:
• Multiple transport support including RC, DC and UD
• Proper management of HCA resources and memory structures
• Efficient memory registration
• One-sided communication semantics
• Connection management
• Receive side tag matching
• Intra-node shared memory communication
These enhancements significantly increase the scalability and performance of message com-
muni-cations in the network, alleviating bottlenecks within the parallel communication libraries

6.2.1.1 Enabling MXM for HPC-X OpenSHMEM Jobs
MXM is activated automatically in ScalabeSHMEM for jobs with Number of Elements (PE)
higher or equal to 128.
 To enable MXM for SHMEM jobs for any PE:
• Add the following MCA parameter to the oshrun command line.

-mca spml_ikrit_np <number>

 To force MXM usage:
• Add the following MCA parameter oshrun command line.

-mca spml_ikrit_np 0

For additional MXM tuning information, please refer to the MellanoX Messaging Library
README file found in the Mellanox website.

6.2.1.2 Working with Multiple HCAs
If there several HCAs in the system, MXM will choose the first HCA with the active port to work
with. The HCA/port to be used can be specified by setting the MXM_RDMA_PORTS environment
variable. The variable format is as follow: MXM_RDMA_PORTS=hca_name:port,...
For example, the following will cause MXM to use port one on two installed HCAs:
MXM_RDMA_PORTS=mlx4_0:1,mlx4_1:1

The environment variables must be run via the oshrun command line:
% oshrun -x MXM_RDMA_PORTS=mlx4_0:1 ...

http://www.mellanox.com/content/pages.php?pg=products_dyn&product_family=135&menu_section=73

Rev 1.2

Mellanox Technologies 45

6.2.2 Running HPC-X™ OpenSHMEM with FCA
The Mellanox Fabric Collective Accelerator (FCA) is a unique solution for offloading collective
operations from the Message Passing Interface (MPI) or HPC-X OpenSHMEM process onto
Mellanox InfiniBand managed switch CPUs. As a system-wide solution, FCA utilizes intelli-
gence on Mellanox InfiniBand switches, Unified Fabric Manager and MPI nodes without requir-
ing additional hardware. The FCA manager creates a topology based collective tree, and
orchestrates an efficient collective operation using the switch-based CPUs on the MPI/HPC-X
OpenSHMEM nodes.
FCA accelerates MPI/HPC-X OpenSHMEM collective operation performance by up to 100
times providing a reduction in the overall job runtime. Implementation is simple and transparent
during the job runtime.

 To enable FCA by default in the HPC-X OpenSHMEM:
1. Edit the $HPCX_OSHMEM_DIR/etc/openmpi-mca-params.conf file.
2. Set the scoll_fca_enable parameter to 1.

scoll_fca_enable=1

3. Set the scoll_fca_np parameter to 0.
scoll_fca_np=0

 To enable FCA in the oshrun command line, add the following:
-mca scoll_fca_enable=1
-mca scoll_fca_enable_np 0

 To disable FCA:
-mca scoll_fca_enable 0 -mca coll_fca_enable 0

For more details on FCA installation and configuration, please refer to the FCA User Manual
found in the Mellanox website.

6.2.3 Developing Application using HPC-X OpenSHMEM together with MPI
The SHMEM programming model can provide a means to improve the performance of latency-
sensitive sections of an application. Commonly, this requires replacing MPI send/recv calls with
shmem_put/ shmem_get and shmem_barrier calls. The SHMEM programming model can
deliver significantly lower latencies for short messages than traditional MPI calls. An alternative
to shmem_get /shmem_put calls can also be considered the MPI-2 MPI_Put/ MPI_Get functions.
An example of MPI-SHMEM mixed code.

FCA is disabled by default and must be configured prior to using it from the HPC-X
OpenSHMEM.

/* example.c */

#include <stdlib.h>
#include <stdio.h>
#include "shmem.h"
#include "mpi.h"
int main(int argc, char *argv[])
{

http://www.mellanox.com/content/pages.php?pg=products_dyn&product_family=104&menu_section=73

PGAS Shared Memory Access OverviewRev 1.2

Mellanox Technologies46

6.2.4 HPC-X™ OpenSHMEM Tunable Parameters
HPC-X™ OpenSHMEM uses Modular Component Architecture (MCA) parameters to provide a
way to tune your runtime environment. Each parameter corresponds to a specific function. The
following are parameters that you can change their values to change the application’s the func-
tion:
• memheap - controls memory allocation policy and thresholds
• scoll - controls HPC-X OpenSHMEM collective API threshold and algorithms
• spml - controls HPC-X OpenSHMEM point-to-point transport logic and thresholds
• atomic - controls HPC-X OpenSHMEM atomic operations logic and thresholds
• shmem - controls general HPC-X OpenSHMEM API behavior
 To display HPC-X OpenSHMEM parameters:
1. Print all available parameters. Run:

