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variables as a low level primitive for the implementation of mechanisms that neces-sitated the speci�cation of the behavior of the data type during uni�cation.A re�ned version of the concept of meta-structures and attributed variableswas used by Holzbaur in [16] for the speci�cation and implementation of a varietyof instances of the general CLP scheme [19]. By enhancing the SICStus Prologsystem with attributed variables a generic system is provided which is basically aSICStus Prolog \clone" where the uni�cation mechanism has been changed in sucha way that the user may introduce interpreted terms and specify their uni�cationthrough Prolog predicates. This approach is very attractive in that it shows thatby adding a few primitives any logic programming system can be turned into ageneric constraint logic programming system in which constraint solving can beuser de�ned, at the source level { an extreme example of the \glass box" approach.Another system which implements constraint solving using similar techniques is theECLiPSe system developed at ECRC [11].While this approach in principle has drawbacks from the performance point ofview (when fully interpreted up to an order of magnitude slowdown is possible w.r.t.native CLP systems) the convenience and generality of the approach can make itvery worthwhile in many cases. Furthermore, the speed can be easily increased ininteresting cases by writing the uni�cation handlers in a lower-level language. Thepotential for achieving both genericity and reasonable speed is illustrated by therelatively good performance exhibited by the ECLiPSe system, which has been usedin many practical applications.Inspired by the previously discussed use of attributed variables we propose a dif-ferent and novel use for such variables in a completely di�erent context: developinggeneric parallel/concurrent (constraint) logic programming systems, using the same\glass box" avor. Attributed variables have already been used to implement thecoroutining (delay) facilities present in many Prolog systems { often what is actu-ally being done is in fact restoring such capabilities after having \cannibalized" thedelay mechanism support for implementing the attributed variables. However, weargue that a system which implements both support for attributed variables and afew additional primitives related to concurrency and parallelism can do much morethan simply restoring the delay mechanism. In fact, it is our thesis that using theprimitives mentioned above it is possible to easily implement many of the languagesand execution models of parallelism and concurrency currently proposed. We illus-trate this through examples and we discuss how quite complex concurrent languagesand parallel execution models can be implemented using only such primitives. Fur-thermore, we argue that this can be done in a seamless and user-transparent wayin both shared memory and distributed systems. Also, one additional advantage ofour technique is that it relates and uni�es the two main approaches currently usedin concurrent logic programming, and which are seen traditionally as unrelated:\shared variable" systems, in which communication among parallel tasks is donethrough variables, and \distributed" or \blackboard" systems in which communica-tion is done through explicit built-ins which access shared channels or global dataareas.It should be noted that the use that we propose of attributed variables in theimplementation of concurrency and parallelism does not necessarily prevent theirsimultaneous use also for other purposes, such as the original one of constraintsolving. Also, note that the approach proposed, although having some similarities,di�ers from that of \generic objects," recently and independently discussed by theKL1 implementors [8]. The idea in generic objects is to provide an interface at the\C" level for a particular class of extensions. Our approach di�ers in both the levelat which the extensions are made (which is completely at the source level in ourcase, thus really o�ering a reective, glass box approach), and the nature and extent



of the extensions proposed, which goes beyond those that are related to supportingKL1.Space limitations force the presentation to cover only some basic cases and giveincomplete descriptions of the implementations. For more details the reader isreferred to [14]. Also, the implementations described can be obtained by contactingthe authors.2 Attributed Variables and Related PrimitivesWe provide a brief introduction to attributed variables. For concreteness, we follow astylized version of Holzbaur's �rst implementation of attributed variables in SICStusProlog. The reader is referred to [16, 17] for more detailed information.2.1 General ConceptsAttributed variables are variables with an associated \attribute." Attributes areterms which are attached to variables, and which are accessed in a special way dur-ing uni�cation and also through special built{in predicates. As far as the rest of agiven Prolog implementation is concerned, attributed variables behave like variables.Special treatment for attributed variables does apply mainly during uni�cation: aswill be described later, when an attributed variable is to be uni�ed with anotherattributed variable or some other non-variable term, user-de�ned predicates specifyhow this uni�cation has to be performed. The following is a list of typical predi-cates which provide for the introduction, detection, and manipulation of attributedvariables. In general, attributed variable related operations are correctly undoneupon backtracking.