ZCP trunk (build 51963)
Zarafa WebApp

Developers' Manual

& Zarafa

Zarafa WebApp

ZCP trunk (build 51963) Zarafa WebApp
Developers' Manual
Edition 1.2

Copyright © 2015 Zarafa BV.

The text of and illustrations in this document are licensed by Zarafa BV under a Creative Commons
Attribution—Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available
at the creativecommons.org website®. In accordance with CC-BY-SA, if you distribute this document or
an adaptation of it, you must provide the URL for the original version.

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.

MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other
countries.

Red Hat®, Red Hat Enterprise Linux®, Fedora® and RHCE® are trademarks of Red Hat, Inc.,
registered in the United States and other countries.

Ubuntu® and Canonical® are registered trademarks of Canonical Ltd.
Debian® is a registered trademark of Software in the Public Interest, Inc.
SUSE® and eDirectory® are registered trademarks of Novell, Inc.

Microsoft® Windows®, Microsoft Office Outlook®, Microsoft Exchange® and Microsoft Active
Directory® are registered trademarks of Microsoft Corporation in the United States and/or other
countries.

The Trademark BlackBerry® is owned by BlackBerry and is registered in the United States and may
be pending or registered in other countries. Zarafa BV is not endorsed, sponsored, affiliated with or
otherwise authorized by BlackBerry.

All trademarks are the property of their respective owners.

Disclaimer: Although all documentation is written and compiled with care, Zarafa is not responsible for
direct actions or consequences derived from using this documentation, including unclear instructions
or missing information not contained in these documents.

The Zarafa Collaboration Platform (ZCP) combines the usability of Outlook with the stability and
flexibility of a Linux server. It features a rich web-interface, the Zarafa WebApp, and provides brilliant
integration options with all sorts of clients including all most popular mobile platforms.

Most components of ZCP, including Zarafa WebApp, are open source. They are licensed under the
AGPLv3" and can therefore be downloaded freely as ZCP's Community Edition®.

This document, the Zarafa WebApp Developers' Manual, describes how to create additional
components for Zarafa WebApp. This allows third-party developers to either extend Zarafa WebApp
with more functionality, or even to integrate it with some existing application.

8 http://creativecommons.org/licenses/by-sa/3.0/
! http://lwww.gnu.org/licenses/agpl-3.0.html
2 http://www.zarafa.com/content/community

http://creativecommons.org/licenses/by-sa/3.0/
http://www.gnu.org/licenses/agpl-3.0.html
http://www.zarafa.com/content/community
http://creativecommons.org/licenses/by-sa/3.0/
http://www.gnu.org/licenses/agpl-3.0.html
http://www.zarafa.com/content/community

I. WebApp Introduction 1

1. Introduction 3
R VT T ¢ 7Y o 3

I = To [T =T 0 1T o £ 3

1.3. DOCUMENT STIUCTUIE OVEIVIEW ...ceuniiiiieiiiee et e e et e et e e e et e et e e et e e e e eaneaes 3

L4, EXAMPIES ..o e e aa s 4
1.4.1. FACEDOOK EVENLScouiiiiiiiiii e e 4

1.4.2. SPreed MEELINGSoviiei ettt e et e e e e e 4

R TR Y=o o o] LY o o T 4

2. Architecture Overview 5
3. Ext JS and OO-Javascript 7
N I O 1= 11 PSSP 7

3.2. ACCESSING COMPONENLSiiiiiiiiieiii e e e e e e e e e e e e e et e e et e e e e e e e et e e eanaerees 8

3.3 ENUMIS e 9

i, SINGIEIONS .t aaas 10

4. Extending WebApp 13
4.1. Ways of EXtending WEDAPDoiinii e 13

Il. Extending WebApp 15
5. Insertion Points 17
LN o 11~ o] o 1Y o] [o TP 18

5.2. Example: adding a buttonoooiiiiiiii e 19

6. Widgets 23
L O == Vi o = BT o o =Y PP 23

6.2. Widget CONFIQUIALIONiiiieii e et e e e e eaes 23

LT TR V= o | £ PP 25

7. Dialogs 27
0 Y= o | €SP 27

A == 11]][T 27

7.3. Dealing With MAPI FECOIUS ... cvuuiiiiieiie et e e e e e e eeees 28
7.3.1. DIiSplaying @ rECOIMuiiiiiiiii e e e 29

8. Bidding System 31
8.1. Bidding and iNSertion POINEScuuuiiiiiiiiie e 31

8.2, WWOTKING ettt et et e et et et e e e et e e e eaa e ae 31

8.3. Bidding on a shared COMPONENTcoouuiiiiiiiii e 32

8.4, EXAMPIE e e 32

9. Data Models 35
9.1. Model-based arChiteCUIEc..iiiieiiii e 35

9.2. Separable model arChiteCtUreoooiuiiiiiiii e 36

9.3, HierarcChy MOGEIiiiiiiii e e e e e e 38

9.4, SEttiNGS MOUEIiiieiii e 38

lll. Advanced topics 43
10. MAPI 45
11. Communication 47
11.1. CONCEPLUAL OVEIVIEWeevieiiiii ettt ettt e et e e et e e e et e eenes 47
2 = o] (o Yoo | PPN 48
11.3. Javascript COMMUNICALIONiiiiiiiiei ittt et e e eeees 49

Zarafa WebApp

11.4. ReSPONSE HANAIEISiiiiiiii e
R N[1] T 110 - PSP PPTTTT

12. Stores and RecordFactory
12.1. StOres and SUDSIOIESccuuiiiii it e e e e e e eanaaees
2 T Y A o S (o P
12.1.2. IPM Stores and ShadOWStOreocoviiiiiiiiiiec e
I = Tolo] (o | 1o (o Y PSPPI

13. Deployment and Build System
IR 200 I =Y o] o)/ 1 4 1= o P
13.2. BUIId SYSIEM .ottt e e e
13.2.1. Getting STAMEAceiiiei e
IR 77 AN o | A Voo To 18 o3 1T o TSP
IR 207 T o Yo

14. Translations
A1, GEUEXE ..oeeiiei e
14,2, SEIVEI-SIUR ...ttt ettt e et
14.2.1. Implemented Functions on the Server-Sidecccoooeiviiiiiiiiinieeiiieeees
G T O 1 =T | s T [P
14.3.1. Reading Translations and Passing it to the Clientccccoooviiiiniiienn,
14.3.2. Implemented Functions on the Client-Sidecccooeviiieiii i,

A. Coding Standards
AL NamMiNG CONVENTIONS ...ttt ettt et e et e et e e ea e e et e et e e ea e eetn e eeanaees
A.L.1. NaMESPACE STIUCTUME ...cvuiiiiiiiiieiet ettt et e e e enes
A.1.2. Naming Packages and CIasSESccoouuiiiiiiiiiiiiiiii e
A.1.3. Naming INSErtion POINESuiiiiiiiiiieiiii e
A.2. Coding Style GUIAEINES .. .cvuiiiicii e e eaas
A.3. DOCUMENTALION ...ttt ettt e ettt e e e e et e e bbb e e e e e e e e e nbb e e e e e e e
A.3.1. DOCUMENTING CIASSESiiiiiiiiiit ettt e et e et e e e e ean s
A.3.2. DOcUMENING FIElUSoiiiii e
A.3.3. DOCUMENTING CONSIIUCLONSueiiiiieeiiii ettt sttt eeeai e e eaanns
A.3.4. Documenting MEthOASoouuiiiiiii e
A.3.5. Documenting INSErtion POINESccccuiiiiiiiiie e e e
A.3.6. Documenting ENUMETALIONSiiiiiiiiiiiiii e e e e e e e e e ane e

B. References

Vi

Part I. WebApp Introduction

Part | contains information on WebApp, without diving into details just yet. An overview is given of how
WebApp is built: all the blocks of the architectural stack are identified. Then, we show some concepts
of object oriented programming and how they are translated to WebApp, this is not always obvious;
luckily the Ext JS framework will help us out there. Finally, we show how and where WebApp can be
extended.

Chapter 1.

Introduction

1.1. WebApp

WebA,op1 and its plugins are complete as the communication platform of the future. The WebApp

is essentially a front-end for a server-side, database driven application (zarafa-server). The user
interface portion of the WebApp is written using the Ext JS 3.4 framework®, which provides a desktop-
like Ul, with a programming interface. WebApp architecture is very flexible allowing community to
easily create new plugins, contexts or widgets.

Some useful links to online resources are listed in Appendix B, References. The latest version of this
document is always published online®.

1.2. Requirements

To use WebApp, the following is required: a web server that is capable of running PHP 5.1 or higher;
access to a Zarafa server with either a 7.0 version later than 7.0.8, or any 7.1 version; the PHP-MAPI
extension matching the Zarafa server version.

As for browsers, community users only have support for the latest of the following brands:
* Internet Explorer 9

* Firefox

 Safari

Customers have support for the browser versions which are at most 1 year old, but they should refer
to the documentation on the customer port‘al4 or to zarafa.com/doc®; see the Release Notes for more
up to date information.

1.3. Document Structure Overview

The manual is logically divided into 2 parts and one appendix.

The first part covers chapters 2-8 and represents general information about programming for Zarafa
WebApp. These chapters contain the things that are relevant to all plug-in developers. An overview
of the WebApp architecture is given in Chapter 2, Architecture Overview, and Ext JS is introduced
in Chapter 3, Ext JS and OO-Javascript. How to extend WebApp is given in the chapters Chapter 8,
Bidding System, Chapter 7, Dialogs and Chapter 9, Data Models.

The second part with chapters 9-14 contains advanced information about WebApp. This part explains
things that probably won't be used by all plugin developers, for example, additional information about
Chapter 9, Data Models and Chapter 10, MAPI. Some more detailed explanation of the Chapter 11,
Communication and Chapter 12, Stores and RecordFactory. Also some advanced things to know,

but not obligatory to use, such as the Chapter 13, Deployment and Build System and dealing with
Chapter 14, Translations.

! http:/Avww.zarafa.com/webapp

2 http://docs.sencha.com/ext-js/3-4/#!/api

8 http://doc.zarafa.com/trunk/WebApp_Developers_Manual/en-US/html-single/
* https://portal.zarafa.com/

® http://www.zarafa.com/doc

http://www.zarafa.com/webapp
http://docs.sencha.com/ext-js/3-4/#!/api
http://doc.zarafa.com/trunk/WebApp_Developers_Manual/en-US/html-single/
https://portal.zarafa.com/
http://www.zarafa.com/doc
http://www.zarafa.com/webapp
http://docs.sencha.com/ext-js/3-4/#!/api
http://doc.zarafa.com/trunk/WebApp_Developers_Manual/en-US/html-single/
https://portal.zarafa.com/
http://www.zarafa.com/doc

Chapter 1. Introduction

Appendix A, Coding Standards contains coding guidelines and recommendations for the code style to
use, concerning comments and documentation.

1.4. Examples

The manual frequently gives code examples. These are taken from the Facebook Events plugin, the
Spreed Plugin and the Facebook widget plugin. The Facebook Events plugin and the Spreed Meeting
Plugin are published as separate projects; the Facebook widget is part of the WebApp package.

1.4.1. Facebook Events

The core example of this manual will be the Facebook Events integration p/ugine. The Facebook Event
plugin allows the WebApp user to copy Facebook events to his Zarafa calendar. When the Facebook
button in the navigation panel of the user’s Calendar is clicked for the first time, he’'ll be asked to login
to Facebook and provide Zarafa WebApp access to your personal data. After getting confirmation,
you'll see the progress bar while the event list is loading. After this you'll see the list of all your events
selected. Unchecking unnecessary events, you can select which events to import. Your Facebook
events will be added as new Zarafa events of special type. For the next time, you can synchronise
data by clicking the same button in the Calendar Navigation Panel. The period of the events in the
future to import can be specified in settings.

1.4.2. Spreed meetings

The Spreed Meeting plugin7 allows the user to setup Spreed meetings (online web meetings) directly
from Zarafa WebApp. A spreed conference can be started from an existing email, and the participants,
meeting subject, body, attachments will be copied from that email. Or, alternatively, a completely new
meeting can be set up. In any case, the user can edit any of the meeting details before starting it.

1.4.3. Facebook widget

Finally, the Facebook widget plugin allows the user to follow activity on Facebook. It is possible to
select any account; by default the Zarafa Facebook page is followed.

® http:/www.zarafa.com/
7 http://www.zarafa.com/content/introduction-spreed-web-meeting-integration

http://www.zarafa.com/
http://www.zarafa.com/content/introduction-spreed-web-meeting-integration
http://www.zarafa.com/
http://www.zarafa.com/content/introduction-spreed-web-meeting-integration

Chapter 2.

Architecture Overview

Zarafa WebApp was developed to provide possibilities for third-party developers to add new or build
upon existing functionality. These developers have the choice to build a plugin or a widget, but all
components are easily extensible and allow easy and fast integration with Zarafa WebApp.

The base framework for Zarafa WebApp is Ext Js' a Javascript toolkit built by Sencha®. The Ext JS
toolkit was founded on a solid object-oriented inspired design, using classes and inheritance, which
makes it particularly suitable for a complex application as this. WebApp is developed using the same
extensible structures as those provided by Ext JS, so that the WebApp code integrates well with
existing Ext JS components.

Figure 2.1, “WebApp architecture overview” shows the rough architecture of WebApp. The application
framework, provided by Zarafa, builds on the Ext JS library to provide all the functionality that is
needed across the application. As you can see, even the Mail, Calendar, etc. contexts are plugins
building on the core Ul and model frameworks.

Mail Calendar Note Plug-ins
ul ul ul Ul
Plug-ins
Alfresco

Model Model Model Model

odel ode odel ode SugarCR M

Model Ul
Framework
ExtJS

Figure 2.1. WebApp architecture overview

The framework also provides a user interface infrastructure, with a main screen that carries the
standard components that are used by all contexts. The framework supplies a communications API
that allows for both low-level and high-level interaction with the server-side back-end.

A more advanced explanation of the architecture of Zarafa WebApp can be found in Chapter 10,
MAPI, Chapter 3, Ext JS and OO-Javascript, Chapter 9, Data Models.

! http:/idocs.sencha.com/ext-js/3-4/#!/api
2 http://www.sencha.com/

http://docs.sencha.com/ext-js/3-4/#!/api
http://www.sencha.com/
http://docs.sencha.com/ext-js/3-4/#!/api
http://www.sencha.com/

Chapter 3.

Ext JS and OO-Javascript

JavaScript is not a real object-oriented language, it is a prototyping language, that is the difference
with other object-oriented languages. In Javascript, you don't use classes, you create objects from
other objects.

When developing your own plugins, it's a good idea to place all of your classes and singletons into
namespaces to avoid collisions with other developers' code. With Ext JS, it's easy to do this using
Ext.namespace”.

3.1. Classes

To declare a new class, one usually starts with defining the constructor. It is customary, but not
required, to have a "configuration" object as the first parameter. Configuration parameters are object/
value pairs that configure specific parts of an object’s instantiation, avoiding large sparse parameter
lists. The constructor calls the constructor of its parent manually in case the class doesn’t have

its native constructor. If it does have one, then the following code should be executed to call the
constructor, depending on which parameters you need to pass:

My .NameSpace.ObjectClass.superclass.constructor.call(this, config)
or
My .NameSpace.ObjectClass.superclass.constructor.apply(this, arguments)

This is the way all the classes in WebApp should be created.