% oshmem_info -a

2. Print HPC-X OpenSHMEM specific parameters. Run:
% oshmem_info --param shmem all
% oshmem_info --param memheap all
% oshmem_info --param scoll all
% oshmem_info --param spml all
% oshmem_info --param atomic all

 MPI_Init(&argc, &argv);
 start_pes(0);

 {
 int version = 0;
 int subversion = 0;
 int num_proc = 0;
 int my_proc = 0;
 int comm_size = 0;
 int comm_rank = 0;

 MPI_Get_version(&version, &subversion);
 fprintf(stdout, "MPI version: %d.%d\n", version, subversion);

 num_proc = _num_pes();
 my_proc = _my_pe();

 fprintf(stdout, "PE#%d of %d\n", my_proc, num_proc);

 MPI_Comm_size(MPI_COMM_WORLD, &comm_size);
 MPI_Comm_rank(MPI_COMM_WORLD, &comm_rank);

 fprintf(stdout, "Comm rank#%d of %d\n", comm_rank, comm_size);
 }

 return 0;
}

Rev 1.2

Mellanox Technologies 47

6.2.4.1 OpenSHMEM MCA Parameters for Symmetric Heap Allocation
SHMEM memheap size can be modified by adding the SHMEM_SYMMETRIC_HEAP_SIZE parameter
to the oshrun file. The default heap size is 256M.
 To run SHMEM with memheap size of 64M. Run:

% oshrun -x SHMEM_SYMMETRIC_HEAP_SIZE=64M -np 512 -mca mpi_paffinity_alone 1 -bynode -
display-map -hostfile myhostfile example.exe

Memheap can be allocated with the following methods:
• sysv - system V shared memory API. Allocation with hugepages is curently not sup-

ported
• verbs - IB verbs allocator is used
• mmap - mmap() is used to allocate memory
By default HPC-X OpenSHMEM will try a to find the best possible allocator. The priority is
verbs, sysv and mmap. It is possible to choose a specific memheap allocation method by running
-mca sshmem <name>

6.2.4.2 Parameters Used to Force Connection Creation
Commonly SHMEM creates connection between PE lazily. That is at the sign of the first traffic.
 To force connection creating during startup:
• Set the following MCA parameter.

-mca shmem_preconnect_all 1

Memory registration (ex: infiniband rkeys) information is exchanged between ranks during
startup.
 To enable on demand memory key exchange:
• Set the following MCA parameter.

-mca shmalloc_use_modex 0

PGAS Shared Memory Access OverviewRev 1.2

Mellanox Technologies48

6.3 Performance Optimization

6.3.1 Configuring Hugepages

Hugepages can be allocated using the /proc/sys/vm/nr_hugepages entry, or by using the sysctl
command.
 To view the current setting using the /proc entry:

cat /proc/sys/vm/nr_hugepages
0

 To view the current setting using the sysctl command:

sysctl vm.nr_hugepages
vm.nr_hugepages = 0

 To set the number of huge pages using /proc entry:

echo 1024 > /proc/sys/vm/nr_hugepages

 To set the number of hugepages using sysctl :man

sysctl -w vm.nr_hugepages=1024
vm.nr_hugepages = 1024

vm.nr_hugepages = 1024

To allocate all the hugepages needed, you might need to reboot your system since the hugepages
requires large areas of contiguous physical memory.
In time, physical memory may be mapped and allocated to pages, thus the physical memory can
become fragmented. If the hugepages are allocated early in the boot process, fragmentation is
unlikely to have occurred.
It is recommended that the /etc/sysctl.conf file be used to allocate hugepages at boot time.
For example, to allocate 1024 hugepages at boot time, add the line below to the sysctl.conf file:

Hugepages is a feature applicable to users using MLNX_OFED v1.5.3-3.0.0.

Rev 1.2

Mellanox Technologies 49

6.4 Tuning OpenSHMEM Atomics Performance
HPC-X OpenSHMEM uses separate communication channel to perform atomic operations. By
default this channel is enabled and uses RC transport.