� get attr(X,C): if X is an attributed variable, unify the corresponding at-tribute with C, otherwise fail.� attach attr(X,C): turn the free variable X into an attributed variable withattribute C.� detach attr(X): remove the attribute from an attributed variable, turning itinto a normal variable.Attributed variables are dealt with specially during uni�cation. Essentially, thedi�erent possible cases are handled as follows. A uni�cation between an unboundvariable and an attributed variable binds the unbound variable to the attributedvariable. When an attributed variable is about to be bound during uni�cationto a non-variable term or another attributed variable, the attributed variable andthe value it should be bound to are collected. At the next inference step, thepending attributed variable-value pairs are supplied to user-de�ned handlers whichare de�ned by the user by means of the following predicates:� verify attr(C,T): invoked when an attributed variable with an attributewhich uni�es with C is about to be uni�ed with the non-variable term T.� combine attr(C1,C2): invoked when two attributed variables with attributesC1 and C2 are about to be uni�ed.Note that the two predicates are not called with the attributed variables in-volved, but with the corresponding attributes instead. The is done for reasons ofsimplicity and e�ciency (e.g. indexing). Note also, however, that if access to the ac-tual attributed variable is needed the variable itself can be included in the attribute



when it is attached. In general, a number of other primitives are often providedwhich allow pretty printing and dumping of the results in a user{understandableformat.2.2 Attributed Variables And Coroutining { an ExampleThe following example, due to [17] serves both to illustrate the use of the primitivesintroduced in the previous section and also to recover the functionality of freeze/2[10] since attribute variables are, as mentioned before, most easily implemented inpractice by \cannibalizing" an existing implementation of freeze:freeze(X, Goal) :-attach_attr(V, frozen(V,Goal)),X = V.verify_attr(frozen(V,Goal),Val) :-detach_attr(V),V = Val,call(Goal).
combine_attr(frozen(V1,G1),frozen(V2,G2)) :-detach_attr(V1),detach_attr(V2),V1 = V2,attach_attr(V1,frozen(V1,(G1,G2))).The call to attach attr ties the term representing the frozen goal to the relevantvariable. When the variable is bound the uni�cation routine escapes to the user-de�ned generic handler verify attr which in turn performs the meta-call. Notethe de�nition of combine attr needed for handling the case where two variableswhich have frozen goals attached are uni�ed: a conjunction of the goals is attachedto the resulting variable.Note that the explicit encoding of delay primitives such as freeze/2 and theirincorporation into the attributed variable handling mechanism is not to be under-stood as a mere substitute for the original C code. The true motivation for explicitencodings is that it enables the user to freely de�ne the combination and interactionof such delay primitives with other uses of the attributed variables such as the im-plementation of a constraint solver. Note that such a solver may also itself performsome delaying, for example when dealing with non-linear constraints.3 Kernel Concurrent PrimitivesWe now introduce a simple concurrent/parallel language that we call \Kernel &-Prolog" (K&P). The purpose of this language is to provide a small set of basicoperators which will allow the implementations that we would like to propose. Thislanguage is essentially identical to the kernel language used in the shared memory[15] and distributed [13] implementations of the &-Prolog system, but it is describedhere for the �rst time.Essentially, the K&P language subsumes Prolog and includes all the attributedvariable primitives described in Section 2. In addition, it provides the followingoperators which provide for creation of processes, assignment of computational re-sources to them, and synchronization:� &/2 { Standard fork/join parallel conjunction operator (the one used, forexample, by the &-Prolog parallelizing compiler [4]). It performs a parallel\fork" of the two literals involved and waits for the execution of both literalsto �nish (i.e. the join). If no processors are available, then the two literalsmay be executed in the same processor and sequentially, i.e. one after theother. For example, ..., p(X) & q(X), r(X), ... will fork a task p(X)in parallel with q(X). The continuation r(X) will wait until both p(X) and