We'll use the Spreed plugin code as an example, with a snippet of the code of the class
SpreedParticipantBox:

Ext.namespace('Zarafa.plugins.spreed.dialogs');

/**
* @class Zarafa.plugins.spreed.dialogs.SpreedParticipantBox
* @extends Zarafa.common.recipientfield.ui.RecipientBox
* @xtype zarafa.spreedparticipantbox
*
* Extension to the {@link Zarafa.common.recipientfield.ui.RecipientBox}.
* This box offers adding moderator icon for the moderator participant.
*/
Zarafa.plugins.spreed.dialogs.SpreedParticipantBox = Ext.extend(
Zarafa.common.recipientfield.ui.RecipientBox, {

/**
* @constructor
* @param config Configuration object
*/
constructor : function(config)
{
config = config || {};
Ext.applyIf(config,
{
1)

Zarafa.plugins.spreed.dialogs.SpreedParticipantBox.superclass.

! http://docs.sencha.com/ext-js/3-4/#!/api/Ext-method-namespace

http://docs.sencha.com/ext-js/3-4/#!/api/Ext-method-namespace
http://docs.sencha.com/ext-js/3-4/#!/api/Ext-method-namespace

Chapter 3. Ext JS and OO-Javascript

constructor.call(this, config);

3

// other functions

1)

Ext.reg('spreed.spreedparticipantbox',
Zarafa.plugins.spreed.dialogs.SpreedParticipantBox);

The Ext .namespace call on the first line ensures that there exists a JavaScript object called
Zarafa.plugins.spreed.dialogs to act as an enclosing namespace object for our new class.
The Ext JS Ext .namespace function declares a namespace. We place chunks of related functionality
in namespaces and let the code tree reflect the namespace hierarchy. For example, classes in the
Zarafa.plugins.spreed.dialogs namespace are defined in JavaScript files that can be found in
plugins/spreed/dialogs and are related to Spreed Meeting dialogs.

After this come several lines of documentation: the class name, its parent class and xtype to register.
It's good practice to always do this since the build system extracts this information to determine the
inclusion order of JavaScript files.

The call to Ext . extend expresses that
Zarafa.plugins.spreed.dialogs.SpreedParticipantBox extends (is a child class of)
Zarafa.common.recipientfield.ui.RecipientBox. It is now possible to substitute an
instance of the former for the latter. In most cases you can easily extend already existing classes to
add some small functionality. If the class you're writing is not a child class of anything, simply extend it
from Object.

When creating a common user interface class in the core, it should be registered using the Ext . reg
function to allow the usage of xtype when creating the object. It is registered with the prefix
Zarafa.[name] to prevent name clashes with Ext JS registered classes.

// At the bottom of the derived class, register it:
Ext.reg('spreed.spreedparticipantbox', Zarafa.plugins.spreed.dialogs.
SpreedParticipantBox);

// When using the derived editor in any class:
xtype : 'spreed.spreedparticipantbox'

New classes should always be created in a new file within the correct folder. Exceptions might be
made if the new class is a helper class which only consists of a few lines of code and it is bound to the
other class, defined in the same file, in such a way that moving it into a separate file is not logical.

3.2. Accessing Components

Often, when writing Panels which contain Components combined with the lazy instantation as
discussed further, the problem arises that somewhere in the code of the container, a particular
component must be accessed. Because the items array cannot be read (this only contains the lazy
configuration objects and not the Component instantiations) other methods like panel. findBy(),
findById() or findByType () must be used. Because these functions always search through all
items, and all subitems (in case containers are embedded in the main panel), performance of these
functions is quite low.

Ext JS offers an easy way to assign a component to a variable in the panel during rendering. If the
ref option is used in the component, the variable name can be specified of the component inside the
parent panel. By using a path specifier it is even possible to assign the variable to the parent of the
parent container. Consider the following example:

Enums

xtype: 'panel',

id: 'panel1l',

items: [{
xtype: 'textarea',
ref: 'myTextArea'

3]

After rendering, the panel, with id panell, will contain the field myTextArea, which will point to the
given textarea. For specifying the path, consider the following example:

{
xtype: 'panel',
id: 'panell',
items: [{
xtype: 'panel',
id: 'panel2',
items: [{
xtype: 'textarea',
ref: '../myTextArea'
1
1
}

By using the path seperator, the field myTextArea will now be assigned to panell1. Within the
textarea itself, panell can be accessed through the refOwner field.

Using the above objects, one can use the following code within the textarea:

reset : function()

{
// The panel owns the record for which we display the data
this.setText(this.refOwner.record.get('data'));

}

While in panell, we can use the following code to access the textarea component;

update : function(record)

{
// Update the textarea with the new record data
this.myTextArea.update(record.get('data'));

}

This will work for any component, including components added in the tbar (top bar), fbar (footer
bar) or bbar (bottom bar) fields. However, for these fields, additional path seperators are needed,
since these are actually separate containers inside the main container.

3.3. Enums

Enumerations in Zarafa are extended from Zarafa. core.Enum. See the following example from the
Spreed plugin:

Ext.namespace('Zarafa.plugins.spreed.data');

/**
* @class zarafa.plugins.spreed.data.DialogTypes
* @extends Zarafa.core.Enum

*

Chapter 3. Ext JS and OO-Javascript

* Enum containing the different types of dialogs needed to display spreed
meeting.
* @singleton
*/
Zarafa.plugins.spreed.data.DialogTypes = Zarafa.core.Enum.create({

/**
* The dialog with empty fields.(Brandly new)

*

* @property
* @type Number
*/

EMPTY : 1,

/**
* The dialog with filled subject and participants.

*

* @property
* @type Number
*/

FILLED : 2,

/**
* The dialog with only participants field prefilled.

*

* @property
* @type Number
*/
PARTICIPANTS_FILLED : 3
1)

So, this example contains, as usual, the namespace specification, then comments explaining what the
purpose of this enumeration is. Then, the constructor create of the superclass, followed by the list of
properties and their values.

You can also add extra items to an enumeration at a later stage, this might be especially helpful

for plugins. This requires to extend from Zarafa.core.data.RecordCustomObjectType. Itis
connected with RecordFactory, so all custom records get a BASE_TYPE that is higher than 1000; so
you can see it is a custom record. Thus, BASE_TYPE is equal to 1000, and the next one you add is
then 1001, as the value of the previous highest value is incremented. See an example of its use in the
class FbEventRecord:

Zarafa.core.data.RecordCustomObjectType.addProperty('ZARAFA_FACEBOOK_EVENT');

Now our Facebook records are of our custom type ZARAFA_FACEBOOK_EVENT.

3.4. Singletons

Static functions can be declared inside a singleton object. A singleton, in object oriented design, is a
class that only has a single instance. This can be easily simulated in JavaScript by just creating one
instance and re-using it. Consider the following example of the definition of a singleton, emulated in

Javascript by a struct:

/**
* @class Zarafa.core.XMLSerialisation
* Functions used by Request for converting between XML and JavaScript objects
* (JSON)
* @singleton
*/
Zarafa.core.XMLSerialisation = {

10

Singletons

// snip

}
For singleton classes which extend an existing class, consider the following example:

/**
* @class Ext.StoreMgr
* @extends Ext.util.MixedCollection
* The default global group of stores.
* @singleton
*/
Ext.StoreMgr = Ext.extend(Ext.util.MixedCollection, {

// snip

1)

// Make it a singleton
Ext.StoreMgr = new Ext.StoreMgr();

There is now an instance of Ext . StoreMgr that is given the same name of the original class
definition, effectively making it the only possible instance of it.

11

12

Chapter 4.

Extending WebApp

4.1. Ways of Extending WebApp

Refer back to Figure 2.1, “WebApp architecture overview”, showing the software stack. Here, a few
plug-ins are given as an example. However, there are actually three ways of extending WebApp, we
call them contexts, plugins and widgets.

Contexts are implemented as plugins, and third-party developers can develop their own contexts to
extend or customise the application. Figure fig:layout[] gives three examples of contexts: the Mail,
Calendar and Note contexts. Each context is a kind of special plugin that has additional functionality
allowing it to take over the toolbar and main content section of the screen. Only a single context can
be active at any given time. For example, folders in the folder hierarchy are linked to contexts that
display their contents, so that when a user clicks his or her inbox, the Mail context is shown.

The main application screen consists of several areas. Some of these are independent shown in e.qg.
Figure 4.1, “Mail context”. The Ul provides a standard hierarchy panel showing a list of folders the
user has access to, as well as a bottom tool bar. Each context has its own content panel and tool bar,
but only the ones belonging to the currently active context are visible while all others are hidden. This
is achieved by loading the toolbars and content panels of all contexts into their respective areas and
using card layouts to switch between them.

Note

Mail « suft Page 1lof1] | m ~n 2 omE K
All Folders Search in ‘stf P~ = We have finally done it!
Feix Bartels <! bartels @zarataserver.de>
Show all folders v/ From Received + ke Sent: Mon 20-Feb-2012 11.08
Assessment of the first month To: Al <al@zarafa.com>
=€ Inbox - Alexandra Stepanchuk Aasessment of the frst mo B <
= Calendar £ JohnvanderKamp Tue 13.03-2012 1426 v That's the best sign of success, someone is searching for a Zarafa key in a Warez bulletin board* ;)
{ Contacts RE: Upgrade to Jenkins
il Deleted tems .
£ orafts (2) (9 Johnvender Kamp - Tue 13.03-2012 1309 v hitp://www boerse. bz /hard 1x/1020437-suche zarafa-open-source-
3 [53 Inbox perate e e groupware. himi
[Important £ Naomide Jonge Tue 13-03-2012 09:45 v
[JIRA notifications. (9) 8.2 Demo [
[E Meeting notifications R
st £ Miriam Schokes Wed 07-03-2012 10:56 v
= Zarafa News Thursday 8 March 2012 Mit freundlichem Grus,
By welcome
£ Journal £ Mirjam Schokes Mon 05-03-2012 15:52 =4 Felix Bartels
Junk E-mail How to deal with Press at CeBIT! Sales and Customer Relations
[Misc info +40 (511) 22001980
Notes Mon 05-03-2012 1206 -
Eaoutsax 2 sday 6 March 2012 v Zarafa: Open - Compatible - Enterprise
M RSS Feeds Fri 24.02-2012 18:09 =
\BSEH(Items. News: Zarafa is the most popular open source groupware solution, according to TecChannel
1) Suggested Contacts
= ek £ o Timmermans Fri24-02-2012 14:53 v Event: CeBIT 2012: Zarafa for 7th time in a row in Main Hall together with many partners (Hall 2, booth
sk Juray agui for . fow deys 054, 6.10 March)
@ %, Public Folders = .
) Nathanaeivan Toom Fri24.02-2012 13:14 e Support our growth: Zarafa has job vacancies in the field of sales, development and testing. Apply
Open Shared Folders Businesscar now!
E’I Felix Bartels Mon 20-02-2012 11:08 o Zarafa Deutschland GmbH, Schiffgraben 13, 30159 Hannover, Germany

Figure 4.1. Mail context

We have finally done it

Kontakt: +49 (511) 22001980, www.zarafaserver.de | www.twitter. comizarafagroupware
Registergericht: Amtsgericht Hannover, HRB201370 -

13

Chapter 4. Extending WebApp

Calendar t Tasl You are logged on as Alexandra Stepanchuk Seftings Logout
o 5 -
B egC & @ 5 i Zarafa
Calendars < Calendar 4 |9-13Apriz012| b Wi «
4 April 2012 N Search in ‘Calendar el
M T W T F 5 S — — B ——
B Calendar 52 4 Evens 5% 4= Calendar 57 -
2 3 4 5 6 7 8 B 10 1 12 13 9 10 1 12 13) 10 1n 12 13
810 11 12 13 14 15 b % thuiswerken |
16 17 18 19 20 21 22 (= v«
28|24 25 2% 7 8 2 g0 B
30
My Calendars 1000
Show all folders | | X
"/ Calendar 1100 [wr) [FE
¥/ Catendar of Remen van B =L
" ¥ Events in Public Folders 1200 = demo,
3 — retraspi "
Open Shared Calend = b & Kl |
pen Shared Calendars — —
1300 le S| wgn
,@E# b |
1400 e | lunch
ErFBEGE a‘
1500 25 Ll =rE
=]
1690
1700

Figure 4.2. Calendar context

You are logged on as Alexandra Stepanchuk S€

Notes « Notes [Page 1ot1] b I BT «
My Notes Search in Notes yel 4
Show al fokders | Subject Created Categories

[|Notes [T] Hello Workd! Mon 23-04-2012 12:42
[T]test4 in Pubic Folders [New Pink note for you Mon 23.04-2012 12:44
Open Shared Notes.. =] Simple White note Mon 23-04-2012 12:43

[7] Testing notes Tue 03-04-2012 1756

[F] Testing some new notes Mon 23-04-2012 12:43

Figure 4.3. Notes context

Plugins can be of arbitrary complexity; they have the liberty to work with dialogs, stores and other
extended Zarafa features. When you need a deeper integration with Zarafa, you will need to work
with a plugin. Example plugins are the Spreed plugin, XMPP plugin, Facebook plugin. Plugins can be
shown visually as some Ul components which trigger some work: buttons or context menu items to
integrate Facebook events, setup a Spreed meeting, etc.

Finally, Widgets appear only in the Today context and the side bar. They can be be added or removed
from there by the user. Each time the Today context is opened, the configured widgets are shown.
Also, if you enable and lock the side bar, the widgets put in there are shown continuously. Widgets are
small plugins, usually only visual, with very simple functionality. Example widgets: a simple visual shell
game, a customized clock.

14

Part ll. Extending WebApp

In part |, we have seen what the possibilities are. In this part, we will explain the background and show
how to implement a plugin that actually extends WebApp. We will use the plugins that were introduced
in the introduction chapter.

This part is probably the most useful one to casual plugin and widget developers. We explain how to
implement a widget, a dialog, and how to access globally available data. Any advanced topics are left

for part 111.

Chapter 5.

Insertion Points

The first thing plugin developers should really learn to start implementing new plugins are insertion
points. An insertion point is a named location in the Ul component hierarchy where plugins may
add their own components. Insertion points are typically added to toolbars and context menus,
and are intended to be easy hooks for adding new buttons, button groups or menuitems. The
name of an insertion point is hierarchical, so most things specifically related to e-mail will start with
context.mail and have a more precise indication of the location after that.

Note, that work with insertion points is implemented as a call to the container, which collects Ul
components from registered plugins and returns them. You can easily create your custom insertion
points. See the listing below:

var toolbar = new Ext.Toolbar(

{
items : [
// Fixed items, always present
{
iconCls : 'icon_new'
}l
{
iconCls : 'icon_delete'
}l
// Create insertion point 'example.toolbar'
container.populateInsertionPoint('example.toolbar"')
1
1)

And now you have created a new insertion point, which can be used in future. By design, the names
of the insertion points should reflect the structure of the application. Therefore, the proposed naming
scheme follows a hierarchy separated by dots (.). More information and recommendations on the
naming conventions are given in Appendix A, Coding Standards.

In some cases, it's useful to have insertion points that provide extra information to the plugin.

An example is an insertion point in a context menu, where it's useful to pass the menu object

(Ext .menu.Menu) to the creation function. Yet another example is a toolbar in a read mail dialog,

which might pass the entry ID of the item that is being shown to the plugin.
container.populateInsertionPoint(’dialog.readmail.toolbar’, mailEntryId);

A plugin is then able to register a function that uses these parameters:

createButton : function(insertionPoint, mailEntryId)

{
return
{
xtype : 'button',
text : 'Hello!',
handler : function()
{
alert('Message ID: ' + mailEntryId);
1
3
1

The returned component has an xtype field. This field is the unique identifier for that class, and is
registered using Ext . reg() together with the corresponding constructor. However, in most cases,
you need to use an already existing insertion point.

17

Chapter 5. Insertion Points

5.1. Zdeveloper plugin

Now, while we do not have a list of insertion points in the documentation, it is possible to get an
overview of them by enabling the zdeveloper plug-in. Doing so, you will be able to visually identify
locations where WebApp can be extended: it highlights all existing insertion points, even those
provided by third-party plugins.