Atomic tunable parameters:
• -mca spml_ikrit_hw_rdma_channle 0|1 - default is 1 (enabled)
• MXM_OSHMEM_HW_RDMA_TLS=rc|dc - Decides what transport is used for atomic opera-

tions. Default is rc

6.5 Tuning MTU Size to the Recommended Value

When using MLNX_OFED 1.5.3-3.0.0, it is recommended to change the MTU to 4k. Whereas in
MLNX_OFED 1.8 the MTU is already set by default to 4k.
 To check the current MTU support of an InfiniBand port, use the smpquery tool:

smpquery -D PortInfo 0 1 | grep -i mtu

If the MtuCap value is lower than 4K, enable it to 4K.
Assuming the firmware is configured to support 4K MTU, the actual MTU capability is further
limited by the mlx4 driver parameter.
 To further tune it:
1. Set the set_4k_mtu mlx4 driver parameter to 1 on all the cluster machines. For instance:

echo "options mlx4_core set_4k_mtu=1" >> /etc/modprobe.d/mofed.conf

2. Restart openibd.
service openibd restart

 To check whether the parameter was accepted, run:
cat /sys/module/mlx4_core/parameters/set_4k_mtu

To check whether the port was brought up with 4K MTU this time, use the smpquery tool again.

When running on Connect-IB® adapter cards, it is recommended to use DC transport
instead of RC.

The procedures described below apply to user using MLNX_OFED 1.5.3.-3.0.0 only.

PGAS Shared Memory Access OverviewRev 1.2

Mellanox Technologies50

6.5.1 HPC Applications on Intel Sandy Bridge Machines
Intel Sandy Bridge machines have NUMA hardware related limitation which affects performance
of HPC jobs utilizing all node sockets. When installing MLNX_OFED 1.8, an automatic work-
around is activated upon Sandy Bridge machine detection, and the following message is printed
in the job`s standard output device: “mlx4: Sandy Bridge CPU was detected”
 To disable MOFED 1.8 Sandy Bridge NUMA related workaround:
• Set the SHELL environment variable before launching HPC application. Run:

% export MLX4_STALL_CQ_POLL=0
% oshrun <...>

or
oshrun -x MLX4_STALL_CQ_POLL=0 <other params>

Rev 1.2

Mellanox Technologies 51

7 Unified Parallel C Overview
Unified Parallel C (UPC) is an extension of the C programming language designed for high per-
formance computing on large-scale parallel machines.The language provides a uniform program-
ming model for both shared and distributed memory hardware. The programmer is presented
with a single shared, partitioned address space, where variables may be directly read and written
by any processor, but each variable is physically associated with a single processor. UPC uses a
Single Program Multiple Data (SPMD) model of computation in which the amount of parallelism
is fixed at program startup time, typically with a single thread of execution per processor.
In order to express parallelism, UPC extends ISO C 99 with the following constructs:
• An explicitly parallel execution model
• A shared address space
• Synchronization primitives and a memory consistency model
• Memory management primitives
The UPC language evolved from experiences with three other earlier languages that proposed
parallel extensions to ISO C 99: AC, Split-C, and Parallel C Preprocessor (PCP). UPC is not a
superset of these three languages, but rather an attempt to distill the best characteristics of each.
UPC combines the programmability advantages of the shared memory programming paradigm
and the control over data layout and performance of the message passing programming para-
digm.
HPC-X UPC is based on Berkely UPC package (see http://upc.lbl.gov/) and contains the follow-
ing enhancements:
• GasNet library used within UPC integrated with Mellanox FCA which off-loads from

UPC collective operations.
• GasNet library contains MXM conduit which offloads from UPC all P2P operations as

well as some synchronization routines.

7.1 HPC-X HPC-X HPC-X HPC-X Compiling and Running the UPC Application

7.1.1 Compiling the UPC Application
 To build the UPC application:

• Use the upcc compiler.

 To build the application with a debug info in UPC and GASNet:
$ upcc -g -o app app.c

For further information on additional build options, please refer to the upcc man page.