q(X) are completed.2 The implementation of this primitive at the abstractmachine level is well understood [15].� &&/2 { \fair" fork/join parallel conjunction operator. It performs a parallelfork of the two literals involved and waits for the execution of both literals to�nish (join). A \thread" is assigned to each literal. The execution of the twoliterals will be interleaved either by executing them on di�erent processors(if they are available) or by multiplexing a single processor. Thus, even ifno processors are available, the two literals will be executed with (apparent)simultaneity in a fair way.� &/1 { Standard fork operator. It performs a parallel fork of the literal involved.No waiting for its return is performed (unless explicitly expressed using thewait primitive { see below). For example, ..., p(X) &, q(X), r(X), ...will fork a task p(X) in parallel with the rest of the computation.� &&/1 { \fair" version of the fork operator.� &@/2 { \Placement" standard fork operator. It performs a parallel fork ofthe literal involved, assigning it to a given node. No waiting for its return isinvolved. If that node is busy, then the literal will eventually be executed inthat node when it becomes idle. For example, ..., p(X) &@ node , q(X),... will fork the task p(X) in parallel with the rest of the computation andassign it to node node.3 The second argument can be a variable. If the variableis instantiated at the time the literal is reached, its value is used to determineits placement. If the variable is unbound at that time, then the goal is notassigned to any particular node and the variable is bound to the node id. ofthe node that picks up the task, when it does so.� &&@/2 { \fair" placement fork operator. It performs a parallel fork of theliteral involved, assigning it to a given node and �nding (or, if not available,creating) a thread for it in that node.� wait(X): This primitive suspends the current execution thread until X isbound. X can also contain a disjunction of variables, in which case execu-tion waits for either one of such variables to be bound.� lock(X,L)/unlock(L): This primitive gets/releases a lock L (on the term X).Note that in the discussion above a (parallel) conjunction of literals can alwaysbe used in place of a literal, i.e. the expression ..., (a,b) & (c, d & e, f), ...is supported. Also, note that the \placement" primitives (&@/2 and &&@/2) and thewait/lock primitives are su�cient to express all the other primitives.In addition to the \placement" operators described above, which can be directlyused in distributed environments, the language also provides as base primitives aLinda-like [7] library, and a lower-level Unix socket interface both of which reproducethe functionality of those of SICStus Prolog. In fact, in distributed environments theprimitives described above are implemented using the Linda library [13]. However,the Linda interface can also be used directly: there is a server process which handlesthe blackboard. Prolog client processes can write (using out/1), read (using rd/1),2Note that the goals do not need in any way to be independent { this is only necessary if certaine�ciency properties of the parallel execution are to hold. However, unlike in the source language,in the kernel language care must be taken to lock properly concurrent accesses to shared variables(see locking primitives).3This is implemented by having a private goal stack for each agent, from which other nodescannot pick work, and putting the goal being scheduled on the private goal stack of the appropriateagent.



and remove (using in/1) data (i.e. Prolog terms) to and from the blackboard. Ifthe data is not present on the blackboard, the process suspends until it is available.Alternatively, other primitives (in noblock/1 and rd noblock/1) do not suspendif the data is not available { they fail instead and thus allow taking an alternativeaction if the data is not in the blackboard. The input primitives can also wait ondisjunctions of terms.4 Implementing Concurrent (Constraint) Lan-guages in Distributed EnvironmentsWe now describe a concrete application of our ideas. Our objective in this exampleis to combine the two main approaches currently used in concurrent logic program-ming, and which are seen traditionally as unrelated: \shared variable" systems, inwhich communication among parallel tasks is done through logical variables (e.g.Concurrent-Prolog [25], PARLOG [12], GHC [30], Janus [24], AKL [20], Oz [27],etc.), and \distributed" or \blackboard" systems, in which communication is donethrough explicit built-ins which access shared channels or global data areas (e.g.Multi-Prolog [2], Shared Prolog [3], and Prologs incorporating Linda [7], being oneof the most popular Linda implementations the one bundled with SICStus [1]). Inorder to do that, we will sketch a method for implementing communication throughshared variables by means of a blackboard. We assume the availability of the prim-itives introduced in the �rst sections. We also assume that we want to implement asimple concurrent (constraint) language which basically has a sequential operator,a parallel operator (which, since we are in a distributed environment could actuallymean execution in another node of the net), and \ask" and \tell" uni�cation prim-itives. The sort of system that we have in mind could perhaps be a local area net,where the nodes are workstations. The incorporation of the sequential operator (tomark goals that should not be \farmed out") and the special marking of \(remote)communication variables" that will be mentioned later is relevant in the environ-ment being considered. Note that it would be extremely ine�cient to blindly runa traditional concurrent logic language (creating actual possibly remote tasks forevery parallel goal and allowing for all variables to be