Do this by navigating to Settings > Advanced, select Settings | zarafa | v1 | plugins | zdeveloper, and
double-click the "false" to show a checkbox, check it to turn the plug-in on, and click Apply. Then, log
out and back in again. You will immediately notice why this plugin is disabled by default.

Firefox ~

Zarafa WebApp

| |2 Google

Task Note EERREDEWVEIRSE You are logged on as Michael Scofield Settings

+
- LEQJ‘ c‘ main.toolbar.actions ﬁ = = main.toolbar.actions. last §Mfa
Mail « | Inbox [| < |Page 10f38] » M cont{ EF Open R T > «
navigation.north .
Search in 'Inbox’ & prin i
My Mail ' M From Subject | Ry Size =
Show all folders. &} i = CHNMom.. T oNn
= £} Inbox - Michael Scofield = htmleuh... CHN.com International Headl A Repyy Al 16.1KB Lo
il Deleted ltems (13) = CHNH Poli... The CHN Political Ticker: Mol & Forward 2. 2T5KB ¥
Drafts (1) = BBC Bre... UK soldiers killed in i 2. 124KB ¥
=/ Inbox (961) = htmiasi... CNN.com International Headlj [contextmailconteximenuactions | 1y 45545 o
BIEscape Plans BBC B Spain i Italy to win E 120. 12 KB W
re... in trounce o win Eu
BvEssentials Equipment L pa) ol _ &3 Mark Unread
[Later (1) =] BBC Bre... Barclays chairman Agius tor 20... 12KB W il

@ Junk E-mail e L

[Outbox previewpaneltoolbar left 4 aneltoolbarright || s
¥ SetFlag (3=

M RSS Feeds
[Sent tems =l Today's headlines from CNN P T
[set20120118 (121) CHHMorningMews <mailingsgmail.cnn.com: .
Sent: Monday 2nd July 2012 11:32 ¥ Mone
= % Public Folders To: Michael Scofield <m.sc 3.Com;
E Favorites | previewpanel.toolbar.detaillinks _
% Move to Junk Folder
= B Public Folders - -
open & Create E-Mail i Delete 3
£ Send “] < context. mail. mailcreatedialo .tnnlhar.ac:tinns-
=send | & W m & A g | & optons
From:
| context.mail.contextmenu.options.
To: N Archive to SugarCRM
navigation.south m» Spreed meeting 2

Figure 5.1. Zdeveloper plugin turned on: all extension points are labeled in the user interface of
WebApp

WebApp now shows little text boxes containing the names of all existing insertion points, such as in
the screenshot in Figure 5.1, “Zdeveloper plugin turned on: all extension points are labeled in the user
interface of WebApp”. So, for example, next to the "Reload" button in the main tool bar, there is a label
with the text "main.toolbar.actions”. This means that if you register to that insertion point, the result will
be put there, in the toolbar, as a button.

this.registerInsertionPoint('main.toolbar.actions', this.addCustomAction, this);

addCustomAction : function(insertionpoint) {
return {
xtype : 'button',
tooltip : _('Custom Action'),
iconCls : 'icon_customAction'

18

Example: adding a button

In this case, the function addCustomAction is defined in your plug-in and returns an instance of

Ext.Button, which is also suitable for inclusion in a tool bar like this. Other insertion points require
different types of objects, please refer to the APl documentation for the object type that the insertion

point expects.

Thus, using the zdeveloper plug-in, you can quickly identify where you can add user interface
elements to WebApp. Moreover, if you already know where to look, you can use it to get the exact
name of the insertion point that you need. For all the rest, such as finding out the exact type of the
object you should return when registering to an insertion point, you still need the API reference
documentation.

5.2. Example: adding a button

The following code snippet shows an example with the Facebook events integration plugin:

Zarafa.plugins.facebook.FacebookEventsPlugin = Ext.extend(Zarafa.core.Plugin,

{

/**
* @constructor
* @param {Object} config Configuration object
*/

constructor : function (config)

{
config = config || {};
Zarafa.plugins.facebook.FacebookEventsPlugin.superclass.constructor.call(this,
config);
this.init();

+

/**
* Called after constructor.
* Registers insertion point for facebook button.
* @private
*/
init : function()
{
this.registerInsertionPoint('navigation.south', this.createFacebookButton,
this);
i

/**
* Creates the button by clicking on which the Facebook
* will be imported to the Zarafa calendar.
* @return {Object} Configuration object for a {@link Ext.Button button}
* @private

*
/
createFacebookButton: function()
{
var button=
{
xtype : 'button',
text : _('"Import Facebook events'),
iconCls : 'icon_facebook_button',
navigationContext : container.getContextByName('calendar')
}
return button;
1)

Zarafa.onReady(function()

19

Chapter 5. Insertion Points

{
if(container.getSettingsModel().get('zarafa/vi/plugins/facebook/

enable') === true)

{

container.registerPlugin(new Zarafa.plugins.facebook.
FacebookEventsPlugin());

}
1

So, let’s look closer on what is happening after the each function call. Just after calling the constructor
we call init() function which registers insertion point in the navigation panel, south part.

init : function()

{

this.registerInsertionPoint('navigation.south', this.createFacebookButton,
this);
I

Here we initiate our plugin insertion point by registerinsertionPoint function. Which takes three
parameters registerinsertionPoint(match, func, scope).

Where match is a string or regular expression naming the existing insertion point where new item will
be added. Regular expression can be used like in the example below:

this.registerInsertionPoint(/context\..*?\.toolbar/, this.createButton, this);

func is a function that creates one or more Ext JS components at the specified insertion point and
scope is an optional parameter of the scope in which the items will be created.

createFacebookButton:function()

{
var button=
{
xtype : 'button',
text : _('"Import Facebook events'),
iconCls : 'icon_facebook_button',
navigationContext : container.getContextByName('calendar')
}
return button;
}

Here comes the button (the returned component may be any other Ul component (Ext. Component
instances)) itself with specified xtype and text. We also specify the icon css style. And the last
configuration property is navigationContext used here for our Facebook button to be displayed only
when Calendar context is the active one.

After specifying all the necessary properties for items to insert we should register our plugin by calling
the following function:

Zarafa.onReady(function() {
if(container.getSettingsModel().get('zarafa/vil/plugins/facebook/enable")
=== true) {

container.registerPlugin(new Zarafa.plugins.facebook.
FacebookEventsPlugin());

}
1

Zarafa.onReady function is called when all essentials have been loaded and Container is ready for
work — so it is high time for plugins to start their work. container.getSettingsModel function is used

20

Example: adding a button

to check in Settings if the plugin is enabled. More information about Settings can be found in the
corresponding chapter settings. container.registerPlugin function registers the plugin itself for work.

So, our Facebook button looks like in Figure 5.2, “New Facebook button in Calendar Context”.

Calendar Contact Task MNote You are Iogged on as Zarafa Test Settings Logout
=) "
| M C .- @ (e & Zarafa
Calendars « Calendar 4 |16-20Apri2012 | P mig <
F April 2012 - P Search in 'Calendar’ ,OV
M T 0w T F s B | 16 17 18 19 20
1
2 3 4 5 B 7 B 100 =
9 10 1 12 13 14 15
00
16 17 18 [18] =20 21 22 11
23 24 25 26 7 26 29 12 %0
30 130
My Calend 14 -
T Show all folders [15% -
[0 rs
16 *
[Calendar 17 o0
Open Shared Calendars...
00
18
19 %
20 % :
00
n Import Facebook events 21 -

Figure 5.2. New Facebook button in Calendar Context

21

settings

22

Chapter 6.

Widgets

As was mentioned in Section 4.1, “Ways of Extending WebApp”, widgets appear in the Today context
or the side panel. The user can add or remove them at will ' A user can also add multiple instances of
the same widget but with different parameters.

Having multiple instances of the same widget is made possible because each widget's instance object
has a unique identifier to keep multiple instances apart. As soon as you add a new widget to the Today
context or the side panel, the widget receives a new identifier, a GUID ?, which will be used to store
the widget's state. This newly added instance of the widget can maintain his own settings; its settings
are stored in the settings tree in the folder zarafa/v1/widgets/[GUID] % When a widget is removed from
the Today context or the side panel, this folder is deleted.

6.1. Creating a widget

We will look at the widget's architecture based on the Facebook Widget example. It shows the activity
stream from a site that you can change in the widget's configuration.

To create a custom widget, you need to do two simple steps:

1. Create your own class that extends Zarafa.core.ui.widget.Widget;

2. Register this widget class in the container.

Zarafa.widgets.FBWidget = Ext.extend(Zarafa.core.ui.widget.widget, {
// The widget's code goes here

1

Zarafa.onReady(function() {
container.registerwidget(Zarafa.widgets.FBwWidget,
Ifbl,
_('Facebook'),
'plugins/facebookwidget/resources/images/facebook.png');

1)

6.2. Widget configuration

To allow the widget to do something, you need to add the custom functionality inside the class. In our
example, we save the URL of the site which activity we want to monitor in the widget’s settings. To use
them we need to initialize parameter hasConfig in constructor and set it to true. For example, here
is the part of the constructor that tells this to the widget framework:

constructor : function(config) {
config = config || {};
Ext.applyIf(config, {
name: 'fb',
height: 600,
hasConfig : true
3
}

! By default, if you use WebApp for the first time, the "Today" and "Tasks" widgets are visible.
2 Globally Unique Identifier
% You can see this in the Advanced tab of the settings.

23

Chapter 6. Widgets

After this, the "gear" icon will appear in the right top corner of the widget (see e.g. Figure 6.1, “Widget
settings”).

Today >+

Facebook- htp=/zarafa.com P - 34
-

MocnedHue coBETHA

- WebApp
2 NONEZ0EATENA PEKOMEHAVT 3TO,

Figure 6.1. Widget settings

When you click on this icon, the config method of the widget will be called. In this method, we can
setup the widget's settings dialog and show it.

/**
* Called when a user clicks the config button on the widget panel.
* Shows the window with url field - where the user need to put
* new value for Facebook Activity Site.

*/
config : function()
{
var configWindow = new Ext.Window({
title : _('Configure widget'),
layout : 'fit',
width : 350,
height : 120,
items : [{
xtype : 'form',
frame : true,
ref : 'formPanel',
labelwidth : 180,
items : [{
xtype: 'textfield',
anchor: '100%',
fieldLabel: _('Site name to track the activity'),
allowBlank : false,
vtype: 'url',
ref : '../siteUrlField',
name: 'site_url',
value: this.get('site_url')
i
buttons : [
{
text : _('Save'),
scope : this,
ref : '../../savebutton',
handler : this.saveUserUrlToSettings
H
{
text: _('Cancel'),
scope : this,
ref : '../../cancelbutton',
handler : this.closeConfigWindow
}
1
1
1)
configwWindow.show(this);
H

24

Events

To save or receive the settings value we use this.set () and this.get () methods respectively. In
our example, we get the default value of the "site url field" using this.get('site_url'). Ifit was
not stored before with this.set('site_url'), it will return undefined. You will need to take care
of this by yourself. That is why we use Ext . 1sEmpty check the value in the constructor:

var siteUrl = this.get('site_url');

if(Ext.isEmpty(siteuUrl)) {
siteUrl = this.defaultFbActivitySite;
this.set('site_url', siteUrl);

1
this.setTitle(_('Facebook') + ' - ' + siteUrl);

Don't forget to call parent constructor or the widget will not work; the parent class' constructor puts it in
the proper location and takes care of loading the settings, and so on.

Zarafa.widgets.FBWidget.superclass.constructor.call(this, config);

6.3. Events

As the Zarafa.core.ui.widget.Widget class extends the Ext.ux.Portlet and finally
Ext.Panel, you can override some helpful methods to gain more consistency and readability inside
your widget. One of these methods is initEvents, it will be called after the panel is rendered. It is
a useful place in the code to initialize the widget's events. But remember; each time you override the
methods of the parent class, you need to call the superclass method explicitly.

initEvents : function()

{
Zarafa.widgets.FBWidget.superclass.initEvents.apply(this, arguments);
this.mon(this, 'bodyresize', this.reloadIframe, this);

3

Finally, another useful method is onRender, which is called after the component was rendered. You
can use it to render your custom elements inside the widget. To check if the widget is visible in the
current moment or not, you can use iswWidgetVisible method. It will return true if the widget is
visible and the widgetPanel, on which it resides, is not collapsed. When you click the "cross" (close)
icon, then the widgetPanel, on which the widgets resides, will unregister the widget's GUID and it
will destroy the widget. It will then fire the destroy event. Therefore, you can define an onDestroy
method to do some tasks after widget is destroyed.

25

26

Chapter 7.

Dialogs

Dialogs are used throughout the WebApp. Dialogs are an important part in the application. When you
are creating an email, appointment, a contact or when opening the address book: the contents will
always be shown in a dialog.

The Zzarafa.core.ui.ContentPanel has a couple of generic subclasses that might help

in managing MAPI objects (objects that contain information on e.g. e-mail, appointments, etc.).
There are two basic types of dialogs in WebApp: Zarafa.core.ui.RecordContentPanel and
Zarafa.core.ui.ContentPanel. Each Dialog must inherit from either one to benefit from any
automatically added user interface elements and styling.

Usually, you would use Zarafa.core.uil.ContentPanel. If you want to handle MAPI records, then
see Section 7.3, "Dealing with MAPI records” and Chapter 12, Stores and RecordFactory for more
background information.

7.1. Events

For plugins, it is possible to detect when a Dialog is about to be displayed to the user, allowing it
to hook into further events of the Dialog itself, or any of its components. To do this, the plugin must
listen to the createdialog event from the Zarafa.core.data.ContentPanelMgr singleton
object. This event will pass the dialog that is being displayed as argument. Note that the event

is called before the dialog is rendered. The DialogMgr will inform the plugin that the dialog has
disapeared using the destroydialog event.

7.2. Example

The following code snippet shows how we can create our own custom dialog. This is just the definition
of the dialog and its contents, it does not yet make it available to WebApp yet.

Ext.namespace('Dialogs.dialogsexample.dialogs');

/**
* @class Dialogs.dialogsexample.dialogs.SimpleDialog
* @extends Zarafa.core.ui.ContentPanel
*
* The simple dialog which contains Ext.panel.
* @xtype simpledialog
*/
Dialogs.dialogsexample.dialogs.SimpleDialog = Ext.extend(Zarafa.core.ui.ContentPanel, {
/**
* @constructor
* @param config Configuration structure
*/
constructor : function(config)
{
config = config || {3},
Ext.applyIf(config, {
defaultTitle : _('Simple Dialog'),
alwaysUseDefaultTitle : true,
width 1 340,
height 1 200,
//Add panel
items |
{
xtype : 'panel'
}
]
1}

27

Chapter 7. Dialogs

//Call superclass constructor
Dialogs.dialogsexample.dialogs.SimpleDialog.superclass.constructor.call(this, config);

}
1

// Register the dialog xtype
Zarafa.core.ui.ContentPanel.register(Dialogs.dialogsexample.dialogs.SimpleDialog,
'simpledialog');

You can see that to create a custom dialog, we need to extend Zarafa.core.ui.ContentPanel
and call the superclass constructor inside the dialog constructor. Finally, the last step that should be
done is to register this dialog with a custom xtype:

Zarafa.core.ui.ContentPanel.register(Dialogs.dialogsexample.dialogs.SimpleDialog,
'simpledialog');

And that’s it! In the items list, you can put the content that you wish. It can be any subclass of
Ext.Component. Now we can use our dialog from WebApp, just run the following from the Javascript
console while WebApp is loaded:

Dialogs.dialogsexample.dialogs.SimpleDialog.create({
title : _('My Custom Dialog')
1)

This piece of code will create an instance and show the dialog on screen.