7.1.2 Running the UPC Application
The UPC application can be run using the UPC execution command.

$ upcc -o app app.c

$ upcrun -shared-heap=<size_per_process> \
-n <total_number_of_processes> \
-N <machines_number_to_be_used> \
-bind-threads <executable>

Unified Parallel C OverviewRev 1.2

Mellanox Technologies52

7.1.2.1 Basic upcrun Options
Each UPC process uses shared heap. The exact size of the required shared heap is application-
specific. The amount of shared memory per UPC thread is controlled by the -shared-heap
parameter or by the UPC_SHARED_HEAP_SIZE environment variable.
A hard limit (per UNIX process) of the shared memory heap can be set using the -shared-heap-
max parameter or the UPC_SHARED_HEAP_SIZE environment variable. This constitutes an upper
limit on the -shared-heap parameter. Setting this value too high can lead to long application
startup times or memory exhaustion on some systems.
For optimal performance, you should bind (a.k.a pin) the UPC threads to the processors using the
-bind-threads option or using the UPC_BIND_THREADS environment variable. These parameters
are silently ignored on unsupported platforms.
The following is an example of running a binary with PPN=8 on 8 hosts.

For further information on additional usage options, please refer to the upcrun man pages or go
to http://upc.lbl.gov/docs/user/upcrun.html

7.1.2.2 Environment Variables
Any command line argument has its environment variable equivalent which is required as the
BUPC supports direct execution using the schedulers.
Any environment variable that begins with UPC_ or GASNET_ is automatically propagated to all
the nodes.
However, there is no Open MPI’s equivalent of passing any environment variable to all the
nodes, therefore, in order to pass an arbitrary environment variable to the BUPC or to your appli-
cation, this variable has to be present in the environment where the UPC application is executed.
For example, add your environment variables to ~/.bashrc or ~/.bash_profile

7.2 FCA Runtime Parameters
The following parameters can be passed to “upcrun” in order to change FCA support behavior:

 $ upcrun -shared-heap=256M -n 64 -N 8 -bind-threads <my_application>

Table 7 - Runtime Parameters

Parameter Description

-fca_enable <0|1> Disables/Enables FCA support at runtime (default: disable).

-fca_np <value> Enables FCA support for collective operations if the number of
processes in the job is greater than the fca_np value (default: 64).

-fca_verbose <level> Sets verbosity level for the FCA modules

http://upc.lbl.gov/docs/user/upcrun.html
http://upc.lbl.gov/docs/user/upcrun.html

Rev 1.2

Mellanox Technologies 53

7.2.1 Enabling FCA Operations through Environment Variables in HPC-X UPC
This method can be used to control UPC FCA offload from environment using job scheduler srun
utility. The valid values are: 1 - enable, 0 - disable.
 To enable a specific operation with shell environment variables in HPC-X UPC:

% export GASNET_FCA_ENABLE_BARRIER=1
% export GASNET_FCA_ENABLE_BCAST=1
% export GASNET_FCA_ENABLE_REDUCE=1

7.2.2 Controlling FCA Offload in HPC-X UPC using Environment Variables
 To enable FCA module under HPC-X UPC:

% export GASNET_FCA_ENABLE_CMD_LINE=1

 To set FCA verbose level:
% export GASNET_FCA_VERBOSE_CMD_LINE=10

 To set the minimal number of processes threshold to activate FCA:
% export GASNET_FCA_NP_CMD_LINE=1

7.3 Various Executable Examples
The following are various executable examples.
 To run a HPC-X UPC application without FCA support:

% upcrun -np 128 -fca_enable 0 <executable filename>

 To run HPC-X UPC applications with FCA enabled for any number of processes:
% export GASNET_FCA_ENABLE_CMD_LINE=1 GASNET_FCA_NP_CMD_LINE=0
% upcrun -np 64 <executable filename>

-fca_ops <+/->[op_list] op_list - comma separated list of collective operations.
• -fca_ops <+/->[op_list] - Enables/disables only the speci-

fied operations
• -fca_ops <+/-> - Enables/disables all operations

By default all operations are enabled. Allowed operation names are:
barrier (br), bcast (bt), reduce (rc), allgather (ag). Each operation can
be also enabled/disabled via environment variable:
• GASNET_FCA_ENABLE_BARRIER
• GASNET_FCA_ENABLE_BCAST,
• GASNET_FCA_ENABLE_REDUCE,
Note: All the operations are enabled by default.

HPC-X UPC contains modules configuration file (http://modules.sf.net) which can be
found at /opt/mellanox/bupc/2.2/etc/bupc_modulefile.