possibly shared and workedon concurrently by goals in di�erent nodes) in such a distributed environment. Atraditional concurrent language can of course be compiled to run e�ciently in suchan environment after granularity analysis [9, 32, 21] | in fact, this can be seen asa source level transformation to a language of the type we are considering.To implement this language on K&P we start by observing that the sequentialand parallel operators of the source language map directly into the sequential (\,")and &@ (or &&@/2, if fairness is needed) operators of K&P. However, while this al-lows creating remote tasks, it does not by itself implement the communication ofvalues between nodes through shared variables. We propose to do this by placingbefore the concurrent call a call to a predicate which will attach an attribute tothe shared variables marking them as \communication variables". Also, a uniqueidenti�er is given to each communication variable. All bindings to these variablesare posted on the blackboard (using the out/1 primitive) as (variable id,value) pairs,where if values contain themselves new variables, such variables are represented bytheir identi�ers. Thus, substitutions are represented as explicit mappings. Whenbound to a communication variable, a non-communication variable is turned intoa communication variable. Tell and ask operations on ordinary variables, whichare handled in the standard way, are distinguished from tell and ask operations to(remote) communication variables by the fact that the latter have the correspond-ing attribute attached to them. Thus, tell and ask uni�cations to communication



variables will be handled by the attributed variable uni�cation. A tell will be imple-mented by actually performing the binding to the variable in the manner explainedabove using the out/1 blackboard primitive. An ask will wait until a binding forthe variable is posted on the blackboard. This will be commonly implemented usingthe blocking rd/1 blackboard primitive, since in general a variable can have mul-tiple readers and thus in/1 cannot be used. On the other hand, if a threadednessanalysis is performed and a variable is determined to have only one producer andone consumer then in/1 can be used performing on the y garbage collection on theblackboard.4 Else, when a remote goal �nishes, a call to a tidying-up predicate canbe used to erase the entries in the blackboard corresponding to the bindings of vari-ables which are not used as communication variables any more (and are not linkedto other active communication variables) and creating the corresponding term inthe heap of the process which continues with the execution.A Concrete Implementation in SICStus PrologIn order to be more concrete we sketch our implementation of the ideas outlinedabove in a widely available environment: SICStus Prolog, enhanced with attributedvariables, and using the Linda library provided with recent versions of the system.We hope that this detailed presentation of a concrete implementation will clarifythe issues that appear in practice when using the techniques proposed.The implementation of the basic operators such as & and &@ in a Linda basedenvironment is not our current subject but is in any case relatively straightforward(details of a particular implementation, also available by ftp, can be found in [13]):a number of Prolog processes running in di�erent network nodes are started asLinda clients and thus share the blackboard, which is accessible through the normalLinda primitives. Goals that are followed by & are simply posted on the blackboard.Idle processes are waiting for work to be posted, which they then execute. Goalsthat are followed by &@ x are posted on the blackboard with an identi�er thatindicates they are meant to be run on a given machine x. This allows, for example,the following query to start a \producer" goal in a remote machine \alba" and aconsumer locally:?- N=10, producer(N,L) &@ alba, consumer(L).As mentioned before, in order to implement communication between nodesthrough the variable L we would like to mark that variable as shared by attachingan attribute to it. In general L may be bound to a complex term with interveningvariables, and then each such variable has to be marked in turn. On the other hand,in the blackboard implementation we are considering, variables posted to the black-board lose their identity. Thus, a unique identi�er needs to be given to each one.Note that since attribute attachment operations are local to each process, identi-fying the shared variables and giving them identi�ers (which can be done once) isbest separated from the action of actually attaching attributes to them (which hasto be repeated in each node sharing the variable).We implement a predicate var ids(LVars, Pairs) which given a set of lexicalvariables appearing in the forked goal(s) returns the set of intervening run-timevariables, assigns a unique identi�er to each of them, and returns the informationin the form of (V ariable; Id) pairs. In our example, a call to this predicate is placedbefore the call to producer(L) as follows:?- var_ids([L],Ps), ( assign_ids(Ps), producer(N,L) ) &@ alba,assign_ids(Ps), consumer(L).4This illustrates how the attributed variable approach also allows performing low-level opti-mizations as source to source transformations.