7.3. Dealing with MAPI records

When working with MAPIRecord instances, it is useful to use the
Zarafa.core.ui.RecordDialog, because it has better support for managing MAPIRecords and
has extra functionality for saving the record. For Messages (e.g. Mail and Meeting Requests), we
have the Zarafa.core.ui.MessageDialog which extends the RecordDialog functionality to
support sending the message to all recipients.

A Dialog that displays the contents of an IPMRecord must always inherit from RecordDialog.
This dialog accepts the record configuration option which will be opened by default, otherwise it is
possible to set the displayed IPMRecord through the setRecord function on this dialog. Using the
RecordDialog, the dialog will automatically hook into the IPMStoreManager to listen for update
events regarding the IPMRecord which is opened by the dialog. Also, with the setrecord and
updaterecord events, the dialog can inform all components within the dialog about record changes.

A Dialog that is used for creating or editing an IPMRecord must always inherit from
EditRecordDialog. EditRecordDialog is a subclass of RecordDialog, and therefore offers
the same features. Additionally, the EditRecordDialog automatically places all edited IPMRecords
into the ShadowStore. For further explanation of the shadow store and why it is relevant, see

Section 12.1.2, “IPM Stores and ShadowStore”.

See Figure 7.1, "RecordDialog UML diagram.” for how they relate to eachother.

28

Displaying a record

Z.core.ui.Dialo

=
=

. . Z.core.ui.RecordDialogPanel
Z.core.ui.RecordDialo + update(record)

Z.core.ui.EditRecordDialo

Figure 7.1. RecordDialog UML diagram.

7.3.1. Displaying a record

When adding a Panel to the RecordDialog (or EditRecordDialog), it is recommended to extend
the RecordDialogPanel. This Panel will take the RecordDialog update features into account
and automatically updates the Panel when the RecordbDialog signals a change in the IPMRecord
for this Dialog. Any subclass of RecordDialogPanel is required only to implement the function
update(record) which will be called when the Record is updated.

The constructor of the subclass does not receive a record field; furthermore, the constructor must
assure that any components which display particular fields of the IPMRecord are initialized to
display a default value (i.e. undefined or an empty string). When the Dialog is rendered, the
update(record) function will be used to set the IPMRecord for the first time.

Both the RecordDialog and EditRecordDialog offer default buttons for the Toolbar for saving
and deleting the IPMRecord which is contained in the Dialog.

29

30

Chapter 8.

Bidding System

8.1. Bidding and insertion points

Insertion points, as described in Chapter 5, Insertion Points, are perfect for extending WebApp in
predefined places with a small additions. Next to this, another way of extending functionality is to
override existing user interface components. The way WebApp decides which user interface class to
use when presenting some kind of data is called the "bidding system": WebApp allows all components
to bid on functionality. The way this works, roughly, is that WebApp will ask all registered plugins to
place bids on something, and the highest bidder is chosen to deliver the functionality.

The shared component system is not meant to be used for each and every button, but for components
of some magnitude. This is due to the time it takes to ask each component to place a bid, so for

items that need to be shown often and quickly, the system is too slow. Therefore, if we would use

the shared component system for these smaller components as well, it will have a negative effect

on the performance. Dialogs and preview panels are examples of components that are suitable for
the bidding system: it takes a lot of time to initialize them anyway, so the bidding rounds don’t have

a noticeable negative impact there. For smaller components, a more suitable approach is to use an
insertion point: these are easily iterated over in rapid succession.

8.2. Working

The shared component bidding system is a mechanism to prevent tight coupling between plugins and
allowing plugins to override existing dialogs. A plugin that requires a component like a dialog, context
menu or a preview panel can ask the container to get it a specific type of the shared component. The
container will start a bidding round across all the registered plugins, and each plugin will be able to bid
and the highest bidder is asked to deliver this component. The system makes it possible to implement
a dialog for reading mail by a mail context and the dialog for showing an appointment or a meeting
request by the calendar context.

31

Chapter 8. Bidding System

rtext A Actions Core X Context E Context ©

T T T T T
| | | | |
| | | | |
| openDialog I I |
™ | | |
I | getSharedComponent(lype, [record]) I |
| | L | |
| bidSharadComponentitypa, [record]) I | I
[t i | |
| | bid __; | |
=== Fr--—————-—————— . | |
I I | bidSharedComponentitype, [record]) | |
| | I - » |
| ! I bid | |
| | - ———————— =

I I I bidSharedComponent(type, [record]) |
| | I - } 4l
[| I bid [|
| - s — = === — +-—-———- |
I I | getSharedComponentitype, [record]) | |
| | i .l |
I I 1 component class I

| | k=== = |
| | component class I |

| - ————— | | |
| | |
: Component : :

I
|
|
I
I <<praates>
t
I
I
|

—_— ¥ _

Figure 8.1. Shared Component bidding sequence

8.3. Bidding on a shared component

When the shared component is requested, a component type is also supplied. This can be used to bid
more detailed based on the component type. The various component types are defined as valuess in
the enumeration Zarafa.core.data.SharedComponentType. Other types can be added using
the addProperty method of the enumeration. Next to the type of the component, a record can also
be added as an argument.

The following snippet of code shows how to use the Shared Component mechanism:

var componentType = Zarafa.core.data.SharedComponentType[componentType];

var dialog = container.getSharedComponent(componentType, record);
if (dialog) {

config.record = record;

dialog.create(config);

}

The plugins that take part in the bidding round for the component can then base their bid on the

data within the record. For example, the mail context can bid differently for records that have the
object_type set to MAPI_MESSAGE and a message_class of IPM.Note, than for the records with
amessage_class of IPM.Appointment. On the other hand, the calendar context would bid higher
for the latter one. The hierarchy context would look for records that contain an object_type set to
MAPI_FOLDER to do its bidding.

8.4. Example

The following snippet of code shows how the plugin can participate in the bidding round.

VAR

32

Example

b
{

}

* Bid for the type of shared component

* and the given record.

* This will bid on a common.dialog.create or common.dialog.view for a

* record with a message class set to IPM or IPM.Note.

* @param {Zarafa.core.data.SharedComponentType} type Type of component a context
* can bid for.

* @param {Ext.data.Record} record Optionally passed record.

* @return {Number} The bid for the shared component

*/

idSharedComponent : function(type, record)

var bid = -1;
if (Ext.isArray(record)) {
record = record[0];
}
if (record && record.store || record instanceof Zarafa.addressbook.
AddressBookRecord) {
switch (type)
{
case Zarafa.core.data.SharedComponentType['common.create']:
case Zarafa.core.data.SharedComponentType['common.view']:
case Zarafa.core.data.SharedComponentType['common.contextmenu']:
if (record.store.customObjectType==Zarafa.core.data.
RecordCustomObjectType.ZARAFA_SPREED_PARTICIPANT)
//|| record instanceof Zarafa.addressbook.AddressBookRecord)

{
}

break;
case Zarafa.core.data.SharedComponentType['common.dialog.attachments']:
if(record instanceof Zarafa.plugins.spreed.data.SpreedRecord) {
bid = 2;

bid = 2;

}

break;

}
}

return bid;

’

When the plugin is the highest bidder the function getSharedComponent will be called to actually
deliver the class to be constructed as component.

g
{

* Will return the reference to the shared component.

* Based on the type of component requested a component is returned.

* @param {Zarafa.core.data.SharedComponentType} type Type of component a context
* can bid for.

* @param {Ext.data.Record} record Optionally passed record.

* @return {Ext.Component} Component

*/

etSharedComponent : function(type, record)

var component;

switch (type) {

case Zarafa.core.data.SharedComponentType['common.create']:

case Zarafa.core.data.SharedComponentType['common.view']:
component = Zarafa.plugins.spreed.dialogs.EditSpreedParticipantDialog;
break;

case Zarafa.core.data.SharedComponentType['common.contextmenu']:
component = Zarafa.plugins.spreed.dialogs.SpreedParticipantContextMenu;
break;

case Zarafa.core.data.SharedComponentType['common.dialog.attachments']:
component = Zarafa.plugins.spreed.dialogs.AttachmentsDialog;
break;

}

return component;

33

Chapter 8. Bidding System

34

Chapter 9.

Data Models

9.1. Model-based architecture

A data model encapsulates data, providing a way for the interested parties to query, load and modify
said information and get notified in case of changes. The WebApp framework contains a global
model that provides an API for handling plugins and insertion points, the hierarchy model (store/folder
hierarchy), and settings.

The Ext JS library provides a way of working with server-backed data stores and standard

Ul components. Most notably, the data grid component (i.e. data representing a list of mails,
appointments, etc.) integrates with them. The framework contains base classes for creating such data
stores that use the PHP code as backend.

The global model stores information required across contexts and plugins. A schematic overview is
shown in Figure 9.1, “Global data model”.

Container

T
g 1 |

Plugin HierarchyModd SettingsModd
1
Context Store
1
Folder

Figure 9.1. Global data model

A global instance of the Zarafa.core.Container object, simply called container, maintains
a list of the registered plugins, lazily-created instances of Zarafa.core.HierarchyModel, and
Zarafa.core.SettingsModel.

35

Chapter 9. Data Models

The hierarchy model is a separate context, see Section 9.3, “Hierarchy model”. For more information,
refer to the APl documentation on the HierarchyContextl class and other classes in the same
module.

The settings model is also a separate context, see Section 9.4, “Settings model”. For more information
on settings, refer to the APl documentation on the SettingsContext2 class and other classes in the
same module.

9.2. Separable model architecture

To promote code re-use and separation of concepts, a separable model architecture is used. In
essence, this is just a MVC (Model-View-Controller) design with the view and controller collapsed
into a single entity. The responsibility of the model is to store and validate data, and synchronize with
the server. On the other side, the view/controller components present the data to the user, allow him
to edit the data, and generally drive the model. The view/controller components contain a reference
to one or more model objects. They interact with the models with method calls, and get notified of
changes through events. This principle is shown in Figure 9.2, “Separable model architecture”.

function call

View Controller Modd

‘F\ /
~ ,/

TT=————event-—-----"

Figure 9.2. Separable model architecture

Since this design decouples data manipulation and client/server communication from the user
interface, the model part of the application can be easily unit tested outside the browser.

View/controller components never need communicating with each other, or even need to know of each
others existence, as all data requests and modifications are done through the models. A concrete
example of how models and view/controllers interact is shown in Figure 9.3, “Deleting a message

item from a data store: the ContextMenu deletes item in the model” and on. Shown at the top is a
store containing a set of message items, representing the model. Three Ul components act as view/
controllers, mutating and displaying information in the store.

! http://developer.zarafa.com/webapp/?class=Zarafa.hierarchy.HierarchyContext
2 http://developer.zarafa.com/webapp/?class=Zarafa.settings.SettingsContext

36

http://developer.zarafa.com/webapp/?class=Zarafa.hierarchy.HierarchyContext
http://developer.zarafa.com/webapp/?class=Zarafa.settings.SettingsContext
http://developer.zarafa.com/webapp/?class=Zarafa.hierarchy.HierarchyContext
http://developer.zarafa.com/webapp/?class=Zarafa.settings.SettingsContext

Separable model architecture

Server
Store
delete, save
ContextMenu PaginationToolbar GridPanel

Figure 9.3. Deleting a message item from a data store: the ContextMenu deletes item in the model

Server

T I

delete delete

Store

ContextMenu PaginationToolbar GridPanel

Figure 9.4. Deleting a message item from a data store: the model commits the change

Server

Store

delete delete delete

3 >

ContextMenu PaginationToolbar GridPanel

Figure 9.5. Deleting a message item from a data store: the model fires a delete event on completion

In this example, if a user deletes an item, the ContextMenu object calls the delete method on the
store, and then calls save (Figure 9.3, “Deleting a message item from a data store: the ContextMenu

37

Chapter 9. Data Models

deletes item in the model”) to tell the store to synchronise with the server (Figure 9.4, “Deleting

a message item from a data store: the model commits the change”). When this (asynchronous)
operation has finished, a delete event is fired to notify the three components that an item was
removed (Figure 9.5, “Deleting a message item from a data store: the model fires a delete event

on completion”). This in turn causes the grid and tool bar to update and reflect the change. Refer to
Chapter 11, Communication for more detailed information on how the change is communicated to the
server.

9.3. Hierarchy model

The HierarchyModel is a model class containing a structured tree for all MAPI stores and MAPI
folders in the application. It can be used to receive entryid, store_entryid or parent_entryid
of any of its contained elements, but to receive the data from these stores, you should use context
models.

Loading the hierarchy from the server can be done by calling the 1oad method.

// Load the folder hierarchy.
container.getHierarchyModel().load();

This method triggers an asynchronous HTTP request. When the hierarchy has loaded (or when an
error occurred) the model fires the 1oad event.

// Hook the load event.
container.getHierarchyModel().on('load', function() {
alert('Hierarchy loaded!');

)i

// Load the folder hierarchy.
container.getHierarchyModel().load();

Once the hierarchy has been successfully loaded, it can be queried for stores, folders, default folders,
etc:

//Get the calendar folder, used in the Facebook plugin

var calendarFolder = container.getHierarchyStore().getDefaultFolder('calendar');

// in convertToAppointmentRecord, we create a new record of appointment type

// so we need to set parent_entryid of this new record to entryid of the needed folder
// and store_entryid of this new record to store_id, which is store id hierarchy

var calendarRecord = facebookEventRecord.convertToAppointmentRecord(calendarFolder);

9.4. Settings model

The settings model is a tree of key/value pairs that is saved to the server. It is loaded once, when the
application loads; however, writes are always committed immediately. All plugin developers should
implement a settings module to enable and disable their plugins or widgets.

There is a separate settings page for plugins that becomes visible if you use the zdeveloper plugin
(see Section 5.1, “Zdeveloper plugin™). Here, you can let the user configure any options in your plugin,
if the need arises to make something configurable. For widgets, the recommended approach is to
create a config method (see Section 6.2, “Widget configuration” for an explanation and example).

If you want your plugin to be enabled/disabled by default you may create a config. php file to set
default values for your plugin settings. Here is an example from the Facebook plugin’s config. php
file:

38

Settings model

/** Disable the facebook plugin for all clients */
define('PLUGIN_FACEBOOK_USER_DEFAULT_ENABLE', false);

PLUGIN_FACEBOOK_ENABLE is used in the injectPluginSettings function in
plugin.facebook.php; here are the contents of that file:

/**
* Facebook Plugin
* Integrates Facebook events in to the Zarafa calendar
*
/
class Pluginfacebook extends Plugin {

/**
* Constructor
*/
function Pluginfacebook() {3}

/**
* Function initializes the Plugin and registers all hooks
* @return void
*/

function init() {
$this->registerHook('server.core.settings.init.before');

}

/**
* Function is executed when a hook is triggered by the PluginManager
* @param string $eventID the id of the triggered hook
* @param mixed $data object(s) related to the hook
* @return void
*/
function execute($eventID, &$data) {
switch($eventID) {
case 'server.core.settings.init.before'
$this->injectPluginSettings($data);
break;
}
}

/**
* Called when the core Settings class is initialized and ready to accept
* the sysadmin's default settings. Registers the sysadmin defaults
* for the Facebook plugin.
* @param Array $data Reference to the data of the triggered hook
*/
function injectPluginSettings(&$data) {
$data['settingsObj']->addSysAdminDefaults(Array(
'zarafa' => Array(
'vi' => Array(
'plugins' => Array(
'facebook' => Array(
'enable' => PLUGIN_FACEBOOK_ENABLE,

An example from the Spreed plugin is the default meeting duration. When creating the time panel
for the "Setup Spreed meeting" dialog, we set predefined values for the Spreed meeting duration.
The duration is retrieved by getting the default value from calendar default appointment period. See
Figure 9.6, “Settings of calendar”.