Table 7 - Runtime Parameters

Parameter Description

Unified Parallel C OverviewRev 1.2

Mellanox Technologies54

 To run HPC-X UPC application on 128 processes, verbose mode:
% upcrun -np 128 -fca_enable 1 -fca_np 10 -fca_verbose 5 <executable filename>

 To run HPC-X UPC application, offload to FCA Barrier and Broadcast only:
% upcrun -np 128 -fca_ops +barrier,bt <executable filename>

	Mellanox HPC-X™ Software Toolkit User Manual
	Table of Contents
	List of Tables
	List of Figures
	Document Revision History
	About This Manual
	Scope
	Intended Audience
	Syntax Conventions

	1 HPC-X™ Software Toolkit Overview
	1.1 HPC-X Package Contents
	1.2 HPC-X™ Requirements

	2 Installing and Loading HPC-X™
	2.1 Installing HPC-X
	2.2 Loading HPC-X Environment from bash
	2.3 Loading HPC-X Environment from Modules

	3 Running, Configuring and Rebuilding HPC-X™
	3.1 Starting FCA Manager from HPC-X
	3.2 Profiling IB verbs API
	3.3 Profiling MPI API
	3.4 Rebuilding Open MPI from HPC-X™ Sources
	3.5 Running MPI with MXM
	3.6 Generating MXM Statistics for Open MPI/OpenSHMEM
	3.7 Generating MXM Environment Parameters
	3.8 Loading KNEM Module
	3.9 Running MPI with FCA v2.5
	3.10 Running OpenSHMEM with FCA v2.5
	3.11 Running MPI with FCA v3.1 (hcoll)

	4 Mellanox Fabric Collective Accelerator (FCA)
	4.1 Overview
	4.2 FCA Installation Package Content
	4.3 Differences Between FCA v2.5 and FCA v3.X
	4.4 Configuring FCA
	4.4.1 Compiling Open MPI with FCA 3.X
	4.4.2 Enabling FCA in Open MPI
	4.4.3 Tuning FCA 3.X Setting
	4.4.4 Selecting Ports and Devices

	4.5 Runtime Configuration of FCA
	4.5.1 Memory Hierarchy
	4.5.1.1 Available SBGPs
	4.5.1.2 Available BCOLs
	4.5.1.3 Supported Collectives
	4.5.1.4 Different Memory Hierarchy Usages

	4.5.2 Enabling Mellanox Specific Features and Optimizations
	4.5.3 Selecting Shared Memory and MXM Point-To-Point Hierarchies for Collectives in FCA

	4.6 FCA 3.1 Integration

	5 MellanoX Messaging Library
	5.1 Overview
	5.2 Compiling Open MPI with MXM
	5.3 Enabling MXM in Open MPI
	5.4 Tuning MXM Settings
	5.5 Configuring Multi-Rail Support
	5.6 Configuring MXM over the Ethernet Fabric
	5.7 Configuring MXM over Different Transports
	5.8 Configuring Service Level Support
	5.9 Running Open MPI with pml “yalla”
	5.10 Adaptive Routing for UD Transport
	5.11 Support for a Non-Base LID
	5.12 MXM Performance Tuning
	5.13 MXM Utilities
	5.13.1 mxm_dump_config
	5.13.2 mxm_perftest

	6 PGAS Shared Memory Access Overview
	6.1 HPC-X OpenSHMEM
	6.2 Running HPC-X OpenSHMEM
	6.2.1 Running HPC-X OpenSHMEM with MXM
	6.2.1.1 Enabling MXM for HPC-X OpenSHMEM Jobs
	6.2.1.2 Working with Multiple HCAs

	6.2.2 Running HPC-X™ OpenSHMEM with FCA
	6.2.3 Developing Application using HPC-X OpenSHMEM together with MPI
	6.2.4 HPC-X™ OpenSHMEM Tunable Parameters
	6.2.4.1 OpenSHMEM MCA Parameters for Symmetric Heap Allocation
	6.2.4.2 Parameters Used to Force Connection Creation

	6.3 Performance Optimization
	6.3.1 Configuring Hugepages

	6.4 Tuning OpenSHMEM Atomics Performance
	6.5 Tuning MTU Size to the Recommended Value
	6.5.1 HPC Applications on Intel Sandy Bridge Machines

	7 Unified Parallel C Overview
	7.1 HPC-X HPC-X HPC-X HPC-X Compiling and Running the UPC Application
	7.1.1 Compiling the UPC Application
	7.1.2 Running the UPC Application
	7.1.2.1 Basic upcrun Options
	7.1.2.2 Environment Variables

	7.2 FCA Runtime Parameters
	7.2.1 Enabling FCA Operations through Environment Variables in HPC-X UPC
	7.2.2 Controlling FCA Offload in HPC-X UPC using Environment Variables

	7.3 Various Executable Examples