(this is handled automatically by a simple lexical expansion of the original query).Only one pair would be generated in this case, since L is a free variable (of course,this important case can be treated specially, but the general purpose primitive isused for illustration purposes). Note that assign ids(Ps), de�ned byassign_ids([]).assign_ids([(X,Id)|Ps]) :-assign_id(X,Id),assign_ids(Ps). assign_id(X,Id) :-attach_attr(X,shv(Id)).does the actual attachment of the attribute shv(Id) to each shared variable, andthat this is done both in the local and the remote machine (alba, in this case).Once suitably marked, all the uni�cations involving these communication variablesare handled through the blackboard. The appropriate handlers are given in thefollowing \blackboard uni�cation" code (recall that verify attr/2 is called whenan attributed variable is uni�ed with a term, and combine attr/2 is called whentwo attributed variables are bound to each other):verify_attr(shv(Id),Term) :-trans_shterm(Term, NewTerm),shv_unify('$shv'(Id),NewTerm). combine_attr(shv(I1), shv(I2)) :-shv_unify('$shv'(I1),'$shv'(I2)).The predicate trans shterm/2 transforms a term into its blackboard representa-tion:trans_shterm(X,'$shv'(Id)) :-var(X), !,( get_attr(X,shv(Id)) -> true ;new_shv_id(Id),attach_attr(X,shv(Id)) ).trans_shterm(Term,NewTerm) :-functor(Term,F,N),functor(NewTerm,F,N),trans_shterm(N,Term,NewTerm).
trans_shterm(0,_,_) :- !.trans_shterm(N,Term,NewTerm) :-N > 0,arg(N,Term,Arg),arg(N,NewTerm,NewArg),trans_shterm(Arg,NewArg),N1 is N-1,trans_shterm(N1,Term,NewTerm).This predicate uses the primitive new shv id/1, which returns a new shared variableidenti�er di�erent from any other in any process participating in the computation.The predicate shv unify/2 performs the actual uni�cation of terms that arealready in the blackboard (we have left out all explicit locking in the uni�cation forsimplicity):shv_unify(A, B) :-dereference(A, VA),dereference(B, VB),shv_unify_values(VA,VB).dereference(X, V) :-X = '$shv'(_),sh_get_bind(X,Binding), !,dereference(Binding, V).dereference(V,V).shv_unify_values(X1,X2) :-X1='$shv'(Id1),X2='$shv'(Id2),( Id1=Id2 ; sh_bind(X1,X2) ), !.shv_unify_values(X1,X2) :-X1='$shv'(_), !,sh_bind(X1,X2).

shv_unify_values(X1,X2) :-X2='$shv'(_), !,sh_bind(X2,X1).shv_unify_values(X1,X2) :-functor(X1,F,N),functor(X2,F,N),shv_unify_args(N, X1, X2).shv_unify_args(0, _, _) :- !.shv_unify_args(N, X1, X2) :-N > 0,arg(N, X1, A1),arg(N, X2, A2),shv_unify(A1, A2),N1 is N-1,shv_unify_args(N1, X1, X2).