39

Chapter 9. Data Models

£ General Advanced settings

B4 Mail Setting a Value
P4 Calendar 4 Settings
4 ') zarafa

+ Advanced =t
4] contexts
4 ‘=] calendar
. 7 dialogs
»] modelstate
+ [_] searchbar
> [_] state
:_::I default_aliday_reminder_time 1080
=] default_appointment_period 30
=] default_reminder true
=] default_reminder_time 15
=] freebusy_load_end_offset 90
=] freebusy_load_start_offset 7
» [_] common
> [_] contact
>] hierarchy
»] mail
» [_]notes
-] task

Apply Discard

Figure 9.6. Settings of calendar

The implementation is shown here:

var duration = container.getSettingsModel().
get('zarafa/vl/contexts/calendar/default_appointment_period');

To add your plugin settings to the Zarafa settings model, the injectPluginSettings function
should be implemented on the server-side:

/**
* Called when the core Settings class is initialized and ready to accept
* the sysadmin's default settings. Registers the sysadmin defaults
* for the Spreed plugin.
* @param Array $data Reference to the data of the triggered hook
*/
function injectPluginSettings(&$data) {
$data['settingsObj']->addSysAdminDefaults(Array(
'zarafa' => Array(
'vi' => Array(
'plugins' => Array(
'spreed' => Array(
'enable' => PLUGIN_SPREED_USER DEFAULT_ENABLE,
'default_timezone' => date_default_timezone_get(),

)
)
)
)
)):
}

You can add any other settings as you wish. For example, again in the Spreed plugin:

'spreed' => Array(
'enable' => PLUGIN_SPREED_ENABLE,
'default_timezone' => PLUGIN_SPREED_DEFAULT_TIMEZONE,

40

Settings model

'spreed_setup' => Array(
'width' => 940,
'height' => 480,

)

)

Next to enable, there are settings for the default time zone (default_timezone) and the size of the
dialog. The default time zone is taken from the value that is defined in config. php (in this case, the
WebApp global one, not the one distributed by the plugin):

/** Default timezone of the spreed meeting */
define('PLUGIN_SPREED_DEFAULT_TIMEZONE', 'Europe/Amsterdam');

Obviously, if you have something to configure on the server side, the names can differ but the
functionality should be the same.

In the end, the result looks something like in Figure 9.7, “Plugin settings”.

£ General Advanced settings

B Mail Setting a Value
=] default_reminder_time 15
=] freebusy_load_end_offset 20
« Advanced =] freebusy_load_start_offset 7

P9 Calendar

+ [__] common
» [__] contact
» [__] hierarchy
+ [mail
+ [__]notes
> [_Jtask
-] today
>] main
4 =] plugins
»] facebook
4 {7 spreed
-] spreed_setup
:_::I default_timezone EuropefAmsterdam
=] enable true
» [__]statslogging
+ [_Jxmpp
> [__] state
>] widgets

Apply Discard
Figure 9.7. Plugin settings

Finally, the settings model also supports simple get and set functions for getting and setting values.
For quick access to your configuration values, the path to a value is delimited with the forward slash
character (/).

// Read flag to 2 seconds.
container.getSettingsModel().set('zarafa/vil/contexts/mail/readflag_time', 2);

More information about the settings model can be found in the APl documentation of the
Sett:ingsModel3 class.

8 http://developer.zarafa.com/webapp/?class=Zarafa.settings.SettingsModel

41

http://developer.zarafa.com/webapp/?class=Zarafa.settings.SettingsModel
http://developer.zarafa.com/webapp/?class=Zarafa.settings.SettingsModel

42

Part lll. Advanced topics

If you have survived part Il and have written a plugin that does something with the usual interfaces, but
are hungry for more, then this is where you will find all the nitty-gritty details of WebApp.

We dive into MAPI, the communication protocol between WebApp and the server. This will require an
understanding of how Zarafa works and how data is stored in MAPI. Finally, a few subjects such as
the ant-based build system and server-side translations are handled.

Chapter 10.

MAPI

Zarafa provides its groupware functionality by connecting the Linux-based server with Outlook clients
using MAPI.

Messaging Application Programming Interface (MAPI) is a messaging architecture and a Component
Object Model based API for Microsoft Windows. Simple MAPI is a subset of 12 functions which enable
developers to add basic messaging functionality. Extended MAPI allows complete control over the
messaging system on the client computer, creation and management of messages, management of
the client mailbox, service providers, and so forth. Simple MAPI ships with Microsoft Windows as a
part of Outlook Express/Windows Mail while the full Extended MAPI ships with Office Outlook and
Exchange.

For more information about MAPI concepts refer to corresponding MSDN article’.
Zarafa provides its own OpenMAPI Zarafa realisation.
The data model provides an API for working with client-side, and server-side data. A user has

access to a set of MAPI stores, which contain MAPI folders, which in turn contain MAPI messages. A
simplified view of the MAPI model is shown in Figure 10.1, “MAPI data model”.

MAPI Store MAPI Folder MAPI Message

1 * 1 *

Figure 10.1. MAPI data model

MAPI (Messaging Application Programming Interface) Store is actually the base one, which can be
extended with plugins. See Figure 10.2, “MAPI store table”.

An important note here is that Zarafa.core.data.MAPIStore is not a MAPI Store as it is, but an
Ext.data.Store used to collect MAPI Messages.

! http://msdn.microsoft.com/en-us/library/cc815323.aspx

45

http://msdn.microsoft.com/en-us/library/cc815323.aspx
http://msdn.microsoft.com/en-us/library/cc815323.aspx

Chapter 10. MAPI

&ogon

Profile
Default Store Stores Table GUID

Default Store /
Public Store

V_)Properties
Shared Store

V_)Display Name

Y_jycGup

Y)Hierarchy Table

Figure 10.2. MAPI store table

One of the main MAPI concepts is a folder. Folders are MAPI objects that serve as the basic unit of
organization for messages. Arranged hierarchically, folders can contain messages and other folders.
Folders make it easier to locate and work with messages.

MAPI store uses such parameters to build a hierarchy as entryid, parent_entryid and
store_entryid entryid is an id of current object in MAPI structure - for example, of the store with
calendar appointments. parent_entryid is used to unite this object with hierarchy - so, for a store
with calendar appointments, it would be an entryid of a folder with calendar store. store_entryid
is a value that represent an entryid of current item’s store. For example, for a store with calendar
appointments it would be an entryid of IPFStore - the main store where all stores belong.

A MAPI folder can be seen as a flat list of items, much like a table in a database. Instead of directly
issuing, action requests from the client to list or mutate items, a high-level API is provided that
exposes a MAPI folder as an Ext JS store (Ext.data.Store).

Refer to chapter mapi-store for more information on MAPI Store.

46

mapi-store

Chapter 11.

Communication

11.1. Conceptual Overview

The back-end has a pluggable architecture, with functionality divided among a set of modules. Each
module is a named entity, such as maillistmodule or taskitemmodule (or for Spreed plugin -
class.spreedmodule), and exposes a specific part of the Zarafa server functionality. The client
communicates with a module by sending it one or more actions. Each request may contain one or
more actions for one or more modules. Several modules may implement the same actions (such

as list) so actions are grouped by target module. The server processes each of the actions in a
sequence and formulates a response, also containing actions. The process is shown in Figure 11.1,

“Message exchange”.

s T \\
/ \
|)
| Client I
\ /
_ //
S
|
I
]
I
I
I
LT_L _________
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
r—6————-
(.
[
[
L—_2a

Figure 11.1. Message exchange

-1

Ve
/
|
| Sewer
\
\
\h__ — — —
-
|
|
|
|
|
|
| _________ +I_|
L
L
L
|
|
|
|
L
L
|
|
|
|
L
L
|
|
L
L
|
_________ L

Although there is usually a one-to-one mapping between request and response actions, this does not

neccesarily have to hold. As an example consider the situation in Figure 11.2, “Message exchange

for creating a new item: client request” and Figure 11.3, “Message exchange for creating a new item:

server response”. In this exchange the client wants to create a new task and sends save action
to the tasklistmodule on the server, as shown in Figure 11.2, “Message exchange for creating
a new item: client request”. If successful, the module on the server-side responds with an item

action with information about the created task, such as the generated entry ID, but it will also send a
folderupdate action containing updated information about the folder the item was created in. This is

47

Chapter 11. Communication

shown in Figure 11.3, “Message exchange for creating a new item: server response”. This last action
is to notify the client that there is now one more item in the folder.

Server

. \/ .
Client TaskListModule

item

Figure 11.2. Message exchange for creating a new item: client request

Server
\/ .
tem TaskListModule
Client
\/ .
folder HierarchyModule
updae

Figure 11.3. Message exchange for creating a new item: server response

The exact data flow through the various classes is shown in Figure 11.4, “Request-Response flow”.
The important components inside this diagram will be explained in details further down in this chapter.

PHP
Response
[Module, 1D, Data] [Module, 1D, Response]
[Module, Response]
Request I ResonseRouter
[Module, 1D, Response]
4
save(module, 1D, callbacks, data) I
I I getimodule, ID, response/data)
I
update ResponseHandler !
e[Teats [— Proxy f———— Wrapper object of ResponseHandler
event functions |
+ L
save MNotification
I Resolver
JSONReader JSONWriter
A Legend Path after
encode Road to server Server response
| - <
Unknown call Return valua
U P08 m— Store <+

Figure 11.4. Request-Response flow

11.2. Protocol

Communication with the back-end starts with the client initiating a request. The data exchange format
is JSON (JavaScript Object Notation). As explained in the previous section, a request may contain
multiple actions for multiple modules.

48

Javascript Communication

The following listing shows a minimal client request for listing mails in a folder. First object is zarafa
to define the correct scope for our request. The objects beneath there are different modules which are
being accessed. Beneath each module can be one or more identifiers. Each request receives its own
unique identifier. This is later used to match a response to the corresponding request. Beneath the
identifier object the action tag is found which may contain a forest of key-value pairs. The server will
respond with a similarly constructed reply.

{

zarafa : {
maillistmodule : {
maillistmodulel : {
list : {
store : [store MAPI ID]
entryid : [folder MAPI ID]
}
}
}
}

A possible response from the server is shown below.

zarafa : {
previewmailitemmodule : {
previewmailitemmodulel : {
item : {
[mail item details would be included here]
}
}
H

mailnotificationmodule : {
mailnotificationmodulel : {
newitem : {
[mail item details would be included here]
}
3
}

11.3. Javascript Communication

To avoid having to construct HTTP requests manually, all client requests are made through a
global instance of the Zarafa.core.Request class. This object provides JavaScript - JSON
(de)serialisation, and allows other components to react to server actions via either events or callbacks.

Consider the code example listed below. A call is made to the request object (a global instance of
which can be obtained from the container using getRequest ()) to retrieve a single message. The
first two arguments are module name and action type, which are taken from enumeration objects
Zarafa.core.ModuleNames and Zarafa.core.Actions respectively (note that the unique
request identification as mentioned earlier is auto-generated by the Zarafa.core.Request class).
The third argument is a Javascript object containing the parameters to the action, which in this case
are the message’s MAPI store |d and MAPI entry Id.

container.getRequest().singleRequest(
'pluginNAMEmodule', // e.g.'REMINDER'
'actionToPerform', // e.g. 'reminderlistmodule'
{
//data inclufed in action tag
actions: actions

}

49

Chapter 11. Communication

11.4. Response Handlers

As described in the previous section a client should be able to handle the response data which

is being send back from the server. For this we use Zarafa.core.ResponseRouter in
combination with Zarafa.core.data.AbstractResponseHandler objects. Whenever the
Zarafa.core.Request has received a response from the server, it will send this response

to Zarafa.core.ResponseRouter which can then send out some events, and process the
response. To notify the requestee of the initial request (for which the response was received), a
Zarafa.core.data.AbstractResponseHandler is used. As described in the previous section
a request can be created using the singleRequest function, this function has however a fourth
argument; The Zarafa.core.data.AbstractResponseHandler object.

container.getRequest().singleRequest(
Zarafa.core.ModuleNames.getListName('moduleName'),
'actionToPerform',

{

'setting' : parameters

i

new Zarafa.core.data.ProxyResponseHandler ({
proxy: this,
action: Ext.data.Api.actions['update'],
options: parameters

i3]

)i

When a Request is made with the help of ResponseHandler object, the Zarafa.core.Request
object will first generate a new Request idenfitication number, and then register the ID together with
the ResponseHandler to the Zarafa.core.ResponseRouter. After receiving a new response the
Router will search for all ID’s and use the registered ResponseHandler for processing this response
(Figure 11.5, “Different class diagrams”). The ResponseHandler which is used in the above example
is a basic implementation which provides the basic communication with the Ext .data.DataProxy
which made the request. Its primary task is checking for errors and firing the appropriate event in

the Ext.data.DataProxy when a request has failed. See the class Diagram below for the various
Response handlers:

AbstractResponseHandler ProxyResponseHandler
537 waxtandss
+handle() {j
Third Party
wexiend wextendsy wexigndss
MotificationResponseHandler IPMResponseHandler | |AddressbookResponseHandler RemoteWiteResponseHandler
#daOpen() +dnaBThing() +doWipe()
#doltem()
- -
1 1 1
IPMProxy AddresshookProxy RemoteWipeProxy

Figure 11.5. Different class diagrams

50

Notifications

11.5. Notifications

In some situations the user might want to be notified of particular events, for example Errors,
Warnings, New mail, etc. There are various methods to display such a message to the user. To
streamline the interface, the Zarafa.core.ui.notifier.Notifier class is provided, which is
accessible (as singleton object) through the Container class using:

container.getNotifier()

The Zarafa.core.ui.notifier.Notifier class holds references to various
Zarafa.core.ui.notifier.NotifyPlugin plugins. Each plugin provides a single method for
displaying the message to the user. For example, the ConsolePlugin will send all messages to

the browser console, the MessageBoxPlugin will show an Ext .MessageBox for each message.
Creating a new plugin only requires that Zarafa.core.ui.notifier.NotifyPlugin is extended
(which only requires the notify function to be overridden). The plugin itself must then be registered
with a unique name. For example:

container.getNotifier().registerPlugin('console', new Zarafa.core.ui.
notifier.ConsolePlugin());

When using the Notifier class to display a message to the user, one simply has to call the notify
function on the Notifier:

container.getNotifier().notify('error', 'Panic', 'This is a very serious panic');

The first argument is the category. This category should start with error, warning, info or debug, but
subtypes are also possible (e.g error.json, info.newmail); Based on the category the Notifier class
will determine which plugin must be loaded to display the message. This decision is fully configurable
through the Settings. When a notification arrives for a certain category, the settings which belong to
that category will be requested. For the category error the setting:

'zarafa/vil/main/notifier/error'
for the warning category, the setting will be:
'zarafa/vl/main/notifier/warning'

When using subtypes, the . will be converted into a /, thus a category named info.newmail will result in
a request to the setting:

'zarafa/vi/main/notifier/info/newmail’

The value of this setting, is the unique name of the NotifyPlugin which is registered. So when newmail
notifications should be send to the ConsolePlugin, then the setting will be:

'zarafa/vl/main/notifier/info/newmail/value' = 'console'

When a subtype is not found in the Settings, for example error.json is requested, but the setting
zarafa/vl/main/notifier/error/json does not exist, then the system will automatically fallback to zarafa/
v1/main/notifier/error, when that also is not defined, then the final fallback will be zarafa/vi/main/
notifier/default.

Using this system with settings allows 3rd-party developers to easily develop new notification systems,
while the user is capable of configuring the notifications exactly as he wants them.

51

Chapter 11. Communication

Notifications cannot be processed by the ResponseHandler provided by the requestee (that response
handler is dedicated to handling the response for the request),that’'s why an alternative route is
required. When a response is received for which no ResponseHandler has been registered, the
ResponseRouter will give the response data to the Zarafa.core.data.NotificationResolver.
This NotificationResolver will analyze the response, and return a ResponseHandler which is suitable
for handling this response (Figure fig:rspnstrtr[]). With this ResponseHandler, the ResponseRouter
can then continue its normal procedure to deserialize objects, handling the actions, and updating
Ext.data.Store objects.

Refer to API documentation® for more information.

! http://developer.zarafa.com/webapp/?class=Zarafa.core.ui.notifier.Notifier

52

http://developer.zarafa.com/webapp/?class=Zarafa.core.ui.notifier.Notifier
http://developer.zarafa.com/webapp/?class=Zarafa.core.ui.notifier.Notifier

Chapter 12.

Stores and RecordFactory

12.1. Stores and Substores

When you need to save and keep some information you should use stores. Figure 12.1, “Store types”
shows different types of stores at their hierarchy.

MAPIStore

@ @ ShadowStore PluginStores
ListModuleStore HierarchyStore IPFSubStore PluginSubStore

MAPIFolderSubStore

ContactStore

NoteStore

il

Figure 12.1. Store types

12.1.1. MAPI Store

Zarafa MAPI Store is an extension of the Ext JS store which adds support for the open command,
which is used by MAPI to request additional data for a record.

An important note here is that Zarafa.core.data. MAPIStore is not a store itself, but is used to collect
MAPI Messages.

For example,

Ext.namespace('Zarafa.plugins.facebook.data');

/ *
@class Zarafa.plugins.facebook.data.FbEventStore
@extends Zarafa.core.data.MAPIStore

*
*
*
*
* This class extends MAPIStore to configure the
* proxy and reader in custom way.

* Instead of defining the records dynamically, reader will

* create {@link zarafa.plugins.facebook.data.fbEventRecord} instance.
*

*/

53

Chapter 12. Stores and RecordFactory

Zarafa.plugins.facebook.data.FbEventStore = Ext.extend(Zarafa.core.data.MAPIStore,

{
/**
* @constructor
* @param {Object} config Configuration object

*
*/
constructor : function(config)

{
config = config || {};

Ext.applyIf(config, {
reader : new Zarafa.plugins.facebook.data.FbEventJSONReader ({
id : 'id',
idProperty : 'id',
dynamicRecord : false

3,

writer : new Zarafa.core.data.JsonWriter(),
proxy : new Zarafa.core.data.IPMProxy()

1

Zarafa.plugins.facebook.data.FbEventStore.superclass.constructor.call(
this, config);
}
1

Ext.reg('facebook.fbeventstore', Zarafa.plugins.facebook.data.FbEventStore);

This is a code example of Facebook plugin. We use the MAPI interface for compatibility with Microsoft
Outlook. As far as MAPI provides full control over the messaging system, it is convenient to use it in
Zarafa WebApp.

A store is a client-side cache of items that exist on the server, and provides a clean interface for
loading and CRUD (create, read, update and delete) operations. Many standard Ext JS components
use stores to manage the data they display and operate on. In MVC (Model-View—Controller)

terms, a store is the default model for many Ul components. A common example is the grid panel
(Ext.grid.GridPanel). Displaying a list of tasks in a tasks folder is a matter of constructing a store
instance, connecting it to the grid, and calling the load method with a Folder object as a parameter.
The grid will automatically issue a generic load command to the store to populate it with data which is
then displayed.

Client Server

Grid ‘uPan‘eI

List
Modue

Proxy

Figure 12.2. Data flow

Figure 12.2, "Data flow” shows how the various components connect to get data from the server to
display in a data grid in the browser. A grid panel is connected to a store, which acts as a local cache
containing a set of records. The store uses a proxy to talk to the server, which in turn tasks with a
server-side list module using the Zarafa communication scheme Figure 11.4, “Request-Response
flow”. The server has different list modules for each type of data (tasks, mail, etc), and there are
corresponding stores and proxies on the client.

Stores can do more than just plain data loading. They support pagination and sorting, and it's very
easy to get this to work with the standard Ext JS components. Records can be added, removed, or
updated. Changes made to the data in a store can be committed to the server by calling the save
method.

54

MAPI Store

Add grid example here

A MAPI message consists of properties, but in some cases also a contents table. A spreed meting
request could, for example, contain Recipients or Attachments. Distribution lists on the other

hand have a list of Members. This data does not fit into the Ext JS model by default. But in the
Zarafa.core.data.MAPIRecord support for SubStores has been added. Each MAPIRecord can contain
multiple SubStores which are all serialized/deserialized to/from JSON during the communication

with the server. The implementation has been generalized in such a way, that plugins are able to
define their own SubStores for records. The contents of a SubStore is serialized/deserialized using
the JsonReader/ JsonWriter which have been configured on the SubStore itself. This means that for
plugin developers they can easily create their custom table by registering the name and the type of the
SubStore on the RecordFactory, and make sure a custom JsonReader and JsonWriter are set on the
SubStore.

Example of plugin JSONreader is Facebook event JSON reader:

/*
* #dependsFile client/zarafa/core/data/RecordCustomObjectType.js
*/

Ext.namespace('Zarafa.plugins.facebook.data');

/ * %
* @class Zarafa.plugins.facebook.data.FbEventJSONReader
* @extends Zarafa.core.data.JsonReader
*/
Zarafa.plugins.facebook.data.FbEventJSONReader = Ext.extend(Zarafa.core.data.
JsonReader,
{
/ * %
* @cfg {zarafa.core.data.RecordCustomObjectType} customObjectType The
* custom object type which represents the {@link Ext.data.Record
* records} which should be created using {@link Zarafa.core.data.
* RecordFactory#createRecordObjectByCustomType}.
*/
customObjectType : Zarafa.core.data.RecordCustomObjectType.
ZARAFA_FACEBOOK_EVENT,

/**
* @constructor
* @param {Object} config Configuration options.

*/
constructor : function(meta, recordType)
{
meta = Ext.applyIf(meta || {}, {
id : 'id',

idProperty : 'id',
dynamicRecord : false

1)

// If no recordType is provided, force the type to be a recipient

if (!Ext.isDefined(recordType)) {
recordType = Zarafa.core.data.RecordFactory.getRecordClassByCustomType(
meta.customObjectType || this.customObjectType);

}

Zarafa.plugins.facebook.data.FbEventJSONReader .superclass.constructor.call(
this, meta, recordType);
}
3

Plugin JSON writer can be found, for example, in Spreed attachments JSON writer:

55

Chapter 12. Stores and RecordFactory

Ext.namespace('Zarafa.plugins.spreed.data');

/**
* @class Zarafa.plugins.spreed.data.SpreedJsonAttachmentWriter
* @extends Zarafa.core.data.JsonAttachmentWriter
*/
Zarafa.plugins.spreed.data.SpreedJsonAttachmentWriter = Ext.extend(Zarafa.core.
data.JsonAttachmentWriter,

{
/**
* Similar to {@link Zarafa.core.data.JsonAttachmentWriter#toHash}.
* Here we serializing only the data of the records in spreed attachment store.
* Note that we serialize all the records - not only removed or modified.
*
* @param {Ext.data.Record} record The record to hash
* @return {Object} The hashed object
* @override
* @private
*/
toPropHash : function(record)
{
var attachmentStore = record.getAttachmentStore();
var hash = {};
if (!'Ext.isDefined(attachmentStore))
return hash;
// Overwrite previous definition to something we can work with.
hash.attachments = {};
hash.attachments.dialog_attachments = attachmentStore.getId();
var attachmentRecords = attachmentStore.getRange();
Ext.each(attachmentRecords, function(attach) {
if (!'Ext.isDefined(hash.attachments.add)) {
hash.attachments.add = [];
}
var data = attach.data;
hash.attachments.add.push(data);
}, this);
return hash;
}
1)

The name of the SubStore is used for the Json Data. The contents of the SubStore will be serialized
with this name into the Json Object/ Let’s consider spreed substores code for example:

/**
* #dependsFile client/zarafa/core/data/IPMRecipientStore.js
*/

Ext.namespace('Zarafa.plugins.spreed.data');

/**
* @class zarafa.plugins.spreed.data.SpreedParticipantStore
* @extends Zarafa.core.data.IPMRecipientStore
*

/
Zarafa.plugins.spreed.data.SpreedParticipantStore=Ext.extend(Zarafa.core.data.IPMRecipientStore,
{

/**

* @constructor
* @param config {Object} Configuration object
*
/
constructor : function(config) {
config = config || {};

56

IPM Stores and ShadowStore

Ext.applyIf(config, {
writer : new Zarafa.plugins.spreed.data.SpreedJsonParticipantWriter(),
customObjectType : Zarafa.core.data.RecordCustomObjectType.ZARAFA_SPREED_PARTICIPANT,
reader: new Zarafa.core.data.JsonRecipientReader ({
id : 'entryid',
idProperty : 'entryid',
dynamicRecord : false
1
1)

Zarafa.plugins.spreed.data.SpreedParticipantStore.superclass.constructor.call(this,
config)

}
)i

Ext.reg('spreed.spreedparticipantstore', Zarafa.plugins.spreed.data.SpreedParticipantStore);
This is how it is reflected in SpreedRecord class, in constructor:

constructor: function(data)

{
data = data || {3};

this.initialRecordData.participants = new Ext.util.MixedCollection();
Zarafa.plugins.spreed.data.SpreedRecord.superclass.constructor.call(this, data);
this.collectedDataRecords = [];

this.subStoresTypes =

{

'recipients' : Zarafa.plugins.spreed.data.SpreedParticipantStore

}i

Where initialRecordData is an Object of recipients taken from the mailRecords, if they are opened.
An important note regarding SubStores is that the SubStore is guaranteed to be available when

the Record has been opened (or when it is a phantom record). When the Record has not yet been
opened, the SubStore will only have been allocated if the original JsonData contains the data for the
SubStore (which is not recommended).

12.1.2. IPM Stores and ShadowStore

The Zarafa implementation of the Ext.data.Store is the IPMStore. Refer to Figure 12.4, “IPM Store
explanation”. This Store contains IPMRecords, and any IPMRecord must always belong to an
IPMStore. Each IPMStore is managed by the IPMStoreMgr singleton. The IPMStore has two base
classes, the first one is the ListModuleStore which is used in each Context to list all IPMRecords which
must be displayed in the Context.

57

Chapter 12. Stores and RecordFactory

* 1
Ext.data.Store Ext.StoreMgr
A
* 1
Z.core.data.|IPMStore Z.core.data.|PMStoreMagr
Z.core.data. ListModuleStore Z.core.data.ShadowsStore

Figure 12.3. Store UML diagram

The second one is ShadowStore contains IPMRecords which are currently being edited within a
Dialog, this includes new IPMRecords which must still be created on the server side.

58

RecordFactory

subtree_eptryid

Store

<
A)entryid

default_calendarfolder_entryid

A

L—3»] IPMSubtree

—>»| Ihbox [entryid

—»| Calendar \)e
ntryid
gntainer class)

Note \e
ntryid

——»| Personal Calendar » entryid

——3 Mail Folder
\)entryid

P»{subFolde
I
,_)parent_entryid

When a Dialog starts editing a IPMRecord it must copy the IPMRecord to the ShadowStore and work
on that copy. When a Dialog closes it must remove record from the ShadowStore (after optionally
saving the IPMRecord to the server).

Figure 12.4. IPM Store explanation

Any events from a IPMStore regarding the update for IPMRecords will always be caught by the
IPMStoreMgr and raised as separate event from this manager. Any Ul Component which contains an
IPMRecord must listen to the IPMStoreMgr for events to determine if the IPMRecord has changed and
the component has to be updated. Note that listening to the IPMStore to which the Record belongs

is not sufficient, because Dialogs place a copy of the IPMRecord into the ShadowStore. In which

case the same Message with the same Entryld is represented by two IPMRecords in two different
IPMStores.

12.2. RecordFactory

Record definitions are managed by the Zarafa.core.data.RecordFactory. Within the RecordFactory
two groups of Record definitions exists, the first group is based on the message class (IPM.Note,
IPM.Contact, etc) while the other group is based on the object type (MAPI_MAILUSER,
MAPI_DISTLIST, etc). The reason for having two groups comes from MAPI which does not define the

59

Chapter 12. Stores and RecordFactory

PR_MESSAGE_CLASS property for all possible objects (most notably for Address Book items they
are missing), while the PR_OBJECT_TYPE is too global to be used in all cases (There is no different
value for a Mail and a Contact for instance). Ext JS allows Records to be defined using a list of
possible fields, these fields have a name (the property name) and possible serialiation/deserialization
information (conversion from text to Integer, Date, Boolean, etc). When a Record is created, this list
is used to define which properties will be serialized/deserialized during the communication with the
server. As a result, if a Plugin wishes to send an extra property it somehow has to tell Ext JS the
property is valid for this Record. This is where the RecordFactory is utilized.

The RecordFactory contains the complete field definitions for all possible Record definitions. During
loading, Contexts and Plugins can tell the RecordFactory which fields they wish to use for a particular
Message class or object type. For example:

Zarafa.core.data.RecordFactory.addFieldToMessageClass('IPM.Note', [
{name: 'from'},

1)

This adds the field from to the Record definition for any Record with messageclass IPM.Note. Or,
according to Spreed plugin:

Zarafa.core.data.RecordFactory.addFieldToCustomType(
Zarafa.core.data.RecordCustomObjectType.ZARAFA_SPREED_ATTACHMENT,
Zarafa.plugins.spreed.data.SpreedAttachmentRecordFields);

Where Zarafa.plugins.spreed.data.SpreedAttachmentRecordFields is a set of fields to add to our
record:

Zarafa.plugins.spreed.data.SpreedAttachmentRecordFields = [

{name : 'original record_entryid', type : 'string', defaultvalue : ''},

{name : 'original_record_store_entryid', type : 'string', defaultvalue : ''},
{name : 'original_attach_num', type : 'int'},

{name : 'original_attachment_store_id', type : 'string',6 defaultvalue : ''}

1;

When adding a new object type it should be added to RecordCustomObjectType enum refer to enum*
for more information.

Zarafa.core.data.RecordCustomObjectType.addProperty('ZARAFA_SPREED_ATTACHMENT');
When the user creates a new Record, it must call the RecordFactory to request the Record object.
Zarafa.core.data.RecordFactory.createRecordObjectByMessageClass('IPM.Note');

This will create a new phantom record, for the messageclass IPM.Note. This Record now only has a
single field which is allowed; namely from.

The plugin variant - as we used in SpreedRecord in conversion function:

convertToSpreedAttachment : function(attachmentRecord)

{

return Zarafa.core.data.RecordFactory.createRecordObjectByCustomType (
Zarafa.core.data.RecordCustomObjectType.ZARAFA_SPREED_ATTACHMENT,

. enums

60

enums
enums

RecordFactory

attachmentRecord.data);

3

Here we obtain a new Record object, of the custom type ZARAFA _SPREED_ATTACHMENT, with field
values taken from the second parameter object. If the second parameter is not specified, values are
taken from the field default value will be assigned, e.g. for ‘original_attachment_store_id' default value
will be ".

If we want that a new phantom Records for IPM.Note contain a default value, we can also instruct the
RecordFactory:

Zarafa.core.data.RecordFactory.addDefaultvValueToMessageClass('IPM.Note', 'from', 'me');

Now when we create a new Record for messageclass IPM.Note the record will automatically have the
property from initialized to me.