The uni�cation routine uses the following primitive operation, which returns theimmediate binding of a shared variable or fails if it does not exist:sh_get_bind(Id,T) :- linda:rd_noblock(shbinding(Id,T)).The following operation is used when writing out a binding for a variable:sh_bind(Id,T) :- linda:out(shbinding(Id,T)).For example, given the query?- var_ids([L],Ps), assign_ids(Ps), producer(3,L).and the following de�nition of a simple producer, the contents of the blackboardafter execution are listed to its right:producer(0,T):- !, T = [].producer(N,T) :- N>0,T = [N|Ns],N1 is N-1,producer(N1,Ns). shbinding($shv(0),[3|$shv(1)])shbinding($shv(1),[2|$shv(2)])shbinding($shv(2),[1|$shv(3)])shbinding($shv(3),[ ])In order to support synchronization some blocking (\ask") primitive has to beprovided. For simplicity, we only describe the implementation of the K&P waitprimitive in this context, which is in any case su�cient for most purposes:wait(X) :-get_attr(X,shv(Id)), !,sh_wait_bind('$shv'(Id),Binding),wait_shnonvar(Binding).wait(_). wait_shnonvar(X) :-X = '$shv'(_), !,sh_wait_bind(X, Binding),wait_shnonvar(Binding).wait_shnonvar(_).The following primitive is used above:sh_wait_bind(Id,T) :- linda:rd(shbinding(Id,T)).A simple stream communication based consumer using these primitives can be con-structed as follows:consumer(T) :-wait(T),consumer_body(T). consumer_body([]).consumer_body([H|T]) :-consumer(T).Note that the above producer and consumer can also be seen as the result of astraightforward compilation of the following fragment of GHC code:producer(0,T) :- T = [].producer(N,T) :-N>0 | T = [N|Ns],N1 is N-1,producer(N1,Ns). consumer([]).consumer([H|T]) :-| consumer(T).Of course, an equivalent distributed producer-consumer situation (in which theelements are consumed in the same order as they are produced, as in the programabove) can be easily implemented making direct use of the Linda primitives usingthe query:?- N=10, lproducer(N) &@ alba, lconsumer.and the following program:



lproducer(N) :- lproducer(N,1).lproducer(0,C) :- !,linda:out(message(C,end)).lproducer(N,C) :-N>0,linda:out(message(C,number(N))),N1 is N-1,C1 is C+1,lproducer(N1,C1).
lconsumer :- lconsumer(1).lconsumer(C) :-linda:rd(message(C,T)),lconsumer_data(T,C).lconsumer_data(end,_).lconsumer_data(number(N),C) :-C1 is C+1,lconsumer(C1).However, arguably this program lacks the elegance of the shared variable commu-nication based program: for example, if we want to run simultaneously severalinstances of producers and consumers, the generation of new identi�ers for the mes-sages must be explicitly encoded. The shared variable communication approachsketched allows in some ways having the best of both worlds or, in any case, beingable to choose between them. It certainly provides the expected functionality. Itsperformance of course depends heavily on the performance of the blackboard im-plementation. However, this is certainly also the case if the Linda primitives areused directly.5 Implementing Other Models Using AttributedVariablesLack of space does not allow elaborating further but we argue that using techniquessimilar to those that we have proposed it is possible to implement many other par-allel and concurrent models at the source level. For example, while and-parallelismcan be supported in or-parallel implementations by folding it into or-parallelism, nocommunication among and-parallel tasks is possible. Our technique could be usedto provide this communication, for example by \escaping" shared variable uni�ca-tions and asserting them to the common database. We believe it is as well quitepossible to encode the determinacy driven synchronization and-parallelism of theAndorra-I system [23] in terms of our wait primitive and the concurrency operators.We also believe it is quite possible to implement languages with deep guards and/orthose based on the Extended Andorra Model [31], such as AKL [20].For example, one of the most characteristic features of deep guard languages isprecisely the behavior of the guards, and one of the main complications in imple-menting such languages is in implementing the binding rules that operate withinsuch guards. If the Herbrand domain is used, the guard binding rules require inprinciple that no bindings to external variables be made. Thus, it is necessary tokeep track of the level of nesting of guards and assign to each variable the guardlevel at which it was created. Note that this can be done by assigning to eachguard a hierarchical identi�er and attaching to each variable such an identi�er as(part of) its attribute. Uni�cations in the program are labeled with the identi�erof the guard in which they occur (the level is passed down recursively through anadditional argument). Such uni�cations are handed over to the attributed variablehandler which makes computation suspend unless the variable and the binding havethe appropriate relative identi�ers. The binding rules for domains other than Her-brand can be more complex because they often use the concept of entailment. Butnote that in the proposed approach all constraint solving would possibly be imple-mented through attributed variables anyway. Thus, it is not di�cult to imaginethat a correct entailment check can be written at the source level using the sameprimitives and wait. Some models are more involved: in AKL, for example, there is



a notion of local bindings and there is an additional rule controlled by the concept of\stability" (closely related to that of independence) which allows non-deterministicbindings to propagate at \promotion" time. We believe however that there is alsopotential for the use of attributed variables for the implementation of AKL. Forexample, promotion rules can also be implemented by updating the identi�ers (theattributes) of all the local variables to higher levels.Another model for parallel execution of Prolog is the DDAS (\Dynamic De-pendent And-parallel Scheme") model of K. Shen [26]. In a very simpli�ed formthe DDAS model is an extension to (goal level) independent and-parallel modelswhich allows �ne grained synchronization of tasks, implementing a form of \depen-dent" and-parallelism. Parallelism in this model is controlled by means of \Ex-tended Conditional Graph Expressions" (ECGE for short) which are of the form:( conditions => goals ). As such, these expressions are identical to those used instandard independent and-parallelism: if the conditions hold, then the goals can beexecuted in parallel, else, they are to be executed sequentially. The main di�erenceis that a new builtin is added, dep/1. This builtin can appear as part of the con-ditions of an ECGE. Its e�ect is to mark the variable(s) appearing in its argumentspecially as \shared" or \dependent" variables. This character is in e�ect duringthe execution of the goals in the ECGE and disappears after they succeed. Only theleftmost active (i.e. non �nished) goal in the ECGE (the \producer") is allowed tobind such variables. Other goals which try to bind such variables (the \consumers")must suspend until the variable is bound or they become leftmost (i.e. all the goalsto their left have �nished). In order to support this model in K&P we assume asource to source transformation (using term expansion/2) of ECGEs: an ECGE isturned into a Prolog if-then-else such that if the conditions succeed then executionproceeds in parallel (using the &/2 operator, which directly encodes the fork-joinparallelism implemented by the ECGEs), else it proceeds sequentially. Dependentvariables shared by the goals in a ECGE are renamed. The dep/1 annotation istransformed into a call to a predicate that marks the variables as dependent byattaching attributes to them. Such attributes also encode whether a variable isin a producer or a consumer position. Uni�cation is handled in such a way thatbindings to variables whose attribute corresponds to being in the producer positionare actually bound. Note that if the variable is being bound to a complex termwith variables, these variables also have to be marked as dependent. Bindings tovariables whose attribute corresponds to being in a consumer position suspend theexecution of the associated process (using wait/1). The change from producer toconsumer status is implemented as follows: each parallel goal containing a depen-dent variable (except the last one) is replaced by the sequential conjunction of thegoal itself and a call to a predicate which will \pass the token" of being leftmostto the next goal (or short-circuiting the token link if it is an intermediate goal).This predicate also takes care of restoring the connection lost due to the variablerenaming.6 PerformanceThe objective of the technique presented is achieving a certain functionality throughthe use of attributed variables, rather than any increase in performance. However,it is still interesting to make some observations regarding the resulting implemen-tations. Table 1 presents some results obtained with the concurrent extension toSICStus Prolog described in Section 4. A set of programs involving producers andconsumers was run with each process running in a di�erent workstation (Sun IPC)connected over an Ethernet network. The performance of our implementation ofconcurrent logic programming is compared with equivalent programs written di-



shared var. linda shared var./lindaIncomplete message protocol (30 messages)Time 17:5 6:4 2:7Space 3n+ 1 2n+ 1 ' 1:5Operations 456 125 3:6Bounded bu�er protocol (30 messages, 3 places)Time 21:0 6:6 3:2Space 6n� 5 2n+ 4 ' 3Operations 699 129 5:4One to many communication with acknowledge (20 messages, two readers)Time 25:1 4:6 5:45Space 10n+ 1 2n+ 1 ' 5Operations 910 109 8:3Table 1: Distributed Shared Variable CommunicationBenchmark 1 Proc. 2 Proc. 3 Proc. 5 Proc. 7 Proc. 9 Proc.qs iap 90 (1) 50 (1.8) 50 (1.8) 50 (1.8) 50 (1.8) 50 (1.8)qs conc 1 320 (1) 170 (1.8) 120 (2.6) 80 (4.0) 70 (4.5) 60 (5.3)qs conc 2 400 (1) 210 (1.9) 150 (2.6) 100 (4.0) 90 (4.4) 80 (5.0)nrev 120 (1) 80 (1.5) 60 (2.0) 30 (4.0) 30 (4.0) 30 (4.0)Table 2: &-Prolog Performance for Concurrent Benchmarksrectly by hand in Linda in the most e�cient way possible. \Time" gives the execu-tion time in seconds. \Space" is an expression which gives the number