By default all Record instances which are created by the Record factory use the Ext.data.Record as
baseclass. This however is also configurable using the function setBaseClassToMessageClass. To
force the usage of Zarafa.core.data.IPMRecord to IPM.Note we can use the statement as follows:

Zarafa.core.data.RecordFactory.setBaseClassToMessageClass(
'IPM.Note', Zarafa.core.data.IPMRecord);

Now all new Record instances of Zarafa.core.data.IPMRecord for IPM.Note will inherit from
Zarafa.core.data.IPMRecord.

The same example with Spreed plugin:

Zarafa.core.data.RecordFactory.setBaseClassToCustomType(
Zarafa.core.data.RecordCustomObjectType.ZARAFA_SPREED_ATTACHMENT,
Zarafa.core.data.IPMAttachmentRecord);

Inheritence for the messageclass works quite simple. The inheritence tree for Message class is:

'"IPM' -> '"IPM.Note' -> 'IPM.Note.test'
-> 'IPM.Contact'

When a field, default value or base class is assigned to IPM it is automatically propogated to IPM.Note
and IPM.Contact. These values can simply be overridden within such a subdefinition. For example:

Zarafa.core.data.RecordFactory.addFieldToMessageClass('IPM', [
{name: 'body'},
1);

Zarafa.core.data.RecordFactory.addFieldToMessageClass('IPM.Note', [
{name: 'from'},

1)

Now all Record instances of IPM, IPM.Note and IPM.Contact will contain the field body, but only
IPM.Note will have the additional from field. If we now extend our example with default values:

Zarafa.core.data.RecordFactory.addDefaultValueToMessageClass(
'"IPM', 'body', 'test');

Zarafa.core.data.RecordFactory.addDefaultValueToMessageClass(
'IPM.Contact', 'body', 'contact');

61

Chapter 12. Stores and RecordFactory

The record instances of IPM and IPM.Note will by default have the value test in the body property.
However IPM.Contact will have the value contact in that property.

To add support for a SubStore, the following function can be called:

Zarafa.core.data.RecordFactory.setSubStoreToMessageClass|(
'IPM.Note', 'recipients', Zarafa.core.data.IPMRecipientStore);

This will register the SubStore with the name recipients to all Records which have the
MessageClass IPM.Note. The SubStore will be created using the passed constructor

(zarafa.core.data.IPMRecipientStore). The name can be used on a MAPIRecord to detect if it supports
this particular SubStore:

var record = Zarafa.core.data.RecordFactory.createRecordObjectByMessageClass('IPM.Note');
record.supportsSubStore('recipients')

// True if the record supports the subStore

record.getSubStore('recipients')

// this returns the Zarafa.core.data.IPMRecipientStore allocated for this record

A final warning, adding fields, default values or base classes can only be done during initial

loading. This means that these statements must be done outside any function or class. Calling
Zarafa.core.data.RecordFactory.createRecordObjectByMessageClass can only be made safely after
the initial loading (thus it can be done safely in functions and classes).

Refer to API documentation® for more details.

2 http://developer.zarafa.com/webapp/?class=Zarafa.core.data.RecordFactory

62

http://developer.zarafa.com/webapp/?class=Zarafa.core.data.RecordFactory
http://developer.zarafa.com/webapp/?class=Zarafa.core.data.RecordFactory

Chapter 13.

Deployment and Build System

13.1. Deployment

All plugins files should be created in a special separate plugin directory - webapp/plugins.

Each plugin or widget should have one separate directory. For example, Spreed plugin has the
following items inside:

* js - folder.
« data - folder //all classes realted to working with data are stored here.
« dialogs - folder //all classes realted to dialogs and ui should be placed here.
« SpreedPlugin.js //cannot be sorted properly being the main plugin class and is separate.
e php - folder.
« data - folder //data stored here like list of languages and timezones.
« inc - folder //php classes stored here.
* resources - folder.
« css - folder //css resources places here.
* icons - folder // different icons stored here.
* build.xml //for building spreed plugin (discussed further in chapter Build System build-system).
 config.php //defined php constants.
* manifest.xml //manifest file.
Example widget hierarchy let be end of world widget:
* js - folder.
* FBWidget.js //widget class.
* resources - folder.
« css - folder //css files for widget placed here.
» images - folder //images for widget go here.

» facebook.png

build.xml
* manifest.xml

If you want your plugin to be enabled/disabled using Zarafa Settings menu you should create a new
folder in [WebApp root folder]/plugins directory with the name of your plugin e.g. plugins/facebook,
plugins/spreed. There you should create at least two files: manifest.xml plugin.facebook.php You may
also create config.php file to set default value for your plugin settings. Here goes the example of FB
plugin config.php file.

63

build-system

Chapter 13. Deployment and Build System

The subfolder names and hierarchy can be changed, but it still should stay intuitively understandable.

Manifest is a file, where all the files of your plugin are described. The structure should be strict:

<?xml version="1.0"?>
<!DOCTYPE plugin SYSTEM "manifest.dtd">
<plugin version="2">

//First block represents the common info about plugin
<info>
<version>0.1</version>
<name>facebook</name>
<title>Zarafa Facebook Integration</title>
<author>Zarafa</author>
<authorURL>http://www.zarafa.com</authorURL>
<description>Zarafa Facebook Integration, allows you to import your Facebook events to
Zarafa calendar.</description>
</info>

//Second block describes where to find config file of your plugin
<config>

<configfile>config.php</configfile>
</config>

//Third block describes files that are used in your plugin
<components>
<component>
<files>
<server>
<serverfile>php/plugin.facebook.php</serverfile>
</server>
<client>
// loaded client files should have an attribute 'load', which can take one of three
values:
//source, debug and release. Source are files that you created during development,
debug - the one file,
//compiled from all your files, and the release is the compressed debug file.
<clientfile load="release">js/facebook.js</clientfile>
<clientfile load="debug">js/facebook-debug.js</clientfile>
<clientfile load="source">js/FacebookEventsPlugin.js</clientfile>
<clientfile load="source">js/FbEventSelectionDialog.js</clientfile>
<clientfile load="source">js/FbIntegrationDialog.js</clientfile>
<clientfile load="source">js/FbEventSelectionGrid.js</clientfile>
<clientfile load="source">js/FbIntegrationPanel.js</clientfile>
<clientfile load="source">js/data/FbEventDataReader.js</clientfile>
<clientfile load="source">js/data/FbEventProxy.js</clientfile>
<clientfile load="source">js/data/FbEventRecord.js</clientfile>
<clientfile load="source">js/data/FbEventStore.js</clientfile>
</client>
<resources>
//here are css files needed in your plugin
<resourcefile load="release">resources/css/facebook.css</resourcefile>
<resourcefile load="source">resources/css/plugin.facebookstyles.css</resourcefile>
</resources>
</files>
</component>
</components>
</plugin>

13.2. Build System

The WebApp is a relatively complex application consisting of a server part, written in PHP, and a client
part written in JavaScript. Tasks such as building, deploying, and testing the application, and also
generating documentation are automated in a build system. The tool we use is Ant.

64

Getting Started

An important note here is that the build system is something that Zarafa company use, but it is not
really mandatory for all plugin developers to use it too. Zarafa provides the required tools in the source
package, but not in the normal installation packages. Plugin developers do not require the source
package to create plugins, so the presence of build.xml is also completely optional and only can be
present if plugin developers want to use Zarafa building system.

13.2.1. Getting Started

Prerequisites for using the build system is a Java 6 JDK and Ant. Other libraries and tools are kept in
svn either as binaries or as source.

13.2.1.1. Linux

On most distributions both Java 6 and Ant should be in the repositories. Make sure you don’t get GNU
Java (gcj) but get the sun jdk or openjdk. On Ubuntu, simply type:

sudo apt-get install sun-java6-jdk ant ant-optional
update-alternatives --auto java

Especially the last line is important since multiple versions of Java can be installed side by side on a
system, and the default has to be selected explicitly. Ant should be installed and configured properly
by your package manager.

13.2.1.2. Windows, Mac

These platforms have not been tested, but should work. The Java 6 JDK can be downloaded from
Sun*, Mac users should already have a working java 6. Apple sadly doesn’t support Java 6 for OS X
10.4 or on 32-bit intel macs with OS X 10.5. On these platforms, install SoyLatte2 instead.

To test if everything works as it should, go to the root of you WebApp 7 folder and simply type ant.
Your system should build the tools, build the client application, and run the test suite.

13.2.2. Ant Introduction

Ant is an XML-based build system written in Java, and is quite well known in the Java community.
We have chosen Ant to build our application because many of the tools that we use to process our
JavaScript code were written in Java, such as the ext-doc documentation tool, our own JsConcat
concatenation tool and others.

Ant build files are XML files, usually called build.xml. They define a project with several nested
properties, typedefs, and tasks. Here’s a partial example.

<project name="example" default="all">
<property name="foo" value="bar"/>

<target name="all" depends="compile"/>
<target name="init">
<!-- do something here -->

</target>

<target name="compile" depends="init">

! http:/iwww.java.com/en/download/index.jsp
2 http://landonf.bikemonkey.org/static/soylatte/

65

http://www.java.com/en/download/index.jsp
http://landonf.bikemonkey.org/static/soylatte/
http://www.java.com/en/download/index.jsp
http://landonf.bikemonkey.org/static/soylatte/

Chapter 13. Deployment and Build System

<!-- do something here -->
</target>
</project>

The target tag defines a target. Targets have nested tasks, like calling a compiler, creating an output
directory etc. The property tag acts like key=value in make, with the exception that properties are
defined only once and become immutable. Any redefinition of the property is ignored. The following
example illustrates the use of properties and how redefinitions are ignored:

<project name="example2" default="all">
<property name="foo" value="bar"/>
<property name="foo" value="not bar"/>
<!-- Will output 'bar' -->
<echo message="${foo}"/>

</project>

This mechanism is used by ant build files calling other build files. If an ant file calls another ant file,

to build a sub project for instance, the caller may override properties in the callee to set configuration
switches, output directories, and so forth. Properties in ant build files may also be overridden from the
command line. Running the above example with and -Dfoo=foo would cause ant to echo foo.

Ant is a build system that can be both powerful and frustrating, and it is certainly quite different from
tools like make or scons. For more information, please refer to the Ant manual®.

13.2.3. Tools

The build system uses several tools to accomplish various tasks. Some of these are third-party, and
some of these are custom.

13.2.3.1. JsConcat

Large Ext JS applications tend to be made up of many individual files. Our naming convention dictates
that most classes are defined in their own files. When the application is deployed all these files are
bundled together by concatenating them into a single JavaScript file, which is then minimised.

A standard concat ant task exists that concatenates a set of files. The file order is important because
files may depend on one or more global variables declared other files. Specifically in Ext JS
applications, if some class Foo extends another class Bar, bar.js must be included before foo.js. It is
possible to specify this inclusion order by hand, but considering the large number of files to manage,
this is a maintenance nightmare. Therefore JsConcat was created, a concatenation task that scans the
input files and determines the proper inclusion order automatically.

Inclusion Order

There are three ways to influence the inclusion order. First, there are explicit dependencies that you
can enter in your file:

/*
* This file needs to be included after bar.js
* #dependsFile /foo/bar.js
*/

Dependencies are also extracted from @class and @extends:

8 http://ant.apache.org/manual/index.html

66

http://ant.apache.org/manual/index.html
http://ant.apache.org/manual/index.html

Tools

/**
* Foo extends Bar, so the file in which Bar is defined should come before this file.
* @class Foo
* @extends Bar
*/

Finally, formatted as a comma-separated list of regular expressions, the prioritise argument can be
used to move groups of files up the list. Files that have classes defined in them have those full class
names matched against the regexps. Files that match the first priority group have the highest priority,
files that match the second group come after that, and so on. We use this mainly to move the core and
common packages to the top of the list.

For example,"+, Foo.bar.*" will move all files which have classes in the root package (i.e. Date, Foo0)
to the top of the list, after wich come all files which have classes in Foo.bar or any of its descending
packages, and finally all the files that match neither of these criteria.

Example Build File

<!-- Define the 'jsconcat' task -->

<taskdef name="jsconcat" classname='"com.zarafa.jsconcat.JsConcatTask">
<classpath path="JsConcat.jar"/>

</taskdef>

<!-- Concatenates JavaScript files with automatic dependency generation -->
<target name="concat">
<jsconcat
verbose="false"
destfile="${debugfile}"
prioritize="\w+, Foo.bar.*"

<fileset
dir="${sourcedir}"
includes="**/*.js"
/>
</jsconcat>
</target>

13.2.3.2. Ext-doc

Ext JS comes with a JavaDoc inspired code documentation tool that generates nice HTML
documentation. There is a fork of this tool in the svn that supports extra tags to document insertion
points. More information can be found at the ext-doc* google project page.

13.2.3.3. Closure Compiler

The Closure Compiler is a Javascript minimisation tool from Google. It will compile a concatenated
JavaScript file. It supports multiple compile modes, only whitespace guarantees to only change the
whitespaces and minimise the Javascript file without changing the code itself. The other compilation
modes will change the code itself (for example, rename variables, make functions inline, etc).

* http://code.google.com/p/ext-doc/

67

http://code.google.com/p/ext-doc/
http://code.google.com/p/ext-doc/

68

Chapter 14.

Translations

Zarafa WebApp provides a multilanguage interface. The language can be switched in settings. See
Figure 14.1, “Languages changed in settings”

& General Account information - Alexandra Stepanchuk Favorite settings

B Mail Display Name: Alexandra Stepanchuk gﬁ Signatures
E-mail: a.stepanchuk@zarafa.com <] Outof Office Assistant
Language: | English
| iy
English
Italiano

P4 Calendar

+ Advanced

Nederlands
oy
English (US)
Deutsch
Pycckmi
Francais
P

Apply Discard

Figure 14.1. Languages changed in settings

The WebApp uses GNU gettext for translating.

In your js code just rememer to translate each string label using _(your string label): Example:

/**
* Create all buttons which should be added by default the the “Actions™ {@link
Ext.ButtonGroup ButtonGroup}.
* This will create {@link Ext.ButtonGroup ButtonGroup} element with Spreed setup button.
* @return {Array} The {@link Ext.ButtonGroup ButtonGroup} elements which should be added
* in the Actions section of the {@link Ext.Toolbar Toolbar}.
* @private

*/
createActionButtons : function()
{
return [{
xtype : 'button',
text : _('Setup Meeting'), // button text translation
tooltip : {
title : _('Setup Meeting'), //tooltip title translation
text : _('Setup meeting with provided details') //tooltip text translation
i
iconCls : 'icon_spreed_setup',
handler : this.setUpMeeting,
scope : this
1
iy

14.1. Gettext

Information about the GNU gettext project can be found at http.//www.gnu.org/software/gettext/

69

http://www.gnu.org/software/gettext/

Chapter 14. Translations

GNU gettext allows us to supply the entire WebApp in the language of the user’s choosing. It also
allows the developer to implement plural translations and context-based translations.

With plural translations you can have gettext handle whether you should use a singular or plural
translation.

PHP:

<?php
echo sprintf(ngettext('Deleted %s file', 'Deleted %s files', $count), $count);
?>

JavaScript:
ngettext('Deleted %s file', 'Deleted %s files', count).sprintf(count);

Context-based translations allows you to translate the same word in English, but different in other
languages. You add a context in which you specify where you use the translatable text and gettext can
distinquish the different strings.

PHP:

<?php

echo pgettext('Menu', 'Open');

echo pgettext('Dialog.toolbar', 'Open');
?>

JavaScript:

pgettext('Menu', 'Open');
pgettext('Dialog.toolbar', 'Open');

For developers it is also possible to add commentary for the translators. You can do this by adding the
following comment to the code just above the gettext function.