of blackboarditems generated by the programs with an input of size n (experimental results con-�rm this expression). \Operations" is the number of operations performed in theblackboard during the execution of the programs. This number was measured byinstrumenting the SICStus implementation of the Linda library. The incompletemessage program is the standard program implementing a two-way communicationbetween processes [12, 28, 29]. The bounded bu�er program is also the standardone. The one to many communication with acknowledge program allows severalprocesses to read a stream produced by another, the latter being informed of whichprocess read each element. We argue that, despite the amount of metainterpretationof terms happening when using shared variables for communication the resultingperformance is still reasonable, specially if we take into account that the current im-plementation using attributes is very na��ve, and many optimizations can be made toimprove performance, both in the low{level implementation and in the compilationtechniques.In order to also see if actual performance improvements from parallelism are at-tainable with the technique, we have performed some measurements on a prototypeimplementation of communication through shared variables in the &-Prolog systemusing similar techniques. It should be noted that the results are based on ratherine�cient implementations of the wait/1, lock/2 and unlock/1 primitives.Table 2 shows the results. Times are in ms. and speedups between parentheses.qs iap is the independent and{parallel version of quicksort, where the two recursivecalls are executed in parallel, provided for reference. A small list is used in orderto somewhat limit the parallelism available using (goal level) independent and-parallelism. The benchmark uses append rather than di�erence lists. qs conc 1is again quicksort, in which the list splitting is performed concurrently with therecursive calls, acting as a producer. In qs conc 2 the concurrency is extended also



to the append call, and all the goals in the recursive clause are run concurrently.Finally, nrev is the standard na��ve reverse benchmark. The results are interesting inthat they show that even with a na��ve implementation of the concurrency primitivesreasonable speedups can be achieved with our techniques in programs with smallgranularity (for example, nrev), even if not (yet) speed, when compared to sequentialProlog. Again, our objective herein is simply to point out and substantiate tosome extent the great potential that in our view the concept of attributed variableshas in the implementation of generic parallel, concurrent, and distributed logicprogramming systems.7 ConclusionsWe have proposed a di�erent and novel use for the concept of attributed variables:developing a generic parallel/concurrent (constraint) logic programming system,using the same \glass box" avor as that provided by attributed variables andmeta-terms in the context of constraint logic programming implementations. Weargue that a system which implements attributed variables and the few additionalprimitives which have been proposed constitutes a kernel language which can beeasily customized at source level to implement many of the languages and executionmodels of parallelism and concurrency currently proposed, in both shared memoryand distributed systems. We have illustrated this through a few examples.While the wide applicability of the ideas presented is very attractive, a clear issueis the performance of the systems built using them. Of course, such performanceis bound to be slower than that of the corresponding native implementations. Itis clear that the native implementation approach is both sensible and practical,and simply the way to go in most cases. On the other hand we also feel there itis interesting to be able to have a generic system which can be easily customizedto emulate many implementations. On one hand, it can be used to study in apainless way di�erent variations of a scheme or to make quick assessments of newmodels. On the other hand the loss in performance is compensated in some waysby the exibility (a tradeo� that has been found acceptable in the implementationof constraint logic programming systems), and such performance can be improvedin a gradual way by pushing the implementation of critical operations down to C.References[1] J. Almgren, S. Andersson, L. Flood, C. Frisk, H. Nilsson, and J. Sundberg.Sicstus Prolog Library Manual. Po Box 1263, S-16313 Spanga, Sweden, October1991.[2] K. De Bosschere. Multi{Prolog, Another Approach for Parallelizing Prolog.In Proceedings of Parallel Computing, pages 443{448. Elsevier, North Holland,1989.[3] A. Brogi and P. Ciancarini. The Concurrent Language, Shared Prolog. ACMTransactions on Programming Languages and Systems, 13(1):99{123, 1991.[4] F. Bueno, M. Garc��a de la Banda, and M. Hermenegildo. E�ectiveness of GlobalAnalysis in Strict Independence-Based Automatic Program Parallelization. InInternational Symposium on Logic Programming, pages 320{336. MIT Press,November 1994.
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