PHP:

<?php

/* TRANSLATORS: Comment
* Extra comment
*/

_('English text');

// TRANSLATORS: Comment
// Extra comment
_('English text');

2>

JavaScript:

/* # TRANSLATORS: Comment
* # Extra comment */
_('English text');

// # TRANSLATORS: Comment
// # Extra comment
_('English text');

70

Server-Side

For the extraction of the translations from the JavaScript files gettext offers the utility xgettext.
However, this utility cannot read a JavaScript file. To make it work we set the language to Python

(yes, that is not a joke). The downside of this is that comments directed at the translators need to be
formatted a certain way. Python does not understand the JavaScript comments so we need to add a #
on every line preceeding the gettext function. Also when you are using the multiline comment (/* */) the
last line must contain the # character.

14.2. Server-Side

On the server-side the PHP has by default some gettext functions implemented already. It still misses
a few though. That is why the of the WebApp server-side implements the following functions: pgettext,
npgettext, dpgettext and dcpgettext.

More information about the default PHP functions can be found at http.//www.php.net/gettext/.

14.2.1. Implemented Functions on the Server-Side

PHP misses the context gettext functions and that is what the WebApp implements. The $msgctxt
argument supplies the context of the translation. The $msgid is the translatable string. The different
functions implement the context together with the normal gettext function, plural, domain and category
gettext functions.

<?php

pgettext($msgctxt, $msgid);

npgettext($msgctxt, $msgid, $msgid_plural, $num);
dpgettext($domain, $msgctxt, $msgid);
dcpgettext($domain, $msgctxt, $msgid, $category);
?>

14.3. Client-Side

14.3.1. Reading Translations and Passing it to the Client

The language class is the server-side PHP class that reads the binary .mo file in the language folder
of the WebApp and returns a list of those translations. The client requests the page index.php?
load=translations.js which includes the file client/translations.js.php. In this file the Translations class is
defined and the translations are added inside this global Javascript object.

The plural-forms are defined inside the "first defintion". This first defition is an empty string with the
value containing information like the following.

mSgld nn

msgstr ""

"Project-Id-Version: PHP-Langadmin 1.0\n"
"POT-Creation-Date: 2008-12-16 16:16:06+0100\n"
"PO-Revision-Date: 2008-12-16 16:16:06+0100\n"
"Last-Translator: PHP-Langadmin automatic translator <foo@bar.foobar>\n"
"Language-Team: nl NL <nl@li.org>\n"

"MIME-Version: 1.0\n"

"Content-Type: text/plain; charset=iso0-8859-1\n"
"Content-Transfer-Encoding: 8bit\n"

"Plural-Forms: nplurals=3; plural=n==1 ? 0 : n==2 ? 1 : 2;"

As you can see the last line defines the plural forms. Based on this string gettext will understand what
singular or plural form it needs to use. In English there are only two, but in other languages you might

71

http://www.php.net/gettext/

Chapter 14. Translations

have a different one when dealing with zero. Some other languages make it even more complex with
different cases for numbers ending with one, except for eleven.

14.3.2. Implemented Functions on the Client-Side

The client-side implements the same function we have on the server-side. Except for the functions that
implement the gettext category (the c-functions). The msgid argument is the translatable string. The
msgctxt is the context argument.

_(key, domain)

dgettext(domain, msgid)

ngettext(msgid, msgid_plural, count)

dngettext(domain, msgid, msgid_plural, count)
pgettext(msgctxt, msgid)

dpgettext(domain, msgctxt, msgid)

npgettext(msgctxt, msgid, msgid_plural, count)
dnpgettext(domain, msgctxt, msgid, msgid_plural, count)

The Translations object will use the plural forms string that was extracted from the binary .mo file and
passed on to the client. It is put into a function to be called when dealing with a plural translation.

72

Appendix A. Coding Standards

A.1. Naming Conventions

A.1.1. Namespace Structure
The bulk of the code lives in client/zarafa, representing the Zarafa namespace.

» Zarafa - the root namespace

core - the application core framework. Includes global models such as the folder hierarchy, the
plugin, contexts, and widgets system, etc.

* ui - Ul components used in the core framework. Navigation panel, main viewport, etc.
« dialog - core dialogs.

common - code that is common to all contexts and plugins.

« ui - common Ul components: value pickers, form panels.

« dialog - dialogs used by multiple contexts.

[context] - context specific code, i.e. freebusy, mail, contact, etc.

* ui - Ul components used exclusively in this context.

dialog - context specific dialogs.

plugins - Zarafa standard plugins.

widgets - Zarafa standard widgets.

A.1.2. Naming Packages and Classes

Package names are lower case, except the top level Zarafa package. Class, method, and field names
follow Java conventions; classes are camel case starting with a capital letter (i.e. CalendarMultiView,

MailStore), methods and fields start with a lower case letter (i.e. getParentView(), load(), folderList).

The package/class structure follows the folder/file structure, much like with a Java project. For
instance, Zarafa.calendar.ui.CalendarPanel can be found in zarafa/calendar/ui/CalendarPanel.js. Most
complex classes will have their own file. Small/trivial classes that are used from only one place may be
placed inside another class’s file.

A.1.3. Naming Insertion Points
Insertion points also follow a hierarchy. Top level:

Main application - main

Hierarchy panel - hierarchy

Contexts - context.[name], i.e. context.task, context.mail

Plug-ins - plugin.[name], i.e. plugin.folderstatus, plugin.sugarcrm

73

Appendix A. Coding Standards

» Widgets - widget.[name], i.e. widget.clock, widget.news
Common node types:
 Dialog - dialog.[name], i.e. dialog.edit

* Context menu - contextmenu

Tool bar - toolbar

Status bar - status

Most common insertion points' names are of the following structure

{main|hierarchy|context.[context name]|plugin.[plugin name]|widget.[widget name]}.
{dialog.[dialog name]|contextmenu|toolbar|status}*

A.2. Coding Style Guidelines

In order to maintain consistency a few guidelines shall be followed in the WA projects.
Placement of brackets.

Function declarations shall always have brackets on a new line.

getModel : function()
{

return this.model;

I
If-else statements shall use a condensed style.

if (item.isXType('zarafa.recipientfield'))

{

item.setRecipientStore(record.getRecipients());
} else {
item.setValue(value);

}
When an if-statement scope only consists of one row then the brackets should also be present.

if (!this.bodyInitialised)
{
this.initBody();

}
Never use single line if-statements (WRONG).
if (!this.bodyInitialised) this.initBody();
For the ternary operator one line is ok.
iconClass = record.isRead() ? 'icon_mail read' : 'icon_mail unread';
It's also highly recommended to use tabs instead of usual four spaces characters in indentation, as

long as each developer can determine whether he wants his editor to show the appropriate number of
spaces for each indentation of the code.

74

Documentation

After the first charachter spaces are used.

A.3. Documentation

The application is documented using the ext -doc documentation tool provided by the Ext JS people.
It allows documenting JavaScript code much like Javadoc or Doxygen. This section describes code is
documented. Since Javascript is a very dynamic language it's pretty much impossible to detect class,
method, and field definitions, and the relationships between them. Therefore documentation is quite
explicit. One has to declare classes, methods, and fields manually. This section briefly describes the
most important aspects of documenting with ext-doc. Please refer to the ext-doc documentation wiki*
for more information.

A.3.1. Documenting Classes

A class is declared using the @class statement inside a /** */ multi-line comment. One can use
@extends to indicate that the class is a subclass of another class. A description of the class follows
these two statements. Optionally the @singleton statement can be used to declare the class a
singleton. For classes which inherit directly or indirectly from Ext.Component, should use the @xtype
to document which xtype can be used to automatically instantiate the object through the xtype. The
constructor will be documented separately and is documented much like a method. Finally use @cfg
to declare configuration options for this class. Note that parameters and configuration options are
typed.

Spreed Plugin example:

/**
* @class zarafa.plugins.spreed.SpreedPlugin
* @extends Zarafa.core.Plugin

*

* This class integrates Spreed plugin in existing system.
* It allows user to setup spreed web meeting settings.
*
/
Zarafa.plugins.spreed.SpreedPlugin = Ext.extend(Zarafa.core.Plugin, {
//class code

}

A.3.2. Documenting Fields

Within a class configuration fields (which are configured using the config parameter in the
constructor) must be added and documented. These fields must be documented using the @cfg within
a/** */ multi-line comment.

Zarafa.plugins.spreed.SpreedPlugin = Ext.extend(Zarafa.core.Plugin, {
/**
* Contains link to the spreedStore class
initialized once when plugin is created.

*
* @property
* @type Object
* @private
*/
spreedStore : null,

/**

! http://code.google.com/plext-doc/w/list

75

http://code.google.com/p/ext-doc/w/list
http://code.google.com/p/ext-doc/w/list

Appendix A. Coding Standards

Unique id which works instead entryid
for SpreedRecord.

@property
@type Integer
@private

*
*
*
*
*
*
*/
sequenceld : 0,

//code

A.3.3. Documenting Constructors

Constructors must be documented inside a /** */ multi-line comment. Use @constructor to mark
the function as a constructor. Other than that the function is simly documented as a regular function.

It is recommended, but not mandatory, to use // single-line comments (which will not be parsed for
online documentation) to document configuration value overrides for the superclass.

/**
* @constructor
* @param {Object} config Configuration object

*
*/
constructor : function (config)

{
config = config || {};
Ext.applyIf(config, {
name : "spreed"

1

Zarafa.plugins.spreed.SpreedPlugin.superclass.constructor.call(this, config);
this.init();

+

A.3.4. Documenting Methods

The following listing shows how to document methods. Parameters can be specified using @param
with a type, name, and description. The method name will be extracted automatically, but if for any
reason this fails, adding @method [name] will solve that. If an argument is an optional - one can
make this explicitly by using (optional) as exemplified by the errorCallBack parameter. For
method which are private, only visible for the own class, then @private annotation shall be added.
Do not use the "old" way of describing private (private) in the method description and/or with one less *
in the comment opening. If this old documenting format is found in the code base it shall be updated to
use @private.

*

Similar to {@link Ext.data.JsonWriter#toHash}

Convert recipients into a hash. Recipients exists as

{@link Zarafa.core.data.IPMRecipientRecord IPMRecipientRecord} within

a {@link Zzarafa.core.data.IPMRecord IPMRecord} and thus must be serialized
seperately into the hash object.

@param {Ext.data.Record} record The record to hash
@return {Object} The hashed object

@override

@private

* ok kR ok k% ok % k% % 3k

*/
toPropHash : function(record)

{

76

Documenting Insertion Points

/code

return hash;

}

A.3.5. Documenting Insertion Points

Insertion points should be documented just after the class declaration. The name of the insertion point
can be specified using @insert with a name of the insertion point. Parameters can be specified using
@param with a type, name, and description.

For example, populating insertion point for new menu item:

Zarafa.core.ui.MainToolbar = Ext.extend(Zarafa.core.ui.Toolbar, {
// Insertion points for this class
/**
* @insert main.maintoolbar.new.item
* Insertion point for populating the "New item" menu. It will be placed in the item part of
the
* list. Each item inserted to this list is accessible from all contexts.
* @param {Zarafa.core.ui.MainToolbar} toolbar This toolbar
*/

//population of insertion point itself
var itemMenu = container.populateInsertionPoint('main.maintoolbar.new.item', this) || [];

A.3.6. Documenting Enumerations

An example of documenting enumeration is Spreed Dialog types enumeration. An enumeration is
declared using the @class statement inside a /** */ multi-line comment. One can use @extends
to indicate that the enum extends Zarafa.core.Enum. A description of the class follows these two
statements. Optionally the @singleton statement can be used to declare the class a singleton. Each
property of the enum should be documented, telling what it means and what type it is.

/**
* @class zarafa.plugins.spreed.data.DialogTypes
* @extends Zarafa.core.Enum
* Enum containing the different types of dialogs needed to display spreed meeting.
* @singleton
*/
Zarafa.plugins.spreed.data.DialogTypes = Zarafa.core.Enum.create({

/**
* The dialog with empty fields.(Brandly new)
* @property
* @type Number
*/
EMPTY : 1,

/**
* The dialog with filled subject and participants.
*
* @property
* @type Number

77

Appendix A. Coding Standards

*/
FILLED : 2,

/**
* The dialog with only participants field prefilled.
*
* @property
* @type Number
*/
PARTICIPANTS_FILLED : 3

1

78

Appendix B. References
e Spreed Meeting plugin1

» Zarafa WebApp homepage2

« Zarafa WebApp API reference®

« Zarafa WebApp user manual®

Zarafa WebApp developers' manual®

79

http://www.zarafa.com/content/introduction-spreed-web-meeting-integration
http://www.zarafa.com/webapp
http://developer.zarafa.com/webapp/
http://doc.zarafa.com/trunk/User_Manual/en-US/html/_using_the_WebApp.html
http://doc.zarafa.com/trunk/WebApp_Developers_Manual/

80

	Zarafa WebApp
	Table of Contents
	Part I. WebApp Introduction
	Chapter 1. Introduction
	1.1. WebApp
	1.2. Requirements
	1.3. Document Structure Overview
	1.4. Examples
	1.4.1. Facebook Events
	1.4.2. Spreed meetings
	1.4.3. Facebook widget

	Chapter 2. Architecture Overview
	Chapter 3. Ext JS and OO-Javascript
	3.1. Classes
	3.2. Accessing Components
	3.3. Enums
	3.4. Singletons

	Chapter 4. Extending WebApp
	4.1. Ways of Extending WebApp

	Part II. Extending WebApp
	Chapter 5. Insertion Points
	5.1. Zdeveloper plugin
	5.2. Example: adding a button

	Chapter 6. Widgets
	6.1. Creating a widget
	6.2. Widget configuration
	6.3. Events

	Chapter 7. Dialogs
	7.1. Events
	7.2. Example
	7.3. Dealing with MAPI records
	7.3.1. Displaying a record

	Chapter 8. Bidding System
	8.1. Bidding and insertion points
	8.2. Working
	8.3. Bidding on a shared component
	8.4. Example

	Chapter 9. Data Models
	9.1. Model-based architecture
	9.2. Separable model architecture
	9.3. Hierarchy model
	9.4. Settings model

	Part III. Advanced topics
	Chapter 10. MAPI
	Chapter 11. Communication
	11.1. Conceptual Overview
	11.2. Protocol
	11.3. Javascript Communication
	11.4. Response Handlers
	11.5. Notifications

	Chapter 12. Stores and RecordFactory
	12.1. Stores and Substores
	12.1.1. MAPI Store
	12.1.2. IPM Stores and ShadowStore

	12.2. RecordFactory

	Chapter 13. Deployment and Build System
	13.1. Deployment
	13.2. Build System
	13.2.1. Getting Started
	13.2.1.1. Linux
	13.2.1.2. Windows, Mac

	13.2.2. Ant Introduction
	13.2.3. Tools
	13.2.3.1. JsConcat
	13.2.3.2. Ext-doc
	13.2.3.3. Closure Compiler

	Chapter 14. Translations
	14.1. Gettext
	14.2. Server-Side
	14.2.1. Implemented Functions on the Server-Side

	14.3. Client-Side
	14.3.1. Reading Translations and Passing it to the Client
	14.3.2. Implemented Functions on the Client-Side

	Appendix A. Coding Standards
	A.1. Naming Conventions
	A.1.1. Namespace Structure
	A.1.2. Naming Packages and Classes
	A.1.3. Naming Insertion Points

	A.2. Coding Style Guidelines
	A.3. Documentation
	A.3.1. Documenting Classes
	A.3.2. Documenting Fields
	A.3.3. Documenting Constructors
	A.3.4. Documenting Methods
	A.3.5. Documenting Insertion Points
	A.3.6. Documenting Enumerations

	Appendix B. References

